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Abstract: The modeling of smart grids using multi-agent systems is a common approach due to the
ability to model complex and distributed systems using an agent-based solution. However, the use
of a multi-agent system framework can limit the integration of new operation and management
models, especially artificial intelligence algorithms. Therefore, this paper presents a study of available
open-source multi-agent systems frameworks developed in Python, as it is a growing programming
language and is largely used for data analytics and artificial intelligence models. As a consequence of
the presented study, the authors proposed a novel open-source multi-agent system framework built
for smart grid modeling, entitled Python-based framework for heterogeneous agent communities
(PEAK). This framework enables the use of simulation environments but also allows real integration
at pilot sites using a real-time clock. To demonstrate the capabilities of the PEAK framework, a
novel agent ecosystem based on agent communities is shown and tested. This novel ecosystem,
entitled Agent-based ecosystem for Smart Grid modeling (A4SG), takes full advantage of the PEAK
framework and enables agent mobility, agent branching, and dynamic agent communities. An energy
community of 20 prosumers, of which six have energy storage systems, that can share energy among
them, using a peer-to-peer market, is used to test and validate the PEAK and A4SG solutions.
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1. Introduction

The proliferation of the smart grid context in power and energy systems is shifting
how customers can use their energy, pay for the used energy, participate in the grid
management, and the source of energy [1]. The sustainability of the grid and the massive
usage of renewable generation sources are changing the energy grid and markets [2].
This demands the adoption of new information and communications technologies (ICTs)
to address the issues raised by the need for smart grids [3]. Smart meters [4], energy
management systems [5], and building energy management systems [5] are being tested
and deployed almost everywhere, on a global scale.

The almost seamless integration of ICTs in smart grids enables a better digitalization
of the grid, namely, on the customer side, also enabling the creation of a smart grid digital
twin [6]. The use of near-real-time energy measurements and the ability to communicate
bi-laterally with other smart grid players enable the appearance of new business mod-
els in smart grids, such as local energy markets [7], and active participation in demand
response [8] and transactive energy [9], namely, peer-to-peer negotiation and energy trans-
action [10], contributing to the power and energy system’s sustainability. However, due
to their novelty and disruptive paradigm, the adoption of new business models requires
the careful testing and validation of such models using proper simulators and emulators
before going to pilot sites and real-world applications.

The operation and management of smart grids can be seen as a complex distributed
system where multiple types of players interact with each other on multiple levels. These
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levels can define microgrids, energy communities, aggregators, energy markets, or parts of
the smart grids. Because of their complexity, management models are commonly supported
by or even based on artificial intelligence (AI) [11], enabling the addressing of issues such
as scalability [12], forecasting [13], uncertainty [14], and modeling [15].

The active participation of customers is one of the major changes in the power and
energy system paradigm brought about by smart grids. In the literature, there is a signifi-
cant number of participation models for energy customers [16–18]. Because it demands
customer acceptance, it requires the engagement of customers. This can be promoted
by the attribution of benefits or penalization in case of a lack of participation. However,
the proposed models should be firstly heavily tested using a close-to-real environment to
validate their results. To do so, the use of multi-agent systems (MASs) is commonly seen in
the literature due to their distributed representation of players in complex systems.

The main motivation of this paper is the proposal of a novel open-source development
framework for multi-agent systems able to work in simulated, emulated, and real environ-
ments that can be used in the several steps of the creation of new smart grid management
models: conception, testing, validation, demonstration in pilots, and real deployment. This
new MAS framework is named PEAK: Python-based framework for heterogeneous agent
communities [19]. The proposed new framework was developed in Python, using as its
core the Smart Python Agent Development Environment (SPADE). The novel framework
goes beyond the other Python-based MAS frameworks because it allows the distributed
execution of agents, the existence of multiple MASs, the integration of real loads, and a
logging mechanism that helps the user to monitor and evaluate the performance of the
agents and their MASs. The Python language was chosen because of its high number of
packages and libraries for AI, enabling the developers of PEAK to have access to a variety
of AI models and algorithms that they can easily integrate into their MASs.

To take proper advantage of PEAK’s novel functionalities, this paper also presents a
novel perspective of the use of MASs in smart grids, adding the functionalities of agent
mobility and branching, allowing a complete distributed approach and an organic flow of
agents to represent the dynamic contracts existing in a smart grid environment. To separate
the novel development framework, PEAK, from the novel MAS perspective, the novel
perspective for a multi-agent ecosystem able to better represent a smart grid and its players
was named A4SG: Agent-based ecosystem for Smart Grid modeling.

To test and validate the technological functionalities of PEAK and the ability of A4SG
to model a smart grid scenario, a case study was conceived and implemented considering
20 energy customers together with the existence of three energy forecast providers and a
local market operator for peer-to-peer energy transactions. The agent communities of PEAK
will represent contractual links in A4SG and will enable the representation of an energy
community with 20 energy customers. The case study will present a complete scenario
where energy customers are represented by intelligent agents that pursue the best-fitted
energy forecast service provider to participate in peer-to-peer energy transactions. The
case study will also provide a hybrid scenario where simulation and physical devices
are synchronized to have realistic results. The integrated physical devices are six energy
storage systems (ESS) that were attributed to six energy community members, enabling
them to store and use energy from the ESS. The results show the ability of the proposed
solutions to model smart grids and their constituents. The mobility of agents inside the
modeled ecosystem is one of the main novelties of the proposed solutions and allows
the representative agents of the energy community members to dynamically interact and
establish connections to several service providers in order to maximize the member’s
benefits and minimize the energy costs.

