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A B S T R A C T   

The present review has been carried out, resorting to the PRISMA methodology, analyzing 218 published articles. 
A comprehensive analysis has been conducted regarding the consumer’s role in the energy market. Moreover, the 
methods used to address demand response uncertainty and the strategies used to enhance performance and 
motivate participation have been reviewed. The authors find that participants will be willing to change their 
consumption pattern and behavior given that they have a complete awareness of the market environment, 
seeking the optimal decision. The authors also find that a contextual solution, giving the right signals according 
to the different behaviors and to the different types of participants in the DR event, can improve the performance 
of consumers’ participation, providing a reliable response. DR is a mean of demand-side management, so both 
these concepts are addressed in the present paper. Finally, the pathways for future research are discussed.   

1. Introduction 

In the local electricity markets, bottom-up approaches have been 
proposed to boost the involvement of local grid operators and encourage 
the active participation of small consumers [1]. These tactics are crucial 
to successfully penetrate Distributed Generation (DG) technologies in 
the current network, avoiding the use of fossil fuels. So, by focusing on 
the empowerment of the local resources, namely active consumers’ 
flexibility, the potential of renewable energy resources can be explored 
without jeopardizing the system’s reliability and security. 

Progressing towards a future where the demand side has greater 
importance in the system, consumers should follow the signals from 
network or utility companies. To achieve system balance, their response 
is crucial [2]. Many advantages come from this approach, such as real 
choices to end-users, new opportunities and challenges, more competi-
tive prices; effective investments; higher service standards; security of 
supply, sustainability; and the decarbonization of the electrical system 
[2,3]. The Demand Response (DR) concept and the respective programs 
were then defined [4]. Nevertheless, it is important to enabling tech-
nologies such as the Internet of Things (IoT) to be used to raise the 
consumers’ awareness and their contribution to market transactions [5]. 

1.1. Contextualization and background 

In the former paradigm, the system operator considered the load 
from electricity consumers in power and energy systems as rigid. 
However, each consumer has a set of appliances that do not have a fixed 
schedule and can be used flexibly by introducing the DR definition [6]. 
This concept means that following the different signals, the consumer 
uses them at different times or does not use them. In recent years, 
numerous definitions of DR have been proposed. A commonly used 
definition says [7]: “… tariff or program … to motivate changes in electric 
use by end-use customers … changes in the price of electricity over time, … 
incentive payments … high market prices … grid reliability …”. A more 
recent one, published in European Directive 2019/944, says [8]: “… 
change of electricity load by final customers … market signals … 
time-variable electricity prices or incentive payments, …final customer’s bid 
to sell demand reduction or increase … market … alone or through 
aggregation”. 

Until introducing the smart grid concept and DR, the consumer had 
no direct information regarding the market transactions. With the 
growing concern regarding climate change, the role of this new player 
must be empowered. Due to the volatile behavior of DG, it is crucial to 
make the consumers the center of the business model and consider their 
flexibility as fundamental to achieve the system balance. A consumer- 
centric approach has countless advantages, for example, for flexibility 
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markets, where the main players are [1]: Transmission System Opera-
tors (TSO), Distribution System Operators (DSO), Balance Responsible 
Parties (BRPs), aggregators, and retailers. The TSO is responsible for the 
service and stability of the transmission system, while the DSO is the 
entity responsible for the distribution system’s operation. TSO/DSO 
collaboration is crucial to unleashing the potential of flexibility [9,10]. 
The retailer is a commercial entity selling electricity to consumers. The 

aggregator gathers flexibility through renewable-based and active con-
sumers [11]. 

In this way, the DR definition must also comply with time flexibility. 
Thus, DR programs have different timescales, as presented in Fig. 1, and 
range from several years (on the left) to real-time (on the right). Year- 
long timescales are usually applied to improve long-term planning. 
Shorter timescales are more devoted to incentive-based DR programs, e. 

Abbreviations 

AMI Advanced Metering Infrastructure 
ANN Artificial Neural Network 
ARMA Autoregressive Moving Average 
ARIMA Autoregressive integrated moving average 
BRPs Balance Responsible Parties 
CBL Consumer Baseline Load 
CC Capacity Credit 
CDR Correlated Demand Response 
CVaR Conditional Value at Risk 
DG Distributed Generation 
DLC Direct Load Control 
DNN Deep Neural Network 
DR Demand Response 
DSM Demand Side Management 
DSO Distribution System Operator 
EMS Energy Management Scheme 
EU European Union 
FIS Fuzzy Inference System 

HVAC Heating, Ventilating, and Air Conditioning 
IoT Internet of Things 
ISO Independent System Operator 
kNN K-Nearest Neighbor Method 
LEC Local Energy Community 
MCS Monte Carlo Simulation 
MF Membership Function 
MPC Model Predictive Control 
PRISMA Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses 
PV Photovoltaic Systems 
RE Roth-Erev 
RF Response Frequency 
RI Response Intensity 
RL Reinforcement Learning 
RTO Regional Transmission Organization 
TLP Typical Load Pattern 
TOU Time of Use 
TSO Transmission System Operator 
VaR Value at Risk  

Fig. 1. Electric Power System and Demand Response implementation timescales.  
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g., applying Direct Load Control (DLC). 
The performance from consumers’ participation and how they react 

to a given signal are critical topics to successfully implement DR pro-
grams [6]. From the perspective of the entity requesting DR, gathering 
this type of information to give the right signals to the right consumers 
and the proper remuneration that will fit their needs is the right path to 
reduce the response uncertainty and maintain the system reliable and 
secure [6]. From the active consumers’ perspective, the type of con-
sumer participating in this type of event matters. The residential con-
sumer’s response is highly affected by the level of discomfort caused 
during a DR event [12]. However, industrial consumers’ goal is to 
maximize their profits when participating in these programs and while 
managing any discomfort [13]. 

