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ABSTRACT The electrical distribution system (EDS) has undergone major changes in the last decade due to
the increasing integration of distributed generation (DG), particularly renewable energyDG. Since renewable
energy resources have uncertain generation, energy storage systems (ESSs) in the EDS can reduce the
impact of those uncertainties. Besides, electric vehicles (EVs) have been increasing in recent years leveraged
by environmental concerns, bringing new challenges to the operation and planning of the EDS. In this
context, new approaches for the distribution system expansion planning (DSEP) problem should consider
the distributed energy resources (DG units, ESSs, and EVs) and address environmental impacts. This paper
proposes a mixed-integer linear programming model for the DSEP problem considering DG units, ESSs,
and EV charging stations, thus incorporating the environmental impact and uncertainties associated with
demand (conventional and EVs) and renewable generation. In contrast to other approaches, the proposed
model includes the simultaneous optimization of investments in substations, circuits, and distributed energy
resources, including environmental aspects (CO2 emissions). The optimization method was developed in
the modeling language AMPL and solved via CPLEX. Tests carried out with a 24-node system illustrate its
effectiveness as a valuable tool that can assist EDS planners in the integration of distributed energy resources.

INDEX TERMS Distribution system expansion planning, integrated planning of electrical distribution
system and EV charging stations, long-term stochastic planning model, renewable distributed generation.

I. INTRODUCTION
The automotive industry has been going through a moment
of transformations with the increase of electric vehicles
(EVs). Worldwide projections indicate that by 2040 EVs
should increase from 3 million to 66 million units circulat-
ing worldwide [1]. This increase in EVs is expected due to
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incentives to promote their adoption combined with the grow-
ing cost-benefit ratio of this technology and its advantages
related to environmental issues. Nevertheless, the main prob-
lems for the adoption of EVs are their high acquisition cost
and the scarcity of infrastructure (i.e., the lack of EV charging
stations (EVCSs)) prepared to meet their demand [2]. Since
EVs charge on the electrical grid, this trend directly impacts
the operation and planning of electrical distribution systems
(EDSs). A large EV penetration can affect the EDS, causing
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an increase in energy losses, degradation of voltage profiles,
and overloads, thus compromising the quality of electricity
supply [3], [4]. To contribute to the integration of this tech-
nology, it is necessary to invest in the system’s infrastructure,
which can be done in two ways: by expanding/reinforcing
the grid and by installing EVCSs [5]. Thus, the distribu-
tion system expansion planning (DSEP) problem must be
adapted to the demand requirements and the particularities
of EVs.

The DSEP problem determines the necessary expansion
actions in the EDS to meet the growing demand, while main-
taining a safe operation and guaranteeing the quality of the
service for the users, all at the lowest possible cost [6]. The
classic formulation for the DSEP problem includes invest-
ments in substations and circuits [7]. Subsequently, with the
advancement of research and the growth of distributed gener-
ation (DG), there was a need to incorporate it into the DSEP
proposals, adding DG units as problem decision variables [8].

The characteristics of the DSEP problem correspond to
a mixed-integer non-linear programming (MINLP) model,
which is highly complex due to its combinatorial nature
and the discrete condition of the decision variables [9].
To solve it, several methods and models have been proposed
in the specialized literature, whether using meta-heuristics
such as Simulated annealing [10] and Ant colony algo-
rithm [11], heuristic techniques such as branch exchange
algorithm [12] or classic optimization methods such as linear
programming [13], [14] and quadratically-constrained pro-
gramming [15]. A review of the state of the art of this problem
is presented in [16].

A few studies have addressed the DSEP problem including
EVCSs. In some of them, the EV charging demand was
included in the planning proposal, although without consid-
ering investments in EVCSs. On the other hand, most of the
works address the allocation of EVCSs independently of the
DSEP problem [17], [18]. A two-stage stochastic program-
ming model to solve the allocation problem of EV parking
lots has been proposed in [17], considering the uncertainties
related to EV demand. The point estimation method has been
used in [18] to consider the uncertainties associated with
EV demand. Some approaches have included investment in
EVCSs within the DSEP problem [19]–[23]. Amixed-integer
linear programming (MILP) model was developed in [19] for
the assessment of investments in substations, circuits, capac-
itor banks, non-renewable DG units, and EVCSs. Similarly,
in [20], a MILP model identifies optimal investments in sub-
stations, circuits, battery banks, renewable DG units, energy
storage systems (ESSs), and EVCSs. The stochastic behavior
related to conventional demand was included in the models
proposed in [19] and [20]; to deal with those uncertain-
ties, robust optimization, and stochastic programming were
adopted. Unlike [20], uncertainties related to EV demand
were not included in the proposed model in [19]. A multi-
objective DSEP model with high wind power penetration has
been developed in [21], including the planning of EVCS.
Optimal planning of EVCS and renewable DG was presented

in [22] using k-means clustering technique to consider the
uncertainties related to renewable power sources and EV
demand. Finally, a genetic algorithmwas implemented in [23]
to solve the DSEP problem, which includes investments in
EVCSs, ESS, and renewable GD units; in addition, theMonte
Carlo method is used to model the uncertainties of renewable
generation and EV demand.

In contrast to [17], [18], this paper proposes a MILP model
for the joint planning problem of EVCS and EDS using an
exact method guaranteeing that the optimal solution of the
problem is found. Also, unlike [19], [20], the proposed model
includes the EV demand uncertainty and the environmental
issues associated with CO2 emissions. Simultaneous plan-
ning of EVCS and EDS considering the presence of wind
generation has been proposed in [21]. On the other hand,
in contrast to [21], our proposal also includes investments
in photovoltaic generation, non-renewable generation, and
ESSs. Different from [22], this work takes into account
investments in substations, circuits, non-renewable DG units,
and ESSs. Furthermore, unlike [23], which focuses only on
meeting EV demand, our paper also considers conventional
demand in the planning problem.

The main contribution here is the simultaneous optimiza-
tion of multi-period investments in substations, circuits,
renewable and non-renewable DG units, EVCSs, and ESSs,
in contrast to all the proposals mentioned previously. The
stochastic behavior of conventional demand, EV demand, and
renewable generation is modeled using two-stage Stochastic
Programming. The following expansion alternatives are eval-
uated in the expansion plan: (1) construction of substations;
(2) construction of circuits; (3) allocation of renewable and
non-renewable DG; (4) allocation of EVCSs; and (5) allo-
cation of ESSs. Furthermore, in this paper, the EDS is rep-
resented by an AC power flow model, different from most
of the works found in the specialized literature, which uses
the DC model [20]. DC approximation is adopted often as
a compromise between solution accuracy and computational
time, namely for transmission network systems [24]. Unfor-
tunately, DC approximation assumptions do not hold well and
become invalid for EDS [25].

Table 1 provides a comparison of previous related
approaches with the proposed method, and the main contri-
butions of this work are highlighted:

1) A mathematical model for the long-term stochastic
planning model, including environmental aspects (CO2 emis-
sions). Such formulation considers the simultaneous opti-
mization of multi-period investments in substations, circuits,
renewable and non-renewable DG units, EVCSs, and ESSs.
The joint optimization of these investments has not been
addressed yet.

