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Abstract: This paper focuses on the mapping problem for mobile robots in dynamic environments
where the state of every point in space may change, over time, between free or occupied. The dynam-
ical behaviour of a single point is modelled by a Markov chain, which has to be learned from the data
collected by the robot. Spatial correlation is based on Gaussian random fields (GRFs), which correlate
the Markov chain parameters according to their physical distance. Using this strategy, one point can
be learned from its surroundings, and unobserved space can also be learned from nearby observed
space. The map is a field of Markov matrices that describe not only the occupancy probabilities
(the stationary distribution) as well as the dynamics in every point. The estimation of transition
probabilities of the whole space is factorised into two steps: The parameter estimation for training
points and the parameter prediction for test points. The parameter estimation in the first step is solved
by the expectation maximisation (EM) algorithm. Based on the estimated parameters of training
points, the parameters of test points are obtained by the predictive equation in Gaussian processes
with noise-free observations. Finally, this method is validated in experimental environments.

Keywords: dynamic environments; Markov chain; Gaussian random fields; expectation maximisation

1. Introduction
1.1. Literature Review

Dynamic environments are particularly important and complex. These environments
include static objects and different kinds of dynamic objects. High dynamic objects, such
as moving people, change their position quickly. Low dynamic objects, such as doors and
pieces of furniture, can appear and disappear from particular locations however those
events are comparatively rare. Autonomous robots should be able to know if objects are
static or dynamic to help in path planning.

In earlier research, the environments were assumed to be static. The classical method
for static environments is occupancy grid mapping [1–3] where maps are divided into
a grid and the states of different grid cells are assumed to be independent. In dynamic
environments, one popular strategy is to estimate the number of potential targets, their
positions, and velocities from sensor data [4–6]. The dynamic object detection needs to
identify the objects and their correspondence in different time instants. The other one is to
apply Markov chains. The dynamic occupancy grids proposed in [7–13] does not rely on
high-level object models. Every grid cell is associated with a Markov chain, where its future
occupancy state only depends on the current state. Since the occupancy observations are
noisy, the states are not directly observable and the process is modelled instead by hidden
Markov models (HMMs) [14] at each point in space. Estimating good parameters in an
HMM requires considerable data. If the dependence between different grid cells is taken
into account, as is done in [8], maps are built with inconsistencies.
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1.2. Research Gap and Motivation

Dynamic object detection requires more powerful sensors [15], such as cameras, while
HMM-based methods can be applied with simple distance sensors. Normally, the cor-
relation between parameters in space is not considered in HMM-based methods and
inconsistent maps will be produced. In our previous work [16], the inconsistency in dis-
crete space was dealt with by using Markov random fields to regularise the grid. The
static mapping methods [17–23], based on Gaussian Random Fields (GRFs), build smooth
occupancy grid maps and predict the occupancy of unobserved space in continuous space.
This paper is motivated by them and proposes a new dynamic mapping method based on
GRF that is able to deal with continuous space instead of a discrete grid. The state change at
every point in continuous space is modelled by a Markov chain with two parameters, and
the HMM proposed in [8] is extended with normalised emission probabilities. In one time
instant, the map is assumed to be static, and an occupancy grid map is built to obtain the
normalised emission probabilities. GRFs are applied to consider the correlation between
a point and its neighbouring points. Given the occupancy grid maps, the parameters
of every point in the whole space can be estimated. In order to reduce the computation
complexity, the parameter estimation is divided into two steps. The first step is to estimate
the parameters for training points using the EM algorithm [24,25]. The second step is to
predict the parameters for test points using the predictive equation of Gaussian processes
with noise-free observations.

1.3. Contribution and Paper Organisation

The main contributions of this paper are highlighted below.

(1) The extension of the HMM with normalised emission probabilities is developed.
Instead of observation models, posterior probability can be used directly to estimate
HMM parameters, which is convenient in computation in this paper.

(2) The HMM parameters of observed space can be smoothed. GRFs are applied to
consider the dependence between HMM parameters of different points. The noise in
measurements can be filtered and consistent dynamic maps are produced.

(3) The dynamic behaviour of unobserved space can be predicted. Given the spatial
correlation between different points, unobserved space can learn HMM parameters
from surrounding observed space and their parameters will be similar.

This paper is organised as follows. The related work is summarised in Section 2.
The HMMs with normalised emission probabilities are described in Section 3. The GRF-
based methods with known poses and pose uncertainty are proposed in Sections 4 and 5,
respectively. The proposed method is validated in experiments in Section 6.

2. Related Work

In dynamic environments, one point in space may have different states in different
time instants, and Markov chains can be applied to model the dynamic behaviour. In [8],
the map is divided into grid cells, and every grid cell has two possible states: occupied
and free. A Markov chain with two parameters is applied to individually modelled
every grid cell. One parameter represents the transition probabilities of state from free to
occupied. The other one represents the transition probabilities of state from occupied to
free. The states can not be observed certainly and an HMM can be applied. In order to
deal with incorrect observations, the underlying possible states are extended and consist
of seven components: “true”, “false”, “unknown”, “dynamic”, “falsely false”, “falsely
true”, and “falsely true/false” in [13]. Based on the parameters of HMMs, dynamic
objects can be classified [9]. The dynamic maps based on HMMs are used to do lifelong
localisation tasks [10] and simultaneous localisation and mapping [26,27]. In [11], the
dynamic behaviour is modelled as an Input-output Hidden Markov Model (IOHMM) [7,28],
where the observations of the neighbouring cells in the previous time step are considered,
to take the spatial correlation into account. The input of an IOHMM is the observations of
neighbouring cells in the previous time step. In [12], the Explicit-state-Duration Hidden
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Markov Model (EDHMM) is applied to deal with the Markov chain with variable duration
and differentiate the dynamic cells from the static environment.

Gaussian processes, also known as GRFs, can be applied to deal with inconsistency in
maps. The advantage is that maps with any resolutions could be built. The Gaussian Pro-
cess Occupancy Map (GPOM) [17] is an occupancy representation of static environments in
continuous space. With the increasing number of training data, the computational complex-
ity of Gaussian processes will also increase. For large-scale environments, training data can
be divided into many clusters and a Gaussian process is applied to each subset [18]. Simi-
larly, local Gaussian processes are used to ensure continuity by overlapping clusters [19].
Gaussian processes and Bayesian Committee Machines are applied in [20] to recursively
update occupancy maps and surface meshes. The multi-support kernel proposed in [21]
enables traditional covariance functions to accept two-dimensional regions, reduces the
size of covariance matrices, and accelerates Gaussian process inference and learning. A
nested Bayesian committee machine is proposed to learn online 3D occupancy maps using
Gaussian processes [22]. Online continuous mapping is proposed to build a map as the
zero level set of a Gaussian process implicit surface [23].