For this reason, different objectives require different approaches. 
Thus, it is necessary to respond to the consumers by adopting different 
approaches and contexts. Although approaches in the literature 
encourage consumer participation, most of them are profit-driven 
[14–16]. 

1.2. Motivation and contributions 

The main motivation of the present literature review is to understand 
the current state-of-art of approaches to the uncertainty, performance, 
and reliability of consumer participation in DR programs. Some of the 
questions are: Is it important to deliberate methods to reduce uncer-
tainty and enhance consumers’ participation in DR programs? Should 
the distinct types of active consumers be treated differently? Should the 
individual behavior be analyzed to find proper methods of incentivizing 
each consumer’s response? The authors have found interest in these 
questions after analyzing the related literature, as explained from now 
on, and finding the need for it doing their research. 

The authors want to understand the implications of adding such an 
uncertain player into the current system. In the previous paradigm, 
consumer contributions were indirect, having little or no knowledge 
regarding this matter. Gathering different algorithms, solutions, and 
conclusions into a single document summarizing the current state of the 
art regarding this topic can be useful to create better-quality models. As 
far as the authors’ knowledge, the DR concept has already been applied 
in some real markets but is still fresh in others. These new players should 
be further studied and understood to achieve a successfully imple-
mented solution throughout the system. Their response is uncertain and 
could impact the performance of the remaining players in the market, 
jeopardizing the security and reliability of the system. For instance, in 
the review carried out by Ivana Dusparic et al. [17], whose focus was the 
residential DR, several algorithm characteristics have been discussed, 
concluding that performance concerning the algorithm for a particular 
DR implementation has been discussed energy use should be considered. 
The conclusion of this study emphasizes that a DR approach may use 
more than one algorithm that can be combined to meet the imple-
mentation requirements. Each solution must be tailored to a particular 
context. 

Thus, context is also an important topic addressing DR programs that 
need to be customized. For instance, the type of consumer, their energy 
patterns be influenced by climate, and many more in the review pub-
lished by Miadreza Shafie-khah et al. [13] where the recent advances in 
DR for industrial and commercial sectors were studied, as well as the 
benefits and barriers associated with their role. The authors categorized 
the different business models and objective functions. Consumer 
behavior was mentioned referring to trust level among parties – high 
trust levels should be sufficient to prevent any barriers to viewing DR as 
a reliable source, and widespread adoption of DR programs – lack of 
understanding of the benefits of DR can cause less investment by 
different parties. 

A broader review of the barriers and enablers of DR in the Smart Grid 
was conducted by Nicholas Good, Keith Ellis, and Pierluigi Mancarella 
[18]. The barriers were categorized into fundamental and secondary, 

producing a comprehensive and discrete classification. The first ones 
include challenges related to intrinsic human nature, namely social/-
economic barriers and enabling essential technology. The second type of 
barrier is related to anthropogenic institutions, such as regulations en-
tities or markets, or even the resulting behaviors from feedback in 
response to DR participation, known as physical constraints. One of the 
study’s important highlights is behavioral economics, which indicates 
that individual factors play a critical role in shaping consumers’ de-
cisions. In the paper, these authors refer to those behavioral aspects 
attracting more interest more recently. The focus is especially for resi-
dential and small commercial consumers, where the uncertainty has 
been emphasized as a particularly inflexible barrier to the exploitation 
of DR. 

Furthermore, with an emphasis in terms of social welfare losses, 
Marilena Minou, George D. Stamoulis, and Thanasis G. Papaioannou [15] 
study considers that appropriate policies and demand reduction strate-
gies exploiting altruism can benefit consumers (mainly in 
contracted-based Automated DR (ADR) programs and considering the 
consumers’ preferences external contexts). Regarding the ADR provider 
perspective, the benefits will come in terms of incentive costs. However, 
the leveraging of altruists should be performed carefully. They are 
saddle with high energy reductions. Moreover, although yielding in 
small values of total incentives, they can yet prove inefficient for the 
social welfare of the system. 

Consequently, with introducing these new concepts, the policies 
must be updated. Policymakers are making advances to create common 
rules for the new paradigm. In Europe, the Directive (EU) 2019/944 
[11] recasts Directive 2012/27/EU on common rules used in the internal 
electricity market. It puts citizens at the center as they take ownership of 
energy transition and take advantage of innovative technologies to 
decrease costs by actively participating in the market, with the most 
vulnerable consumers being protected. Also, it was mentioned that the 
retail market should serve consumers better, notably by improving the 
links between the wholesale and retail markets, allowing all consumers 
to participate in the transition of energy and contribute to the overall 
reduction of energy consumption by providing efficient solutions. This 
results in more flexible markets and fully integrates all market players, 
including renewable energy producers, new energy service providers, 
energy storage, and flexible demand. 

The present literature review discusses the uncertainty, perfor-
mance, and reliability of consumer participation in DR programs. An 
innovative exploration is made into the behavior of active consumers 
and the aspects that may impact their response – which is highly un-
certain and difficult to predict – and, consequently, impacts their per-
formance and energy management reliability. Thus, the authors 
consider as a hypothesis, that the need for a more in-depth study of the 
influence of the context on the response should be explored and the 
different compensation techniques for the distinct types of active par-
ticipants. The Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) methodology is used. 

The present paper is then organized into seven sections. An intro-
duction is provided in section 1. Then, in section 2, the methodology 
followed to carry out this research review is described. Section 3 and 
Section 4 show, respectively, mechanisms to control DR and techniques 
and methods applied to DR. This is followed by Section 5, where con-
sumer response uncertainty, performance, and reliability for DR are 
presented. Section 6 discusses the findings. Final remarks are presented 
in section 7. 

2. Methodology 

A systematic literature review has been performed considering the 
PRISMA methodology [19]. The present literature review started with 
formulating the research questions in the first phase: Should the distinct 
types of active consumers be treated differently? Should the authors 
analyze individual behavior in-depth to find proper methods for 
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incentivizing their response? How the consumers’ performance can be 
improved in DR programs? The current study focuses on finding answers 
to these questions in the reviewed literature. 

