
Adopting test automation at Effizency to
Improve Agility and Software Quality

MIGUEL CERVERA CASTRO
Outubro de 2022

i

 Adopting test automation at Effizency to Improve

Agility and Software Quality

Miguel Cervera Castro - 1200172@isep.ipp.pt

Dissertation for obtaining a master’s degree in

Informatics Engineering, Specialization in

Software Engineering

Advisor: Professor Alexandre Bragança - atb@isep.ipp.pt

Supervisor: Tiago Carvalho - tiago.carvalho@effizency.com

Plaintiff:

Professor Isabel Sampaio - ais@isep.ipp.pt

President:

Professor Nuno Bettencourt - nmb@isep.ipp.pt

Porto, October 2022 Calibri, 11pt

ii

iii

Dedicatory

I dedicate this dissertation and project to my family, girlfriend, and those who like to

challenge the impossible with effort and dedication.

iv

v

Summary

Digital solutions have long been used as a means to solve everyday problems. Over time these

solutions have been improved and refined. These solutions have emerged to help humans,

primarily with tasks that can be cumbersome or repetitive. The demand for repetitive tasks

and process optimization through digital means is peaked. For this reason, many companies in

the software development area have adopted the use of automated tests capable of doing

autonomously and quickly the tasks that previously required a lot of resources to perform,

thus jumping on the "Automation Bandwagon”.

By applying this approach, companies have the goal to improve the quality standards of the

software offered by reducing the number of bugs and identifying them as early as possible in

the development process. To observe the applicability, optimization, and efficiency of the

automation of autonomous testing in a specific system, the concepts and technologies

proposed here were applied in a professional scenario of a young company, Effizency. This

company aims to facilitate the sale of energy services and electrical optimization. Effizency

currently works using an agile approach and is constantly looking for ways to improve its

development process.

The company is currently facing the challenge of increasing the quality of its software and at

the same time reducing the repetitiveness of its validation processes. Through this

dissertation, it is expected that an improvement will be identified in terms of both a reduction

of process repetition, time consumption and an increase in the test coverage performed.

The main objective of this dissertation is to improve the quality of a company's software and

the agility of its development process. This objective will be achieved using automated testing.

Keywords: Software Engineering, Agile Software Development, Software Quality, Test

Automation.

vi

vii

Resumo

As soluções digitais são usadas para resolver problemas do dia a dia há muito tempo. Ao longo

do tempo, estas têm sido melhoradas e aperfeiçoadas. Estas soluções surgiram com o objetivo

de ajudar o ser humano nas suas tarefas, maioritariamente tarefas que podem ser pesadas ou

repetitivas. A procura pela automatização de tarefas repetitivas e de otimização de processos

através de meios digitais está no seu auge. Por essa razão, muitas empresas na área de

desenvolvimento de software adotaram o uso de testes automáticos capazes de fazer de

forma autónoma e rápida as tarefas que anteriormente necessitariam de muitos recursos para

realizar, entrando assim no “Vagão da Automatização”.

Ao aplicar esta abordagem, as empresas têm o objetivo de melhorar os padrões de qualidade

do software oferecidos reduzindo o número de bugs e identificando-os o mais cedo possível

no processo de desenvolvimento. Com o intuito de observar a aplicabilidade, otimização e

eficiência da automação de testes autónomos num sistema em concreto foi realizada a

aplicação dos conceitos e tecnologias aqui propostos num cenário profissional de uma

empresa jovem, Effizency. A Effizency trabalha atualmente utilizando uma abordagem ágil e

está constantemente à procura de formas de melhorar o seu processo de desenvolvimento.

Atualmente a empresa, enfrenta o desafio de aumentar a qualidade do seu software e, ao

mesmo tempo reduzir o a repetitividade dos seus processos de validação. Através desta

dissertação, espera-se que seja identificada uma melhoria tanto em termos de uma redução

da repetição do processo, do consumo de tempo e de um aumento da cobertura dos testes

realizados.

O principal objetivo desta dissertação é melhorar a qualidade do software de uma empresa e

a agilidade do seu processo de desenvolvimento. Este objetivo será alcançado através de

testes automatizados.

Palavras-Chave: Engenharia de Software, Desenvolvimento de Software Agile, Qualidade de

Software, Automação de Testes.

viii

ix

Resumen

Las soluciones digitales se utilizan desde hace tiempo para resolver problemas cotidianos. Con

el tiempo, muchas cosas han cambiado. Estos medios han surgido con el objetivo de ayudar a

los humanos en sus tareas, en su mayoría tareas que pueden ser engorrosas o repetitivas. La

demanda de automatización de tareas repetitivas y de optimización de procesos por medios

digitales está en su punto óptimo. Por este motivo, muchas empresas del área de desarrollo

de software han adoptado el uso de pruebas automatizadas capaces de realizar de forma

autónoma y rápida las tareas que antes requerían muchos recursos para su realización,

entrando así en el "Vagón de la automatización".

Al aplicar este planteamiento, las empresas tienen el objetivo de mejorar los estándares de

calidad del software ofrecido, reduciendo el número de errores e identificándolos lo antes

posible en el ciclo de vida del software. Para observar la aplicabilidad, la optimización y la

eficacia de la automatización de las pruebas autónomas en un sistema concreto, los

conceptos y las tecnologías aquí propuestos se aplicaron en un escenario profesional de una

joven empresa, Effizency. Esta empresa tiene como objetivo facilitar la venta de servicios

energéticos y la optimización eléctrica. Effizency trabaja actualmente con un enfoque ágil y

busca constantemente formas de mejorar su proceso de desarrollo.

La empresa se enfrenta actualmente al reto de aumentar la calidad de su software y, al mismo

tiempo, reducir la repetitividad de sus procesos de validación. A través de esta tesis, se espera

identificar una mejora tanto en términos de reducción de la repetición del proceso, como en

el consumo de tiempo y en el aumento de la cobertura de las pruebas realizadas.

El objetivo principal de esta tesis es mejorar la calidad del software de una empresa y la

agilidad de su proceso de desarrollo. Este objetivo se logrará utilizando pruebas

automatizadas.

Palabras Clave: Ingeniería de Software, Desarrollo de Software Ágil, Software de Calidad,

Automación de Pruebas.

x

xi

Acknowledgments

To begin with, I would like to thank my family and girlfriend for their patience, wisdom, and

always supporting me, especially those less opportune. I would also like to especially thank my

sister for all the help she has given me, taking the time to discuss and help get the right

message across in each and every sentence. Without them, none of this would be possible.

Secondly, I would like to thank my colleagues, who shared classes and memorable moments,

some of whom I have known for five years. They have supported my endeavors, nurtured my

love of software development, and provided new exploring viewpoints.

Next, I would like to thank the Professors for all the explanations, assignments, and

knowledge that made me improve, grow and learn. A special thanks to Professor and Advisor

Alexandre Bragança for the help, time given, and improvement/preparation of the report and

plan. And the Effizency Company, especially Vitor Martins and Tiago Carvalho, for allowing

and supporting the implementation of this project in their current process and providing

details and meetings about what they considered relevant for its deployment.

Finally, I would like to thank all the teachers of the ISEP institution who helped align my

academic path during my master’s degree.

xii

xiii

Table of Contents

1 Introduction ... 1

1.1 Context ... 1

1.2 Problem .. 3

1.3 Motivation .. 3

1.3.1 Objective ... 4

1.3.2 Research Question .. 5

1.3.3 Hypothesis ... 5

1.4 Process ... 6

1.4.1 Problem Identification ... 7

1.4.2 Solution Design .. 8

1.4.3 Evaluation .. 8

1.4.4 Summarize results ... 9

1.5 Contributions ... 9

1.6 Structure .. 10

2 State of the Art ... 13

2.1 Context ... 13

2.2 Testing Types.. 14

2.2.1 Black Box Testing ... 14

2.2.2 White Box Testing ... 15

2.3 Testing Type by targeted level ... 15

2.3.1 Point-by-Point comparison .. 17

2.4 Software Development Methods ... 18

2.4.1 Waterfall Method .. 18

2.4.2 Agile Method ... 19

2.4.3 Iterative Method ... 20

2.5 Testing Methodologies... 21

2.5.1 Test-Driven Development ... 21

2.5.2 Acceptance Test-Driven Development .. 22

2.5.3 Behavioural-Driven Development ... 23

xiv

2.5.4 Point-by-Point comparison .. 23

2.6 Testing Technologies .. 25

2.6.1 Company Constraints .. 25

2.6.2 Technical Constraints .. 26

2.6.3 Available Technologies .. 27

2.6.4 Point-by-Point Comparison ... 29

2.7 Real-World Examples ... 33

2.8 Related Work.. 34

2.8.1 Test automation: not just for test execution... 34

2.8.2 Case White-box Testing Using Declarative Specifications Poster Abstract 35

2.8.3 Black Box and White Box Testing Techniques ... 35

2.8.4 Analysis of the impact of test-based development techniques .. 35

2.8.5 How To Set Up QA Processes in A Development Company .. 36

2.9 Research Summary ... 36

2.9.1 Testing Type: Black-Box Testing. ... 36

2.9.2 Testing Type by targeted level: Regression Tests and E2E Tests ... 36

2.9.3 Software Development Method: Agile Method .. 37

2.9.4 Testing Methodology: Adaptation of TDD ... 37

2.9.5 Testing Technology: Cypress ... 37

3 Analysis and Design .. 39

3.1 Context ... 39

3.2 Testing Methodology Proposed ... 41

3.3 Requirement Engineering .. 44

3.3.1 Stakeholders .. 45

3.3.2 System Actors .. 46

3.3.3 Effizency Application Stack .. 46

3.3.4 Non-functional requirements .. 48

3.3.5 Functional Requirements .. 51

3.4 Test Case List .. 58

3.5 Solution Architecture ... 60

3.5.1 Logical View ... 60

3.5.2 Technologies .. 62

3.5.3 Deployment Process .. 66

xv

3.6 Work Methodology .. 67

4 Implementation .. 69

4.1 Project Structure .. 69

4.2 Use Case Realizations ... 72

4.3 Solution Insights ... 73

4.4 Difficulties .. 74

5 Solution Assessment ... 75

5.1 Quantitative Evaluation Framework .. 75

5.2 Hypothesis Evaluation .. 76

5.3 Indicators and sources of information ... 78

5.4 Evaluation Methodology .. 79

5.5 Result Analysis.. 79

5.6 Solution Assessment Summary .. 81

6 Conclusion .. 83

6.1 Synthesis and objectives achieved ... 83

6.2 Limitations and future work ... 84

References ... 86

Annex A: Value Analysis ... 95

Annex B: Test Case List ... 107

Annex C: Technological alternatives of the solution .. 110

Annex D: QEF Diagram ... 112

Annex E: Evaluation Survey .. 114

Annex F: Alternative Solution ... 118

Annex G: Evaluation Survey Results .. 119

xvi

xvii

i

List of Figures

Figure 1 Current UI used to generate a proposal for Solar Panel installation 2

Figure 2 Activity Diagram of Development Process ... 2

Figure 3 Design science research process [10] ... 7

Figure 4 Waterfall Method Diagram, adapted from [33] ... 19

Figure 5 Agile Method Diagram, adapted from [33] .. 20

Figure 6 Iterative Method Diagram, adapted from [33] .. 21

Figure 7 Company Constraints Filters .. 26

Figure 8 Technical Constraints Filters... 27

Figure 9 Capture of the Development Ease KPI Test .. 31

Figure 10 Current Deployment Process Overview ... 40

Figure 11 New section added to the US with the acceptance criteria 41

Figure 12 Validation of the tests to perform .. 42

Figure 13 Estimation of the development and adaptation .. 42

Figure 14 Flowchart Diagram of the Testing Methodology ... 43

Figure 15 Deployment Process with Test Service Diagram .. 43

Figure 16 User and System Requirements Detailed Description ... 44

Figure 17 Configuration Example pgAgent ... 49

Figure 18 System Actor, execution means and Roles .. 51

Figure 19 Use Case Diagram ... 52

Figure 20 Sequence Diagram UC-1 ... 53

Figure 21 Sequence Diagram UC-2 ... 54

Figure 22 Sequence Diagram UC-3 B2B.. 55

Figure 23 Sequence Diagram UC-3 B2C .. 56

Figure 24 Sequence Diagram UC-4 ... 57

Figure 25 Sequence Diagram UC-5 ... 58

Figure 26 List of All requirements to be developed by UC ... 59

Figure 27 Component Diagram .. 60

Figure 28 Cypress Local Run Test Mode for developers .. 63

Figure 29 Cypress Dashboard for Tests .. 64

Figure 30 Cypress Error Case Test .. 64

xix

Figure 31 Sentry Error Monitoring System .. 65

Figure 32 Email template after tests conclusion .. 65

Figure 33 File attached to the email .. 66

Figure 34 Gantt Diagram of the Work Methodology ... 68

Figure 35 Postman Collection Configuration ... 71

Figure 36 PgAgent Job Configuration ... 71

Figure 37 Detailed Sequence Diagram of the Health Endpoint ... 72

Figure 38 Detailed Sequence Diagram of the Testing Endpoints ... 73

Figure 39 Innovation Process [70].. 95

Figure 40 Pattern of the fuzziness level through the NPD [72] ... 96

Figure 41 New Concept Development Model [70] .. 97

Figure 42 Benefits of test Automation [84] ... 105

Figure 43 QFD Diagram .. 106

Figure 44 QEF Diagram ... 112

Figure 45 Evaluation Metrics, Dimension Functional Requirements, Factor All Platforms 112

Figure 46 Evaluation Metrics, Dimension Non-Functional Requirements, Factors Multiple .. 113

Figure 47 Context Section of the Evaluation Survey .. 114

Figure 48 Usability Section of the Evaluation Survey... 115

Figure 49 Satisfaction Section of the Evaluation Survey .. 116

Figure 50 Other Section of the Evaluation Survey ... 117

Figure 51 Alternative Component Diagram ... 118

Figure 52 Context Section of the Evaluation Survey Results ... 119

Figure 53 Usability Section of the Evaluation Survey Results .. 120

Figure 54 Satisfaction Section of the Evaluation Survey Results ... 121

Figure 55 Other Section of the Evaluation Survey ... 122

xx

i

List of tables

Table 1 Testing Spectrum, adapted from [29] with some addition considered relevant 17

Table 2 Key Differences, based on [42] with some additions from [43] 23

Table 3 Formula of calculating time percentage [51] .. 30

Table 4 Comparison of Technologies ... 32

Table 5 Formula for Evaluating the Statistical Hypothesis 1 .. 76

Table 6 Sources of Information for H1 and H2 .. 78

Table 7 Indicators gathered for statistical hypothesis ... 79

Table 8 Results of the Statistical hypothesis .. 80

Table 9 Indicators gathered for work hypothesis .. 80

Table 10 Pitch Meetings Schedule ... 99

Table 11 Appliance of concepts ... 101

Table 12 Keys to a Success of the Value Analysis (VA) ... 102

Table 13 Vital triggers for implementing UI tests .. 103

Table 14 Test Case List according to their US .. 107

xxii

xxiii

Acronyms and Symbols

List of Acronyms

Adhoc Meaning “For this Specific Purpose”

AI Artificial Intelligence

API Application Programming Interface

ATDD Acceptance Test-Driven Development

B2B Business to Business

B2C Business to Consumer

BDD Behavioural-Driven Development

CE Certification and Energy Audits

CEO Chief Executive Officer

CFO Chief Financial Officer

CFP Reactive Cost Elimination

CICD Continuous Integration and Continuous Delivery

CPE Código Ponto de Entrada

CRM Customer Relationship Management

CTO Chief Technology Officer

DEV Development Environment

DOM Document Object Model

E2E End To End

EDP Energias de Portugal (Company Name)

xxiv

FE Frontend

FFE Fuzzy Front End

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IE Efficient Lighting

IRR Internal Rate of Return

JSON JavaScript Object Notation

KPI Key Performance Indicator

LED Light-emitting diode

ME Electric Mobility

MPT Transformer Station Maintenance

MVP Minimum Viable Product

NCD New Concept Development Model

NPD New Product Development

NPM Node Package Manager

PDF Portable Document Format

PMs Product Managers

POC Proof of Concept

PP Prompt Payment

PRD Production Environment

PRE Pre-Production Environment

xxv

PV Solar Photovoltaic

QA Quality Assurance

QAs Quality Assurance Engineers

QEF Quantitative Evaluation Framework

QFD Quality Function Deployment

REST Representational State Transfer

ROI Return on Investment

SaaS Software as a Service

SDLC Software Development Life Cycle

SMTP Simple Mail Transfer Protocol

SO Sales Operation

SUT System Under Test

TDD Test Driven Development

TRE Technician in Charge of Operation

TST Test Environment

UC Use Case

UI User Interface

US User Story

VA Value Analysis

1

1 Introduction

This chapter aims to provide a brief introduction and framing of the project within the scope

of this dissertation, identifying its objectives and expected results with its development and

pointing out the motivation behind its establishment.

1.1 Context

To meet the proposed objective of demonstrating the usefulness and applicability of test

automation, the case study of the company Effizency was used. Effizency is a somewhat

recent company, a spinoff of Energias de Portugal (EDP), characterized by rapid iteration on

its core product, a Software as a Service (SaaS) proposal generation platform. Its focus is to

accelerate the sales of energy service providers and generate energy proposals with as

minimal effort as possible through Artificial Intelligence (AI) [1]. Through the software

developed by this company, more and more people will have access to different energy and

renewable energy services, promoting more profitable solutions for the final buyer, regardless

of whether it is a company, Business to Business (B2B), or a consumer, Business to Consumer

(B2C) and facilitating its process of installation through the Field platform. An example of the

impact that this platform has on the world is the ease of installation and purchase of solar

panels. Through a simple User Interface (UI) it possible to draw an area in a specific place on a

map where the installation of the panels is desired and, based on the solar radiation of that

specific place, Key Performance Indicators (KPIs) are calculated and displayed through which it

is possible to analyze the profitability of the solution (as it can be seen on Figure 1).

2

Figure 1 Current UI used to generate a proposal for Solar Panel installation

In addition, the platform offers other energy measures such as electric chargers, Light-

emitting diode (LED) installation, energy certifications, among others. To be able to offer

these efficiency measures in multiple countries Effizency must keep up to date with national

and international regulations, which can change from week to week. As a means of addressing

this problem Effizency uses an Agile development method capable of adapting to the needs of

its multiple customers by offering regular (weekly) updates to its platform based on the

priorities defined at the start of each Sprint (bi-weekly). This process is composed of different

phases (explained in detail in the activity diagram found in Figure 2) which must be done at a

high pace making it very volatile and prone to errors.

Figure 2 Activity Diagram of Development Process

3

1.2 Problem

As explained before, the development process must be accomplished in a short period of time.

In addition to its short Software Development Life Cycle (SDLC), all tests are carried out

manually, so they represent a major percentage of the time. These tests are divided into two

groups, tests of each new functionalities introduced end-to-end (E2E) tests, and tests of the

key features offered by the platform (regression tests). Even though some of these tests have

been formalized for a long time most of them are outlined Adhoc right before deployment,

according to the features introduced. Also, there is no specific level-oriented testing such as

unit or functional testing, only E2E testing. After each of the new functionalities is tested in

the Pre-Production, and Production environments, it is necessary to perform regression tests

to ensure that the previous functionalities were not affected by the new ones introduced.

These regression tests are composed of several hours of after-hour sessions (as the web

application is used as the primary working tool and must always be available) of click-based

testing. If some of these tests fail, the application must be set to the previous state, and the

problem/problems must be fixed before the next workday. The regression and functionality-

specific tests act like acceptance criteria [2]. Only with those requirements met can the

deployment be considered successful. The current situation requires allocating numerous

human resources to perform the same tests every week. Due to their delay and repetitiveness,

they are not always acting with the necessary care and attention. Usually, tests are skipped,

causing the overall impact of the functionalities introduced to be mostly unknown. Likewise,

the correction/reaction time of the errors found (both in deployment and on a day-to-day

basis) is significantly reduced due to the time constraint expected by Effizency clients.

1.3 Motivation

Recently the market for automated testing has been rising, and in the next three years, is

expected to reach $30 000 million threshold [3]. Using automation to test software has

increased profitability and streamlined the development process of multiple companies [3] [4]

[5]. As a response to this need, many and improved technologies have recently emerged that

can assist in automating tests [6]. However, even though this area has undergone many

4

evolutions, companies are still not all on board (as the Effizency current situation

demonstrates). Without the aid of automated means, companies perceive a disadvantage

regarding competitors who adopted them. By adopting automated means, it is expected an

optimization of their current development process.