3. HMMs for Dynamic Environments
3.1. HMMs

The main difference between static and dynamic environments is the existence of
unpredictable dynamic objects. In dynamic environments, one point c in space may be
occupied or free in different time instants. Here, its next state mt+1

c is assumed to only
depend on the current one mt

c and a Markov chain is applied to model the dynamic
behaviour. The occupied and free states are denoted by s1 and s2, respectively. The Markov
chain is shown in Figure 1, where the probability transition matrix for mc is denoted by
Ac = {ac

ij} and assumed to be time-invariant.

Figure 1. Markov chain for one point.

Defining a grid cell whose central point is c, this point is measured once if one
measurement z passes by this grid cell. The Markov chain is a discrete model in time.
Between two time instants, the state is assumed to be constant and may be measured
multiple times. The measurements for the current state mt

c are denoted by zt
i with the

same superscript t and different subscripts, and the measurement sequence is denoted
by yt = (zt

1, zt
2, · · · ). Due to sensor noise, the states cannot be observed certainly, and an

HMM can be applied. The graphical model of an HMM is shown in Figure 2, where ζ is
the number of the measurement sequences. The corresponding emission probabilities are
p(yt | mt

c). Since robots always move in space, the observation sequences for the states in
different time instants may be different, and the emission probabilities are also different.
However, they are not unknown parameters. Assuming independent observations, the
emission probabilities can be derived by:

p(yt | mt
c) = ∏

i
p(zt

i | mt
c), (1)

where p(zt
i | mt

c) can be directly given [8].
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Figure 2. HMM for one point.

The probability of staying in state si is ac
ii, and the probability of changing state si to

the others is 1− ac
ii. The probability of staying in state si for d time steps from time step t is:

p(si, d) = (1− ac
ii)(ac

ii)
d−1 p(mt

c = si), (2)

where p(mt
c = si) is the probability that the state at time t is si. The overall expected

duration [29] is defined by:

E(d) = ∑
si

∑
d

dp(si, d)

= ∑
i

1
1− ac

ii
p(mt

c = si). (3)

Besides two transition probabilities, the overall expected duration provides an alterna-
tive way to analyse the dynamic behaviour. The state distribution (occupied, free) of one
point may change with time and the overall expected duration at different times may be
different. For convenience, the overall expected duration at a stationary state is applied
and given by:

E(d) = G1
1

1− ac
11

+ G2
1

1− ac
22

, (4)

where G1 and G2 are the occupancy and free probabilities of the stationary distribution,
respectively. The stationary distribution can be obtained by solving:[G1 G2]

[
ac

11 1− ac
11

1− ac
22 ac

22

]
= [G1 G2],

G1 + G2 = 1.
(5)

As a result, the probabilities G1 and G2 are given by:

G1 =
1− ac

22
2− ac

11 − ac
22

, (6)

G2 =
1− ac

11
2− ac

11 − ac
22

. (7)

Given two transition probabilities ac
11 and ac

22, the overall expected duration can be
computed to indicate how dynamic one point is. High dynamic points will have short
overall expected duration.

3.2. Parameter Estimation

Since it is not possible to estimate transition probabilities ac
11 and ac

22 by maximising
likelihood directly, the EM algorithm can be applied to estimate the transition probabilities
and the initial state probabilities. The parameters are denoted by θc = {ρc

i , ac
ij}, where

ρc
i represents the initial state probability p(m0

c = si). Assuming an observation sequence
is denoted by O = (y0, y1, · · · , yζ−1) and an underlying state sequence is denoted by
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Mc = (m0
c , m1

c , · · · , mζ−1
c ), the likelihood function of θc given the observation sequence

and the underlying state sequence is:

p(O,Mc | θc) =

p(m0
c )p(z0 | m0

c )
ζ−1

∏
t=1

p(mt
c | mt−1

c )p(yt | mt
c). (8)

However, an observation sequence yt does not include all of the space. When mt
c is

not observed, the emission probabilities p(yt | mt
c) are set to 1. In order to estimate the

parameters, the EM algorithm is applied to recursively maximise a Q function given by:

Q(θc, θ
(k)
c ) = ∑

Mc

p(Mc | O, θ
(k)
c )logp(Mc, O | θc) (9)

= ∑
Mc

p(Mc | O, θ
(k)
c )(logp(O | Mc, θc) + logp(Mc | θc))

= ∑
Mc

p(Mc | O, θ
(k)
c )logp(O | Mc, θc)

+ ∑
Mc

p(Mc | O, θ
(k)
c )logp(Mc | θc). (10)

The sum is over all the possible state sequenceMc. Since the observation sequence O is
conditionally independent of the parameters θc given the state sequenceMc, the probability
p(O | Mc, θc) can be rewritten as p(O | Mc) and is a constant. As a consequence, the first
term in Equation (10) is a constant and the parameters can be estimated by maximising the
second term rewritten as:

∑
Mc

p(Mc | O, θ
(k)
c )logp(Mc | θc)

=
2

∑
i=1

γc
i (0)logρc

i + ∑
t

2

∑
i=1

2

∑
j=1

ξc
ij(t)logac

ij

=
2

∑
i=1

γc
i (0)logρc

i + ∑
t

2

∑
i=1

ξc
1i(t)logac

1i + ∑
t

2

∑
i=1

ξc
2i(t)logac

2i

= f (ρc
1) + f (ac

11) + f (ac
22), (11)

where three functions f (ρc
1), f (ac

11), and f (ac
22) are defined by:

f (ρc
1) =

2

∑
i=1

γc
i (0)logρc

i (12)

= γc
1(0)logρc

1 + γc
2(0)log(1− ρc

1), (13)

f (ac
11) = ∑

t

2

∑
i=1

ξc
1i(t)logac

1i (14)

= ∑
t

ξc
11(t)logac

11 + ∑
t

ξc
12(t)log(1− ac

11), (15)

f (ac
22) = ∑

t

2

∑
i=1

ξc
2i(t)logac

2i (16)

= ∑
t

ξc
21(t)log(1− ac

22) + ∑
t

ξc
22(t)logac

22. (17)
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The variable γc
i (t) represents p(mt

c = si | O, θ
(k)
c ), which is the probability of being in

state si at time t given the observation sequence O and the parameters θ
(k)
c . The variable

ξc
ij(t) represents p(mt

c = si, mt+1
c = sj | O, θ

(k)
c ) which is the probability of being in state si

at time t and state sj at time t + 1 given the observation sequence O and the parameters

θ
(k)
c . The three functions contain different parameters and can be maximised individually.