The second phase of a systematic review involves the inclusion and 
exclusion criteria. The research results were obtained considering the 
following:  

1. Include 
a. Describe any Demand Response tactics and other related con-

sumer concepts (namely Demand Side Management or Consumer 
Flexibility).  

b. Consumer Behavior analysis considering their performance or 
response uncertainties.  

c. Document related to the Demand Response topic or similar, 
referring to the keywords considered as important by the authors 
(refer to Table 1).  

2. Exclude  
a. No access to the full paper.  
b. Written in a language other than English or Portuguese. 

The authors selected the online research tools and the multiple da-
tabases in the third phase. The five chosen databases were Web of Sci-
ence, Science Direct, SciELO, IEEEX, and ACM. Table 1 presents the 
definition of the keywords and expressions that have been used. 

Clarification of definition comparison for “performance” and 
“behavior” should be done. When the authors refer to consumer 
behavior, it means the players’ actions to respond to a DR event in a 
certain context. Performance is related to the actual consumer response 
quantification, i.e., how much KW or KWh of reduction was provided. 

A research equation must be formulated according to the language of 
each tool. For instance, Science Direct does not support the substitution 
symbol, also known as wildcard, represented by a “?” or truncation 
symbol represented by a “*.” Both symbols are useful for substituting 
letters within a word or retrieving words with the same origin. However, 
all the remaining research tools supported the utilization of Boolean 
operators for the formulation of research equations, for instance (“De-
mand Response” AND Uncertainty* AND Real-time). The quotation 
marks mean that the word must be contained within the resulting 
document. 

Several levels, resulting in different combinations of keywords or 
expressions, have been applied and are presented in Fig. 2. 

In this way, the keywords in the first three levels must exist within 
the full paper searching these fields: title, abstract, keywords, or ’all 
fields’ (search simultaneously in all record fields). The research finished 
in May 2021, so the listed references are published until this date. 
Therefore, the studies considered in this literature review have been 
published no farther than five years before this research. This assures 
that only the most recent studies have been considered. 

Level 4 was considered for online research tools such as Science 
Direct, which does not support wildcards, for instance, when there were 
important related words within level 3, in plural form, or varying in 
spelling (American English vs. the United Kingdom English) like 
behavior and behavior. 

Moving on to evaluating the obtained results, Fig. 3 represents a 
systematic review of the information flow. In the Identification stage, 
the agglomerated number of the identified records is too high 
(3,148,838 records). Still, it must be highlighted that there were five 
databases, several combinations of keywords, and the number also in-
cludes duplicate material and papers from different languages and areas. 
However, after analyzing the results, the research equations where most 
of the non-related documents were found included the keyword “flexi-
bility” – should be reformulated as “load flexibility” or “consumer 
flexibility” to avoid an excessive number of references from other areas. 

During the screening stage, the duplicates, non-related references, 
and documents in languages other than Portuguese and English were 
excluded reducing the total to 6,784 records. After that, to filter the 

Table 1 
Keywords and expressions (ordered by relevance).  

Keyword Definition 

Demand Response 
(Flexibility, 
Program, 
Participation, 
Performance, 
Uncertainty, 
Reliability) 

According to the Directive 2019/944 (EU), the 
definition of Demand Response is “the change of 
electricity load by final customers from their normal or 
current consumption patterns in response to market 
signals, including in response to time-variable electricity 
prices or incentive payments, or in response to the 
acceptance of the final customer’s bid to sell demand 
reduction or increase at a price in an organized market 
“[11]. Thanks to real-time information exchange, 
active consumers can schedule their appliances 
according to signals designed to induce lower 
consumption, for instance, when system reliability is 
jeopardized. Their performance in these events will 
define the success of the DR implementation in real 
markets. So, the response uncertainty must be 
mitigated to increase reliability from the systems 
perspective [15,20–25]. 

Demand Side Management 
(DSM) 

Demand-side management is a portfolio of 
procedures to enhance energy systems’ utilization 
on the demand-side to meet several goals. These 
measures may include the management of 
consumption patterns of smart appliances, 
renewable energy systems, and home energy 
management systems to improve energy utilization 
efficiency [26–28]. 

Compensation 
(Remuneration, 
Incentive, 
Payment, reward) 

Benefits are given to a person to reward 
participation in a DR event to motivate continuous 
participation. Several types can be used, such as 
economic remuneration, for instance, discounts on 
the energy bill or shopping vouchers to be used in 
stores of the consumer’s choice, etc. This benefit 
should be fair and consider the remaining 
participants [29]. 

Penalty (Penalties) Punishment for not fulfilling the agreement on a DR 
program, where penalty policies may also exist for 
violating contract obligation [30,31]. 

Behavior (Behavior, 
Behavior, Behaviours) 

A set of reactions in response to the stimulus 
provided in a DR event. These can be signals sent to 
the active consumer to change the consumption in 
response to variations in the electricity price, 
incentives applied in high market prices, or when 
system reliability needs improvement [32]. 

Real-time According to the Directive 2019/944 (EU), in the DR 
area and the context of smart metering: “a short time 
period, usually down 2 s or up to the imbalance 
settlement period in the national market” [11]. 

Community (Communities, 
Local Community, Local 
Communities) 

In a DR context, an active community is a group of 
individuals working together for the same goal. In 
this way, distributed generation and consumer 
empowerment have made local energy communities 
effective and cost-efficient to meet consumers’ 
needs and expectations regarding energy sources, 
services, and local participation. In addition, these 
communities offer inclusive options for all 
consumers to directly produce, consume, or share 
energy [8]. 

Electricity Market Unlike other markets, electricity markets involve 
trading a service that cannot be easily stored and 
produced using a large variety of generating 
installations. Therefore, incorporating electricity 
markets requires a high level of collaboration among 
system operators, market participants, and 
regulatory authorities, particularly where electricity 
is traded via market coupling in the DR context [11]. 