2) A MILP model for the multi-period DSEP problem to
find the optimal solution of the problem. The operation of
the EDS is represented by an AC power flow linear model.

3) A two-stage Stochastic Programming model for the
multi-period DSEP that addresses uncertainties related to
conventional/EV demand and renewable DG units (Wind
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TABLE 1. Comparison of the proposed model with existing approaches in
the literature.

turbine (WT) and photovoltaic (PV)) through a set of demand
and generation scenarios.

The remaining part of this manuscript is organized as
follows: section II presents the uncertainty modeling associ-
ated with conventional demand, EV demand, and renewable
generation; section III shows the problem formulation; the
application of the proposed method in a Case Study for
a 24-node test system is presented in section IV and the
conclusions are drawn in section V.

II. MODEL FOR THE UNCERTAINTIES RELATED TO
DEMAND AND RENEWABLE GENERATION
A DSEP proposal that is more appropriate and committed
to reality must address the uncertainties of the physical and
operational parameters. In this work, the uncertainties related
to consumer demand, EV demand, and renewable generation
are taken into account. This section presents the proposed
approach to model these uncertainties.

A. EV DEMAND UNCERTAINTY MODEL
Predicting the EV charging demand pattern is a compli-
cated task due to the low number of real cases recorded, the
uncertainties related to the driver’s behavior, the level of EV
penetration, the energy required by these vehicles, among
others [26]. On the other hand, system operators are interested
in forecasting the EV charging demand to assess the impacts
and needs for updating the EDS infrastructure [27]. There-
fore, to quantify the EV charging demand, a method to model
its uncertainties is proposed here. The method presented here
to estimate EV demand is adapted from [20]. In contrast
to [20], which uses data from travel patterns of traditional
vehicles [28], in this proposal, the electric vehicle infrastruc-
ture projection tool (EVI-Pro) Lite [29] was used to define
the EV arrival times. Moreover, in [20], only one type of EV

charger was considered (slow charger (3.3 kW)). On the other
hand, in this proposal, the chargers used at the stations have
powers of 7 kW (slow charger), 50 kW (quick charger), and
150 kW (super-fast charger). The proposedmethod comprises
seven steps described as follows:

1) For each EV, randomly (uniform distribution) select an
initial state of charge (SOC) value.

2) For an EV v and day d , randomly (uniform distribu-
tion) assign a total daily travel distance a (from 10 km
to 200 km) [22]

3) If the SOC of the vehicle is enough to make the travel a,
the SOC is updated, go to step 5. Otherwise, go to
step 4.

4) The EV should be charged with at least the SOC
necessary to carry out the travel. After charging the
vehicle, the SOC and the charging demand (kW) are
updated. EV arrival times are selected based on the
electric vehicle infrastructure projection tool (EVI-Pro)
Lite [29].

5) If the last day of the year was evaluated, go to step 6.
Otherwise, evaluate the next day and go to step 2.

6) If the last EV was evaluated, go to step 7. Otherwise,
evaluate the next EV and go to step 1.

7) Calculate the total demand (kW) for all EVs, for each
hour and day (see equation (6)).

The algorithm above was implemented in MATLAB [30]
considering four types of EVs with 45 kWh (Peugeot
e-208), 50kWh (Tesla Model 3), 60 kWh (Chevrolet Bolt),
and 75 kWh (Volvo C40 Recharge) batteries. An analysis to
obtain the charging profiles is carried out for the period of
one year. For each vehicle, a random SOC within the interval
[0.2, 1.0] is initially selected; note that this happens only on
the first trip of each vehicle.

Equation (1) determines the SOC of the vehicle v on day d ,
while (2) calculates the remaining battery capacity. Equation
(3) is used to determine the energy used by vehicle v on
day d . Finally, expression (4) calculates the EV charging
time, (5) determines the EV charging demand of each vehi-
cle v, while (6) calculates the total demand for all EVs, for
each hour and day.

SOCv,d ≤
CPv,d
CN v

∀v, d (1)

CPv,d = CN v − CU v,d ∀v, d (2)

CU v,d = dl,v,dCON v + CU v,d−1 ∀l, v, d (3)

tchargev,d =
CN vSOCv,d

PEVc
∀v, d (4)

DEV
v,d,h =

tchargev,d PEVc
1hour

∀v, d, h (5)

D̂EV
d,h =

∑
v

DEV
v,d,h ∀d, h (6)

The simulation was performed considering 1,000 vehicles.
After its execution, the EV charging demand for each hour
of the year was obtained. Figure 1 illustrates the obtained EV
average daily demand profile as well as the demand profile
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calculated for day 125; this day was chosen because it has the
EV charging demand peak along the year: 2,430 kW at 19:00.
Note that there is a variation in the demand profiles and the
maximum demand registered on day 125 is about 33% higher
than the average demand profile.

The SOC is separated into different categories (see
Table 2) to facilitate the analysis. Figure 2(a) and 2(b) show
the probability distribution function (PDF) of the initial and
final SOC of the vehicle, respectively. Figure 2 (a) shows that
the vehicle is more probable to be charged when the SOC is
below 0.5 (Categories 1–4). On the other hand, after charging
(see Figure 2 (b)), the SOC is more likely to be larger than 0.5
(Categories 5–9).

Figure 2 (c), (d) show the cumulative distribution func-
tion (CDF) of the initial and final SOC, respectively. The
probability of the initial SOC to be between 0.1 and 0.5
(Categories 1–4) is 93.72% (Figure 2 (c)), while the proba-
bility of the final SOC being above 0.5 (Categories 5–9) is
85.83% (Figure 2 (d)).

The information provided by the calculated profiles will
be used to represent the power related to EV charging in the
DSEP model. Finally, the method proposed in this section is
summarized in Figure 3.

FIGURE 1. EV charging demand profile.

TABLE 2. SOC categories.

B. SCENARIO GENERATION METHOD
The method presented previously in section II-A aims to
estimate the total charging demand for all EVs. Thus, the

FIGURE 2. (a) PDF of the initial SOC, (b) PDF of the final SOC, (c) CDF of
the initial SOC, and (d) CDF of the final SOC.

EV demand profiles obtained are correlated with the other
uncertain parameters (conventional demand, solar irradiation,
and wind speed). To represent the uncertainties, a set of
annual scenarios is obtained by using historical demand data
(Brazil) [31], solar irradiation data [32], wind speed data [32],
and the EV charging demand provided by the method pre-
sented in section II-A. Since a high number of scenarios
can be obtained, the k-means scenario reduction method is
applied to achieve computational tractability. For medium
and long-term planning, the k-means clustering technique
is widely accepted to model the uncertainties [33]. Such
clustering technique maintains correlation among uncer-
tain data [34]. Similar to [8], the hourly data are divided
into 2 seasons; each season has 2 sub-blocks (day and night).
Moreover, each sub-block is reduced to 10 clusters using
k-means; that number of clusters was arbitrarily defined.
The adopted process can be described in the following
steps:

1) Historical data on demand, solar irradiance, and wind
speed are normalized by their corresponding maximum
values.

2) The annual duration curve for each stochastic param-
eter is classified into two seasons (blocks of time):
winter and summer. The data contained in the time
blocks are classified into two sub-blocks (night and
day).