After this first introductory section, the paper is divided into seven sections. Section 2
presents the state of the art regarding the application of MASs in smart grid modeling,
while Section 3 focuses on the technological frameworks that enable the development of
MASs, namely, frameworks developed in Python to facilitate the use of AI models and
algorithms. PEAK is presented in Section 4, and A4SG is presented in Section 5. The case
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study of an energy community with 20 energy customers that participate in peer-to-peer
energy transactions is presented in Section 6. Section 7 shows the results of the case study,
and Section 8 has the main conclusions of this work.

2. The Application of Multi-Agent Systems in Smart Grids

The general concept of an MAS relates to the implementation and development of
several autonomous agents that interact with each other to achieve a common objective,
despite the fact that each agent in the system may have its own particular objective(s) [20].
Generally, this type of system can be implemented in two ways. The system can utilize
agents so that they cooperate and/or collaborate with one another in an effort to attain
their goals, producing a solution for the system’s ultimate objective [21]. On the other hand,
the system can use agents in a competitive mode, in which they compete to accomplish
individual goals; however, in this mode, it is more likely that some agents will fail to
achieve their goals [21].

An MAS naturally has a decentralized architecture, where each agent performs some
type of data processing or service execution and then shares information with other agents.
Electric energy systems, with the evolution of the technologies used, and with the emer-
gence of the smart grid paradigm, are increasingly being implemented and deployed in a
decentralized way. Agents can also run in a distributed manner, across multiple physical
and virtual locations, as seen on the smart grid, for instance, with distributed energy
resources (DER). In addition, there are two topics in which MASs are very advantageous
when applied to the smart grid [22]:

• The smart grid is a holistic system, and the failure of a component, such as a trans-
former or a transmission line, should not influence the entire activity and operation
of the energy grid; thus, it must be fault tolerant [23]. Fault tolerance is enhanced in
distributed management architectures such as MASs.

• As the smart grid is an ever-expanding system, it should be feasible to easily incorpo-
rate new resources and features using agents. Plug-and-play compatibility has been
widely shown by MASs [24]. MASs may be scaled up by adding additional agents
or by distributing them into a new environment with new resources and capabilities.
Consequently, the ability of an MAS to be flexible and scalable is essential in the smart
grid context.

In this way, the use of MASs for the representation, management, and control of the
smart grid has gained a lot of interest, being a topic widely explored by the scientific
community to address complex problems that the traditional approaches have not had the
capacity to solve optimally [15].

In terms of more concrete applications of MASs to model smart grids, these can fall
into a variety of areas, particularly due to the agents’ ability to learn from their actions
and simulate social behaviors [25], which are very useful tools for determining whether
achieving the agent’s objectives according to a set of requirements does not negatively
impact other agents and the system in general. For instance, one of the most explored
problems addressed using MASs is participation in demand response programs (DR) [25].
The use of MASs in DR can be applied for multiple settings, such as industrial contexts [26]
and smart buildings [27].

Within the field of electrical energy, MASs have been demonstrating their usefulness
in the representation of entities and their customers, such as microgrids [28], energy
communities [29], and their management models [30]. In addition to representing entities
belonging to the smart grid, MASs can also be used to individually represent customers
and manage their resources, such as energy flexibility, and manage and support their
active participation in the smart grid [31]. For instance, the authors of [32] proposed an
MAS to simulate competitive electricity markets, the authors of [33] proposed an MAS to
simulate DR participation, and the authors of [34] proposed an MAS to enable peer-to-peer
energy trading in a microgrid. MASs can also be used to ensure stability in the grid by
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enabling fault diagnosis and grid reconfiguration [35], voltage control [36], and voltage
regulation [37].

With the developed study of the state-of-the-art of MASs, it is possible to conclude that
these types of systems, particularly when applied to the representation and modeling of
the smart grid, are becoming increasingly specialized and with specific objectives. Despite
this being advantageous in some domains, this specialization of systems contributes to
the problem associated with knowledge and service sharing between systems. In order to
facilitate knowledge and service sharing, A4SG proposes several functionalities that make
agents more intelligent in the management of knowledge and resources.

3. Frameworks for the Development and Implementation of Multi-Agent Systems

There are plenty of open-source frameworks and tools to help develop intelligent and
autonomous agents as well as full autonomous MASs. It is possible to divide all frameworks
and tools into two different categories based on the kind of system one wants to build.
One category is the agent-based modeling frameworks, such as Mesa [38], NetLogo [39],
and GridLAB-D [40], which help us build simulation environments, based on agents
and their interactions, that represent real-world scenarios (e.g., objects, processes, and
events). These frameworks are mostly used for research purposes because of their ability
to facilitate the conception, integration, testing, and analysis of scientific models. The
other category is the MAS frameworks, such as Java Agent DEvelopment (Jade) [41] and
SPADE [42], which were designed to simplify the development and deployment of full
autonomous MASs in real-world scenarios. Some of these frameworks also allow the
creation of simulation environments.

This section will focus only on open-source MAS frameworks that had a regular update
in the last five years. The selected frameworks are Jade, SPADE, Multiagent Development
Kit (MaDKit) [43], Mava [44], and agentMET4FOF [45].

Jade is a framework written in Java that aims to build applications based on agents. It
has an interactive interface for managing and monitoring the MAS as well as one interactive
interface to deal with system debugging. This framework allows agent mobility and direct
peer-to-peer communication using the Foundation for Intelligent Physical Agents (FIPA)
standard specifications. Its documentation is complete, and there are some books related to
this framework.