Local Electricity Market Considering the electricity market definition, the 
local electricity market can be defined for a 
particular region. So, it can be thought of as a sub- 
market for a commodity that serves a specific 
purpose for that local community, including in DR 
programs [33].  
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articles that were not within the scope of this research, the title and 
abstract adequacy were verified. Finally, the records were subjected to a 
fluctuating reading guaranteeing their relationship with the study. 

According to Fig. 4 and Dataset II in Fig. 3, “Demand Response” has 
the highest influence in the dataset of level 1 keywords, with an influ-
ence of more than 55%. 

For level 2 keywords, “uncertainty” has the highest level of influence 

and exceeds “performance” by 4.5%. These two keywords have a higher 
level of influence than “reliability.” Unfortunately, the trustworthiness 
of the active consumer’s response to demand-side management methods 
is not yet addressed in the literature. 

The resulting dataset, Dataset IV, as defined in Fig. 3, was analyzed, 
and nine factors were highlighted as important for the role of active 
consumers in the electricity market. The keywords were grouped and are 

Fig. 2. Keywords combinations.  

Fig. 3. A number of records in the dataset at each step.  

Fig. 4. Keywords in Dataset II: a) related to level 1; b) related to level 2.  
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listed in Table 2. 
The following sections present the extraction, analysis, and inter-

pretation of the information found, the discussion, and conclusions from 
this systematic review. 

3. Mechanisms to control DR 

The present section organizes the reviewed papers according to the 
type of DR they addressed, indicating the ones that contributed to DR 
Uncertainty, Performance, and Reliability research. The detailed 
exploration of the works gathered in the dataset will be further discussed 
in section 5. Although many other DR programs can be defined, the 
authors selected those with higher mentions in the publications from the 
resulting dataset. Price and Incentive-based are the types of DR with the 
most references in the resulting dataset. Demand Response Exchange 
(DRX) and Electric Vehicles (EV) were the least referenced types of DR in 
the dataset. However, as mentioned by Zhiwei Xu et al. [119], the 
flexible resources from the demand-side can play a critical role in 
balancing the supply and the demand in the future smart grid, namely 
providing various DR services. One of these resources is the EV. How-
ever, as Bhagya Nahali Silva, Murad Khan, and Kijun Han [223] 
emphasize, EV owners’ security and privacy concerns is another chal-
lenge that limits the popularity of EV-based energy management 
because, although it is a hot topic, there are w low number of publica-
tions in the resulting dataset regarding uncertainty ([1,20,47,69,164, 
224–226]), performance ([59,104]) and reliability ([167]), as can be 
seen. Some of these works only refer to these resources, and it is not the 
focus of the study. Vehicle owners are hesitant to grant authority to 
control EVs to an Aggregator. 

3.1. Incentive-based 

Under incentive-type programs, consumers agree to participate ac-
cording to rules by signing contracts. These usually determine that 
penalties are applied to the consumer in case of lack of response in the 
contractual terms. J. Meng et al. [213] consider an incentive-based DR 
in their study and used a multi-dimensional DR evaluation method 
considering the several affecting factors such as response speed and 
response duration that can comprehensively evaluate the response 
performance of users on the power demand side and effectively quantify 
the contribution of its response to grid load regulation. In work done by 
Ioannis Konstantakopoulos et al. [178], they created an adaptive model 
that learns active consumers’ preferences and how they change over 
time to generate the appropriate incentives to ensure active participa-
tion. The uncertainty topic, regarding the incentive-based programs, 
were mentioned on [1,20,69,77,86,140,164,177,226]. The performance 
was an important topic in Refs. [14,21,84,115,125,140,144,146,147, 
195,213,215,227–229]. Lastly, fewer works mentioned reliability, 
namely [14,84,87,213,228]. 

3.2. Price-based 

Moving to Price-based, these programs are based on the energy price 
change, looking for the consumers’ response to those changes. This 
could lead to more randomness in consumer behavior when compared to 
incentive-based programs, for which the contractual rules determine 
predefined response behaviors. Still, there is always the freedom of 
choice from the perspective of the active consumer who has the power to 
disconnect the appliance. 

Active consumers can receive discounts by reducing energy demand 
during critical peak periods, as in the work done by Gerardo Osorio et al. 
[135]. Namely, Real-time Pricing programs are deeply intertwined with 
the wholesale market price, varying in real-time throughout the day. In 
the straightforward approach used by Byung-Gook Kim et al. [20], with 
dynamic consider the decision from the active players in their envi-
ronment and learn the dynamics of the entire system and find its optimal 
energy consumption scheduling based on the observations. Reliability 
was the keyword least mentioned for this type of DR program: [22,106, 
135,171,213,228,230]. The performance was started in 13 works: [40, 
117,158,186,192,195,202,205,213,228,231–233]. Finally, uncertainty 
was a mentioned in the following works: [ [20,29,36,40,43,46,47,65,98, 
100,106,112,116,118,119,121,133,156,161,185,186,214,231,232]. 

3.3. Both incentive and price based 

By analyzing the combination of these two types of DR programs in 
the resulting dataset can be concluded that performance and Reliability 
were mentioned in less than five works when combining these two types 
of DR programs: [195,213,228]. Two of them refer to these topics in 
their studies. The uncertainty was highlighted in Refs. [14,23,30,54,55, 
77,84,86,88,111,115,132,192]. 

3.4. Demand Side Management (DSM) 

DSM can be defined as the modification of consumers’ demand. As 
Julián Valbuena et al. [190] refer, DSM modeling at the building sector 
is challenging since the existing models are not flexible enough to 
incorporate a wide set of modeling features and guiding principles, 
while including all important aspects of end-use. The performance was 
the keyword with more mentions in the dataset gathered: [27,59,61, 
113,123,127,155,158,164,187,192,196,205,234–236]. Uncertainty 
was reported in Refs. [20,109,116,137,158,164,168,187,235] and the 
Reliability concept in Refs. [28,190,201,206]. 