3) The number of required clusters is defined. The
k-meansmethod is applied to each sub-block. Thus, the
data contained in each sub-block is categorized accord-
ing to the number of clusters previously established.
At the end of the process, centroids of each cluster are
determined.

4) The set of scenarios is stored in a matrix that repre-
sents 40 operating conditions with four columns for
the uncertain parameters (8 clusters × 2 seasons × 2
sub-blocks).
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FIGURE 3. Flowchart of the proposed method to estimate EV charging demand.

FIGURE 4. Time blocks and scenario generation process.

5) The probabilities for each scenario are calculated by
dividing the number of hours in the respective scenario
by the sum of hours within a block of time. Finally, the
scenario generation process is illustrated in Figure 4.
Thus, the representative scenarios obtained here are

applied to the long-term stochastic planning model
(section III).

Renewable generation profiles are obtained following the
method in [35]. The power profiles of the WT units are
obtained, for each scenario, through linearization of the
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power curve, which is a function of the wind speed (7).
Moreover, power profiles of the PV units are obtained in (8),
depending on the cell junction temperature (9).

Pwt =



0, v < v1
PR

vR−vI
v+ PR

(
1−

vR
vR−vI

)
, vI ≤ v < vR

PR, vR ≤ v < vO
0, v ≥ vO

(7)

Ppv = PSTC

{
G

1000
[1+ δ (Tcell − 25)]

}
(8)

Tcel = Tamb +

(
NOCT − 20

800

)
G (9)

III. MATHEMATICAL MODEL FOR THE DSEP PROBLEM
WITH INTEGRATION OF DISTRIBUTED ENERGY
RESOURCES
This section describes the proposed mathematical formula-
tion that aims the optimal expansion plan for the multi-period
DSEP problem. The problem is formulated first as anMINLP
model and then, to reduce the complexity of the problem and
ensure that the optimal solution is found, the original model is
approximated by a MILP model. The model proposed here is
based on the formulations presented in [19]. Similar to [19],
herein, a MILP model for the integrated planning of EDS
and EVCSs is proposed. However, different from [19], this
proposal considers investments in DG units (renewable WT
and PV and non-renewable gas turbine (GT)), uncertainties
related to generation and EV charging demand, and invest-
ment in ESS.

The model proposed here for the long-term stochastic
DSEP model assumes that: 1) the operation of the EDS
is represented by an AC power flow linear model; 2) The
expansion decisions are defined through a multi-period
model; 3) the EDS is operated using a radial topology;
4) CO2 emissions are penalized with a given emission cost;
5) the planning of EVCSs and EDS is centralized. These
assumptions are usually adopted for the long-term planning
problem [19], [20].

Uncertainties related to conventional demand, EV charging
demand, and renewable generation are represented in the
model through two-stage Stochastic Programming. In the first
stage, decisions about investments in substations, allocation
of DG units, EVCSs, and ESS are executed before the uncer-
tainties are known (here and now decisions). On the other
hand, the second stage evaluates the expected operation cost
of the EDS after to the uncertain parameters assume a specific
value (wait-and-see decisions).

A. OBJECTIVE FUNCTION
The objective function of the problem is presented in (10)
and minimizes the present value of the expected total cost,
being composed by the following costs: 1) Investments (Ip)
(11) associated with substation, circuits, DG units, EVCSs,

and ESSs; 2) Operational costs (Op) (12) related to the energy
supplied by substations, jointly with distributed energy
resources maintenance costs, and CO2 emissions costs. These
costs are calculated for each period p. The function f (τ, λ) =
1 − (1+ τ)−λ /τ allows the calculation of the present value
of the annualized cost.

minCT :
∑
p

(Ip + Op)(1+ τ )
−(p−1)λ (10)

Ip =
∑
s

CS
s x

S
s,p +

∑
ij

∑
a

CL
ij,alijx

L
ij,a,p

+

∑
k

Cwt
k xwtk,p +

∑
u

Cpv
u N pv

u,p +
∑
f

Cgt
f x

gt
f ,p

+

∑
r

∑
c

C INSTxEVr,p + C
EV
c NEV

r,c,p +
∑
b

CES
b N

ES
b,p (11)

Op =
∑
ω

πωdωf (τ, λ)

(∑
i

CosPosi,ω,p

+

∑
k

CowtPwtk,ω,p +
∑
u

CopvPpvu,ω,p +
∑
f

CogtPgtf ,ω,p

+

∑
b

CoescPESCb,ω,p +
∑
b

CoesdPESDb,ω,p

+

∑
i

ζ si P
s
i,ω,p +

∑
k

ζwtPwtk,ω,p +
∑
u

ζ pvPpvu,ω,p

+

∑
f

ζ gtPgtf ,ω,p

 (12)

B. CONSTRAINTS
The proposed model has the following types of constraints:
1) steady state operation, 2) operational limits, 3) constraints
of investments and operation, 4) DG unit model, 5) EVCS
model, 6) ESS model, and 7) radiality constraints.

1) STEADY-STATE OPERATION
Expressions (13)–(16) set the steady-state operation of the
EDS and are based on [15]. The active and reactive power bal-
ance is expressed by (13) and (14). The voltage drop is deter-
mined by (15), while (16) represents the relationship between
the voltage at node i, the current and the active/reactive power
flow through circuit ij in scenario ω and period p. Auxiliary
equations (17)–(19) associate the current, active power flow,
and reactive power flow with the selection of conductor type
a for the circuit ij.∑
ki

∑
a

Pki,a,ω,p −
∑
ij

∑
a

(Pij,a,ω,p + RalijI
sqr
ij,a,ω,p)+ P

s
s,ω,p

+Pwtk,ω,p + P
pv
u,ω,p + P

gt
f ,ω,p + P

ESD
b,ω,p − P

ESC
b,ω,p

= PDi,pf
D
ω,p + D

PR
r,c,ω,p; ∀i, (s, k, u, f , b,∈ i), ω, p (13)

19138 VOLUME 10, 2022



T. D. De Lima et al.: Specialized Long-Term DSEP Method With Integration of Distributed Energy Resources

∑
ki

∑
a

Qki,a,ω,p −
∑
ij

∑
a

(Qij,a,ω,p + XalijI
sqr
ij,a,ω,p) (14)

+Qs
s,ω,p+Q

wt
k,ω,p + Q

pv
u,ω,p
+ Qgt

f ,ω,p = QD
i,pf

D
ω,p;

∀i, (s, k, u, f ∈ i), ω, p

V sqr
i,ω,p − V

sqr
j,ω,p =

∑
a

[2(RaPij,a,ω,p + XaQij,a,ω,p)lij (15)

+Z2
a l

2
ijI

sqr
ij,a,ω,p]+ bij,ω,p; ∀i, ω, p

V sqr
j,ω,pÎ

sqr
ij,ω,p =

(
P̂ij,ω,p

)2
+

(
Q̂ij,ω,p

)2
; ∀ij, ω, p (16)

Î sqrij,s,t =
∑
a

I sqrij,a,ω,p; ∀ij, ω, p (17)

P̂ij,s,t =
∑
a

Pij,a,ω,p; ∀ij, ω, p (18)

Q̂ij,s,t =
∑
a

Qij,a,ω,p; ∀ij, ω, p (19)

2) OPERATIONAL LIMITS
Expressions (20)–(29) define the operating limits for the
different assets that may be installed in the EDS. Thus,
voltage limits are guaranteed by (20), while (21)–(23) limit
the current, active, and reactive power flows through circuit
ij according to the conductor type. Besides that, constraints
(24)–(26) establish the limits for the current, active and
reactive power flows, respectively, in terms of the circuit
operating conditions. The square of the apparent power sup-
plied in each substation is determined by (27) and limited
by (28). Finally, constraint (29) limits variable bij,ω,p, which
is used in (15) to maintain the feasibility of the problem
when the circuit ij is not installed; if the circuit is operated
then bij,ω,p = 0, otherwise, bij,ω,p is free to take any value
limited by b.

