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Abstract 

Usually while reading, content comprehension difficulty affects individual 

performance. Comprehension difficulties, e. g., could lead to a slow learning process, 

lower work quality, and inefficient decision-making. This thesis introduces an intelligent 

tool called “iMind” which uses wearable devices (e.g., smartwatches) to evaluate user 

comprehension difficulties and engagement levels while reading digital content. 

Comprehension difficulty can occur when there are not enough mental resources 

available for mental processing. The mental resource for mental processing is the 

cognitive load (CL). Fluctuations of CL lead to physiological manifestation of the 

autonomic nervous system (ANS), which can be measured by wearables, like 

smartwatches. ANS manifestations are, e. g., an increase in heart rate. With low-cost eye 

trackers, it is possible to correlate content regions to the measurements of ANS 

manifestation. In this sense, iMind uses a smartwatch and an eye tracker to identify 

comprehension difficulty at content regions level (where the user is looking). The tool 

uses machine learning techniques to classify content regions as difficult or non-difficult 

based on biometric and non-biometric features. The tool classified regions with a 75% 

accuracy and 80% f-score with Linear regression (LR). With the classified regions, it will 

be possible, in the future, to create contextual support for the reader in real-time by, e.g., 

translating the sentences that induced comprehension difficulty. 

Keywords: Biometrics measurement, cognitive load, content comprehension, eye-

tracking, Heart rate variability, machine learning. 
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Resumo 

Normalmente durante a leitura, a dificuldade de compreensão pode afetar o 

desempenho da leitura. A dificuldade de compreensão pode levar a um processo de 

aprendizagem mais lento, menor qualidade de trabalho ou uma ineficiente tomada de 

decisão. Esta tese apresenta uma ferramenta inteligente chamada “iMind” que usa 

dispositivos vestíveis (por exemplo, smartwatches) para avaliar a dificuldade de 

compreensão do utilizador durante a leitura de conteúdo digital. A dificuldade de 

compreensão pode ocorrer quando não há recursos mentais disponíveis suficientes para o 

processamento mental. O recurso usado para o processamento mental é a carga cognitiva 

(CL). As flutuações de CL levam a manifestações fisiológicas do sistema nervoso 

autônomo (ANS), manifestações essas, que pode ser medido por dispositivos vestíveis, 

como smartwatches. As manifestações do ANS são, por exemplo, um aumento da 

frequência cardíaca. Com eye trackers de baixo custo, é possível correlacionar 

manifestação do ANS com regiões do texto, por exemplo. Neste sentido, a ferramenta 

iMind utiliza um smartwatch e um eye tracker para identificar dificuldades de 

compreensão em regiões de conteúdo (para onde o utilizador está a olhar). 

Adicionalmente a ferramenta usa técnicas de machine learning para classificar regiões de 

conteúdo como difíceis ou não difíceis com base em features biométricos e não 

biométricos. A ferramenta classificou regiões com uma precisão de 75% e f-score de 80% 

usando regressão linear (LR). Com a classificação das regiões em tempo real, será 

possível, no futuro, criar suporte contextual para o leitor em tempo real onde, por 

exemplo, as frases que induzem dificuldade de compreensão são traduzidas. 

Keywords: Biometrics measurement, cognitive load, content comprehension, eye-

tracking, HR variability, machine learning. 
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1. Introduction  

1.1. Context 

Commonly, when reading an English passage, we may not fully understand an 

expression, a sentence, or region of content at first glance. Difficulties in comprehending 

content can hinder professional work or learning as it increases the time necessary to read 

and analyze information. Those difficulties can occur because our mind is not focused on 

that task or because the concepts behind that region are too complex for us at that point 

in the day. With measures of mental capacity, it would be possible to improve tasks that 

are dependent on reading content. 

Cognitive load (CL) is the mental resource used for mental processing. CL has a 

limited capacity as such the mental ability to comprehend content is limited as well. 

Changes in CL can lead to physiological manifestations. This physiological manifestation 

comes mainly from the ANS. ANS is composed of the sympathetic and parasympathetic 

branches, which are antagonistic to each other. Under mentally challenging situations, the 

sympathetic nervous system increases the Heart rate (HR), while the parasympathetic 

branch decreases the HR in calm situations. 

Considering that psychological states [1], [2] can affect the physiological 

manifestations of ANS, studies tend to use a multimodal approach (i.e., integrating more 

than one biometric signal) to further distinguish CL [3]. HR biometric features can be 

obtained with electrocardiogram (ECG), but the use of a smartwatch has a more practical 

use for daily life scenarios and applications (although they are less precise). The 

incorporation of wearables to measure the manifestation of ANS (like a smartwatch) in 

assessing CL, represent a small but emerging topic in the literature as the technology of 

wearables is growing enormously. 

To identify which content caused the comprehension difficulties, the 

synchronization of the eye-movements on the content and biometrics (from wearables) is 

necessary. With eye trackers, is possible to extract the location of the screen which the 

user is looking at, also known as eye gaze. If the displayed content changes its position, 

on the screen, that means the user is looking at another region of content. To synchronize 

the content position with the position in which the user is looking is necessary to correlate 

the eye gaze with, e. g., the page scroll. 
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In addition to multimodal approach studies also incorporate the use of machine 

learning (ML) to help identify the physiological patterns associate with CL. With the 

incorporation of ML is possible to identify which regions are difficult by the prediction 

of high CL, mainly influenced by comprehension difficulties. In future work, the 

identified regions of comprehension difficulties can be used for content feedback. 

 

1.2. Motivation 

According to O'Rourke [4], the struggles in learning a foreign language are related 

to difficulties in lexicon structure, grammatical and syntactic rules, and also sociologic-

communicative factors.  

Comprehension difficulty is not exclusive to learning spoken languages, but also 

programming languages (e.g., JAVA). The skills involved in learning a programming 

language are similar to the ones engaged in learning a spoken language as both skills 

involve lexical and syntactic rules ad as both present a set of constraints and structural 

rules that need to be understood.  

Code learning can differ from spoken language learning as arithmetic logic can be 

a key point of its comprehension [5]. Jens et al. [6] reported according to UNESCO data, 

the failure rate of introductory programming courses progress from 2007 to 2019 as 33% 

to 29% failing rate. Jens et al. justified that these percentages are not as high compared to 

other failure rates like college algebra in the US in those years (42 to 50%), but still are 

significant. 

Peter et al. [7] described an 18% to 21% failure rate in the first semester of an 

English degree in Japanese Universities in 2007. According to Peter et al. [7], this degree 

teaches English mainly as a first foreign language. Even though these percentages are 

smaller than in programming languages still show the struggle exhibited by a student in 

learning a foreign language. Another example that also reveals these struggles, even with 

more cultural and language proximity, is Europe. In Europe, the majority of countries 

mandate, through legislation, that students must learn at least two foreign languages 

(English being the most learned with 5 to 7 mandatories years). Despite this, some 

European countries with moderate English proficiency, like Italy and Spain, present 

results of 535 and 540 points, corresponding to only B2 classification in the CEFR score 
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(Common European Framework of Reference for Languages) [8]. Since 5 to 7 years of 

English in the education system result in medium proficiency, maybe incorporating a tool 

to help language learning is a relevant path to a more efficient education. 

Nowadays, most content presents a digital version or is solely presented as digital 

content. Using digital content in learning and work environments opens the possibility 

for multiple uses for digital content tools. During the spread of the SARS-CoV-2 between 

2020 and 2021, multiple confinements were imposed, which pushed the educational 

system to remote classes. Del Arco et al. [9] described that, in universities that were less 

adapted to online classes, there was a decrease in communication with students, which 

could be suppressed with a remote assessment of student comprehension. 

The use of support tools in the language learning process can be incorporated not 

only for a study supported by teachers but also for self-taught. Self-taught students are 

more prone to recurring errors when learning [10] and could potentially benefit more from 

a learning support tool. 

One of the crucial motivations behind this work is the availability of affordable 

and precise wearables and biometric sensors. E. g., smartwatches and desktops low-cost 

are good technologies to use in assessing individual comprehension difficulties in 

learning and work environments. Nonetheless, very few studies have used them in CL 

classification at region-level (evaluating different regions of content) [11]. 

 

1.3. Objective 

This thesis aims to develop an intelligent tool, iMind, capable of assessing 

individuals’ comprehension and engagement levels by classifying CL using smartwatches 

and low-cost desktop eye trackers.  

Content comprehension assessment at the region content levels occurs by 

integrating multimodal measures (HR and Electrodermal Activity (EDA) measurements 

to assess CL) and using an eye-tracker to identify content regions associated with high 

CL.  

 

 



Introduction 

16 

1.4. Contributions 

The main contributions from this thesis are as follows:  

• Development of an intelligent tool that measures CL to predict content 

comprehension difficulties. 

• Development of a new computational method to synchronize a multimodal 

set of physiological data with the eye-tracker. 

• Comparison of different classifiers models to assess content 

comprehension using wearables. 

• Synchronization of content location (page scroll) to achieve fine-grained 

analysis of content regions over time. 

 

1.5. General outline 

This document will present the details of the study of measuring CL through the 

analyses of multiple biometric features, their acquisition and their physiological meaning. 

Chapter 2 will present the background of biometric features, their relation to the CL, and 

related work. Chapter 3 presents the methodology with the tool architecture and 

implementation. Chapter 4 presents the protocol, dataset and data analysis. And chapter 

5 presents the main results taken from the features selection and ML pipeline. Lastly, 

chapter 6 describes the main conclusion, contribution and future work regarding this 

thesis. 
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2. Background and relatable work  

The goal of this thesis is to develop a tool to classify content comprehension using 

biometric data. Biometrics are related to the physiological manifestation of changes in 

ANS induced by different factors such as mental effort. That data will be synchronized 

with eye-tracking to identify the content regions that are associated with high CL 

(potentially high difficulty in comprehension). This chapter presents the background 

related to CL and is related to the ANS and how its manifestation can be measured with 

biometric signals. After that describes the state of the art of measurements of CL changes 

by biometric features.  

