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A quantitative structure–activity relationship study
has been carried out, in which the relationship
between the peroxisome proliferator-activated
receptor a and the peroxisome proliferator-
activated receptor c agonistic activities of thiazo-
lidinedione and oxazolidinedione derivatives and
quantitative descriptors, Vsite calculated in a
receptor-dependent manner is modeled. These
descriptors quantify the volume occupied by the
optimized ligands in regions that are either com-
mon or specific to the superimposed binding sites
of the targets under consideration. The quantita-
tive structure–activity relationship models were
built by forward stepwise linear regression model-
ing for a training set of 27 compounds and vali-
dated for a test set of seven compounds, resulting
in a squared correlation coefficient value of 0.90
for peroxisome proliferator-activated receptor a

and of 0.89 for peroxisome proliferator-activated
receptor c. The leave-one-out cross-validation and
test set predictability squared correlation coeffi-
cient values for these models were 0.85 and 0.62
for peroxisome proliferator-activated receptor a

and 0.89 and 0.50 for peroxisome proliferator-acti-
vated receptor c respectively. A dual peroxisome
proliferator-activated receptor model has also
been developed, and it indicates the structural
features required for the design of ligands with
dual peroxisome proliferator-activated receptor
activity. These quantitative structure–activity
relationship models show the importance of the
descriptors here introduced in the prediction
and interpretation of the compounds affinity and
selectivity.
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The study of relationships between molecular structure and proper-
ties, either physicochemical or biological, has attracted considerable
attention and forms the basis of quantitative structure prop-
erty ⁄ activity relationship (QSPR ⁄ QSAR) studies. During the past dec-
ades, thousands of molecular descriptors such as graph-theoretic,
geometric, electrostatic, quantum-chemical, etc. have been exten-
sively used for the prediction of physical, chemical, environmental
and biological properties of molecules (1). Computation of these
molecular descriptors for QSAR studies is generally carried out in a
receptor-independent manner except in some cases, where the
alignment of molecules is based either on a co-crystallized ligand
or on the docked conformations for CoMFA and CoMSIA studies
(2,3). A receptor-dependent QSAR approach has been incorporated
in 4D-QSAR and 5D-QSAR approaches, and 4D-QSAR analysis has
been used in the design of inhibitors of glycogen phosphorylase
(4) and HIV-1 protease inhibitors (5). With the available panoply of
descriptors, several QSAR equations could describe equally well the
experimental data under study. Nonetheless, from a medicinal
chemist's standpoint QSAR models should be easily interpreted and
their predictions easily translated into synthesis of new compounds
with improved properties. In this sense, descriptors and QSAR mod-
els with simple and intuitive interpretation are at premium.

An increasing realization in drug discovery is that modulating a mul-
tiplicity of targets can be an asset in the treatment of a range of
disorders. Examples include: Omapatrilat, a dual angiotensin-
converting enzyme and neutral endopeptidase inhibitor (6); SKI-606,
a dual inhibitor of Src and Abl kinases (7); Netoglitazone, a peroxi-
some proliferator-activated receptor; PPARa and PPARc agonist (8).
In this study, we introduce novel molecular descriptors which incor-
porate receptor information, and are conceived to be used in cases
where ligands are being designed to target several receptors. These
quantitative descriptors, Vsite, measure the volume occupied by a
ligand within the common or specific regions defined by the super-
imposed binding sites of the targets under consideration, as recep-
tors targeted by the same ligand should share some common
features in their binding sites. Therefore, ligands that are active
against several receptors should preferentially remain, and interact,

428

Chem Biol Drug Des 2009; 73: 428–441

Research Article

ª 2009 The Authors
Journal compilation ª 2009 Blackwell Munksgaard

doi: 10.1111/j.1747-0285.2009.00788.x



within the region that is common to the binding sites of all tar-
geted receptors. We want to test if the selectivity of ligands for
multiple receptors is correlated with the volume, they occupy within
the common region defined by the binding sites. The descriptors
that we are introducing are very simple and take into account only
the steric nature of the binding sites to define common or specific
regions, and sometimes other factors (chemical nature, flexibility of
ligands, conformational changes of receptors, etc.) could play a
more important role than these simple descriptors, we are introduc-
ing. The proposed descriptors were used along with other molecular
descriptors, in the development of 2D-QSAR models for the predic-
tion of PPARa, PPARc and PPARa ⁄ c dual agonistic activity of a
dataset of thiazolidinedione and oxazolidinedione derivatives from
the lead compound KRP-297 of Merck which showed PPARa ⁄ c dual
activity. This set of compounds was studied by Khanna et al. and
the authors established a 3D-QSAR model based on the additivity
of molecular fields, but the study was carried out in a receptor-
independent manner (9).

Materials and Methods

Dataset for analysis
A dataset consisting of a series of 5-aryl thiazolidinedione and oxa-
zolidinedione derivatives (10,11) acting as PPARa and PPARc dual
activators has been selected to develop three QSAR models: (i) a
model, (ii) c model and (iii) dual model. The basic structures of
these compounds are shown in Table 1 along with their induced
activities for PPARa and PPARc (pIC50). In the dual model develop-
ment, pIC50 (dual) have been calculated as the summation of pIC50

values for PPARa and PPARc. The dataset of 34 molecules was sub-
divided randomly into a training set and a test set of 27 and seven
molecules, respectively (as selected by Khanna et al. for the CoMFA
studies). Two molecules which were excluded from Khanna's study
because of not-fitting into the model were included in this study as
part of the test set molecules. Khanna's report includes compounds
for which IC50 values of PPARa activity could not be specifically
ascertained, but a minimum range was defined. For such molecules,
the reported minimum value of activity was employed in the devel-
opment of QSAR models.

