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Abstract

The growth of the crop is dependent on soil type, apart from atmospheric
and geo-location characteristics. As of now, there is no direct and cost-
free method to measure soil property or to classify soil type. In this
work, we proposed a machine learning model to classify soil type us-
ing Sentinel-1 satellite radar images. Further, the developed classifier
achieved 72.17% F1-score classifying sandy, free and clayish on a set
of 65003 data points collected over one year (from Oct 2018 to Sep 2019)
over 14 corn parcels near Ourique, Portugal.

Keywords: Remote Sensing, Soil Electrical Conductivity, Sentinel-1,
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1 Introduction
Precision farming involves the collection of detailed information of min-
eral, nutrients, water, soil texture, cation exchange capacity, drainage
conditions, organic matter level, salinity, and subsoil characteristics over
farmland [3]. Over the last few decades, many new technologies have
been developed for measuring soil properties, and one of such is using
remote sensing techniques [2].

Sentinel-1 [7] is a synthetic aperture radar instrument (SAR) satellite
that provides images in two different polarizations: VV (vertical transmit,
vertical receive) and VH (vertical transmit, horizontal receive). It consists
of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which
share the same orbital plane with a 12-day revisiting period.

In precision farming, detailed information about the spatial charac-
teristics of farm operations like yield estimation, field attribute maps and
forecasting harvesting date are made available to the farmer. This in-
formation is gathered using a wide array of electronic, mechanical and
chemical sensors which leads to measure and map soil and plant proper-
ties. Soil Electro-Conductivity (EC) is one of the simplest, least expensive
soil measurements available to precision farming today [8].

EC is the ability of a material to transmit (conduct) an electrical cur-
rent and is usually expressed in miliSiemens/meter (mS/m). Soil EC is a
measurement that characterizes soil properties which, in turn, affect the
productivity of crops. These properties include water content, soil tex-
ture, soil organic matter (OM), depth to clay layer, the capacity of cation
exchange (CEC), salinity, calcium and magnesium [4].

The objective of the present study is to build a classification model us-
ing machine learning algorithms that characterize soil types using Sentinel-
1 radar images.

The rest of the paper is organized in the following sections: Section 2
introduces the data used in this work, while Section 3 describes the ma-
chine learning model, the experimental setup, experiments and results.
Finally, Section 4 concludes the paper.

2 Data Set Construction and Characterization

The Electro-Conductivity value from a set of 14 parcels of corn fields
(made available by Agroinsider [1]) was used as ground data points. These

parcels are from Alentejo region with coordinates between (37◦56’29.13"
N , 8◦22’21.95" W) and (37◦55’32.44" N, 8◦21’02.23" W). Figure 1
shows the Google View image of these 14 parcels. EC value was mea-
sured at 10-meter intervals resulting in a total of 65003 points.

Figure 1: Google view images of 14 parcels

Electro-conductivity real values were discretized, leading to three
types of soil: sandy, free, and clayish. Table 1 presents the information
about each type: the EC values interval and the number of points.

Soil Type Value Range Count
Sandy EC < 10mS/m 24195
Free 10mS/m ≤ EC ≤ 25mS/m 31141

Clayish EC > 25mS/m 9667
Table 1: Soil type information.

For each data point, along with the EC value, the respective latitude
and longitude were also noted. With the collected coordinates, the corre-
sponding values of VV and VH from the radar images were taken.

This radar data was collected from October 2018 to September 2019,
the time span of one agricultural year. Since the Sentinel-1 revisiting
time is 6 days, it resulted in a set of 60 pairs of values for each EC point
measured. In this way, each soil point is characterized by 122 attributes:
the soil type plus latitude, longitude and 60∗2 values of the radar images
(60 dates and two polarizations: VV, VH). But latitude and longitude are
not used as a parameter value in the ML algorithm.

Figure 2 represents the corresponding radar image for October 8,
2018 with VH polarization. And the variation of VH and VV value for
one agriculture year (From Oct 2018 to Sep 2019) is shown in Figure 3.

3 Machine Learning Models

Three machine learning algorithms have been used to build classification
models:
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Figure 2: VH polarized radar image on 6th October 2018

Figure 3: Variation of VH and VV values over a year in a specific point.

• Support Vector Machines (SVM) with a linear kernel.
• Random Forest (RF), a set of decision trees built from bootstrap

samples of the training set where the candidate split in the learning
process, is chosen from a random subset of the features.

• Extra Trees (ET), another ensemble classifier of decision trees, dif-
fers from RF in two points: each tree is trained using the whole
learning sample and the top-down splitting in the tree learner is
randomized.

3.1 Experimental Setup

A stratified train-test split was done over the dataset, with 80% for training
(52002 samples) and 20% for testing (13001 samples).

We used Scikit-learn library [6] and RandomizedSearchCV [5] ap-
proach with 5-folds cross-validation to fine-tune the algorithms over micro-
F1 measure. Parameters that produces the best results were: nestimators=
189, max_ f eatures = sqrt, max_depth = 32, min_samples_split = 2,
bootstrap = False, min_samples_lea f = 1, and criterion = gini.

3.2 Experiments and Results

In order to evaluate the performance of the algorithms in this problem
as well as the most relevant set of attributes, several experiments were
carried out in a total of 153:

1. Algorithms: SVM, RF, ET
2. Time interval

(a) 12 months
(b) 3 months (Oct – Dec, Jan – Mar, Apr – Jun, Jul – Sep)
(c) 1 month (Oct, Nov, Dec, Jan, Feb, Mar, Apr ....... Sep)

3. Polarization: VV, VH, VV + VH

These preliminary results made it possible to draw the following con-
clusions:

• Data set of 12 months time interval shows better results in perfor-
mance measures: precision, recall and F1-Score.

• Compared to the other shorter intervals, performance increase be-
tween 2% to 3% in the F1-score measure, when compared to the
results obtained with the April-June interval. The April-June inter-
val presents the 2nd best F1-score values.

• The performance measure using only one of the polarization is
similar. But some are gain (between 2% and 7% in the F1-score
measure) when using both polarizations.

• Random Forest present the outperform than others based on the
performance measures.

Table 2 details the results using Random Forest for the time span of 12
months. It presenting the best results in the three performance measures.
So from 12 months time interval, several conclusions can be drawn from

Soil Type Precision (%) Recall (%) F1-Score (%)
Sandy 79.70 70.15 74.62
Free 68.25 84.76 75.62

Clayish 80.17 41.21 54.44
Table 2: Performance of the Random Forest model over the test set.

the results:

1. it is possible to observe that the model behaves reasonably for
sandy and free soils; precision is about 10% higher for sandy soils
(almost 80%) but, on the other hand, free soils present 15% higher
recall (about 85%);

2. concerning clayish soils, a high precision (about 80%) is obtained
at the expense of a significantly low recall (about 41%); this dif-
ference affects F1-score, which fails to reach 55%, while for other
types of soil the value is around 75%;

4 Conclusions and Future Work

This work presents a machine learning model to classify soil type using
Sentinel-1 satellite images. The developed model, using Random Forests,
is able to achieve 74.62%, 75.62% and 54.44% F1-score for sandy, free
and clayish soils, respectively.

In future, to improve the results of this work, we will enlarge the
dataset with more parcels having different crops, including more features
from radar like the angle of incidence and timing for example.
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