2.1. Cognitive Load 

CL represents the mental resources available in mental processing [3]. The mental 

resource of CL changes can be decomposed into long-term and working memory. Long-

term memory is responsible to store and organize information and working memory is 

related to the processing of it. Considering that the working memory is limited in capacity, 

the same can be extrapolated to CL, which means that CL has a limited capacity, which 

is used for managing all mental tasks [12]. 

It was proposed by Newell et al. [13] in 1980, that comprehension is the mental 

processing of data by CL, and it can be decomposed into a model called Cognitive load 

theory (CLT). This model describes that initially our mind interpretation raw input 

independently. After that, the understanding of the context of what the subject is 

doing/reading is created. Only by understanding the content is the individual capable of 

executing a course of action related to the context, e. g., selecting the right answer after 

reading a question [14]. 

The mental representation created while interpreting content uses the individual 

mental capacity, which is directly influences by the ability to understand the content. 

Consequently, if the mental capacity is overloaded the individual cannot grasp the notion 

begin that content [15]. 

According to CLT, learning a spoken language evolves the ability to comprehend 

and interpret text according to its lexical and grammar rules. For new programming and 

new spoken language learning, both processes can evolve around learning different 
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syntactical rules leading to comprehension difficulties dependent, e. g., on the learner's 

effort and proficiency to learn new skills [16]. 

Grammatical and syntactic rules can influence comprehension as the type and 

complexity of content will influence the CL usage. In spoken languages, some regional 

factors like cultural barriers and learning methodology can also influence learning. There 

are also individual factors as, e. g., children tend to learn spoken languages faster [17]. 

On the other hand, code comprehension is affected by technical and structural rules [16] 

which, as stated in chapter 1, can lead to additional difficulty as showed by Nikula et al. 

[18], which reported that globally, in 1999, that more than 30% of students in computer 

science have failed introductory programming courses. 

CL does not only change according to the type of content presented by also the 

tasks involved with that content. CL can be divided into three components: extraneous, 

intrinsic, and extraneous CL. Extraneous CL is related to how the information is presented 

to the learner and so it is related to the representation of the task. Intrinsic CL is related 

to the difficulty level of the task and its content. Germane CL refers to the pattern of 

thoughts and behaviour, relating to the production of new patterns in the information (e.g., 

flowchart representation) [19].  

Most studies do not differentiate between the different CL’s and consider CL as 

an owl. Larmuseau et al. [2] tried to differentiate between the different types of CLs using 

different biometric features that correlated with CL, by using different types of tasks in 

their protocol. This was done by trying to induce different CL, intrinsic load induced by 

interactivity element and extraneous load by the provision of hints. They concluded that 

it was impossible to detect this measure without self-reports of associated mental states, 

considering the multiple factors that can influence the measured physiological features, 

and that these distinctions are more relevant in the field of psychology [2].  

Considering the joint components of CL, its effects translate into manifestations 

of the central nervous system (CNS) and ANS as the first is constituent by the brain, 

which receives and coordinates all body responses, and the second for the systems 

responsible for regulating involuntary responses [20]. 
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2.2. Nervous System 

The nervous system is responsible for transmitting signals between different parts 

of the human body to produce voluntary and involuntary reflexes and responses. It is 

responsible for receiving and processing internal and external stimuli, maintaining 

homeostasis and functions associated with consciousness, memory and thought. The 

nervous system receiving of stimuli and response occurs through a vast web of neurons. 

Within neurons, conduction can be fast or slow (1-120 msec) depending on 

whether myelin is present or not. Signal conduction within by electrical conduction and 

between neurons occurs by electrical or chemical conduction. Electrical conduction 

occurs through the electrical polarization of the membrane by the trafficking of potassium 

and sodium ions. Chemical conduction occurs by neurotransmitters [21]. 

As shown in Figure 1, the nervous system can be divided into the CNS and 

peripheral nervous system (PNS). The first is composed of the brain and spinal cord and 

is responsible for receiving and coordinating corporal responses, this system is integrated 

with the PNS as it is composed of the elements of the body that allows communication 

(sensory receptors, nerves, ganglia, and the plexuses). 

 

Figure 1-Nervous system division [22] 

The PNS can be divided into three groups: autonomic, somatic, and enteric 

systems. The enteric system is the one responsible for the sensing and regulation of the 

visceral system and can also be considered an independent system from the peripheral 

nervous system [23]. The somatic nervous system (SNS) is associated with the motor 
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functions derived from voluntary actions and the (ANS) from involuntary ones. Within 

the ANS two subsystems work antagonistically to each other, there are called the 

parasympathetic and sympathetic systems [24]. 

Regarding the structures of the encephalon (brain, brainstem, spinal cord, and 

cerebellum), the brain is the largest and most important of all and can be divided into 4 

lobes, frontal, parietal, occipital and temporal lobe. The frontal lobe is associated with 

motor functions, the parietal lobe is associated with the reception and evaluation of 

sensory information, the occipital lobe, the occipital lobe is associated with the reception 

and integration of visual stimuli, and the temporal lobe is associated with the reception of 

olfactory stimuli and hearing aids and memory management [25].  

The motor function of the brain is correlated to the frontal lobe, as previously 

mentioned, motor function is controlled by both ANS and SNS. ANS is responsible for 

the regulation of involuntary response by balancing the response from parasympathetic 

and sympathetic systems, which are antagonistic to each other. These two elements of 

ANS create the responses for events of panic or relaxation by inducing  g different 

responses via the release of hormones to, e. g., accelerate the HR in stressful situations or 

in calm situations to, e. g., reduce the breathing rate. This particular example is called the 

“fight or flight” response of the ANS [20]. It is described that psycho-physiological loads 

lead to an activation of the ANS which translates into changes in blood pressure, 

temperature [26] and Heart Rate Variability (HRV) and other factors. These factors can 

be compared and correlated to measure CL to infer comprehension [27] and also 

engagement levels [28]. Some articles also considered personality trails to better 

understand CL response [29], [30] because it has been demonstrated that anxiety and 

arousal can affect working memory capacity [31] and consequently ANS response. 

 

2.3. Biometric Features 

From the physiological effects of CL changes, manifestation on the frontoparietal 

areas of the brain can be measured with an electroencephalogram (EEG) which reflexes 

the motor function which allows the identification of different levels of CL as specific 

power waves as gamma band power (20-25 Hz), e. g., correlates to hyper brain activity 

[32]. Even though EEG allows for reliable results [33], but it may not be fitted for daily 

use scenarios for its practicability. Brain imaging can also be used to measure the same 
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physiological manifestation but add impracticability and high cost. For this reason, papers 

resort to the use of measurements more practical measurements such as HR, EDA and 

pupillography data [34], in which papers have explored the extraction of ultra-short 

features [35]. 

Electrocardiogram (ECG) is also used to measure CL as it was proven that HRV 

is controlled by both branches of ANS, and its measurement is sensitive to mental task 

level and duration. ECG is acquired by electrodes in the skin and typically uses 12 points 

(6 on the limps and 6 on the torso). The reduction of the number of points is used to 

simplify the ECG setup as not all channels are needed [36]. With the evolution of 

processing technology is possible to acquire a 3-point ECG or use photoplethysmography 

(PPG) to acquire the necessary data to distinguish heart pathologies and acquire HR 

features. 

HRV is based on variations between HR components taken from the HR, which 

can come from ECG or PPG. In the time-domain measurements of HRV, the most 

common features are the standard deviation of RR intervals (SDRR), root mean square 

of successive differences (RMSSD), and the percentage of successive normal sinus RR 

intervals more than fifty milliseconds (pNN50) as representatives of vagal tone. From 

these features, it was proved the relation between SDRR, RMSSD, and intrinsic CL [37]. 

Complementary, it has been described by the literature that the values of mean RR, 

SDRR, RMSSD, and pNN50 decrease from low stress to high cognitive stress and an 

increase in mean HR [32]. The variation of RMSSD values is described as more 

noticeable in comparison to SDRR [38]. Some articles also explore non-linear features 

like the ratio of Pointcaré plot components (named SD1 and SD2), which are features 

obtained by the transformation of consecutive data using the area of a time plot (Pointcaré 

plot), which corresponds to the ratio of minor and major axis of the Pointcaré beat to beat 

time and it shows the balance between sympathetic and parasympathetic with non-

periodic oscillations [39].  

Other papers recurred to features related to frequency domain features of HRV as 

the comparison between very low (0-0.04 Hz), low (0.04-0.15 Hz), and high (0.15-0.4 

Hz), these frequencies represent the mix of sympathetic and vagal influences. Features 

like the ratio of low and high frequencies show the influence of both sympathetic and 

parasympathetic branches, resulting in an increase of low frequencies in distinguish to 

high frequencies leading to the increase of this feature with the increase of CL [40].  
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HRV is generally extracted from ECG signals, but this approach requires multiple 

electrodes with expensive monitoring devices and may not be practical to daily use of 

learners or education environment, so this measure can be done from PPG [41] that is 

available nowadays in wearable devices, like, smartwatches. 

PPG is a technique that implies the measurement of light absorption related to 

blood flow and correlates this flow with the rhythmic changes of the heart cycle to identify 

the HR. PPG can be done in blood vessels that are distant from the heart and uses two 

different light sources for better results or to extract blood oxygenation [42].  

 PPG sensor is a low-cost sensor commonly used in smartwatches and smart 

bands, and it has been the center of multiple studies to determine its precision in 

approximation to HRV [43]. HRV features acquired from PPG are also called Pulse rate 

variability (PRV). The PRV can avoid some ECG artifacts but is more sensitive to 

movement artifacts [43] and breathing patterns [44]. The literature proved the correlation 

of PRV to HRV [43], [45] but some described estimation errors in a patient with cardiac 

diseases [44]. 

EDA is the measurement of the electrical activity of the skin produced by changes 

in the activity of sweat glands. The increase in activity of sweat glands increases electrical 

conductivity. EDA is related to CL because the peaks in skin conductivity are associated 

with sympathetic activation [46]. EDA signals are divided into two components, tonic 

and phasic. Phasic is related to rapid response resulting in quick peaks with high 

amplitude, denominated skin conductance response (SCR). The tonic component of the 

signal is related to the background signal characteristic by slower response resulting in 

lower variation of amplitude, being described as the skin conductance level (SCL) [47]. 