V 2
≤ V sqr

i,ω,p ≤ V
2
; ∀i, ω, p (20)

0 ≤ I sqrij,a,ω ≤ I
2
azij,a,p; ∀ij, a, ω, p (21)∣∣Pij,a,ω,p∣∣ ≤ VIazij,a,p; ∀ij, a, ω, p (22)∣∣Qij,a,ω,p∣∣ ≤ VIazij,a,p; ∀ij, a, ω, p (23)

0 ≤ I sqrij,a,ω,p ≤ I
2
a

(
y+ij,p + y

−

ij,p

)
; ∀ij, a, ω, p (24)∣∣Pij,a,ω,p∣∣ ≤ VIa (y+ij,p + y−ij,p) ; ∀ij, a, ω, p (25)∣∣Qij,a,ω,p∣∣ ≤ VIa (y+ij,p + y−ij,p) ; ∀ij, a, ω, p (26)

Sgsqrs,ω,p = (Pss,ω,p)
2
+ (Qss,ω,p)

2
; ∀s, ω, p (27)

Sgsqrs,ω,p ≤
(
SISs

)2
+

P∑
t=1

(
2SISs SF

S
s + SF

S2
s

)
xSs,p;

∀s, ω, p (28)∣∣bij,ω,p∣∣ ≤ b (1− y+ij,p − y−ij,p) ; ∀ij, ω, p (29)

3) CONSTRAINTS OF INVESTMENTS AND OPERATION
Constraints (30)–(34) guarantee that only one investment
decision is carried out for substations, circuits, EVCSs, ESSs,

andWT/GT units, in each node. On the other hand, (35)–(37)
limit the number of PV units, EV chargers, and battery banks
that can be installed at each node during the planning horizon.
The operating conditions of circuits is addressed by (38).
In this regard, yL+ij,t + yL−ij,t is equal to one if the circuit ij is
operated; otherwise, it is zero. Expression (39) relates the
operational variable zij,a,p with its corresponding investment
variable xLij,a,t . Finally, expressions (40) and (41) refer to the
binary characteristic of the investment and operation vari-
ables of substations, circuits, EVCSs, and WT/GT units and
integer nature of the components that can be added to the EDS
(PV units, EV chargers, and battery banks).∑
p

xSs,p ≤ 1; ∀s (30)∑
p

∑
a

xLij,a,p ≤ 1; ∀ij (31)∑
p

xEVr,p ≤ 1; ∀r (32)∑
p

xwtk,p ≤ 1; ∀k (33)∑
p

xgtk,p ≤ 1; ∀f (34)∑
p

N pv
u,p ≤ N

pv
u ; ∀u (35)

∑
p

NEV
r,c,p ≤ N

EV
c ; ∀r, c (36)

∑
p

NES
b,p ≤ N

ES
b ; ∀b (37)

y+ij,p + y−ij,p =
∑
a

zij,a,p; ∀ij, p (38)

zij,a,p =
P∑
t=1

xLij,a,t ; ∀ij, a, p (39)

xSs,p, x
L
ij,a,p, y

+

ij,p, y
−

ij,p, zij,a,px
EV
r,c,p, x

wt
k,p, x

gt
f ,p ∈ {0, 1} (40)

N pv
u ,NEV

r,c,p,N
ES
b,p ∈ Z+ (41)

4) DG UNIT MODEL
The operation of the WT/GT units is represented by limiting
the injected active/reactive power according to the capability
curves and power factor restrictions [47]. GT units are mod-
eled using the capability curve of a synchronous generator.
Hence, the points

(
Pgtf ,1,Q

gt
f ,1

)
,
(
Pgtf ,2,Q

gt
f ,2

)
,
(
Pgtf ,3,Q

gt
f ,3

)
,

and
(
Pgtf ,4,Q

gt
f ,4

)
are defined to represent the feasible

region for power injection. For the modeling of WT
units, the capability curve of a double-fed induction
generator was considered. To establish the generation
limits, the points

(
Pwtk,1,Q

wt
k,1

)
,
(
Pwtk,2,Q

wt
k,2

)
,
(
Pwtk,3,Q

wt
k,3

)
,

and
(
Pwtk,4,Q

wt
k,4

)
were defined. Capability curves are lin-

earized using constraints presented in (42)–(51). The details
of this formulation can be found in [36].

VOLUME 10, 2022 19139



T. D. De Lima et al.: Specialized Long-Term DSEP Method With Integration of Distributed Energy Resources

The operational limits of active and reactive power by DG
units are shown in (52) and (53) for GT units, (54) and (55)
for WT units, and (56) and (57) for PV units.

Pgtf ,ω,p ≤
Pgtf ,1

Qgt
f ,1 − Q

gt
f

(
Qgt
f ,ω,p − Q

gt
f

)
; ∀f , ω, p (42)

Pgtf ,ω,p ≤
Pgtf ,2 − P

gt
f ,1

Qgt
f ,2 − Q

gt
f ,1

(
Qgt
f ,ω,p − Q

gt
f ,2

)
+ Pgtf ,2; ∀f , ω, p (43)

Pgtf ,ω,p ≤
Pgtf ,3 − P

gt
f ,2

Qgt
f ,3 − Q

gt
f ,2

(
Qgt
f ,ω,p − Q

gt
f ,3

)
+ Pgtf ,3; ∀f , ω, p (44)

Pgtf ,ω,p ≤
Pgtf ,4 − P

gt
f ,3

Qgt
f ,4 − Q

gt
f ,3

(
Qgt
f ,ω,p − P

gt
f ,4

)
+ Pgtf ,4; ∀f , ω, p (45)

Pgtf ,ω,p ≤
Pgtf ,4

Qgt
f ,4 − Q

gt
f

(
Qgt
f ,ω,p − Q

gt
f

)
; ∀f , ω, p (46)

Pwtk,ω,p ≤
Pwtk,1

Qwt
k,1 − Q

wt
k

(
Qwt
k,ω,p − Q

wt
k

)
; ∀k, ω, p (47)

Pwtk,ω,p ≤
Pwtk,2 − P

wt
k,1

Qwt
k,2 − Q

wt
k,1

(
Qwt
k,ω,p − Q

wt
k,2

)
+ Pwtk,2; ∀k, ω, p (48)

Pwtk,ω,p ≤
Pwtk,3 − P

wt
k,2

Qwt
k,3 − Q

wt
k,2

(
Qwt
k,ω,p − Q

wt
k,3

)
+ Pwtk,3; ∀k, ω, p (49)