Maximising the three functions gives the estimations of the initial state probabilities ρc
i and

the transition probabilities ac
ii,

ρ
c(k+1)
i = γc

i (0), (18)

ac(k+1)
ii =

∑ζ−1
t=1 ξc

ii(t)

∑ζ−1
t=1 γc

i (t)
. (19)

Computing the probabilities γc
i (t) and ξc

ij(t) requires temporary variables αc
i (t) and

βc
i (t). The variable αc

i (t) = p(y0, y1, · · · , yt, mt
c = si | θ) is the probability of seeing the

y0, y1, · · · , yt and being in state si at time t. This step, called forward procedure, is computed
recursively from time 0 to t as:

αc
i (0) = ρi p(y0 | mt

c = si), (20)

αc
j (t + 1) = p(yt+1 | mt

c = sj)
2

∑
i=1

αc
i (t)ac

ij. (21)

The variable βc
i (t) = p(yt+1, · · · , yζ−1 | mt

c = si, θ) is the probability of the ending
partial sequence yt+1, · · · , yζ−1 given starting state si at time t. This step, called backward
procedure, is calculated from time ζ − 1 to t as:

βc
i (ζ − 1) = 1, (22)

βc
i (t) =

2

∑
j=1

βc
j (t + 1)ac

ij p(yt+1 | mt
c = sj). (23)

According to Bayes rule, the variables γi(t) and ξij(t) are given as:

γc
i (t) =

αc
i (t)βc

i (t)

∑2
j=1 αc

j (t)βc
j (t)

, (24)

ξc
ij(t) =

αc
i (t)ac

ijβ
c
j (t + 1)bjyt+1

∑2
i=1 ∑2

j=1 αc
i (t)aijβ

c
j (t + 1)bjyt+1

. (25)

During one time instant, the map is assumed to be static. Occupancy grid mapping [30]
can be applied to build a temporal occupancy map for every time instant. Since the
transition matrix is unknown, the state probabilities p(mt

c = s1) and p(mt
c = s2) are also

unknown. All the state probabilities are temporarily set to 0.5 and the posterior probabilities
p(mt

c = s1 | yt) and p(mt
c = s2 | yt) can be obtained. However, the probabilities p(yt |

mt
c = s1) and p(yt | mt

c = s2) are required for the HMM. Based on Bayes rule, the posterior
probability of the occupied state is given by:

p(mt
c = s1 | yt) =

p(yt | mt
c = s1)p(mt

c = s1)

p(yt)
, (26)

where p(yt) is a constant and p(mt
c = s1) is the occupancy probability. Similarly, the

posterior probability of the free state is given by:

p(mt
c = s2 | yt) =

p(yt | mt
c = s2)p(mt

c = s2)

p(yt)
, (27)
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where p(mt
c = s2) is the free probability. Since the state probabilities p(mt

c) are set to
0.5, the probabilities p(mt

c = s1 | yt) and p(mt
c = s2 | yt) are the normalised version of

p(yt | mt
c = s1) and p(yt | mt

c = s2). Replaced by p(mt
c | yt) to compute αc

i (t) and βc
i (t)

give another two temporary variables:

α̂c
i (t) = ηc

α(t)α
c
i (t), (28)

β̂c
i (t) = ηc

β(t)βc
i (t), (29)

where ηc
α(t) and ηc

β(t) are constants. Using these two new variables directly to calculate
γc

i (t) and ξc
ij(t) as in Equations (24) and (25), the same γc

i (t) and ξc
ij(t) can be obtained,

γc
i (t) =

α̂c
i (t)β̂c

i (t)

∑
g
j=1 α̂c

j (t)β̂c
j (t)

, (30)

ξc
ij(t) =

α̂c
i (t)ac

ij β̂
c
j (t + 1)p(mt+1

c = sj | yt+1)

∑
g
i=1 ∑

g
j=1 α̂c

i (t)ac
ij β̂

c
j (t + 1)p(mt+1

c = sj | yt+1)
. (31)

Finally these constants are cancelled. As a result, the probabilities p(mt
c | yt) can

be used to estimate the parameters conveniently instead of p(yt | mt
c). For the case that

one point is not observed during one time instant, setting the corresponding emission
probabilities p(yt | mt

c) to 0.5 also gives the same result.

4. GRF-Based HMM with Known Poses

In the previous section, each point is associated with two HMM parameters: ac
11 and

ac
22. In this section, GRFs are applied to consider the dependence between the parameters

of different points, and the two parameters of one point are assumed to be independent.
This means there will be two GRFs, one for each parameter. Given some training points in
observed space, the parameters of any test point in continuous space can be predicted.

In the previous section, a grid cell is defined in order to obtain the corresponding
observation sequence. In this section, the space is divided into grid cells and the central
point of each observed grid cell is chosen as a training point. Meanwhile, the test points
are chosen arbitrarily. The coordinate set of training points and test points are denoted by
I and I∗, respectively. The parameters of training points are denoted by A = (a11, a22),
where a11 = [· · · , ac

11, · · · ]T(c ∈ I) and a22 = [· · · , ac
22, · · · ]T(c ∈ I). The parameters

of test points are denoted by A∗ = (a∗11, a∗22), where a∗11 = [· · · , ac
11, · · · ]T(c ∈ I∗) and

a∗22 = [· · · , ac
22, · · · ]T(c ∈ I∗). In probabilistic form, the parameter estimation of all the

selected points including training and test points is:

p(A, A∗ | O). (32)

The problem can be factorised as:

p(A, A∗ | O) = p(A∗ | A)p(A | O), (33)

where p(A | O) is an HMM parameter estimation problem for training points and p(A∗ | A)
is an HMM parameter prediction problem for test points. The parameter estimation for
training and test points are done individually.

