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Abstract

Revision operation is the consistent expansion of a theory
by a new belief-representing sentence. We consider that in a
paraconsistent setting this desideratum can be accomplished
in at least three distinct ways: the output of a revision op-
eration should be either non-trivial or non-contradictory (in
general or relative to the new belief). In this paper those dis-
tinctions will be explored in the constructive level by showing
how the remainder sets could be refined, capturing the key
concepts of paraconsistency in a dynamical scenario. These
are preliminaries results of a wider project on Paraconsistent
Belief Change conduced by the authors.

Introduction
In a working group at BRAON’17 (Third Madeira Work-
shop on Belief Revision, Argumentation, Ontologies, and
Norms), the very definition of revision was discussed in the
context of an inconsistent-tolerant setting: given the logi-
cal possibility of contradictory but non-trivial belief sets (a
direct consequence of considering an underlying paracon-
sistent logic), some authors propose that the revision could
be understood as a plain expansion (cf. for instance (Priest
2001; Girard and Tanaka 2016)). The questions adduced by
the referred working group were: could it still be rationally
and even logically possible for the reasoner to demand from
a revision operator a non-contradictory output in a paracon-
sistent scenario? If so, which definition of revision should
be considered? Is it really necessary to equate revision with
a plain expansion?

Paraconsistent logics are based on the study of contradic-
tory yet non-trivial theories, exposing a clear distinction be-
tween triviality and contradictoriness. As we understand it,
the classical desideratum of consistency, in a paraconsistent
setting, splits itself into two distinct ones: non-triviality and
non-contradiction. More: since contradictions are distinct,
this last concept can be considered with respect to a spe-
cific belief-representing sentence (namely, the input). In this
paper the relation between those will be constructively ex-
plored. We suggest new constructions for remainder sets that
fulfill the above desiderata and also circumvent some issues
advanced by the literature, as the failure of extensionality in
general.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

On AGM

AGM-style belief revision describes an idealized agent, with
a potentially infinite set of belief-representing sentences
closed under logical consequence. To express the closure,
we are going to use the consequence operator Cn: for a
given underlying logic L, K⊢Lα if and only if α ∈ Cn(K).
Hence the criterion that K is closed under logical conse-
quence can be formally expressed by:

K = Cn(K)

The agent’s dynamics is given by operations that describe
the change from one belief set to another. These operations
are:

Expansion. An expansion occurs when new information is
simply added to the set of the beliefs of an agent. As a
result of an expansion, the belief set can become incon-
sistent. The outcome of an expansion of a belief set K by
a sentence α will be denoted by K + α.

Contraction. A contraction occurs when information is re-
moved from the set of beliefs of an agent. The result of
a contraction of K by a sentence α will be denoted by
K − α.

Revision: A revision occurs when new information is added
to the agent’s belief set. When performing a revision
some beliefs can be removed in order to ensure consis-
tency. Contrary to expansion, revision preserves consis-
tency (unless the new information is itself inconsistent).
The result of a revision of a belief set K by a sentence α
will be denoted by K ∗ α.

Formally we have the following:

Definition 1. The expansion of K by α (K + α) is given by

K + α = Cn(K ∪ {α})

The explicit construction for contraction adopted is the
partial meet contraction, constructed as follows (the re-
sults of this section are from (Alchourrón, Gärdenfors, and
Makinson 1985)):

1. Choose some maximal subsets of K (with respect the in-
clusion) that do not entail α.

2. Take the intersection of such sets.



The remainder of K and α is the set of all maximal sub-
sets of K that do not entail α. Formally the definition is the
following:

Definition 2 (Remainder). The set of all the maximal sub-
sets of K that do not entail α is called the remainder set of
K by α and is denoted by K⊥α, that is, K ′ ∈ K⊥α iff:

(i) K ′ ⊆ K.

(ii) α 6∈ Cn(K ′).

(iii) If K ′ ⊂ K ′′ ⊆ K then α ∈ Cn(K ′′).

Typically K⊥α may contain more than one maximal sub-
set. The main idea constructing a contraction function is to
apply a selection function γ which intuitively selects the sets
in K⊥α containing the beliefs that the agent holds in higher
regard (those beliefs that are more entrenched).

Definition 3 (selection function). A selection function for K
is a function γ such that, for every α:

1. γ(K⊥α) ⊆ K⊥α if K⊥α 6= ∅.