The SCR can be correlated to an event (event-related SCR), and compared to the values 

outside that event, to distinguish from different mental states but given the fact that the 

sympathetic nervous system can respond with arousal or stress in situations cognitively 

challenging, that distinguishment is unnecessary [46]. 

Some articles describe the correlation of CL changes to EDA features from both 

SCL and SCR, like the mean, maximum and minimum value of SCL [48] and the mean 

peak height, peak rate (peaks/min) and quantiles for SCR, where all of this features 

increase with higher CL [46]. 
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Our developed tool uses HRV and EDA as an index for CL. However, to identify 

which content region was difficult to comprehend, we used a desktop eye tracker. Eye 

trackers enable us to record eye activity. Some articles describe the use of eye activity 

measurements as an index of CL changes, e. g., pupillography and bink rate [49]. Task-

invoked pupillary response is a feature associated with pupil dilatation [27]. Blink rate is 

another eye-related feature that is expressed as the frequency of spontaneous blink being, 

as pupil dilation, correlated to the activation of the central nervous system [50]. It is also 

described that behaviour features can be extracted from the eye movement regarding the 

fixation time and the transition between fixation referred to as saccades [51], 

unfortunately, the acquired device in this thesis does not allow to acquire this class of 

measurements. 

The acquisition of eye measurements occurs with an eye tracker, which typically 

measures the position where the eyes are looking at the screen, denominated eye gaze. 

This measurement allows the identification of content regions that can later be 

synchronized temporally with the biometric feature to determine comprehension 

difficulty. Eye gaze is determined by the vector produced between the cornea and the 

pupil center. The cornea position is obtained with the contrasts created by infrared light 

that allow the identification of the cornea created by the reflection of its outer surface, 

which is called “First Purkinje image” [52]. The pupil center is determined by an 

algorithm concerning the limit between the iris and the pupil. The human eye is described 

as a structure that presents a crystalline lens with muscles and its surrounded by liquid, 

which separate the cornea and the retina. The fact that light passes through various 

materials in the human eye leads to a difference between the measured axis and the real 

axis of the eye, which requires calibration [53]. 

 

2.4. Related work 

Regarding the analyses and measurement of the CL, there has been a growth in 

this topic in the last 20 years with the evolution in data acquisition and models related to 

CL. According to the results of the search from the website “ScienceDirect”, a database 

for the publisher “Elsevier”, there has been an increase of about nine times the number of 

papers per year in the last 20 years (from 649 in 2001 to 6613 papers in 2021) regarding 

measurements of CL changes.  
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One of the first papers to describe the measure of CL changes was a study by 

Winsum et al. [54], which proved in 1984 the relation between CL and EEG by showing 

the decrease of a specific EEG frequency interval to the increase of CL. It also described 

that the level of the CL could be inferred from the duration and amplitude of that decrease. 

Considering the technology available at the time, this was the best indicator of CL 

changes that could be achieved. In recent years, some articles have explored the same 

feature of the EEG as Winsum et al. [54], but with the advance in science and technology, 

it is possible to extract more features and use classifiers to achieve the best possible 

model. Articles like Candela-leal et al. [55] prove the previously stated point but using an 

EEG helmet from OpenBCI. With these physiological data, multiple features were 

extracted, and the best features were selected by a hybrid features selection method. The 

best features were then put in different models to test their accuracy. The models used 

were random forest (RF), support vector machine (SVM), gradient boosted machine and 

classification and regression trees (CART). The best accuracy was achieved at 92,69% 

with RF. 

Even though EEG is a good indicator of CL changes, measurements of ANS 

manifestation like PPG can be light-weight non-intrusive alternatives and PPG devices 

may be more accepted by the general population as a component of the tool when 

compared to EEG helmets, e. g. [56]. PPG also presents itself as a good alternative for 

ECG equipments as, e. g., a smartwatch can be more practical and comfortable for daily 

use than an ECG chest band.  

 Some paper use eye trackers to give information about the user's eye gaze. Eye 

gaze is the position of the screen the user is looking at. The article of Kang et al. [50] in 

2015, was one of the first papers to incorporate eye gaze synchronization in CL 

assessment and the first to apply that methodology to support learning a foreign language 

by identifying unknown words. The goal of this paper was to identify comprehension 

difficulty and correlate it to the corresponding content location to identify a specific 

predefined content area. This concept was designed to help the users learn Korean as a 

foreign language. It used an eye tracker from Tobii to extract the eye gaze and used an 

EEG band with two points from Brainno to extract EEG features synchronized with the 

eye gaze. Even though the 2-point EEG band can be more comfortable, than the EEG 

helmet referred to in Candela-leal et al. [55] the previous mention, results in less accuracy 

than the EEG helmet and it still presents high costs. The accuracy of 74.76% of an SVM 
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model of the EEG features of this EEG band supports the multimodal approach previous 

mention. Also, is important to notice that the experimental protocol did not integrate the 

eye tracker and the EEG modules as they were validated separately; the eye tracker data 

were tested to estimate the unknown word and the EEG was tested in distinguishing texts 

with known and unknown words, in that sense this study does not synchronize the eye 

gaze with measurements of CL changes. 

Some studies also explored more proficient assessments of CL measurement, such 

as Ayres et al. [49] in 2020, where the CL changes were evaluated using EEG, functional 

magnetic resonance imaging and Functional near-infrared spectroscopy, these acquisition 

methods present high costs and reduced practicability with long acquisition times and 

high weight, which reduce is possible use in real life scenarios. 

Bianco et al. [57] in 2019 proposes the use of HR, EDA and perinasal perspiration 

(acquired with a smartwatch from Zephyr, a GSR sensor from Shimmer, and a camera 

from FLIR Systems) to identify a state of cognitive, emotional and sensorimotor stress 

that can jeopardize driving safety. This article stands out from the others that wore already 

referenced by the fact that uses a thermal camera to determine perinasal perspiration, 

which is related to the breathing rate by checking the flow of air in the nostrils. The 

protocol is set to create a general sense of distraction state using stimulus by smartphone 

but can be interpreted as a lack of distinction between arousal, stress, and cognitive 

overload. Despite the interesting approach of applicability of this paper to other 

multimodal studies, the identification of poorly defined features for the specific 

psychological state that has been assessed makes the results of the study less significant. 

Very few studies evaluate the use of light-weight wearables to assess CL or the 

assessment of CL at the region-level. Hijazi et al. [11] describe the concept of using 

lightweight wearables to assess CL at the region-level. Hijazi et al., an article from 2021, 

extract HRV from ECG and pupillography from a low-cost eye-tracker from Tobii, being 

the same eye-tracker described to be capable of being used to indicate the region of code 

that the user is looking at, consequently, identifying the content source of comprehension 

difficulty. It also makes use of ML algorithms to classify the cognitive state of the user 

in real-time recurring to different methods as other previous mention like SVM, k-nearest 

neighbor (KNN), and also, RF, decision tree, and gaussian Naive Bayes (NB) classifiers, 

it is the most relevant article in terms of results as it has a protocol which tested the 

combination of features with different ML algorithm which, according to the article, let 
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it to outperformed the stated of the art in precision & recall by 23% and 17%, resulting in 

an accuracy of 83.00%± 0.75. This paper describes the extraction of features to classify 

comprehension with the synchronised content region which differentiates it from other 

articles. 

The use of ML algorithms allows the distinction from different states of CL and 

levels, most articles, even those differentiating CL from other types of mental states like 

stress in Setz et al. [46] and arousal in Markova et al. [58], identify general states, identify 

two general states but some article make the distinction from three levels of CL. Romine 

et al. [59], are one of those and present the use of a wearable watch called Empatica E4, 

to measure the CL related to problem-solving. This paper uses PRV features, EDA, body 

and temperature and compares these data with reported learning experience and 

performance, describing the possibility of use for personal environment and educational 

environments. Regarding the equipment used, Empatica, has been reported as effective 

to extract PRV with results very close to HRV according to Lascio et al. [56]. The 

distinction between the 3 states, resulted in the identification of a medium cognitive state 

between overload and a low cognitive state. Such distinction is interesting in a school 

environment, as it can allow identifying a state before overloaded/high mental load 

according to the author.  

Other papers, like Abbad-Andaloussi et al. [60], explored code comprehension by 

using only eye tracking. The extracting of both behaviour features (pupil, fixations and 

saccade features) and eye gaze allowed to correlate content to comprehension, only 

lacking on use and comparison of multiple classifier methods to improve prediction as 

only a decision tree was used. 

Romine et al. [59] use the same set of classifier algorithms as Hijazi et al. [11] but 

also include others, like the logistic regression model, AdaBoost, and random forest 

algorithm. Concerning the first set of algorithms, the baseline models, it presented the 

best classification as KNN with 81% of accuracy and in the black box model, random 

forest performed even better with 85% accuracy. Even though these results have shown 

higher accuracy when compared to Hijazi et al., these cannot be compared as the 

minimum window lengths of both papers are not described. Comparing the window 

length used on the baseline on both papers, Romine et al. used 2 minutes while Hijazi et 

al. used 30 seconds. The bigger the window length, the more precision and accuracy the 
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result will be, but the smaller the window length, the more proximal it is for real-time 

[11]. 

Ahmad et al. [61], which also distinguish three levels of CL used features from 

pupillography, blink rate and HRV with the objective of underlying student attention. The 

Cor Sense extract PRV from the finger rather than the wrist, and the eye tracker records 

the eye position by recording the pupil motion with a sensor in front of the eye. The data 

from the 41 subjects resulted in an F-score of 0.85 with the use of an RF model. 

Some papers like Mills et al. [62] used eye tracking to extract behavioural features, 

as it was used to detect attention lost while reading and intervene by accessing the user 

comprehension of the last paragraph with questions. This paper used Tobii TX300 and 

Tobii T60 eye trackers to extract fixation features, saccades features, blink rate, pupil 

diameter and eye movement features. Even though comprehension assessment is 

validated with feedback from the user, comprehension difficulty can occur without mind 

wandering. Features related to behaviour like eye movement are less significative than 

physiological manifestations of mental stress like pupil diameter. 