4.1. HMM Parameter Estimation

Due to the independence between a11 and a22, the prior distribution can be fac-
torised as:

p(A) = p(a11)p(a22), (34)



Electronics 2022, 11, 722 8 of 26

where p(a11) and p(a22) are assumed to have the same distribution. The parameter vector
a11 is taken as an example. The log odds form of ac

11 is defined as [31]:

lc
a11

= log
ac

11
1− ac

11
. (35)

The vector of all the lc
a11

of training points is denoted by la11 = [· · · , lc
a11

, · · · ]T(c ∈ I)
and can be expressed as:

la11 = log
a11

1− a11
, (36)

where 1 is a column of ones and the division is elementwise. The vector la11 is assumed to
be Gaussian distributed with mean vector µ1 and covariance matrix KII ,

la11 ∼ N (µ1, KII ). (37)

The covariance function is the Ornstein–Uhlenbeck kernel function as:

C(c, c′) = σ2
f exp

(
−|c− c′|

`

)
, (38)

where σ2
f is the signal variance, the parameter ` is the length-scale, and the variables c

and c′ are the corresponding coordinates of two random variables. The prior distribution
p(a11) is:

p(a11) =
1√

(2π)n|KII |
exp

(
−1

2
U(a11)

)
, (39)

where n is the number of training points and:

U(a11) = (log
a11

1− a11
− µ1)

TK−1
II (log

a11

1− a11
− µ1). (40)

Similarly, the log odds form of ac
22 is defined as:

lc
a22

= log
ac

22
1− ac

22
. (41)

The vector of all the lc
a22

of training points is denoted by la22 = [· · · , lc
a22

, · · · ]T(c ∈ I)
and also assumed to be Gaussian distributed. The prior distribution p(a22) is given in the
same way by:

p(a22) =
1√

(2π)n|KII |
exp

(
−1

2
U(a22)

)
, (42)

where
U(a22) = (log

a22

1− a22
− µ2)

TK−1
II (log

a22

1− a22
− µ2), (43)

and µ2 is the mean vector of la22 .
During one time instant t, the map that consists of the states of training points is

denoted by Mt = {· · · , mt
c, · · · }(c ∈ I) and the states of different training points are

assumed to be independent. The distribution of the map is:

p(Mt) = ∏
c∈I

p(mt
c). (44)

A map sequence consists of different maps Mt in time and is denoted by M =
{M0, · · · ,Mt, · · · }. As shown in Figure 3, the map sequence depends on space and time.
Meanwhile, the map sequence also consists of different state sequencesMc(c ∈ I) in space
and can also be expressed asM = {· · · ,Mc, · · · }(c ∈ I). Due to the state independence
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between different points, the current state of one point only depends on its previous state.
The corresponding distribution is computed by:

p(M) = ∏
c∈I

p(Mc). (45)

Figure 3. An example of a map sequence.

The likelihood of A given the observation sequence O and the underlying map se-
quenceM is:

p(O,M | A) = p(O | M, A)p(M | A) (46)

= p(O | M)p(M | A). (47)

Given the map sequenceM, the observation sequence O is conditionally independent
of the parameters A. Assuming the measurements are independent of each other, the
probability p(O | M) can be obtained by:

p(O | M) = ∏
t

p(yt | Mt). (48)

The measurement sequence yt only depends on the map configurationMt in the same
time instant t. The probability p(yt | Mt) can be derived from the sensor model,

p(yt | Mt) = ∏
i

p(zi
t | Mt). (49)

Due to the state dependence between different points, the state sequenceMc only
depends on the corresponding parameter Ac at the same coordinate c and p(M | A) can
be factorised as:

p(M | A) = ∏
c∈I

p(Mc | Ac). (50)

The likelihood can be given by:

p(O | A) = ∑
M

p(O,M | A). (51)

The observation sequence is also conditional on the initial map distribution p(M0),
which requires the initial state probabilities ρc

i = p(m0
c = si) of training points as in

Equation (44). For convenience, the initial probabilities are not written together with A.
Based on Bayes rule, the posterior distribution is:

p(A | O) =
p(O | A)p(A)

p(O)
, (52)

where p(O) is a normalising constant.



Electronics 2022, 11, 722 10 of 26

Similar to the HMM problem in the previous section, the EM algorithm is also applied
to estimate the parameters. The Q function with the prior distribution [32] is given as:

Q(A, A(k)) = EM|O,A(k) logp(M, O | A) + logp(A)

= EM|O,A(k) logp(O | M, A) + EM|O,A(k) logp(M | A)

− 2log(
√
(2π)n|KII |)−

1
2

U(a11)−
1
2

U(a22), (53)

where A(k) represents the parameters obtained in iteration k. Since the observation se-
quence O is conditionally independent of the parameters given the map sequenceM, the
probabilities p(O | M, A) can be rewritten as p(O | M) and is a constant. The normal-
izer, Z, is also a constant. As a result, the parameters can be obtained by maximising the
non-constant terms. The second term is rewritten as:

EM|O,A(k) log p(M | A)

= ∑
M

p(M | O, A(k)) ∑
c∈I

log p(Mc | Ac)

= ∑
c∈I

∑
M

p(M | O, A(k))log p(Mc | Ac)

= ∑
c∈I

∑
Mc

p(Mc | O, A(k)
c )log p(Mc | Ac). (54)

Since the initial state probabilities ρc
i are not written together with Ac, the probability

p(Mc | O, A(k)
c ) is the same as p(Mc | O, θ

(k)
c ) in Equation (11), where θc includes Ac and

the initial state probabilities ρc
i . The non-constant terms in this Q function is rewritten as:

EM|O,A(k) logp(M | A)− 1
2

U(a11)−
1
2

U(a22)

= ∑
c∈I

f (ρc
1) + ∑

c∈I
f (ac

11) + ∑
c∈I

f (ac
22)

− 1
2

U(a11)−
1
2

U(a22)

= f (ρ1) + f (a11) + f (a22), (55)

where ρ1 is defined by ρ1 = [· · · , ρc
1, · · · ]T which is the vector of the initial occupancy

probabilities ρc
1 of observed grid cells. The function f (ρ1), f (a11), and f (a22) are the vector

versions of the ones defined in Equation (13), (15), and (17), defined by:

f (ρ1) = ∑
c∈I

f (ρc
1)

= γ1logρ1 + γ2log(1− ρ1), (56)

f (a11) = ∑
c∈I

f (ac
11)−

1
2

U(a11)

= ξ11loga11 + ξ12log(1− a11)−
1
2

U(a11), (57)

f (a22) = ∑
c∈I

f (ac
22)−

1
2

U(a22)

= ξ22loga22 + ξ21log(1− a22)−
1
2

U(a22), (58)
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where γi = [· · · , γc
i (0), · · · ](c ∈ I) and ξ ij = [· · · , ∑t ξc

ij(t), · · · ](c ∈ I). The three

functions can also be maximised individually. The derivatives of Q(A, A(k)) with respect
to ρ1, a11, and a22 are, respectively, given by:

d
dρ1

f (ρ1) = γT
1 � ρ1 − γT

2 � (1− ρ1), (59)

d
da11

f (a11) = ξT
11 � a11 − ξT

12 � (1− a11)

− K−1
II (log

a11

1− a11
− µ1)�

1
a11 � (1− a11)

, (60)

d
da22

f (a22) = ξT
22 � a22 − ξT

21 � (1− a22)

− K−1
II (log

a22

1− a22
− µ2)�

1
a22 � (1− a22)

, (61)

where� is the elementwise division and� is Hadamard product. Without prior knowledge,
the parameter f (ρ1) can be maximised directly and the estimation of ρ1 is:

ρ1 = γT
1 . (62)

With the prior p(a11) and p(a22), it is not easy to maximise f (a11) and f (a22), or equiv-
alently to minimise − f (a11) and − f (a22). The line search method (LSM) [33] is used to
estimate a11 and a22 in range (0,1). The LSM is a gradient-based method and searches
for the optimum of the objective function from the initial values of parameters iteratively.
Since this estimation is only one step in the whole optimisation process and only the first
iterations are numerically relevant, the LSM can be stopped before convergence in order to
achieve computationally efficiency.