Pwtk,ω,p ≤
Pwtk,4 − P

wt
k,3

Qwt
k,4 − Q

wt
k,3

(
Qwt
k,ω,p − Q

wt
k,4

)
+ Pwtk,4; ∀k, ω, p (50)

Pwtk,ω,p ≤
Pwtk,4

Qwt
k,4 − Q

wt
k

(
Qwt
k,ω,p − Q

wt
k,p

)
; ∀k, ω, p (51)

0 ≤ Pgtf ,ω,p ≤ P
gt
f

∑P

t=1
xgtf ,p; ∀f , ω, p (52)∣∣∣Qgt

f ,ω,p

∣∣∣ ≤ Pgtf ,ω,ptan (cos−1 (ϕgt)) ; ∀f , ω, p (53)

0 ≤ Pwtk,ω,p ≤ f
wt
ω P

wt
k

∑P

t=1
xwtk,p; ∀k, ω, p (54)∣∣∣Qwt

k,ω,p

∣∣∣ ≤ Pwtk,ω,ptan (cos−1 (ϕwt)) ; ∀k, ω, p (55)

0 ≤ Ppvu,ω,p ≤ f
pv
ω P

pv
u

∑P

t=1
N pv
u,p; ∀u, ω, p (56)∣∣Qpv

u,ω,p
∣∣ ≤ Ppvu,ω,ptan (cos−1 (ϕpv)) ; ∀u, ω, p (57)

5) EVCS MODEL
It is assumed a centralized approach for the planning of
EVCSs and EDS, which is usually adopted for the long-term
planning problem [19], [20], aiming computational tractabil-
ity since the DSEP problem is highly complex due to its
combinatorial nature, containing many binary and integer
variables.

Constraint (58) ensures that the charging demand in
EVCSs does not surpass the capacity of the stations, while
(59) determines that the charging demand in EVCS corre-
sponds to the EV demand obtained with the method presented
in section II-A.

DEVCS
r,ω,p ≤

P∑
t=1

NEV
r,c,tP

EV
c ; ∀r, c, ω, p (58)

∑
DEVCS
r,ω,p = DEV

ω,p; ∀r, c, ω, p (59)

6) ESS MODEL
To mitigate the impacts of the uncertain behavior of renew-
able DG units, investment in ESSs is considered an expan-
sion alternative. It is assumed that this technology will
store power during the day and will inject power into the
system at night when there is no photovoltaic generation.
The charge and discharge processes of the ESS will have
a pre-established daily operational time (dESC and dESD).
Expressions (60)–(65) represent the ESSmodel based on [37]
with adaptations to include the variables associated with the
energy stored (charged) and injected (discharged) by the ESS.
Constraints (60) and (61) limit the ESS charge and discharge
power, while expressions (62) and (63) determine the energy
stored and injected by the ESS. Moreover, the energy stored
in the ESS is limited by (64).

There is an additional difficulty in medium and long-term
EDS planning since k-means is used to reduce the operational
scenarios. When the data is organized into scenarios, the
chronological information is lost. Therefore, it is not possi-
ble to maintain the exact chronological sequencing of ESS
charge and discharge. Thus, similar to [20], the ESS operation
does not consider the chronological sequence of charge and
discharge in this model. Besides, expression (65) determines
that the net energy at an ESS is zero along a block of time.
This constraint has been formulated for each scenario within
the block of time bl. This simplification makes sense for
a long-term planning problem. A detailed inclusion of the
sequencing of ESS charge and discharge can be computation-
ally infeasible and is unnecessary from the point of view of
long-term planning since it is not possible to have detailed
and accurate information for all the parameters involved in a
long-term planning horizon [37].

PESCb,ω,p ≤

P∑
t=1

PESb NES
b,p; ∀b, ωd , p (60)

PESDb,ω,p ≤

P∑
t=1

PESb NES
b,p; ∀b, ωn, p (61)

EESC
b,ω,p = η

ESCdESCP
ESC
b,ω,p; ∀b, ωd , p (62)

EESD
b,ω,p = dESD

1
ηESD

PESDb,ω,p; ∀b, ωn, p (63)

Eb ≤ E
ESC
b,ω,p ≤ Ēb; ∀b, ω, p (64)∑

ωbl

dω(ηESCP
ESC
b,ω,p −

1
ηESD

PESDb,ω,p) = 0; ∀b, bl, p (65)

7) RADIALITY CONSTRAINTS
Expressions (66)–(68), jointly with (16) and (17), guarantee
the radial operation of the EDS. For this purpose, (66) ensures
that circuits connected to substation nodes are always oper-
ating in the forward direction. In addition, (67) guarantees
that each load node is connected to only one circuit operating
in the forward direction and (68) allows the use of transfer
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nodes (i.e., nodes without demand that may connect two loads
nodes) [38].∑

ij

y−ij,p +
∑
ki

y+ki,p = 0; ∀i, p|i ∈ S (66)

∑
ij

y−ij,p +
∑
ki

y+ki,p = 1; ∀i, p|PDi,p > 0 (67)

∑
ij

y−ij,p +
∑
ki

y+ki,p ≤ 1; ∀i, t|PDi,p = 0|i /∈ S (68)

C. LINEARIZATION OF EXPRESSIONS (16) AND (27)
The MINLP model for the DSEP problem defined by the
set of equations (10)–(65) contains nonlinear constraints in
(16) and (27). Thus, to reduce the complexity of the problem
and ensure that the optimal solution is found, the original
model is approximated by a MILP model, as proposed in
[9], [39]. Linearizations and approximations are described as
follows:

1) LINEARIZATION OF (16)
The linearization of the product V sqr

i,ω,p · Î
sqr
ij,ω,p is performed

by using a constant value for the voltage (V ′i,ω,p). The value
of this constant is defined using the maximum and minimum
voltage limits [9], as shown in (69). Finally, the sum of
the square of the power is linearized using the piecewise
linear approximation that is given by (70)–(79). The variables
P̂2ijω,pand Q̂

2
ij,ω,p are approximated by the product of slope

of the γ th of the piecewise discretization(mG
y ) and the dis-

cretization variable (1P
ij,y,ω,p) for active power or ( 1

Q
ij,y,ω,p)

for reactive power as shown in (70). Equations (71) and (72)
represent P̂ijω,p and Q̂ij,ω,pby non-negative auxiliary vari-
ables (P+ij,ω,p,P

−

ij,ω,p,Q
+

ij,ω,p,Q
−

ij,ω,p). Additionally, (73) and
(74) determine that the terms P̂ijω,p and Q̂ij,ω,p are equal
to the sum of all values in each discrete block. Expressions
(75) and (76) limit the values of the discretization blocks.
Finally, expressions (77) and (78) calculate the parameter
values used in the discretization.