To correlate the measurements of biomarkers with cognitive state most article 

develop experiments to trigger such cognitive state and validate that information with 

self-reports but other studies such as Keller et al. [63] obtains their results with 

performance tests which can avoid fake self-reports according to the author. Keller et al. 

[63] used a pair of eye-tracking glasses from Tobii to measure eye gaze and pupillography 

and a PPG device from Cor Sense, similar to Ahmad et al. [61]. This article intended to 

determine comprehension through CL measurements with an interface where the subject 

needs to find invented words, words that do not exist in the English dictionary or that 

cannot be used in that sentence’s context. The use of the eye-tracing (Tobii pro glasses) 

results in the measurement of parameters closer to the target eye, being less susceptible 

to errors in the identification of the gaze direction; however, the chosen equipment 

presents smaller sampling than other "conventional" eye-tracking equipment as those 

placed on the monitor. The Tobii 5L can extract data up 120Hz with pupillography and 

eye movement data in comparison to the Tobii pro glasses with a sampling of 100Hz. The 

use of eye-tracking glasses may not be compatible with users who wear glasses, or as 

comfortable, due to the weight that the battery can have on the ears. 
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Table 1 represents a table view of the objective, features results and limitations of 

the most relevant article described in this thesis. 

Table 1-Most relevant related work 

Reference Biomarkers Methodology Results Limitations 

Mils et al. [62] 

 

Eye tracking, 

behaviour 

Eye features 

correlation to identity 

low attention moments 

in real-time 

The model 

presented with a 

weighted precision 

of 72.2% and a 

weighted recall of 

67.4% 

The experiment protocol was not 

designed for the specific goal of the 

paper, the experiment only used one 

text as reading material and the use of 

high cost, non-commercial eye 

tracker. 

Romine et al. 

[59] 

Temperature, 

PRV, EDA 

Distinguish between 3 

levels of CL by 

physiological data and 

machine learning 

techniques. 

The best classifier is 

random forest with 

an F-score of 0.79-

0.80 (random forest) 

The lack of behaviour features or eye 

tracker simplifies this model as only 

evaluating the time domain of 

comprehension and not localizing the 

content 

Ahmand et al. 

[61] 

HR, HRV, 

Blinking rate, 

pupil diameter 

Distinguish between 

CL in 3 levels of 

attention in real-time 

The best classifier is 

random forest with 

an F-score of 0.85-

0.95 

The use of not so practical devices to 

measure the features on learning 

environments 

Peng et al. [1] Facial and eye 

tracking, HRV, 

audio 

Identification of 

student mental state 

from facial, HR and 

acoustic modalities 

Best performance in 

concentration and 

boredom with an 

accuracy of 0.842 

and 0.810 

respectively 

Some states are hard to identify and 

subjective and the data wore obtained 

from only lab settings 

Hijazi et al. 

[11] 

HRV, eye 

tracking, 

pupillography 

Identify regions of 

digital content that 

cause learner 

Comprehension 

difficulties 

Accuracy of 83% 

with precision and 

recall of 0.89, 0.79 

The experiment protocol was not 

designed for the specific goal of the 

paper 

 

In Table 1, Mills et al. [62] describe the use of only one equipment, the eye tracker. 

to extract both eye gaze and features. Even though the setup, proposed by Mills et al, does 

not incorporate features like HRV, that same decision led to low results. Features like 

HRV which have minimum window length, will increase the processing time but also are 

more sensitive manifestations of ANS compared to pupillography. Also, the price of the 

equipment used was high, existing for that reason papers like Sandhu et al. [64] use low-

cost equipments, in this case, an eye tracker from Eye Tribe, which shows the importance 

of the selection of low-cost equipment as it was done in this thesis. Romine el al. [59] 
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used light-weight wearables equipment to measure CL with a relatively adequate time 

resolution, which is also limited for assessing the CL without giving attention to the 

content regions that cause the comprehension difficulty as opposed to the region-level 

identification in this thesis tool. Peng et al. [1] explore the distinction of CL from other 

mental states, like boredom and frustration but very few articles have explored that 

differentiation by using wearable [58], unfortunately, it lacks the evaluation of different 

classifier techniques, to compare precision and recall. Complementary, even though 

boredom states can lead to additional information about the user state, a low mental effort 

state can still allow evidence of CL change [12]. Additionally discriminating frustration 

from CL is also not relevant as frustration can be an effect of overloaded CL [46]. As 

previously stated, Hijazi et al. [11] propose the concept of real-time evaluation of binary 

classification of CL with adequate time resolution during code review, which presents 

itself as the most relevant article in Table 1. Considering that this paper was the first to 

describe the concept CL assessment using light-weight devices, this paper was the 

foundation of the thesis methodology as it introduces most of the ideology behind the 

development of the tool of this thesis. 

This thesis tool differentiates itself from the described literature by its use of low-

cost wearables at region-level with fine-grained analysis and even though articles like 

Hijazi et al. [11] give the fundament of this thesis methodology, their implementation was 

limited to the use of more heavy or more expensive equipments like clinical ECG as Mills 

et al. [62] and the classification of CL changes on only task level like Romine et al. [59]. 
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3. Methodology  

The developed tool uses a web extension to open the reading content and start the 

data acquisition. In this chapter, we will analyse the architecture decisions, components, 

methodology and implementation of the tool. After the data acquisition, the data is filtered 

and processed to extract features. These features can then be selected to be trained as an 

ML classifier. This chapter includes the feature analysis and the ML pipeline description. 

The first subchapter presents the tool architecture and the progressive adaptation 

made to the tool, the second subchapter presents the details of the data acquisition, the 

third subchapter describes the device setup and the fourth and fifth chapters present the 

data synchronization, feature extraction and the ML pipeline. 

3.1.  Tool architecture                            

In iMind, we hypothesize that analysing the reader's biometrics and eye movement 

will allow us to determine the temporal and spatial location of the content that was 

difficult for the reader to comprehend.   

The tool architecture comprises the tool components and pipelines involved in 

transforming data acquisition into CL prediction, as shown in Figure 2. 

 

Figure 2-Diagram of the tool architecture 

 

The web extension is the first component of the tool as it is with the interface that 

the user reads its content and starts the data acquisition. While the data acquisition starts, 

the data from the user devices are recorded. With the smartwatch is possible to acquire 

HR and EDA data and with the eye-tracker we can acquire the eye gaze (the position in 

which the user is looking at the screen). Since the content displayed is correlated with the 
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eye gaze to define content regions, if the location on the screen in which the content has 

been displayed changes, then the displayed content location needs to be updated. The 

content location synchronization represents, in this case, the synchronization of the eye 

gaze with the content scroll. The content scroll is acquired by the web extension from the 

web page where the content has been displayed. 

As shown in Figure 2, the HR and EDA data, after being extracted, must be 

synchronized with the eye gaze position and page scroll to extract the eye position on the 

content. HR and EDA data are divided per region so that features (HRV and EDA) can 

be extracted to then classify that content region. The use of classifiers allows us to, 

according to the best features, predict if a region is “difficult” or “non-difficult”. 

The resulting information from the classification module can then be used to flag 

the difficult content, which may be used on the interface as feedback in future work. 

We will now elaborate on the main components of the tool. While reading content, 

the user data will be acquired by the smartwatch and the eye tracker, leading to HR, EDA, 

and eye gaze data. 

3.1.1. Smartwatch 

The goal of the smartwatch is to acquire HRV and EDA features that can be 

correlated to CL with sufficient resolution to be synchronized with eye tracking to analyse 

the content, as shown in Figure 2. The use of a smartwatch is centred on its practicability 

for daily use. 

Considering that to measure physiological data, more precisely CL, the best setup 

is to acquire EEG data, as mentioned in subchapter 2.3, which can be measured through 

an EEG cap, but sine such types of equipment can be impractical for certain 

environments. The growth of wearable use and their improvement in sensitivity over the 

years make smartwatches and other types of wearables adequate candidates to acquire 

biometrics.  

Initially, the acquired smartwatch was Fitbit sense brand, which was described to 

measure EDA and HR. However, there were limitations to its use. The following are some 

examples of these limitations: 

1. Lack of time fluctuation on HR. That means the HR data was smoothed 

with various filters, which can be a challenge to detect peaks or spikes. 
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2. EDA acquisition implies putting the hand-palm on the watch frame for 

some seconds, which is impractical. 

Regarding the first limitation, the HR data did not present significant HR 

fluctuation in time, most likely justified by the strong data normalization and filtering. 

The second limitation was the fact that the acquisition of EDA data implied that the user 

placed his palm on the watch's frame, which meant that the user could not write while the 

data acquisition was happening, which contradicted the practicality of the tool. 

The commercial app of the Fitbit sense allowed for a more precise HR measure 

by using electrodes present on the watch frame and the back to be equivalent to a single-

channel ECG, unfortunately, this data was not accessible to developers. This function also 

needed the contact of two hands, restricting movement, and the data acquisition was 

restricted to a proprietary application. 

Considering the lack of sensitivity from the Fitbit Sense, a new smartwatch was 

acquired, Empatica E4, displayed in Figure 3.  

 

Figure 3-Empatica E4 Specifications [65] 

 

The new smartwatch, Empatica E4, uses a communication protocol that requires 

the use of a Bluetooth dongle to stream data to the computer directly or an android 

application. The Empatica E4, compared to the Fitbit sense, allows access to more precise 

raw data like BVP signal, which is used to extract the HR. 

Empatica E4 is a smartwatch with no display showing only a multiple-colour LED 

light. It works by measuring BVP with a 64 Hz sampling rate by using a PPG sensor in 

the back panel. It also includes an accelerometer to measure the movement of the user 
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with a 32 Hz sampling rate and an infrared temperature sensor that extracts the 

temperature of the wrist with a 4 Hz sampling rate, two electrodes in the wristwatch to 

measure EDA with also 4 Hz. The device communicates with a low-energy Bluetooth 

connection, and it uses its internal memory to store recordings in case of a lost connection 

or to simply work without a server. The device can communicate to the computer using a 

streaming server and a dongle or to a proprietary server using an Android application. 