Another motivation factor is the role Quality Assurance (QA) has inside the SDLC, being

considered by many as a key factor for success when presenting a software [7] [8]. Through its

study it is possible to ensure that the software offered to the market provides a service with

the fewest possible errors so that its users remain satisfied. Effizency is a growing company

with the role of facilitating access to means of renewable energy and energy efficiency and

should improve its development process and reduce the number of bugs and streamline its

process to remain competitive and continue to offer a software of excellence to all its

customers.

In summary, the motivation behind this dissertation joins two factors, trend, and professional

need. The trend of adopting automated methods of QA and the professional need to optimize

Effizency SDLC by using automated means.

1.3.1 Objective

The main objective of this dissertation is to improve the quality of a company's software and

the agility of its development process. This objective is accomplished by developing an

automated testing solution and implementing it in a business environment without any

previous automated quality processes. The fact that Effizency does not yet include automated

means of testing helps analyze the results and identify completely the benefits and

constraints of their adoption. This implementation provides a company with an automated

mean of performing some of their most repetitive tests, thus allowing the allocation of

resources to be mainly spent on the manual specific testing of new functionalities that cannot

currently be automated. This solution will only address the old functionalities, since these are

the most stable and little changeable, thus facilitating their maintenance during the

dissertation.

5

In essence, the main objective of this dissertations is:

To demonstrate the usefulness and applicability of automatic tests inside a SDLC by

developing and implementing a Proof of Concept (POC) of a Minimum Viable Product (MVP)

which could gather and display the results at the same time as helping a company improve

their software’s quality.

1.3.2 Research Question

After defining the objectives and motivations behind the topic it is necessary to define a

research question. Through a research question it will be possible to identify the focus and

purpose behind the work carried out and will guide the way of thinking and explain the most

relevant concepts. The research question found that best suited the objectives of the thesis is

the following:

What is the role and impact automating testing can have on a SDLC?

This research question focuses fundamentally on the impact and role of implementing the

automated testing. This question represents the main point that this dissertation aims to

illustrate.

1.3.3 Hypothesis

Originating from the objective and research question it was necessary to specify a set of

hypotheses capable of demonstrating their compliance. These hypotheses are the foundation

and the reasons for this project’s existence, and they are divided into two categories,

statistical and work hypothesis.

The statistical hypotheses, are a type of hypothesis which can be quantitatively proven by

formulas and data collection [9]. These are considered decisive factors in demonstrating the

value of this opportunity and will be later addressed (Section 5.2).

• By automating manual E2E tests, it is possible to improve its development process and

improve the overall quality of the software by reducing the amount of error tickets

reported by clients.

6

• By automating the most common manual tests, it is possible to reduce the company's

test cycle time and human resources used on testing.

And the work hypotheses are theoretical and mostly subjective hypothesis answered

mostly by inquiries and situational analysis [9]. These hypotheses focus more on the

particularities of the implementation of the MVP inside the study case which can be useful

as a point of comparison for similar cases.

• By automating the manual testing procedures, it is possible to avoid repetition of test

execution.

• By applying the proposed method, the existing SDLC can incorporate automated test

procedures seamlessly.

• The purposed method allows for the smooth incorporation of a culture of automated

software quality in the engineering team (that is used to performing it exclusively

manually).

1.4 Process

To adequately demonstrate a hypothesis and solution as valid, a properly structured process

must be carried out, a technique capable of arriving at a conclusion and obtaining the

necessary information to support said solution with an irrefutable basis. The research method

chosen was the design science research process proposed inside “Outline of a design science

research process” [10].

This process is divided into three general phases: "Problem Identification”, "Solution Design”,

and "Evaluation”. Even though these are three separate phases, they may not be performed

sequentially, and there may be several interactions between each phase as demonstrated in

the Figure 3 [10].

7

Figure 3 Design science research process

Given how vital each phase is to the research process, their comprehension and

implementation are critical to its development. In the following sections, those phases are

outlined in detail conjointly with their reference within this document.

1.4.1 Problem Identification

In this phase, the problem must be correctly identified. To properly determine a problem, it

must first be evaluated according to its relevance conceptually and for the expected results.

This phase comprises three steps, "Identify Problem”, "Literature Research", and "Expert

Interviews”. After completing these steps, the research question can be defined (Section

1.3.2), which is validated by experts and by the state-of-the-art.

• Identify Problem: in this step, the context must be disentangled (Section 1.1), and the

problem must be pinpoint (Section 1.2).

• Literature Research – Part 1: throughout this step, the theoretical analysis of multiple

potential solutions is carried out. This includes the historical study of test automation

(Section 2.1) to understand better the need behind its creation, as well as the

identification of the different testing types from which to choose from (Section 2.2),

the potential testing type according to the specific level targeted (Section 2.3), the

placement of this process inside different software development methods (Section

2.4) and the identification of potential testing methodologies (Section 2.5).

8

• Expert interviews: this step presents the problem and potential solution to different

experts and relevant parts. In this specific case, the answer is provided by two other

groups of experts; the first group is composed of distinct elements present inside

Effizency to evaluate the availability and reliability, and value of an approach inside

the current process (detailed description of the Value Analysis can be found on Annex

A)

1.4.2 Solution Design

Within this phase, the design of a solution capable of correcting the problem identified is built.

Two steps must be taken for the correct structure of a solution that fits the needs: "Artifact

Design" and "Literature research”.

• Design Artifact: within this step, the various stages of the engineering process are

presented in detail. For this phase, a potential solution is designed through the

process of specification and requirements analysis (Section 3.3) necessary for a POC

capable of demonstrating the hypothesis laid down. Conducting this phase requires an

elicitation process to obtain the requirements needed for an MVP. This elicitation

process aims to identify the multiple requirements (functional and non-functional)

and constraints that must match the functionality/testing that the application is

intended to perform. Apart from this analysis, the solution’s architecture is specified

(Section 3.5) and several alternatives of the chosen solution is presented (displayed

on Annex C and Annex F).

• Literature Research – Part 2: in this step, the most relevant aspects of the specific

solution and the current situation are addressed. This second research phase is

described in multiple instances, from the presentation of potential technologies

(Section 2.6) to real-world cases of test implementations (Section 2.7) and related-

work (Section 2.8). It is also necessary to present the current value of the solution.

1.4.3 Evaluation

After the completion and implementation of the POC the solution is evaluated. Within this

step it may be necessary to use different aspects of problem identification and artifact design.

9

Inside this phase, it is possible to find four steps: “Refine Hypothesis”, “Case Study/action

research”, “Expert Survey” and “Laboratory Experiment”.

• Refine Hypothesis: usually, when starting a project, it can be challenging to assess

which hypothesis to demonstrate specifically. Before this phase, a hypothesis may

already have been defined (Section 1.3.3). Still, later with more significant research

and feedback, it may require some changes to be more specific and improved

accordingly.

• Case Study/Action Research: The hypothesis, applicability, and relevance to the case

are tested, resulting in the need to redefine the problem and change the design to

solve the issues identified. For this step, different practical matters are defined within

the company, to account for its specific needs regarding the automation of its

testing’s processes.

• Expert Survey: Once the case study is done, a more specific survey provides the

necessary feedback to ensure that the solution considers its more subjective

objectives and that its problem is solved (the survey can be found on Annex E results

can be found on Annex G). This survey aims to provide the feasibility of this solution.

Furthermore, the main reasons for test automation and the analysis of their fulfilment

are analysed in detail.

1.4.4 Summarize results

Finally, all the achieved results should be summarized, and conclusions must be drawn,

resulting from several parts of the research process.

These results are displayed in the Solution Assessment and Conclusion Section (Section 6.1

and 6.2).

1.5 Contributions

This dissertation aims to contribute to the vast number of resources that give importance,

applicability and validity to the automation QA processes at a software development company.

Also, it intends to leave a legacy of a platform that acts as a starting point in the field of test

automation for the Effizency by creating awareness of the potential of automating repetitive

10

testing tasks. The expected POC identifies different problems/bugs automatically on a day-to-

day basis without human supervision. It is also expected that the company officially adopts

the use of POC and continue with its development by extending its testing suit. Furthermore,

another expected outcome is the company contemplating the investment/allocation of some

of its resources to maintain and improve these tests.

1.6 Structure

This dissertation is divided into seven chapters, each with its specific function. The first

chapter is designated as “Introduction” and aims to frame the project in terms of the company,

motivation, objectives, and expected results.

The second chapter is devoted to researching the “State of the art”. Through this chapter, it is

possible to understand more about the different testing types in existence and their targeted

level, in which context can they be introduced inside a development process and some testing

methodologies and technologies. Each of the sections in this chapter has detailed

comparisons between multiple approaches, methods, technologies facilitate the

understanding of their selection process in the later chapter. Lastly, the chapter includes the

analysis of multiple “Real-World Examples” and “Related Work” which provide context and

examples of applicability for software testing automation.

Through the third chapter, the “Analysis and Design” is conducted. This analysis will be

composed by the description of the requirements and test cases imposed to demonstrate the

concept. On the other hand the design will be demonstrated through the presentation of the

architectural structure and the practical presentation of the working and testing

methodologies.

The fourth chapter outlines the “Implementation” of the POC. Through this chapter it will be

possible to observe the project’s structure, use cases explained in detail, its particularities and

lastly the difficulties found in its execution.

After implementing the POC, it must be evaluated; this evaluation is contained in the fifth

chapter called “Solution Evaluation”. This chapter aims for appraise the implemented solution

using the initial problem as the starting points and the hypothesis as fulfilment factors.

11

The sixth chapter is the “Conclusion”, in which a synthesized summary of the project is

presented, and a general analysis of all the work developed is performed.

The last Section consists of a few Annexes. These give more information behind the

motivation and analysis of the idea's potential through a “Value Analysis” (Annex A), provide

the complete list of all test cases developed (Annex B), a possible alternative set of

technologies (Annex C), the QEF diagram for displaying the progress of the project (Annex D),

the evaluation survey used to evaluate the survey hypothesis (Annex E), a possible alternative

solution (Annex F) and, lastly the statistical results of the survey (Annex G).

12

13

2 State of the Art

"Software testing is costly and effort-intensive. […] However, software engineers will be able to

fully benefit from such automation only if they are aware of the available strategies and

tools“ [11]. This chapter will uniquely present the context of this project, and it will also

analyse the software quality applied to a specific case. Any terms and definitions used within

this section will be based on articles or official documentation related to software quality and

its practical application. Within the scope of software quality, the different types, and

available methodologies will be addressed to implement an automated testing system.

Subsequently, the potential technologies to be used will be analysed, making a detailed

comparison of each of them towards identifying the most suitable one to apply to the project.

Finally, different examples of companies that use automated tests and their chosen methods

and technologies will be shown.

2.1 Context

Test automation has a long history. According to K.C. Archie [12], the term and its study can

date back more than two and a half decades, during which time it has gone from focusing

mainly on automation related to the software industry to much more. Currently, software

testing is the most widely used way of validating the quality and purpose of the software [13]

because, with its expansion, many companies have adopted it into their day-to-day activities

and continue to do so.

As the usability of test automation by companies has increased, the methods and purposes of

adoption vary significantly from company to company. In the past, at times, only one

14

standard could be found; however, nowadays, there is a multitude of ways and means of

using automated tests for different reasons. The same goes for how they are implemented in

the development process. Even with the increasing use of automated testing, according to

various surveys made by Garousi [14] [15] [16], “[…] small and medium-sized enterprises are

often unaware of the great potential of automation throughout the testing life cycle or don't

seriously consider greater use of automation”. Introducing this type of automation in every

kind of company is key to increasing software quality and reliability.

With this information, it is possible to conclude several things. The first is that many

companies opt for a customized testing solution adapted to their needs and business instead

of using a standard solution defined by the market. The second is that it is necessary to

embed the culture of automation and test planning as the primary or secondary means of

validation even with automated testing platforms. However, “deciding what parts of a given

SUT should be tested in an automated fashion and what parts should remain manual is a

frequently-asked and challenging question for practitioner testers” [17].

2.2 Testing Types

Before creating a test, it is necessary to specify which test type will be performed; that choice

will depend on whether or not the tester knows the system’s internal structure [18] [19].

2.2.1 Black Box Testing

For starters, black-box testing, as its name implies, is a test performed without inside

knowledge of the system structure. The second type of test is white-box tests that validate

the internal aspects with an understanding of how it works. In the interest of performing the

former test mentioned, the user's actions must be analysed to be later automated according

to the evaluation of the different steps the user must go through to perform some type of

action. This method requires the test designer to foresee the feature within the user’s

perspective and ignore at the same time their technical knowledge of the inner workings of

the application [20].

15

2.2.2 White Box Testing

Next is white-box testing, which validates internal aspects of a system with knowledge of how

they work. This method is considered to be the simplest method of testing [21]. Knowing how

the system works internally makes it easier to validate that all its internal workings are

following the system's requirements. This means of testing is based on the evaluation of KPIs

such as code coverage, conditions coverage, functionality coverage [13] [18]. Some of the

standard testing types according to a specific level are integration and unit tests (which will be

explained briefly in the next Section).

2.3 Testing Type by targeted level

Aside from knowing what kind of test will be performed, it should also be settled upon which

part of the application must be focused. To do so, a comparative analysis of a list of

candidates was conducted. From the following list, it is possible to identify some of the main

types of software testing according to the different levels of the application targeted

(suggested in [22] with some additions considered as relevant in [23] and [24]):

• Unit Testing: is a type of testing that validates individual pieces of code. This testing

type makes it possible to isolate the code accordingly into small units. Usually, these

are a function, property, or subroutine. These tests are commonly written by software

engineers using a test-driven development practice. In addition, these tests are

created as part of the specification process of a new feature.

• Integration Testing: is a type of testing that validates whether multiple units of code

work correctly, focusing primarily on the specified end goal. This type of testing

assumes that the smaller code units have been previously tested using unit tests.

Usually, these tests are performed with a combination of manual and automated tests,

depending on how easy it is to test the integration of different components of a

system.

• System Testing: is a type of test through which to validate the inner workings in a

general manner according to the application design. This type of testing is unaware of

the internal structure and logic of the system (Black Box) and validates the operation

by emulating common production conditions.

16

• Acceptance Testing: is a type of testing that seeks to validate whether the business

need has been successfully fulfilled through said functionality. This type of testing is

performed at the end of all remaining tests to determine whether the software is fit

for delivery.

• Beta Testing: is a type of testing performed by someone external to the development

process through a potential customer machine. This type of testing is commonly

classified as acceptance testing and is generally intended to assess whether a product

is ready for a real-world case [25].

• Regression Testing: is a type of testing that is performed after several changes have

been made to ensure that the application works as it did before.

• Performance Testing: is a type of testing used to validate the behaviour of an

application under some specific operating conditions. The purpose of this test is to

validate the response time and stability of a platform under conditions considered

possible in a real-world case.

• Security Test: is a type of testing performed to validate that the data contained within

an application is properly secured. This type of test is considered, nowadays and in

the current pandemic situation, to be very relevant due to the considerable increase

in cybercrime [26]. This testing type seeks to purposely find undue access to

unwanted information.

• Usability Test: is a type of testing performed to validate how easy a feature can be

used from a user's perspective. Through this testing type, it must be evaluated if the

change in the aesthetics of the product goes according to the flow that the product

has for the different processes.

• Compatibility Test: is a type of testing conducted in multiple environments as a

means of validating system behaviour across different operating systems, browsers,

platforms.

• End-to-End Testing: is a type of testing that tests specific application flows from start

to end. The primary purpose is to emulate the actual user condition and different

informational components [27].

These types of tests can be categorized into two, functional and non-functional. Functional

testing involves testing and validating the application according to the business requirements

imposed in the functionality. The latter focuses more on the operational aspects of the

software without considering the set business requirements [23].

17

2.3.1 Point-by-Point comparison

There are several possible ways to evaluate and compare each of the previously mentioned

test types two of the most well-known are “Software Test Pyramid” and “Software Testing

Spectrum” [28]. The method chosen was the “Software Testing Spectrum” which laid the test

types in a simpler manner according to the number of components involved. This method of

comparison displayed in the Table 1 the tests according to their opacity, specification, actor,

scope, and lastly, their style inside the “Spectrum Line”.

Table 1 Testing Spectrum, adapted from [29] with some addition considered relevant

Testing Type Opacity Specification Actor General Scope Type

Unit White
Box
Testing

Low-Level Design
Actual Code
structure

Generally,
Programmers
who write the
code and
tests

For a small unit
of code
generally no
larger than a
class

Functional

Integration White &
Black
Box
Testing

Low-Level and
High-Level Design

Generally,
Programmers
who write the
code and test

For multiple
classes

Functional

System Black
Box
Testing

Requirements
Analysis phase

Independent
Testers will
Test

For product in
customer’s
environment

Functional

Acceptance Black
Box
Testing

Requirement
Analysis phase

Customers
Side

Entire product
in customer’s
environment

Functional

Beta Black
Box
Testing

Client Adhoc
Request

Customers
Side

Entire product
in customer’s
environment

Functional

Regression White &
Black
Box
Testing

Changed
Documentation
High-Level Design

Generally,
Programmers
or
independent
Testers

For multiple
reasons

Functional

End-to-End White &
Black
Box
Testing

Changed
Documentation
High-Level Design

Generally,
Testers or
programmers

For multiple
reasons

Functional

Performance Black
Box
Testing

Requirement
Analysis phase

Independent
Testers will
Test

Entire product
in customer’s
environment

Non-
Functional

Security White &
Black

Requirement
Analysis phase

Independent
Testers will

Entire product
in customer’s

Non-
Functional

18

2.4 Software Development Methods

Throughout history, multiple development methods have been created and developed with

the sole purpose of implementing a software engineering model that improves and corrects

the inherent errors of previous implementations. Some of them provide a very restrictive

method, while others offer a convenient system that is more adaptable to the situation at

hand. Through this subchapter, it will be possible to frame the outline of where the software

quality process is commonly implemented in a software method.

2.4.1 Waterfall Method

This method was inherited from the hardware industry [30], but the term Waterfall was only

coined in 1970 in a publication by Winston Royce [31]. This method consists of different

stages sequencing one another. Only when the previous step has ended can the following

process proceed. This process is minimal since it does not allow to add or start any task

without the previous one being completed.

This method implements the software quality process in the last steps of the SDLC and does

not prioritize it over the rest of the previous tasks, potentially resulting in a considerable

reduction in the quality of the developed software.

Even though it is a method, has been usually used by teams that consider their method

different from the rest. Firstly, they do not consider that the requirements they are asked to

implement are ambiguous, which in other words means that the requirements are easily

understood, interpreted, and implemented without any disagreement between those who

create the requirements and those who implement them. Secondly, teams that want to

simplify the process as much as possible to be able to give a general and accurate status of the

Box
Testing

Test environment

Usability Black
Box
Testing

Requirement
Analysis phase

Independent
Testers will
Test

Entire product
in customer’s
environment

Non-
Functional

Compatibility Black
Box
Testing

Requirement
Analysis phase

Programmers
or
Independent
Testers

Entire product
in multiple
customer’s
environments

Non-
Functional

19

process and that have customers that do not usually change the scope of the requested

requirements [32]. The diagram in Figure 4 accurately represents the different processes of

the waterfall method.

Figure 4 Waterfall Method Diagram, adapted from [33]

2.4.2 Agile Method

This method and term were first introduced and coined by an Edmonds publication in 1974

[30]. Later on, in conjunction with its constant evolution, a set of experts created what today

is considered the laws of Agile development, called the "Agile Manifesto" [34]. This method is

essential because of its adaptability and flexibility. All processes can be executed

synchronously from the moment they are available.

This method includes testing within the SDLC so that bugs and problems can be found as early

as possible, ensuring a higher quality product and faster delivery of functionalities.

Through this method, several teams can work in various phases of the same project

continuously. The requirements are evaluated multiple times during the process, and constant

feedback is received regarding the functionality developed, thus facilitating that when it is

finished, it is according to what was initially desired. Usually, this method, and contrary to the

Waterfall method, is implemented when the requirements of new functionality are

ambiguous and do not clearly present what is intended. Through this method, the

requirements are improved, detailed, corrected, and changed during the development

process.

20

Another factor to consider is that all teams work with different purposes at the same time and

with different degrees and levels of quality, thus improving the quality of the functionality

developed for a product. The diagram in Figure 5 accurately represents the different

processes inside the Agile method.

Figure 5 Agile Method Diagram, adapted from [33]

2.4.3 Iterative Method

The iterative method reduces the development process into small and manageable parts.

Each of these parts will then be applied in the waterfall process explained previously. Several

advantages are present in this method, one of them being the simplicity of the waterfall

method together with the adaptability to the needs in hand. This advantage is achieved

because development is broken down into such small parts that feedback, and testing of each

feature are received and completed quicker.

This method is suited to companies with clear requirements from the start, and that does not

usually change. However, they need to be delivered bit by bit in a flexible way that is adapted

to the customer's needs.