V ′i,ω,p =
V + V

2
; ∀i, ω, p (69)

P̂2ij,ω,p + Q̂
2
ij,ω,p ≈

Y∑
y=1

mG
y

(
1P
ij,y,ω,p +1

Q
ij,y,ω,p

)
; ∀ij, ω, p (70)

P̂ij,ω,p = P+ij,ω,p − P
−

ij,ω,p; ∀ij, ω, p (71)

Q̂ij,ω,p = Q+ij,ω,p − Q
−

ij,ω,p; ∀ij, ω, p (72)

P+ij,ω,p + P
−

ij,ω,p =

Y∑
y=1

1P
ij,y,ω,p; ∀ij, ω, p (73)

Q+ij,ω,p + Q
−

ij,ω,p =

Y∑
y=1

1
Q
ij,y,ω,p; ∀ij, ω, p (74)

0≤ 1P
ij,y,ω,p ≤ 1̄

G
; ∀ij, y, ω, p (75)

0≤ 1Q
ij,y,ω,p ≤ 1̄

G
; ∀ij, y, ω, p (76)

mG
y = (2y− 1) 1̄G

; ∀ij, y, ω, p (77)

1̄G
=

¯Vlij
Y
; ∀ij (78)

P+ij,ω,p,P
−

ij,ω,p,Q
+

ij,ω,p,Q
−

ij,ω,p ≥ 0; (79)

2) LINEARIZATION OF (27)
The same technique presented above is used to linearize (27).
Variable Sgsqri,ω,p (square of the apparent power supplied by
substation) can be approximated from the linear expres-
sion (80). Equations (81) and (82) determine that the terms
Psi,ω,p and Qsi,ω,p are equal to the sum of the values of
each discretization block. Besides, equations (83) and (84)
limit the values of the discretization blocks. Finally, expres-
sions (85) and (86) define the parameter values used in the
discretization.

Sgsqri,ω,p =
Y∑
y=1

mS
y1

os
i,y,ω,p +

Y∑
y=1

mS
y1

QS
i,y,ω,p ∀i, ω, p (80)

Psi,ω,p =
Y∑
y=1

1os
i,y,ω,p ∀i, ω, p (81)

Qs
i,ω,p =

Y∑
y=1

1
QS
i,y,ω,p ∀i, ω, p (82)

0 ≤ 1os
i,y,ω,p ≤ 1̄

S
∀i, y, ω, p (83)

0 ≤ 1QS
i,y,ω,p ≤ 1̄

S
∀i, y, ω, p (84)

mS
y = (2y− 1)1̄S

∀y (85)

1̄S
=
SISi + SF

S
i

Y
∀i (86)

D. MILP MODEL FOR THE DSEP PROBLEM INTEGRATED
WITH THE EXPANSION OF EVCSs
The MINLP model is transformed into an equivalent linear
model using the piecewise similar to [9], [39]. The proposed
linear model is represented by the following expressions:
min CT: Equation (10)

subject to :

(13)-(15), (17)-(26), (28)-(69), (71)-(86)

(Vi,ω,p′)
2I sqrij,ω,p=

Y∑
y=1

mGy (1
P
ij,y,ω,p+1

Q
ij,y,ω,p) ∀ij, ω, p (87)

IV. TESTS AND RESULTS
The proposedMILPmodel was implemented in the modeling
language AMPL [40] and solved using the commercial solver
CPLEX [41] in a computer with an Intel Xeon E5-2650
processor and 64GB of RAM.

The proposed model was validated using the 24-node EDS
adapted from [9], which has a nominal voltage of 20 kV. The
10-year planning horizon is divided in two periods (5 years
each). The upper and lower voltage limits are defined as
1.10 and 0.90 p.u., respectively. Furthermore, it is assumed
that the EV demand grows 11% in the second period of the
planning [19]. The energy supplied cost in the substation is
0.1 USD/kWh and the interest rate is 10% [9]. The chargers
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that can be installed at the EVCS have powers of 50 kW
(quick charger) and 150 kW (super-fast charger). The initial
system topology, investment cost data (substations, circuits,
DG units, ESS, and EVCS), emission rate data (DG units, grid
power), and other case study data are available in [42].

The proposed model was analyzed according to the follow-
ing case studies: I) The EV demand and conventional demand
feed only from the grid. DSEP with investments only in
circuits, substations, and EVCSs; II) DSEP including invest-
ments in non-renewable DG (GT units); III) DSEP including
investments in renewable DG (PV/WT units). In this case,
the EV demand and conventional demand feed from a mix
of renewable/non-renewable energy and the grid; IV) In this
case, all investment alternatives mentioned in this work are
considered (substations, circuits, renewable/non-renewable
DG, EVCSs, and ESS); V) A sensitivity analysis with dif-
ferent ESS investment costs; VI) A sensitivity analysis was
performedwith different CO2 emission rates; VII) In this case
study, different candidate nodes for allocation of EVCSs are
analyzed.
Case I: Investments in substations, circuits and EVCSs are

considered. The solution found has a cost of 141.70 millions
of USD with a total of 609.61 kTons of CO2 emissions.
The expansion plan includes the following actions: (1) First
period: construction of substations located at nodes 23 and 24,
allocation of EVCSs with the installation of 2 quick EV
chargers and 2 super-fast EV chargers for the following
nodes 4, 10, 13, and 14, installation of 2 quick EV chargers
and 1 super-fast EV charger at node 15, and construction
of 15 new circuits. (2) Second period: installation of 1 super-
fast EV charger at node 15.
Case II: In addition to investments in substations, circuits,

and ECVSs, DSEP includes allocation of GT units. The total
cost of the expansion plan is 124.28 millions of USD with a
total CO2 emission of 609.39 kTons. The investment plan pro-
vides the following actions: (1) First period: construction of
substations located at nodes 23 and 24, allocation of EVCSs
with the installation of 2 quick EV chargers and 2 super-fast
EV chargers at nodes 4, 10, 13, and 14, installation of 2 quick
EV chargers and 1 super-fast EV charger at node 15, allo-
cation of two GT unit at nodes 3 and 11, and construction
of 15 new circuits. (2) Second period: allocation of 1 super-
fast EV charger at node 15.
Case III: Investments in substations, circuits, allocation

of renewable/non-renewable DG units, and allocation of
EVCSs. The total cost of the expansion plan is 88.10 with
a total CO2 emission of 337.02 kTons. The expansion plan
includes the following actions: (1) First period: construc-
tion of substations located at nodes 23 and 24, allocation
of EVCSs with the installation of 2 quick EV chargers
and 2 super-fast EV chargers at nodes 4, 10, and 13, instal-
lation of 2 quick EV chargers and 1 super-fast EV charger at
nodes 14 and 15, installation of twoGT units at nodes 3 and 5,
six WT units at nodes 3, 5, 9, 11, 16, and 19, one hundred
thirty-two PV units (thirteen at node 3, five at node 4, nine
at node 6, nineteen at node 8, forty three at node 12, sixteen

at node 13, twenty-five at node 14, and two at node 15), and
construction of 16 new circuits. (2) Second period: allocation
of 1 super-fast EV charger at nodes 14 and 15, and installation
of twenty-five PV units (seventeen at node 8, eight at node 12)
Case IV: Similar to Case III, but including the possibility

to invest in ESS. Li-Ion batteries have been considered in the
ESS with an energy to power E/P ratio of 4 hours, capacity
of 250kW/1000kWh, and an associated cost equal to USD
343,000 ($ 271/kWh and $ 288/kW) [43]. Due to the high
cost of investment in ESS, this case study chose not to install
any battery bank. Thus, the results for this case are the same
as for Case III.