Computational details

Active ⁄ inactive classification
The new descriptors here introduced (see below) will have a zero
value for those compounds that are inactive towards a certain tar-
get. We are assuming that inactive compounds will not remain in
the target's binding site and therefore they do not occupy any vol-
ume in that binding site. This does not pose any problem for com-
pounds with known activities, where we calculate the descriptors
only for the active compounds. However, in a context of quantita-
tive prediction of activities of unknown compounds, we will need
an a priori qualitative classification of these compounds, either as
active or inactive, before the calculation of the descriptors. To
determine if an unknown compound will be considered as active or
inactive for a particular receptor isoform, and therefore if
the descriptors here introduced need to be calculated or not, a

qualitative approach for classifying the molecules from the dataset
has been implemented. The relationship of the Zagreb index – an
adjacency based topological descriptor (12,13) and the Balaban-type
index from polarizability weighted distance matrix, Jp – a distance-
based topological descriptor (14,15) with the PPARa and the PPARc
agonistic activities was investigated by the development of suitable
models. The Zagreb index M1 proposed by Gutman et al. (12,13) is
defined as the sum of squares of degree over all vertices and is
represented by the following equation:

M1 ¼
Xn

i¼1

ðV 2
i Þ ð1Þ

where Vi is the degree of vertex i in a hydrogen-suppressed molec-
ular structure. The vertex degree Vi for a vertex i is given as the
sum of the entries in a row i of the adjacency matrix.

The Balaban index (J ) proposed by Balaban (14) is calculated using
the following formula:

J ¼ B
C þ 1

XB

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
ðvi vj Þk

q
ð2Þ

where vi and vj are the vertex distance degrees of two atoms con-
nected by bond k, B is the number of bonds of the molecule and C is
the cyclomatic number. The Balaban-type index, Jp is obtained by
weighting the contributions of atoms and bonds with polarizability
(15). The topological indices M1 and Jp were calculated using
E-Dragon (VCCLAB, Virtual Computational Chemistry Laboratory, 2005).

Values of the Zagreb index were computed for each compound. For
the selection and evaluation of range-specific features, exclusive
activity ranges were discovered from the frequency distribution of
response level, and subsequently identifying the active range by
analyzing the resultant data by maximization of the moving average
with respect to the active compounds (16). Subsequently, each com-
pound in the dataset was classified using this model, and its classi-
fication was compared with the experimental values of PPARa and
PPARc activities (IC50). Compounds possessing IC50 values £2 lM

were considered as active and analogs possessing IC50 values
>2 lM were considered as inactive in this study. The percentage of
successful prediction of active and inactive range was calculated
from the ratio of the number of compounds predicted correctly to
the total number of compounds present in that range. The overall
percentage of successful prediction was calculated from the ratio
of the total number of compounds predicted correctly to that of the
total number of compounds present in both the active and inactive
ranges. The aforementioned procedure was similarly adopted for
the Balaban type index. As no compound in the dataset possessed
PPARc IC50 value >2 lM, all the compounds were considered as
active and the calculation of volumes within the PPARc binding site
was performed.

Optimization of ligands and calculation of Vsite

The molecular structures of the compounds were built with HYPER-

CHEM (Hypercube Inc, Gainsville, FL, USA) using the crystal structure
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Table 1: Dataset used for QSAR analysis with their pIC50 values in the a, c and dual models

Comp.
No. X R M1 Jp

Exp.
PPARa
activity

Pred.
PPARa
activity Exp.

pIC50

(a)

Pred.
pIC50

(a)

Exp.
pIC50

(c)
Pred.
pIC50 (c)

Exp.
pIC50

(dual)

Pred.
pIC50

(dual)M1 Jp

1 S 172 0.861 + + + 7.55 7.25 7.24 7.29 14.80 14.20

2a,b S 158 0.800 + + + 7.33 7.04 7.12 7.77 14.45 16.37

3c S 188 0.870 ) ) ) 5.30 5.53 6.71 7.01 12.01 13.34

4 S 196 0.877 ) ) ) 5.68 5.11 6.77 6.80 12.45 12.22

5 S 192 0.870 ) ) ) 5.0 5.09 6.47 6.39 11.47 11.29

6 S 202 0.763 ) ) ) 5.0 5.22 6.54 6.64 11.54 10.91

7a S 206 0.774 ) ) ) 5.70 5.40 6.48 6.50 12.18 12.99

8 S 212 0.780 ) ) ) 5.0 5.04 6.65 6.54 11.65 12.20

9a S 212 0.774 + ) ) 7.0 7.25 7.14 7.10 14.14 14.47

10 S 216 0.775 + + ) 7.55 7.18 7.11 7.17 14.66 14.14

11 S 212 0.777 ) ) ) 5.59 5.78 6.52 6.98 12.11 12.26

12 S 218 0.788 + + + 6.02 6.12 7.52 7.59 13.54 13.52
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Table 1: (Continued)

Comp.
No. X R M1 Jp

Exp.
PPARa
activity

Pred.
PPARa
activity Exp.

pIC50

(a)

Pred.
pIC50

(a)

Exp.
pIC50

(c)
Pred.
pIC50 (c)

Exp.
pIC50

(dual)

Pred.
pIC50

(dual)M1 Jp

13a S 218 0.788 + + + 7.17 7.09 7.19 6.94 14.36 15.54

14 S 218 0.782 + + + 6.79 6.78 7.25 6.94 14.04 14.46

15 S 172 0.849 + + + 6.95 6.73 7.11 7.00 14.06 13.80

16 S 176 0.852 + + + 5.85 6.66 7.43 7.21 13.28 13.86

17 S 168 0.850 + + + 6.68 6.50 7.07 7.02 13.75 12.98

18 S 178 0.949 + + + 7.38 7.16 7.20 7.28 14.58 14.45

19 S 184 0.961 + + + 7.05 7.30 7.72 7.72 14.77 13.92

20a S 190 0.850 ) ) + 5.0 6.20 6.84 6.91 11.84 14.23

21 S 178 0.935 + + + 7.43 7.30 7.52 7.50 14.95 14.89

22 S 172 0.927 + + + 6.92 6.80 7.19 7.00 14.11 13.85

23 S 172 0.913 + + + 7.21 7.29 6.82 6.75 14.03 14.52

24 S 168 0.917 + + + 7.34 7.14 7.23 7.17 14.57 14.73

25a S 168 0.882 ) + ) 5.30 5.87 6.47 7.16 11.77 N.A.