During this process, the software is only validated at the end of each step, and according to

the feedback given, it can either go back into development or move forwards to completion. It

emphasises the area of software quality providing more predictable results during the

21

different processes. The diagram in Figure 6 displays a repetitive set of steps performed

according to the iterative method.

Figure 6 Iterative Method Diagram, adapted from [33]

2.5 Testing Methodologies

Like software development, testing requires the use of different guidelines grouped in

different methodologies, in this case testing methodologies. Through these methodologies it

will be possible to define the method of inclusion of testing within the SDLC and what

advantages a methodology offers through the different perspectives it has.

2.5.1 Test-Driven Development

This term was rediscovered by Kent Beck in 2003 [35] and other authors in their book “Test

Driven Development” (TDD), in order to demonstrate its benefits within agile development

methods. Through the book, they intended to answer questions such as “What are the

quantitative benchmarks that can demonstrate the value of TDD, and what are the best

methodologies to solve the ubiquitous issues of scalability?” [35] among others.

“Understanding that TDD is more about analysis and design than it is about testing is one of

the most challenging conceptual shifts for new adopters of the methodology” [36].

22

It can be defined as a methodology of producing tests prior to the production of the

functionalities in order to ensure that the functionalities that are still to be developed will

conform to what was stipulated in the requirements. This way, the phase of defining test

cases is still during the requirements analysis and design phase.

TDD can be complicated to implement into a development process as tests are (or were) often

developed assuming a program existed. Still, TDD has come to help the development process.

By having a pre-established set of tests, it is possible to efficiently validate a feature and see if

it meets the requirements without much delay.

2.5.2 Acceptance Test-Driven Development

Acceptance Test-Driven Development (ATDD) applies differently to the rest of the

methodologies, by following the principles described in the book entitled "Three Amigos" by

George Dinwiddie [37]. This book explained different perspectives to have before creating

tests. These perspectives are:

• “Business – What problem are we trying to solve?”.

• “Development – How might we build a solution to solve that problem?”.

• “Testing – What about this, what could possibly happen?” [38].

Even with Ken Beck's criticism of this methodology, who declared it to be impractical [35], it is

worth mentioning that it has some key points that can be useful in the implementation of new

processes. The difference between TDD and ATDD is that TDD strongly favours the creation of

more concrete and specific tests. On the other hand, ATDD tends more to use interfaces to

test functionality [39].

Through these perspectives, it is possible to know in advance the points of view of the client,

the programmer, and the tester before starting a task. Taking into consideration several

points of view in parallel, unfortunately, can generate divergence, also mentioned by Ken

Beck [30], between what was initially intended by the client and what was accomplished due

to the technical point of view.

23

2.5.3 Behavioural-Driven Development

Behavioural-Driven Development (BDD) is a methodology that joins and improves two others,

Test-Driven Development, and Acceptance Test-Driven Development. Besides the principles

implemented by other methods, it also applies the "Five Whys" [40] principle in order to

define what is expected in terms of business for each feature before it is developed. This

methodology trusts a five simple step exercise:

1. “Get as much information as possible, and if necessary, call in more people to help

with the resolution or analysis of the problem/need”.

2. “Start by asking the first "why" question for the team: why is this problem/need

happening?”.

3. “Then continue the previous step until the question gets no new information”.

4. “With all the previous answers, look for a systemic reason that might be causing the

problem/need”.

5. “After discovering the actual reason behind the need/problem, the necessary actions

should be taken to correct that need” [40].

In addition, the method of thinking behind this point of view is that the initial considerations

always focus on the business aspect that you want to improve first, and then gradually reduce

it until you get to the technical aspects [41].

2.5.4 Point-by-Point comparison

In order to be able to better choose which methodology best fits the example in question,

these should be put side by side so that the different methodologies and viewpoints to the

problem can be evident, this information is contained in Table 2.

Table 2 Key Differences, based on [42] with some additions from [43]

 Test-Driven

Development

Acceptance Test-Driven

Development

Behavioural-Driven

Development

Definition

“TDD is a development

methodology that

focuses more on the

implementation of a

“ATDD is a technique

similar to BDD focusing

more on capturing the

requirements” [42].

“BDD is a development

technique that focuses on

the system’s behaviour”

[42].

24

feature” [42].

Objective

“Focused on testing,

helps software

developers to produce

better quality and

maintenance code”

[42].

“Focused on capturing

the requirements within

the acceptance tests and

uses them to drive the

development. It brings

the customer with quick

feedback of the progress

of the development” [42].

“Focused on the

behavioural aspect of the

system (why should the

code be written? and how

should it behave?). It

unites the distances

between the client and

the developer” [42].

Actors

Developer. Developers, Customers,

Quality Assurance

Engineers (QAs).

Developers, Customers,

QAs.

Language

Same Programming

Language to use on

feature

Native Spoken Language Native Spoken Language

Focus
Unit Tests Writing Acceptance Tests Understanding

Requirements

Common

Tools

JDave, Cucumber,

JBehave

Gherkin, Dave,

Cucumber, JBehave

TestNG, FitNesse, EasyB,

Spectacular

Key

Principle

- Three Amigos Five Why’s

Based on - TDD ATDD, TDD

Example

Test Case

User uploads proposal

documents with

success.

User uploads proposal

documents with success.

Proposal documents can

be later downloaded.

User can generate a

proposal and instantly

after upload all the

proposal documents.

After the documents have

been uploaded, the user

can come back to the

proposal and download

the upload documents.

25

2.6 Testing Technologies

Through this section multiple testing technologies capable of satisfying the company's needs

will be analysed. Before starting to explain them, a set of constraints of the company should

be explained, through which it will be possible to filter within the vast number of technologies

leaving only those that not only meet the necessity but also fit the engineering team within

the company. The outcome is a point-by-point comparison of each of the potential candidates.

2.6.1 Company Constraints

For this specific case any of the test types presented could be applied. Therefore, when

choosing a technology capable of performing a specific testing type some type of filtering had

to be used. The first filter used, provided the search outcome with technologies capable of

being used for both White-box and Black-box testing.

When choosing which level are to be targeted by the tests two considerations were made

based on the problem explained. The first one considers that the company develops at high

speed, focusing on giving new features and adaptations of existing ones on a weekly basis.

Performing tests to accompany these changes requires a lot of test maintenance time, and

therefore effort, requiring testing to be preferably performed by an outside quality assurance

team. Since currently there is no quality assurance team the tests developed should be

developed targeting only the main functionalities which change the slightest, which means

using regression tests. The second one considered the current manual tests being performed,

currently all the test performed are end-to-end and manual, which allocate specialized

resourced to its execution to by automating the end-to-end tests it would be possible to

reduce the current time allocated to manual testing.

Effizency Engineering team currently used the Agile Method of Development as it promotes

flexibility and adaptability by facilitating the inclusion of automated test execution at various

points inside the development cycle. However, this advantage is not being taken advantage of,

as tests are only currently being performed and often created, after a functionality has been

developed. When choosing a technology, the second filter used was that the technologies

should comply with the Agile Method.

26

The methodology chosen was a slight adaptation of TDD as it focused more (and has more

weight on) on the feature planning regardless of outcome. An alternative option considered

was BDD as it focused on the client’s behaviour inside the platform, however it was discarded

as this approach was to be used solely developers.

In summary the filters based on the company constraints applied to the technologies searched

are displayed on Figure 7.

Figure 7 Company Constraints Filters

2.6.2 Technical Constraints

Due to the company's current situation, regardless the number of human resources that could

be allocated at any given time to testing and due to the proposal made, suggestions related to

the technologies used in the process were created to facilitate the adaptation and adoption of

the testing platform. These constraints also functioned as filters when choosing the potential

technology to use.

1. The technology/library/framework should use a programming language like the ones

used in the company’s projects (JavaScript or Python).

2. The project’s solution using the technology should allow the use of syntax and folder

organization resembling the company’s projects.

3. It must be possible to call/run/trigger the tests through the means the company uses

for other maintenance, quality tasks such as Jobs or Hypertext Transfer Protocol

(HTTP) Requests.

4. This technology/library/framework should be quick and easy to learn so that the

learning curve needed to introduce the technology to new employees is as short as

possible.

5. This technology/library/framework should provide a simple method of creating new

tests and performing maintenance on the tests already designed.

27

6. The technology/library/framework should allow the trigger of tests inside the most

widely used browsers (Chrome, Firefox, Edge) [44].

7. The technology/library/framework should allow its development and trigger inside

multiple operating systems (Windows, Linux, MacOS).

In summary the filters based on the technical constraints applied to the technologies searched

are displayed on Figure 8.

Figure 8 Technical Constraints Filters

2.6.3 Available Technologies

After searching for a set of technologies that would meet both the technical and business

constraints, the technologies found were Puppeteer, Selenium WebDriver, Playwright and

Cypress.

Puppeteer is a library developed by Google that can be found in the Node Package Manager

(NPM), which provides a “high-level Application Programming Interface (API) to control”

browsers such as Chrome and Chromium (and most recently Firefox) by using a specific syntax.

The following functionalities are promoted on its corporate website [45], [46]:

• Generate Screenshots and Portable Document Format (PDF) of a full page or small

extracts of it through the Document Object Model (DOM) navigation.

• Automate form submissions, layout tests, input coming from keys, among others.

• Create an automated testing environment. Run a set of tests using the latest version

of each of the browsers and using their latest features.

• Testing Chrome extensions.

28

Selenium WebDriver is a web framework developed by Selenium that can be found in

multiple package managers that allows the automation of tests in various browsers. Among its

most essential features, there are [47], [48]:

• Support for multiple languages, such as Java, Python, C#, Ruby, JavaScript (using the

Node runtime), and Kotlin. By providing this much language support, it is difficult not

to implement this framework based on the programming language.

• JavaScript Object Notation (JSON) Protocol. Allows the use of a standard process for

data transfer between client and web.

• Compatible with multiple browsers such as Chrome, Chromium, Firefox, Edge,

Internet Explorer, Safari, Opera.

Playwright is a library developed by the Playwright team that can be found in multiple

package managers, which focuses more on the reliability of its end-to-end capabilities. Its

most important features are (present on their official website) [49]:

• Support for any browser, such as Chrome, Edge, Firefox, Opera, or WebKit (Safari).

• Supports any platform, such as Windows, Linux, and macOS.

• Supports multiple programming languages such as TypeScript, JavaScript,

Python, .NET, Java.

• Allows native mobile testing.

• Resilient makes more reliable tests by waiting for its elements to load prior to

performing any kind of action.

• Fast execution and complete isolation provide a new test context on every test made

and accomplished in a fast manner.

Cypress is a library developed by the Cypress team that can be found in the NPM package

manager that focuses its platform on ease of use, debuggability, and simplicity to learn.

Among its vast number of features, there are [50]:

• Recording test, screenshot errors, and centralization in a dashboard external to the

application.

• Ease of developing new tests with tools capable of identifying multiple errors and

showing the current step being developed.

• Open source. Proving an ever so evolving library.

• Build from scratch without requiring external packages such as Selenium.

29

• Automatic waiting for the miscellaneous items to load before the commands and

assertions start to run.

2.6.4 Point-by-Point Comparison

In order to be able to evaluate these frameworks according to the company's requirements, it

was necessary to extract more information from various sources to complement the

information extracted from the official documentation. To be able to compare this

information in a more readable way, all the points of comparison will be presented in the

Table 4. Subsequently, the resolution of the comparison will be used to choose which

technology to use in Section 2.9. Each of the technologies was evaluated according to the

technical and company constraints (with the addition of performance). The source of

information for the Supported Browsers, Languages, Platforms and Companies comes, mainly,

from the official documentation of each of the technologies (Puppeteer, Selenium, Playwright,

and Cypress accordingly [45], [46], [47], [48], [49], [50]).

The first factor is Supported Browsers, representing all the browsers supported by the

technology. This factor is relevant because depending on the browsers there may be certain

functionalities put into question due to script support. The more supported browsers the

technology has, the better it is evaluated according to this factor.

Next, there is the factor of Supported Languages this row represents the programming

languages supported for test writing. This factor was considered relevant as the final solution

is intended to be maintained by multiple system actors of the Effizency team, with a familiar

programming language, the automation of tests will be easier to adopt. Within this row what

will be considered most relevant is the support of languages such as JavaScript (NodeJS) and

Python.

On the other hand, there is the factor of Supported Platforms this line aims to define which

operating systems are compatible with the technologies in question. This factor was

considered since there are currently system actors using operating systems such as Ubuntu

(Linux), Windows 10-11. The fact that this technology is compatible with MacOS was

considered as plus in the final tool decision.

30

Now the following factor is the Software Companies factor. This factor was considered

relevant because if good, well-established companies use a specific technology it is more

unlikely that it will stop being supported and maintained. For this factor a more thorough

search was needed because many technologies official documentation did not show their

most consolidated adopters in their official documentation.

The following results are quantitative factors that were calculated using a specific formula

(displayed on Table 3), to differentiate between the technologies. The following formula was

used:

Table 3 Formula of calculating time percentage [51]

Factors Formula

F = Fastest time of the four technologies inside a specific factor

C = Time spent by the technology on a specific factor

Cp = Percentage Displayed on the table as means of comparison

𝐶𝑝 = [(
𝐶

𝐹
) − 1] ∗ 100

The following row is the Performance factor. The performance results for each technology

were extracted from [51] and have some peculiarities that are worth mentioning. The first

one is that these test results are the product of running 1000 successful sequential tests for

each of the technologies and for each of the following three scenarios. The first one is a

“Static Website” and it evaluated an operation of a simple static website. The second one

“Single end-to-end test” validated the operation of a website with multiple parts involved,

frontend, backend, and some animations. The last one and more complex was a “Test Suit”

Validated a creation of an element after authentication in an application composed of

multiple components.

For the following rows of KPIs: “Learning Curve, Development Ease, Debuggability and

Maintainability” specific tests were performed specifically for this dissertation. These tests

were chosen according to what the company considered as relevant for a technology that

could perform automated tests, which is summarized in the prerequisites section.

To evaluate the KPI Learning Curve a simple objective was imposed, "Script that validates a

simple log-in and log-out," and the time taken to do these tests which each of the

technologies was recorded. It is worth mentioning that for this test to be as objective and as

31

unbiased as possible, no previous knowledge of any of these technologies was required. The

reason behind this row was to understand how easy and simple each of the technologies were

for a beginner and how ease these technologies could be learned for a simple specific case.

For the Development Ease KPI test, the development time was evaluated using a complex

testing case, "Interaction with google maps" (showcased in Figure 9) this required the creation

of a script capable of drawing an area within a Google Map iframe without any visible

identifier for the points to be selected. This particular test was considered relevant as an

exclusion filter. Without the possibility of interaction with a digital map the Solar Photovoltaic

product inside the B2B platform would be impossible to evaluate. This specific test was

suggested by the backend lead in the first meeting (see Table 11) for more information about

the meeting).

Figure 9 Capture of the Development Ease KPI Test

For the case of KPI Debuggability, a simple premise was stipulated and applied to the

previously completed projects. A simple bug, similar in all cases, was inserted in all projects,

and the final recorded time was the duration to fix this bug and run the test script successfully.

This simple bug was inserted in a submit form flow. This flow was composed on the

completion of multiple inputs and the submission of those inputs through the click of a button.

The bug was a simple typo in the unique identifier of the button used to submit the form.

Finally for the case of the Maintainability KPI, it was necessary to perform a test afterward to

discontinue it due to a behaviour modification stipulated by the company’s product managers.

This fix was identical for all technologies, and finally, the time it took to correct this behaviour

and run a new script was recorded. In this case a simple input was added into an already

developed and tested flow. This input had to be completed before submitting.

32

Table 4 Comparison of Technologies

 Puppeteer Selenium WebDriver Playwright Cypress

Supported browsers

Chrome, Chromium (since

the beginning) and Firefox

(since version v2.1.0)

Chrome, Chromium, Firefox,

Edge, Internet Explorer, Safari,

Opera

Chrome, Chromium, Firefox,

Edge, Internet Explorer, Safari,

Opera

Chrome, Chromium, Firefox,

Edge, Internet Explorer, Electron

Supported

Languages

JavaScript (NodeJS) Java, Python, C#, Ruby, JavaScript

(NodeJS), Kotlin

Java, Python, C#, JavaScript

(NodeJS)

JavaScript (NodeJS)

Supported Platform
Windows, Linux, macOS

(headless or headed)

Windows, Linux, macOS (headless

or headed)

Windows, Linux, macOS (headless

or headed)

Windows, Linux, macOS (headless

or headed)

Software/Companies

Olive, JPMorgan Chase,

Foresight Mental Health,

Snap Inc, American Fidelity,

IHS Markit, Wix… [52]

Netflix, Salesforce,

ThoughtWorks, Google, Mozilla,

LinkedIn, IBM, Yahoo, Accenture,

Atlassian… [53]

VSCode, Bing, Outlook, Disney+,

Material UI, ING Bank, Adobe,

React-Navigation, Accessibility…

Insights

Paypal, Walt Disney Studios, DHL,

HashiCorp, Airtable, Pandora,

Autodesk, Snyk, Johnson, and

Johnson…

Perfor

mance

Static

Website

- 64.86% 44.04% 366.51%

Single

End-to-end

test

0.68% 25.11% - 80.08%

Test Suit
1.38% 19.33% - 22.89%

Learning Curve 22.54% 10.17% 15.78% -

Development Ease 10.25% 34.21% 45.27% -

Debuggability 12.93% 18.48% 5.13% -

Maintainability 21.31% - 13.22% 5.23%

Baseline - Less percentage is better, and “-“ is the fastest

33

2.7 Real-World Examples

To adequately consider potential solutions and approaches to an issue, it is crucial, if possible,

to understand how other companies are acting to mitigate it. Ensuring software quality is an

essential and fundamental success factor for any of the giants that will be featured, since

without guaranteeing the quality of their product, they would never have gotten as far as they

have [54]. All these companies use their own customized method, adapted to their needs, but

with the same goal of ensuring quality through “efficient, profitable and sustainable” [54]

methods. Through these examples we can identify the testing practices used by these

companies and the type of testing they rely on to ensure the quality of their software.

Google is a company that is constantly reinventing itself, and this ideology also carries over to

its treatment of software quality. The company uses multiple testing frameworks, which

include manual and automated testing. To ensure the high quality of its product, Google has a

specialized team for testing and validating its features. It then uses several validation

strategies with a small group of people using the "Dogfooding" strategy that involves its own

employees using the company's tools during their day-to-day life and providing feedback

about the new feature’ usability [55]. Google focuses its testing practices more on validating

that the purpose of its product has been fulfilled. They use a variety of test types to validate,

from end-to-end black box testing to unit testing. As a testing practice, multiple sources [54],

[55], [56] suggest they focus on developing tests within the requirement analysis process,

leading to believe they use a TDD practice.

Facebook, on the other hand, develops using a "Developer-driven testing" strategy

(comparable to the “Test-Driven Development” practice described in the “Testing Practices”

subchapter). This strategy promotes the development of unit and integration tests by its

developers to ensure the quality of its social network. Facebook also uses techniques such as

"Dogfooding". Another strategy it uses is to use groups of users as a sample to validate new

features [55].

Spotify, unlike Facebook, has several employees distributed in cross-functional teams with the

task of testing. The difference between them, is that Spotify focuses on identifying new ways

to test whether these are implemented by their developers or by employees dedicated to

ensuring the quality of the software. Even with a large part of their process automated,

34

Spotify wants to ensure that the time spent testing their platform remains constant with the

goal of continuing to innovate with new ways to try and new ways to make testing more and

more valuable [55]. According to Kristian Karl, manager of Spotify's software quality team, the

most common tests performed by the company are: performance tests, unit tests, system

tests, integration tests, Graphical User Interface (GUI) tests, and many more [57].

Amazon, just like Facebook, focuses on developing new features and uses this methodology

to continue to grow. By applying TDD and conducting unit tests as a fundamental validation

measure, it can ensure the quality of its product. Like Facebook accepts the existence of bugs

as a possibility, but instead of working to reduce them, it works to improve and optimize its

development process so that if bugs are found, they are found and fixed as soon as possible

[55].

Netflix uses multiple interesting approaches to testing. Since the beginning of the pandemic

situation, it adapted its method of testing to try to replicate as much as possible the

environment present in their user lives to test and identify problems in its platform more

reliably. On the beginning of the project, it relied heavily on unit testing to identify problems

however they discovered that that method was faulty as just trusting on unit testing could

leave some bugs related to the full integration of a functionality. Therefore, they now include

even more end-to-end testing with complete actions made by its users to identify their

availability. A specific example was the use of end-to-end testing on their payment process as

it depended on the availability of multiple services to work altogether [8].

2.8 Related Work

This section reveals related research that helps with the understanding of the context shown.