The computational times to solve Cases I–IV are 108.50 s,
1050.03 s, 1347.36 s, and 3838.95 s, respectively. A summary
of the main DSEP results for the first four cases is shown in
Table 3. Note that in the first case (without investments in DG
units) there was a higher total cost, a difference of approx-
imately 12.29% and 37.83% related to Cases II and III/IV.
Investment in renewableDGunits tomeet the EV demand and
conventional demand benefits the system and contributes to
total cost reduction (Case III/IV). Moreover, Case III, where
there is a mix of investments in substation, circuits, EVCSs,
and renewable/non-renewable DG units, obtained the more
economical expansion plan.

To demonstrate the quality of the solutions found using
the proposed model, the objective functions of Cases I-IV
are compared to the original model (nonlinear formulation).
It is important to highlight that both models obtained the
same investment plans. Moreover, Table 4 shows that the
linearization errors are negligible. Therefore, the proposed
model provides optimal solutions within a good accuracy.

Figure 5 shows the active power profile injected by the
substation in all the periods and scenarios for cases I, II,
and III (see Figure 5 (a), (b) and (c)).

TABLE 3. Present value of costs and emissions for cases I, II, III, and IV.

It can be highlighted that in Case III (Figure 5 (a)), with the
support of the renewable DG units, there was a reduction in
the energy supplied by the grid, thus lowering the total cost
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TABLE 4. Linearization errors of objective functions for Cases I, II, III,
and IV.

FIGURE 5. Active power profile injected by the substation for each
scenario and period: (a) for Case I, (b) for Case II, (b) for Case III.

of the expansion plan (see Table 3). Case III also obtained
the best results in environmental aspects, with a significant
reduction in CO2 emissions of approximately 44.71% when
compared to Case I, and 44.69% compared to Case II. The
best expansion plan (Case III) is illustrated in Figure 6.

Case IV, unlike Case III, could carry out investments in
ESSs. However, the expansion plan for this case chose not

FIGURE 6. Topology of the best expansion plan (Case III).

to install any ESS due to the high cost of the battery bank.
Therefore, cases III and IV obtained the same results (see
Table 3). Because of this, a sensitivity analysis is performed
with different ESS prices (Case V).
Case V: Price of ESSs is expected to be annually reduced

by 8% [44]. From that perspective, a sensitivity analysis
with different ESS prices is performed to evaluate the cor-
responding changes of the expansion plan (Table 5). The
available battery banks have a capacity of 250 kW/1000 kWh.
Note that when the investment price is lower ($96/kWh and
$107.2/kW), the expansion plan chooses to install more bat-
tery banks and PV units. On the other hand, when the invest-
ment cost is higher ($271/kWh and $288/kW), the model
does not install any ESS. Therefore, in the coming years with
the reduction in the price of batteries, it will become more
feasible to invest in that technology, contributing to deferring
reinforcements in the EDS and integrating distributed energy
resources.
Case VI: A sensitivity analysis was performed with dif-

ferent CO2 emission rates. In this case, one more constraint
that limits CO2 emission rates is included in the model.
The results of this analysis are summarized in Tqble 6. The
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TABLE 5. Sensitivity analysis for different ESS prices.

TABLE 6. Results for case VI.

first and the last solutions (1 and 6) represent the extreme
solutions, with solution 1 presenting the lowest cost and max-
imum CO2 emission value and solution 6 the opposite. The
first solution represents Cases III and IV, in which the prob-
lem is optimized without directly restricting CO2 emissions,
aiming to minimize investment and operational costs (includ-
ing emissions costs). Moreover, it is noted in Table 6 that,
to reduce CO2 emissions, investment in renewable DG units
increases. Figure 7 shows the conflict between minimizing
costs and reducing emissions. It is noted that the decrease in
emission values leads to an increase in the total planning cost,
due to the increase in investment in the renewable DG units,
which contributes to the reduction of CO2 emissions.
Case VII: Similar to [19], this work proposes a central-

ized approach for planning EVCSs. Thus, simulations were
carried out varying the installation locations of EVCSs,
according to the interests of different investors. Table 7
presents the expansion plan results for each location of
EVCSs: solution 1 (4, 10, 13, 14, 15), solution 2 (3, 6, 8,
12, 19), solution 3 (5, 9, 11, 16, 18). The set of nodes for
allocation of EVCSs used in solution 1 was the same used for
the previous case studies. The results of solution 1 are very
close to solutions 2 and 3, with a difference of 0.00135%
and 0.0027%, respectively. The expansion plan of solu-
tions 1 and 2 are identical. The only difference between solu-
tion 3 and the other solutions is the installation of a PV unit.

The results of the cases highlight the advantage of an inte-
grated planning including different expansion alternatives.
Moreover, the centralized approach for planning EVCSs can

FIGURE 7. Carbon abatement curve for case VI.

TABLE 7. Results for case VII.

serve as an auxiliary tool so that different agents, investors,
network owners can define, according to their needs, the
locations where the EVCSs will be installed, to maximize the
social benefit.

V. CONCLUSION
A mixed-integer linear programming (MILP) model for the
distribution system expansion planning (DSEP) problem has
been proposed. Uncertainties related to conventional demand,
EV demand, and renewable generation along with invest-
ments in distributed generation (DG) units and energy storage
systems (ESSs) were considered.

In contrast to previous works, the proposed model includes
the simultaneous optimization of investments in substations,
circuits, and distributed energy resources, including envi-
ronmental aspects (CO2 emissions). Moreover, this paper
presented an algorithm to estimate EV charging demand. The
EV demand uncertainty model showed that more than 90% of
the EVs were charged when they had an initial state of charge
of up to 50%.

Tests carried out in a 24-node system suggest that consid-
ering a simultaneous investment plan in substation, circuits,
EV charging stations (EVCSs), DG units, and ESSs within
the DSEP results in expansion plans at lower costs since the
operational costs of the system is reduced. The coordinated
investment plan proved to be more promising, contributing to
making the system less dependent on the support of substa-
tions. Besides, this expansion plan brings environmental ben-
efits contributing to the reduction of CO2emissions. Another
important aspect is that some expansion plan do not propose
installation of battery banks due to the high cost of this
technology; however, in the coming years with the reduction
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in the price of batteries, it will become more feasible to invest
in that technology, contributing to deferring reinforcements in
the EDS and integrating distributed energy resources.

Future work would address the robust optimization that has
been little explored in the specialized literature compared to
stochastic programming.

APPENDIX
NOMENCLATURE
INDICES
ω Index of scenarios.
ωbl Index of scenarios ω contained in block bl.
ωd/ωn Index of scenarios at sub-block day/night.
a Index of conductor types.
b/r Index of candidate nodes for installation of

ESS/ EVCSs.
bl Index of blocks of time
c Index of alternatives for EVCSs.
d Index of days.
f Index of candidate nodes for installation of

GT units.
i Index of nodes.
ij Index of circuits.
k/u Index of candidate nodes for installation of

WT/PV units.
l Index of daily travel distance.
p Index of planning periods.
s Index of substation nodes.
v Index of EVs.