SPADE is a framework written in Python similar to the JADE framework. SPADE is
built upon the Extensible Messaging and Presence Protocol (XMPP), which means that
for the agents to communicate, an XMPP server must be used as the messages’ broker.
SPADE also allows FIPA’s Agent Communication Language (ACL) and a web interface
for each agent for individual managing and monitoring. Additionally, SPADE enables the
easy development of agent–human interaction through XMPP. According to [46], SPADE is
faster than JADE and has some official plugins to extend its base functionalities.

MaDKit is a Java framework for building distributed applications based on multiagent
systems. One key concept of this framework is that the multiagent systems built using this
framework are not agent-centered but specifically use the organizational architecture. In
this architecture, each agent has a group and a role inside the community and does not
rely on a broker agent for peer-to-peer communication. Additionally, this framework has
interactive tools for constructing and visualizing simulation environments similar to what
agent-based modeling frameworks have.

Mava is a Python framework designed for MASs specifically with the capacity of
reinforcement learning. The goal is to facilitate the development of MASs that can work to-
gether to solve complex large problems while each agent has a decision-making component
of a smaller part of the problem that is fueled by the reinforcement learning algorithms. In
Mava, agents work in a cooperative manner.

The agentMET4FOF framework is focused on an MAS deployed in IoT environments.
This framework targets industries and has a variety of tools for data processing and analysis.
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This framework provides an interactive graphical interface for agent management and
data analysis.

Table 1 shows the properties of each of the frameworks described earlier. These
properties are the programming language they are written on, the date of the last update of
the project main repository, the software licenses (if they provide any plugin that extends
the base framework), the communication architecture that the agents are based on, if
they comply with FIPA-ACL standard, and finally, systems the frameworks are targeted
to develop.

Table 1. Framework comparison of MASs. The Last Update column was registered on the 3rd of
August 2022.

Framework Language Last Update License Plugins/
Modularity

Communication
Architecture FIPA-ACL Targets

Jade Java 8 June 2017 LGPL Yes Peer-to-peer Yes Real and Simulation
Environments

SPADE Python 1 August 2022 MIT Yes Client-Server Yes Real and Simulation
Environments

MaDKit Java 23 December
2021 CeCILL-C No Peer-to-peer Yes Real and Simulation

Environments

Mava Python 1 August 2022 Apache
License 2 No Peer-to-peer No Reinforcement

Learning

agentMET4FOF Peer-to Python
peer 22 April 2022 LGPLv3 No Peer-to-peer No IIoT

Every framework described in this section has its own benefits and usages, but when
the focus is the development of an MAS of any kind and of any size with any application,
the one that stands out is the SPADE framework. SPADE is a framework that is regularly
updated, it is open source and has an MIT license. SPADE is a modular framework, allow-
ing its expansion using plugins. It is FIPA complaint, and its communication architecture,
despite being different from the mainstream architectures, ends up being more efficient
because it provides many functionalities used for agent communication. This type of archi-
tecture allows human–agent interaction more easily, allows a more reliable communication
between agents, because if one agent goes offline the conversations are not lost, and adds
the ability to find the other agents more easily without the need of a facilitator agent. One
advantage that SPADE has is the variety of libraries and packages that exist in Python
and can be integrated into the agent, especially regarding the artificial intelligence domain.
However, SPADE can be improved, as it lacks some useful functionalities, such as group
chats between agents, a more robust and centralized web graphical interface to manage
and monitor the MAS, a logging system, and a yellow page service.

4. PEAK—A Novel Python-Based Framework for Heterogeneous Agent Communities

Python-based framework for heterogeneous agent communities (PEAK) is a develop-
ing framework that helps the user/developer to build and deploy multi-agent ecosystems.
The architecture of PEAK is shown in Figure 1. The ecosystem is a prosperous environment
for the MASs to share resources, socialize, and live together. PEAK permits the develop-
ment of a wide range of MAS architectures. The MAS can be implemented in real-world
scenarios, integrating IoT, for example, or used in simulated environments (e.g., smart
grid simulation). Because there are a lot of frameworks for MAS development, PEAK was
not built from the ground up. Instead, it uses SPADE as its core and adds functionali-
ties. Similar to SPADE, PEAK is flexible and easily expandable. Beyond the additional
functionalities, PEAK has an external Graphical User Interface (GUI), the Dashboard, for
interactively monitoring the PEAK ecosystem.
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SPADE is a multi-agent system framework that provides all of the necessary tools
to develop and run any kind of MAS. To develop agents, SPADE offers different types of
behaviors, for instance, periodic behaviors, cyclic behaviors, and one-time behaviors. The
agents also have a knowledge system that allows them to store and search for knowledge.
To communicate, SPADE’s agents use a client-server architecture protocol named XMPP.
This protocol is lightweight and fast and it is used for real-time chatting applications,
making it suitable for MASs. XMPP provides the agents with contact lists and allows them
to use the presence notification feature. A feature that allows an agent to notify its present
state to its contact list (i.e., if it is online, away, or offline). However, SPADE lacks some
useful functionalities, for instance, an internal clock to control simulation environments,
easier integration with data providers, and a Directory Facilitator agent responsible for
monitor and structuring the ecosystem around it. That is why PEAK was created, to
empower an already useful framework, SPADE.

In SPADE, it is not possible to execute or configure the MAS through a command
line interface (CLI). To facilitate that, PEAK adds a new CLI with the option to execute
single agents, or multiple agents, and configure the execution options. To run multiple
agents, the user needs a YAML configuration file describing the agents that he/she wants
to run and the configurations for each one of them. Regarding the execution environment,
SPADE uses multi-threading to execute them and, despite being fast, it does not conform
to the definition of an agent described in the literature. An agent must be autonomous
and independent, and a thread is always dependent on the other threads, either in terms
of shared memory or in terms of concurrency. Therefore, PEAK added the option to
run agents using multi-processing so users can choose the better way to approach their
problem. The agents, in multi-processing, are faster and quicker to react because they are
not dependent on each other. The downside of this is the increased memory usage, which
is proportional to the number of agents running, and the slowness regarding the agents’
start-up. Multi-processing would be better suited for problems that do not require too
many agents. Multi-threading would be better if the problem requires a good amount of
agents to run and if there is a lack of computation resources.