26 O 168 0.896 + + + 6.54 6.70 6.31 6.23 12.85 12.55
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of rosiglitazone with PPARc [PDB:2PRG (17)] as the basic skeleton.
All compounds were then optimized individually using semi-empirical
quantum mechanics (PM3 method with restricted Hartree-Fock) to
get the correct bond lengths and angles. The compounds with cor-
rect geometries were docked against the PPAR isoforms using VDock
(18). If for a given receptor, a particular compound was classified as
inactive, then that compound would not be docked against the
receptor.

The volumes of the compounds within a 4 � threshold from
receptor atoms were calculated using a simple in-house grid-
based algorithm programmed in FORTRAN

a. The receptor atom
co-ordinates were read from a specially prepared PDB file contain-
ing the two superimposed PPAR variants (PPARc; PDB:2PRG and
PPARa; PDB:1I7G). The structural alignment of the two proteins
was carried out based upon the co-ordinates of the protein's Ca
atoms using the SHEBA program (19). For each docked ligand, a
relatively small virtual 3D grid with a 0.2 � spacing was created,
completely enveloping the entire van der Waals volume of the
ligand molecule. The grid points that fall outside of the ligand

atom's van der Waals radii were ignored. For each grid point
inside the ligand's van der Waals radii, the test of the proximity
to the receptor atoms was performed. The program classified each
grid point as belonging to one of the following categories:
(i) within 4 � from both PPARa and c receptors; (ii) within 4 �
from PPARa but outside of the 4 � zone of PPARc (PPARa only);
(iii) within 4 � from PPARc but outside of the 4 � zone of PPARa
(PPARc only); and (iv) outside of the 4 � zone of both PPARa and
PPARc receptors. Figure 1 illustrates schematically the calculated
volumes used in this study. The numbers of grid points falling
within each category were further multiplied by the volume of a
grid cell, i.e. 0.008 �3, and produced the numerical values of
Vcommon, Va, Vc and Vout, corresponding to the four categories
mentioned above. Only the heavy (non-hydrogen) atoms of the
ligand and of the receptor were taken into account by the pro-
gram. In cases where compounds presented dual activity, Va and
Vc were calculated using the compounds' docked conformation in
PPARa and PPARc, respectively. Vcommon and Vout of a dual active
compound were calculated as averages for both conformations of
the compound docked separately against the PPARa- and the

Table 1: (Continued)

Comp.
No. X R M1 Jp

Exp.
PPARa
activity

Pred.
PPARa
activity Exp.

pIC50

(a)

Pred.
pIC50

(a)

Exp.
pIC50

(c)
Pred.
pIC50 (c)

Exp.
pIC50

(dual)

Pred.
pIC50

(dual)M1 Jp

27 O 172 0.893 ) + + 5.58 5.65 6.35 6.26 11.92 12.34

28 O 164 0.873 + + ) 6.21 6.58 6.19 6.13 12.40 11.93

29a O 174 0.890 + + + 6.20 7.04 5.97 6.36 12.17 13.30

30 O 174 0.886 ) + ) 4.82 5.24 5.94 6.20 10.76 11.33

31 O 182 0.886 ) + ) 4.82 4.46 6.74 6.52 11.56 11.88

32 O 182 0.901 + + + 6.23 6.23 6.27 6.07 12.50 12.68

33 O 168 0.876 ) + ) 5.48 5.34 5.75 6.02 11.23 11.71

34 O 176 0.848 ) + + 5.54 5.30 6.12 6.25 11.66 11.34

aTest set molecules; bwithout propyl group; cn = 2.
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PPARc binding sites. If a compound was considered inactive
towards PPARa, then it was not docked in the receptor's binding
site and its Va value was set to zero. For a compound inactive
towards PPARa, Vcommon and Vout were calculated using only the
compound's docked conformation against the PPARa binding site,
and the same happened obviously for the calculation of Vc. The
values of Va, Vc, Vcommon, Vout and the molecular volume for some
compounds used in this study are shown in Table 2.

Choice of descriptors
The molecular structures were extracted from the proteins after
docking and transferred to a database for the calculation of other
molecular descriptors including constitutional, topological, geometri-
cal, electrostatic and quantum descriptors using CODESSATM (Compre-
hensive Descriptors for Structural and Statistical Analysis)
programb (20). A total of 527 descriptors were calculated for all
the structures. Selection of descriptors was performed in a heuris-
tic manner as employed in the framework of CODESSA which
reduces the pool of descriptors by eliminating those that satisfy
the following conditions (21): (i) descriptors that were not available
for every structure; (ii) the descriptor has a constant value for all
the investigated compounds; (iii) the descriptors with a correlation
coefficient smaller than 0.3 with the dependent variable (pIC50)
were regarded as redundant; (iv) in the monoparametric correlation
with (pIC50), the descriptor has a squared correlation coefficient
lower than 0.1; (v) in the monoparametric correlation the descriptor
has a t-test value lower than 0.1; (vi) in the monoparametric
correlation the descriptor has an F-test value lower than 1 at a
probability level of 0.05; (vii) highly correlated descriptors provide

approximately identical information, if their pair-wise correlation
coefficient exceeded 0.75.