4.2. HMM Parameter Prediction

The EM algorithm in the previous section does not give the variances of the parameters
a11 and a22. After the HMM parameter estimation, all the noise in the observations are
assumed to be filtered out and the estimates of a11 and a22 are assumed to be without noise.
Due to the independence between ac

11 and ac
22, the prediction problem can be divided as:

p(A∗ | A) = p(a∗11 | a11)p(a∗22 | a22). (63)

Assuming the log odds forms of the parameter vectors a∗11 and a∗22 for test points are
denoted by l∗a11

= [· · · , lc
a11

, · · · ]T(c ∈ I∗) and l∗a22
= [· · · , lc

a22
, · · · ]T(c ∈ I∗), respectively.

The distributions p(a∗11 | a11) and p(a∗22 | a22) can be derived from p(l∗a11
| la11) and

p(l∗a22
| la22), respectively. The joint distribution of la22 and l∗a22

is:[
la11

l∗a11

]
∼ N

([
µ1
µ∗1

]
,
[

KII KT
I∗

KI∗ K∗∗

])
, (64)

where µ∗1 is the mean vector of l∗a11
, the matrix KI∗ denotes the covariance matrix between

la11 and l∗a11
, and K∗∗ is the covariance matrix of l∗a11

. The predictive equation with noise-free
observations [34] is:

l∗a11
| la11 ∼ N (l̄∗a11

, K̂∗a ), (65)
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where the predictive mean vector l̄∗a11
and covariance matrix K̂∗a are given as:

l̄∗a11
= µ∗1 + KI∗K−1

II (la11 − µ1), (66)

K̂∗a = K∗∗ − KI∗K−1
IIKT

I∗. (67)

The best predictive parameter vector a∗11 of test points is given by the logistic function:

a∗11 =
1

1 + exp
(
−l̄∗a11

) , (68)

where the division is elementwise. Similarly, the joint distribution of la11 and l∗a11
is:[

la22

l∗a22

]
∼ N

([
µ2
µ∗2

]
,
[

KII KT
I∗

KI∗ K∗∗

])
, (69)

where µ∗2 is the mean vector of l∗a22
. The coordinates of training points and test points

for two prediction problems are the same. As a result, the covariance matrix of the joint
distribution and the predictive covariance matrix do not change. The predictive equation
of l∗a22

is:

l∗a22
| la22 ∼ N (l̄∗a22

, K̂∗a ), (70)

where the predictive mean vector l̄∗a22
is:

l̄∗a22
= µ∗2 + KI∗K−1

II (la22 − µ2). (71)

The best predictive parameter vector a∗22 of test points is:

a∗22 =
1

1 + exp
(
−l̄∗a22

) . (72)

5. GRF-Based HMM with Pose Uncertainty

The mapping method in the previous section computes the posterior distribution from
a prior term and a likelihood term assuming that the precise position of the robot is known.
When the uncertainty of robot poses is considered, the problem is how to incorporate that
uncertainty into the two terms. The prior distributions depend on the relative positions
between different points. However, the chosen points in observed space are the central
points of observed grid cells. The points in unobserved space are chosen arbitrarily. As
a result, the prior term does not depend on robot poses. Without pose uncertainty, the
likelihood term is derived directly from the measurement model p(zi | m), where m denotes
the whole map. When the robot pose P k at the time step k is uncertain, the measurement
model is p(zi | m,P k). Based on the law of total probability, the uncertainty of the robot
pose can be incorporated into the sensor uncertainty by:

p(zi | m) =
∫

p(zi | m,P k)p(P k)dP k. (73)

In this work, the map is divided into grid cells to obtain observation sequences,
however it is not easy to integrate the probability in each grid cell. This problem can be
solved by sampling ns points from the distribution p(P k | Z0,Z ζ) and averaging over
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all the pose samples. Assuming the samples denoted by P i
k with associated weights wi,

Equation (73) can be rewritten as:

p(zi | m) =
ns

∑
i=1

wi p(zi | m,P i
k). (74)

Assuming m denotes a whole grid map and the state of one grid cell is denoted by mc,
the probability p(zi | mc) can be obtained by:

p(zi | mc) = ∑
m \ mc

p(zi | m)p(m \ mc | mc)

= ∑
m \ mc

ns

∑
i=1

wi p(zi | m,P i
k)p(m \ mc | mc)

=
ns

∑
i=1

∑
m \ mc

wi p(zi | m,P i
k)p(m \ mc | mc)

=
ns

∑
i=1

wi p(zi | mc,P i
k), (75)

where m \ mc means the whole map m without mc. After the uncertainty of robot poses are
incorporated, the proposed method in the previous section can be implemented as usual.

6. Experiments
6.1. Experimental Setup

The experimental platform consists of two parts: The robot part and the PC part. On
the robot part, a 3pi robot and one XBee communication module are connected to an mbed
expansion board, two IR sensors are connected to the mbed. On the PC part, one XBee
module is connected to the PC by an XBee Explorer USB. The 3pi robot is controlled by the
mbed microprocessor which sends commands to the robot by a pair of serial ports. The IR
sensors 1 and 2 are two Sharp GP2Y0A41SK0F IR sensors, which can measure distances to
objects and generate an analog voltage signal. The mbed samples the analog voltages of
the IR sensors by two ADC ports. The voltage data can be sent to the PC by XBees 1 and 2,
which are XBee S1 802.15.4 low-power modules. The mbed sends data to XBee 1 by another
pair of serial ports. XBee 2 receives the data from XBee 1 and sends it to the PC. Since the
mbed processor has limited computational power, the PC is in charge of the mapping tasks.

6.2. Experimental Environments

To illustrate the algorithm, the experimental map is shown in Figure 4. There are some
objects with different shapes and sizes. The coordinates of the map are shown in Figure 5.
The objects with labels 1, 3, 4, 6, 8, and 9 appear and disappear from their positions with
different frequencies. The object 1 changes its state at every loop and the subsequent
dynamic objects change their states every 2, 5, 10, 20, and 50 loops, respectively. The objects
2, 5, and 7 are static.