2. γ(K⊥α) = {K} otherwise.

The partial meet contraction is the intersection of the sets
of K⊥α selected by γ.

Definition 4 (partial meet contraction). Let K be a belief
set, and γ a selection function for K. The partial meet con-
traction on K that is generated by γ is the operation −γ

such that for all sentences α:

K −γ α =
⋂

γ(K⊥α).

By the Levi identity, revision K ∗ α is defined as a prior
contraction by ¬α followed by a expansion by α. As it can
be easily understood, the prior contraction assures the con-
sistency of the result.

The partial meet revision (the construction for revision de-
fined over the partial meet contraction) is defined as follows.

Definition 5 (partial meet revision). Let K be a belief set,
and γ a selection function for K. The partial meet revision
on K that is generated by γ is the operation ∗γ such that for
all sentences α:

K ∗γ α =
(

⋂

γ(K⊥ ¬α)
)

+ α

An operation ∗ on K is a partial meet revision if and only
if there is a selection function γ for K such that for all sen-
tences α : K ∗ α = K ∗γ α.

Partial meet revision is axiomatically characterized as fol-
lows:

Observation 6. The operator ∗ is an operator of partial
meet revision for a belief set K if and only if it satisfies the
following postulates:
(K∗1) K ∗ α = Cn(K ∗ α). (Closure)

(K∗2) α ∈ K ∗ α. (Success)

(K∗3) K ∗ α ⊆ K + α. (Inclusion)

(K∗4) If K + α is consistent, then K ∗ α = K + α.
(Vacuity)

(K∗5) If α is consistent, then K ∗ α is consistent
(Consistency)

(K∗6) If Cn(α) = Cn(β), then K ∗ α = K ∗ β.
(Extensionality)

On Paraconsistent Belief Revision

Some approachs on Paraconsistent Belief can be found, for
instance, in (Restall and Slaney 1995), (Chopra and Parikh
1999), (Tamminga 2001), (Priest 2001), (Mares 2002), (Gi-
rard and Tanaka 2016) and (Testa, Coniglio, and Ribeiro
2017). A brief overview on some of these inquiries can
be found in (Fermé and Hansson 2018). The main objec-
tive of this work is to refine some results of the so-called
AGMp system, following directly the original AGM model
(with suitable adjustments), advanced in (Testa, Coniglio,
and Ribeiro 2017). This system is designed over a class of
paraconsistent logics called LFIs to be further introduced.

Paraconsistent Logics and LFIs

The Logics of Formal Inconsistency (LFIs), advanced by
(Carnielli and Marcos 2002) and further developed mainly
in (Carnielli, Coniglio, and Marcos 2007) are a family of
paraconsistent logics that encompasses most of paraconsis-
tent systems with a supraclassical character, where it is pos-
sible to re-encode classical reasoning within it (cf. (Carnielli
and Coniglio 2016) by a comprehensive textbook).

Roughly speaking, withing LFIs it is possible to express
the notions of inconsistency and consistency inside the ob-
ject language. The sentential unary connective ◦ of formal
consistency is the more frequently used, where the sentence
◦α is intended to formally express the meaning that ‘α is
consistent’. As a consequence, contradiction does not gen-
erate triviality in general, unless the sentence involved is
consistent. In formal terms, for any logic L that is a LFI,
denoted by a consequence operator ⊢L, the following does
not hold:

Observation 7. Explosion principle

α,¬α ⊢L β,

but a distinct form of it is always the case:

Observation 8. Gentle explosion principle

α,¬α, ◦α ⊢L β.

The distinctions given by the LFIs not only separates the
notion of contradiction from deductive triviality (like every
paraconsistent logic), but also contradiction from inconsis-
tency as well non-contradiction from consistency (in the ob-
ject language level). So there is a clear distinction between
contradictions that can be accepted from those that cannot.
The idea to be captured is that no matter the nature of the
contradictions a reasoner is willing to accept, there still are
contradictions that cannot be accepted at all.

Definition 9. In order to avoid ambiguity, the following no-
tation is useful (for any logic L represented by Cn):

a. A set A is contradictory if and only if there is a sentence
β such that {β,¬β} ⊆ Cn(A).

b. A set A is contradictory with respect to α (or is α-
contradictory) if and only if, for some β equivalent to
α (that is, for α and β such that Cn(α) = Cn(β)),
{β,¬β} ⊆ Cn(A).

c. A set A is trivial if and only ⊥ ∈ Cn(A).



d. A sentence α is contradictory if and only if the set {α} is
contradictory.

e. A sentence α is trivial if and only if the set {α} is trivial.