Regarding XMPP connectivity, SPADE only uses the basic functionalities for the agents
to work and communicate. It uses peer-to-peer communication and the register and login
mechanisms. To allow communities of agents, PEAK added two more XMPP functionalities
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to the agents: the Multi-User Chat (MUC) and the Discovery Service (Disco). MUC allows
the agents to create and join groups and exchange messages between them in a more
efficient way; without it, the agents would have to manually send the messages to every
single agent instead of one message to a group. However, with MUC, it is not possible to
search for groups, and the agents are required to know the group name so they can join it.
To overcome this, Disco comes into place. This functionality allows the agents to search for
groups and other online agents present on the server.

PEAK’s logging system allows the user to monitor and maintain the MAS. This system
creates logging files for each agent that are saved and updated during the execution time.
This functionality gives the user the ability to add logging information on the agents to
better monitor and debug their behaviors.

In the literature, the MASs are often related to the use of a lot of data, either simulated
data or data gathered from real devices. Because of that reason, PEAK facilitates the
integration of these data providers with the MAS. Regarding the simulated data, PEAK has
the possibility to integrate data from remote or local databases, as well as files from the file
system (e.g., Excel, CSV). Regarding the real data, PEAK makes their integration possible
by allowing the use of any communication protocols, for instance, HTTP/S, Modbus/TCP,
MQTT, etc. In a simulated environment, the rate at which the agent reads the data is
the same as the rate of PEAK’s internal clock; otherwise, the user must configure the
rate manually.

MASs have great utility when it comes to simulating environments, especially in the
Smart Grid’s research field. Therefore, to fulfill this need, PEAK created an internal clock
capable of controlling the environment’s time. The clock is controlled by an agent called
Synchronizer and can be configurated in three different ways. The first configuration, the
default one, is the real-time clock. The user does not need any configuration, and agents
are driven by the current time of the machine they are in. The second one is the simulation
clock. This configuration allows the user to control the speed of the ticks. It can be faster
or slower than the actual time, and the user can also configure how the time is perceived
inside the simulation. That means the clock’s ticks can either represent the current period
(e.g., from 1 to 96) or can correspond to an actual date and time (e.g., 11 October 2000,
11:00). The last configuration is the dynamic clock. This configuration allows the user to
change the time speed during the simulation. The time speed can be defined prior to the
execution by the user or can be controlled dynamically by the agent. For example, this is
useful in an energy market simulation where the user could fast forward periods of time
without any activity.

PEAK has an agent called Directory Facilitator (DF) that has five main functionalities:
yellow page service, data monitoring, group hierarchy, group tagging, and a REST API.
The yellow page service is similar to the one found in the JADE framework. The idea is
that the agents can register and search for services in the DF so that they can be shared
between MASs. The data monitoring allows the MAS to export data generated during
the execution to the DF. These data can then be used for further analysis or debugging
of the MAS. The group hierarchy is an extension of the MUC functionality. It makes it
possible for the MAS to build a hierarchy of groups that allows not only the organization
and structuring of a community but also to send messages in a quicker and more efficient
manner. Considering the structure to be a tree, the agents can echo a message through
the branches of the hierarchical structure, from some node all the way down to the leaves.
Another functionality related to the groups is group tagging. Group tagging helps the
agents to identify and search for groups using tags instead of just using the name. Finally,
the DF has an internal REST API that allows the user, with an external app, to obtain data
from the PEAK ecosystem. This considers the data saved from the data monitoring, as well
as the hierarchical structure of the groups and the services from the yellow page service.
Therefore, the DF is an essential part of the framework because it allows the user to gather,
monitor, and manage the information inside the ecosystem.
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Last but not least, is the PEAK Dashboard, which can be used alongside the PEAK core.
If the user does not have any app to take advantage of the DF, the PEAK Dashboard can
fulfill that need. The PEAK Dashboard is a GUI that allows the user to visualize, interact,
and monitor the PEAK ecosystem. The Dashboard must be initially connected to the DF
REST API. One of the main features of the Dashboard is the ability to visualize the entire
hierarchical architecture of the ecosystem and its agents’ communications and interactions.
The hierarchical architecture is represented in the form of a node graph in which a node
represents a group. The node size is bigger or smaller according to the number of members
the group has. The groups have also information related to the list of their members, their
tags, and the level they are in the hierarchical structure. With this feature, the user can even
filter the groups by their tags for easier navigation. Another feature is graph visualization.
The Dashboard receives the MAS’ data that the DF is monitoring and represents these
data in the form of plots. The data are received in real-time by the DF and sent to the
Dashboard. This makes the plots update dynamically in real-time throughout the execution
of the MAS. The agents must explicitly create these plots in the DF, which are then sent
to the Dashboard. Each agent can create the number of plots necessary, and they will all
appear in the Dashboard in a grid-like manner. These plots, presented in Figure 2, are
fully customizable by the final user, through the agent or in the Dashboard itself, and can
be saved as images in the file system for external usage. The service visualization allows
the user to see the services available in the DF’s yellow page service. It also shows which
agents are using each service and their historical usage.
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As described in this section, PEAK is a powerful framework for MASs. It allows the
faster development and quick deployment of MASs. This is because PEAK removes a lot
of boilerplates and facilitates the integration of every important aspect of an MAS. It also
helps the user to debug and monitor PEAK’s ecosystem for better and quicker maintenance.
This framework is also good for research purposes because of its simulation features. All of
this makes PEAK a very useful and practical framework for MAS development, especially
in the energy research field, as shown in Section 5.

