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ABSTRACT The residential sector electricity demand has been increasing over the years, leading to an
increasing effort of the power network components, namely during the peak demand periods. This demand
increasing together with the increasing levels of renewable-based energy generation and the need to ensure
the electricity service quality, namely in terms of the voltage profile, is challenging the distribution network
operation. Demand response can play an important role in facing these challenges, bringing several benefits,
both for the network operation and for the consumer (e.g., increase network components lifetime and
consumers bill reduction). The present research work proposes a genetic algorithm-based model to use the
consumers’ load flexibility with demand response event participation. The proposed method optimally shifts
residential loads to enable the consumers’ participation in demand response while respecting consumers’
preferences and constraints. A realistic low voltage distribution network with 236 buses is used to illustrate
the application of the proposed model. The results show considerable energy cost savings for consumers and
an improvement in voltage profile.

INDEX TERMS Demand response, distribution network, load flexibility, load shifting, voltage profile
improvement.

NOMENCLATURE
API Application programming interface.
BFA Bacterial foraging.
DR Demand response.
DSM Demand-side management.
DSO Distribution system operator.
GA Genetic algorithm.
HTTP Hypertext transfer protocol.
IoT Internet of things.
JSON JavaScript object notation.
PV Photovoltaic.
RES Renewable energy sources.
REST Representational state transfer.
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EnPay Energy cost (e/kWh).
t Time frame.
ti Initial time frame.
tf Final time frame.
m Shiftable appliance index.
M Maximum number of available shiftable

appliances.
Etask Energy consumption (kWh).
EGen Locally generated energy (kWh).
F Fitness function.
T Time window of the schedule.
EPrice Energy price in a given time frame.
Ind1chance Chances of individual 1 winning the

tournament.
fit1 Fitness of individual 1.
fit2 Fitness of individual 2.
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I. INTRODUCTION
Nowadays, modern societies are highly dependent on elec-
tricity to ensure safe, reliable, and comfortable living. The
electricity demand is expected to still increase in the future
and is an essential requirement for economic development
[1]–[3]. Over the past few years, the electrical energy sources’
portfolio has been changing, contributing to renewable
energy sources (RES) penetration growth. The large-scale
integration of RES and the interest in placing the citizens as
core players in future power systems play a crucial role in the
efforts to reduce greenhouse gas emissions. Furthermore, the
citizens’ participation role is an important key to the success
of smart grids [4], [5]. Taking advantage of the citizens’
demand flexibility can facilitate and increase the use of local
RES and enable their participation in demand response (DR)
programs [6], [7]. DR can be seen as a response by consumers
to a set of stimulus, such as the variation in the energy price or
the payment of incentives to consumers who participate inDR
events [8]–[10]. DR can be implemented by developing time
of use energy pricing schemes that incentivize customers to
shift all or part of their demand from peak to lower load peri-
ods [11]. Thus, the load shape change obtainedwill contribute
to the reliability and power quality improvement as well as a
total system cost reduction. In this way, generation planning
and scheduling efficiency can also be improved [12].

A. LITERATURE REVIEW
Shiftable loads have recently received a great deal of attention
due to their role in DR and peak load shaving programs
[13]. The use of computational algorithms to solve load
demand planning and optimization problems, namely con-
cerning load shifting, leads to potential monetary and energy
savings when confronted with DR events. Promising results
by using DR were obtained for different applications, as
shown in [14].

In what concerns load shifting, [15] presented a quanti-
tative estimate of the possible reduction in network power
losses when domestic energy demand is shifted over time.
However, this research is focused on the network perspective
and does not consider the consumers’ benefits or the local
generation. Reference [16] introduced an analysis of load
shifting performed in São Miguel Island, Azores, indicating
that through defined rules of load shifting, the baseload limit
can be elevated, and the limits for the maximum installed
RES capacity can be set. Nevertheless, in [16], the benefits
for consumers participating in load shifting are neglected
as well as the network operation parameters (e.g., voltage
profile). Pourmousavi et al. [17] assessed the thermostat
setpoint control of aggregate electric water heaters for load
shifting to provide the desired balancing reserve for the util-
ity. This research work aims only at the thermostat setpoint
control of aggregate electric water heaters, ignoring other
appliances and the network operation analysis. A variety
of approaches are used to solve the load shifting problem,
such as particle swarm optimization-based algorithms [18],