3.5. Demand Response Exchange (DRX) 

DRX refers to a new DR scheduling program. Derived from the 
market clearing mechanism, the motivation for change in load is 
dependent on a bidding entity and not price or incentive. Therefore, load 
profile attributes should be assessed carefully before submitting any bid 
to avoid losing load satisfaction, higher electricity bills, system stress, 
etc. [195]. With this, only a few works refer to this DR program and only 
consider uncertainty and performance topics: [31,149,195]. 

3.6. Load shifting 

In this DR program, the Aggregator has permission to use consumers’ 
loads for DR within pre-specified limits for internal balancing. So, it is 
defined as shifting electricity consumption to another period. Pedro 
Faria et al. [32] proposed scheduling load-shifting opportunities per-
formed by a VPP. The main advantage is modeling the consumption 
shifting constraints (limits for each period/set of periods) from the VPP 
and the consumer standpoints. 

Mellouk et al. [187] scheduled energy consumption profiles for each 
active consumer. They are treated independently to determine the 
optimal distribution of devices’ operating time among different periods 

Table 2 
Main topics in the dataset IV.  

Keywords References 

Aggregator [13,34–67] 
Behavior [21–23,30,32,68–97] 
Prosumer [20,25,55],[98–138] 
Community [139–151] 
Compensation/Penalty [22,85–88,152] 
Electricity Market/Local 

Electricity Market 
[41–44,46,153] 

Participation [16,24,29,31,33,38,154–183] 
Program [14,16,26,43,48,184–215] 
Real-time [26,185,186,193,194,196,198–200,202–205, 

207,209,210,214,216–222]  
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to avoid peak hours generally characterized by the highest values for the 
cost coefficient. Load shifting is one of the types of DR with more studies 
regarding the performance topic: [32]. The reliability was not 
mentioned, and uncertainty has a total of 6 publications in the resulting 
database: [58,120,122,136,163,207]. 

3.7. Others 

Other less known DR types were found in the gathered publications. 
The keyword with more mentions was the uncertainty: [13,14,18,23,29, 
31,32,34,36,37,44,47,55,58,69,84,85,87,103,110,112,113,117–120, 
126,129,134,137,144–146,149,159,164,171,172,176,180,186,190, 
193,195,198,201,206,210,211,214,225,228,231,232,235,237–244]. 
For instance, Chen et al. [29] proposed a framework to encourage the 
new active players and their resources, such as parking lots with high 
penetration of electric vehicles, to participate directly in the real-time 
retail electricity market based on an integrated eVoucher program. As 
the authors mentioned, this program can work for various scenarios 
involving economic or physical extreme events. 

To study and select the right participants for a DR event, Yingying Li, 
Qinran Hu, and Na Li [77] formulate the DR problem as a combinatorial 
multi-armed bandit (CMAB) problem with a reliability goal. These au-
thors believe that the multi-armed bandit (MAB) method emerges as a 
natural framework to handle intrinsic and heterogeneous uncertainties 
associated with small consumers such as residential. 

Reliability was the second one with more mentions: [13,14,22,30,38, 
77,83,84,87,100,106,109,111,112,121,167,171,173,197,201,213,228, 
230,241,243,245]. As can be seen, some of the references were 
mentioned in both keywords search. Shuai Fan et al. [144] focused on 
large-scale DR. These authors mention that current incentive-based DR 
schemes are unsuitable for large-scale DR due to their centralized 
formulation, jeopardizing the system reliability. With this, propose a 
consumer directrix load (CDL), which is a desired load profile, to replace 
the customer baseline load (CBL). The authors refer that the uniqueness 
of this solution makes it more suitable for distributed schemes, while 
numerous CBLs must be calculated in a centralized manner to ensure 
fairness. 

The performance was the least mentioned keyword in the others 
point: [21,27,31,37,84,85,115,140,145,170,192,193,213,215,228, 
229]. One concern that has become major in the DR program design 
topic is resource privacy and preserving the managing entity. Amir 
Ghasemkhani et al. [246] affirm that active consumers’ privacy pro-
tection is being ignored when designing DR programs since their 
behavior patterns can be easily recognized when interacting with the 
managing entity. The proposed and commonly used solution in-
corporates perturbations in users’ load measurements. However, 
although it can protect the active consumers’ privacy, this modification 
would reduce the managing tools’ performance in achieving an optimal 
incentive strategy. Therefore, further studies should be developed to 
include privacy-preserving solutions. 

4. Technics and methods applied to DR 

Discussing the methods found in the resulting database, Artificial 
Intelligence (AI) methods were reviewed first and then non-AI methods. 
Although some methods can be converted into AI approaches, the pre-
sented studies used the method in their original form. 

4.1. Artificial Neural Networks 

Artificial Neural Networks (ANN) methods are the foundation of AI 
methods and are designed to simulate how the human brain analyzes 
and processes information. In the DR Uncertainty topic, as mentioned in 
Refs. [104,185] and for DR performance [77,180,196,209,215,247]. 
None of these works mentioned reliability. Renzhi Lu et al. [202] resort 
to both ANN and Reinforcement Learning (RL) to design an hour-ahead 

energy management scheme for different appliances within a HEMS, 
where ANN was used for price forecasting. 

4.2. Reinforcement Learning 

RL is characterized by Machine learning models trained to make a 
sequence of decisions to achieve a goal in an uncertain, potentially 
complex environment. All the keywords from level 2 were included in 
the RL works in the gathered dataset: uncertainty ([20,40,87,108,112, 
180,202]), performance ([20,77,87,180]) and reliability ([20,77]). For 
instance, Amir Ghasemkhani and Lei Yang [112] leverage RL to learn 
the users’ response functions. In theory, AI models can be subjected to 
gamified interactions between participants. 