5. A4SG—A Novel Agent-Based Ecosystem for Smart Grid Modeling

The evolution of the MAS, specifically in its application to the smart grid, has been
continuous, with more and more novel approaches to handle complex challenges that
centralized systems have numerous difficulties with. However, the fact is that most MASs
are built for extremely specialized domains and settings, which makes it challenging to
adapt them to new contexts. Furthermore, MASs are generally closed, and there is no
contact with external systems, something that has been addressed, for instance, through the
use of ontologies and semantics to standardize the representation of knowledge [47]. Thus,
in order to counter the aforementioned problems, the need arises for a tool that allows the
development of MASs that have a general application within the smart grid, especially
with regard to their modeling and representation. In addition, it is important that different
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MASs can communicate, interact, and even exchange agents so that there is an exchange of
knowledge between the systems, which can facilitate their achievement of objectives.

The agent-based ecosystem for smart grid modeling (A4SG) is our proposal to address
the problems and needs found in smart grid modeling, and it opens a new perspective when
it comes to the application of MASs in smart grids. The A4SG is an ecosystem for smart grid
modelling based on PEAK. The A4SG is used in this paper to test and validate peer-to-peer
energy transactions models, in an energy community, powered by reinforcement learning.

A4SG employs PEAK groups to organize agents within the ecosystem. These groups
represent MASs, as well as agent communities (ACOM), which, within the context of
this ecosystem, are groups of agents with more particular objectives inside an MAS. In
A4SG, seen in Figure 3, ACOMs can represent, for instance, a group of aggregators and
its customers, an energy community, or a group to deploy a forecast service. There may
be several levels in the hierarchy; firstly, there is always an MAS, and then there may be
multiple levels of ACOM, which may be nested within one another; the lower the level in
the hierarchy, the more specific the community’s objective.
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The A4SG’s architecture, represented in Figure 3, is divided into four main layers:

• CECOS Layer: the Citizen Energy Communities Operator System (CECOS), proposed
in [48] and [49], is a web-based platform, initially conceived to manage citizen energy
communities and their members. This platform was adapted to deal with different
aggregation entities, and in the context of A4SG, it enables end-users to analyze the
results of service participation, subscribe to services and aggregation entities, and
manage the agents’ knowledge base.

• Common Services Layer: this layer contains the services or mechanisms, provided
by A4SG, PEAK, and SPADE, to all the agents registered in the ecosystem. SPADE
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and PEAK were already described, so the focus here is on A4SG Core. The Agents
Validation mechanism evaluates if a particular agent fits the criteria to participate in
the ecosystem. For instance, it evaluates whether the agent’s XMPP communication
is functional, whether it is feasible to obtain and update the agent’s data, and other
needs that may be more relevant to the functionality that the agent wishes to execute.
The branching, virtual mobility, and computing load-balancing mechanisms will be
discussed in their respective subsections.

• A4SG Agents Layer: this layer represents the whole business logic of the ecosys-
tem, namely, the MAS and ACOM hierarchy, and the registered agents. The Agents
Representation Community (ARC) offers a centralized MAS for agents that want to
participate in the ecosystem, without using their own machines to host them.

• End-user/Entity Side: layer to enable the representation of the end-users and entities
registered in A4SG and to represent external agents (i.e., registered in A4SG, but
deployed outside the hosts of the ecosystem).

There are several types of agents in A4SG, among which some are essential for the
management of groups and the ecosystem in general, namely, (i) the MAS main agent,
responsible for the management of the host where it is deployed, and for the sharing of
information about the host (e.g., installed software, components status); (ii) ACOM main
agent, that is very similar to the MAS main agent, but manages only one ACOM, which
can be the representation, for instance, of an aggregator, retailer, or microgrid manager;
(iii) Synchronizer agent, developed on top of PEAK’s simulation tools, enables the execution
of customizable simulations using XMPP’s Multi-user Chat or PubSub protocols; and (iv)
Mobility agent, which is responsible for both mobility processes in A4SG (i.e., virtual and
physical mobilities), receiving the messages asking for mobility. On the other hand, there
are agents that represent the users of the ecosystem. The main ones are the representation
agents, which contain the entire knowledge base of the agent, which is essential in all of the
agent’s decision-making processes. These agents may have other agents that represent them
in more specific objectives, called branch agents, more explored in the branching subsection.

In addition to what has been described and explored so far, A4SG offers an enhanced
version of agent mobility and the novel concept of branching, which are both detailed in
the following subsections.

5.1. Mobility

The existence of mobile agents in MASs is already an explored topic [50], although it
is more common to exist in an MAS where the agents are static, that is, they do not carry
out any type of mobility. However, mobility in agents can bring great advantages to agents
and the entities they represent, the most evident being the ability that agents gain to adapt
to their virtual and physical context. In A4SG, there are two types of mobility that agents
have access to, which are intended to serve different purposes. It is important to note that
messages requesting mobility must be sent to the mobility agent, which is unique in A4SG.