QSAR models generation
A heuristic approach was used for the initial selection of molecular
descriptors followed by forward feature selection with multiple lin-
ear regressions (MLRs) to establish the final QSAR models. The final
QSAR models were built using STATISTICA 7.0 (Statsoft Inc, Tulsa, OK,
USA). Using the Fisher test (F-value) for the analysis of variance,
squared correlation coefficient (R 2) and standard error of estimate
(SEE), of training set as criteria of selection, subsets of descriptors
were examined for establishing the best linear QSAR. The size of
the descriptors subset used for model establishment was increased
until no improvement was seen as well as keeping in view that the
number of compounds in the training set should not be smaller than
five times the number of descriptors. Variance–covariance matrices
were calculated for each of the descriptors in all of the resulting
linear models and the descriptors which had multicollinearity, were
discarded. Tolerance and variation inflation factor (VIF) were chosen
as the parameters for determining the collinearity among the
variables. VIF values between 1 and 10 are acceptable for indicat-
ing the non-collinearity. Among the remaining models after the
elimination process, the one that had the minimum RMSE was
chosen as the best. The goodness of the regression fits were esti-
mated using parameters, such as R 2, RMSE and F-statistics. To
assess the self-consistency, the final model was validated using
leave-one-out (LOO) and the predictive ability was checked using
cross-validated squared correlation coefficient (q 2). After model
development with a randomly selected set of training compounds,
the best model was further examined by the test set molecules.

Results and Discussion

Active ⁄ inactive classification
The relationship of the Zagreb index and the Balaban-type index
with the PPARa activity of compounds in the dataset was investi-
gated and suitable models were developed to provide the behavior
(active or inactive) of an unknown compound (not included in the
dataset), through exploitation of the active ranges drawn from the

Figure 1: Schematic illustration of volumes used in this paper.
The relevant volumes are computed by superposing two PPAR iso-
forms (thin sticks), creating van der Waals spheres around the
ligand atoms (the upper half of the picture), and calculating vol-
umes of the ligand within the r = 4 � threshold from the protein
atoms of either isoform. The volumes obtained can be classified
into four categories: part of the ligand far from atoms belonging to
either PPARa or PPARc isoforms (uncolored field), close to PPARa
but far from PPARc (light blue), close to PPARc only (dark blue) and
close to both PPARa and PPARc (stripes).

Table 2: Numerical values of Va, Vc, Vcommon, Vout and molecular
volume of representative thiazolidinedione and oxazolidinedione
derivatives

Comp. No. Va Vc Vcommon Vout

Molecular
volume

1 17.94 5.86 333.36 1.40 368.30
4 0 5.66 361.54 2.73 411.30

10 18.71 5.87 342.62 1.33 372.30
13 18.52 6.03 363.54 1.38 399.70
15 27.70 5.87 339.72 3.65 386.60
18 23.43 6.46 332.90 1.34 371.50
23 22.40 5.66 344.72 1.29 387.10
25 0 7.35 330.90 1.46 378.50
28 20.57 6.95 331.80 1.56 381.40
32 21.42 7.34 335.85 1.54 375.10
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proposed models. Retrofit analysis of the data in Tables 3 and 4
reveals the following information concerning the different models
developed in this study.

Classification based upon the Zagreb index:

• A total of 27 of 34 compounds were classified correctly in both
the active and inactive ranges. The overall accuracy of prediction
was found to be 80% with respect to PPARa agonistic activity.

• The inactive range traversed between the two active ranges and
had a M1 value of 188–212. Eight of nine analogs in the inactive
range were predicted correctly resulting in a prediction of 89%. The
average IC50 value for the inactive range was found to be 5.75 lM,
indicating the presence of highly inactive compounds.

• The lower active range had a M1 value of <188 and the upper
active range had a M1 value of >212. The lower active range had a
predictability percentage of 72%, while the upper range resulted in
100% predictability. The average IC50 value for the upper active
range was found to be 0.30 lM, indicating the presence of highly
active compounds.

Classification based upon the Balaban-type index:

• A total of 28 of 34 compounds were classified correctly in both
the active and inactive ranges. The overall accuracy of prediction
was found to be 82.4% with respect to PPARa agonistic activity.

• Two active ranges, i.e. lower and upper active range were identi-
fied. The lower active traversed between the two inactive ranges
and had a Jp value of 0.782–0.861. Eight of 10 analogs were pre-
dicted correctly resulting in a prediction of 80%. The average IC50

value for the lower active range was found to be 1.58 lM, indicat-
ing the presence of more active compounds.

• The upper active range had Jp values of >0.886–0.961. Nine of
10 analogs in the active range exhibited the PPARa agonistic
activity. The average IC50 value for the upper active range was
found to be 0.45 lM, indicating the presence of highly active
compounds.

• The inactive ranges had Jp values of <0.782 and >0.861–0.886.
The average IC50 values of the inactive ranges were found to be
4.11 and 7.00 lM, respectively, indicating the presence of highly
inactive compounds compared with active ranges.

The developed classification models revealed significant correlations
between the topological indices and PPARa agonistic activity of
thiazolidinedione and oxazolidinedione derivatives. The model based
upon the Balaban-type index; a distance-based topological descrip-
tor resulted in a better model as compared with the model based
on Zagreb index; an adjacency based topological descriptor. Thus,
these models could be used to predict the behavior (active ⁄ inactive)
of unknown compounds whose numerical activity will be predicted
using the QSAR equations presented below.

QSAR models
Three independent QSAR models were developed using the volumes
occupied by the ligands in the receptors' binding sites and other
molecular descriptors calculated by CODESSA. The generated models
include: (i) the PPARa model, developed using the ligands' induced
activity of PPARa as the dependent variable, (ii) the PPARc model,
using the ligands' induced activity of PPARc as the dependent vari-
able, (iii) the PPAR dual model, using the multiplication of the activ-
ities induced by the ligands for both receptors. A linear regression
with forward feature selection approach was carried out for the
development of all three models. The volumes calculated for the
molecules docked against the PPARa and the PPARc binding sites
were used in the QSAR models for the prediction of PPARa and
PPARc agonistic activities, respectively. As mentioned earlier, the

Table 3: Proposed model
for PPARa activity based on Zagreb
indexModel

index

Nature of range
in the proposed
model Index value

No. compounds
falling in the range

Percent
accuracy

Average
IC50 (lM)Total Correct

M1 Lower active <188 21 15 72 2.29
Inactive 188–212 09 08 89 5.75
Upper active >212 04 04 100 0.30

Table 4: Proposed model for
PPARa activity based on Balaban-
type indexModel

index

Nature of range
in the proposed
model Index value

Nature of compounds
falling in the range

Percent
accuracy

Average
IC50 (lM)Total Correct

Jp Inactive <0.782 06 04 67 4.11
Lower active 0.782–0.861 10 08 80 1.58
Inactive >0.861–0.886 08 07 87 7.00
Upper active >0.886–0.961 10 09 90 0.45
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volumes, Va, for molecules which were inactive for PPARa were set
to zero.