Definition 10. The most basic LFI in the family considered
is the propositional logic mbC. The language L of mbC is
generated by the connectives ∧,∨,→,¬, ◦.

Definition 11 (mbC (Carnielli and Marcos 2002)). The
logic mbC is defined over the language L by means of a
Hilbert system as follows:

Axioms:

(A1) α → (β → α)
(A2) (α → β) → ((α → (β → δ)) → (α → δ))
(A3) α → (β → (α ∧ β))
(A4) (α ∧ β) → α
(A5) (α ∧ β) → β
(A6) α → (α ∨ β)
(A7) β → (α ∨ β)
(A8) (α → δ) → ((β → δ) → ((α ∨ β) → δ))
(A9) α ∨ (α → β)
(A10) α ∨ ¬α
(bc1) ◦α → (α → (¬α → β))

Inference Rule:

(Modus Ponens) α, α → β ⊢ β

It is worth of noticing that (A1)-(A9) plus Modus Ponens
constitutes an axiomatization for the classical positive logic
CPL+, so that mbC can be understood as a extension of it,
adding few constraints on negation and formal consistency
by axioms (A10) and (bc1). Further constraints can be given
by the axioms of mbC’s extensions, for instance: (ciw) ◦α∨
(α ∧ ¬α), (ci) ¬◦α → (α ∧ ¬α), (cl) ¬(α ∧ ¬α) → ◦α,
(cf) ¬¬α → α, (ce) α → ¬¬α and (cc) ◦◦α. A detailed
taxonomy on LFIs can be found on the references.

Regarding implication, recall that deduction holds for any
propositional logic where (A1) and (A2) can be derived
when MP is the unique inference rule.

Observation 12 (deduction meta-theorem (Carnielli,
Coniglio, and Marcos 2007)). The mbC calculus satisfies
the following:
Γ, α ⊢mbC β iff Γ ⊢mbC α → β

Regarding paraconsistent negation, note that CPL+plus
α ∨ ¬α is too weak (as expected). This axiom reflects that
the truth-value of α partially determines the truth-value of
¬α: if α is false, then ¬α must be true; but if α is true, ¬α
can be either true or false. The only axiom that deals with
the formal consistency in mbC is ◦α → (α → (¬α → β)):
similarly, if both α and ¬α are true, ◦α must be false.

Definition 13 (Valuations for mbC (Carnielli and Coniglio
2016)). A function v : L →

{

0, 1
}

is a valuation for mbC
if it satisfies the following clauses:
(v∧) v(α ∧ β) = 1 ⇔ v(α) = 1 and v(β) = 1.

(Conjunction)
(v∨) v(α ∨ β) = 1 ⇔ v(α) = 1 or v(β) = 1

(Disjunction)
(v →) v(α → β) = 1 ⇔ v(α) = 0 or v(β) = 1

(Implication)

(v¬) v(¬α) = 0 ⇒ v(α) = 1
(Paraconsistent/Weak negation)

(v◦) v(◦α) = 1 ⇒ v(α) = 0 or v(¬α) = 0
(Formal Consistency)

The semantical consequence relation associated to valua-
tions for mbC is defined as expected: X |=mbC α iff, for
every mbC-valuation v, if v(β) = 1 for every β ∈ X then
v(α) = 1. The following result is well-known:

Observation 14 (Adequacy of mbC w.r.t. bivaluations
(Carnielli and Coniglio 2016)). For every set of formulas
X ∪ {α}: X ⊢mbC α if and only if X |=mbC α.

Remark 15. Despite of the fact that we are considering in
this presentation the logic mbC and extensions, it is worth
noticing that the constructions here depends on more gen-
eral restrictions, so that they can encompass a wider class
of logics.

Remark 16 (derived bottom particle and strong negation).
The falsum (or bottom) is defined in mbC by means of the
formula ⊥β =def β ∧ ¬β ∧ ◦β, for any formula β. From
this, the classical (or strong) negation is defined in mbC by
∼βα =def (α → ⊥β). Since ⊥β and ⊥β′ are interderivable
in mbC, for any β and β′, then ∼βα and ∼β′α are also in-
terderivable. Hence, the strong negation of α will be denoted
simply by ∼α. The same applies to ⊥.