Firstly, there is virtual mobility, which is a less-explored topic. With the growth of
service provider entities on the smart grid, it is important that energy customers have tools
that allow them to adapt to their context and explore opportunities that can bring them
greater advantages, both in terms of comfort and financially. Most of these opportunities
represent the dynamic relationships present in the smart grid, and most of them work in
the provider–client paradigm. Therefore, the main objective of this type of mobility is to
allow agents to move between services and especially between aggregation entities, for
instance, energy retailers and aggregators, according to the agent’s evaluation of them. This
evaluation can be completely customizable by the user so that the agent makes contextual
decisions based on the preferences of the user it represents. In A4SG, this mobility is
supported by the virtual mobility mechanism. In the context of this type of mobility, it is
essential that the agent is located in the same physical host as the group to which the agent
wants to move; if not, combined with virtual mobility, physical mobility comes into play.
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Physical mobility consists of moving the execution of an agent to a different physical
(e.g., laptop, server) or virtualized (e.g., docker running in a computer) host. This type of
mobility is performed through weak mobilities, which consist of saving and restoring only
the runtime values of the agent’s properties, not including information, for instance, about
the execution stack of the agent, which is considered in strong mobilities [51]. Physical
mobility serves two different purposes: (i) it may not be convenient for a user to have
his/her agent running in a specific host, for instance, in case the user is using his/her
own local server and pretends to move the agent to a remote server in the cloud; or (ii)
for purposes of balancing computational loads in the ecosystem, in which case it is the
responsibility of the computing load balancing mechanism to manage the agent’s mobility.
The computing load balancing mechanism allows the distribution of the computational
load across the hosts available in the A4SG ecosystem, ensuring that none of the machines
are overloaded with agents, while others have low levels of computational effort.

Both types of mobility are supported by the group selector service, represented by blue
squares in Figure 3. Agents can have customized ways of evaluating their mobility, but to
ensure facilitation, this component allows the evaluation of general conditions, for example,
in physical mobility, and more specifically in the computing load-balancing mechanism, it
allows the evaluation of which machine is less overloaded to receive agents from machines
that are most heavily loaded.

5.2. Branching

The notion of an agent is intimately tied to objectives since software agents are fre-
quently created with the goal of achieving or searching for a certain objective. However,
the reality is that, in multi-agent systems, agents are frequently overburdened with objec-
tives, meaning that there are several focuses concurrently, making it difficult to complete
objectives individually and generally. To solve this problem, the novel branching concept,
supported by the branching mechanism and proposed by the authors, is available in A4SG
to all agents. The branching mechanism prevents an agent from being overloaded by
deploying new agents (i.e., branch agents) to handle new specific objectives. Consequently,
a representation agent becomes a distributed entity, in which each branch agent represents
it to achieve a single specific objective. In this manner, the ability to achieve objectives,
individually and in a group, of a representation agent is boosted by splitting the objectives
across several agents. Therefore, the branching technique enables agents to simultaneously
engage in numerous aggregation entities and subscribe to many services. The branching,
similar to the mobility, uses the group selector to recommend groups to the branch agents.

The two types of agents that can be created through branching are goal-oriented and
service-oriented. Goal-oriented agents are designed to achieve a specific objective and
maintain a direct link to their main agent (i.e., representation agent) to inform them of all
decisions or participation in services. Participation in peer-to-peer markets and subscription
to demand forecast services are examples of goal-oriented agents. Service-oriented agents,
on the other hand, provide services to other agents. The service provided by the agent may
be contained in its code or in an external application programming interface (API), with
the service-oriented agent functioning as a gateway agent in this instance.

6. Case Study

In order to test PEAK and A4SG, a case study was used considering 20 prosumers
that are members of the same energy community. Of those, six will have energy storage
systems (ESS). Although the energy community members’ energy profiles were created by
using external data sources (i.e., [52,53]), the ESS are actual units available in the authors’
research center, creating a hybrid simulation that will use simulated data and physical
ESS. The six energy community members that have ESS, will be able to use them in a
post-market phase to reduce costs related to the purchase and sale of purchases on the grid.
The 20 members will be integrated into a group representing the energy community in
the agent-based ecosystem of A4SG, with access to a peer-to-peer energy trading market.
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The considered energy community does not have an exclusive network for its members,
thus being formed through contracts. Therefore, the network under consideration has
consumers outside of the energy community, but energy transactions are only considered
between the energy community members. The energy customer members are described
in Table 2, where details about their consumption and generation profiles are explained.
Taking advantage of the features provided by PEAK and A4SG, a three-week simulation
will be carried out where customers can adapt to reduce the costs inherent to their energy
resources. In this scenario, the agents are able to move between different forecast services,
with different error profiles.

Table 2. Energy community members’ description.

M
em

be
r

1

M
em

be
r

2

M
em

be
r

3

M
em

be
r

4

M
em

be
r

5

M
em

be
r

6

M
em

be
r

7

M
em

be
r

8

M
em

be
r

9

M
em

be
r

10

M
em

be
r

11

M
em

be
r

12

M
em

be
r

13

M
em

be
r

14

M
em

be
r

15

M
em

be
r

16

M
em

be
r

17

M
em

be
r

18

M
em

be
r

19

M
em

be
r

20

Contracted Power
(kVA) 5.75 6.9 3.45 6.9 3.45 3.45 6.9 10.35 5.75 6.9 2.3 3.45 4.6 4.6 6.9 2.3 3.45 4.6 6.9 13.80

Total Consumption
(kW) 334 878 133 104 99 32 315 722 840 933 212 249 208 108 137 163 406 391 515 705

Total Generation
(kW) 215 215 215 215 215 215 92 228 224 343 97 87 343 196 99 85 208 181 270 87

Generation Peak
(kW) 1.6 1.6 1.6 1.6 1.6 1.6 1.2 2.6 2.6 3.8 1.2 1.0 3.6 2.2 1.2 1.0 2.4 2.0 3.0 1.0