reinforcement learning [19], ant lion optimization algorithm
[20], linear programming [21], and cuckoo search with
grasshopper optimization algorithms [22]. The genetic algo-
rithm (GA) is also considered in several works to solve the
load shifting problem [23]–[25]. In [23], a demand-side
management (DSM) approach with GA is used to give the
best solution based on optimizing the load shaping in DSM.
Awais et al. [24] proposed a similar approach, but with a
greater focus on minimizing the peak to average ratio and the
overall electricity consumption cost. Reference [25] adapted
a hybridization of two optimization approaches, bacterial
foraging (BFA) and GA, to reach the best solution. However,
these research works have significant limitations, including
neglecting the influence of load shifting and local generation
on network operation [18], [19], [21]–[25], different appli-
ances [19]–[21], and consumers gain from participating in
the load shifting [23], [25]. Moreover, in [26], Bashir et al.
used several machine learning algorithms, such as support
vector machines, K-nearest neighbor, logistic regression,
naive bayes, neural networks, and decision tree classifier,
to predict the smart grid stability. A summary of the surveyed
literature can be found in Table 1.

B. CONTRIBUTIONS
To our best knowledge, the above-cited literature presents
several limitations in what concerns the load flexibility in the
DR event participation (load shifting) field. To fill those gaps,
this research work presents the following key contributions:

• Using the load flexibility from different shiftable appli-
ances with demand response participation, managed by
an energy resource aggregator;

• Minimize the energy costs considering in the proposed
model the real-time energy price and the locally gener-
ated energy;

• Considering the consumers benefit from participating in
the load shifting;

• Improve the service quality, namely in terms of voltage
magnitude profile.

A GA based-model has been used for demand response
participation modeling. GA was chosen once it offers high
flexibility for modeling the problem, and is a well-studied
and reliable metaheuristic search-based optimization algo-
rithm that provides semi-consistent good solutions, and is
highly adaptable due to its optimized control parameters
(e.g., population size, mutation probability, and execution
time) [27], [28]. Also, it is worthy to note that the GA is
widely used for other kinds of complex problems, such as
in problems related to heart disease diagnostic [29], internet
of things (IoT) related problems [30], and tuning other opti-
mization algorithms [31].

To demonstrate the application of the proposed model,
twenty consumers of a realistic 400V low voltage distribution
network with 236 buses and a total of 96 loads (residences)
were used.
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TABLE 1. Literature surveyed summarized.

C. PAPER ORGANIZATION
This paper is divided into five main sections. After this
first introductory section, section II describes the proposed
methodology for load shifting and integration with the
GA. Section III will present the case study with real data.
Section IV will show the discussion of the results. Finally,
the main conclusions are presented in section V.

II. PROPOSED METHODOLOGY
This section presents the methodology adopted in this
research work. Subsection II-A shows details about the
approach for load flexibility with demand response partic-
ipation. Subsection II-B presents the load shifting model
implementation architecture.

A. LOAD SHIFTING MODEL
Managing the flexibility provided by the active consumers
in a distribution grid is a complex task. Thus, the aggre-
gator requires proper methods and tools to deal with that
complexity. Figure 1 presents the diagram of the proposed
methodology for load shifting.

The model is able to use the forecast data for the day
ahead, i.e., load demand, photovoltaic (PV) generation, and
electric energy price, to perform the demand response par-
ticipation (managed by an energy resources aggregator). For
the study purpose and to show the advantage of the model,
the authors are using a collection of data consumption from
residences and photovoltaic PV generation. The data con-
sumption collection was obtained in REFIT: Electrical Load
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FIGURE 1. Proposed load shifting model diagram.

Measurements Dataset [32]. This dataset includes the whole
residence aggregate loads and nine individual appliance
measurements at 8-second intervals per residence, collected
continuously over two years from 20 residences. The data
collection was obtained from the collected measures of the
PV panels installed in the GECAD1 laboratory research cen-
ter in what concerns the PV generation. The quality of the
forecast data is analyzed to detect possible data errors.