With the help of previously done work it is possible to see some limitations and advantages

regarding test automation and their methodologies used. Each section has a simple paragraph

describing the value this source provided to the project and a summary paragraph which

displays the value this project gives to the information researched.

2.8.1 Test automation: not just for test execution

This paper [11] provided the historical context for this project. Its descriptions and

affirmations are simple and their relevance to this specific topic provides a good starting point.

35

In addition to providing information about how different tests are implemented inside

companies to improve a software quality similarly to this project’s solution. Lastly it helped

providing statistical data to use in this specific case in the form of a hypothesis to evaluate the

solution’s performance.

The value which this project adds to this paper is the appliance of its concepts into work case

by evaluating simple and complex use cases of automated tests and the value they generate

to an application.

2.8.2 Case White-box Testing Using Declarative Specifications Poster Abstract

This paper [13] provided the benefits of implementing automated tests inside a business

environment. By using simple explanations and focused terms which help have an all-around

understanding of the motive, reasoning, benefits, and disclaimers behind their adoption.

The value which this project adds to this paper is the implementation of the evaluation of the

most important functionalities inside a well-established platform and the identification of the

control flow of each of the functionalities evaluated.

2.8.3 Black Box and White Box Testing Techniques

The use of this paper [29] was crucial to understand the different methodologies and

objectives of automated testing. By reading this paper it was possible to understand which

were the appliances of each of the methodologies and their classification inside automated

testing world.

The value which this project adds to this paper is the application of different techniques and

objectives into a company and the analysis of the impacted automated testing has on a closed

company environment.

2.8.4 Analysis of the impact of test-based development techniques

The use of this paper [43] was essential to understand the key differences of all the different

practices and also to help the contextualization of test automation made in the first Sections

of the State of the Art and Testing Types. Also, it helped in the process of structuring this

dissertation.

36

The value which this project adds to this paper is the appliance inside the industrial

environment of a specific testing tool and the analysis of results previously and after the

implementation of automated tests. This value was considered as relevant by the author

inside the “Conclusion and Future Work Section”.

2.8.5 How To Set Up QA Processes in A Development Company

This article [58] was essential not so much so on the information provided but, in the advice,

and methods explained which will be later applied as the strategy of convincing multiple users

to adopt this platform in their day-to-day activities. Also displayed multiple tools to display

and show documentation which were handy on the pitch meetings providing insights and

diagrams to better display information in a cohesive and simplistic way.

The value this project adds to this article is the experimentation of the methods it explains as

useful in another company environment, the adaptation of processes according to what is

convenient, what is useful and what it is worth implementing.

2.9 Research Summary

Considering all the research carried out, a set of decisions were taken with a view to

developing a solution. These decisions require explanation of the reason for them, and some

require an alternative to be presented if the main viable option were to be discarded.

2.9.1 Testing Type: Black-Box Testing.

Motive: the system is composed of multiple parts, and to ensure the greatest coverage of the

overall system in the time constraint of this dissertation it was the only logical option. In the

future, it will be logical to implement more detailed tests focused on the various points of the

platform individually (White-Box Testing) to ensure greater accuracy in identifying problems

and more details of the problem encountered.

2.9.2 Testing Type by targeted level: Regression Tests and E2E Tests

Motive: Due to the rapid evolution of the platform and the introduction of new features every

week, testing very specific functionalities would require the allocation of more human

37

resources to the realization of this solution. As of today, it only has one person currently

developing the solution, so only core features and features with low change of being changed

are to be tested, to avoid “high maintenance and low reward”. In the future, it will be logical

to implement unit testing to test every unit of test possible, this will be made possible by the

introduction of a specialized quality assurance team.

2.9.3 Software Development Method: Agile Method

Motive: Because it was already the company's development strategy and is the most

receptive strategy to include testing prior to defining requirements. Besides it made no sense

to change the current software development method because of the introduction of a new

quality assurance method/methodology/solution.

2.9.4 Testing Methodology: Adaptation of TDD

Motive: Because it focused more (and has more weight on) on the feature planning reducing

the number of bugs found on the platform and increase the quality all-round of the product.

Also, the adoption of this methodology is supported by many tech giants (such as Google [55],

Facebook [55] and Amazon [55]) which also use TDD as their main methodology of testing.

The "adaptation of" part refers to the fact that it will not be implemented a purist approach to

the methodology but a slight adaptation capable of allowing the automation of current tests

and the creation of new ones through the current method.

Alternative: As a possible and very close alternative the methodology BDD could also be

adopted, as it focused the tests on replicating the current end-user behaviour when using the

platform.

2.9.5 Testing Technology: Cypress

Motive: Because of its easy configuration, fast learning, and easy integration with pre-existing

services (supported on the results of the tests made). Also, by having an amazing and rich

community helped which the common difficulties during development which made the

process of creating and improving tests almost effortless.

38

Alternative: A possible alternative is Selenium WebDriverIO since it also has a great

community and is considered a de facto standard in the current market of quality assurance

tools. The differential factor which made the Cypress alternative a more plausible one was the

fact that is has an easier documentation and provides a more refined method of identifying

the bugs and developing, through the use of the electron browser and with the support of the

provided console.

39

3 Analysis and Design

Through the previous chapter it was possible to find sufficient information to support

conceptual, methodical, and technological feasibility. With the research carried out, a more

detailed analysis of a POC, capable of demonstrating its usability, will be carried out. In this

chapter a technical analysis and design of POC will be presented. In order to design the

solution, the functional and non-functional requirements must first be found. Besides

designing the solution, this section also recognizes the parties involved in its use, identifying

their participation in the system and the effect that the system will have on their current

activities by elaborating a list of all the test cases worth automating, in addition to presenting

the solution’s architecture and testing and work methodology.

3.1 Context

Firstly, the Effizency Application Stack is composed of three main Applications: B2B Platform,

B2C Platform and Field Platform (explained in detail in the Subsection 3.3.3), which all follow

the same procedures while developing. Secondly, the development process of the company

Effizency is composed by four environments (associated to their specific development

branches). The first one is the Development Environment (DEV) which not associated with any

specific branch. The second one is the Test Environment (TST), which is associated with the

master branch. Thirdly, the Pre-Production Environment (PRE), which is associated with the

pre-production branch. Lastly the Production Environment (PRD), associated with the

production branch.

40

Since the DEV environment is designed to be executed locally by each programmer it will be

ignored from here on. Additionally, the TST environment represents the most updated state

of the applications, and therefore, it is not the most stable version, as it is constantly receiving

new changes, or its functionalities are on review before being sent to PRE. Thirdly, the PRE

environment intends to replicate the PRD environment, by performing a final validation

before the changes are deployed for the final client. This machine is not always active, only

and exclusively in a day of deployment to PRD (Wednesdays for B2C or Thursdays for B2B and

Field). Finally, we have the PRD environment. This environment is used by the end user and

must be the most stable of the environments. The validations performed in it, during the

deployment days are light and do not go into detail.

Nowadays a functionality goes through a process of transition to reach the end-user. This

process can be described as a development cycle. It starts with the DEV environment and ends

with the PRD environment, moving through the TST and PRE environment. Excluding the DEV

environment, all other environments are aligned with a cloud hosted service (inside Azure

cloud service). When changes are added to the master, pre-production and production

branches a pipeline (inside Gitlab DevOps Platform) is triggered containing within the semi-

automated deployment process (as represented on the Figure 10). This pipeline currently

contains no automated means of validation of any kind of functionality. In all deploy processes

the actors are usually the same, the engineering team controls the pipeline and its execution,

and the product team validates the functionality/functionalities introduced in the

environment (the technical aspects of the deployment process are explained in detail in the

Subsection 3.5.3).

Figure 10 Current Deployment Process Overview

41

After researching on which means would allow interacting with the different parts of the

development process it was decided that the solution would be an application service such as

an API. Since a single testing application service was made available for this POC all three

applications must be tested inside a single machine. The differentiation can only be possible

by an explicitly organizing the tests in different locations within the project’s architecture.

 Finally, to consider all the different moments of the development cycle focused this API

should be able to be triggered manually, semi-automatically (after a pipeline is manually

triggered) and automatically (before each workday). These different methods are explained in

detail inside Section 3.2. After the identification of the means of interaction with the tests, a

critical analysis should be performed about which functionalities (in this case specifically

about which tests cases) should be performed through a standard engineering process.

3.2 Testing Methodology Proposed

In the previous sections it was mentioned that the chosen methodology would be an

adaptation of TDD. This slight adaptation (displayed on Figure 14). compared to the purist

version of TDD will be evident through the following factors (with a real-world applied

example of a feature of “Adding Código de Ponto de Entrada (CPE) validation to installation

creation”):

• The first new step that will be implemented with this new methodology will be the

test design process carried out at the time of planning a User Story (US). In contrast to

what was previously done when the Product Manager Team (PMs) are writing the

requirements, all the test cases that must demonstrate the functioning of the feature

must be written in list format, inside the newly created section displayed on Figure 11.

These test cases must act as acceptance criteria when the new functionality is

introduced in the different environments (TST, PRE and PRD).

Figure 11 New section added to the US with the acceptance criteria

42

• The second step, after the acceptance criteria are set, is a validation process that

proves whether the intended tests have been developed for the test service. The

following Figure 12 shows the previous example now with the validated tests, having

identified one test that requires adaptation (represented by the warning sign),

another that requires zero development (represented by the “X” sign) and finally two

tests that have already been developed and do not require adaptation. This validation

is essential so that duplicate tests are not developed and as much code as possible

can be used.

Figure 12 Validation of the tests to perform

• After this validation and before the development phase these new tests and

adaptations should be considered in the Sprint effort planning (as displayed on the

Figure 13 and also called estimation process). In Effizency the USs are classified by a

numerical unit of days/man i.e. the USs are classified in terms of effort according to

the number of days it would take a person to perform that task. This analysis should

be performed considering the relevance that the test of this features has for the

business model.

Figure 13 Estimation of the development and adaptation

43

• After the previous steps, the development process should begin. This phase should

occur synchronously or directly after the development of the new functionality. These

tests should ideally be developed by a PM (or Support Team) outside the context of

the US adding abstraction and objectivity.

• Finally, after the functionality has been developed and its tests automated, this

feature can be tested (test process) in the different environments. This will be

validated through two methods, a manual method (for TST) a semi-automatic method

(for PRE and PRD) and an automatic method (for TST and PRD). The manual method

starts with a call of an HTTP (using Postman Client) method which validates a single

functionality quickly and without considering other developments to be added to the

environment (TST can be very volatile during the development phase). The semi-

automatic method is triggered after the pipeline (of PRE and PRD) is finished (inside

the Gitlab Platform). Lastly the automatic method (using pgAgent as cron-job Client),

runs tests every day early in the morning (at 7 am) running a set of pre-configured

daily tests (Figure 15 displays a clear image of the tests triggered).

Figure 14 Flowchart Diagram of the Testing Methodology

Figure 15 Deployment Process with Test Service Diagram

44

3.3 Requirement Engineering

As previously established, the actions performed by a system should be directly related to the

needs of a customer or potential actor of the system itself. These actions are to be

enumerated into requirements, which can be later addressed and subdivided into use cases

and test cases on the later stages. According to Sommerville [59] the requirements have two

levels of granularity, user requirements and system requirements. The user requirements

represent what the actor or user of a specific solution needs, and what the user does with a

system. On the other hand, system requirements are “building blocks developers use to build

a system” [60]. For this stage of the analysis, requirements have been described in a less detail,

these will later serve as a placeholder for their comprehensive description. A complete list of

all user and system requirements can be found on the Figure 16.

Figure 16 User and System Requirements Detailed Description

45

3.3.1 Stakeholders

Within this project we can find two types of stakeholders according to the effect that this

platform will have on them, these are:

Indirect Stakeholders:

• End-Users (of the Effizency platform): This stakeholder's main activity is using the

platform as a selling tool to showcase and generate contracts easily. Although the

users will not benefit directly from a testing platform at first hand, they will receive a

higher quality product less prone to errors. Normally, when those errors were

identified, this end-user will contact his supervisor which was required to create a

ticket to be analysed by Effizency support team. If the bug is confirmed it will

eventually lead to the creation a US for “bug fixing”.

Direct Stakeholders:

• Support Team: Is currently in charge of the analysis the tickets made by the end-users

and directing them, if necessary, to the product them to be further analysed. Another

task it performs is the aid in validating some of the most extensive features with the

Product Managers Team. Through this testing platform the number of tickets and

amount of testing done would be significantly reduced.

• Product Managers Team: Inside the Effizency the PMs perform multiple tasks inside

and outside the development process. Firstly, they are responsible for receiving

requests (in the form of tickets). These tickets can either be as a bug report for fixing a

functionality (already addressed and evaluated by the support team) or new features

proposed. Their task is to carefully detail the ticked into a valid format for the

engineering team and complete the information if need be. This process must be

done before the US is created inside the engineering platform (in this case Gitlab).

Another, task they perform is to validate the US in the different environments in the

following order, TST firstly, which is an environment very volatile because of the

features being introduced. Then it needs to validate the changes in PRE which is a

system that is not always running (for resource saving reasons), and which emulates

PRD. Lastly, it has to validate lightly that the feature entered in PRD. In the PRE and

PRD validations they must ensure that the platform’s previous functionalities were

not affected by the introduction of these new features (regression tests). Managers

46

would profit the most from the implementation of an automated testing platform as

most of their activities benefit from it. With an automated testing platform, fewer

tickets will be issued by the end-user manager since bugs will be identified (mostly) by

automation providing the engineering team more time to fix the problem. In addition,

the regression tests performed for PRE and PRD will be automated ensuring a

reduction of effort for feature validation. This team will design the new tests when

describing the requirements of an US, develop new tests and maintaining the tests.

• Engineering Team: This team performs the development and maintenance activities

of the Effizency platform. They take the US from the PMs and resolves their purpose,

either be bug fixing or feature developing. Through a testing platform this team will

be able to ensure new features, refactoring’s, corrections do not interfere will old

features without many efforts.

3.3.2 System Actors

The actors that will interact directly in the test platform correspond to those stakeholders

whose process was directly affected. Like the example in question, all the system actors will

interact with the system in different ways, by having different levels of access to the different

automatic tests performed. On the one side, the support team due to their little technical

knowledge of the architecture will not be required to interact with an API, therefore, an

asynchrony job will have to be developed. On the other hand, for both the product team and

the engineering team a simple API with proper documentation would be sufficient. This

platform should be part of the work process of all the actors, and their means of execution of

the tests will be performed using the Postman HTTP Client.

3.3.3 Effizency Application Stack

When referring to the platform of the company Effizency it is necessary to explain in detail the

meaning. Effizency is not composed by a single platform, it is however, composed by a stack

of platforms which in some way or another interact with each other and provide the end-user

the complete experience from managing and generating the contract in energy to the actual

installation of the efficiency measure. By supplying the company with multiple platforms, it is

possible to provide each platform with a core activity rather than having a platform doing all

the things at the same time.

47

B2B Platform

This platform is intended for companies and, in general, to facilitate the process of generating

and customizing proposals for energy efficiency measures without compromise. Since the

business in charge of selling these services has technical knowledge behind the generation of

this proposal the features are as technical as possible. The energy measures offered by the

platform are the following:

• Solar Photovoltaic (PV), installation of solar photovoltaic panels to produce and

consume your own energy.

• Efficient Lighting (IE), replacing light bulbs and fixtures with energy-saving LED and

fluorescent solutions.

• Reactive Cost Elimination (CFP), installation of capacitor banks to reduce the cost of

reactive energy.

• Certifications and Energy Audits (CE), certifications and energy audits to know how to

save.

• Transformer Station Maintenance (MPT), the correct operation of your company's

installation is essential for competitiveness.

• Electric Mobility (ME), charging stations solutions for a more economical, sustainable,

and innovative fleet.

• Technician in Charge of Operation (TRE), a certified technician who will take

responsibility for ensuring the proper functioning of the Customer's electrical

infrastructure.

These measures are offered to different users according to their type, there are three types of

users, Managers which have the maximum access level, Channels which have reduced access

level according to their provided clients, and Clients, which have the lowest amount of access.

These products and user types are available to multiple companies and countries such as EDP

Portugal, EDP Spain, EDP Poland and EDP Italy.

B2C Platform

Secondly, there is a consumer platform that represents a smaller version of the B2B platform

for less specialized users, it also exclusively provides options suitable for the non-business

48

type of consumer, such as Condominium or Neighbourhood options. The measures offered by

the platform are modified versions of the Solar PV product:

• Solar Photovoltaic, Housing.

• Photovoltaic Solar, Condominium.

• Photovoltaic Solar, Neighbourhood.

These measures are offered to four types of users, Manager which have the maximum access

level, Supervisor and Channel which have reduced access level each with the Channel having

the least amount and, lastly the Agents which have the lowest amount of access level. In this

specific case these measures are offered exclusively to the company EDP Portugal.

Field Platform

Finally, there is the platform for the installation process and site survey carried out after the

award of the contract on the B2B platform. Through this platform it will be possible to interact

with partners during the installation process of the chosen efficiency measure. The processes

that are combined in this platform come from a complex system of integration between both

platforms. One core feature which currently demonstrates the value of this platform is the

“Go/No Go”. This feature evaluates the validity of a process to go forward or to be denied, as

it compares the estimations produced by the B2B platform and actual prices of the technicians.

Through this platform measures such as:

• Solar Photovoltaic.

• Electric Mobility.

• Reactive Cost Elimination.

This platform is used by two different types of users, managers, who act as the company

representants with management tools for all their process and Partner which have relative

access to their proposals. This platform is available for companies such as EDP Portugal, EDP

Spain, EDP Poland and EDP Italy.

3.3.4 Non-functional requirements

Non-functional requirements are those that are not directly related to the service offered, but

rather to general properties of a specific system.

49

• Response time (Performance): The service should have a response time of less than

five seconds. This refers to the time required by the system to provide a notification

that the tests have begun. In addition, the feedback, received by email, should be

received in a time lower than five minutes. This time comes from the usual endpoint

performance business rules, in general it describes the maximum time expected for an

endpoint to respond without providing the user with inefficiencies. Having a response

time that evidences the fact that the action of testing a feature is proceeding correctly

is essential to its use. This does not infer that the tests should run under five seconds

but that the API should respond after triggering the test event but without waiting for

the test to finish (as depicted in Code Sample 1).

{

"status": 200,

"message": "Automated tests triggered. You will receive the test

results in the email inbox selected.",

}

Code Sample 1 – Example of JSON Response

• Non-monitoring Running (Availability): The service should be able, without any kind

of manual trigger, run all tests scheduled. In the requirements analysis it is stated that

it is important to receive feedback of the status of all the features before the workday

starts in order to provide the engineering team with enough time to fix the issue. To

achieve this result the service must have a cronjob (preferably in pgAgent as it is tool

currently used by Effizency, as depicted on Figure 17) capable of running the tests by

itself at 7am (or earlier).

Figure 17 Configuration Example pgAgent

50

• Identifiability (Reliability): When receiving a test result it should be easy to identify

what was the overall conclusion of all the tests performed and the individual steps, so

that if any test fails it is easy to identify in which part of the process it failed. This

means that in the email received there should be a macro section listing the test

functionalities without much detail and a detailed section (preferably as an

attachment) through which it should be possible to see more details about the tests

carried out. Another way to complete the information would be to receive a print-

screen at the exact moment of the error that makes it easier to identify the section

where the problem occurred.

• Usability: The service should feature easy to use methods such as through HTTP

requests, it should also allow to filter tests, to prevent from having to run the entire

group of tests. Expected filters:

o Tests per Platform.

o Tests per Product.

o Tests per Integration.

o Tests per Authentication.

• Controlled Access (Security): the service should have restricted access to the test

results as to the testing platform. To meet this objective, it is necessary to define in a

configuration file which emails will receive the test results and the creation of access

accounts to the service.

• Compatibility (Supportability): the service should be to run tests inside Chrome,

Firefox, Edge Browsers as these are the most widely used browsers [44] and also

inside the most well-known operating systems [61], in addition to the ones used by

Effizency engineering team (as they require to run the process locally to be able to

develop new tests) .

• Scalability (Performance): the service should be able to run inside the current cloud

infrastructure of the Effizency services (which in this case is Azure). This process

includes the automatic deployment (triggered by Gitlab runners) to the

application when needed and the ability to be executed inside a Docker

container.

51

3.3.5 Functional Requirements

Functional requirements will be representative of the processes the testing platform is

supposed to provide coverage of. These processes represent the current regression tests

performed by the PMs after the introduction of a new broad feature.

In order to explain the functional requirements correctly, it is necessary to associate the

respective concepts to this specific case. The system actor responsibility is to perform or

trigger the new tests. Only one type of system actor can also perform the action of developing

new tests, that being the Support team, the rest only act as users of the service. The support

team plays an essential role not only to ensure the full operation of the platform but also to

support the automatic testing of new features to be developed. The role of each system actor

inside the testing platform together with the execution means (mentioned before) are

depicted below on Figure 18.

