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One of the biggest challenges in QSAR studies
using three-dimensional descriptors is to generate
the bioactive conformation of the molecules. Com-
parative QSAR analyses have been performed on a
dataset of 34 structurally diverse and competitive
CYP2C9 inhibitors by generating their lowest
energy conformers as well as additional multiple
conformers for the calculation of molecular de-
scriptors. Three-dimensional descriptors account-
ing for the spatial characteristics of the molecules
calculated using E-Dragon were used as the inde-
pendent variables. The robustness and the predic-
tive performance of the developed models were
verified using both the internal [leave-one-out
(LOO)] and external statistical validation (test set
of 12 inhibitors). The best models (MLR using GET-
AWAY descriptors and partial least squares using
3D-MoRSE) were obtained by using the multiple
conformers for the calculation of descriptors and
were selected based upon the higher external pre-
diction (R2

test values of 0.65 and 0.63, respectively)
and lower root mean square error of prediction
(0.48 and 0.48, respectively). The predictive ability
of the best model, i.e., MLR using GETAWAY de-
scriptors was additionally verified on an external
test set of quinoline-4-carboxamide analogs and
resulted in an R2

test value of 0.6. These simple and
alignment-independent QSAR models offer the
possibility to predict CYP2C9 inhibitory activity of
chemically diverse ligands in the absence of X-ray
crystallographic information of target protein
structure and can provide useful insights about
the ADMET properties of candidate molecules in
the early phases of drug discovery.
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Cytochrome P450 (CYP) comprises a superfamily of hemoproteins
that function as the terminal oxidase of the mixed function oxidase
system and catalyze the metabolism of a large number of both
exogenous and endogenous ligands in processes that can be bene-
ficial or harmful for the organism (1). Of the approximately 57
human CYP genes cloned and classified according to sequence
homology in families 1, 2, 3, 4, 5, 7, 8, 11, 17, 19, 21, 24, 27, and
51, three CYP families comprising of 1–3 and approximately 12
unique enzymes have been shown to play a substantial role in the
human hepatic metabolism of drugs and non-drug xenobiotics (2–5).
The remainder are of importance in the metabolism and ⁄ or biosyn-
thesis of endogenous compounds, such as bile acids, biogenic
amines, eicosanoids, fatty acids, phytoalexins, retinoids, and ste-
roids (1). Although CYPs display high structural homology, they often
have distinct roles in xenobiotic metabolism, with active sites that
enable broad and overlapping substrate specificity, which is further
complicated by ligand binding promiscuity.

CYP2C9, one of the four known members of the human CYP2C fam-
ily, is one of the important drug-metabolizing CYP in humans (6)
and is involved in the metabolism of commonly used polar acidic
drugs (7). CYP2C9 is responsible for the metabolism of up to 15%
of currently used therapeutics. CYP2C9 is the primary enzyme
responsible for the metabolism of nonsteroidal anti-inflammatory
drugs, oral antidiabetic agents, oral anticoagulants, and angioten-
sion-II receptor blockers (8). CYP2C9 is also the major enzyme
involved in the disposition of warfarin. Some of the more potent
CYP2C9 inhibitors include amiodarone, fluorouracil, metronidazole,
miconazole (especially systemic use), and sulfamethoxazole (usually
combined with trimethoprim) (6). All of the usual enzyme inducers,
such as barbiturates, carbamazepine, and rifampin, can substantially
increase CYP2C9 activity (6). The alteration of CYP2C9's activity
plays a role in undesired side effects of drugs, especially those
with low therapeutic indexes that are substrates of CYP2C9, and
could produce severe consequences. The ability to predict, early in
the drug development process, CYP2C9's inhibitory activity of lead
compounds would therefore be extremely useful, especially to antic-
ipate adverse results.

There are only two CYP2C9 structures cocrystallized with warfarin
(9) and flurbiprofen (10), but there has been a steady progression in
understanding the mechanism of CYP2C9 interaction with ligands
using a number of approaches. These studies include descriptive
structure activity relationship studies on tienilic acid derivatives
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(11), phenytoin analogs, and bis-traizole antifungals to aid in under-
standing the substrate and inhibitor specificity of CYP2C9 (12), site-
directed mutagenesis studies carried out to study the importance of
the I-helix residues Ser286 and Asn289 for conferring specificity for
substrates diclofenac and ibuprofen (13), and combined NMR and
molecular modeling to assist in defining the positioning of sub-
strates in CYP2C9 active site (14).