The authors deal with a heavy database of data consump-
tion and PV generation for the paper’s purpose. In this way,
the block input data and processing are important to filter
possible data errors and select the data to be used for the
study. For data selection, it was chosen one day (15 minutes
time resolution, i.e., 96 periods) where the consumption mea-
sures were recorded in all considered equipment (dishwasher,
washing machine, dryer). The aggregator supplies the genetic
algorithm (with a detailed explanation in the Genetic Algo-
rithm for Load Shifting subsection) - Load shifting model
block and also provides the distribution system operator
(DSO) - Distribution system operator – Low voltage network
power flow analysis block - with demand and generation fore-
cast values (as it said before, for the study propose the authors
are using a collection of data consumption from residences
and PV generation). With that, the DSO performs initiatives
to detect bus voltage violations (power flow analysis). A load
reduction request in the periods and bus where it is verified
the voltage violation is sent to the aggregator (Load shifting
model block), and a DR event (load shifting) is triggered.
Next, the aggregator sends (Load shifting output block) to
DSO the new demand values (after load shifting) for new
power flow analyses. The block LV network parameters out-
puts present the results obtained by the power flow analyses,
namely the new voltage profiles, power losses, and the power
flow.

1 Research Group on Intelligent Engineering and Computing for
Advanced Innovation and Development (https://www.gecad.isep.ipp.pt/
GECAD/Pages/Presentation/Home.aspx)

1) GENETIC ALGORITHM FOR LOAD SHIFTING
GAs were proposed by Holland [33] and are based on the
discoveries made by Charles Darwin and his Theory of the
Evolution of Species. GAs are global optimization algo-
rithms based on natural selection and genetic mechanisms.
They employ a parallel and structured but random search
strategy geared towards strengthening the search for ‘‘high
aptitude’’ points. Although random, they do not correspond
to random, nontargeted searches, as they explore historical
information to find new search points where better perfor-
mance is expected. This is done through iterative processes,
where each iteration is called a generation. The model for the
development of the GA is, at first, implemented in Python by
a RESTAPI service that receives and sends HTTP requests of
JSON files through the POST method. This API serves as an
intermediary for communication between requesters and the
GA. The proposed solution uses the notion of periods (time
frames) without really understanding what they represent
(e.g., five seconds, ten minutes, or one hour), leaving this
definition to the user. Therefore, all input data must follow
the same notion of periods. For example, suppose the length
of a task is specified in a one-minute period. In that case,
the prices and forecasts of the energy market must also be
provided in a one-minute period, ensuring data consistency.
Energy units must be specified as Wh, but their unit prefix
(e.g., kWh or MWh) can differ. Using the same logic as
periods, the user must apply the same prefix to all energy
units. The domain of the GA is characterized by a set of con-
cepts that allow load shifting, considering load flexibilitywith
demand response participation and energy cost minimiza-
tion. The proposed solution domain model, represented in
Figure 2, can be divided into six fundamental concepts [14]:
• Task. A task represents an activity to be done in a
shiftable appliance (e.g., washing clothes);

• Shiftable Appliance. A shiftable appliance describes a
piece of equipment (e.g., dishwasher, air conditioner,
tumble dryer) with controllable loads that can be shifted.
It has a list of compatible tasks;

• Client. This concept portrays the association between
different loads and a client;

• Energy source. An energy source describes a culmina-
tion of availability and price. It allows multiple energy
providers (e.g., aggregator or retailer) and local genera-
tion (e.g., photovoltaic);

• Demand response. Portrays a demand response event
that must be complied;

• Constraint. A constraint is a requirement that the algo-
rithm must comply with (e.g., clothes can only be dried
after washing).

The use of constraints is not necessary however, there are
practical scenarios where physical constraints are in place
and need to be portrayed. For the time being, the proposed
solution has the following constraints2:

2The reader can find the detailed information about these constraints
in [14].
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FIGURE 2. Domain model of the proposed methodology.

1) Task collision;
2) Task order;
3) Load task order;
4) Task setup;
5) Time leap;
6) Interruptible task;
7) Available appliance frames;
8) Load request deadline;
9) Load request task period range;
10) Energy limit;
11) Shift margin.
The energy limit constraint is crucial in this research work

since it is used to stimulate participation in a demand response
event. This constraint defines a limit of energy from energy
sources with a tariff within a given interval of periods. Also,
it can have monetary compensation for complying with the
energy limit. The proposed GA model presents the following
outputs information:
• The final cost;
• The energy consumed per energy source and cost in each
period;

• The energy consumed per shiftable appliance and per
period;

• The cost of each generation of the GA.