Figure 18 System Actor, execution means and Roles

Another concept worth explaining further is Use Cases (UC). For this specific case the

functionalities performed by the test service are tests. That is, the execution of a test

represents the use of a functionality by the system actors, therefore is called UC. The

Role Tr
ig

ge
r

Te
st

s

D
ev

el
o

p
 n

ew
 T

es
ts

D
es

ig
n

 n
ew

 T
es

ts

A
d

d
 G

ro
u

p
 T

es
ts

 T
o

 P
ip

el
in

e

System Actors

Support Team (Postman)

Product Managers Team (Postman)

Engineering Team (Postman)

Pipeline (Gitlab)

PgAgent

52

following figures (Figure 19) represent the UCs the service will provide to the system actors

and the execution means used.

Figure 19 Use Case Diagram

UC-1 Validates Authentication (Sequence Diagram on Figure 20)

Description: In order to validate if the authentication functionality is working, different flows

must be performed. As a first step, the success flow must be validated, and for that to

happen an authentication on the platform must be performed. For this to work properly

credentials for each type of user and each environment must be set up on the platform in a

configuration file. These credentials will be read by the platform according to the

environment that is being tested and will be inserted in the fields accordingly, and then

submitted. At the end, when the authentication occurred correctly a token will be obtained

for further validation.

Secondly, if incorrect credentials are inserted in the platform, it should be checked and

validated that a token is not delivered. To do so, the authentication fields must be completed,

53

but this time with an incorrect password. After submission the platform should not redirect

the user into the session and should show an error. Finally, the last verification to implement

is to check if users can log out of their account. To do so, after logging in (authentication of

credentials), the user must be able to log out and therefore, invalidate their session for

further use.

Requirements:

• Configuration of demo users per user type.

• Configuration of different levels of access to tests.

• Creation of configuration files per environment (TST, PRE and PRD).

• Validation of authentication through a success, an error and logout flow.

Figure 20 Sequence Diagram UC-1

UC-2 Validates Integrations (Sequence Diagram on Figure 21)

Description: One of the advantages that Effizency offers their clients is the ability to customize

and request according to their needs. Given the fact that the majority of these clients have

their own implemented systems, the need arises to include means of flexibility of integrating

the Effizency data between different platforms or even using external means. These

54

processes are essential to Effizency, and because they rely on the correct functioning of many

components they must be validated thoroughly.

The first essential means of integration for Effizency is the adjudication process that sends

proposals generated from the B2B platform to the Field platform, requiring a reliable

communication between both APIs to ensure the proposal is being sent correctly.

The second essential means of integration for Effizency is the process of sending the created

proposal to the Customer Relationship Management (CRM) of the authenticated user's

company. This CRM may differ from client to client so this process must be validated for all

clients.

Requirements:

• Configuration of an integration flow.

Figure 21 Sequence Diagram UC-2

UC-3 Validates Product (Sequence Diagram on Figure 22 for B2B and Figure 23 for B2C)

Description: The most business-relevant functionalities of the application are the generation

of efficiency measure contracts, as well as process tracking. However, each platform has

particularities both in terms of business and relevance.

First, the B2B platform needs to validate that all products are able to generate a proposal.

Given the fact that the flow differs by product type and by user type, multiple flows should be

performed respectively for each product to ensure the greatest coverage, also proposals

55

should generate more than one payment method. There are three main payment methods,

Prompt Payment (PP), Instalments and Service. Secondly, for the B2C platform where there is

only one product the main focus is ensuring that all the micro modalities of the Solar

Photovoltaic product work properly. This includes the three modalities mentioned in Section

3.3.3 and no more than one payment method should be validated as they are not considered

as relevant for the business model.

Requirements:

• Configuration of complete proposal flow per process.

• Configuration of flows per product.

• Configuration of flows per user type.

• Configuration of flows per business relevance.

• Validation of generated proposal.

Figure 22 Sequence Diagram UC-3 B2B

56

Figure 23 Sequence Diagram UC-3 B2C

UC-4 Validates Site-Survey Process (Sequence Diagram on Figure 24)

Description: The distinction of processes according to the efficiency measure, are not

considered as relevant within the Field Application, as the transition of a process from when it

is received, coming from the B2B integration to the moment where it can be declared as

finished.

This process goes through different phases. Firstly, in order to guarantee the independence of

this test from the tests related to the B2B platform, a proposal must be generated from the

start and sent to Field through the Process List.

Afterwards, the proposal must be found in the Field platform with the status Reception of

Sales Operation (SO). Through a manager user it should be transitioned to Site Survey

Requested. After this transition, a user of the Partner type must fill in the documents and

engineering data, thus transitioning the status to "SO Validation". Finally, a manager user

must fill in the Real Cost of Equipment, thus triggering the Int Internal Rate of Return (IRR)

calculation process.

At the end it should be validated that the IRR was successfully calculated, and the process can

proceed accordingly to the service offered in the B2B platform.

Requirements:

• Configuration of a simple proposal generation flow.

• Configuration of a complete site-survey flow per process.

57

Figure 24 Sequence Diagram UC-4

UC-5 Validates Platform (Sequence Diagram on Figure 25)

Description: Finally, there is the need to validate the systems as a whole or through small

extracts. This involves categorizing the functionality firstly by platform and then by the

functionality itself. Without this categorization it would not be possible to create an endpoint

capable of knowing which specifications or group of specifications to test.

To support this use case, it will be necessary to create a service that complies with the

application architecture of the company services and that is also able to run the grouped tests.

This could be made by calling a cron-job, so that before a workday begins it is possible to

ensure that the platform is fully functional or give the engineering team time to identify and

fix potential bugs as quickly as possible.

Requirements:

• Configure tests in groups according to platform.

• Configuration of an endpoint for running all tests.

• Configuration of an endpoint for running all tests from a platform.

• Configuration of an endpoint for running a specific test

58

Figure 25 Sequence Diagram UC-5

3.4 Test Case List

As mentioned earlier these tests were not completed due to the fact that they were

performed by a human resource in a manual manner with a restricted time to perform them.

This diagram shown in Figure 26 represents all the test cases (complete test case list found on

Annex B). All this test cases have:

• Success and Failed cases: to evaluate the validity of the flow as well as its completion

• Multiple Test cases: For those that represent complex flows should have more than

one realisation flow thus demonstrating multiple different flow work. This Test cases

should be defined according to their business relevance. An Example is “UC-3 > B2C >

PV > Space Type” which requires three flows (Housing, Condominium and

Neighbourhood) to completed for a full validated.

• Multiple Points of validation: the information displayed should be validated through

the multiple steps thus allowing data consistency. An Example is “UC-3 > B2B > PV”

which validates the Sizing information with the information displayed on the proposal

generated.

59

Figure 26 List of All requirements to be developed by UC

60

3.5 Solution Architecture

The aim of this section is to go into detail on the architecture of the solution, starting with its

components and dependencies and ending with the process of introducing new tests into the

system.

3.5.1 Logical View

The following Figure 27 shows all the components inside the Testing Application and their

interactions. An alternative of the Architecture and why it was discarded can be found on

Annex F.

Figure 27 Component Diagram

Router:

The first component visible in the Diagram is the Router. The Router is responsible for

receiving HTTP requests from different sources and direct them to their respective function

within the controller. Inside the Application there should be two route files:

61

• Test route - for test execution.

• Health route - for check verification of the API.

Test Controller:

The second component to be called is the Controller. This is in charge of applying all the

business logic associated with a specific endpoint. Within the controller the various

dependencies and specs that the solution requires to work properly must also be used. In this

project we can find two controllers:

• Test Controller - for the execution of test specs through Cypress dependency and the

compilation and sending of test results.

• Health Controller - simple controller with a single endpoint that returns the state and

environment of the service.

Test Specs:

The next component is the set of specs used for testing. These specs represent the code

extracts that must be executed to validate a functionality. Due to the desired filters (platform,

product and name) they must be organized in a folder that represents the platform where

they are. Inside the platform the following specs must exist:

• Authentication. One spec file for Authentication for each of the platforms.

• Product. One spec file for each of the products in B2B and B2C.

• Integration. One spec file for each integration in B2B.

Email Client:

The email client provides the service the ability to send emails, in this specific case email with

the test case result. As this case requires, it should also allow the addition of attachments,

both PDF documents (with the details of all the tests carried out) and images with the print-

screens of the exact moment where an error occurred, if it happens, which on a successful

error-free run will not be necessary.

Test Compiler/Converter:

The Test Compiler/Converter refers to the library capable of converting a test result output

into something that can be sent by email, specifically a PDF. This compiler should be able to

convert from HTML to PDF complying with a specific template.

62

Error Monitoring:

Apart from the elements mentioned before, and as a rule of Effizency guidelines, an error

monitoring system of the errors found while the server is running and sends them to an

external service in which they can be analysed. This service is essential to be able to replicate

and identify problems in the service almost instantaneously after they occur.

3.5.2 Technologies

After the explanation and summary of the multiple components of the application it was

necessary to define, which technologies were chosen to fulfil the requirements. Those

technologies are listed below (a complete alternative set of technologies can be seen in Annex

C).

Node:

Node or NodeJS, as the main programming language, is a runtime written in C++ [62] which

aims to provide a use of the JavaScript language in server-side scripting. NodeJS is widely used

around the world (“crossing the one billion download threshold in 2018” [63]) for the creation

of microservices and it is commonly used by companies as Twitter, Spotify, LinkedIn [63]. Like

those companies, Effizency programs its services using primarily NodeJS. This gives the

company the ability to use a similar Frontend (where it uses React) and Backend syntax.

Within the actors of the system, the most capable ones in the development of microservices

using node would be the engineering team. The use of this technology would force the

Support team and PMs to learn a new "programming language”, however it is considered as

the main choice as it provided consistency in most of the services developed by Effizency.

Express:

Express or ExpressJS, as the main framework, as it is the “de-facto standard” [63] framework

in the market when using NodeJS for API development. This framework's main advantages are

its minimalism and flexibility [64], allowing the introduction of programmer-designed and

programmer-oriented structures without any kind of restriction or obligation to a pre-defined

structure. It also offers facilities for developing microservices through simplistic and well-

documented methods without "weighing" on the overall size of the project. Like Node, this

framework is used in most of the microservices created by Effizency. The fact that it offers the

63

flexibility of the framework allows all microservices to have a similar structure even if they are

used for different purposes.

Cypress:

Cypress as the test Automator package for the test specs. Apart from the aforementioned

advantages used to justify its use, there are a few more considerations that make it a perfect

choice. This library integrates perfectly with the Express framework offering flexibility to run

the tests either through the command line or by deploying the methods for use within Node

applications. It also provides two modes of use, the programming mode which allows you to

see the tests running locally with a browser (as shown in Figure 28), being able to stop and

analyze the test points point by point and providing access to a console capable of executing

commands during the tests execution. And the Continuous Integration and Continuous

Delivery (CICD) mode which focuses on speed and runs the browser headless without any

visual environment but with much higher performance.

Figure 28 Cypress Local Run Test Mode for developers

Another aspect that led to the use of the Cypress service was the possibility of using the

Dashboard, accessed through the direct link "https://dashboard.cypress.io/" which gives real

time information on the status of the tests as they are executed. If they fail it also provides

detailed information about the error and can also provide a video of the flow to the point

where it failed and can manually stop running the tests (as seen on Figure 29).

64

Figure 29 Cypress Dashboard for Tests

Finally, they provide the ability of generating a print-screen with the exact moment the tests

failed with the validation which failed underlined in red (as shown on Figure 30). This print-

screens are generated after the tests are concluded so they do not affect their performance.

Figure 30 Cypress Error Case Test

Sentry:

Sentry was the package chosen for error monitoring of the platform; however, this library has

many more uses and features available. It allows you to diagnose, correct and optimize the

errors that are found in the service [65]. This library can be used in multiple languages such as

JavaScript, Python, PHP or Java [66]. It was chosen because it is the library used by the

services of Effizency as a means of logging the errors, and through this the errors of the

technology stack can remain centralized (as shown on Figure 31).

65

Figure 31 Sentry Error Monitoring System

EmailJS:

EmailJs is an email client package used for the purpose of sending emails. This package is one

of the most widely used means of sending emails using NodeJS. With this package it will be

possible, using HyperText Markup Language (HTML) templates, to send emails reporting the

status of the tested functionalities. These templates will contain a modular factor (as

displayed on Figure 32) that will change from test to test and will be formed through iteration

of the results of the tests performed.

Figure 32 Email template after tests conclusion

Html-pdf-Node:

Html-pdf-Node is the package used for Test Compiler and Converter. Through the Html-pdf-

Node it will be possible to create modular pdf documents (such as the one on Figure 33) by

converting html templates to PDF. This feature will be used to send an attached document

66

with all the details of the tests performed so as not to create noise in the priority information

of the main email (nor to make it too long).

Figure 33 File attached to the email

3.5.3 Deployment Process

The process of introducing new tests or even adding new functionalities should be designed

and structured. This process is in accordance with the process already used by the company in

the other platforms and starts with the following steps:

1. First the changes to be made must be identified and associated to an US. These

changes must be tested locally within a feature branch from the master branch

(updated) before they can proceed. Once the changes have been tested and validated

locally, they can be committed.

2. After the changes are committed a merge should be done to the master branch

(which is directly associated with the TST server). When this merge is performed

automatically, the Gitlab pipeline will be triggered. This pipeline automatically forms a

docker image with the new changes and pushes them to an external repository (such

as DockerHub) updating the application's TST environment image.

3. On the Web app of the Azure cloud configuration, a Runner was previously configured

to check for image changes of a specific environment and if this image is changed it

starts the download and setup process of the new image.

4. When this process is completed, the new changes will be available in TST.

67

3.6 Work Methodology

At the beginning of this dissertation and as the problem became more evident, it was

necessary to define a work methodology. Through this work methodology it was intended to

evaluate the time available for each section of the solution while confirming the steps that

should be necessary for the development of the solution. All the phases carried out here were

subsequently fulfilled according to the Gantt Diagram which can be seen in Figure 34. The

dates included in the Gantt chart are not exact references, they are meant to get a macro idea

of the project's path.

• The first phase of the engineering process (Research) coincides with the research

process undertaken in the dissertation, as through both it is sought to understand

more about the problem and what approaches can be taken to solve it. This research

process starts with the conceptual analysis of the problem and ends up mentioning all

the technologies that can be used to solve it. At last, it summarises a set of theoretical

and technological decisions that have been made.

• The second phase describes the moment of Analysis and Design of the solution.

Through this phase, the requirements engineering will be performed where

stakeholders, actors, application stack... among others are identified, and finally all

test cases will be enumerated and finally automated.

• The third phase is the Implementation of the solution in the workplace. The Quality

Function Deployment (QFD, contained in Annex D) document will be used as a means

of obtaining the exact percentage of completion of the solution during development.

To exactly describe the implementations multiple sub-phases must be mentioned. The

first (Elicitation) of these, will be the elicitation phase, where the processes that can

be simplified and changed through the inclusion of the solution, will be identified and

defined. The second refers to the actual development process of the solution. Finally,

we have the process of quality validation through which it will be proven if the flows

work properly and will be corrected the imperfections and bugs found.

• The fourth phase will consist of Evaluating the solution. This last phase includes two

steps; the first is gathering all data regarding the validity and reliability of the solution

and the second is asking and searching for feedback (this phase will be explained in

detail in the Section 5.4).

68

Figure 34 Gantt Diagram of the Work Methodology

Start Finish Se
pt

em
be

r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch

Ap
ril

M
ay

Ju
ne Ju
ly

Au
gu

st

Se
pt

em
be

r

1-Sep 1-Mar

1-Jan 1-Apr

1-Mar 1-Jul

1-Mar 1-Apr

1-Apr 1-Jun

1-May 1-Jul

1-Jul 30-Sep

1-Jul 1-Sep

20-Aug 30-Sep

2021 2022

PHASE 1: Research

PHASE 2: Analysis and Design

PHASE 3: Implementation

PHASE 3.1: Elicitation

PHASE 3.2: Development

PHASE 3.3: Quality Validation

PHASE 4: Evaluation

PHASE 4.1: Evaluating

PHASE 4.2: Feedback

69

4 Implementation

With the analysis and design accomplished, it's time to move on to the practical section that

involves the actual implementation of the solution. This chapter explains in detail how the

development of the project was organized and structured. To kick off this explanation it

details the structure of the solution developed, including its system of folders and endpoints.

Also, it features the use cases with greater detailed showing the different application layers

the information goes through. Besides it delineates the particularities of this specific solution

and the difficulties found in development.

4.1 Project Structure

To describe the structure of the project, its internal folders, means of use (clients) and lastly

the endpoints it offers were listed.

Test Application: This service is organized following the structure guidelines of the Effizency

services, and it is composed of the following folders and files:

The “/.vscode” folder: which contains the configuration file needed to facilitate the local

execution of the API in debug mode.

The “/api” folder where the following folders are located:

70

• "/bin": point of entry for the execution of a basic API with basic configurations such as

port definition, function definition for error case and server creation itself are

programmed.

• "/config": where the constants per environment inside JSON files are defined.

• "/controllers": controllers of the various endpoints in conjunction with the associated

behavioural logic.

• "/cypress": functions and logic associated with the test specifications. It will be looked

at in detail in the explanation of the "Cypress Test Specs" component.

• “/local_storage”: contains some test results in JSON format for multi-day validation.

• "/middlewares": where middleware used by the application are configured.

• "/node_modules": dependencies of the NodeJS project.

• "/public": images and items used in the email template.

• "/routes": routers of the application, for each route generated has a role inside the

controller.

• “/templates”: email templates used by the application

“/util”: files with general functions used by the application.

Test Specs: shows all the information about the tests you can perform. This folder structure

goes according to the official Cypress guidelines [67]. These are as follows:

• "/downloads": files obtained through the tests performed.

• “/fixtures": constants per environment per company to centralize the

credentials/texts/validations used.

• "/integration": specifications of the tests that can be performed.

• "/plugins": where plugins can be defined for cypress to use.

• “/screenshots": screenshots of the error moment when the tests for some reason fail.

• “/support": where general functions that the whole project can use are defined.

• “/videos”: videos generated on error case leading to the error moment (this feature is

currently disabled in the application as it affected considerable the performance of

the tests performed).

Clients: as a means of using the service there are several methods depending on the specific

situation (as mentioned in Section 3.2):

71

• Postman: is the current HTTP client used as to trigger the tests manually. In order to

facilitate its use, all possible endpoints were pre-configured (as displayed on Figure 35)

with their test suite in each case. And the documentation of all the features available

to test were also created.

Figure 35 Postman Collection Configuration

• Gitlab: is a platform that provides a set of tools for developing, deploying and

improving applications. With the Gitlab pipelines it will be possible to validate the

functionalities in a semi-automatic way when a change is included in the PRE and PRD

environments.

• PgAgent: is a job configuration agent for Postgres databases. This technology is used

by Effizency for any types of chronological and automatic jobs. These require not

monitored and scheduled execution. Currently, in the context of this POC, a job was

configured to perform automatic tests at 7 am in TST and PRD environments so that

when the day begins it is possible to have an updated state of the most relevant

features for the business.

Figure 36 PgAgent Job Configuration

Endpoints: the functionalities that the services offer are dependent on their specific

endpoints. These endpoints were created to facilitate the use of the service:

72

• “/api/test” [GET] – allows the trigger of all tests available inside the service.

• “/api/:platform/:spec” [POST] – allows the trigger of tests filters by platform or/and

specific test.

• “/api/health” [POST] – allows to check the status of the service. It is currently a

default endpoint available in all Effizency services.

4.2 Use Case Realizations

Within the application there are multiple test cases, two of them were chosen (Figure 37 and

Figure 38) to give a general perception of the project and its complexity. The first and simplest

endpoint, is the application health one, which is an obligation within the guidelines in order to

validate that the API is responding to requests correctly. This health application is comprised

of two parts: the Router which allows the reception and definition of the specific endpoint to

be used and the controller which contains all the associated logic.

Figure 37 Detailed Sequence Diagram of the Health Endpoint

On the other hand, we have the testing endpoint, that assesses the solar product. This

endpoint has two parts in common with previously mentioned, which are the parts related to

the router and controller, however unlike this endpoint its logic does not end there. Inside the

controller it calls a function of the cypress package in order to execute a set of user defined

specs. Through these commands Cypress accesses the Effizency link in the different

environments and validates their operation. Without waiting for the tests to be completed the

API returns a response informing the user that the tests were triggered and to wait for them

to be completed and an email sent. When the tests are effectively finished, the conversion

packages are used to transform the output of the tests into HTML for the email body, PDF for

the email attachments and PNG for the print-screens sent with the errors found. To finish the

email is sent to the user. The user sees the status of the tests when they are being performed,

73

although it is also possible to see the Cypress Dashboard, however due to the limitations of

the free tier only two company accounts can access it.