PPARa model
The initial pool of descriptors calculated by CODESSA was reduced to
a minimum of 21 in heuristic manner followed by a stepwise MLR
model generation using forward feature selection. The best MLR
model resulted in a 5-parameter equation:

pIC50 (a) = 0.054 (€0.006) Va ) 0.707 (€0.0165) Topograhic elec-
tronic index (all pairs) + 3.433 (€1.160) XY shadow ) 0.348 (€0.127)
HA-dependent HDCA-1 ) 6.805(€3.096) ZX shadow + 12.899
(€2.042)

n = 27, R 2 = 0.903, F (5,21) = 39.007, SEE = 0.322, q 2 = 0.849

The pentavariant model explained 90% of the variance in activity.
The statistical details are shown in Table 5. All the t-values are sig-
nificant with low p-values which confirm the significance of each
descriptor. The F-statistics (on 5 and 21 degrees of freedom) for this
model was found to be 39.0 with a p-value lower than 0.000. Fur-
ther, the variance inflation factors are smaller than 1.6, which indi-
cates the absence of multicollinearities in the model. Thus, the
model is considered to be statistically valid. The predictive ability
of the model was validated internally by LOO method resulting in a
q 2 value of 0.85, which eliminates the possibility of chance correla-
tion in the model and also indicates that the model is highly predic-
tive. The RMSE for the training set (R 2 = 0.90) was 0.28 and the
RMSE for the prediction ⁄ test set (R 2 = 0.62) was 0.60. Figure 2
shows a fit plot of predicted versus experimental pIC50 values for
the training and test set molecules.

The main descriptor for the prediction of the PPARa agonistic activ-
ity as deduced from the t-statistics was found to be the Va, which
is the volume occupied by the ligands in the region specific of
PPARa's binding site. A positive coefficient value indicates that an
increase in the volume or size of ligands in this PPARa-specific
binding region increases the biological activity. Probably, this hap-
pens because an increase in the bulk leads to increased hydropho-
bic interactions (the region of the binding site accounting for Va is
lined with hydrophobic residues) thus enhancing biological activity.

The second descriptor of importance is the topographic electronic
index (all pairs), which is derived from Zefirov's partial charges (22).

This descriptor reflects the electrostatic interactions between the
ligands and receptor molecules, and can characterize the charge
distribution in the ligands. Negative contribution of this descriptor
indicates the importance of other forces like hydrophobic interac-
tions between ligands and PPARa.

The third descriptor is the XY shadow ⁄ XY rectangle which is a geo-
metrical descriptor characterizing the shape and extent of the mole-
cule in terms of its 3D co-ordinates (23). This descriptor represents a
2-dimensional projection on the X-Y plane of a 3-dimensional mole-
cule. The orientation of a molecule along the axes of inertia
(X-co-ordinate) casts a shadow of the molecule projected on the X-Y
plane. Normalized shadows are calculated by XY shadow ⁄ XY rectan-
gle. A positive coefficient shows that the activity increases with
increase in the value of XY shadow, which means that a larger area
of molecular shadow in the enclosing rectangle will benefit the
activity.

The fourth descriptor, HA-dependent HDCA-1 is related to the
hydrogen-acceptor(s) charged surface area of molecules (22). This
descriptor is related to the hydrogen-bonding ability of the ligands
and to the ability of forming polar interactions between the ligand
and the receptor.

The fifth descriptor in the equation is a geometrical descriptor rep-
resenting the 2-dimensional projection on the Z-X plane of a
3-dimensional molecule. A negative contribution to the linear
equation indicates the decrease in activity with increase in the
value of ZX shadow.

Overall, this reflects that the size ⁄ volume of molecules positively
govern the PPARa activity, while the biological activity is influenced
negatively by the hydrogen bond forming ability of thiazolidinedione
and oxazolidinedione molecules. The positive contribution of size to
the activity shows that hydrophobic interactions are playing a major
role on the PPARa activity.

The importance of the Va descriptor (which had a low beta coeffi-
cient value but a high t-statistics value) in the modeling of PPARa

Table 5: Statistics for the best MLR model for prediction of
PPARa agonistic activity

Descriptor beta SE t p level Tolerance VIF

Constant 12.899 2.042 6.315 0.000
Va 0.054 0.006 8.835 0.000 0.840 1.190
Topographic

electronic index
)0.707 0.165 )4.263 0.000 0.845 1.183

XY shadow 3.433 1.160 2.958 0.007 0.886 1.128
HA dependent

HDCA-1
)0.348 0.127 )2.740 0.010 0.836 1.196

ZX shadow )6.805 3.096 )2.198 0.010 0.838 1.193

Figure 2: Plots of predicted versus experimental PPARa activi-
ties of the training and test set molecules.
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activity was observed by the development of a QSAR model without
Va (while keeping everything else unchanged relatively to the model
described at the beginning of this subsection). The QSAR model
without Va resulted in an R 2 value of 0.54 with SEE of 0.68 for the
training set of compounds.

pIC50 (a) = )1.019 (€0.344) Topograhic electronic index (all
pairs) + 6.435 (€2.732) XY shadow ) 0.481 (€0.268) HA-dependent
HDCA-1 ) 9.649 (€6.534) ZX shadow + 15.881 (€4.275)

n = 27, R 2 = 0.541, F (4,22) = 6.49, SEE = 0.683, q 2 = 0.307

The model resulted in a low LOO cross-validation variance and
F-test value of 6.49 (on 4 and 22 degrees of freedom). The predict-
ability of this model was further tested on the test set molecules
resulting in an R 2

test value of 0.10.