B. LOAD SHIFTING MODEL IMPLEMENTATION
The implementation of the GA model for the load shifting
approach can be divided into five main phases: i) initial pop-
ulation, characterized by creating random work plans of the
load (i.e., individuals); ii) crossover, for the spread of genes
between individuals; iii) mutation, to insert diversity into the
population in order to reduce the probability of getting stuck
in a local optimum; iv) selection, to choose the individuals
to inherit to the next population; v) finally, the extraction of
the best individual from the last population created is done.
Figure 3 represents the flowchart of the GA for load shifting
energy cost optimization.

The proposed solution was developed in the Python pro-
gramming language without any library related to GAs since
no library can solve the complexity of the problem described
in this research work.

1) INITIAL POPULATION
The GA begins by creating an initial random population
that complies with all imposed constraints. Therefore, the

FIGURE 3. Flowchart of the GA for load shifting energy cost optimization.

FIGURE 4. Example of a GA individual, representing the matrix
(appliance/period) where tasks are defined by their identifiers.

GA always works with valid schedules. When creating each
individual for the population, the algorithm prioritizes tasks
with a smaller number of compatible shiftable appliances to
decrease the rate of invalid schedules. Then, with the list
of tasks associated with each shiftable appliance, the algo-
rithm constructs a two-dimensional matrix that represents the
work plan of the load. The matrix, shown as an example in
Figure 4, defines the plan of a shiftable appliance and its
working period. For example, in Figure 4, ‘‘Appliance 1’’
and ‘‘Appliance 2’’ could describe two different available
washing machines, ‘‘Washing machine 1’’ and ‘‘Washing
machine 2’’, respectively. Furthermore, tasks ‘‘T1’’, ‘‘T2’’,
and ‘‘T5’’ could represent tasks with different washing pro-
grams that have different durations and energy consumption,
for instance, turbo mode for ‘‘T1’’, normal mode for ‘‘T2’’,
and eco mode for ‘‘T5’’. In addition, ‘‘Appliance 3’’ could
be described as a tumble dryer, with tasks ‘‘T4’’ and ‘‘T3’’
representing tasks with slow dry mode and fast dry mode,
respectively.

If an individualmatrix is createdwith at least one constraint
that is not complied with, the algorithm attempts to repair the
individual by shifting tasks left or right or swapping tasks.
However, if the repair is not successful, another individual is
generated.

An energy limit constraint must be imposed for a load flex-
ibility approach with demand response participation. In this
case, the algorithm checks, for each individual created, if the
given energy limit constraint interval, i.e., in the time frame
interval of the demand response event, the energy usage from
energy sources with prices above zero does not surpass the
energy limit imposed by the demand response event. The
energy usage from energy sources with price can be calcu-
lated through the following equation (1):

EnPay =
tf∑
t=ti

((
M∑
m=1

Etask (t,m)

)
− EGen (t)

)
(1)

where t represents a time frame (period), ti the initial time
frame of the interval, tf the final time frame of the interval,
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FIGURE 5. GA crossover example between two individuals, beginning in
parent 1 with the 3 first steps shown.

m portrays a shiftable appliance index, and M the maxi-
mum number of available shiftable appliances. The energy
consumption of a task in a given period is represented by
Etask , and EGen defines the locally generated energy, which
is energy free of charge (e.g., photovoltaic generation).

2) CROSSOVER
The crossover is made between two individuals randomly
chosen that have not yet been crossed from the previous gen-
eration’s population. The crossover adopted is characterized
by being two-dimensional and following a more determin-
istic approach (i.e., balancing the tasks coming from each
individual). The crossover between two parents (individuals)
starts by organizing the list of tasks by decreasing the order
of execution time. If they have equal times, it is ordered in
ascending order of the number of shiftable appliances com-
patible, thus reducing the rate of invalid crossovers between
two individuals. Then, in order of the task list created, two
crossovers are done from the same list, each starting with a
different parent. The first crossover begins by picking the first
task and inserting in the child according to the parent 1 coor-
dinates’; then it changes to parent 2, then parent 1 again, and
follows this logic. Figure 5 represents an example of the first
three steps in a crossover that starts with parent 1.

If the resulted child is not a valid schedule (i.e., it does
not comply with all constraints), it is never added to the
population pool.