Regarding three-dimensional quantitative structure activity relation-
ship (QSAR) studies of CYP2C9, Jones et al. (15) proposed a com-
parative molecular field analysis (CoMFA) model that described
compounds that inhibited (S)-warfarin 7-hydroxylation and enabled
LOO predictions of Ki. Ekins et al. (16) developed 3D-QSAR pharma-
cophore models using Catalyst by generating multiple conformations
and compared results with 3D- and 4D-QSAR analyses using molec-
ular surface-weighted holistic invariant molecular descriptors (MS
WHIM) on a set of CYP2C9 inhibitors that inhibited tolbutamide
and diclofenac 4¢-hydroxylation (n = 9), on inhibitors that inhibited
(S)-warfarin 7-hydroxylation (n = 29), and on inhibitors that inhibited
tolbutamide 4-hydroxylation (n = 13) resulting in correlation coeffi-
cient (r) values of 0.91, 0.89, and 0.71, respectively. Afzelius et al.
(17) studied the use of alignment-independent descriptors in
ALMOND for obtaining the qualitative and quantitative predictions
of the competitive inhibition of CYP2C9 on a series of structurally
diverse compounds. The quantitative model generated by the partial
least squares (PLS) analysis of GRIND descriptors using the experi-
mental Ki values resulted in regression coefficient (r 2) value of 0.77
and cross-validated correlation coefficient (q 2) value of 0.60. The
model was externally validated using 12 compounds and predicted
11 of 12 Ki values within 0.5 log units. In a subsequent report, Af-
zelius et al. (18) derived a conformer and alignment-independent
3D-QSAR model based on the flexible molecular interaction fields
calculated in GRID and employed these fields and alignment-inde-
pendent descriptors derived in ALMOND on a training set consisting
of 22 diverse and flexible competitive inhibitors of CYP2C9. The
model resulted in a R 2 of 0.81 and q 2 of 0.62. The predictive abil-
ity of the model was externally evaluated with a test set of 12
competitive inhibitors, and 11 were predicted within 0.5 log unit.
No correlation coefficients for the test set were reported in these
studies.

Because of the wide chemical diversity of CYP2C9 ligands, multiple
sites of metabolism, and very limited availability of cocrystallized
complexes, conformer selection still remains a big challenge in
deriving quantitative models for CYP2C9 inhibition. Simple, versatile,
and highly predictive QSAR models, overcoming the problem of
lacking good protein structural information and simultaneously tak-
ing into account the ligand chemical diversity, would prove to be
highly beneficial in the exploration of new chemical entities in the
drug design and development process at very early stages. In this
study, we carried out a comparative QSAR analysis on a dataset of
34 competitive, structurally diverse, and stereospecific CYP2C9
inhibitors earlier used by Afzelius et al. (18). Global lowest energy
conformers of all the molecules in the dataset were generated and
used for the calculation of 3D-descriptors. QSAR models were
developed on a training set of 22 inhibitors using statistical tech-
niques: PLS regression analysis and ⁄ or multiple linear regression
(MLR). The predictability of these models had been evaluated inter-

nally using LOO cross-validation and externally using a test set of
12 compounds. However, one of the biggest challenges in QSAR
studies using 3D-descriptors is to generate the bioactive conforma-
tion of the molecules. To account for this problem of bioactive con-
formation, these models were then compared with other QSAR
models developed by generating multiple conformers of all the mol-
ecules in the dataset followed by PLS and MLR statistics, a meth-
odology similar to the 4D-QSAR analysis, where multiple
conformations are used to generate the predictive models. A type
of alignment-independent 3D- and 4D-QSAR analyses by generating
the lowest energy conformers and multiple conformers has been
used for the prediction of CYP2C9 inhibitory activity. Molecular
descriptors encoding the three-dimensional structural information
included 3D Molecules Representation of Structure based on Elec-
tron Diffraction (3D-MoRSE), Geometry, Topology and Atom-Weights
AssemblY (GETAWAY), Radial distribution Function (RDF), and
weighted holistic invariant molecular (WHIM) descriptors and were
used as the independent variable against the Ki; the dependent
variable. This research work differs from the one carried out by
Afzelius et al. (18) in terms of development of faster, simpler,
and predictive models with 3D-descriptors without use of any com-
mercial tool.

Methods and Material

Dataset for analysis
A dataset of 34 structurally diverse competitive inhibitors with Ki

values, for CYP2C9 determined by diclofenac-4-hydroxylation, rang-
ing from 0.28 to 245 lM has been used in the present study (18).
Although the inhibitory capacity of CYP2C9 inhibitors has been
extensively studied by several laboratories, the quality of the data
used in modeling is crucial because there is great variability in
kinetic constants for the same compounds between laboratories
and, correspondingly, when different sources of enzyme such as
recombinant CYP, human liver microsomes, hepatocytes, and liver
slices are used. In the present study, we have used the data points
reported earlier by Afzelius et al. (18). The chemical structures of
the dataset molecules along with their experimental Ki values are
shown in Table 1. The activity data have been converted to )loga-
rithmic scale ()log10 Ki) (Table 2) and subjected to QSAR analysis
using 3D-descriptors. Tanimoto coefficients for similarity of the mol-
ecules in the training and test sets were calculated based on the
daylight fingerprints taking Nicardipine, the most active molecule in
the dataset for comparison, and values were found to range
between 0.09 and 0.28, showing all the molecules were chemically
diverse. The dataset was subdivided into a training set of 22 com-
pounds and a test set of 12 different compounds as used earlier by
Afzelius et al. (18).

Computational details

Conformational analysis
Each molecule in the dataset was encoded into a simplified molec-
ular input line entry system (SMILES) string format (19). For stereo-
specific molecules (R ⁄ S), stereochemistry has been defined in the
input molecules. Atomic 3D coordinates were generated by OMEGA
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Table 1: Training set CYP2C9 inhibitorsa
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Thiabendazole (22)
Ki = 245
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N
S

Test set CYP2C9 inhibitorsa

Zafirlukast (23)
Ki = 2.5

N
O

N
H

O

S
O
O

N
H

O

O

R-miconazole (24)
Ki = 6

Cl

Cl
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Kaempferol (25)
Ki = 6.0
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OH

O
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OH
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version 2.2.1; Open Eye Scientific Software, Inc. (Santa Fe, NM,
USA) OMEGA builds initial models of structures by assembling frag-
ment templates along sigma bonds. Input molecule graphs are frag-
mented at exocyclic sigma and carbon to heteroatom acyclic (but
not exocyclic) sigma bonds (20). Conformations for the fragments
are either retrieved from pre-generated libraries built with makefra-
glib or constructed on-the-fly using the same distance constraints
followed by geometry optimization protocol that makefraglib uses.
Once an initial model is constructed, OMEGA generates additional
models by enumerating ring conformations and invertible nitrogen
atoms (Appendix S1). Ring conformations are taken from the same
fragment library used to build an initial model.