4.3. Game theory 

Game Theory is considered the most vital mathematical branch was 
exploring the conflicts, collaborations, and strategic interactions be-
tween rational players within a single system by several authors such as 
Haytham A. Mostafa, Ramadan El Shatshat, and M. M. A. Salama [175]. 
Their study considered a participant system to achieve rational and in-
dependent interaction with several players, improving the distribution 
system. The works using this algorithm mentioned uncertainty ([47,54, 
59,85,113,125,144]), performance ([20,158,164,178]) but not 
reliability. 

4.4. Autoregressive Moving Average 

The autoregressive integrated moving average (ARIMA) is one of the 
easiest and most effective Machine Learning algorithms for performing 
time series forecasting. It is a generalization of the Autoregressive 
Moving Average (ARMA) model. The study of Hamed Mortaji et al. [48] 
indicated that load shedding using the ARIMA time series prediction 
model and smart, direct load control could remarkably reduce con-
sumers’ power outage. In the resulting database from the present paper, 
the uncertainty keyword ([21,36,44,58,65,115,173,202,214]), the per-
formance keyword ([21,58,87,115,124,202]) and the reliability 
keyword ([21,58,87,115,124,202]) were mentioned when using these 
algorithms. 

4.5. Clustering methods 

Researchers use Clustering Methods extensively in the power system, 
mainly to find patterns in electrical loads, as in the study conducted by 
Mansour Charwand et al. [91]. The cluster analysis was mentioned 
works where the uncertainty keyword ([115,143,150]), performance 
keyword ([73,215]) and the reliability ([26,126,137,139,146–148,151, 
214]) were referred. The last one has a higher number of publications. 

4.6. Fuzzy theory 

Fuzzy theory can also be applied, and the research approach can deal 
with ambiguous, subjective, and imprecise judgments. In the resulting 
dataset, when looking for fuzzy theory algorithms, uncertainty ([91,107, 
149,163,195]), performance ([83,91,124,149,163,186,195,248]), and 
reliability ([13,83,117,121,248]) keywords were found. For example, 
Fuzzy Inference System (FIS) was used and compared with other non-
fuzzy approaches by Skrikanth Reddy K et al. [149], where the superior 
performance of FIS concludes the efficacy of this type of model for 
processing load profiles and behavior (willingness) in designing the DR 
bids for market participation. 

4.7. Model-based predictive control 

Model-based predictive control (MPC) has attracted the researchers’ 
attention to this area due to its prediction abilities, quick processing 
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capacity, and suitability for multivariable control operations. However, 
few works mentioned this algorithm, including only uncertainty ([86, 
122,123]) and performance ([86]). For instance, Farzad Arasteh and 
Gholam H. Riahy [123] developed a real-time algorithm to systemati-
cally coordinate the DR programs and ESS operation in market-based 
wind integrated power systems. 

4.8. Conditional Value at risk 

In the DR perspective, Conditional Value at Risk (CVaR) can be used 
for the stochastic program for decision making of DR aggregator 
considering various sources of uncertainty, as done by Homa 
Rashidizadeh-Kermani et al. [55]. Since CVaR as a risk measure was 
embedded in the problem to control different levels of risk associated 
with profit volatility. Works using this algorithm also mentioned DR 
uncertainty ([36,55,121,211]), DR performance ([86,119,121,131]) 
and DR reliability ([119,228]). 

4.9. Monte Carlo Simulation 

Probabilistic models incorporate random variables and probability 
distributions into the model. Confronting this stochastic solution with a 
deterministic model with only a single possible, a probabilistic model 
gives a probability distribution as a solution. Many works mentioned 
probabilistic models also including uncertainty ([65,98,110,120,133, 
136,191]), performance ([77,140]) and reliability ([47,154]). One of 
the best-known probabilistic methods is the Monte Carlo Simulation 
(MCS). Zvi Baum et al. [14] resort to MCS the of design a convenient 
framework to estimate Dynamic-Active DR’s performance in which the 
stochastic characteristics of supply and demand can be reflected and the 
behavior of the system over time, in response to both external and in-
ternal influences, can be modeled. This algorithm was also mentioned in 
publications with uncertainty ([14,25,106,109,159,214]), performance 
([38,41,56,98,119,180,190]) and reliability ([59,98,137,154,180]) 
were highlighted. 

4.10. Markov Chain 

Also, the Markov Chain (MC) follows probabilistic rules and is a 
common, relatively simple means of modeling statistically random 
processes. Yue Yang generates an MC model at an appliance level to 
capture temporal and inter-device correlations in power consumption. 
Further works with MC refer to uncertainty ([24,111,137]), perfor-
mance ([86,137]) and reliability ([13,86,101,123]). 

4.11. Others 

Other algorithms were also found in the resulting database, however, 
they only refer to uncertainty keyword ([21,23,29,30,34,43,46,58,60, 
69,77,83,84,88,105,116–118,126,132,134,140,152,156,157,161,186, 
192,207,231,232]). 

5. Uncertainty, performance, and reliability of the DR 
participants 

The role of the consumer is changing. These new players are 
becoming more active participants with a great influence on system 
reliability, so their performance must be enhanced, and the response 
uncertainty dealt with. The focus of the present section is the main 
keywords found in the studies from the dataset obtained: uncertainty, 
performance, and reliability. 