3) MUTATION
The mutation procedure starts by determining which indi-
viduals from the population derived from the crossover will
be mutated based on a percentage of mutation defined in
the input data. If a mutation occurs on an individual, then a
mutation of swapping two tasks is applied, therefore affecting
task order of execution and/or appliance compatibility. If the
resulted mutated individual does not comply with all con-
straints imposed, then the mutation is reversed, and another
mutation, affecting different tasks in the schedule, is tried.

4) SELECTION
The selection begins with the unification of the crossed and
mutated population with the population of the previous gener-
ation (i.e., the new and old populations, respectively). Then,

any repetitions of individuals in the unified population are
eliminated. Afterward, every individual is evaluated using the
following fitness equation (2):

F =
1

T∑
t=1

(((
M∑
m=1

Etask (t,m)

)
− EGen (t)

)
× Eprice (t)

)
(2)

where t represents a time frame (period), T the time window
of the schedule,m portrays a shiftable appliance index, andM
the maximum number of shiftable appliances in the schedule.
Both t andm are used to navigate in the schedulematrix (i.e., t
represents the x cartesian coordinate and m the y coordinate).
In a given time frame, the energy consumption of a task
is represented by Etask , EGen portrays the locally generated
energy (e.g., photovoltaic generation) available at a given
time frame, and EPrice describes the energy price in a given
time frame. In short, the energy cost is determined as a result
of the respective energy price.

Then, after each individual is evaluated, the algorithm
selects the n best individuals (i.e., elite selection) according
to the remaining individuals (i.e., population size less n)
are obtained from non-elite tournaments. The tournaments
randomly select two individuals and make them compete
based on their fitness scores, obtained through equation (2).
The chances of individual 1 winning the tournament can be
calculated using the following equation (3):

Ind1chance =
fit1

fit1 + fit2
(3)

where fit1 and fit2 represent the fitness of individual 1 and
individual 2, respectively.

Then, the algorithm generates a random decimal number
between 0 and 1. If the generated number is lower than the
chance of individual 1 winning, equation (3), then individual
1 is declared the winner. If not, individual 2 wins. Therefore,
the individual with the lowest cost (i.e., highest fitness) is
most likely to be inherited by the next generation. In fact, this
non-elite tournament approach aims to reduce even further
the probability of the GA getting stuck in a local optimum
since it does not necessarily inherit the individuals with the
highest fitness values, thus giving lower fitness individuals a
chance to inherit to the next generation.

5) EXTRACT BEST INDIVIDUAL
After the selection phase, a new generation begins with the
population obtained from this selection, and all the proce-
dures mentioned above are repeated. Since the GA always
works with valid schedules, in our case, with energy limit
constraints, the overall evolution of the GA always trends to
create more schedules that comply with the demand response
event. Also, having more valid schedules, it has more flex-
ibility to reduce the overall energy costs at the same time.
Finally, after at least one stop condition is met (e.g., execution
time, number of generations, stagnation, or cost reached),
the lowest cost individual (i.e., best individual), found by the
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FIGURE 6. Single line low voltage distribution network.

FIGURE 7. Day-ahead load demand and PV generation - 15 minutes
periods (12AM to 11:45PM from 08/05/2014).

GA, is extracted from the last population created. Therefore,
through equation (2), the GA tries to minimize the energy
cost of the load by optimizing the schedule as much as
possible, also taking into consideration constraints, such as
task orders, task collisions, load deadlines, PV generation,
etc., but mainly energy limit constraints.

III. CASE STUDY
The low voltage distribution network presented in Figure 6
illustrates the use of the proposed methodology. This net-
work is based on a real distributed grid and has 236 buses
and 235 underground cables. It is operated under a radial
topology with a total installed power of 679.65 kVA. There

TABLE 2. Selected bus/consumers and flexible appliances.

TABLE 3. Selected genetic algorithm optimization control parameters.

are 96 residential consumers connected to this network,
of which two have rooftop PV panels (7.5 kWp each).
A 1000 kVA transformer carries out the network supply with
10 kV of the primary voltage and 420V in the transformer
secondary.

For the study purpose, the consumers’ data from REFIT
[32] substitutes the data of 20 original consumers from the
network (represented as green buses in Figure 6). Each of
these selected consumers has several appliances with load
flexibility, enabling their participation in DR events. The flex-
ible appliances for the selected 20 consumers are presented
in Table 2. The total day-ahead demand and PV generation
are presented in Figure 7, considering periods of 15 minutes
for day 08 of May of 2014. As shown in Figure 7, the peak
demand is verified between periods 41 and 45, i.e., between
10:00AM and 11:00AM.