For the generation of the first type of QSAR models (QSAR-I),
each molecule was subjected to an energy minimization proce-
dure using the molecular mechanics force field (MMFF) to gener-
ate the lowest energy conformation (Appendix S2). To generate
the second type of models (QSAR-II), multiple conformers were
generated for all the inhibitors by specifying the limit up to a
maximum of 200 conformers ⁄ molecule in the input for OMEGA 2.0.
The final geometries were obtained by subjecting all the confor-
mations to energy refinement with semiempirical method AM1
using the MOPAC-7 program (Appendix S3). All geometries and
electronic parameters were calculated in vacuum. The following
sets of keywords were used in all quantum computations: AM1
PRECISE VECTORS BONDS PI KPOLAR ENPART.

Descriptors generation and selection
Conformational descriptors sensitive to the spatial positions of
the atoms, whose values vary for the same molecule depending
upon the selected conformer, were computed for the dataset

molecules using E-DRAGON (21),a an electronic remote version of
the descriptors calculating software DRAGON. The classes of de-
scriptors calculated include 160 3D-MoRSE (22,23); 197 GETAWAY
(24,25); 150 RDF (26,27); and 99 WHIM (28,29) descriptors. For
the generation of QSAR-I models, lowest energy conformers
finally optimized by AM1 semiempirical method were used and a
total of 606 descriptors were calculated. The optimized structures
were also used for the calculation of 1D- and 2D-descriptors
using E-DRAGON. These descriptors include constitutional, molec-
ular properties, topological, information theoretic indices, charge
descriptors, topological charge indices, and edge adjacency indi-
ces. QSAR-I models were generated using these set of descrip-
tors.

To generate the QSAR-II models, multiple conformations for each
molecule were used for the generation of molecular descriptors. For
each molecule and for each descriptor, the mean, the highest and
lowest value, the range, and the standard deviation (SD) over the
conformations were computed. This resulted in a total of 3030
descriptors for each molecule.

Selection of each class of descriptors was performed to reduce
the pool of descriptors by eliminating those that satisfied at
least one of the following conditions for the development of
MLR models: (i) the descriptor has a zero ⁄ constant value for all
the molecules investigated; (ii) the descriptors for the training
set of molecules with a correlation coefficient <0.3 with the
dependent variable (pKi) were regarded as redundant; (iii) in the
monoparametric correlation with (pKi), the descriptor has a
squared correlation coefficient lower than 0.1; (iv) in the mono-
parametric correlation, the descriptor has a t-test value lower
than 0.1; (v) in the monoparametric correlation, the descriptor

Table 1: Continued

Fluvoxamine (26)
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aExperimental values are given as micromolar.
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has a F-test value lower than 1 at a probability level of 0.05;
(vi) highly correlated descriptors provide approximately identical
information, if their pairwise correlation coefficient exceeded
0.75. Based on the intercorrelation coefficient values, one of the
highly correlated descriptor was kept while others were removed.

Model development
As the predictability of a QSAR model is best judged by the exter-
nal validation using a test set compounds, the dataset was divided
into training and test sets (Appendix S4). We adopted multiple vali-
dation strategies like LOO cross-validation and external validation.
As mentioned earlier, the kinetic data vary from one laboratory to
another, and the dataset was divided into a training and test set of
22 and 12 compounds, respectively, and followed the criteria setup
by Golbraikh et al. (30) (i) diversity of the training set, which is nec-
essary condition for building a QSAR equation applicable to further
compounds of interest in the same chemical domain; (ii) closeness
of the representative points of both the training and test set in the
descriptor space that ensures a proper validation of the model.
Also, all the data points in the test set should fall in between the

max and min activity values (range) for the training set of com-
pounds.

QSAR models were generated separately for each class of descrip-
tors using pKi values for CYP2C9 inhibition as the dependent vari-
able. For the development of QSAR models, the statistical
techniques used were PLS and stepwise MLR. Stepwise MLR was
used to study the influence of most important descriptors in the
prediction. Standardization of variables, stepwise MLR, and PLS
were performed using the statistical software STATISTICA version 7.0.b

Statistical methods
Multivariate methods establish relationships between predictor
(independent) variables, X, and response (dependent) variables, Y,
extracting factors from YTY and XTX matrices. In partial least
squares regression, PLS, the factors are extracted from YTXXTY
matrix, which is less restrictive and can be applied to situations
where other multivariate methods fail (31). For instance, it can han-
dle data with strongly correlated and ⁄ or noisy or numerous inde-
pendent X variables, and a regression model from PLS can be

Table 2: Experimental and calculated CYP2C9 inhibitory activity of training and test set molecules