5.1. DR uncertainty 

DR resources’ load reduction process is stochastic, statistical, and 
stationary [169]. Many approaches are used in the literature, but many 

consider probabilistic distribution regarding the participation uncer-
tainty dilemma and how it was dealt with. According to Bo Zeng and 
Xuan Wei [107] study, where the Capacity Credit (CC) from DR is 
assessed, which accommodates probabilistic and possibilistic un-
certainties. The definition of CC was developed to quantify DG re-
sources’ capability to offer the capacity to power systems. However, the 
DR participants’ flexibility could play a similar role in the Smart Grids 
concept, so the definition was extended. These authors resort to the 
fuzzy theory to express the uncertainty introduced by incomplete in-
formation and probabilistic propagation technique to describe the 
human-related uncertainties, standardizing them under the same 
framework. Consequently, the value of participation level changes with 
the decision-making during operation, making the formulation a 
time-dependent model. In the case of Smriti Singh and Ashwani Kumar 
[100], the MCS was used to model the uncertainty in consumers’ 
participation, extracting samples that correspond to the most probable 
event. Since the active consumer often fails to reduce their load due to 
some external factors, the authors developed a probabilistic load model 
based on a normal distribution function according to the available his-
torical load data. The uncertainties related to the stochastic variations of 
the variables involved in residential DR include load demand, user 
preferences, environmental conditions, house thermal behavior, and 
wholesale market trends. As Pierluigi Siano and Debora Sarno [214] 
believed, they can be modeled using the MCS method. 

As mentioned earlier, besides MCS, MC is a stochastic process in 
which the present status is quite independent of past or future ones being 
suitable for modeling the uncertainty introduced by DR participants 
[123]. Abbas Tabandeh, Amir Abdollahi, and Masoud Rashidinejad 
[111] share this opinion and mention the importance of Advanced 
Metering Infrastructure (AMI) for this process. A failure from these 
technologies can influence the consumers’ participation. In their study, 
the MC model is used for a DR resource to determine the consumers’ 
participation by splitting the participation percentage into finite states – 
from 0 to 100% with a step of 25%. However, by distinguishing appli-
ances and resorting to individual smart plugs, Zhai et al. [24] applied the 
same state logic with MC. These authors divided into two main types to 
define the corresponding flexibilities: appliances working in cycles and 
appliances working at fixed state. By understanding the habits and 
routines of this new player, starting with the appliances, the models can 
be more robust and capable of reducing the response uncertainty. In this 
way, Chia-Shing Tai, Jheng-Huang Hong, and Li-Chen Fu [108] develop 
a real-time multi-agent deep RL-based approach to solve the DSM 
problem and consider user behavior. Again, focusing on the state 
extraction part of the appliances, three different groups were created to 
understand the degree of influence of the state of the appliance on the 
user and the tolerance of frequent switching. First, the Heavy Conflict 
group includes appliances whose stat switching would lead to a less 
severe but still strong impact on the user experience. Finally, Less 
Conflict group, the operation time is less conflicting for the consumer 
and can be scheduled later - washing machine, dish dryer. The ability to 
adapt to and learn about user preferences and update the system 
repeatedly can improve one of the crucial characteristics of imple-
menting DR in the real world: consumer comfort. 

As mentioned earlier, for the residential type, comfort is crucial for 
their participation. This type of the participant is less willing to give up 
on certain equipment in a specific context just to participate in the 
market transactions. Nevertheless, the problem can be even more 
complex. In the study done by Liang et al. [211], the relationship be-
tween two pieces of equipment is a particular example of correlated DR 
(CDR). Gaming PCs and Heating, Ventilating, and Air Conditioning 
(HVAC) systems were presented. The authors believe these two appli-
ances created a new factor in the management problem: CDR relation-
ships considering heating and cooling demand. So, with the expected 
increase of power consumption from Gaming PCs, this appliance gen-
erates wasted heat along the DR process, requiring the Air Conditioner 
(AC) system to consume more power to maintain the indoor temperature 
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in summer, which makes the original DR effect worse. However, in 
winter, the AC system consumes less power to maintain the indoor 
temperature when the gaming PC performs DR and generates waste 
heat, which improves the DR effect. In the presented model, the CDR 
unit consists of two parts: an uncertain and uncontrollable internal heat 
source – Gaming PC, and an HVAC system that provides DR indepen-
dently. Considered a whole, the internal heating source brings uncer-
tainty into the entity. Thus, the CDR decisions were operated properly 
by a risk management scheme considering a CVaR incorporated with a 
stochastic approach between many other uncertainties. The results 
confirm that the stochastic approach is more capable of handling un-
certainties than the deterministic approach, reinforcing the approach of 
previous methods. 

Still, the active consumers are responsible for the appliances. 
Participation is voluntary, and although penalties can be applied, they 
have total control to change their minds. In this way, the authors must 
focus on the active consumers’ behavior. The assumption of DR partic-
ipants as rational is widely accepted in many studies from the literature. 
The optimizations from many works look at active consumers as eco-
nomic agents who always make the “right” decisions and understand the 
market transactions [109]. However, should the consumer be consid-
ered a rational agent who makes an optimal decision? 

Bearing in mind, one of the main approaches to encourage others is 
Game Theory. Defined as the formal study of interdependence between 
adaptive agents and the dynamics of cooperation and competition that 
emerge from this [249]. In this case, the term agents refer to an entity 
with the capacity to make informed choices and act upon those choices 
autonomously to affect the state of the environment [237]. The inter-
dependence between these adaptive agents means that the values 
associated with some property of one element become correlated with 
those of another. In other words, and for this context, the achievement of 
a goal of one agent becomes correlated with others. For instance, in this 
topic, game theory approaches can be categorized into two kinds, one is 
played between consumers, and the second is played between the utility 
and consumers. Also, two different levels can be defined for the inter-
dependence between agents: the micro and the macro level. 

5.1.1. Macro-level perspective 
From a macro-level perspective, all the agents must work coopera-

tively to achieve an overall successful outcome at the macro level. 
Pondering the work from Akash Talwariya, Pushpendra Singh, and 
Mohan Kolhe [54], where these authors use the Monte Carlo Simulation 
(MCS) to consider uncertainty in both consumption and generation but 
also build a Stepwise Power Tariff model with Bayesian Game Theory to 
consider the active consumer’s decisions. In this situation, it is expected 
that agents do not want to share their best strategy with other players, as 
happens in non-cooperative games. However, it can be drawn from the 
results that the best response is when consumers share full information 
about energy consumption with energy retailers and consumers. 