After acquiring the new device, a side experiment was done to evaluate its results 

with CL changes. The side experiment was done by reading two texts of different English 

levels using Empatica E4 and an ECG. The side experiment showed similar HR features 

fluctuation between the new device and the ECG, showing the potential of using the new 

device. Additionally, the data analysis shows that the new device did not suffer from the 

lack of time fluctuation as Fitbit Sense. 

3.1.2. Eye tracker 

The Eye tracker's goal is to measure the position the user is looking at on the 

screen over time, to then identify the content region with high CL, which probably caused 

comprehension difficulties to the user.  

Eye trackers can operate in different modalities, mainly by either a set of cameras 

on the monitor or by glasses equipped with cameras. Eye tracker typically includes 

multiple cameras to obtain the axis created by the eyes and the screen resulting in the gaze 

point, the location in which the user was the location at the screen.  This data can be used 

in multiple ways, from video games to attention factors in reviews/tests. Eye trackers have 

a variety of prices, so the recent rise of low-cost eye trackers makes their integration more 

appealing. 

As described in subchapter 3.2, Keller et al. [63] described that eye-tracking 

glasses might not be compatible with users who wear glasses or as comfortable, due to 

the weight that the battery can have on the ears; this is the main reason why we chose a 

desktop eye tracker, for that reason, the Tobii 5L eye tracker was acquired. A desktop eye 

tracker is put in the monitor, and from there, it tracks the user's eyes. The Tobii 5L works 

for screens up to 27 inches and presents two modes of operation, 33 Hz and 120 Hz, with 

data regarding pupil dilation and eye gaze. 
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The Tobii 5 L works using a set of cameras that observe the eye with visible and 

infrared light (sensors are visible in Figure 4) allowing it to observe the centre of the pupil 

and the reflex of the cornea and create the axis that gives the direction in which the user 

is looking, this axis is used to calculate where the user is looking at. 

 

Figure 4-Tobii 5L from Tobii [66]  

 

The API sold by Tobii presented some computational challenges in terms of 

integration as it is a platform development kit (PDK) connected to a streaming server that 

presents a complex system with multiple dependencies making it difficult to integrate in 

the tool. Instead of using the PDK of Tobii, an executable was developed to extract the 

instant gaze point measured by the device resulting in a 1000 Hz sampling rate without 

access to the user features like pupil dilation or saccades.  

3.1.3. Web Extension 

A web browser extension was chosen to implement the tool because it would be 

easy to integrate with various platforms (e.g., English learning platforms).  

Its goal was to open any select text and pdf files and be able to start and pause the 

data acquisition when wanted. As the first interface, a web browser extension has a popup 

that is always accessible by clicking on the extension icon. This main popup has four 

buttons defined to start, pause, resume and stop an input to select the document to open.  

When the start button is pressed, both the HR, EDA, and gaze data should start 

recording. At the same time, the interface opens a web page that includes a grey screen 

used for calibration, and after 30 seconds, it opens the content to be read and understood, 

as shown in Figure 5. 
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Figure 5-Content Interface and popup 

Selecting the web browser to develop the tool is essential. Therefore, we compared 

the main web browsers (Safari, Edge, Chrome, Firefox). From the main browsers, in 

terms of compatibility, security and performance they are almost indistinguishable [61], 

with the majority, presenting tools for developers [62]. Apart from that, most global users 

use Chrome when accessing search engines [67] and websites [68], which corresponds to 

a relatively large difference when compared to the statistics of other browsers, like Safari 

and Firefox, which are the second and third most used browser in 2021 with 17.7% and 

5.8% of user’s use correspondingly [69].  

It was initially believed that the web extension would not need a server to write 

and read local files. Extensions are executed in the browser, which for security reasons, 

cannot access, alter, or delete content from the user's computer. For this reason, it was 

required the addition of a server to manage the beginning of data acquisition and 

reception, for which a server is developed in Node.js, which is a backend development 

environment [70].  

This server receives requests from the extension through an HTTP connection to 

start and stop the collection of data referring to HR, EDA, and eye gaze. An HTTP 

connection is a communication protocol commonly used to start a connection to the 

internet [71]. The server is also responsible for adding a counter id number for each run 

and storing in the computer all records of the tool, which include the identification number 

for each run, timestamps, scroll and selected options, as the tool allowed to select a file 

to open and exceptionally other information for the experimental protocol version, 

described in subchapter 4.1.  
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3.2. Data acquisition 

The Empatica E4 is a smartwatch that uses PPG. It works by measuring the light 

absorption allowing detention related to blood volume changes to estimate HR.  

As explained in subchapter 2.4, most PPG technologies use two light sources, red 

and infrared as these light sources allow for the extraction of both HR and oxygenation 

levels. Empatica E4 uses infrared and green light-emitting diodes as light sources, as 

green light-emitting diode contributes to higher battery life compared to infrared.  

 

Figure 6-BVP processing [72] 

 

This type of measurement is cheap but is sensitive to sudden movement because 

it is carried out on the wrist, which must be compensated in the processing. By measuring 

the variations of absorption of the light beam, the watch can measure values referring to 

the volume of blood.  

Figure 6, taken from the Empatica website, shows how the rhythmic changes in 

the BVP signal (which represents the blood volume) have distinct peaks and fluctuations 

related to the heart cycle. The cardiac cycle is created by the blood flow which goes from 

the cells to the heart and then to the lungs and back to the heart, to pump blood the cells. 

This cycle is possible by the heart atriums and ventricles. The first peak on a BVP signal 

is created by the ventricle bombing blood to the body and the second peak is created by 

the ventricle bombing blood to the lungs. The intervals between two consecutive events 

translate into the heartbeat [73]. 

The EDA measurement of the Empatica E4, uses two electrodes at the opposite 

end of the sensors to measure changes between a defined range of electrical current 2-20 

µS, this is referred to as skin conductivity [73]. 
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Now, regarding the eye tracker, as described in subchapter 2.3, it works by using 

two cameras and infrared light-emitting diodes to give a depth perspective that allows 

tracking of both eye’s orientation axis, and distance to the sensor. The eye tracker can 

also be used as a cognitive indicator related to behaviour features such as saccades and 

fixation, considering the eye gaze presents 1000 Hz of sampling [74]. Behaviour features 

and mean blink rate and mean eye movement speeds are incapable of obtaining results in 

real time since those features tend to present temporal variations within the same 

individual [75]. In this sense, the use of the eye tracker is mainly centred on the location 

of the individual's gaze point. 

After extracting the HR and EDA features of each content region is also possible 

to extract features. After labelling those features is possible to use classifiers to classify 

that content region. In the future the classification of the content region could be 

integrated into the tool to create feedback, giving utility to a data report, as shown in 

Figure 2.  

Before describing the feature extraction and ML pipeline is important to describe 

the tool implementation regarding setup and pre-processing. 

 

3.3. Device setup and Pre-processing 

Regarding the pre-processing, the eye tracker configures the setup and the 

calibration of the eye tracker for the user, which is done by a proprietary software of Tobii 

to save the setup and user information on the device.  

The configuration of the setup is done by aligning the eye tracking with the screen 

and recording the distance between the eye tracker and the screen. This configuration 

only needs to be done once with new computers where the tool will be installed.  

The calibration of the eye tracker takes place every time there is a new user or 

when the user’s condition changes (like putting on glasses). It is done by giving feedback 

about the user’s distance to the screen and then looking at pointed dots on the screen. The 

feedback about the head position helps if the user is too far away as the tracker can have 

difficulties recognizing the eyes. 
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Figure 7-Tobii eye-tracker calibration  

 

The calibration takes place using 2 to 9 dots on the screen. To achieve better 

calibration, 9 dots are selected as shown in Figure 7. After pressing next, the calibration 

forces the volunteer to look at each of the dots in random order, this procedure allows the 

correction of the eye’s real axis as the eye tracker through its perspective only sees the 

optical axis and not the visual axis, this deviation occurs by the fact that humans eyes are 

made of different materials with different refractive indexes leading to the distortion of 

the eye axis [76], this is exemplified on Figure 8.  

 

Figure 8-Schematic of eye optical and visual axis [76] 

 

Now regarding the smartwatch setup, as it was previously explained, the 

smartwatch uses PPG sensors to extract BVP. BVP data can be converted to HR to extract 

HRV features. With the smartwatch, Empatica E4, it is possible to use two setups, as the 

data can be sent directly to the computer or a server. If the data is sent to the server, the 

results are only available after the end of the data acquisition. 
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Considering the two possible setups, there are two stages of processing: 

1. Processing performed in the smartwatch (transformation of PPG 

measurements into BVP). 

2. Processing performed outside the smartwatch (transformation of BVP into 

HR). 

The pre-processing done to acquire BVP is a common procedure done in PPG 

devices. Its description has been taken from PPG features descriptions provided by 

Schuurmans et al. [73] regarding this device. The first stage applies a lowpass filter to 

remove the aperiodic variation of the BVP signal and a median filter to avoid baseline 

drift.  

As the data is stored in the computer/server, the second stage takes place as 

heartbeat intervals obtained from the intervals of the consecutive waves of the BVP are 

non-uniform, forcing the application of a cubic spline interpolation to resample the data 

[73]. The resample is used to correct unevenly sampled into one single sample and to 

compensate for missing values. Cubic spline resample is also used to avoid errors at the 

beginning and end of data done by polynomial function in resampling, also known as 

Runge’s phenomenon [77]. The resample results in a sample of 1.25 Hz, applied a moving 

average to round the sampling frequency to simplify synchronization, as 1 Hz. 

The EDA measured by the watch is obtained with two electrodes in the watch 

which are in contact with the wrist skin. According to Benedek et al. [78], the Empatica 

E4 background software measures the current by its electrodes and then applies a filter 

cut band related to the skin conductivity intervals of amplitude. After that, a resample 

process results in a sampling frequency of 4 Hz. 