The following propositions may prove useful for assess-
ment of further results (they can be easily checked by valu-
ations of Definition 13).

Proposition 17 (some properties of mbC). The following
hold:

i. ⊥ ⊢ α
ii. ∼ α ⊢ ¬α and so ⊢∼ α → ¬α
iii. ◦α ∧ ¬α ⊢∼ α, but ∼ α 6⊢ ◦α ∧ ¬α
iv. ¬¬α 6⊢ α

Remark 18. As usual, α ↔ β is an abbreviation for (α →
β) ∧ (β → α).

Proposition 19. The following hold in mbC:

α ↔ β 6⊢ ¬α ↔ ¬β

Since a classical negation ∼ can be defined in mbC, that
logic can be understood as an expansion of the classical
propositional logic CPL by adding a paraconsistent negation
¬ and a consistency operator ◦ satisfying certain axioms.

In formal terms, consider CPL defined over the language
L0 generated by the connectives ∧,∨,→,¬ (observe that
in L0 ¬ represents the classical negation instead of the para-
consistent negation of mbC). If Y ⊆ L0 then ◦(Y ) = {◦α :
α ∈ Y }. Then, the following result can be obtained:

Observation 20 (Derivability Adjustment Theorem
(Carnielli, Coniglio, and Marcos 2007)). Let X ∪ {α} be
a set of formulas in L0. Then X ⊢CPL α if and only if
◦(Y ), X ⊢mbC α for some Y ⊆ L0.

Remark 21. From now on, let us assume a LFI, namely
L=〈L, CnL〉, such that L is an extension of mbC. Since the
context is clear, we will omit the subscript, and simply denote
the closure by Cn.



The AGMp system

Let us assume a non-trivial state K such that K = Cn(K).

Partial meet AGMp revisions In (Testa, Coniglio, and
Ribeiro 2017) it is shown that a paraconsistent revision K∗α
can be defined by Levi identity as in classical AGM, that is,
by a prior contraction by ¬α followed by a expansion by α
(Definition 5). It is worth of noticing that one of the focus of
that paper was showing the possibility of defining external
revision for paraconsistent closed theories, in the sense of re-
verse Levi identity as defined by Hansson for Belief Bases.
For our intends and purposes, this construction will not be
taken into consideration – nevertheless, it should be noted
that the results here advanced applies when taking into con-
sideration the proper features of that operation.

In terms of postulates, the AGMp internal revision is
characterized as the classical operation, but without the ex-
tensionality postulate, and changing consistency by non-
contradiction. It should be noticed that in (Testa, Coniglio,
and Ribeiro 2017) vacuity was replaced by relevance, since
it was proven that both postulates are equivalent in standard,
supraclassical and deductive logics). So the following holds:

Observation 22. (Testa, Coniglio, and Ribeiro 2017) The
operator ∗ is an operator of AGMp partial meet internal
revision for a belief set K if and only if it satisfies closure,
success, inclusion, vacuity and the following:
(K∗5’) if α is non-contradictory, then K ∗ α is not contra-
dictory (non-contradiction)

The postulate of non-contradiction above is an adapta-
tion of the classical postulate of consistency. That’s exactly
the necessity of still demanding a non-contradictory out-
put for revision operation that will be further discussed.
Furthermore, AGMp presupposes that K itself is also non-
contradictory – in fact, in order to keep generality (in the
sense of taking into account a contradictory belief set as an
input), it could be said that (K∗5’) should specifically guar-
antees that K ∗ α in not α-contradictory.

Extensionality lost The weakness of a paraconsistent
negation has the advantages of allowing contradictions. Nev-
ertheless, this same property come with the cost of loosing
extensionality in general. By definition 5 and the negative
results of propositions 19 and 17(iv), it is easy to check that,
given the paraconsistent negation properties, partial meet
paraconsistent revision is not extensional.

In order to restore a suitable form of extensionality, some
assumptions on the underlying logic should be made, as pro-
posed by (Testa, Coniglio, and Ribeiro 2017). We advance
a refinement in the constructions in order to preserve that
postulate in weaker LFIs (and other paraconsistent logics).

Non-contradiction vs.Triviality It is clear that AGMp as-
sumes that the output of a revision should still be non-
contradictory (with respect to the input). Despite that fact,
a non-trivial revision was suggested in that paper, defined
by the Levi identity applied to the strong negation.