S. No. Experimental pKi PLS 3D-MoRSE QSAR-I PLS GETAWAY QSAR-I PLS 3D-MoRSE QSAR-II MLR 3D-MoRSE QSAR-II MLR GETAWAY QSAR-II

Training set
1 6.55 6.55 6.20 6.34 6.51 6.35
2 6.30 5.66 5.45 5.58 5.71 5.20
3 5.72 5.45 5.60 5.20 5.41 5.50
4 5.66 5.29 5.60 5.56 5.61 5.68
5 5.48 5.54 5.69 5.59 5.55 5.75
6 5.26 5.14 5.34 5.02 5.08 5.47
7 5.22 5.16 4.86 5.11 4.82 5.44
8 5.22 5.29 5.22 5.50 5.32 5.14
9 4.87 5.09 4.99 5.24 5.11 5.00

10 4.80 5.34 5.36 5.20 5.00 4.88
11 4.72 5.05 4.91 5.13 5.30 4.94
12 4.70 5.10 4.89 5.20 4.88 4.74
13 4.57 4.34 4.62 4.45 4.53 5.06
14 4.49 4.50 4.66 4.59 4.42 4.37
15 4.46 4.41 4.77 4.37 4.53 4.68
16 4.44 4.40 4.42 4.38 4.99 4.34
17 4.43 4.17 4.53 4.27 4.23 4.08
18 4.29 4.33 4.33 4.40 3.95 4.42
19 4.19 3.85 3.63 3.76 3.88 4.27
20 3.90 4.52 4.38 4.33 4.06 3.96
21 3.84 3.83 3.62 3.74 3.93 3.72
22 3.61 3.70 3.64 3.75 3.89 3.74
Test set
23 5.60 6.94 5.90 6.67 6.72 6.08
24 5.22 5.29 5.08 5.50 5.32 5.14
25 5.22 4.45 4.67 4.53 4.56 5.19
26 5.07 4.22 4.21 4.37 4.56 4.45
27 4.80 4.90 4.83 4.99 4.7 5.03
28 4.77 4.94 4.86 5.10 5.7 4.51
29 4.70 4.73 3.95 5.47 5.33 5.59
30 4.35 3.92 4.02 3.94 3.93 4.26
31 4.22 4.24 4.49 4.18 4.28 4.54
32 4.19 4.10 3.97 3.93 4.25 3.82
33 4.03 4.30 4.57 4.12 4.43 4.48
34 3.85 4.04 3.79 3.89 4.23 3.12
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expected to have a smaller number of components without an
appreciably smaller R 2 value.

PLS was applied to correlate each class of descriptors separately
with the observed pKi values. Because the variance associated with
different descriptors can be very different, descriptors were auto-
scaled so as to assign unit variance to each descriptor. The opti-
mum number of components in each PLS model generated was
determined using the following criteria: (i) squared correlation coef-
ficient; R 2 and (ii) LOO cross-validation; q 2.

Stepwise MLR is a model-building technique that finds subsets of
predictor variables that most adequately forecast responses on a
dependent variable by linear regression, given the specified criteria
for adequacy of model fit (32). The basic procedure involves: (i)
identifying an initial model; (ii) iteratively stepping or repeatedly
altering the model at the previous step by adding or removing a
predictor variable in accordance with the 'stepping criteria' (F = 1
for inclusion; F < 1 for exclusion); and (iii) terminating the search
when stepping is no longer possible given the stepping criteria, or
when a specified maximum number of steps has been reached.
Specifically at each step, all the variables are reviewed and evalu-
ated to determine which one will contribute the most to the equa-
tion. That variable is then included in the model, and the process
starts again.

The statistical quality of the models was checked by parameters,
such as squared correlation coefficient (R 2), adjusted R 2 (R 2

a), and
variance ratio (F ) at specified degrees of freedom (df). Cross-vali-
dated correlation coefficient (q 2) is calculated according to the for-
mula:

q2 ¼ 1�
P
ðYobs � YpredÞ2P
ðYobs � Ŷ Þ2

ð1Þ

In the above equation, Ŷ means average activity value of the train-
ing set, whereas Yobs and Ypred represent observed and LOO-pre-
dicted activity values of the training set. PRESS is given by the
expression:

PRESS ¼
X
ðYobs � YpredÞ2 ð2Þ

We verified the requirements formulated by Golbraikh and Trophsa
(33) for considering a QSAR model as highly predictive if they sat-
isfy the following conditions: (i) q2 > 0.5; (ii) R 2

test > 0.5 (R2
test is the

correlation coefficient for test set predictions); (iii) R 2
0 or R

02
0 should

be close to R2
test such that [value of (R 2

test ) R 2
0) ⁄ R 2

test) or
(R 2

test ) R
02
0 ) ⁄ R2

test) is <0.1; (R 2
0 and R

02
0 are correlation coefficients

for regressions through the origin for predicted versus observed
activities and for observed versus predicted activities, respectively],
and 0.85 £ k £ 1.15 or 0.85 £ k¢ £1.15 (k and k¢ are the corre-
sponding slopes of regression lines through the origin).

Roy and Roy (34) previously showed that the use of R2
test might not

be sufficient to indicate the external validation characteristics; R 2
m

was used to be a measure of external prediction and was calcu-
lated as

R 2
m ¼ R 2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 2 � R 2

0

�� ��q� �
ð3Þ

A value of R 2
m > 0.5 may be taken as an indicator of good external

predictability.