A 3pi robot equipped with two Sharp GP2Y0A41SK0F IR sensors is used to test the
proposed method. Its diameter is 9.5 cm and the width W between two wheels is 8.2 cm.
Two IR sensors are mounted on the robot as shown in Figure 6, and the relative orientations
are ±30◦ with respect to the robot’s reference frame. The measuring range is 4 to 30 cm.
When the distances are more than 20 cm, the output voltage has lower sensitivity and
becomes noisier. In the experiments, the maximum distances of IR sensors are set to 20 cm.
Since the aperture angle is very small, the two IR sensors do not interface with each other.
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Figure 4. Experimental map.

Figure 5. Coordinates of the experimental map.

Figure 6. Brief top view of the robot.

6.3. Pose Uncertainty

As the robot explores the environment, its pose uncertainty will increase. A track with
a mark is drawn in Figure 4 to decrease the pose uncertainty. Five QTR-RC reflectance
sensors in the front of the robot are used to follow the track and detect the mark, and a
simple controller is designed to help the robot follow the track. As the robot moves, its pose
is predicted by its motion model while the corresponding uncertainty increases. When the
robot detects the mark again, the robot closes its trajectory, and all the poses are corrected.

6.3.1. Robot Motion Model

The robot position is represented by the central point between two wheels in world
coordinates, and its orientation is relative to the x axis. Its pose vector is denoted by
P = [x, y, φ]T, which includes the position (x, y) and the orientation φ. Assuming the
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speeds of the left and right wheels are denoted by vl and vr, the speed of the robot is
modelled as: 

d
dt

x =
vl + vr

2
cosφ

d
dt

y =
vl + vr

2
sinφ

d
dt

φ =
vr − vl

W
.

(76)

When the robot goes straight shown in Figure 7, its orientation does not change.
Assuming the pose at time step k− 1 is denoted by P k−1 = (xk−1, yk−1, φk−1), the next
pose P k after a time interval ∆t can be computed based on the Euler method,

xk = xk−1 +
vl + vr

2
∆tcosφk−1

yk = yk−1 +
vl + vr

2
∆tsinφk−1

φk = φk−1.

(77)

When the robot does not move straight shown in Figure 8, direct integration is performed
instead of the Euler approximation. Integrating Equation (76) in a time interval ∆t gives
the new pose [31]:

xk = xk−1 +
W(vl + vr)

2(vr − vl)
(sin(φk−1 +

vr − vl
W

)− sinφk−1)

yk = yk−1 +
W(vl + vr)

2(vr − vl)
(−cos(φk−1 +

vr − vl
W

) + cosφk−1)

φk = φk−1 +
vr − vl

W
∆t.

(78)

The system model with additive process noiseW is rewritten as:

P k = F(P k−1, vr, vl) +W , (79)

whereW is Gaussian distributed with zero mean and covariance matrix R. The function
F(P k−1, vr, vl) represents the expressions on the right sides of Equations (77) and (78).

Figure 7. The pose when the robot goes straight.
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Figure 8. The pose when the robot turns.

6.3.2. Robot Measurement Model

The robot follows the track in a clockwise direction. Once the robot detects the mark,
there will be one observation of the position of the robot. The part of the track in front of
the mark is straight. When the robot arrives at the mark, the simple controller can adjust
the orientation of the robot to be close to −π. As a result, the position and the orientation
become known, although not precisely. However, the observation is not precise. The noisy
observation is modelled as:

Zk = P k + [−4.75, 0, 0]T + V , (80)

where V is Gaussian noise with zero mean and covariance matrix Q. The measurement Zk
is the pose of the robot head where the reflectance sensors are located and P k is the pose of
the central point of the robot. The pose difference between the head and the central point is
[−4.75, 0, 0]T when the mark is detected.

6.3.3. Pose Smoothing

When the robot starts at the mark and performs a complete loop returning to the
mark, only two observations of the pose are available, as shown in Figure 9. The two
observations are denoted by Z0 and Z ζ , respectively. Assuming the position of the mark
is at coordinates (x0, y0), both observations Z0 and Z ζ are equal to (x0, y0, –π). In order
to ensure the smoothness of pose estimation along the trajectory, all the poses along the
trajectory should be corrected by the observations. The pose smoothing can be obtained by:

p(P k | Z0,Z ζ) =
p(Z ζ | P k)p(P k | Z0)

p(Z ζ | Z0)
. (81)

This formula is divided into two steps: The forward step p(P k | Z0) and the backward
step p(Z ζ | P k).

The objective of the forward step is to estimate p(P k | Z0), which in general can be
obtained by iterating the equation:

p(P k | Z0) =
∫

p(P k | P k−1)p(P k−1 | Z0)dP k−1. (82)

Since there is no prior knowledge for P0, the posterior distribution p(P0 | Z0) is
assumed to be Gaussian distributed with mean (x0, y0, –π) and covariance matrix Q. Based
on the previous predicted state distribution p(P k−1 | Z0), the current predicted state dis-
tribution p(P k | Z0) can be obtained. Since the robot model is nonlinear and Equation (82)
is difficult to integrate, the forward step is done instead by the scaled unscented transforma-
tion [35]. The dimension L of the pose vector p(P k) is 3 and 2L + 1 sigma points should be
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sampled from the distribution p(P k−1 | Z0), which is assumed to be Gaussian distributed
with mean vector P̄−k−1 and covariance matrix P−k−1. The sigma points P i−

k−1 are given by:

P0−
k−1 = P̄−k−1,

P i−
k−1 = P̄−k−1 + (

√
(L + λ)P−k−1)i for i = 1, · · · , L,

P i−
k−1 = P̄−k−1 − (

√
(L + λ)P−k−1)i−L

for i = (L + 1), · · · , 2L. (83)

The corresponding mean weights wi
m and covariance weights wi

c are given by:

w0
m =

λ

L + λ
,

w0
c =

λ

L + λ
+ 1− α2 + β,

wi
m = wi

c =
1

2(L + λ)
i = 1, · · · , 2L, (84)

where α, β, and κ are parameters, the variable λ = α2(L+ κ)− L. The formula (
√
(L + λ)P−k−1)i

is the ith column of
√
(L + λ)P−k−1. The parameter α is a positive scaling parameter and its

range (0,1). The parameter κ is a non-negative scaling parameter and its range is [0, ∞).
Normally κ is set to 0 [36]. The parameter β is used to incorporate prior knowledge of the
distribution of Pk−1. For Gaussian distributions, the optimal choice is 2 [35].