Definition 23.

K ∗γ α =
(

⋂

γ(K ⊥ ∼ α)
)

+ α

By proposition 17 iii. and definition of remainder it is
easy to check that this construction assures that the output
is not trivial, by retracting ¬α or ◦α, as long α itself is non-
trivial.

Some Refinements on the Paraconsistent

Framework

In order to restore extensionality in the paraconsistent set-
ting, as well to better capture the distinction between non-
contradictoriness and triviality, a new definition of reminder
set is advanced. It will be shown that, in classical Be-
lief Revision, this construction is equivalent to the classi-
cal reminder set. Furthermore, in the paraconsistent setting,
this construction defines a revision where the output is de-
manded to be non-trivial (denoted by ∗̆), and suitable mod-
ifications on it defines revisions in which the output is non-
contradictory with respect to the input (denoted by ∗̄), and
non-contradictory in general (denoted by ¯̄∗) – those revi-
sions, when the underlying logic is CPL, are proven to be
equivalent with the classical one. Those features, as we un-
derstand, captures the results of the Derivability Adjustment
Theorem, advanced in the proposition 20.

Non-contradictory outputNon-trivial output

Consistent output 

CPL

LFIs

Non-�-contradictory output

Figure 1: Relation between the revisions

Remainder sets: new constructions to revisions

Recall the definition of remainder set: for defining classical
revision K ∗ α, we want to expand by α the intersection
of some maximal subset of K that does not entail ¬α – in
logical terms, a remainder for revision is designed to be a
“¬α-saturated” subset of K.

Non-trivial remainder We define the remainder of K
with respect to α as the set of all maximal subsets of K that,
when expanded by α, are non-trivial (that is, do not entail
⊥). This modification goes in the line of the one presented
by (Delgrande 2008), advanced for Horn clause contraction
function but here understood in the general context of an op-
eration in logics without negation, as suggested by (Ribeiro
2012). We do, of course, have a negation – but given some
weak properties of it (like the loss of extensionality as ad-
vanced before) the idea is to design the remainder not relay-
ing on that.1

1There are some authors that discuss what are the necessary
and sufficient conditions for a negation to be, effectively, a nega-
tion, taking the paraconsistent one as an example. This analysis



Formally the definition is the following:

Definition 24 (non-trivial remainder). Let K be a belief set,
and let α be a formula. A set X ∈ K ⇓ α if and only if:

(i) X ⊆ K.

(ii) X ∪ {α} 6⊢ ⊥.

(iii) If X ⊂ X ′ ⊆ K then X ′ ∪ {α} ⊢ ⊥.

K ⇓ α is the non-trivial remainder of K with respect to α.

Remark 25. It is clear that if X ∈ K ⇓ α, then {¬α, ◦α} 6⊆
Cn(X), and that X ∪ {α} 6⊢ β ∧ ¬β ∧ ◦β for all β.

Non-trivial revision A selection function for K is a γ de-
fined as above. The partial meet non-trivial revision is, also,
the intersection of the sets chosen by the selection function
expanded by α.

Definition 26. Let K be a belief set, and γ a selection func-
tion for K. The partial meet non-trivial revision on K that is
generated by γ is the operation ∗̆γ such that for all sentences
α:

K∗̆γα =
⋂

γ(K ⇓ α) + α.

An operation ∗̆ is a partial meet non-trivial revision if and
only if there is a selection function γ for K such that for all
sentences α : K∗̆α = K∗̆γα

It should be noticed that this operation does not explicitly
use the construction of a contraction operator, as it is clas-
sically done by AGM – where revision is defined by Levi
identity, alluding the contraction by the negated formula (cf.
def. 5). Instead, the sentences to be retracted in order to ac-
commodate the new belief-representing sentence are chosen
directly by the revision’s construction. The same happens
with the further revisions to be presented.

Of course contraction could still be defined by a Harper-
like identity, but that’s not our focus on this paper.

Non-contradictory remainder with respect to the input
A less permissive remainder can be defined – relative to con-
tradictions. In a nutshell, it is designed to retract ¬β from
K, for all β equivalent to the new belief-representing sen-
tence α – re-encoding the characteristics of the classical one,
but now relative to a paraconsistent setting (endowed with a
weak negation).