Results and discussion

QSAR-I models

Partial least squares
The PLS regression was carried out using each class of 3D-descrip-
tors as described earlier, generated for the lowest energy conforma-
tions, after removing the variables with zero ⁄ constant values and
the variables with smaller coefficients as described above, until no
further improvement was seen in q 2 value irrespective of the num-
ber of components. To avoid overfitting, the significance of each
consecutive PLS component is examined, and it is stopped when
the components are non-significant, i.e., no further improvement
was seen in q2 values. The statistical details of PLS models gener-
ated with each class of descriptors are shown in Table 3.

The PLS 3D-MoRSE model could explain 77% of the variance
(adjusted coefficient of variation). The optimal number of latent
variables for this PLS model was 3. The PLS 3D-MoRSE model for
lowest energy conformers generated a LOO q 2 value of 0.50. Sim-
ple squared correlation coefficient R 2

test between the observed and
predicted values of the test set compounds was found to be 0.55.
Setting the intercept to zero, the squared correlation coefficient
was found to be 0.54. As R 2 and R2

0 values were not much differ-
ent, an acceptable value of R2

m (0.51) was obtained, which vali-
dated the predictability of the PLS 3D-MoRSE model.

Table 3: Comparative table of statistical analyses of different PLS QSAR-I models

Model R 2 R2
adj q 2 R2

test R2
0 K R2

m RMSEP PRESS

PLS 3D-MoRSE 0.84 0.77 0.50 0.55 0.54 1.00 0.51 0.54 6.18

PLS GETAWAY 0.83 0.75 0.50 0.53 0.50 1.00 0.50 0.43 6.59

PLS RDF 0.43 0.28 0.36 0.55 0.54 1.02 0.50 0.52 7.91
PLS WHIM 0.70 0.60 0.25 0.59 0.58 1.04 0.53 0.45 10.23
PLS 1D- and 2D-descriptors

from E-DRAGON
0.64 0.56 0.20 0.47 0.46 1.02 0.42 0.65 13.68

Bold represents significant models.
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The PLS GETAWAY model could explain 75% of the variance (R 2
adj).

The optimal number of PLS components for this model was 3. The
PLS GETAWAY model for lowest energy conformers generated a
LOO q 2 value of 0.50. R 2

test between the observed and predicted
values of the test set compounds was found to be 0.52. Setting the
intercept to zero, the squared correlation coefficient was found to
be 0.50. R2

m was found to be 0.50, which validates the predictabil-
ity of this model.

The other models were generated using RDF and WHIM 3D-descrip-
tors. However, these models were able to explain a variance of only
30% and 60%, respectively. The numbers of PLS components used
in these models were 3 and 4, respectively. The comparative PLS
results using these classes of descriptors to that of the 3D-MoRSE
and GETAWAY are shown in Table 3. The PLS RDF and PLS WHIM
models were of lower significance in explaining the LOO variance
as shown by low q2 values and high PRESS statistics.

Forward stepwise MLR
As mentioned earlier, the initial pool of each class of 3D-descriptors
was reduced by eliminating the redundant variables followed by
subjection to MLR using forward feature selection criteria.

The MLR model using the 3D-MoRSE descriptors resulted in a
three-parametric equation:

pKi = )0.393 (€0.087) Mor05m + 1.039 (€0.219) Mor16u ) 0.455
(€0.164) Mor08m + 1.692 (€0.368)

ntraining = 22, R 2 = 0.83, R 2
adj = 0.81, F = 30.01 (df 3, 18), q 2 = 0.76,

SEE = 0.34, p < 0.000

PRESS = 2.94, ntest = 12, R 2
test = 0.30, R 2

0 = 0.297, R 2
m = 0.28

This trivariant model was able to explain 81% of the variance
(R 2

adj), and LOO-predicted variance was found to be 76.3%. How-
ever, the predictability of this model for the test set compounds
was found to be very low.

The MLR model using the GETAWAY descriptors also resulted in a
following three-parametric equation:

pKi = 0.786 (€0.070) RTv ) 1.778 (€0.240) H2u ) 7.997 (€1.484)
R4m+ + 2.947 (€0.379)

ntraining = 22, R 2 = 0.89, R 2
adj = 0.87, F = 48.81 (df 3, 18), q 2 = 0.81,

SEE = 0.27, p < 0.000

PRESS = 2.35, ntest = 12, R 2
test = 0.26, R 2

0 = 0.26, R 2
m = 0.26

The MLR GETAWAY model was able to explain 87% of the vari-
ance, and LOO-predicted variance was 81%. The predictability of
this model for the test set compounds was found to be low.

The MLR models were also developed with RDF and WHIM 3D-de-
scriptors. These models were able to explain only 66% and 45% of
the variance, respectively. The comparative results obtained with
these descriptors to that of 3D-MoRSE and GETAWAY are shown in
Table 4. As it can be seen, there are remarkable differences con-
cerning the explanation of the experimental variance given by these
models compared to that of 3D-MoRSE and GETAWAY descriptors.
The meanings of the 3D-variables used in the various MLR models
developed in the current work are defined in Table 5.

The advantage of obtaining statistically significant QSAR models
using 3D-descriptors was established by the development of QSAR
models using 1D- and 2D-descriptors. The results are shown in
Tables 3 and 4. None of the models using either PLS or MLR
resulted in a statistically significant model.