Based on these sigma points, the next pose can be predicted by projecting sigma points
through the motion model and new sigma points P i

k will be obtained. However, they
should be augmented to include the system noise. The first augmented sigma point P0−

k is
the same as P0

k . The other augmented sigma points are given by:

P i−
k =

{
P i

k + (
√
(L + λ)R)i for i = 1, · · · , L,

P i
k − (

√
(L + λ)R)i−L for i = (L + 1), · · · , 2L.

(85)

The mean vector and covariance matrix of the distribution p(P k | Z0) can be respec-
tively approximated as:

P̄−k ≈
2L

∑
i=0

wi
mP i−

k , (86)

P−k ≈
2L

∑
i=0

wi
c(P i

k − P̄−k )(P i−
k − P̄−k )T. (87)

The objective of the backward step is to estimate p(Z ζ | P k), which in general is given
by iterating the equation:

p(Z ζ | P k) =
∫

p(Z ζ | P k+1)p(P k+1 | P k)dP k+1. (88)

This equation means p(Z ζ | P k) can also be obtained recursively based on the robot
motion model.

As in the forward step, Equation (88) is difficult to integrate due to the nonlinear
characteristics of the motion model, and the same approach based on the unscented trans-
formation is used. The sigma points for the predicted observation are given by:

zi
ζ = P i

ζ + [−4.75, 0, 0]T. (89)
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The mean vector and covariance matrix of the predicted measurement are approxi-
mated, respectively, by:

z̄ζ ≈ P̄−ζ + [−4.75, 0, 0]T, (90)

Pz ≈ P−ζ +Q. (91)

For the pose P k, every sigma point P i
k corresponds to a sigma point zi

ζ at the end

of the time horizon. The corrected sigma points P i+
k used to approximate the corrected

distribution p(P k | Z0,Z ζ), which already include the backward step, are computed by:

P i+
k = P i

k +K(Z ζ − zi
ζ). (92)

The Kalman gain K and cross variance Pkz are given by:

K = PkzP−1
z , (93)

Pkz =
2L

∑
i=0

wi
c(P i

k − P̄ k)(z
i
ζ − z̄ζ)

T. (94)

The mean vector and covariance matrix of the distribution p(P k | Z0,Z ζ) are finally
estimated as:

P̄+
k =

2L

∑
i=0

wi
mP i+

k

= P̄−k +K(Z ζ − z̄ζ), (95)

P+
k = P−k −KPzKT. (96)

Taking advantage of corrected sigma points P i+
k , Equation (74) can be rewritten as:

p(zi | m) =
2L

∑
i=0

wi
m p(zi | m,P i+

k ). (97)

Figure 9. Two observations for the robot.

The position of the mark is set to be at coordinates (45, 25), and the coordinates of
the track are shown in Figure 5. The two observations Z0 and Z ζ are (45, 25, −π). The
covariance matrices R and Q are set to:

R =

10−5 0 0
0 10−5 0
0 0 5× 10−5

,

Q = 8× 10−6

1 0 0
0 1 0
0 0 1

.

The other three parameters are set to α = 0.00001, β = 2, and κ = 0. The predicted
position of the robot before reaching the mark is shown in Figure 10, and the ellipses
represent the position uncertainty of the robot (level curve of the distribution at three
standard deviations). As time goes by, the uncertainty increases. After a complete loop, the
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estimated position has drifted to a wrong position, however it is still inside the ellipse. After
pose smoothing, the position correction is shown in Figure 11. The estimated positions on
the top are out of the outer line of the track with large variances, however the estimated
positions near the initial and final positions are more accurate, as expected.

Figure 10. Position prediction.

Figure 11. Position correction.

6.4. Results

Regarding the beam model of the two IR sensors, the occupancy and free probabilities
p(zi | mc) of the occupied grid cells in the measurement ranges are set to 0.998 and 0.002,
respectively. The two probabilities of the free grid cells in the measurement ranges are set
to 0.008 and 0.992. The two probabilities for grid cells outside the measurement ranges are
set to 0.5.

The robot follows the track for 100 loops, and an occupancy grid map is built for every
loop. Grid cells with posterior occupancy probabilities larger than 0.5 are assumed to be
observed occupied. While posterior occupancy probabilities less than 0.5 are assumed to
be observed free. The total times the grid cells are observed free and occupied are shown
in Figures 12 and 13, respectively. Most of the space in the middle is observed free many
times. The space behind the dynamic objects has about half a chance to be observed, and
the space behind the static objects is never observed. For the static objects, their borders are
observed partially. Due to the uncertainty of sensors and robot poses, the space around the
objects is sometimes observed to be occupied. Similarly to most of the observed space, the
number of observed times for dynamic object 6 in Figure 13 is close to 0, possibly due to
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the small size of the object combined with the fact that the robot is turning when the range
finder crosses the object.

Figure 12. The total number of free observations.

Figure 13. The total number of occupied observations.

The central points of grid cells in observed space are the training data to test the
proposed method, and the test points are only chosen from unobserved space. The initial
values of the probabilities are set to 0.5, the length-scale ` of the covariance function is set
to 3, and the signal variance σ2

f is set to 25. The mean vectors µ1 and µ∗1 of the occupied-to-
occupied probabilities for the training and test points are set to log 9, which corresponds
to a probability of 0.9. The mean vectors µ2 and µ∗2 are set to log 99, which corresponds to
a probability of 0.99. It means the prior knowledge of the environment is slow dynamic.
The maximum number of iterations of the optimisation process is set to 800, and the results
are shown in Figures 14 and 15, where the unobserved space is covered by asterisks and
has no estimates of transition probabilities. For most of the free space, all the observations
are free. The parameter a11 of most of the observed free space in Figure 14 are close to the
initial value 0.5, which should be close to 0. In this area, most of the observations are free.
In contrast, the other observed free space with more unknown observations has a better
parameter estimate.

In order to discover the reason, several free points without occupied observations are
chosen from the observed space and their parameters are individually estimated using the
method in Section 3. Table 1 shows the numbers of observations of four free points selected.
All of them have no occupied observations and different numbers of free observations.
The optimisation processes of their parameters are shown in Figures 16 and 17, where
the optimisation processes with more free observations converge faster. The derivatives
of Q(θc, θ

(k)
c ) with respect to a11 and a22 are shown in Figures 18 and 19, respectively.