PPARc model
The best MLR model for the prediction of PPARc agonistic activity
resulted in a 5-parameter equation explaining up to 89% variance.
The initial pool of descriptors calculated by CODESSA was reduced to
a minimum of 20 in a heuristic manner followed by a forward step-
wise MLR model generation in combination with Vc for PPARc. The
best model is shown as follows:

pIC50 (c) = 63.312 (€8.397) HASA-2 ⁄ TMSA + 63.068 (€13.110)
Relative No. of N atoms ) 0.481(€0.121) No. of double
bonds ) 0.001(€0.0002) Gravitation index (all bonds) ) 0.115
(€0.0510) Vc + 8.719 (€0.951)

n = 27, R 2 = 0.890, F (5,21) = 33.306, SEE = 0.195, q 2 = 0.80

The statistical details are shown in Table 6. All the t-values are sig-
nificant with low p-values which confirm the significance of each
descriptor. The F-statistic (on 5 and 21 degrees of freedom) for this
model was found to be 33.3 with a p-value less than 0.000. The
variance inflation factors were less than 2.5 indicating the absence
of multicollinearities in the model. VIF values upto 10 are consid-
ered as statistically valid, but independent variables with values
between 1 and 4 are considered as highly significant. Hence, the
model is considered to be statistically valid. The predictive ability

of the model was validated internally by the LOO method giving a
q 2 value of 0.80, which indicates the high predictability of the
model. The RMSE for the training set (R 2 = 0.89) was 0.17. The
model was further validated externally by the prediction of test set
compounds resulting in an R 2

test value of 0.50. Figure 3 shows a fit
plot of predicted versus experimental pIC50 values for the training
and test set molecules.

The main descriptor for the prediction based on the t-statistics was
found to be HASA-2 ⁄ TMSA (24), a Zefirov's partial charge-based
descriptor, which is equal to the square root of hydrogen bonding
acceptor surface area normalized by the total molecular solvent
accessible surface area, which is related to the hydrogen bonding
ability of the ligands with the receptor.

The second descriptor of importance for the PPARc model is the rel-
ative number of N atoms and the positive coefficient indicates the
increase in the activity of ligands with an increase in the relative
no. of N atoms, which could reflect the importance of having more
polar compounds for an increased activity.

The gravitation index (all bonds) (25) is defined as

Gb ¼
XNb

i<j

mi mj

r 2
ij

ð3Þ

where mi and mj are the atomic masses of bonded atoms i and j,
rij denotes the respective bond lengths and Nb is the number of
chemical bonds in the molecule. Gb accounts for both the atomic
masses (volumes) and for their distribution within the molecular
space. It quantifies effectively the bulk cohesiveness of compounds
arising from the dispersion and hydrophobic interactions. A negative
coefficient for this descriptor implies that ligands with higher
molecular mass have smaller PPARc agonisitc activity.

The number of double bonds is a constitutional descriptor and neg-
ative coefficient in the PPARc model shows that a decrease in the
activity was observed with an increase in the number of double

Table 6: Statistics for the best MLR model for prediction of
PPARc agonistic activity

Descriptor beta SE t p level Tolerance VIF

Constant 8.719 0.951 9.166 0.000
HASA-2 ⁄ TMSA 63.312 8.397 7.540 0.000 0.405 2.469
Relative No.

n atoms
63.068 13.110 4.810 0.000 0.733 1.364

No. double
bonds

)0.481 0.121 )3.973 0.000 0.638 1.567

Gravitation
index
(all bonds)

)0.001 0.0002 )3.127 0.005 0.738 1.355

Vc )0.115 0.051 )2.260 0.030 0.456 2.193
Figure 3: Plots of predicted versus experimental PPARc activi-
ties of the training and test set molecules.
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bonds. It could be due to the fact that the introduction of more
double bonds reduced the flexibility of the molecules and thus
decrease the activity.

The last descriptor for the prediction of the PPARc agonistic activity
was Vc, which is the volume occupied by the ligands in the binding
region specific to PPARc. A negative coefficient value indicates that
a decrease in the size or volume of ligands in this region increases
the biological activity. Although the coefficient for Vc in the equa-
tion is low, it had an individual correlation coefficient of 0.65 with
PPARc activity for the molecules in the training set, which shows
that it influences the PPARc activity significantly. The negative con-
tribution to the PPARc activity can be explained on the basis that
as the size of the substituents at the terminal phenyl ring
increases, the biological activity decreases. As it can be observed
in Figure 4, the terminal phenyl ring fits in a small hydrophilic
pocket (which is specific of the PPARc isoform and accounts for the
Vc values), and molecules substituted with hydrophilic moieties (e.g.
molecule 12 having hydroxyl substituted terminal phenyl ring) are
more active. Molecules with larger and hydrophobic substituents
(e.g. molecule 6 having isobutyl substituted terminal phenyl ring)
make less favorable interactions with the receptor atoms and tend
to be less active.

A QSAR model was also developed without Vc (while keeping
everything else unchanged relatively to the model described at the
beginning of this subsection) for modeling the PPARc activity. The
QSAR model without Vc resulted in an R 2 value of 0.86 with SEE
of 0.21 for the training set of compounds.

pIC50 (c) = 63.312 (€8.397) HASA-2 ⁄ TMSA + 63.068 (€13.110)
Relative No. of N atoms ) 0.481(€0.121) No. of double bonds )
0.001(€0.0002) Gravitation index (all bonds)

n = 27, R 2 = 0.860, F (5,21) = 34.000, SEE = 0.21, q 2 = 0.50

This model resulted in a LOO cross-validation variance of 50%,
which was lower than that of 5-parametric model obtained using
Vc (q2 = 0.80). Further, predictability of this model was tested on

the test set compounds resulting in an R2
test value of 0.35, which

was also lower than that of model with Vc (R2
test = 0.50). Thus, the

comparative results of the two models validate the role of Vc in
the prediction of PPARc activity.