QSAR-II models
QSAR-II models were developed by using the multiple conformers
for each molecule. The mean, the highest and lowest value, the
range, and the S. D. values for each descriptor were computed for
all the molecules. The calculated descriptors were subjected to PLS
and stepwise MLR analyses. Separate models were generated for
each class of 3D-descriptors. For each class of descriptors, different
combinations of the subclasses, i.e., mean, highest and lowest val-
ues, range, and the SD values were used to generate the suitable
models. Only those analyses, which resulted in statistically valid
models, are described later.

Partial least squares
The PLS regression was performed with each subclass and combi-
nation thereof for the 3D-descriptors generated for the multiple
conformers, after removing the variables with smaller coefficients,
until no further improvement was seen in q 2 value irrespective of
the number of components. The statistical details of the PLS mod-
els generated with each class of descriptors are shown in Table 6.

Table 4: Comparative table of statistical analyses of different MLR QSAR-I models

Model R 2 R2
adj q 2 R2

test R2
0 K R2

m RMSEP PRESS

MLR 3D-MoRSE 0.83 0.81 0.76 0.30 0.29 1.03 0.28 0.75 2.94
MLR GETAWAY 0.89 0.87 0.81 0.26 0.25 0.92 0.24 0.78 2.35
MLR RDF 0.71 0.66 0.58 0.20 0.20 1.07 0.20 1.03 5.62
MLR WHIM 0.53 0.45 0.22 0.02 – – – – –
MLR 1D- and 2D-descriptors

from E-DRAGON
0.88 0.85 0.78 0.27 0.17 – – – –

Lather and Fernandes
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The best model was obtained by using the average values of
3D-MoRSE descriptors and could explain 74% of the experimental
variance (adjusted coefficient of variation). The number of latent
variables for the PLS equation was found to be 3. The LOO-
predicted variance was found to be 51%. The R 2

test value for the test
set molecules was found to be 0.63. Setting intercept to zero, the
squared correlation coefficient was found to be 0.61. An acceptable
value of R2

m (0.54) was obtained, indicating the good predictability
of the model. Figure 1 shows the fit plots of the predicted versus
experimental pki values for CYP2C9 inhibition of the training and test
sets derived from the PLS 3D-MoRSE QSAR-II model.

PLS models using GETAWAY (three PLS components) and RDF (three
PLS components) descriptors resulted in explaining 68% and 55%
of the experimental variance, respectively. The LOO-predicted vari-
ance using these descriptors was found to be 43% and 27%,
respectively, explaining the poor statistical validation.

PLS regression model developed using WHIM descriptors (five
PLS components) was able to explain 64% of experimental vari-
ance. The LOO-cross-validated predicted variance and the external
predictability for the model using WHIM descriptors were found

to be 50% and 59%, respectively. An acceptable value of R 2
m

(0.54) was obtained, indicating the good predictability of the
model. The PRESS and RMSEP statistics were found to be 6.20
and 0.49.

Stepwise MLR
MLR 3D-MoRSE approach. A total of 800 3D-MoRSE descriptors
were computed and subjected to reduction by eliminating the
redundant variables followed by forward stepwise MLR. The aver-
age values of the descriptors calculated from the multiple conform-
ers of each molecule resulted in the best four-parametric model.
This model is shown below:

pKi = )0.592 (€0.078) Mor05m + 1.099 (€0.223) Mor16e + 0.521
(€0.161) Mor22e + 1.715 (€0.621) + 2.280 (€0.356)

ntraining = 22, R 2 = 0.85, R 2
adj = 0.82, F = 24.60 (df 4, 17), q 2 = 0.76,

SEE = 0.32, p < 0.0000

PRESS = 2.96, ntest = 12, R 2
test = 0.51, R 2

0 = 0.51, R 2
m = 0.51,

RMSEP = 0.56

Table 5: 3D-descriptors of the MLR QSAR models reported in this study

Descriptor Class Definition

QSAR-I models
Mor05m 3D-MoRSE 3D-MoRSE – signal 05 ⁄ weighted by atomic masses
Mor16u 3D-MoRSE – signal 16 ⁄ unweighted
Mor08m 3D-MoRSE – signal 08 ⁄ weighted by atomic masses
RTv GETAWAY R total index ⁄ weighted by atomic van der Waals volumes
H2u H autocorrelation of lag 2 ⁄ unweighted
R4m+ R maximal autocorrelation of lag 4 ⁄ weighted by atomic masses
RDF060m RDF Radial Distribution Function )6.0 ⁄ weighted by atomic masses
RDF030m Radial Distribution Function )3.0 ⁄ weighted by atomic masses
RDF075p Radial Distribution Function )7.5 ⁄ weighted by atomic polarizabilities
E2m WHIM 2nd component accessibility directional WHIM index ⁄ weighted by atomic masses
E3e 3rd component accessibility directional WHIM index ⁄ weighted by atomic Sanderson electronegativities
G1s 1st component symmetry directional WHIM index ⁄ weighted by atomic electrotopological states