Battery Capacity
(kWh) 3.6 3.6 3.6 2.4 2.4 2.4 - - - - - - - - - - - - - -

For members’ participation in peer-to-peer energy transactions, the bids (i.e., energy
amount to be transacted and maximum/minimum price accepted) are generated from pre-
trained reinforcement learning policies. The algorithms used were the Deep Deterministic
Policy Gradient (DDPG) and the twin delayed DDPG (TD3). DDPG and TD3 are two
state-of-the-art reinforcement learning algorithms capable of dealing with continuous
values for the observations (e.g., retailer energy prices, time of the day) and for the actions
(i.e., amount of energy to trade and price to bid/ask). TD3 is an extended version of
DDPG, covering some issues that the algorithm has, such as being very dependent on
hyperparameter tuning. This type of intelligence shows the capabilities of PEAK, as well as
A4SG, to integrate artificial intelligence models on top of agents with intelligent behaviors,
creating an intelligent environment.

The case study execution responsibilities are divided between PEAK and A4SG. PEAK
provides (i) the agents’ development basis, (ii) the construction of the group’s hierarchical
tree, (iii) the simulation tools to accelerate the case study execution, and (iv) the connection
to real ESS via a Modbus/TCP driver. On the other hand, A4SG’s primary objectives are
(i) to apply the branching mechanism to the members of the energy community so that
they can create new agents to represent themselves in forecast services and peer-to-peer
trading and (ii) to apply the mobility mechanism to branch agents so that agents can move
between groups (i.e., in this case, to search for more suitable forecast services). Figure 4
shows the case study flowchart with the previously described steps.
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At the beginning of the simulation, different groups and agents are created, to guaran-
tee the integrity of the ecosystem and the simulation itself, as well as to represent energy
community members and service providers. The simulation has three forecast services and
one market operator. The three forecasts are (i) a baseline forecast, using only mathematical
models, (ii) a support vector machine (SVM) model, and (iii) an artificial neural network
(ANN) model. Table 3 shows the groups and the agents that are part of each one of them.
There are two MASs: (i) in ARC, there are the forecast groups, for the energy forecast
service providers, represented by ACOMs, and (ii) in the Community MAS, there is the
ACOM to represent the energy community and its members. Each MAS has a Main ACOM
to host representation agents, while the other ACOMs contain branch agents. As seen
in Section 5, an ACOM main agent is needed in each one of the ACOMs to manage the
groups and to communicate information about the ACOM to other agents, such as the
objective of the group and the events or service history. It is possible to conclude from the
observation of Table 3, that all groups, with the exception of the forecast groups, maintain
their agents from the beginning to the end of the simulation. In the case of forecast groups,
the members are dynamic, as energy customers will move between them, taking into
account the performed evaluation.

Table 3. Ecosystem structure to support the case study: groups and agents.

Group Ecosystem
Agents

Representation
Agents

Branch
Agents

ARC 1 MAS Main Agent
1 Mobility Agent - -

Main-ARC 1 ACOM Main Agent 20 Players
2 service providers -

Forecast Baseline 1 ACOM Main Agent - 1 Service-oriented (Forecast)
N goal-oriented (Players) in each groupForecast SVM 1 ACOM Main Agent -

Forecast ANN 1 ACOM Main Agent -
Community MAS 1 MAS Main Agent - -

Main-Community MAS 1 ACOM Main Agent - -

Energy Community with P2P 1 ACOM Main Agent - 1 Service-oriented (Market Operator)
20 goal-oriented (Players)

N = dynamic (can change due to mobility).

Goal-oriented agents are programmed so that at the end of each week, they evaluate
their context in the group in which they occur, and, if they are not satisfied, they can look
for other options to improve their performance in the participating services. For forecast
services, agents will check the mean absolute error (MAE) of their current forecast and can
then compare it with that of other available forecasts to move to the service that provides
them the lowest error.

To understand the benefits that the innovative characteristics of the ecosystem built by
the combination of A4SG and PEAK provide to energy customers, two additional scenarios
will be simulated to serve as a baseline to assess the full scenario with peer-to-peer market
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and mobility between forecast services. The first scenario employs neither the peer-to-
peer market nor the mobility proposed by A4SG, while the second scenario employs the
peer-to-peer market without mobility.

7. Results and Discussion

This section will be used exclusively to present the results related to the three-week
simulation, especially regarding the advantages introduced by PEAK and A4SG for the
energy community customers. The mobility carried out, the reduction of customers’ en-
ergy costs, and the integration and use of real batteries will be analyzed. A comparison
will be made with two other scenarios without the peer-to-peer market and the mobility
mechanism.

The first situation to study is the mobility of agents across the forecast groups and
to see the effect that this mobility has on the error associated with the energy forecast
services. Table 4 shows the agents’ distribution per forecast service provider group, where
each agent’s group in a specific week is marked by an “X”. As can be seen in Table 4,
the final distribution of the agents is quite different from the initial one, indicating that
the agents were able to perform mobilities during the simulation to pursue better energy
forecast results. At the end of the first week, the baseline forecast lost more than half of its
customers, and by the end of the second week, it was even without any agents, proving that
this was the worst service available to agents. Regarding the other two services, the one
that uses an ANN as an algorithm is, in general, better than the service that uses an SVM.
Even so, some of the agents stayed with the SVM forecast service provider until the last
week, as it was the service that best adapted to their consumption and generation profiles.
Overall, the community MAE dropped from 0.741 at the beginning of the simulation to
0.389 at the end of the simulation.

Table 4. Distribution of customers among forecast service providers during the simulation.