Figure 38 Detailed Sequence Diagram of the Testing Endpoints

4.3 Solution Insights

As previously stated, the API will have three routes the GET route "/api/health" to validate the

service state the POST route "/api/test" to execute all the tests available by the service and

the POST route "/api/test/{platform}/{spec}". The latter route intends to filter the tests

according to the needs deemed relevant to the actor running the tests. The first filtering

variable will be the platform, this will define which specific platform you want to run, this

should be statically programmed to receive “b2b”, “b2c” or “field”. The second parameters

define which specific test should be performed. This field is completely modular, so, with

every new spec file added its name can automatically be accessed through the route without

the need for configuration. This last parameter can also receive the value "all" and should

execute all the tests of a specific platform. In addition, all test endpoints must allow the

"reporting_email" field to be sent inside the body as a means of defining the sending point to

whom the email with the test results will be sent. If this field is left blank, the results should

be sent to the project maintainers. Finally, all test endpoints must also allow the

“report_on_error” field which defines whether the email is to be send just on error case or

every time.

74

Another consideration is that the response given by the API should be almost instantaneous

(less than five seconds to trigger and less than five minutes to execute). This way you can

inform the API consumer that the tests were executed synchronously and that he will receive

an email with the test results. Additionally, a way to avoid unnecessary reporting of errors

when they are temporal problems of the availability of the Frontend (FE) when a test fails it

should be retried up to three times to ensure that the platform really has a bug, and this was

not due to momentary errors.

All modular elements per environment or company should be contained in easily accessible

configuration files with the nomenclature such as "TST_EDP_PT". With this change it will be

possible to easily configure new environments and companies without changing the logic of

the code. Another element that is supposed to be modular should be the email template so

that it can be easily changed avoiding the need to change the logic used.

4.4 Difficulties

When implementing this service, a few difficulties were encountered which were due not only

to the particularities of the system but also to the means of inclusion in the current method.

The first difficulty encountered was the transformation of an end-to-end system into a service.

Currently, by default, when creating a system to perform end-to-end tests, they tend to be

hosted together with the FE solution in a separate folder, contrary to what was intended in

this particular case, where it was intended to have a separate service. This difficulty was

overcome through the reading and analysis of the cypress documentation and the use of

common means that both technologies shared.

Furthermore, there were two other difficulties: the maintenance of the tests and their

inclusion in the current process. The first one is since there were functionalities that

constantly suffered layout changes and required the adaptation of the tests to keep them

working. This difficulty was overcome through the maintenance planning prior to the changes.

The difficulty of inclusion was because the product team required more time to get used to

and more knowledge about the potential of the technology, when this knowledge was

acquired the use of the microservice in order to reduce the time of manual validation was

essential.

75

5 Solution Assessment

To ensure the purpose of the solution solves the problem for which it was created, a complete

analysis of the product must be conducted. To carry out this analysis a methodology tailored

for this problem was used.

5.1 Quantitative Evaluation Framework

Even as stipulated, many software programs represent a considerable problem for companies.

These problems usually come from errors found after their delivery. According to Stephen

Khan [68] the software that succeeds owes part of it to its excellence in software quality

control through various metrics taken into consideration during the development and

validation period. These metrics can range from the simple fulfilment of functional

requirements to the evaluation of non-functional requirements that are considered standard

across the board for all functionalities.

To undertake the evaluation of the project's progress and status the Quantitative Evaluation

Framework (QEF) was applied. When using this method, it is possible to get an overview of

the project, considering the various functional and non-functional requirements of the

platform in a quantitative way. It is also possible to use several dimensions that follow a

hierarchy each with its own factors to be considered. Below each factor, there are multiple

requirements associated. These requirements are weighed according to their relevance and

required effort. By using this method to accomplish the evaluation, it is possible to

76

comprehend where the project development is at, as well as a sense of duration until

conclusion. In Annex D is the QEF diagram with its different factors.

5.2 Hypothesis Evaluation

This section will identify which key metrics are needed to evaluate. These metrics range from

the analysis of the hypothesis and what it means to fulfil it to the analysis of several other

relevant points such as obtaining information through inquiries.

The hypothesis stipulated in Section 1.3.3 should be put to the test as a means of validating

the solution. In order to demonstrate the fulfilment of the hypothesis drawn they each had to

be evaluated according to their hypothesis type (statistical and work). The statistical

hypothesis which can be evaluated through the definition of the null (displayed as HN) and

alternative hypothesis (displayed as HA).

HN1: “By automating manual end-to-end tests, the development process is worsened, and the

overall quality of the software is decreased by increasing the amount of error tickets reported

by clients” (depicted on Table 5).

HA1: “By automating manual end-to-end tests, it is possible to improve its development

process and improve the overall quality of the software by reducing the amount of error

tickets reported by clients” (depicted on Table 5).

Table 5 Formula for Evaluating the Statistical Hypothesis 1

Variables Formula

Quality of the Software: measured in number of bug tickets opened by clients (more

tickets considered less quality).

Development Process: measured in amount of time (minutes) spent introducing new

features.

NTp = Nº tickets opened previously per week

NTA= Nº tickets opened now per week

ITP = Previous introduction time per week

ITA= Actual introduction time per week

𝐻𝑁1 = (𝑁𝑇𝑝 ≤ 𝑁𝑇𝑎) ∪ (𝐼𝑇𝑝 ≤ 𝐼𝑇𝑎)

𝐻𝐴1 = (𝑁𝑇𝑝 > 𝑁𝑇𝑎) ∩ (𝐼𝑇𝑝 > 𝐼𝑇𝑎)

77

HN2: “By automating the most common manual tests, it is not possible to reduce the

company's test cycle time or human resources used on testing” (depicted on Table 6).

HA2: “By automating the most common manual tests, it is possible to reduce the company's

test cycle time and human resources used on testing” (depicted on Table 6).

Table 6 Formula for Evaluating the Statistical Hypothesis 2

Variables Formula

Test Cycle Time: measured in amount of time spent testing (and developing automated

tests)

Human Resources: measured in number of resources used for testing.

TTp= Previous testing time per week

TTA = Actual testing time per week

TDA= Actual developing tests time per week

HRP = Previous Human resources allocated for

testing a feature per week

HRA= Actual Human resources allocated for

testing a feature per week

𝐻𝑁2 = {𝑇𝐶𝑇𝑝 ≤ (𝑇𝑇𝑎 + 𝑇𝐷𝑎)}

∪ (𝐻𝑅𝑝 ≤ 𝐻𝑅𝑎)

𝐻𝐴2 = (𝑇𝐶𝑇𝑝 > (𝑇𝑇𝑎 + 𝑇𝐷𝑎)) ∩ (𝐻𝑅𝑝

> 𝐻𝑅𝑎)

On the other hand, the working hypotheses and non-functional requirements will be

evaluated through a survey (available in Annex E) conducted to different actors of the system.

This survey will be divided into three sections (Usability, Satisfaction and Other).

H3: “By automating the manual testing procedures it is possible to avoid repetition of test

execution” (Usability Section [Questions 2.1-2.2], Satisfaction Section [Question 3.2]).

H4: “By applying the proposed method, the existing SDLC can incorporate automated test

procedures seamlessly” (Satisfaction Section [Question 3.3]).

H5: “The purposed method allows for the smooth incorporation of a culture of automated

software quality in the engineering team (that is used to performing it exclusively manually)”

(Usability Section [Questions 2.3-2.4]).

78

5.3 Indicators and sources of information

First to evaluate the first statistical hypotheses the information will be obtained by recording

the time and other metrics during multiple points of the current development process:

Table 7 Sources of Information for H1 and H2

Sources

NTp

NTA

ITP

ITA

TTp

TTA

TDA

HRP

HRA

avg(3 weeks registry of number of tickets related to platform bugs)

avg(3 weeks registry of number of tickets related to platform bugs)

avg(3 USs registry of time from requirement analysis to deployment to production)

avg(3 USs registry of time from requirement analysis to deployment to production)

avg(3 weeks registry of time spent testing per week)

avg(3 weeks registry of time spent testing per week)

avg(3 weeks registry of time spent developing new tests per week)

avg(3 weeks registry of human resources allocated for testing)

avg(3 weeks registry of human resources allocated for testing)

In relation to the work hypotheses (H3, H4 and H5), the main indicators that will be the focus of

evaluation are the following:

• Usability: this indicator will be evaluated by the answers provided in the “Usability”

section of the survey and inside the “Other” in question 4.4. The output will be an

average of ranges from 1-5 of all system actors’ answers.

• Satisfaction: this indicator will be evaluated by the answers provided in the

“Satisfaction” section of the survey. The output will be an average of ranges from 1-5

of all system actors’ answers.

• Performance: evaluated by the answers provided in the question 4.1 of the “Other”

section of the survey. The output will be an average of ranges from 1-5 of all system

actors’ answers.

• Availability: evaluated by the answers provided in the question 4.2 of the “Other”

section of the survey. The output will be an average of ranges from 1-5 of all system

actors’ answers.

79

• Reliability: evaluated by the answers provided in the question 4.3 of the “Other”

section of the survey. The output will be an average of ranges from 1-5 of all system

actors’ answers.

5.4 Evaluation Methodology

To achieve the evaluation, its approach must be stipulated according to the different

moments it will be applied within the working methodology. This methodology will be

contained in phase 4 mentioned in Section 3.6 (composed in turn of reliability assessment and

feedback).

The Phase 4.1 will run from July and August and will obtain all the indicators necessary for the

validation of the first two hypotheses. These results will be compiled weekly in 3 distinct

weeks separated from each other. Subsequent to the registration of these data, an average of

the data will be carried out in order to obtain a result which is more faithful to the real case.

During the procurement process, at the beginning of August more specifically, the Feedback

phase will be initiated. This phase will be composed by the delivery of the survey to several

actors of the system who were affected by the use of the service. When choosing the actors

who answered the survey, we tried to have them perform different functions within the

company in order to have a majority idea of the system effects.

5.5 Result Analysis

After obtaining all the indicators listed above in the stipulated weeks, averages were

calculated over them in order to obtain a more real and representative value for more than

one different case. The results obtained through the methodology previously proposed can be

found in the Table 8.

Table 8 Indicators gathered for statistical hypothesis

Indicator Measure W1 W2 W3 AVG

NTp # Tickets 5 3 8 5.3

NTA # Tickets 4 3 3 3.3

80

ITP # Days 5 4 5 4.6

ITA # Days 3 3 3 3

TCTp # Hours 8 9 10 9

TTA # Hours 7 8 6 7

TDA # Hours 3 1 1 1.7

HRP # People 3 3 1 2.3

HRA # People 2 3 1 2

By applying the same data to the alternative statistical hypotheses, we can confirm their

validity (as depicted on Table 9). The substitution was carried out based on an average

obtained over three weeks of records, thus making the result more representative.

Table 9 Results of the Statistical hypothesis

Hypothesis Substitution R

𝐻𝐴1 (𝑁𝑇𝑝 > 𝑁𝑇𝑎) ∩ (𝐼𝑇𝑝 > 𝐼𝑇𝑎) (5.3 > 3.3) ∩ (4.6 > 3)

𝐻𝐴2 (𝑇𝐶𝑇𝑝 > (𝑇𝑇𝑎 + 𝑇𝐷𝑎)) ∩ (𝐻𝑅𝑝 > 𝐻𝑅𝑎) (9 > (7 + 1.7)) ∩ (2.3 > 2)

On the other hand, the indicators obtained from the working hypotheses showed much more

varied results (as depicted on Table 10), all of which were satisfactory except for the

performance indicator, which should be addressed a posteriori as a means of improving the

solution developed.

Table 10 Indicators gathered for work hypothesis

Indicator P1 P2 P3 P4 P5 AVG R

Usability 4 5 4 3 4 4

Satisfaction 5 5 4 5 5 4.8

Performance 2 2 2 3 2 2.2

Availability 4 4 5 5 5 4.2

Reliability 4 5 3 3 3 3.6

81

5.6 Solution Assessment Summary

The research question behind this dissertation sought to understand more about the role and

impact that test automation could have within an SDLC. This impact should be demonstrated

not only through quantitative means (statistical hypothesis, results on Table 9) but also

through more subjective means (working hypothesis, results on Table 10). Starting from the

quantitative means, the insertion of automated tests has reduced the number of tickets

related to flows which stopped working by 37%, the period of time to introduce a new

functionality was reduced in 35%, a 4% reduction in the time allocated to testing (and

developing new tests) and also a 13% reduction in the human resources needed. According to

the working hypotheses, those aspects that should be improved, such as performance and

reliability, have become more noticeable, as well as those factors considered satisfactory

(usability, satisfaction, and availability). To summarize, the role that the automated tests

played was mainly one of reliability. When introducing a new feature that required extensive

testing, this automated testing service usually offered calmness to all team. Through testing,

the team was able to introduce additional features and still be confident that the features did

not contain problems due to the number of test cases programmed.

To fully comprehend these results, it is imperative to understand the assumptions on which

this project is based. Through automated testing it was possible to constantly validate the

platform without the need for additional human resources, this way errors with the platform

were found earlier and were not reported by the user. Also, with the unlocking of resources

previously used for testing functionality now more and more functionalities could be

developed at the same time, reducing the overall platform validation effort for the product

and support team. Since the platform has a now restricted set of general information flows, it

was possible to automate them in less time (compared to what was previously used for

testing). By using different automatic and semi-automatic methods of triggering the tests the

different teams did not had to put too much effort to introduce the new methodology.

82

83

6 Conclusion

This chapter will close this dissertation by presenting the conclusions obtained during its

development. It will be composed of two parts. The first part will describe all the work that

was in fact developed and its achievements. The second part will illustrate the limitations this

project faced and the future work still to be carried out.

6.1 Synthesis and objectives achieved

The main objective of this dissertation was to increase the quality of a software and the agility

of its development. To achieve this goal, it was stipulated as initial premise that it would be

used automatic means of testing to ensure the operation of the platform. To meet this

premise, firstly it was essential to know all the types of tests that were available that could

coexist with the company's process. Apart from the type of tests it was also necessary to

discover which processes should be automated and how to include the automation means in

the current process.

With all the research and analysis made what was left was to list the different application

requirements and lastly to develop the application, which in this specific case was an API. This

application computerized the most repetitive processes when validating the company's

84

functionalities. The automated process should be put to the test and be duly monitored to

guarantee its correct usability.

Subsequently, and with its use, it was necessary to provide new features, such as filtering

tests, and to add more information in the test results emails. All tests had to ensure the

integrity of the application and had to be stable unless the functionality had been deliberately

changed.

After the use of this service and the inclusion of it in both the process and planning, it became

possible to evaluate this solution and the impact it had on the company. The three statistical

alternative hypotheses were satisfactorily demonstrated through the data compiled from

weeks of records (these data have been recorded in the previous section). In addition, the

results from the surveys (this data has been compiled and displayed in Annex G) gave

exceptional insights about the purpose of the service and moreover, improvement

suggestions that should be reflected and pondered upon.

After starting to use the service, it is interesting to mention that the company's point of view

about automation shifted. Through automation, it was possible to reduce the time spent on

testing while increasing the test coverage and, in turn, the quality of the software. Therefore,

they realized it is a feature to rely and bet on.

6.2 Limitations and future work

In turn, throughout the development of this project some limitations were encountered. The

first limitation was evident due to the platform’s size and the fact that the development was

performed by a single person and not a team it was not possible to perform the maintenance

needed for the tests performed. When new functionalities were developed or included in old

flows, they could make the tests stop working and not deliver their expected results, hence

maintenance is needed. Another limitation found was the information provided by these

tests. When a specific test failed it provided means to replicate the error however it rarely

provided enough information to identify the source of the problem without diving into the

code. This limitation is due to the fact that e2e and regression tests provide a lackluster view

of the error. A more comprehensive type of test to identify more details of the exact spot

where the error occurred is unit test and other types of testing. End to end testing addresses a

85

top layer of platforms that even though it is much simpler to identify the problem these are

not easily located and diagnosed.

The last drawback was made evident through the surveys. This drawback was the

performance. As it is currently configured, the platform does not provide the test results in a

time considered as adequate (time in the 5–8-minute range), this point makes the use of the

platform in fast contexts less adequate.

Another consideration as an upcoming piece of work is always dwell time. This new means of

automating and considering automation as a means of validating functionality is not one that

the team is used to and initially will certainly provide some delays in delivery time. Even so, as

proven by the weekly results of some team members, after this habituation time, the flows

will be optimized and the human effort at the time of testing will be reduced.

As a result of these limitations, and with the aim of further improving software quality, the

following next steps will be carried out:

1. The idea of introducing new types of tests more focused on testing small units (unit

tests) or sets of functions will be considered. These will facilitate the identification of

the exact location where the problem lies and in turn facilitate its correction.

2. The idea of introducing a software quality team in the company will be promoted,

through specialized resources in the area of software quality it will be possible to

provide the necessary maintenance for the current tests and to actively perform and

introduce new ones.

3. Configuration of multiple machines to perform the set of tests. With multiple

machines to perform the requested tests the time of the current tests will be reduced

considerably and will facilitate their use for quick cases.

86

References

[1] Effizency, “Digitalize Your Energy Services Sales,” effizency-platform.

https://effizency.com (accessed Dec. 23, 2021).

[2] Sierra, “Acceptance Test,” ProductPlan, Oct. 19, 2020.

https://www.productplan.com/glossary/acceptance-test/ (accessed Dec. 23, 2021).

[3] Intelligent DS, “Why Businesses Should Adopt Automated Software Testing.”

https://intelligent-ds.com/blog/why-businesses-should-adopt-automated-software-

testing (accessed Feb. 08, 2022).

[4] Gitlab, “DevSecOps 2021 Survey Results,” Gitlab. https://learn.gitlab.com/c/2021-

devsecops-report?x=u5RjB_ (accessed Jan. 12, 2022).

[5] Utor, “Automated UI Testing: Do You Need It and Why?,” UTOR, Oct. 18, 2020. https://u-

tor.com/topic/automated-ui-testing (accessed Jan. 24, 2022).

[6] “Latest Trends in Software Testing | Software Testing Trends,” TestingXperts, Feb. 18,

2019. https://www.testingxperts.com/knowledge-center/latest-trends/ (accessed May 16,

2022).

[7] G. Quintero, “The Importance of Software Quality Assurance,” Venturit, Dec. 03, 2020.

https://www.venturit.com/post/the-importance-of-software-quality-assurance (accessed

May 18, 2022).

[8] S. Gupta, “The Importance Of QA At Netflix | Growth and Success,” Volumetree, Oct. 28,

2020. https://volumetree.com/the-importance-of-qa-at-netflix/ (accessed Feb. 15, 2022).

[9] “Statistical Hypothesis - an overview | ScienceDirect Topics.”

https://www.sciencedirect.com/topics/mathematics/statistical-hypothesis (accessed Sep.

03, 2022).

[10] P. Offermann, O. Levina, M. Schönherr, and U. Bub, “Outline of a design science research

process,” Jan. 2009. doi: 10.1145/1555619.1555629.

[11] V. Garousi and F. Elberzhager, “Test Automation: Not Just for Test Execution,” IEEE

Software, vol. 34, no. 2, pp. 90–96, Mar. 2017, doi: 10.1109/MS.2017.34.

[12] K. C. Archie et al., “Test automation system,” US5021997A, Jun. 04, 1991 Accessed: Dec.

23, 2021. [Online]. Available: https://patents.google.com/patent/US5021997A/en

[13] D. Shao, S. Khurshid, and D. E. Perry, “A Case for White-box Testing Using Declarative

Specifications Poster Abstract,” in Testing: Academic and Industrial Conference Practice

87

and Research Techniques - MUTATION (TAICPART-MUTATION 2007), Sep. 2007, pp. 137–

137. doi: 10.1109/TAIC.PART.2007.36.

[14] V. Garousi and J. Zhi, “A survey of software testing practices in Canada,” Journal of

Systems and Software, vol. 86, no. 5, pp. 1354–1376, May 2013, doi:

10.1016/j.jss.2012.12.051.

[15] V. Garousi and T. Varma, “A Replicated Survey of Software Testing Practices in the

Canadian Province of Alberta: What has Changed from 2004 to 2009?,” 2010, doi:

10.11575/PRISM/30178.

[16] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs, “A survey of software

engineering practices in Turkey,” Journal of Systems and Software, vol. 108, pp. 148–177,

Oct. 2015, doi: 10.1016/j.jss.2015.06.036.