 

3.4. Data Synchronization and Features Extraction 

Data synchronization aims to map each content region provides to its associated 

biometric (HR and EDA) data. Through this synchronization, we can identify the content 

regions associated with high CL. To synchronize, process and extract features per region 

of content, a MATLAB script was developed. This script extracts the timestamps created 

by the tool. With the intention of in future work improving this tool to work in near real-

time, the script was also adapted to work as an executable. The executable can run the 
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data from the last run as the tool adds an identification number to every file created related 

to the identification number given to each run. 

The data synchronization occurs by using the timestamp recorded by the tool. 

These timestamps are stored on the computer by the server, as described in subchapter 

3.1.3. These timestamps represent the start, end, and pause timestamps and are an 

essential component of data synchronization.   

After synchronizing the data (EDA and HR), that data needs to be divided 

according to each content region. 

Each content region can be pre-defined by specifying the number of lines of each 

region or by pre-defining the number of regions. With the information taken from the eye 

tracing and the defined regions is possible to identify which region of content the user is 

looking at over time, allowing the synchronization of HR and EDA accordingly. 

The eye tracker data allows us to determine the eye gaze, but the scroll of the 

window is also necessary to define content region's position over time. In that sense, the 

scroll is recorded with a sampling rate of 10 Hz and stored by the tool. Using the scroll 

and the eye gaze (sampling rate of 1000 Hz), is possible to define visits and revisits to 

content regions. The synchronization of the scroll data and eye gaze is done by updating 

the Y value of the eye gaze with the scroll value. The resulting array is then 

“downsampled” to 5 Hz for improved computational speed. 

As previously stated, with the eye gaze synchronized with the scroll is possible to 

identify the regions the user is looking at. To analyse the number of times the user looks 

at a particular region its needed visits and revisits definition. 

Visits are identified as the first time the user looks at a particular content region 

and revisits as the times the user looks at a particular content region that the user has 

already looked at previously. In the developed script, thresholds are used to define 

minimal time periods to differentiate visits/revisit from small fixation and guarantee 

minimum time windows in visits, as some papers do [79], [80]. The data regarding the 

eye tracker gives us information about when the user looks out the screen and when the 

sensors cannot determine the position of the eyes, which can happen if there are obstacles 

or if the user leaves the device's field of vision. Revisits are defined, in the script, as 

regions that the user have been already looked at previously, which can happen by looking 

back to a previous region. Looking outside the screen or if the eye tracker losses the eye 
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gaze temporally does not count as revisits by itself. Each region's data includes the visits 

and the revisits to that region.  

The visits and revisits timestamps are used to divide the HR and EDA data 

according to the content regions (visits and revisits) to then extract the features for each 

region.  

Before processing HR and EDA data, is possible to extract two features from the 

eye tracker, one regarding the time spent looking at a region and another regarding the 

number of revisits, as shown in Table 2. According to some papers, the number of revisits 

reflects premature shifts of attention and is more evident in tasks that involve searching 

words [81]. Regarding time spent, according to CLT, a reduction in reading time suggests 

a reduction in CL [3]. 

Table 2-Eye tracking features 

Feature name Feature meaning 

TotalTimeSeconds The number of seconds spent looking at 

a given region 

RevisitsNumber The number of revisits represents the 

number of times the user returns to a 

given region 

 

Reading time (time spent in each region) and the number of revisits features have proved 

to be good indicators of the CL associated with comprehension [82], [83]. 

3.4.1. HRV features analysis 

Following HRV guidelines [77], each HR Data is transformed into RR intervals. 

RR intervals correspond to the inverse of HR, multiplied by 60 (in case HR is recorded 

in beats per minute). The RR intervals are filtered with a low pass filter to remove noise 

from the acquisition. With a sliding window with a window length of 30 seconds is 

extracted four-time domain features and one non-linear feature as shown in Table 3. Since 

it is not possible to acquire data with only one or two values of RR with significance, that 

why a sliding window is applied. A 30-second window length is used because studies 

proved that even signals of 60, 30 and 10 seconds could be a potential marker of mental 

stress and other ANS manifestations [35], [42]. Time domain features are obtained by 
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mathematical calculations of the difference between RR intervals as explained in 

subchapter 2.3.  

While the frequency domain captures the linear variation of the ANS 

manifestations, non-periodic oscillations on the RR interval are only be captured by non-

linear features [84]. Non-linear features evaluate non-linear patterns like the area of a plot 

which is the case of the Poincaré plot. Poincaré plot is a non-linear geometric analysis 

that allows extracting features from the axis of an ellipse fitting done to the time plot of 

RR. Each axis of the ellipse width and length are called SD1 and SD2 and the ratio of 

these two is SD12. Since SD1 represents short-term variability of HRV and SD2 long-

term change, SD12 reflects non-linear non-periodic variability of RR intervals, which 

may include additional non-periodic oscillations that are not expressed in frequency 

domain feature [85]. 

To extract the frequency features of HR and follow the same HRV guidelines, the 

Hanning window is applied, which reduces the ripple effect [86], leading to less leakage 

and distortion of the signal frequency domain, which is the method used for analysing the 

frequency domain of a signal. The signal frequency domain of a signal can be obtained, 

e. g., through a method called Fourier Transform. To obtain the power spectral density of 

a signal, the burg method was selected as parametric methods have the better results with 

HRV to obtain the low (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) [87]. Burg 

method is an autoregressive method which uses the Fast Fourier Transform algorithm to 

convert a signal to its frequency domain and its order was calculated using a partial 

autocorrelation sequence [88]. All the described HRV features are represented in Table 

3. 

Table 3-HRV features 

Feature 

abbreviation 

Feature 

type 

Feature meaning Feature 

fluctuation with 

increased 

cognitive load 

Reference 

Mean HR Time-Domain Average HR. Increase [89] 

SDSD Time-Domain The standard deviation of the 

difference between successive RR 

intervals in ms. 

Decrease [89] 
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RMSSD Time-Domain The root mean square of the difference 

between successive RR intervals. 

Decrease [89] 

SDRR Time-Domain The standard deviation of RR 

intervals in ms. 

Decrease [42] 

SD12 Non-linear The ratio between the minor and 

major axis of the Pointcaré beat to 

beat time. 

Decrease [30] 

LHFratio Frequency-

Domain 

The ratio between low and High 

frequencies. 

Increase [37] 

 

Concerning Table 3, as described in subchapter 2.3, most temporal features have 

a relation to a parasympathetic activity like RMSSD, SDRR which represents the size of 

the rapidly changing components of the sympathetic and is characterized as a decrease 

with the increase in CL. Other temporal features, like SDSD and average HR represent 

an overall estimate of variation of the motor division of the PNS (both ANS and SNS, 

which are related to the involuntary and voluntary response) describing an increase of 

average HR and decrease of SDSD with increased mental stress [89]. 

The ratio of Low/High frequencies, LHFratio partly represents the ratio of 

sympathetic and parasympathetic branches as it is composed of a mix of sympathetic and 

vagal influences showing an increase in magnitude, being described to show better results 

than features like SDSD and HR as expected [40]. Similar results are obtained with the 

ratio of the Poincaré plot (SD1/SD2) which reflect a relation from the branches of ANS 

as well [85]. 

3.4.2. EDA features analysis 

Now concerning EDA features, the EDA signal is divided into two components 

tonic and phasic components SCL and SCR. The EDA components can be defined by a 

filter cut using various value thresholds or using a polynomial model to extract the tonic 

component, SCL. The pipeline uses a function called cvxEDA [90] which uses an 

optimized convex model to extract the tonic component concluded by some papers as 

cable to differentiate phasic from tonic [91], [56].  

The phasic component is taken from the difference between the raw data and the 

tonic component. With the phasic component, is possible to identify rapid chances of 

EDA characterized by the phasic peaks. Phasic peaks can be identified by their 

prominence, which is the distance between the peak and the base of the wave. The 
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literature described the prominence peak threshold as typically 0.05 µS, with some 

articles also describing 0.04, 0.03 and 0.01 µS [78]. For this reason, a function was design 

to select the best threshold between the four values using the peak rate as decision input. 

The peak rate is calculated by the number of peaks in a time window. The peak rate is 

typically from 0.016 to 0.050 peaks per second and up to 0.33 in some situations [47]. All 

the described EDA features are represented in Table 4. 

Table 4-EDA Features 

Feature 

abbreviation 

Feature meaning Feature fluctuation with 

increased cognitive load 

Reference 

SCL Tonic component of EDA signal Increase [92] 

SCR Phasic component of the EDA 

signal 

Increase [92] 

EDAPeakrate The ratio of the number of SCR 

values divided by the data time 

Increase [78] 

 

Concerning Table 4, as described in subchapter 2.3, EDA is only influenced by 

sympathetic activity, which differentiates from other features like average HR being 

possible to use it as an indicator of stress over CL within known data events. EDA 

processing guides are recent, but decomposition is the most common process as EDA can 

be decomposed of rapid changing (phasic) known as skin conductivity response (SCR) 

and slow changing data (tonic) known as skin conductivity level (SCL) increasing both 

with the increase in CL. SCR can be associated with events, justifying the classification 

between different data events. SCL is described as the most discriminated from overall 

cognitive states and SCR for event-related activations [46]. 

 

3.5. Machine Learning pipeline 

The overall goal of using ML in this tool is to unveil hidden patterns of the 

physiological data to get insights into comprehension difficulties. Statistical and 

traditional methods of analysis might be inappropriate to capture the complex and non-

linear relationships between the physiological patterns and user comprehension process. 

Moreover, the inter-variability among subjects in exhibiting physiological response is 

high, thus, ML could be a solution. 
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The data used in the machine learning pipeline incorporated features from HRV 

and EDA and eye tracking features (TotalTimeSeconds and RevisitsNumber). 

After extracting the features, we labelled the dataset with binary labels (difficult 

to comprehend/not difficult to comprehend) to train the biometric and behavioural (e.g., 

reading time) features on these labels. Labelling is a challenging component of an ML 

pipeline. Therefore, we tried to come out with different formulas to see the best that can 

express the “comprehension status”. The labelling occurs using thresholds (obtain by 

experimentation) of the number of highlighted words and the number of wrong answers, 

which reflect the volunteer's understanding of the content. 