PPAR dual model
The MLR model for the prediction of PPAR dual activity resulted
in a pentavariant equation explaining the 85% variance in the
activity. The initial pool of descriptors calculated by CODESSA was
reduced to a minimum of 21 in a heuristic manner followed by
a forward stepwise MLR model generation. The product (sum of
pIC50) of the activities induced by the ligands for PPARa and for
PPARc was used as the dependent variable. The best model is
shown as:

pIC50 (dual) = )0.544 (€0.081) No. of atoms + 2.405 (€0.374) Kier &
Hall index (order 3) ) 1.272(€0.352) No. of O atoms + 3.858
(€1.627) Topographic electronic index + 80.682 (€51.480) PNSA-
3 ⁄ TMSA + 32.390 (€3.508)

n = 27, R 2 = 0.850, F (5,21) = 24.08, SEE = 0.566, q 2 = 0.773

The statistical details of this model are shown in Table 7. All the
t-values are significant with low p-values which confirm the signifi-
cance of each descriptor. The F-statistics (on 5 and 21 degrees of
freedom) for this model was found to be 24.08 with a p-value
lower than 0.000. The variance inflation factors were smaller than
8.0 indicating the absence of multicollinearities in the model.
Hence, the model is considered to be statistically valid. The predic-
tive ability of the model was validated internally using the LOO
method resulting in a q 2 value of 0.77, which indicates the high
predictability as well as eliminating the chance correlation of the
model. The RMSE for the training set (R 2 = 0.85) was 0.49. The
model was further validated externally by prediction of the test set
compounds activities resulting in an R 2 value of 0.3. However, upon
removal of a single outlier (compound 25) from the test set using
the Z-score method (2.5 times the SD), the R 2 value increased to
0.69. Figure 5 shows a fit plot of predicted versus experimental
pIC50 values for the training and test set molecules.

The most important descriptor based on the t-statistics was the
number of atoms, a constitutional descriptor that describes the size
of the molecule. A negative coefficient value for the descriptor

Figure 4: Overlay of molecules 6 (Grey) and 12 (Green) docked
in binding site of PPARc.

Table 7: Statistics for the best MLR model for prediction of
PPARdual agonistic activity

Descriptor beta SE t p level Tolerance VIF

Constant 32.390 3.508 9.232 0.000
No. atoms )0.544 0.081 )6.715 0.001 0.131 7.633
Kier & Hall

index (order 3)
2.405 0.374 6.427 0.000 0.322 3.105

No. O atoms )1.272 0.352 )3.610 0.000 0.387 2.583
Topographic

electronic index
3.858 1.627 2.370 0.020 0.237 4.219

PNSA-3 ⁄ TMSA 80.682 51.480 1.567 0.010 0.399 2.506
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indicates that an increase in the number of atoms results in a
decrease of the dual activity.

The second descriptor of importance is Kier & Hall valence connec-
tivity index (order 3) (26). The Kier–Hall indices of molecular similar-
ity measurements employ the Kier–Hall j and v connectivity
indices. The v indices, for example, are computed according to fol-
lowing formula:

mx v ¼
XNs

i¼1

Ymþ1

k¼1

1
dv

k

� �1=2

ð4Þ

where m represents the atomic valence connectivity indices, e.g.
one bond path valence connectivity indices, two bond fragment
valence connectivity indices, and three contiguous bond fragment
valence connectivity indices, etc. dv

k is the valence connectivity
for the kth atom in the molecular graph, which is defined as
following:

dv
k ¼

ðZ v
k � Hk Þ

ðZk � Z v
k � 1Þ

where Zk is the total number of electrons in the k th atom, Z v
k is

the number of valence electrons in the k th atom, Hk is the
number of hydrogen atoms directly attached to the k th non-hydro-
gen atom. This descriptor depicts different aspects of atom
connectivity within a molecule, such as branching or flexibility.
Further, this can be considered to describe the steric crowding
around an atom and ⁄ or bond, which in turns impacts the accessi-
bility of an atom ⁄ bond to interact with the receptor. Simply, this
descriptor depicts the shape of the molecules and their role in
binding to the target proteins.

The third descriptor represents the number of O atoms in the ligand
molecules. A negative coefficient indicates the increase in the
activity with a decrease in the number of O atoms.

The fourth descriptor of importance is the topographic electronic
index (all pairs) (22). Positive contribution of this descriptor indicates
the importance of electrostatic forces for the dual activity.

The last descriptor PNSA-3 ⁄ TMSA (22), which is the fractional
atomic charge weighted partial negative surface area, is based on
the Zefirov's partial charge calculations. PNSA-3 is calculated as:

PNSA� 3 ¼
X

A

qASAA 2 fdA<0g ð5Þ

where qA is the atomic partial charge and SA is the negatively
charged solvent-accessible atomic surface area, and TMSA is the
total molecular surface area. This descriptor is related to the
induced charge asymmetry in the molecule and to the total molecu-
lar surface area. The positive contribution of this descriptor indi-
cates the positive role of electrostatic interactions for the PPAR
dual activity.

The descriptor Vcommon calculated as the volume occupied by the
ligands in the region common to both PPARa and PPARc binding
sites does not appear in the final QSAR equation for the dual
model. However, a model was established based on the relationship
of Vcommon with the PPAR dual activity. The results are shown in
Table 8. Retrofit analysis of the data in Table 8 reveals the follow-
ing information regarding the model based on Vcommon:.

• A total of 28 of 34 compounds were classified correctly in both
the active and inactive ranges. The overall prediction accuracy
was found to be 82.4% with respect to PPAR dual agonistic
activity.

• The active range traversed between the two inactive ranges and
had a Vcommon value of 332.90–363.54 �3. Sixteen of 20 analogs in
the active range were predicted correctly resulting in a success rate
of prediction of 80%.

The results show that an increase in the PPAR dual activity is
observed as the value of Vcommon increases. The occurrence of sec-
ond inactive range can be explained on the basis that this descrip-
tor depicts only the steric interactions between the ligand and
receptor, and possibly other factors (see dual QSAR model at the
beginning of this subsection) may also be playing a major role in
the present case.