[17] Y. Amannejad, V. Garousi, R. Irving, and Z. Sahaf, “A Search-Based Approach for Cost-

Effective Software Test Automation Decision Support and an Industrial Case Study,” in

2014 IEEE Seventh International Conference on Software Testing, Verification and

Validation Workshops, Mar. 2014, pp. 302–311. doi: 10.1109/ICSTW.2014.34.

[18] F. Sachedina, “Everything There Is To Know About Automated Testing,” Global App

Testing, Nov. 13, 2019. https://www.globalapptesting.com/blog/everything-there-is-to-

know-about-automated-testing (accessed Dec. 27, 2021).

[19] H. Liu and H. B. Kuan Tan, “Covering code behavior on input validation in functional

testing,” Information and Software Technology, vol. 51, no. 2, pp. 546–553, Feb. 2009, doi:

10.1016/j.infsof.2008.07.001.

[20] J. Mahak, “Differences between Black Box Testing vs White Box Testing - GeeksforGeeks,”

GeeksforGeeks, Aug. 07, 2020. https://www.geeksforgeeks.org/differences-between-

black-box-testing-vs-white-box-testing/ (accessed Dec. 27, 2021).

[21] G. A. T. (Spa W. L. is a company registered in E. under no. 07606704, “Best Practices for

QA Testing,” Global App Testing. https://www.globalapptesting.com/best-practices-for-

qa-testing (accessed Dec. 27, 2021).

[22] P. C. Jorgensen, Software Testing: A Craftsman’s Approach, Third Edition, 3rd ed. New

York: Auerbach Publications, 2011. doi: 10.1201/9781439889503.

[23] K. Aebersold, “Software Testing Methodologies,” smartbear.com, 2020.

https://smartbear.com/learn/automated-testing/software-testing-methodologies/

(accessed Dec. 27, 2021).

88

[24] Inflectra, “Software Testing Methodologies - Learn The Methods & Tools,” Inflectra, Jan.

08, 2022. https://www.inflectra.com/ideas/topic/testing-methodologies.aspx (accessed

Dec. 27, 2021).

[25] N. Babich, “What Is Beta Testing? Full Overview & Guidelines | Adobe XD Ideas,” Ideas.

https://xd.adobe.com/ideas/process/user-testing/everything-you-need-to-know-about-

beta-testing/ (accessed Dec. 28, 2021).

[26] H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-

crime and cyber-attacks during the pandemic,” Computers & Security, vol. 105, p. 102248,

Jun. 2021, doi: 10.1016/j.cose.2021.102248.

[27] Software Testing Help, “What Is END-TO-END Testing: E2E Testing Framework with

Examples,” Software Testing Help, Aug. 20, 2015.

https://www.softwaretestinghelp.com/what-is-end-to-end-testing/ (accessed Feb. 08,

2022).

[28] E. Putrady, “The Software Testing Spectrum,” Medium, Jul. 11, 2021.

https://blog.devgenius.io/the-software-testing-spectrum-d5268b3513cc (accessed May

31, 2022).

[29] S. Nidhra, “Black Box and White Box Testing Techniques - A Literature Review,”

International Journal of Embedded Systems and Applications, vol. 2, pp. 29–50, Jun. 2012,

doi: 10.5121/ijesa.2012.2204.

[30] M. McCormick, Waterfall vs. Agile Methodology. 2012. Accessed: Dec. 29, 2021. [Online].

Available: http://www.mccormickpcs.com/images/Waterfall_vs_Agile_Methodology.pdf

[31] W. W. Royce, “Managing the development of large software systems: concepts and

techniques,” in Proceedings of the 9th international conference on Software Engineering,

Washington, DC, USA, Mar. 1987, pp. 328–338.

[32] Adobe, “Waterfall Methodology - A Complete Guide | Adobe Workfront.”

https://www.workfront.com/project-management/methodologies/waterfall (accessed

Feb. 15, 2022).

[33] F. Sachedina, “3 Software Testing Methodologies To Consider,” Global App Testing, Oct.

11, 2019. https://www.globalapptesting.com/blog/software-testing-methodologies-

(accessed Dec. 28, 2021).

[34] K. Beck et al., “Manifesto for Agile Software Development,” Nov. 13, 2001.

https://agilemanifesto.org/iso/en/manifesto.html (accessed Dec. 29, 2021).

89

[35] S. Fraser, K. Beck, B. Caputo, T. Mackinnon, J. Newkirk, and C. Poole, “Test Driven

Development (TDD),” in Extreme Programming and Agile Processes in Software

Engineering, Berlin, Heidelberg, 2003, pp. 459–462. doi: 10.1007/3-540-44870-5_84.

[36] D. Janzen and H. Saiedian, “Test-driven development concepts, taxonomy, and future

direction,” Computer, vol. 38, no. 9, pp. 43–50, Sep. 2005, doi: 10.1109/MC.2005.314.

[37] George Dinwiddie, “The Three Amigos: All for One and One for All,” StickyMinds.

https://www.stickyminds.com/better-software-magazine/three-amigos (accessed Jan. 05,

2022).

[38] Kent McDonald, “What are the Three Amigos in Agile?,” Agile Alliance |, Jun. 16, 2016.

https://www.agilealliance.org/glossary/three-amigos/ (accessed Jan. 05, 2022).

[39] Agile Alliance, “Acceptance Test Driven Development (ATDD) | Agile Alliance,” Agile

Alliance |, Dec. 17, 2015. https://www.agilealliance.org/glossary/atdd/ (accessed Jan. 05,

2022).

[40] O. Serrat, “The Five Whys Technique,” in Knowledge Solutions: Tools, Methods, and

Approaches to Drive Organizational Performance, O. Serrat, Ed. Singapore: Springer, 2017,

pp. 307–310. doi: 10.1007/978-981-10-0983-9_32.

[41] Agile Alliance, “BDD: Learn about Behavior Driven Development,” Agile Alliance, Dec. 17,

2015. https://www.agilealliance.org/glossary/bdd/ (accessed Jan. 05, 2022).

[42] BrowserStack, “TDD vs BDD vs ATDD : Key Differences,” BrowserStack.

https://browserstack.wpengine.com/guide/tdd-vs-bdd-vs-atdd/ (accessed Jan. 06, 2022).

[43] L. A. Cisneros Gómez, “Analysis of the Impact of the test based development Techniques

(TDD, BDD, and ATDD) to the software Life Cycle.” Accessed: Jan. 11, 2022. [Online].

Available:

https://iconline.ipleiria.pt/bitstream/10400.8/3699/1/Dissertation_2160085_LuisGomez.

pdf

[44] “Most Popular Web Browsers in 2022 [Jun ’22 Update] | Oberlo.”

https://www.oberlo.com/statistics/browser-market-share (accessed Jun. 26, 2022).

[45] Puppeteer, “Tools for Web Developers,” Google Developers.

https://developers.google.com/web/tools/puppeteer?hl=pt (accessed Dec. 23, 2021).

[46] Puppeteer, “Puppeteer v13.0.0,” Puppeteer.

https://pptr.dev/#?product=Puppeteer&version=v13.0.0&show=api-overview (accessed

Dec. 23, 2021).

90

[47] BrowserStack, “Selenium Webdriver Tutorial with Examples,” BrowserStack.

https://browserstack.wpengine.com/guide/selenium-webdriver-tutorial/ (accessed Dec.

23, 2021).

[48] WebDriver, “Selenium,” Selenium. https://www.selenium.dev/documentation/webdriver/

(accessed Dec. 23, 2021).

[49] Playwright, “Fast and reliable end-to-end testing for modern web apps,” Playwright.

https://playwright.dev/ (accessed Dec. 23, 2021).

[50] Cypress, “JavaScript End to End Testing Framework,” JavaScript End to End Testing

Framework | cypress.io. https://www.cypress.io/ (accessed Dec. 23, 2021).

[51] G. Rago, “Cypress vs Selenium vs Playwright vs Puppeteer speed comparison,” The

Checkly Blog, Jan. 27, 2021. https://blog.checklyhq.com/cypress-vs-selenium-vs-

playwright-vs-puppeteer-speed-comparison/ (accessed Dec. 27, 2021).

[52] StackShare, “Why developers like Puppeteer,” StackShare.

https://stackshare.io/puppeteer (accessed Dec. 27, 2021).

[53] WebdriverIO, “Next-gen browser and mobile automation test framework for Node.js |

WebdriverIO,” Webdriver IO. https://webdriver.io/ (accessed Dec. 27, 2021).

[54] S. A. Rahman, “Which Companies Use Test Automation & Why? | LinkedIn,” LinkedIn,

May 09, 2020. https://www.linkedin.com/pulse/which-companies-use-test-automation-

why-syed-afiat-rahman/ (accessed Jan. 06, 2022).

[55] B. Dijkstra, “5 effective and powerful ways to test like tech giants,” TechBeacon, 2021.

https://techbeacon.com/app-dev-testing/5-effective-powerful-ways-test-tech-giants

(accessed Jan. 07, 2022).

[56] T. Winters, T. Manshreck, and H. Wright, “Software Engineering at Google,” 2020.

https://abseil.io/resources/swe_at_google.2.pdf (accessed Jan. 11, 2022).

[57] SmartBear, “How Spotify Does Test Automation - Kristian Karl,” 02:45:54 UTC. Accessed:

Jan. 11, 2022. [Online]. Available: https://www.slideshare.net/SmartBear_Software/how-

spotify-does-test-management-kristian-karl

[58] “How to set up QA processes in a development company.”

https://www.uptech.team/blog/set-up-qa-processes-software-development-company

(accessed Feb. 15, 2022).

[59] I. Sommerville, Software engineering, 9th ed. Boston: Pearson, 2011.

91

[60] “Business, User, and System Requirements,” Enfocus Solutions Inc, Feb. 18, 2012.

https://enfocussolutions.com/business-user-and-system-requirements/ (accessed Jun. 24,

2022).

[61] “What is the most popular operating system?”

https://www.computerhope.com/issues/ch001777.htm (accessed Jun. 26, 2022).

[62] Node.js, “About,” Node.js. https://nodejs.org/en/about/ (accessed Jul. 02, 2022).

[63] “What Is Node.js and Why You Should Use It,” Kinsta®.

https://kinsta.com/knowledgebase/what-is-node-js/ (accessed Jul. 02, 2022).

[64] “Express - Node.js web application framework.” https://expressjs.com/ (accessed Jul. 02,

2022).

[65] “About Sentry,” Sentry. https://sentry.io/about/ (accessed Jul. 02, 2022).

[66] “Sentry Documentation.” https://docs.sentry.io/ (accessed Jul. 02, 2022).

[67] Cypress, “Writing and Organizing Tests,” Cypress Documentation.

https://docs.cypress.io/guides/core-concepts/writing-and-organizing-tests (accessed Feb.

02, 2022).

[68] S. H. Kan, Metrics and Models in Software Quality Engineering. Addison-Wesley

Professional, 2003.

[69] G. D. Hughes and D. C. Chafin, “Turning new product development into a continuous

learning process,” Journal of Product Innovation Management, vol. 13, no. 2, pp. 89–104,

Mar. 1996, doi: 10.1016/0737-6782(95)00112-3.

[70] P. A. Koen et al., “Fuzzy Front End: Effective Methods, Tools, and Techniques.” 2002.

[71] P. G. Smith and D. G. Reinertsen, “Shortening the Product Development Cycle,” Research-

Technology Management, vol. 35, no. 3, pp. 44–49, May 1992, doi:

10.1080/08956308.1992.11670822.

[72] J. Kim and D. Wilemon, “Focusing the fuzzy front–end in new product development,” R&D

Management, vol. 32, no. 4, pp. 269–279, 2002, doi: 10.1111/1467-9310.00259.

[73] Forté Group, “Why you should (not) consider software testing automation in 2021,” Forte

Group, Jul. 10, 2020. https://fortegrp.com/software-testing-automation-2021/ (accessed

Jan. 12, 2022).

[74] Tricentis and Techwell, “The Evolution of Test Automation,” 2018.

https://www.tricentis.com/wp-content/uploads/2018/05/Tricentis-Report-The-Evolution-

of-Test-Automation-2018.pdf (accessed Jan. 12, 2022).

92

[75] Agata Szymerowka, “Manual Testing Vs Automation Testing: How Much Does It Really

Cost?,” Scalac - Software Development Company - Akka, Kafka, Spark, ZIO, Jul. 16, 2020.

https://scalac.io/blog/manual-testing-vs-automation-testing/ (accessed Jan. 12, 2022).

[76] A. Salem Khalifa, “Customer value: a review of recent literature and an integrative

configuration,” Management Decision, vol. 42, no. 5, pp. 645–666, Jan. 2004, doi:

10.1108/00251740410538497.

[77] R. Sánchez-Fernández and M. Á. Iniesta-Bonillo, “The concept of perceived value: a

systematic review of the research,” Marketing Theory, vol. 7, no. 4, pp. 427–451,

dezembro 2007, doi: 10.1177/1470593107083165.

[78] Valarie A. Zeithaml, “Consumer Perceptions of Price, Quality, and Value: A Means-End

Model and Synthesis of Evidence - Valarie A. Zeithaml, 1988”, Accessed: Jan. 29, 2022.

[Online]. Available:

https://journals.sagepub.com/doi/abs/10.1177/002224298805200302

[79] B. Gale, B. T. Gale, and R. C. Wood, Managing Customer Value: Creating Quality and

Service That Customers Can See. Simon and Schuster, 1994.

[80] M. B. Holbrook and R. M. Schindler, “Age, Sex, and Attitude toward the past as Predictors

of Consumers’ Aesthetic Tastes for Cultural Products,” Journal of Marketing Research, vol.

31, no. 3, pp. 412–422, agosto 1994, doi: 10.1177/002224379403100309.

[81] R. B. Woodruff, “Customer value: The next source for competitive advantage,” J. of the

Acad. Mark. Sci., vol. 25, no. 2, p. 139, Mar. 1997, doi: 10.1007/BF02894350.

[82] N. Rich, “Value Analysis, Value Engineering,” Jan. 01, 2000.

https://d1wqtxts1xzle7.cloudfront.net/53511622/value_analysis.pdf?1497472536=&resp

onse-content-

disposition=inline%3B+filename%3DValue_analysis.pdf&Expires=1643447219&Signature=

PmFZomkIAP8ZnnxO0DWegFKsQDpWLS0VBelPa4WyMHtbX2pR1Wla4WDhVi5C4bhlJj5x

MR9HeKhqNW1eSzflkO-G~uTNUElxb1A9kTchU-

EdkHKzIQdM0r8Shwqgxi0AP75h0I0rNGePY9NnAsrndOReEiWCHPzqGGqdFkLP5bxphA1piR

H4HCEZ69YSAvi-Msk880uP-

CueKLZdsL56y4vtMW4U~VK09afQiNnIQgrYjcbWxkTidd76RlJJWsxj95fIWUHraNmrUJrNOsr

WNY6D1EVJkeQbX~Tct9IIZvorwNUK4Ev27XKKdurE5ECjIUKKIUH1oEVcYtZrD69cKw__&Key

-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed Jan. 29, 2022).

[83] Cambridge Dictionary, “Value Definition,” Cambridge Dictionary.

https://dictionary.cambridge.org/dictionary/english/value (accessed Jan. 24, 2022).

93

[84] Capgemini, “World Quality Report Seured 2017.” Capgemini, Micro Focus, Sogeti, 2017.

Accessed: Jan. 24, 2022. [Online]. Available: https://www.capgemini.com/wp-

content/uploads/2018/01/world-quality-report-seured-2017-

181.pdf?utm_source=pardot&utm_medium=email&utm_content=none_none_none_rep

ort_none&utm_campaign=optimize_wqr

[85] Pedro Ribeiro Tinoco Rodrigues, “Assistente Digital de Apoio ao Ensino Musical Orientado

a Indivíduos com Deficiência Visual.”

[86] “11 Most In-Demand Programming Languages in 2022,” Berkeley Boot Camps, Dec. 16,

2020. https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/

(accessed Jul. 04, 2022).

[87] “Why Learn Python? Five Reasons to Start Programming With Python in 2022,” UT Austin

Boot Camps, Sep. 16, 2021. https://techbootcamps.utexas.edu/blog/why-learn-python-

get-started-programming/ (accessed Jul. 04, 2022).

[88] C. Grupman, “Python API Tutorial: Getting Started with APIs,” Dataquest, Aug. 15, 2020.

https://www.dataquest.io/blog/python-api-tutorial/ (accessed Jul. 04, 2022).

[89] rollbarnew, “Home,” Rollbar. https://rollbar.com/ (accessed Jul. 04, 2022).

[90] “Overview,” Rollbar Docs. https://docs.rollbar.com/docs (accessed Jul. 04, 2022).

94

95

Annex A: Value Analysis

To achieve the highest product value, an analysis approach will be undertaken. The sole

purpose of using this approach is "to increase the value of a product or service at the lowest

price without sacrificing its quality” [69]. This analysis is in line with the main argument of this

dissertation, which primarily contemplates its focus on providing the development process as

well as the engineering team with the tools to optimize their day-to-day tasks and activities

during this development process, and therefore, increase the overall quality of the product.

By utilizing this mechanism, it will be easier and less time consuming to discover the relevant

business processes within an organization along with the improvements and optimizations

available for those processes.

Throughout this section, the value proposition of the project will be described together with

the description of the terms necessary for its understanding, in addition to the description of

the processes and techniques to be used, among others relevant analysis.

Explaining the concepts

Throughout this section, several concepts related to Fuzzy Front End (FFE) will be explained,

from methods to tools and finally techniques to correctly manage the process. According to

"Fuzzy Front End: Effective Methods, Tools and Techniques” [70], it is possible can break down

any innovation process into three stages: Fuzzy Front End , the New Product Development

(NPD) process, and finally commercialization (as displayed on the diagram of Figure 39).

Figure 39 Innovation Process [70]

Within the first stage, FFE, which is not yet structured. It is possible to identify various aspects

of a problem and also utilize this project’s capabilities to determine solutions and

96

opportunities. his step is considered to be unstructured because decisions are made randomly,

chaotically or even without following self-evident guidelines. Within this step, it is possible to

identify improved low-cost options that are significantly better to the ones currently on the

market [71].

According to J. Kim and D. Wilemon [72], it is possible to define the FFE as the period between

the moment when the opportunity is first presented to the moment when the idea has been

thought through, justified and is ready for development (displayed on Figure 40).

Figure 40 Pattern of the fuzziness level through the NPD [72]

The second stage starts after the opportunity has been approved as a result of a correctly

structured idea and defined objectives. Unlike FFE, this stage is much more disciplined and

goal-oriented since it contains a particular degree of certainty. Hence, NPD achieves actual

results rather than experimental ones (FFE).

The last phase of the process is commercialization. This is the stage where the product enters

the market and can begin to be used by consumers. The date on which a product can go on

commercialization can be predicted within the NPD.

Returning to the initial stage, the FFE must be carefully analysed. For this purpose, it was

decided to use the New Concept Development Model (NCD) model. Through this model, it will

determine which are the key activities performed in FFE. As a means of showing these key

activities within FFE and comparatively located to each other the Figure 41 was used.

97

Figure 41 New Concept Development Model [70]

The three activities are:

• The centre is called Engine oversees the leadership, culture, and strategies used by

the business to achieve the key components.

• The central part mentions the five components performed during the FFE (“the centre

is called Engine oversees the leadership, culture, and strategies used by the business to

achieve the key components” [70]).

• Finally, there are influencing factors. These consist “of organizational capabilities, the

outside world (distribution channels, law, government policy, customers, competitors,

and political and economic climate), and the enabling sciences (internal and external)

that may be involved“ [70].

As the model shows, the initial element can be either Idea Generation or Opportunity

Identification. On the other hand, the final element should always be the definition of the

concept. The model is circular because of the flow of ideas that go through it, this flow must

go through the five components before the concept definition is finished and then out to the

next stage, which is NPD.

Opportunity Identification

The problem was identified through analysis of the company's SDLC and the application of

techniques such as “Technology trend analysis” and “Competitive intelligence analysis”. Week

98

after week manual tests were performed, which, at first glance, were relatively similar to each

other, but as they were done manually it did not always cover all the necessary functionalities

and cases due to the time constraint. By automating these tests, the company could save time

and resources by avoiding repetitiveness and the likeliness of human error. Based on Forté

Group's analysis of the applicability of automated testing "sticking to manual testing is

expensive all the way, while QA Automation maintenance is cheaper from a long-term

perspective" [73]. The intention, and where the opportunity lies, would not be in replacing

manual testing altogether, but rather in replacing the repetitiveness of manual testing

performed for the simple purpose of ensuring that the platform maintains the services offered

(regression testing). Using the words of Roman Kokitko as a reference when asked if manual

testing would disappear, he replied "As always, the truth lies somewhere in the middle. The

end of manual testing as we know it is nowhere to be seen” [73]. The purpose here is more in

the need to optimize the company's testing cycles, according to a 2018 survey titled "The

Evolution of Test Automation" [74] an 88% of organizations that decided to take more

automated approaches to testing by replacing up to 50% of their manual tests saw a reduction

in test cycles and 68% were able to identify problems much earlier than previously they would

have been able to. In this case, even with the identified opportunity, it should be presented to

several members of the company to validate the opportunity as a potential improvement

point. A survey conducted by the company Scalac explains exactly the point used as pitch

“Regression testing can be tiring. Imagine how tedious it would be to repeat the same action

repeatedly. This might sound trivial, but the time involved in repetitive, manual testing is

wasted, especially over a longer course of time” [75].