Customer ID Week 1 Week 2 Week 3
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1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X
12 X X X
13 X X X
14 X X X
15 X X X
16 X X X
17 X X X
18 X X X
19 X X X
20 X X X

Number of Customers 8 6 6 3 6 11 0 5 15
Average MAE 1.036 0.650 0.438 0.627 0.513 0.401 - 0.459 0.366
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One of the great advantages provided by PEAK is the possibility of generating a
chart with the groups that are part of the ecosystem so that it is possible to analyze them
more graphically and intuitively. The chart from this case study is represented in Figure 5.
Figure 5a shows the community MAS in which agents are static during the simulation, that
is, the agents do not change groups during the simulation. On the other hand, Figure 5b,c,
shows the ARC group, which hosts the forecast service provider groups and the agents
move between them. Figure 5b shows the groups in the first week, and Figure 5c shows
the same groups in the third week. As expected, the chart shows the mobilities that were
processed in the ecosystem during the simulation, reflecting the information provided in
Table 4.
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For these mobilities to have a positive effect on the energy customers, they must be
used so that customers’ participation in peer-to-peer markets is more effective and helps
them to reduce energy costs. This analysis is represented in Figure 6. In this figure, the
second and third weeks are compared for each player in terms of energy costs. As it is
possible to observe, most of the customers benefited from the mobility due to the decrease
in the energy forecast error. Only two of the energy community members were harmed
(member 3 and member 7), that is, 90% of the members benefited from the change in their
forecast service provider to a lower error forecast. Overall, comparing the third week of
simulation with the first, there was a savings of 10.62 EUR in the community.
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Another factor that was influenced by the mobility of the agents is the use of ESS.
Since ESS are used after the peer-to-peer market, to minimize the buying and selling of
energy from and to the grid, the more accurate the bids for peer-to-peer, the lower the
use of ESS. Figure 7 shows a comparison between weeks of the ESS’ load for each period.
As it is possible to observe, the ESS were less used with the advance of the weeks, and
there was a 22% decrease in ESS’ usage in the final week of the simulation compared to the
initial week.
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To compare the three simulated scenarios, Table 5 shows the data regarding all sce-
narios. The greatest difference, as expected, is the introduction of the peer-to-peer market,
especially with intelligent bid strategies provided by the reinforcement learning policies.
Mobility allows for extra energy cost savings, proving that it can help energy customers to
adapt to a context more advantageous to them, which in this case is the reduction of the
energy forecasting model to be considered for the P2P market.

Table 5. Scenario comparison considering P2P and mobility.

Scenario Community Overall
Cost (EUR)

Mean Energy
Price (EUR/kWh)

Without P2P and mobility 585.49 0.142
With P2P and without mobility 392.34 0.126

With P2P and mobility 377.85 0.119

Comparing this solution to other state-of-the-art approaches, it has the significant
advantage of always being able to improve the participation by applying virtual mobility,
allowing agents to move to other services that optimize the use of their energy resources.
Comparing the proposed work in this paper with the ones proposed in [54,55], the initial
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results (i.e., before mobility) are comparable, but when mobility is introduced, the outcomes
of the proposed methodology in this paper differ in a positive way. Thus, customers are
empowered in a dynamic manner in which they can determine the optimal approach to
maximize their results, taking into account both the reduction of energy costs and the
enhancement of comfort.

8. Conclusions

The use of multi-agent systems to model smart grids is a feasible solution that is
supported by previous publications available in the literature. However, the existing multi-
agent system frameworks have technical issues that impact the real test, simulation, and
implementation of smart grid management and operation models.

When conceiving and developing sustainable energy-related models for smart grids,
an important concept must be taken into account in artificial intelligence. The models
available in artificial intelligence can provide important intelligent, fast, scalable, and
knowledge-based tools that can significantly contribute to smart grids. Therefore, when
choosing a multi-agent system framework, its connectivity and integration possibilities of
artificial intelligence models must be studied.

This paper proposes a novel multi-agent system framework that was developed in
Python to take proper advantage of the number of solutions available for data science and
artificial intelligence. By using the PEAK framework, the developers will have at their
disposal the vast set of libraries and packages that Python provides. The PEAK framework
also provides, by default, a graphical user interface and the possibility to integrate emulated
and real resources. The simulation motor of PEAK also provides the possibility to run the
models in a simulation mode or in a real-time mode, allowing them to work in the same
scenario with simulated, emulated, and real resources.

To demonstrate the real potential of the PEAK framework, the novel ecosystem of
agent communities, A4SG, is proposed and demonstrated. In this ecosystem, the agents
have free access to several communities where they can be integrated and moved around.
The A4SG also proposes novel mechanisms regarding agent representation, agent mobility,
and agent branching, that are not possible outside PEAK.

The case study demonstrates an operational energy community where its members
can subscribe to energy forecast services in order to participate in peer-to-peer energy
transactions. The demonstration was run using simulated and physical resources. The
results showed that the model was successful and that the agent branching mechanism
together with the agent mobility mechanism enabled an extra reduction of the price of
energy in the energy community, by 9%.

As future work, both PEAK and A4SG can be addressed to increase their range of
functionalities, opening doors to the integration of new business models in the smart grid
and also in different domains. For PEAK, the idea would be to increase the performance
of some tasks to make the execution of agents faster and lighter and create predefined
templates for agents to speed up the development phase. The PEAK Dashboard should
be more intuitive, and a search box and a pagination functionality in the plots section
should be created for easier navigation. On the other hand, A4SG can be used to integrate
new models on smart grids, for instance, to optimize participation in demand response or
peer-to-peer trading to improve the customers’ active participation dynamically, integrated
with mobility and branching.
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