QSAR-II models
Mor05m 3D-MoRSE 3D-MoRSE – signal 05 ⁄ weighted by atomic masses
Mor16e 3D-MoRSE – signal 16 ⁄ weighted by atomic Sanderson electronegativities
Mor22e 3D-MoRSE – signal 22 ⁄ weighted by atomic Sanderson electronegativities
R2u+ GETAWAY R maximal autocorrelation of lag 2 ⁄ unweighted
R8e+ R maximal autocorrelation of lag 8 ⁄ weighted by atomic Sanderson electronegativities
R5m+ R maximal autocorrelation of lag 4 ⁄ weighted by atomic masses
RDF050v RDF Radial Distribution Function )6.0 ⁄ weighted by atomic van der Waals volumes
RDF020u Radial Distribution Function )2.0 ⁄ unweighted
RDF020m Radial Distribution Function )2.0 ⁄ weighted by atomic masses
L3e WHIM 3rd component size directional WHIM index ⁄ weighted by atomic Sanderson electronegativities
E2e 2nd component accessibility directional WHIM index ⁄ weighted by atomic Sanderson electronegativities

Table 6: Comparative table of statistical analyses of different PLS QSAR-II models

Model R2 R2
adj q2 R2

test R2
0 K R2

m RMSEP PRESS

PLS 3D-MoRSE 0.82 0.74 0.51 0.63 0.61 1.01 0.54 0.48 5.94

PLS GETAWAY 0.77 0.68 0.43 0.41 0.34 1.00 0.31 0.48 7.16
PLS RDF 0.66 0.55 0.27 0.49 0.41 1.02 0.35 0.41 7.16
PLS WHIM 0.74 0.64 0.50 0.59 0.58 1.05 0.53 0.49 6.20
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This model involving four descriptors could explain 82% of the vari-
ance (R 2

adj), and LOO-predicted variance was found to be 76%. The
Fisher value was found to be 24.60 (on 4 and 17 df). The values of
external prediction parameters R2

test, R 2
0, and R 2

m were found to be
0.51, 0.51, and 0.51, respectively. These parameters validated the
predictability of this model. The descriptors involved in this model
are defined in Table 5.

The other models were also developed using each of the subclass-
es of descriptors; however, no suitable models were generated
showing the importance of mean values of 3D-MoRSE descriptors
calculated for multiple conformers of each molecule in the CYP2C9
dataset.

MLR GETAWAY approach. Initial pool of each subclass of GET-
AWAY descriptors was reduced by eliminating the redundant vari-
ables followed by MLR using forward stepwise feature selection.
The most significant model using the GETAWAY descriptors was
derived from the average values derived from the multiple con-
formers of each molecule. Setting the 'stepping criteria' (F = 1
for inclusion; F < 1 for exclusion), the following equation was
obtained:

pKi = )75.132 (€8.936) R2u+ + 69.996 (€21.708) R8e+ ) 5.409
(€1.914) R5m+ + 8.755 (€0.541)

ntraining = 22, R 2 = 0.81, R 2
adj = 0.78, F = 25.16 (df 3, 18), q 2 = 0.70,

SEE = 0.36, p < 0.0000

PRESS = 3.01, ntest = 12, R 2
test = 0.65, R 2

0 = 0.63, R 2
m = 0.56,

RMSEP = 0.48

The standard errors of regression coefficients are given within
parenthesis. This trivariant model could explain 78% of the experi-
mental variance (R 2

adj), and LOO-predicted variance was found to be
70%. The F statistic (on 3 and 18 df) for this model was found to
be 25.16 with a p-value of <0.000. All the t-values were significant
with low p-values, which confirmed the significance of each
descriptor. The predictive ability of the model was validated on the
test set resulting in R 2

test value of 0.65. R 2
m value was found to be

0.55, which further validated the external predictability of this
model. The PRESS statistic was found to be 3.91. Figure 2 shows
the fit plots of the predicted versus experimental pki values for
CYP2C9 inhibition of the training and test sets derived from the
MLR GETAWAY QSAR-II model.

GETAWAY descriptors are calculated from the leverage matrix
obtained by the centered atomic coordinates (molecular influence
matrix, MIM). GETAWAY descriptors are geometrical descriptors
encoding information on the effective position of substituents and
fragments in the molecular space. These descriptors are independent
of molecular alignment and account for information on molecular size
and shape as well as for specific atomic properties. R and R+ descrip-
tors are obtained from the leverage ⁄ geometric matrix (24,25).

The descriptors involved in the MLR GETAWAY model are belonging
to R subcategory of GETAWAY descriptors; it is clear that CYP2C9

Table 7: Comparative table of statistical analyses of different MLR QSAR-II models

Model R2 R2
adj q2 R2

test R 2
0 K R2

m RMSEP PRESS

MLR 3D-MoRSE 0.85 0.82 0.76 0.51 0.51 1.04 0.51 0.56 2.96

MLR GETAWAY 0.83 0.81 0.70 0.65 0.63 1.01 0.54 0.48 3.01

MLR RDF 0.77 0.74 0.57 0.10 – – – 0.72 5.88
MLR WHIM 0.66 0.62 0.58 0.31 0.11 1.02 0.17 0.50 5.33

Figure 1: Plots of predicted versus experimental pKi of the
training and test set molecules based on the PLS 3D-MoRSE QSAR-
II Model.

Figure 2: Plots of predicted versus experimental pKi of the
training and test set molecules based on the MLR GETAWAY
QSAR-II Model.
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inhibitory activity is influenced by the molecular size and shape of
the molecules in the dataset.