Regarding PV generation, the maximum generation is
obtained between periods 51 and 55 (12:30PM – 01:30PM).
Voltage magnitude violations are considered for voltage
values lower than 0.95 p.u. and greater than 1.05 p.u.. The
GA input optimization control parameters used for the case
study are represented in Table 3.

The electricity prices are taken from a double time of use
tariff offered in Portugal to residential consumers and can
be seen in Table 4. In addition, each customer who par-
ticipates in the considered DR event receives compensation
of 0.05 e/kWh of shifted demand (remuneration contract
between customer and aggregator), which will be subtracted
from the electricity bill.

IV. RESULTS AND DISCUSSION
The proposed methodology is applied to the case study
presented in section III using a computer with one Intel
Xeon E5-2620 v2 processor and 16 GB of RAM run-
ning Windows 10 Pro and using Python 3.8 through Visual
Code IDE.3 MATLAB R2018a 64 bits and a tool for electric

3https://code.visualstudio.com
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TABLE 4. Time-of-use.

power system simulation and analysis - MATPOWER 7.0
[34] were used for network analysis studies. The used power
flow method was the Newton Raphson since the considered
network has a low R/X ratio.

Some works to solve a load shifting problem are pre-
sented in the literature, such as [18]–[25]. The authors
tried to compare the run-time/time-consuming with [18]–[25]
to show how the proposed model is efficient. Unfortu-
nately, only one of them presents the model run-time /
time-consuming, i.e., the reference [22]. In [22]it is shown
a demand-side management strategy for the energy opti-
mization problem for different load units in an industrial
load. In this work, two bio-inspired optimization schemes
(Grasshopper-Optimization Algorithm (GOA) and Cuckoo
Search Optimization Algorithm (CSA)) are applied to load
units for scheduling the automatic operated machines accord-
ing to the day-ahead (24 periods – 1 hour period) pricing
signal. The run-time for GOA is 8.702 seconds and for CSA
is 9.152 seconds (we are assuming seconds because the [22]
authors did not specify the time units in the paper).

Regarding the execution time, the proposed GA for load
shifting took around 1800 seconds (30 minutes) for the
96 periods (one day – 15 minutes periods), i.e., an average of
19 seconds for each period. This execution time also includes
the connection time with the network tool analysis. The net-
work analysis execution time was 29 seconds for all periods
(an average of 0.3 seconds for each 15 minutes periods). It is
worthy to note that the 30 minutes mark represents a solid
execution time compatible with the operation timeframe that
guarantees a good result from the GA for the given case study.
It is up to the user to configure the number of generations
and/or the execution time of the GA. Such decisions will
impact the quality of the result.

Considering the load demand presented in Figure 7, the
DSO (after network analysis through power flow study)
detects voltage lower limits violation, i.e., a value lower
than 0.95 p.u. in bus 150, namely in periods 38 to 44,
that correspond to the period from 9:30AM to 11:00AM
(Figure 8). These periods correspond to peak load periods
(which also includes the appliances working), and bus 150 is
the one farthest from the transformer. So, these two situations
together contribute to a considerable voltage drop in the
referred bus. Thus, the DSO sends a load reduction request
to the aggregator in ZONE 2 of the network.

In Figure 9, it can be seen the required load demand for the
available appliances of each consumer selected by the aggre-
gator to participate in the DR event. The selected consumers

FIGURE 8. Voltage magnitude in bus 150 before DR event (12AM to
11:45PM from 08/05/2014).

FIGURE 9. Load demand for participant appliances of each consumer
before the DR event.

were the ones located on buses 103, 116, 127, 138, 146, 148,
and 150.

Analyzing Figure 9, it is possible to see that the appli-
ances (see Table 1) are working during the peak load
periods, namely between periods 36 and 45, i.e., 08:45AM
to 11:00AM (where the electricity prices are higher - see
Table 2), contributing in this way for an increase in the
current, causing a source capacity reduction and a voltage
drop (violating the lower limit), as shown in Figure 8.