After extracting features, we ended up with 69 features (EDA, HRV, and Eye-

tracker). Therefore, it’s possible to use various data-driven and hand-crafted feature 

selection methods. The data-driven approaches are statistical approaches that examine the 

correlation between the features and the labels, and the relation between the features, 

selecting the most correlated ones with the label and the features with the least 

correlations to other features (to avoid redundant features). On the other hand, we used 

hand-crafted features selection from our knowledge of the domain and established 

literature, such as revisits to a given region. 

 Feature selection methods, like the ANOVA feature selection, allow the selection 

of features according to the f-value to correlate statistical measures regarding a variance 

to select the best features. The higher the variance in the feature space the more impactful 

this feature will be on the labelling.  

As described in Figure 2, after the selection of the features, the settings of the 

models, known as hyperparameters, are changed manually with a grid search method, 

which is a method that from a randomised selection or a grid of parameters, selects the 

features with the best performance.  

While partitioning the data sample to train and to test the model with, e. g., 70% 

for training and 30% for test, some data will only be used for either training or test, 

considering that if the model encounter only similar samples it can lead to overfitting, as 

the model will be trained only to a specific portion of the sample, for that reason cross-

validation is required. There are multiple cross-validation techniques, like k-fold and 

leave-one-out which do multiple iterations according to the number of divisions selected 
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for the dataset. K-fold has greater results when compared to leave-one-out cross-

validation when dealing with a big dataset. 

Now regarding the classifier method that are tested, considering the classifier used 

in the literature, described in subchapter 2.4, KNN, CART, NB and SVM were tested to 

check which will have the best results; additionally, logistic regression (LR) and linear 

discriminant analysis (LDA) were also tested, resulting in the 6 supervised classifiers 

tested as shown in Table 5. 

Table 5-Classifiers methods 

Classifier 

abbreviation 
Classifier name Classifier explanation 

CART  
Classification and 

regression trees 

Splits data according to best 

prediction into one decision tree 

KNN  K-nearest neighbour 
Predict values by correlation to a 

certain number of proximal values 

LR  Logistic regression 
Predict the probability of a binary 

event by a linear combination 

LDA  
Linear discriminant 

analysis 

Predict the probability of a binary 

event by Fisher’s linear 

discriminant 

NB  Naive Bayes 

Prediction of probability by Bayes' 

theorem with kernel density 

estimation 

SVM  Support vector machine 

Linear classification to maximize 

the margins between classes with 

kernel methods 
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4. Protocol and Data analyses 

In this chapter, we will present the developed experimental protocol, the dataset 

and the results obtained from data acquisition using the protocol. The data analysis 

includes text and region-level analysis and feature selection. 

The first subchapter described the experimental protocol developed and the 

second subchapter includes de dataset and data analysis. 

4.1. Protocol 

Two protocols were developed for this thesis, one for English text comprehension 

and other for code comprehension. The English comprehension protocol was developed 

to validate measurements of CL using questions and different difficult texts to support 

the results. Unfortunately, on the other hand, the code protocol was not possible to be 

used with volunteers as it was difficult to find volunteers with proficiency in the 

programming language selected, C. Since the code protocol was not implemented it will 

not be elaborated in the thesis. 

The protocol is composed of three runs. As can be seen in Figure 9, each protocol 

run starts with a rest state using a grey screen, followed by the content which has the 

option of highlighting words using two colours. After the reading content, the user is 

presented with questions regarding the user experience, based on NASA-TLX questions 

[93]. The task ends with questions regarding the previously presented content. 

 

Figure 9-Schematic of each of run 

For each run, every volunteer goes through each text as the tool randomly selects 

the order in which the three texts will appear. 
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With the intention of using the tool in the controlled experiments of the protocol, 

there was a need to add some elements to the tool. First, add a grey screen before the 

content, establish a baseline of signals, and also add a button that allows the user to 

highlight the words that the user had difficulty with (which will be used in the ML 

pipeline labelling). It was also added multiple HTML page to show the questions and 

additional tasks (translation task). To manage the moments of each page event, the 

timestamp in which each event takes place is sent to the server. The input of the popup of 

the tool, which allows to select the file to open, was replaced by a selection for either text 

or code protocol. 

 

4.1.1. Text Comprehension test 

Firstly, the experience starts with the tool web extension opening a new tab on the 

browser with a grey screen. The grey screen is used to relax the volunteer and reduce 

arousal and stress, it goes away automatically after 30 seconds. After the grey screen 

disappears the text, itself is shown with a next button and two highlight buttons.  

The volunteers are instructed to read the text carefully and try to convey all of the 

context and information provided by the text as there will be questions afterwards. During 

the experience, it is possible to highlight words that the volunteer considered hard. The 

two highlight colours are red and yellow as red should be used for words the volunteer 

does not know the meaning of. Yellow highlight should be used for words that the user is 

not certain about the word meaning. 

All text has a time limit of 5 minutes. After pressing the next button, the volunteer 

is prompted with questions regarding the volunteer experience during the task. This is 

adapted from NASA-TLX task load scales and questions. The adapted NASA-TLX 

questions are related to factors, such as volunteer mental effort, pressure with time, task 

fulfilment and discomfort and ask the volunteer to select a value on a scale from 1 to 6 

for each factor. The NASA-TLX questions also include a preference question to 

understand which factor the volunteer considers more important. 

Lastly, appears a set of multiple-choice questions regarding the text, this is done 

to evaluate if the volunteer understood the content. 
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The third task required the volunteers to translate a paragraph from the text to get 

more insights into the volunteer's English proficiency. 

Each text come from various sources and with distinct levels of difficulty as 

shown in Table 6. Readability tests are used to evaluate the readability difficulty of a text. 

Readability test like Flesch-Kincaid readability tests [94] uses the length of words and 

sentences to give a score. The readability scores can be correlated with English grading 

systems like the Common European Framework of Reference for Languages (CEFR) and 

the International English Language Testing System (IELTS). 

Table 6-English text characteristics 

 Text 

Source 

Flesch-Kincaid 

score 

CEFR level IELTS 

level 

Score 

interpretation 

Text 1 [95] 61.9 A2  (3-4) “Easy” 

Text 2 [96] 58.7 B2 (6-7) “Medium” 

Text 3 [97] 44.2 C2 (8-9) “Difficult” 

 

The readability scores in Table 6 show that from Text 1 to Text 3 there is a 

progressive increase in readability difficulty as the English level increase with the 

decrease of the Flesh-Kincaid score. 

 

4.2. Data analysis  

4.2.1. Dataset  

Now regarding the data obtained from volunteers using the developed protocol 

described in chapter 3. The protocol was used to validate the tool. The protocol developed 

was created to measure comprehension difficulty in different contexts by selecting texts 

with different readability scores. All volunteer consent was taken previously to 

experiments and they were rewarded monetarily for participating. The protocol included 

is composed of English content. Each task involves reading 3 pieces of content with 

different comprehension difficulties. Texts 1, 2 and 3 are classified as A2, B2 and C2 in 

CEFR score, the readability score is in Table 7. 
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With the inclusion of self-reports for the volunteers is possible to categorize 

content zones to then train the ML classifiers. Regarding the data acquisition on the 

experimental protocol developed. The dataset is constituted of 5 volunteers.  Table 7 

shows information about them. 

Table 7-Volunteer information 

Volunteer Nº Age Sex Education Level Level of English 

1 37 M Master C2 

2 42 M PhD C1 

3 22 M Bachelor C1 

4 27 M High School C1 

5 62 F Bachelor B2  

 

From Figure 10 is noticeable that the pressure with time increased more 

significantly with Text 3 as the five-minute time limit imposed to read all content may 

induce more stress. Also, the fact that the readability score of Text 3 has higher than the 

average level of English proficiency of the volunteers also justified the description of the 

volunteer regarding text 3. Considering that the increase in pressure with time is also 

accompanied by an increase in discomfort, it is predicted that results should be more 

significant when comparing Text 3 to Text 1 and 2.  

 

Figure 10-NASA-TLX volunteer's results 

 

To analyse the data acquired from the volunteer is relevant to first analyse that 

data at text-level and then at region-level as if there is no significance in the data at text-

level there cannot be at region. 
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4.2.2. Text-level data analysis 

Comparing the statical features extracted from the volunteers, it is possible to infer 

the sensibility of the tool to evaluate comprehension difficulty at text and region-level 

and to conclude about the best features to discriminate CL. Some features did not 

represent a normal distribution as most of the normalized features did not pass the one-

sample Kolmogorov-Smirnov test [98]. As an example, RMSSD from Text 1 had a p-

value of 4.8e-49. For that reason, the data represented in statistical analysis is not 

standardized nor normalized. 

Statistical functions like t-tests can be used with not normalised data and with 

extremely small sample sizes (N≤5) resulting, in that case, in a high rate of false positives. 

Rank-transformation test and Wilcoxon test are generally not recommended for extremely 

small samples [99]. The test applied in the statistical analysis was a two-sample t-test 

from MATLAB which uses Satterthwaite’s approximation when the variance is selected 

as unequal, also known as the welch t-test [100]. 

Between Text 1 and Text 2 (easy to medium text) there are some features which 

visually show an apparent fluctuation of mean value from text 1 to text 3. Unfortunately, 

using statistical analyses none of these is statistical significance. Considering that Text 1 

is easier than Text 2, we should see a reduction of the ratio of frequencies domain feature, 

LHFratio, which happened with 75%. Quantile. As stated in subchapter 4.2.1, LHFratio 

represents the ratio of sympathetic and parasympathetic branches. Using the welch t-test 

it was possible to obtain a p-value of 0.17, which does not prove, with significance, that 

these are two independent groups with unequal means. Other features like SCL presented 

a p-value of 0.29 with the minimum of SCL. 

Between Text 2 and Text 3 (medium to hard text), there is a set of features that 

presented results that reject the hypothesis that the samples come from two independent 

groups with equal means. These results presented the minimum of SDSD and the standard 

deviation and maximum of LHFratio, as significant differences do exist in these samples. 