Through several meetings (showcased in Table 11) with different stakeholders of the company

new considerations were identified that should be examined to validate that these tests could

actually be carried out. After the first meeting was carried out with the Backend Lead (who

also plays the role of the Engineering Team Lead) several concerns were pointed out, for

instance, how to integrate this type of tests with Google Maps (this specific point will be

addressed in the state of the art as a means of technology evaluation), and also how these

tests should be included in the middle of the process. The easier way to solve these concerns

was to transform them into practical cases put to the test. After the needed demonstration

that these concerns could be solved through various solutions, the next step was to present

this idea to the management team of the company with the sole purpose of understanding if

this was an opportunity beneficial to them.

99

The second meeting’s ambition was to demonstrate the value this product has to offer to the

company, and the last two meetings focused more on showing different stakeholders the

technology and explaining the concepts and terms behind the types of tests performed. All in

all, the presentations bore good fruit, resulting in complete interest in automating the

regression tests performed by the product team and in showing the potential of various

technologies capable of satisfying the need for UI testing with the frontend team leader.

Table 11 Pitch Meetings Schedule

Nº Members Names Date

1# Backend Lead Meeting Vitor Martins 17/10/2021

2#

Chief Executive Officer (CEO),

Chief Technology Officer

(CTO) and Lead Engineer

Luís Oliveira, Tiago Carvalho,

Vítor Martins

01/10/2021

3#
Product Management Lead

and Lead Engineer

Pedro Preto, Diogo Lemos,

Vítor Martins

25/10/2021

4# Frontend Lead Meeting Victor Andrade 03/12 /2021

Opportunity Analysis

After the identification, demonstration, and acceptance of the product an opportunity

analysis must be performed. To do so, the two most appropriate methods from "Fuzzy Front

End: Effective Methods, Tools, and Techniques” [70] were used “Strategic Framing” and

“Customer Assessment”:

• Effizency, as many giants in the industry [55], prides itself on using the most up-to-

date technologies possible and taking advantage of these technologies in order to

offer a better experience to its users. According to the 2021 survey conducted by

Gitlab [4], the adoption of automated testing has been increasing. In 2020, 12% of

companies reported that they had a majority of their tests automated, and now, in

2021, that figure has doubled to 25% [4]. Furthermore, it is essential to consider the

fact that 28% [4] of those who do not have a substantial part of their testing process

automated say that they are actively working to achieve this. This demonstration of

the increasing use of automated testing leads to a market trend. Applying this to the

case of Effizency, the company has in the past made substantial changes to its

100

processes and technologies to remain competitive and keep its processes as up-to-

date and optimized as possible. Some examples of substantial changes in the process

and infrastructure of the company were the move of all their servers to the cloud as a

means of ensuring better security of their service, among other things. Another

example, carried out two years ago, that also demonstrates this point, is the migration

of AngularJS technology to React as a means of increasing development speed and

adopting a framework that is more up to date with the latest trends in development.

• The Effizency company fits into the 25% [4] of companies that are still thinking about

the potential of automating their tests (but have not done it) and how much this can

affect the quality of their product. The recent implementation of new quality

assurance processes (non-automatic) has led to an increase in the quality of the

product, but even with this increase there are still a lot of bugs identified by the end

users of the platform that prevent them from concluding their job. Ensuring a better-

quality product to users is one of the highest priorities for Effizency. Finally, it is

relevant to mention that, evidently the company wants to identify bugs before they

are identified by the end users of the platform.

Both elements were observed considering the company's history and both demonstrate

how this opportunity can fit into the company's “modus operandi”.

Defining Concepts

According to Khalifa [76] the concept of value the term value is one of the terms “(…) has

become one of the most overused and misused concepts in the social sciences in general and in

the management literature in particular” [77]. For a better understanding of value, specific

concepts must be used to perfectly describe the matter, therefore, the different terms used in

the value analysis will be further defined and explained. In order to describe and improve the

value offered by a product different definition of subtypes of value are to be defined and

explained, and later applied to the current opportunity.

On one hand, it is possible to consider two terms such as customer value and perceived value.

Multiple authors such as Zeithaml [78], Gale [79], Holbrook [80] and Woodruff [81] have

conducted articles regarding customer and perceived value and its meaning. According to

Zeithaml the definition of Perceived Value is “is a customer’s overall assessment of the utility

of a product based on perceptions of what is received and what is given” [78]. By analysing this

101

definition, a conclusion can be drawn that even while satisfying a customer's needs, there is a

need to try to understand exactly and entirely the pain points and expectations of our

customers to further solve their issues. In opposition to the term Customer Value which

intends to be more objective, Gale put it “is market perceived quality adjusted for the relative

price of your product” [79].

According to Nick Rich's proposal [82] , there are two types of value, the Use Value which

represents how much a product is worth according to the usability that it has, and the Esteem

Value, which refers to the value given over the different improvements and amenities that

this product offers over others. The author also mentions a good example that describes both.

For this specific case the type of value to focus on is the use value, given the fact that the

company doesn’t not currently own any kind of software that offers automated tests,

therefore, usability will be the focus. Even though Esteem Value is not the focus, there are

small "conveniences" that the product can offer as a means of increasing it, such as reporting

through detailed emails formatted according to the company's regulations, or integration with

automated messaging tools such as Slack or other automated messaging tools. In the Table 12

these concepts are applied to the specific topic.

Table 12 Appliance of concepts

Perceived Value: expects a service to

perform regression tests and avoid

repetitions in its test cycles.

Customer Value: will the implementation type

be worth compared to the amount of time spent

on repetition (in this specific case as there is no

price involved it would be adapted to the time

required to implement a solution)

Use Value: accomplish a desired level of

automation when performing regression

tests.

Esteem Value: offer different methods of

providing the tests result according to the

company and personal needs.

102

Keys to a Successful Value Analysis

According to Nick Rich's proposed process [82] of value analysis there are several

dependencies upon which this analysis resides. Without them it would be difficult to perform

a value analysis in the most adequate way. Even with this process included within a master's

dissertation, it was decided to correlate, inside Table 13, the elements present in this project

with the parties involved in conducting the value analysis.

Table 13 Keys to a Success of the Value Analysis (VA)

Key to Success A NP DA Notes

1# - “Gain approval of

senior management”

This project was approved by Effizency: CEO

Luis Oliveira, CTO Tiago Carvalho (also this

dissertation supervisor) Lead Engineer Vitor

Martins.

2# - “Enlist a senior

manager as a

champion”

CTO Tiago Carvalho

3# - “Select an

operational Leader”
Lead Engineer Vitor Martins

4# - “Establish the

reporting procedure”

Two times every month a meeting about

the current state of the process is

established with the operational leader and

the “champion”.

5# - “Present the VA

concept and objectives

of the team to all the

middle and senior

managers”

This process was made inside Opportunity

Identification Section by presenting the

solution to multiple key elements of the

company which will gain benefits from the

solution.

6# - “Regular

communication of

progress”

7# - “Provide an office

space and co-locate

Considering the current pandemic situation

all processes are carried out by electronic

103

the team members” means.

8# - “Select the

product”

9# - “Select and inform

any personnel”

10# - “Train the team”

A – Applies | NP – Not Particularly Applies | DA – Does not Apply

Value Proposal

To reduce several repetitive, time-consuming and extensive aspects during the development

process of a project by using an automated testing service that is simple, easy-to-use and

adjustable to the standards and structure of any company.

Evaluating Worth and Situational Assessment

To understand if an opportunity has its own value, the firs required step is perceive its worth.

According to Cambridge Dictionary the definition of value is "the importance or worth of

something for someone" [83] , this definition is profoundly connected to worth which means

“to have a particular value”, therefore the value of any opportunity is interconnected with the

quantifiable value, worth or need someone appraises it by. As a means of assessing if the

company finds itself in the an optimal condition for this implementation, and understanding

whether they will grasp the value and worth of the service, a survey conducted by Utor [5]

about the vital triggers that lead companies to successfully implement UI testing was used in

Table 14.

Table 14 Vital triggers for implementing UI tests

Trigger A NP DA Notes

1# - When tasks become rather time-

consuming

Regression tests may account

for 30-60 minutes of testing of

the deployment process

104

2# - When checking the load and

performance of your application’s

user interface

Could be interesting, however

does not apply to this specific

case.

3# - When conducting regression

tests

4# - When integrating UI tests to your

software building process

5# - When performing advanced UI

tests

6 # - When there is a higher emphasis

on end-to-end testing

7# - When tasks are repetitive

Regression tests are normally

made after every specific new

functionality has been tested.

8# - When short-release cycles are

the basis of operation
One deploys per platform per

week.

9# - When testing is carried out on a

heterogeneous system landscape

platform

A – Applies | NP – Not Particularly Applies | DA – Does not Apply

Another potential way to evaluate the worth of a UI testing implementation would be through

the outcome obtained by multiple other companies. Using data from a survey conducted by

Capgemini in 2017 [84] it is possible to identify specific points that improve through

automation of UI testing, displayed on Figure 42.

On the other hand, apart from the time-saving advantages for the company, they will also

affect the different stakeholders within the company for whom this improvement would be

intended:

• End-Users of the Effizency platform: this stakeholder will indirectly be aware of the

value perceived by test automation through the increase of software quality and the

reduction of bugs that will have to be reported.

105

• Product Managers: this stakeholder is who will benefit the most from the automated

testing process since he has the role of manually testing these features. It will,

therefore, reduce the amount of time allocated to general testing and receive fewer

tickets from customers reporting bugs.

• Engineering Team: this stakeholder will also benefit, when for instance, he wants to

easily check if his new functionality has affected the entire operation of the platform

efficiently and instantaneously. Otherwise, it will have the responsibility to perform

manually the maintenance process of the regression tests created.

Sales Team: this stakeholder will benefit as well, when preparing a commercial pitch, he will

be able to get quick feedback on the status of the flows he is going to present.

Figure 42 Benefits of test Automation [84]

Quality Function Deployment

In order to deliver a value analysis that solves customer’s pain points, several tools can be

used. The one chosen for this project was Quality Function Deployment (QFD), due to its

applicability in the analysed opportunity and in favour of establishing relational points

between the customer's requirements and the considerations considered at the time of the

application design.

The QFD approach emerged in 1983 [85] in the United States, and due to its high expansion,

many other countries have adopted its use. This approach appeared with two objectives as

purposes. These objectives were:

106

• “To convert the user’ needs (or customer’ demands) for product benefits into

substitute quality characteristics at the design stage”.

• “To deploy the substitute quality characteristics identified at the design stage to the

production activities, thereby establishing the necessary control points and check prior

to production start-up” [85].

With the fulfilment of both requirements, a user's needs could be met and at the same time

achieving relevance between the user and the product. This approach is used with the

purpose of supporting the definition and structuring of an idea so that its transformation into

a solution goes according to what customers expect from a product of that sort. Within this

approach an analysis of the requirements stipulated by the company (in this specific case) or

customers will be made and compared to the more technical aspects of the project necessary

for its development. In Figure 43 the QFD diagram produced by the research and analysis

performed can be found.

Figure 43 QFD Diagram

107

Annex B: Test Case List

Table 15 Test Case List according to their US

Nº Test Case Actor

1 UC-1 Validate Authentication – B2B - Manager PM, Engineering Team

2 UC-1 Validate Authentication – B2B - Channel PM, Engineering Team

3 UC-1 Validate Authentication – B2B - Client PM, Engineering Team

4 UC-1 Validate Authentication – B2C - Manager PM, Engineering Team

5 UC-1 Validate Authentication – B2C - Supervisor PM, Engineering Team

6 UC-1 Validate Authentication – B2C - Channel PM, Engineering Team

7 UC-1 Validate Authentication – B2C - Agent PM, Engineering Team

8 UC-1 Validate Authentication – Field - Manager PM, Engineering Team

9 UC-1 Validate Authentication – Field - Partner PM, Engineering Team

10 UC-2 Validate Integration – B2B – Integration with Field PM, Engineering Team

11 UC-2 Validate Integration – B2B – Integration with CRM* PM, Engineering Team

12 UC-3 Validate Product – B2B – Manager – CFP - PP PM, Engineering Team,

Support Team

13 UC-3 Validate Product – B2B – Manager – CFP - Instalments PM, Engineering Team,

Support Team

14 UC-3 Validate Product – B2B – Manager – ME - PP PM, Engineering Team,

Support Team

15 UC-3 Validate Product – B2B – Manager – ME - PP PM, Engineering Team,

Support Team

16 UC-3 Validate Product – B2B – Manager – PV - PP PM, Engineering Team,

Support Team

17 UC-3 Validate Product – B2B – Manager – PV - Instalments PM, Engineering Team,

Support Team

18 UC-3 Validate Product – B2B – Manager – PV - Service PM, Engineering Team,

Support Team

19 UC-3 Validate Product – B2B – Manager – IE - PP PM, Engineering Team,

Support Team

108

20 UC-3 Validate Product – B2B – Manager – IE - Instalments PM, Engineering Team,

Support Team

21 UC-3 Validate Product – B2B – Manager – IE - Service PM, Engineering Team,

Support Team

22 UC-3 Validate Product – B2B – Manager – TRE - PP PM, Engineering Team,

Support Team

23 UC-3 Validate Product – B2B – Manager – TRE - Instalments PM, Engineering Team,

Support Team

24 UC-3 Validate Product – B2B – Manager – MPT - PP PM, Engineering Team,

Support Team

25 UC-3 Validate Product – B2B – Manager – MPT - Instalments PM, Engineering Team,

Support Team

26 UC-3 Validate Product – B2B – Manager – CE - PP PM, Engineering Team,

Support Team

27 UC-3 Validate Product – B2B – Manager – CE - Instalments PM, Engineering Team,

Support Team

28 UC-3 Validate Product – B2B – Channel – CFP - PP PM, Engineering Team,

Support Team

29 UC-3 Validate Product – B2B – Channel – CFP - Instalments PM, Engineering Team,

Support Team

30 UC-3 Validate Product – B2B – Channel – ME - PP PM, Engineering Team,

Support Team

31 UC-3 Validate Product – B2B – Channel – ME - PP PM, Engineering Team,

Support Team

32 UC-3 Validate Product – B2B – Channel – PV - PP PM, Engineering Team,

Support Team

33 UC-3 Validate Product – B2B – Channel – PV - Instalments PM, Engineering Team,

Support Team

34 UC-3 Validate Product – B2B – Channel – IE - PP PM, Engineering Team,

Support Team

35 UC-3 Validate Product – B2B – Channel – IE - Instalments PM, Engineering Team,

Support Team

109

36 UC-3 Validate Product – B2B – Client – CFP - PP PM, Engineering Team,

Support Team

37 UC-3 Validate Product – B2B – Client – CFP - Instalments PM, Engineering Team,

Support Team

38 UC-3 Validate Product – B2B – Client – ME - PP PM, Engineering Team,

Support Team

39 UC-3 Validate Product – B2B – Client – ME - PP PM, Engineering Team,

Support Team

40 UC-3 Validate Product – B2B – Client – PV - PP PM, Engineering Team,

Support Team

41 UC-3 Validate Product – B2B – Client – PV - Instalments PM, Engineering Team,

Support Team

42 UC-3 Validate Product – B2B – Client – IE - PP PM, Engineering Team,

Support Team

43 UC-3 Validate Product – B2B – Client – IE - Instalments PM, Engineering Team,

Support Team

44 UC-3 Validate Product – B2C – ME* PM, Engineering Team,

Support Team

45 UC-3 Validate Product – B2C – PV - Housing PM, Engineering Team,

Support Team

46 UC-3 Validate Product – B2C – PV - Condominium PM, Engineering Team,

Support Team

47 UC-3 Validate Product – B2C – PV - Neighbourhood PM, Engineering Team,

Support Team

48 UC-4 Validate Site-Survey Process – Field* PM, Engineering Team

49 UC-5 Validate Platform – B2B PM, Engineering Team,

Support Team

50 UC-5 Validate Platform – B2C PM, Engineering Team,

Support Team

51 UC-5 Validate Platform – Field PM, Engineering Team,

Support Team

* Test cases not developed because of the current development state of the features.

110

Annex C: Technological alternatives of the

solution

When choosing the set of technologies designated as alternatives, those with a greater

number of similarities to the main solution were chosen so that if any of the alternatives was

chosen it would not represent a substantial change in the structure or components of the

application.

Python

The Python, as the main programming language is one of the most widely used languages in

the world [86]. This is due to many factors including its versatility for both simple and complex

tasks [87]. If we add these factors to the fact that it has access to a very varied set of libraries

(over than 125,000 [87]) both for formatting and controlling data and for any other type of

use. Within Effizency this language is used by PMs for the development of a small number of

microservices, as for the creation of scripts whenever and wherever needed. This option was

finally discarded because there were more microservices using NodeJS and the developed

microservices did not follow a well-defined set of guidelines and structure.

Requests

Requests, as the main framework, is a minimalist package for creating APIs using the Python

language, one of the most common of doing so (according to [88]). This library is available in

the pip package manager. Like ExpressJS, it offers the flexibility to create an API with any kind

of structure, allowing you to use previously defined structures or even create new ones

adapted to the microservice. This option was finally rejected as this package had not yet been

introduced in any of Effizency microservices (which either used ExpressJS or Elixir) and would

require an adaptation of the existing microservices to create a similar structure.

Selenium Webdriver

Selenium Webdriver is the “de-facto” test Automator package for end-to-end test creation, is

used by many companies and has a very relevant community and documentation in the

111

market (as mentioned in the Cypress comparison). Finally, it was excluded purely and simply

because its test problem identification method and console did not provide the same ease of

use that Cypress supposes.

Rollbar

An alternative to Sentry for error monitoring is the Rollbar package, this package is used by

large companies such as Twitch, Salesforce, Circle CI [89] and it is available in the most well-

known programming languages such as JavaScript, Java, Python, PHP [90]. The configuration

process is simplistic and is intended to ease the introduction to new and existing projects. This

option was ultimately rejected due to the fact that the Effizency environment had already

adopted the use of Sentry on their system and using a new means of monitoring logs would

not keep error logs centralized.

Smtpqlib

A widely used package as Email Client when using Python for sending emails. Like EmailJS this

package is minimalistic and offers the freedom to extract the connection settings to the

Simple Mail Transfer Protocol (SMTP) mail client in a separate configuration file. Finally, this

option was not chosen because it was only available for Python, and since the programming

language chosen was NodeJS it was not possible to use it.

Wkhmltopdf

Wkhtmltopdf with the role of Test Compiler and Converter is a package that allows the

conversion of modular html elements into pdfs allowing the creation of attachments for the

reporting email in a modular way. Like "Html-pdf-Node" it has a simplistic approach to the

problem with simple and intuitive methods.

112

Annex D: QEF Diagram

Figure 44 QEF Diagram

Figure 45 Evaluation Metrics, Dimension Functional Requirements, Factor All Platforms

113

Figure 46 Evaluation Metrics, Dimension Non-Functional Requirements, Factors Multiple

114

Annex E: Evaluation Survey

Figure 47 Context Section of the Evaluation Survey

115

Figure 48 Usability Section of the Evaluation Survey

116

Figure 49 Satisfaction Section of the Evaluation Survey

117

Figure 50 Other Section of the Evaluation Survey

118

Annex F: Alternative Solution

Before deciding on an architecture to support the expected service, several alternatives were

defined, which differed according to their degree of complexity and number of resources used.

The most complete solution of the options used a load balancer that controlled the flow of

the requests made to the test application in order to distribute the requests in multiple

instances and improve the performance. This solution was discarded because it was

considered excessive for the number of users that would use the platform. Another

divergence with the finally chosen solution was the integration with Slack as a way to receive

the test results. This option was finally discarded due to the automatic services already used

by Effizency, these always used email as a means of communication and control of results

obtained, thus avoiding creating "noise" for Slack.

Figure 51 Alternative Component Diagram

119

Annex G: Evaluation Survey Results

Figure 52 Context Section of the Evaluation Survey Results

120

Figure 53 Usability Section of the Evaluation Survey Results

121

Figure 54 Satisfaction Section of the Evaluation Survey Results

122

Figure 55 Other Section of the Evaluation Survey