Even though there is no occupied observation, the derivatives of the Q function with
respect to a11 are not always zeros and converge to zeros. When the parameters a22
converge to 1, the derivatives of Q function with respect to a22 converge to nonzero
constants. The best estimates of a22 for these free points are 1. When a22 reaches 0.9, the
derivative for corresponding a11 is close to 0. For the space without unknown observation,
the corresponding parameter a11 converge very quickly and a11 has lesser chance to be
optimised. With different numbers of observations, the estimation processes converge at
different speeds.
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Figure 14. HMM parameter estimation of a11 (occupied to occupied).

Figure 15. HMM parameter estimation of a22 (free to free).

Table 1. Observation numbers of the selected free points.

Free Points 1 2 3 4

Free observation number 19 55 89 100
Occupied observation number 0 0 0 0

Figure 16. Optimisation process of a11 (occupied to occupied).

Figure 17. Optimisation process of a22 (free to free).
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Figure 18. Derivative of Q(θc, θ
(k)
c ) with respect to a11.

Figure 19. Derivative of Q(θc, θ
(k)
c ) with respect to a22.

In order to decrease the convergence speed of a22, for the space with more than 95 free
observations, 45 of them are replaced by 45 fake observations corresponding to unknown
space. the derivative of Q with respect to a11 for occupied space and the derivative of Q
with respect to a22 for free space never converge to zeros. The LSM will always search for
the estimates for them even though their estimates are close to 1. In order to give more
chances to other parameters, the optimisation process halts searching for them when their
estimates reach 0.995. The grid cells with more observations will converge faster. For the
border of observed space and unobserved space, there are fewer or no observations, and it
will take a long period of time to converge.

Since the points with more observations converge quickly, it will take a long period of
time to obtain the best estimates for the points with fewer observations. The maximum
number of iterations of the optimisation process is set to 1500. The new results are shown
in Figures 20 and 21, where most of the observed free space has low a11 and high a22.
This means that the state stays free for a long time and changes from occupied to free
quickly. The static objects 2, 5, and 7 have the opposite behaviour and parameters. The
state of the dynamic object 1 alternates between free and occupied quickly. For the dynamic
objects 3 and 4, the colour becomes darker corresponding to slower dynamics. Due to
the lack of observations, the dynamic object 6 is estimated as free space. The other two
dynamic objects 8 and 9 change their states slowly. The space behind these dynamic objects
has fewer observations, the corresponding areas are darker than the space with more free
observations. The space behind static objects 2 and 5 is never observed, and therefore there
is no estimate. Due to the uncertainty of the robot pose, the space behind the static object 7
has a similar estimate to free space.

Figure 20. HMM parameter estimation of a11 for observed space.
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Figure 21. HMM parameter estimation of a22 for observed space.

The parameter prediction for unobserved space is shown in Figures 22 and 23. The
border of the observed space in Figure 22 is a little fuzzy and the estimate of most of the
unobserved space is similar to the prior. In Figure 23, most of the parameters on the borders
of observed space are close to 1, and the parameters of the unobserved space near these
areas are also predicted to be close to one. Since the parameters of the borders of observed
space near the static objects are close to 0.5, the darkness near these areas is lighter. Similarly
to Figure 22, the prediction of the other unobserved space is similar to the prior.

Figure 22. HMM parameter estimation of a11 for unobserved space.

Figure 23. HMM parameter estimation of a22 for unobserved space.

Based on parameters a11 and a22, the space in dynamic environments can be classified
as Table 2. Based on the table, the objects 1, 3, 4, and 6 in the experimental map are high
dynamic, and the objects 8 and 9 are low dynamic. The classification results are shown
as Figure 24 and Table 3. Due to pose uncertainty, the positions of the objects 8 and 9
are different from the truth. Even though they are obvious in Figure 24, all the True Low
Dynamic (TLD) space is wrong. For the same reason, the dynamic objects 3 and 6 are
estimated as free space. Due to the prior low dynamic assumption, there is more False
Low Dynamic (FLD) space. As the proposed method can smooth the map, there must be
more FHD space. The prediction variance increases with the distance to the observed space.
As a result, only the predictions near the observed space are more believable. Moreover,
the proposed method can predict more free space correctly. The classification accuracy for
observed space is 96%.
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Table 2. Classification for the dynamic environments. When the space does not belong to any class in
the previous four, it is classified as high dynamic.

Classification Free Occupied Low Dynamic Unknown High Dynamic

Parameters a11 < 0.6 a11 > 0.85 a11 > 0.85 0.53 > a11 > 0.47 Othersa22 > 0.85 a22 < 0.6 a22 > 0.85 0.53 > a22 > 0.47

Figure 24. Classification of the results for the dynamic experimental environment.

Table 3. Classification results for the dynamic experimental environment. TF = True free, TO = True
occupied, FF = False free, FO = False occupied, TLD = True low dynamic, FLD = False low dynamic,
THD = True high dynamic, FHD = False high dynamic, UN = Unknown.

Classification TF FF TO FO TLD FLD THD FHD UN

4648 146 16 11 0 752 2 725 0

Given the transition probabilities, the overall expected duration is shown in Figure 25
and the version in log scale is shown in Figure 26. The observed free space, the static
objects, and the low dynamic objects have long overall expected expectations. The dynamic
objects 3 and 6 are mostly invisible and have similar overall expected durations to the free
space. The dynamic objects with higher switching frequencies, 1 and 4, have shorter overall
expected durations and are clearly visible in log scale. For the unobserved space behind
the static objects, the overall expected duration is short. The remaining unobserved space
has a long overall expected duration.

Figure 25. Overall expected duration.

Figure 26. Overall expected duration in log scale.
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7. Conclusions

In this paper, a GRF-based mapping method for dynamic environments is proposed,
where the dynamic behaviour is modelled by HMMs. The HMM with normalised emission
probabilities is introduced and used to conveniently estimate the parameters. In order
to deal with the inconsistency in the parameter maps, GRFs are applied to consider the
correlations between different points in continue space. The parameter estimation is
factorised to reduce computational complexity. The EM algorithm is used to estimate
the parameters for the observed space, where the Q function is optimised by the line
search method. The predictive equation of the Gaussian process is used to deal with
the parameters for the unobserved space. The pose uncertainty is incorporated into the
measurement model and a 3pi robot with two IR sensors is used to evaluate the proposed
method. Experiment results show that parameter estimation depends on robot poses. Even
though the proposed method identifies the low dynamic objects, the number of TLD is 0.
The classification accuracy for observed space is 96%. Compared with the state-of-the-art
approaches, the proposed method takes the parameter dependence into consideration
and builds smooth maps for observed space. Moreover, the dynamic behaviour near
the observed space can be predicted, which is significant for path planning. The main
disadvantage is that it takes a long period of time to search for the parameters of points
with fewer observations. In future work, we plan to reduce the computational complexity.
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