MLR RDF and MLR WHIM approaches. Forward stepwise MLR mod-
els were generated using each subclass and the combination thereof
for RDF and WHIM descriptors, respectively. However, no statistically
valid models were generated with these classes of descriptors.
Table 7 shows the comparative results of these classes of descriptors
to that of 3D-MoRSE and GETAWAY descriptors. The best model
using RDF descriptors resulted in a three-parametric equation and
had an F-test value of 20.47 (on 3 and 18 df). The MLR model using
WHIM descriptors resulted in a two-parameter equation and could
explain 62% of variance in the activity. However, the predictability of
the models derived from RDF and WHIM descriptors was found to be
very low, as shown in Table 7 that the MLR models based on these
descriptors had R 2

test values of 0.10 and 0.31, respectively.

Validation of best QSAR model
Further validation of best QSAR model, i.e., MLR using GETAWAY de-
scriptors was carried out on a test set of ten quinoline-4-carboxamide

analogs (35). The CYP2C9 inhibitory activity (Ki) of these molecules
was also determined using dicolfenac-4-hydroxylation by Peng et al.
(35). Multiple conformers of all the structures in external dataset
were generated by specifying the limit up to a maximum of 200
conformers ⁄ molecules. The final geometries were obtained by sub-
jecting all the conformers to energy refinement with semiempirical
method AM1. GETAWAY descriptors were calculated by using E-
DRAGON.

The predictability of the MLR model using GETAWAY descriptors
resulted in an R2

test value of 0.6 for quinoline-4-carboxamide ana-
logs, which further validates this present mathematical modeling
approach for the prediction of CYP2C9 inhibitory activity of chemi-
cally diverse molecules. The results are produced in Table 8.

Overview and Conclusion

PLS and stepwise MLR approaches have been applied for the linear
modeling of chemically diverse CYP2C9 inhibitors using 3D-descrip-
tors (3D-MoRSE, GETAWAY, RDF, WHIM). Because bioactive

Table 8: Experimental and calculated CYP2C9 inhibitory activity of Quinoline-4-carboxamide analogs by MLR using GETAWAY descriptors
QSAR model

Compound Structure Exp. pKi Pred. pKi Compound Structure Exp. pKi Pred. pKi

1

N
N

NO
4.42 5.00 2

N

N

NO
4.14 5.01

3

N
N

NO
4.28 4.63 4

N
N

NO

N
5.15 5.44

5

N

N

H
NO

5.11 5.94 6

N

N

NHO

4.68 5.39

7

N
N

NHO

4.61 5.46 8

N

N

H
NO

CH3

H3C

5.06 5.07

9

N

N

H
NO 5.16 5.90 10

N
N

H
NO

5.16 5.88
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conformer generation and selection remain a major challenge in
using the 3D-descriptors for the development of QSAR models, the
current work employs the use of lowest energy conformers for gen-
erating the QSAR models and then comparing these with that of
the models developed by using multiple conformers for all the mol-
ecules in the CYP2C9 dataset. The predictive ability of the models
was estimated from the prediction of the CYP2C9 inhibitory activity
of the test set of 12 compounds. Comparative results of the various
PLS and MLR models developed are shown in Tables 3, 4, 6 and 7.
The best models were found to be those based on the use of multi-
ple conformers compared to that of their lower energy conformer
counterpart. The best QSAR model was obtained by stepwise MLR
using GETAWAY descriptors calculated using the multiple conform-
ers and resulted in a high external prediction (R 2

test = 0.64) with
low RMSEP value (0.48). The second most statistically significant
model was based on PLS regression using the 3D-MoRSE descrip-
tors based on the internal (q 2 = 0.51) and external (R 2

test = 0.63)
predictive power with the low RMSEP value (0.48). Further, based
upon R 2

m values, which accounts for the large differences between
observed and predicted values, the MLR GETAWAY and PLS 3D-
MoRSE model derived by using multiple conformers were found to
be superior (R 2

m = 0.54) in comparison with other models devel-
oped. The other statistically valid models were derived from PLS
regression of WHIM descriptors (q 2 = 0.50, R 2

test = 0.59) and step-
wise MLR analysis of 3D-MoRSE descriptors generated using the
multiple conformers. The models developed using the multiple con-
formers were more predictive when compared to that of the models
developed by using the lower energy conformers. The only statisti-
cally significant models using the lower energy conformers were
derived by PLS regression of 3D-MoRSE (q 2 = 0.50, R2

test = 0.55)
and GETAWAY descriptors (q 2 = 0.50, R 2

test = 0.52). None of the
models derived based on stepwise MLR analysis resulted in a sta-
tistically valid prediction.

This study differs from the one carried out by Afzelius et al. in that
these QSAR models are simple with good external prediction and
were developed in a conformational-dependent as well as the inde-
pendent manner using the lowest energy conformers. This method-
ology could prove of immense help where the bioactive
conformations of the ligands are unknown owing to their lack of
bound X-ray or NMR crystallographic information for the CYP2C9
enzyme. The 3D-descriptors used in the study are easy to interpret
and calculate.

Overall, a conformational independent and dependent methodology
similar to the 3D- and 4D-QSAR approaches have been used resulting
in simple, versatile, and fast predictive models for the prediction of
CYP2C9 inhibitory activity of chemically diverse inhibitors. These sim-
ple QSAR models for the prediction of CYP2C9 inhibitory activity could
prove very useful in exploring the ADMET fate of new chemical moie-
ties in the early stages of drug design and discovery.
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