Figure 11 represents a Figure where each plot has Text 2 on the left and Text 3 on the 

right, showing as described the decrease of SDSD and increase of LHFratio with an 

increased CL with p-values of 0.035, 0.038 and 0.046 correspondingly. 
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       Figure 11-SDSD Min, LHFratio Std and LHFratio Max on Text 2 and 3 

 

Between Text 1 and Text 3 (easy to hard text), only one feature showed significant 

results and that was, as represented in Figure 12, the 75% quantile of LHFratio with a p-

value of 0.012, showing an increase in value with the increase of mental load as expected. 

 

Figure 12-LHFratio 75% quantile on Text 1 and 3 

 

At text-level, in an overall comparison of results, the best features are LHFratio 

and SDSD. 

4.2.3. Region-level data analysis 

The regions of the texts were defined by classifying paragraphs with a readability 

score. The readability score test used was SMOG readability score [101], which evaluates 

the number of words with more than three syllables per sentence. If two consecutive 

paragraphs had similar scores, the two paragraphs are turned into one and their score is 

averaged. The regions defined are represented in Table 8. 

Since SMOG score does not take into consideration the total number of words, it 

is possible to compare the time spent without contemplating if the time spent is influenced 

by the size of the text. The result in Table 8 may suggest that the time spent is not 

influenced by the size of the text as fluctuations in the SMOG score are accompanied by 

similar fluctuations in the average time spent. Time spend reading may be an indicator of 

effort as a reduction in reading time may suggest a reduction in CL [3]. Table 8 results 
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would suggest that the average time spent showed an increase with an increase in the 

difficulty of the content on texts 2 and 3 as the increase in SMOG score indicates an 

increase in readability difficulty.  

Table 8-Final regions, difficulty score and average time spent 

Regions Average SMOG readability score Average time spent 

Text 1 Region 1 9.63 52.2 

Text 1 Region 2 10.945 46.8 

Text 2 Region 1 12.115 61.6 

Text 2 Region 2 11.54 56.4 

Text 2 Region 3 13.265 69.8 

Text 3 Region 1 13.04 73.6 

Text 3 Region 2 18.145 130.8 

 

Between the regions of Text 2, there were seven features with significant results 

comparing the regions 2 to 3 with the best features of those seven, but not one comparing 

region 1 to 2 and region 1 to 3 being shown in Table 9. 

Table 9-Best features of region-level analysis 

Feature Welch t-test p-value Regions 

LHFratio 95% quantile 0.274 Region 1 to 2 of Text 1 

SDSD 95% quantile 0.114 Region 1 to 2 of Text 2 

SDSD min 0.0875 Region 2 to 3 of Text 2 

RMSSD 95% quantile  0.0317 Region 1 to 3 of Text 2 

SDSD 95% quantile  0.0265 Region 1 to 3 of Text 2 

SDSD min 0.0350 Region 1 to 2 of Text 3 

RMSSD min 0.0289 Region 1 to 2 of Text 3 
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Between regions of Text 3 p-value did show significance. Between the regions 

where the p-value did not show significance, which might be because of the limited data 

sample. From Table 9, Text 3 has the lower p-values, probably influenced by the fact that 

the two regions have the biggest disparity in difficulty scores between two regions. 

EDA features presented higher p-values when compared to the average HR 

features. To understand the relationship between HR and EDA features, it is necessary to 

compare them. In the interest of comparing both HR and EDA, EDA sample frequency 

was reduced to the same as HR. Since HRV time domain features are extracted with a 

sliding window there is no time function associated with HRV features as each feature 

value corresponds to the evaluation of 30 seconds of HR values.  

By comparing Figure 13 is possible to see that some event triggers a response in 

volunteer 1. From HRV on the left to EDA on the right the fluctuation changed, occurring 

in EDA about 10 seconds after HRV. Considering how a sliding window works a 10 

seconds “delay” may not represent a smaller response in EDA features as it is smaller 

than half of the window length used in the sliding window. 

  

Figure 13- Region 1 Text 3 RMSSD (left) and SCL (right), Volunteer 1 

 

As a general comparison of the result of the data analysis in region-level, it is 

noticeable that the same feature that obtained the best result in text-level also obtained 

the same results in region-level, LHFratio and SDSD. Additionally features like RMSSD 

also shows significant results as well as the average time spent reading. 

4.2.4. Feature selection analysis 

As stated, the data processing results in sixty-nine features for each of the seven 

content regions distinguished with this protocol. To train the classifiers, the twelve best 

features were selected using ANOVA features selection. Table 10 shows the twelve 

features with the highest f-value using ANOVA.  
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Table 10-ANOVA f-value feature selection 

 

Table 12 complies with the previous data analysis as features like the minimum 

of SDSD appear twice in the best region-level features table (Table 8) and appear here as 

the second best features. The best feature according to this test was the total time spent 

on that region, which can be interpreted as the volunteer's time “investment” in 

comprehending the content. 

To validate the features selected a correlation matrix is used to compare the best 

features and evaluate dependencies. The following heatmap is a correlation matrix 

between the features and features/labels as shown in Figure 14. 

 

Figure 14-Correlation Matrix of ANOVA selected features 

 

As we can see in Figure 14, there are many dependencies between the features, 

therefore, we used a different approach called “forward feature selection”. 
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Figure 15-Correlation Matrix of Forward Feature Selection 

 

In forward feature selection, n models are trained on n features individually, where 

n is the number of features. The best performing feature in terms of accuracy is ranked 

the 1st.  After that, we add each feature to the best feature and analyze the results [102].  

In Figure 15, we can see how the dependencies among features decreased and 

increased on the label in accordance using forward feature selection. 
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5. Results and Discussion 

On data analysis on region-level the minimum of SDSD and RMSSD and the 95% 

quantile of RMSSD and SDSD were the best features, between some regions of the same 

text. Features selection show that the time spent in each region and the HRV features the 

minimum of LHFratio and SDRR are, from the group of features extracted, among the 

best features in terms of variance and dependencies. EDA features like minimum of SCL 

and SCR are also included in the best features, as well as the RMSSD, from HRV. 

Considering the extremely low dataset, hyperparameter tuning will not be 

explored, nonetheless, to evaluate the performance of the selected models cross-

validation was used. Classifiers overall performance indicated that classifiers like LR and 

SVM lead to good results and as the best classifier in the f-score and accuracy was LR as 

shown in Figure 16. The results were rather low in CART describing the worst prediction. 

 

Figure 16-Accuracy and Precision in overall classifiers 

 

Overall precision was close to recall showing that the balanced of true positives 

was similar to the predictive positive in all observations as shown in Figure 17. 

 

Figure 17- Recall and F-score in overall classifiers 
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Considering the low sampling, the prediction results can be produced by luck for 

that reason the permutation test score is used to create a distribution of classifier accuracy 

and a p-value is taken. The permutation score classification works by shuffling the labels 

and keeping the features as they are. After doing that, the performance of the shuffled 

data classifier is compared statistically with the original data classifier. After doing that, 

the results show a p-value of 0.0198 with SVM, as shown in Figure 18, which does show 

that the classifier can utilize the dependent variable to obtain good results.  

 

Figure 18-Permutation Scores Classification 

 

The classification score is not much better than the score from permutations, but   

it does show an adequate p-value. To get better insights into the true positive rate and the 

false positive rate (the ability of the tool to correctly detect the comprehension 

difficulties), the analysis of the Receiver operating characteristic curve (ROC curve) of 

one of the classifiers (LR) was performed as showed in Figure 19.  

 

Figure 19-ROC Curve 
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Figure 19 shows 3-fold cross-validation as leave-one-out would not generalize 

with such a small dataset.  

We notice that the mean ROC (AUC) is relatively good and converges to 

acceptable specificity and sensitivity.  

Although the ML model is now established, we are still gathering more data, and 

we expect to find skews between the trained model and the deployed model when we 

install the tool in a realistic environment. Complementary the acquisition of more data 

will allow for a more realistic assessment of performance and comparison the classifier's 

results. However, with careful training and feedback, we will, most probably, achieve a 

stable model in terms of performance. 
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6. Conclusion  

This thesis work was focused on developing an intelligent tool using a web 

extension that would allow the acquisition of biometric features synchronized with eye 

gaze and content location (scroll). The tool (called iMind) goal is to predict 

comprehension difficulties based on biometric and non-biometric data at region-level. 

The data acquired is fed to an ML module to classify content regions according to the 

associated features.  

The tool used a smartwatch and a low-cost desktop eye tracker to acquire HRV 

and EDA features and eye tracking features. The smartwatch uses PPG sensors to measure 

BVP which is transformed into RR intervals. The same smartwatch measured EDA by 

two electrodes. The use of BVP can lead to more artifacts but according to the data 

analysis, there was significance in the results of these features.  

Most features acquired correlate to one or both branches of the ANS. ANS being 

responsible to regulate involuntary systems in the body, create physiological fluctuation 

that can be a consequence of near overload CL or high mental stress. 

Literature analysis showed that, to our extent, at this moment, no paper developed 

a tool based on the assessment of CL at region-level with the used of low-cost wearable 

devices as this thesis have done. 

To validate the tool a protocol was developed in which volunteers would read 

multiple texts and respond to questions. The protocol was only used in 5 volunteers but 

still, there is significance between the data considering the results. 

Feature selection showed that, from the features extracted, the best features are 

reading time and HRV features, like SDSD, LHFratio and RMSSD. The features selected 

also included both SCL and SCR features from EDA features, which, in a general 

comparison, had inferior scores to the HR features. 

From the different classifiers tested, LR has the best overall results with the ROC 

curve analysis showing a relatively good balance of sensitivity and specificity. Even 

though the acceptable results, the extremely small sample does not allow for adequate 

evaluation of performance and more data is needed to test if the selected models can 

generalize to larger populations. 
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 This work limitation is centered on the fact that the tool was only tested in a 

limited number of volunteers forcing the enlargement of the dataset for more adequate 

conclusions regarding its performance. The complexity of using the smartwatch software, 

is a limiting for the implementation of the tool. Considering these two points, the future 

directions of this tool could involve around developing a simplified “live mode” that 

allows for real-time prediction with the inclusion of more sophisticated ML and Deep 

Learning methods, needing for that a bigger dataset. The test of this tool in realistic 

environments, like training and learning centers or the classification of an intermediate 

CL state, could also be important steps in future work.
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