After running the proposed load shifting methodology
(section II), the aggregator relocates the selected consumers’
appliances’ energy consumption in other periods, namely
between periods 1 to 30 (12:00AM and 07:15AM), corre-
sponding to off-peak periods. Comparing Figures 9 and 10,
it is possible to see that the appliances are working more
spread in time and not simultaneous. So, the appliances
located in buses 103, 116, 138, and 118 are working mainly
in the first 17 periods of the day (12:00AM – 04:00AM).
The remaining ones (buses 127, 140, and 150) are working
between periods 16 and 30 (03:45AM– 07:15AM).With this,
it is possible to obtain savings for the consumers and, at the
same time, mitigate the voltage profile issues, which proves
the effectiveness of the proposed model.

Figure 11 shows the improvement of the voltage val-
ues in the periods where the voltage lower limit violations
occurred before the DR event (periods 38 to 44 - 9:30AM
to 11:00AM). A maximum of 0.4% improvement is verified
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FIGURE 10. Load demand for participant appliances of each consumer
after the DR event.

FIGURE 11. Voltage magnitude in bus 150 after DR event.

TABLE 5. Consumers costs comparison for the appliances operation.

in those periods contribution to the voltage magnitude being
within the defined limits (≥0.95 p.u. and ≤1.05 p.u.). This
improvement in the voltage magnitude is related to shifting
the appliances to other periods, namely off-peak periods,
contributing to a current reduction in some peak periods
(periods 36 and 45). Indeed, there is a voltage magnitude drop
in the first thirty periods of the day (the maximum drop is
0.2%), which results from the load demand increase in those
periods due to the load shifting made as a response to the
DR event. However, despite this drop, the voltage magnitude
remained within limits in all periods. Also, it is possible to see
that the high voltage drop is verified in the first 17 periods.
This occurs because, in these periods, many appliances are
working (five appliances).

Besides the advantages provided to the network operator
(namely mitigating the voltage magnitude violations), the
load shifting model also presents considerable advantages
to the consumer (bill reduction). Table 5 presents the cost
comparison before load shifting and after load shifting. It is
possible to see that participation in the DR event brought
consumers significant cost savings. All available consumers
to participate in DR events present more than 70% savings
for the appliance operation. It is worthy to note besides the
savings by shifting the appliance operation to other periods
(lower electricity tariff), the consumers also have the com-
pensation for that shifting (0.05 e/kWh).

V. CONCLUSION
With the electricity demand increase, the distribution network
can often present operational issues regarding the violation
of voltage magnitude. Therefore, demand response can play
an important role in reducing the demand during those peri-
ods providing benefits both for the network and for the
consumers.

This research paper presents a model using load flexibility
and consumers participation in demand response events. The
model considers real-time energy pricing and local genera-
tion. The proposed load shifting improves the network volt-
age profile and reduces the consumers’ energy cost.

The practical use of the proposed model was illustrated
using a case study with a realistic low voltage distribution
network. The results show the improvement in the network
voltage magnitude, leading the voltage to be within its limits.
This is done with a small cost to the DSO, corresponding
to the consumers’ remuneration for their participation in the
demand response event. From the consumers’ point of view,
they not only are remunerated for their participation, but they
are also profiting from lower energy costs due to shifting their
loads to periods with lower energy prices.

Our proposed model took around 1800 seconds
(30 minutes) as total run-time. But it is worthy to note
that we are considering 20 loads, 96 periods for energy
price, demand, and PV generation. Moreover, our model can
consider a set of constraints and include an electric power
system simulation and analysis. Also, it is important to refer
to the strong savings (more than 70%) for the consumers
who participate in the demand response event and the voltage
violation removal. Furthermore, the 30-minute mark repre-
sents a solid execution time that guarantees a good result
from the genetic algorithm. The effectiveness of our proposed
model has been demonstrated through the experiments and
presented results.

This approach improves the reliability and service quality
and reduces and/or postpones the network reinforcements or
expansion. Thus, reducing the number of periods in which
the network is under stress may increase the lifetime of the
network components.

The main limitations of the current methodology are: a) the
proposed model only includes residential consumers; b) only
the demand response participation of home appliances is
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included; c) only voltage magnitude profile improvement is
considered; d) the importance of demand response at each
node and at each time slot is not considered.

As future work, the authors will improve the proposed
model to include other types of consumers, namely the indus-
trial ones; demand response participation of electric vehicles;
implement in the model the demand response participation
to mitigate lines congestion issues and analyze the possible
needs and associated costs for the network reinforcement/
expansion.
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