Definition 27 (non-contradictory remainder with respect to
the input). Let K be a belief set, and let α be a formula. A
set X ∈ K↓αα if and only if:

(i) X ⊆ K.

(ii) For all β ≡ α, X ∪ {α} 6⊢ β ∧ ¬β.

(iii) If X ⊂ X ′ ⊆ K then there exists a sentence β ≡ α
such that X ′ ∪ {α} ⊢ β ∧ ¬β

K↓αα is the non-α-contradictory remainder of K with re-
spect to α.

Remark 28. It is clear that if X ∈ K↓αα, then {¬α} 6⊆
Cn(X). More: X 6⊢ ¬β for all β ≡ α.

is of interest to Belief Revision, since much of the properties car-
ried out by the systems tacitly assumes the properties of a classical
negation.

Non-contradictory revision with respect to the input

Definition 29. Let K be a belief set, and γ a selection func-
tion for K. The partial meet non-contradictory revision with
respect to α on K that is generated by γ is the operation ∗̄γ
such that for all sentences α:

K∗̄γα =
⋂

γ(K↓αα) + α.

An operation ∗̄ is a partial meet non-contradictory revision
with respect to α if and only if there is a selection function γ
for K such that for all sentences α : K∗̄α = K∗̄γα

Non-contradictory remainder

Definition 30 (non-contradictory remainder). Let K be a
belief set, and let α be a formula. A set X ∈ K ↓ α if and
only if:

(i) X ⊆ K.

(ii) For all β ∈ L, X ∪ {α} 6⊢ β ∧ ¬β.

(iii) If X ⊂ X ′ ⊆ K then there exists a sentence β ∈ L

such that X ′ ∪ {α} ⊢ β ∧ ¬β

K ↓ α is the non-contradictory remainder of K with respect
to α.

Remark 31. It is clear that if X ∈ K↓α, then {¬α} 6⊆
Cn(X). More: X 6⊢ β ∧ ¬β for all β ∈ L.

Non-contradictory revision

Definition 32. Let K be a belief set, and γ a selection func-
tion for K. The partial meet non-contradictory revision on
K that is generated by γ is the operation ¯̄∗γ such that for all
sentences α:

K¯̄∗γα =
⋂

γ(K ↓ α) + α.

An operation ¯̄∗ is a partial meet non-contradictory revision
if and only if there is a selection function γ for K such that
for all sentences α : K¯̄∗ α = K¯̄∗γα

Relation between the remainders

Proposition 33. The following identities hold:

i. K ⇓ α = K⊥(α → ⊥) = K⊥ ∼ α

ii. K⊥α = K ⇓ (α → ⊥) = K ⇓∼ α

33.i. is an expected result, given definition 23. As it can be
perceived, 33.ii. is an intermediate result for further defining
contraction via non-trivial remainder.

Proposition 34. In general, the remainder sets K⊥¬α,
K⇓ α, K↓ α and K↓α α are different from each other.

This is a predictable feature, since the concepts of trivial-
ity and contradiction are distinct in a paraconsistent setting
and, moreover, contradictions are distinct to each other.

However, given the fact that in CPL all contradictions are
alike, and equivalent to ⊥, it is easy to check the following:

Proposition 35 (The classical collapse of consistency,
non-triviality, non-contradictoriness and non-α-contradicto-
riness). When the underlying logic is CPL:

K⊥¬α = K ⇓ α = K ↓ α = K ↓α α



From construction to postulates

In this section we will present each one of the paraconsis-
tent revision functions through a set of postulates that de-
termine the behavior of each one of these functions – estab-
lishing conditions or constrains that they must satisfy, as it
is classically done. Through the postulates, the refinement
made in the constructive level in order to capture the dis-
tinction between non-contradictoriness and triviality can be
highlighted. In the paraconsistent setting, the consistency
desideratum (classicaly captured by the consistency pos-
tulate) adduce three distinct new postulates: non-triviality,
non-α-contradiction and non-contradiction, capturing re-
spectively the intuition that the revision output should be
non-trivial, non-contradictory relative to the new informa-
tion to be incorporated or non-contradictory in general.

Another important feature of the new constructions ad-
vanced in this paper is that the revision of a belief set by logi-
cal equivalent sentences produces the same output in general
– captured by the postulate of extensionality. Recall that this
property was not valid in general in paraconsistent systems,
as aforementioned.