PARAMETERS
δ Power-temperature coefficient.
1̄G Upper bound for each block of 1P

ij,y,ω,p and

1
Q
ij,y,ω,p.

1̄S Upper bound for each block of 1PS
i,y,ω,p and

1
QS
i,y,ω,p.

ζ gt Emission rate of GT units
ζ pv/wt Emission rate of PV/WT units.
ζ si Emission rate of energy supplied by

substations.
ηESC/ESD Production/ storage efficiency rate for ESS.
λ Number of years in each period.
πω Probability of scenario s.
τ Interest rate.
b Upper bound for the absolute value of vari-

able bij,ω,p.
Cem Cost of CO2 emissions.
Cgt
f Cost coefficients for GT unit investment at

node f .
CES
b Cost coefficients for ESS.

CEV
c Cost coefficients for EVCSs.

CL
ij,a,p Cost coefficients for the construction of cir-

cuit ij using conductor type a
Cpv
u Cost coefficients for PV unit investment at

node u.

Cs
i Cost coefficients for substation reinforce-

ment at node i.
Cogt Maintenance and operational cost coeffi-

cients for GT units.
copv/owt Maintenance and operational cost coeffi-

cients for PV/WT units.
Cwt
k Cost coefficients for WT unit investment at

node k .
CON v Electric vehicle consumption.
CPv,d Remaining battery capacity for the vehicle v

and day d .
CU v,d Used vehicle battery capacity for the vehicle

v and day d .
DEV
ω,p Total EV demand in scenarioω and period p.

da,v,d Travel distance a of vehicle v on day d .
dESC/ESD Duration (hours) of the charging process of

an ESS.
dω Duration (hours) of scenario ω.
Ēb Maximum limit of energy storage of the ESS

at node b.
E Minimum limit of energy storage of the ESS

at node b.
f DG Penetration limit for DG units.
f Dω Demand factor of scenario ω.
f pvω PV generation factor of scenario ω.
G Solar irradiance.
I ij Maximum current of circuit ij.
lij Length of circuit ij.
mG
y Slope of the γ -th block of the piecewise

linearization for the power flow of a circuit.
mS
y Slope of the γ -th block of the piecewise

linearization for the generated power of a
substation.

N
ES
b Maximum number of battery banks to be

installed.

N
EV
c Maximum number of EV chargers to be

installed.
N

pv
u Limit of PV units to be installed in each

candidate node.
NOCT Nominal operating cell temperature condi-

tions.
PDi,p Active power demand at node i and period p.
PEVc Capacity of EV charger type c
PESb Maximum active power capacity of ESS at

node b.
Pgtf ,h h-th point of the capability curve of GT

unit f .
Pwt Output power of the WT units.
Pwtk,h h-th point of the capability curve of WT

unit k .
P
wt
k Active power capacity of WT units at

node k .
Ppv Output power of the PV units.
P
pv
u Active power capacity of PV units at node u.
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PSTC Power under standard test conditions.
QD
i,p Reactive power demand at node i and

period p.
Q
gt
f Upper reactive power limits of GT unit at f .

Qgt
f Lower reactive power limits of GT unit at f .

Q
wt
k Upper reactive power limits of WT unit at k .

Qwt
k

Lower reactive power limits of WT unit at k .
Qwt
k,h h-th point of the capability curve of WT

unit k
Ra Conductor resistance.
SDi,p Apparent power demand at node i at

period p.
SISi Initial apparent power capacity of the exis-

tent substation at node i.
SFS

i Apparent power capacity for resizing of the
substation at node i.

SOCv,d State of charge EV v on day d .
Tamb Ambient temperature.
Tcell Cell temperature.
V/V Upper and lower voltage limits.
v Wind speed.
vI/vO Cut-in/ cut-off wind speed.
vR Rated wind speed.
Xa/Za Conductor reactance/impedance.
Y Number of blocks in the piecewise

linearization.

VARIABLES
1P
ij,y,ω,p Value of the γ -th block associated with the

active power (P̂ijω,p).
1

Q
ij,y,ω,p Value of the γ -th block associated with the

reactive power
(
Q̂ij,ω,p

)
.

1PS
i,y,ω,p Value of the γ -th block associated with the

active power (Psi,ω,p).
1

QS
i,y,ω,p Value of the γ -th block associated with the

reactive power (Qsi,ω,p).
bij,ω,p Variable used in the calculation of the volt-

age drop of circuit ij, at scenario ω, and
period p.

DEV
ω,p Total demand for all EVs, in scenario ω and

period p.
DEV
v,d,h EV charging demand of each vehicle v, at

hour h and day d .
D̂EV
d,h Total demand for all EVs, at hour h and day.

DEVCS
r,ω,p Charging demand in EVCS at noder , sce-

nario ω and period p.
EESC
b,ω,p Energy stored of an ESS at node b, sce-

nario ω, and period p.
EESD
b,ω,p Energy supplied by the ESS at node b, sce-

nario ω, and period p.
I sqrij,a,ω,p Square of the current through circuit ij for

conductor a in scenario ω and period p.
Î sqrij,ω,p Square of the current through circuit ij in

scenario ω and period p.
NES
b,p Investment variable for an ESS unit at node b

and period p.

NEV
r,c,p Number of EV chargers at node r , type c and

period p.
N pv
u,p Investment variable for a PV unit at node u

and period p.
Pij,a,ω,p Active power flow through circuit ij for con-

ductor a in scenario ω and period p.
P̂ij,ω,p Active power flow through circuit ij in sce-

nario ω and period p.
PESCb,ω,p Active power stored of an ESS at node b,

scenario ω, and period p.
PESDb,ω,p Active power supplied by the ESS at node b,

scenario ω, and period p.
Pgtf ,ω,p Active power injected by the GT units at

node f , scenario ω, and period p.
Ppvu,ω,p Active power injected by the PV units at

node u, scenario ω, and period p.
Pss,ω,p Active power supplied by the substation at

node s, scenario ω, and period p.
Pwtk,ω,p Active power injected by the WT units at

node k , scenario ω, and period p.
PR Rated electrical power.
Qij,a,ω,p Reactive power flow through circuit ij for

conductor a in scenario ω and period p.
Q̂ij,ω,p Reactive power flow through circuit ij in

scenario ω and period p.
Qgt
f ,ω,p Reactive power injected by the GT units at

node f , scenario ω, and period p.
Qpv
u,ω,p Reactive power injected by the PV units at

node u, scenario ω, and period p.
Qs
s,ω,p Reactive power supplied by the substation i

at node s, scenario ω, and period p
Qwt
k,ω,p Reactive power injected by the WT units at

node k, scenario ω, and period p.
Sgsqri,ω,p Square of the apparent power supplied

by substation at node i, scenario ω, and
period p.

tchargev,d EV charging time of each vehicle v on the
day d.

V sqr
i,ω,p Square of the voltage at node i, scenario ω,

and period p.
xEVr,p Investment variable for installing an EVCS

at node r and period p.
xLij,a,p Investment variable for construction of cir-

cuit ij using conductor type a, and period p.
xgtf ,p Investment variable for installing a GT unit

at node f and period p.
xSs,p Investment variable for reinforce a substa-

tion at node s and period p.
xwtk,p Investment variable for installing a WT unit

at node k and period p.
y−/+ij,p Operational variable related to the back-

ward/forward direction of circuit ij and
period p.

zij,a,p Operational variable related to circuit ij
using conductor type a, at period p.
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