Figure 5: Plots of predicted versus experimental PPAR dual
activities of the training and test set molecules. Outlier is shown as
red circle.

Table 8: Proposed model for PPARdual activity based on Vcommon

Model
index

Nature of
range in the
proposed model Index value

No. compounds
falling in the
range

Percent
accuracyTotal Correct

Vcommon Inactive 296.88–330.38 09 07 78
Active 332.89–363.54 20 16 80
Inactive 366.26–393.57 05 05 100
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Overall, the QSAR results shows that size and hydrophobicity are
the factors which play a major role in defining the PPARa activity
as shown by the positive contribution of Va and XY shadow. On
the other hand, PPARc activity is influenced more by the H-bond
forming ability of the molecules with the receptor or in other
words it is more controlled by the polarity of these molecules. The
PPAR dual model reflects that dual PPAR agonistic activity for the
thiazolidinedione and oxazolidinedione derivatives is affected by
both the size and hydrogen bond forming ability as shown by the
positive influence of size and polarity parameters. This model thus
appears to be a combination of PPARa and PPARc model and could
be successfully used for the design of compounds with dual
activity.

The main focus of the research work carried out in this case was
the development of QSAR models which are simple, versatile, highly
predictive and simultaneously taking into account the receptor infor-
mation for the design of PPAR agonists. Quantitative descriptors,
Vsite accounting for the volume occupied by a ligand within the
common or specific regions of the binding sites, in combination
with other descriptors, have been used for the development of
QSAR models. The geometrical descriptors accounting for 3D infor-
mation of the molecules have been computed for the same confor-
mations as those used for the calculation of Vsite descriptors. The
models developed were highly predictive as shown by the resulting
statistics. This study differs from the CoMFA analysis on the same
dataset carried out by Khanna et al. (9) as mentioned earlier,
because it was carried out in a receptor-dependent manner. The
success of a CoMFA model depends on a number of factors such
as the accuracy with which one can describe the compound's bioac-
tive conformer(s), and the ability to find superimposition rules of
the bioactive conformer(s) consistent with ligand–protein interac-
tions. Two outliers in the study by Khanna et al. were probably the
outliers because of inappropriate superposition on the core mole-
cule. This study also differs from Khanna et al. because we use
different docked conformations for the development of PPARa and
PPARc models, effectively taking receptor-dependent information
under consideration in the analysis of biological activities.

Further evaluation of the QSAR models and the physical signifi-
cance of the descriptors involved, lead to identify the following key
features for PPAR activities of thiazolidinedione and oxazolidinedi-
one derivatives:

• PPARa activity is positively influenced more by the size and
shape, whereas negatively by the electrostatic interactions. This
shows that hydrophobic interactions are playing major role in
governing the activity. Substitution with the hydrophobic groups
at R1 position will improve the PPARa activity. However,
the more bulky groups at R1 make the molecule inactive for
PPARa.

• On the other hand, PPARc activity is positively influenced by the
electrostatic parameters rather than the size. Substituents with
hydrogen-bond forming ability at R1 will be helpful in improving the
PPARc activity as shown by the positive contribution of HASA-
2 ⁄ TMSA descriptor in describing the activity.

• The dual model represented the influence of size and electrostat-
ics on the PPAR dual activity of the thiazolidinediones and oxazolid-
inediones. Substituents such as heteroaryl groups at R1 will
improve the PPAR dual activity.

Design of New Molecules

Based on the chemical features extracted from the developed
QSAR models, new molecules were designed having selectivity for
either of the PPAR isoforms and also dual activators. The docking
studies of these molecules were carried out using VDock after
optimization by PM3 semi-empirical method using HYPERCHEM. The
numerical values for the Va, Vc were calculated using the method-
ology described earlier. The chemical structures for the three
designed molecules are shown in Figure 6. The predicted activities
along with the calculated Vsite numerical values are given in
Table 9. Analysis of these results shows clearly that the designed
molecule T1 is a dual agonist, whereas T2 and T3 are more spe-
cific for the PPARa and PPARc, respectively. Figure 7 shows the
docked poses of T1 in the PPARa and PPARc binding sites. A
PPAR dual agonist T1 having the features of PPAR dual model
was designed initially by substituting the terminal phenyl ring
with a heterocyclic ring substituted with a trifluoromethyl group.
T2 was designed to increase the specificity for the PPARa by
replacing the trifluoromethyl group with a phenyl ring, as the
QSAR model showed us that PPARa activity is influenced mainly
by size and thus hydrophobic interactions. T3 molecule has been
designed with specificity for PPARc by incorporating a phenyl-
substituted heterocyclic ring.

Conclusions

Structure–activity relationship studies based on the information
derived from the receptor can provide a useful insight in the
design of multiple activating drug molecules. Design of PPAR
ligands with dual activity is one such example of targeting multi-
ple receptors. The thiazoidinedione and oxazolidinedione deriva-
tives used in this study are the dual-activating molecules of
PPARa and PPARc. Novel descriptors have been conceptualized
which account for the volume occupied by the ligands in regions
that are either common or specific to the superimposed binding
sites of the targets, PPARa and PPARc, under consideration. Sta-
tistically valid QSAR models were developed with these descrip-
tors in combination with other geometrical, electrostatics
constitutional and topological descriptors for the prediction of
PPARa and PPARc agonistic activity. A dual PPAR model has also
been developed which incorporated the structural features
required for the dual PPAR activity. Correlation with these novel
quantitative descriptors proves the importance of adding receptor
dependent descriptors to describe the activity of ligands when
designing compounds intended to target multiple receptors, and
additionally they can provide an easy and intuitive way to inter-
pret the QSAR equations facilitating the synthesis of new com-
pounds with improved properties based on the predictions of
QSAR models.
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b

CODESSA 2.7, ª 1992–2004, Shawnee, KS, USA: Semichem Inc.
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