Non-trivial partial meet revision

Proposition 36. If ∗̆ is an operator of non-trivial partial
meet revision for a belief set K, then it satisfies the following
postulates:
(K∗̆1) K∗̆α = Cn(K∗̆α). (Closure)

(K∗̆2) α ∈ K∗̆α. (Success)

(K∗̆3) K∗̆α ⊆ K + α. (Inclusion)

(K∗̆4) If K + α is non-trivial, then K∗̆α = K + α.
(Vacuity)

(K∗̆5) If α in non-trivial, then K∗̆α is non-trivial.
(Non-triviality)

(K∗̆6) If Cn(α) = Cn(β), then K∗̆α = K∗̆β.
(Extensionality)

Example 37. Let K = Cn({¬α, γ,¬γ}). It is clear that K
is non-trivial, since ◦γ 6∈ K.
It can be easily checked that ¬α ∈ K∗̆α, since ◦α 6∈ K.
Furthermore, this operation does not retract γ nor ¬γ from
K.

Remark 38. By the very definition of vacuity, it is clear
that in weaker paraconsistent logics where there is no primi-
tive or defined formal consistency operator (or, equivalently,
where there is no strong negation nor bottom particle), a
non-trivial revision is a plain expansion.

Non-contradictory partial meet revision with respect to
the input

Proposition 39. If ∗̄ is an operator of non-contradictory
(with respect to the input) partial meet revision for a belief
set K, then it satisfies the following postulates:
(K∗̄1) K∗̄α = Cn(K∗̄α) (Closure)

(K∗̄2) α ∈ K∗̄α (Success)

(K∗̄3) K∗̄α ⊆ K + α (Inclusion)

(K∗̄4) If K+α is non-α-contradictory, then K∗̄α = K+α
(Vacuity)

(K∗̄5) If α is non-contradictory, K∗̄α is non-α-contradic-
tory (Non-α-contradiction)

(K∗̄6) If Cn(α) = Cn(β), then K∗̄α = K∗̄β
(Extensionality)

Example 40. Let K be the same of Example 37. It can be
easily checked that ¬α 6∈ K∗̄α, but γ and ¬γ are still in K.

Non-contradictory partial meet revision

Proposition 41. If ¯̄∗ is an operator of non-contradictory
partial meet revision for a belief set K, then it satisfies the
following postulates:
(K¯̄∗1) K¯̄∗α = Cn(K¯̄∗α) (Closure)

(K¯̄∗2) α ∈ K¯̄∗α (Success)

(K¯̄∗3) K¯̄∗α ⊆ K + α (Inclusion)

(K¯̄∗4) If K + α is non-contradictory, then K¯̄∗α = K + α
(Vacuity)

(K¯̄∗5) If α is non-contradictory, K¯̄∗α is non-contradictory
(Non-contradiction)

(K¯̄∗6) If Cn(α) = Cn(β), then K¯̄∗α = K¯̄∗β
(Extensionality)

Example 42. Let K be the same of Example 37. It can be
easily checked that ¬α 6∈ K¯̄∗α. Furthermore, this operation
also retracts γ or ¬γ from K.

Final Remarks and future works

In a classical setting, ensuring that the negation of the
formula to be incorporated is not in the output is neces-
sary and sufficient condition to keep the output non-trivial
and forcibly non-contradictory. In paraconsistent reasoning,
however, this condition is not necessary in order to en-
sure non-triviality (since contradictions do not entail triv-
iality in general) nor sufficient in order to ensure non-
contradictoriness (since negation is non-extensional in the
sense that logically equivalent formulas do not have equiva-
lent negated formulas in general). That asymmetry gives rise
to at least three distinct paraconsistent revisions, entailed by
more fine-tuned remainders.

Regarding the questions posed at the introduction of this
paper, it is worth of noticing that assuming that paracon-
sistent revision is equivalent with a plain expansion presup-
poses that (i) consistency is necessarily equivalent to non-
triviality in a paraconsistent setting and, furthermore, (ii)
that all paraconsistent logics do not endow a bottom particle
(primitive or defined). Both assumptions, as we’ve shown,
are not true.

Recovering the extensionality in general is the first step
for defining transitively relational partial meet paraconsis-
tent revisions: by considering transitively relational selec-
tion functions γ in the remainder sets and, accordingly, by
taking into account the supplementary postulates as origi-
nally advanced by classical AGM (providing the respective
representation theorems).
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