Active consumers are selfish, so their behavior should be further 
studied in this situation [172]. Maximizing the individual consumer 
welfare DR programs by building an approach that considered the utility 
function and studying the consumer risk aversion behavior was the goal 
of Amir Niromandfam, Ahmad Sadeghi Yasdankhah, and Rasool 
Kazemzadeh [110] work. The utility function measures consumers’ 
preferences. This is an important concept in microeconomics since it can 
understand how rational consumers make consumption decisions. 
Again, a central assumption in classical game theory is that players are 
always rational and strive to maximize their hyper–rationality payoffs 
[144]. However, the rules and dynamics may not be aligned with this 
assumption because what is rational for the whole is irrational for the 
individual. These agents, assumed to be rational, consistently act to 
improve their payoff without the possibility of making mistakes. They 
also fully know other players’ interactions and have an infinite capacity 
to calculate all possibilities beforehand [250]. So, agents have accurate 
information, and any uncertainty is reduced to a probability 

distribution. However, this prediction may not be applied in certain 
situations as humans’ behavior differs dramatically. 

With this, numerous reasons may impact the active consumer ac-
tions: cultural, financial, natural, or social capital (that is, the relation-
ships with other people and their roles within a social group) [251]. 
From this perspective, it is not the concept that players are trying to 
optimize. Their payoff needs to be adjusted for the different market 
options. Instead, the narrow definition of rationality as optimization 
according to a single metric needs to be expanded within several con-
texts involving social interaction. 

Many examples can support this view of “perfect” agents in many 
other methods. Homa Rashidizadeh-Kermani et al. [55] created an 
interface between the market and the active consumers in a competitive 
environment. These authors designed a decision-making model for the 
DR aggregator. In day-ahead energy and balancing markets, the aggre-
gators offer selling prices to the active consumers to maximize their 
expected profit, considering consumers’ reactions to the rivals’ prices. 
From the utility perspective, the risk aversion was modeled using CVaR. 
As in game theory, the players also have their agendas in this work, and 
two different levels are considered. First, the competition between the 
aggregator and the rivals offers a better price at the upper level. After, 
the active consumers act out of self-interest in the lower level and choose 
the most competitive aggregator to minimize their payments. At this 
level, it is considered that decisions are made with perfectly accurate 
information regarding the price offered by the aggregators. 

Participants were deemed to react optimally to the utility prices for 
the profit maximization problem. This assumption will impact the util-
ity’s profit since, instead of providing to their active consumers, in a 
competitive environment, the players are expected to move to lower 
prices, which consider only a single metric (the pursuit of profit) without 
context awareness from each participant. For instance, in the study 
conducted by Billing Zhang et al. [172], a contract-based incentive 
scheme was proposed to encourage consumers and small-scale suppliers 
to participate in direct energy trading. Based on their achievements, 
consumers’, and suppliers’ behaviors, affect each other, and their stra-
tegies are highly coupled. Therefore, there is a need for a model where 
the utilities are defined, the interactions are analyzed, and the Nash 
Equilibrium is found. However, under asymmetric information, the 
problem becomes more complex. Jianwei Gao, Zeyang Ma, and Fengjia 
Guo [109] wanted to define risk-behavior awareness to focus on the risk 
from the demand side when participating in DR programs. Both orga-
nizations and individuals have different attitudes toward risk-taking. A 
utility function can be considered feasible to illustrate consumer risk 
attitudes toward gain or loss, focusing mainly on power, exponential, 
and logarithmic models. However, the authors pointed out that classical 
utility functions do not consider consumers’ psychological factors. 

5.1.2. Micro-level perspective 
At the micro-level, individual agents pursue their agendas according 

to their cost-benefit analysis. Again, it should be highlighted that the 
standard economic theory assumes that all individuals act solely out of 
self-interest. As an illustration of this point of view, the study presented 
by Shuai Fan et al. [144] designed a model for DR consumers to choose 
an ideal rebate ratio to maximize their welfare. The process is designed 
as a non-cooperative game in which the Nash Equilibrium exists. The 
so-called Gossip algorithm used in this study was improved for a socially 
connected network. In this way, consumers can exchange information 
with familiar DR participants to estimate global information. In the end, 
it impacts as individuals and as a group but always finds the best option. 
For instance, to deal with energy retail market price and develop a 
win-win situation between consumers from several sectors and the 
utility, Akash Talwariya et al. [54] designed a stepwise power tariff 
using a game theory model for DR. The results showed that when con-
sumers shared full information on energy consumption with energy re-
tailers and other consumers, the best response was found. Perhaps, some 
information can be useful to share instead of a non-cooperative 
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approach. 
Still, besides the energy price, many other factors can also influence 

the participation decision, and, again, the context is crucial to under-
standing their actions. Özge Okur et al. [122] introduce a comprehen-
sive MPC to update and reduce individual imbalances based on input 
data. From the utility perspective, the results found considerable season 
discrepancies – the influence of the context in which the event is trig-
gered. June and December were the months with a higher and lower 
total amount of imbalances, respectively. These authors intend to 
explain this difference resorting to the absolute solar generation forecast 
errors: smaller due to lower solar generation. Besides this conclusion, 
Özge Okur et al. [122] found that the type of consumers can impact the 
imbalance. So, while demand profiles from residential consumers peak 
in the early morning and evening hours, the commercial sector peak 
occurs during daytime hours, coinciding with the highest fundamental 
imbalances. Nevertheless, the authors also prove that, although this is 
beneficial for the power system, reducing those imbalances may not 
benefit financially from the aggregator’s point of view. However, these 
conclusions can help understand and build a model to reduce the 
response uncertainty. 

The complexity of defining and understanding the active consumers 
is not just related to the amount of load they reduce – which is quite 
difficult to predict, mainly due to sparse data and each consumer’s 
characteristics. Since it is still in development, their empowerment also 
includes the prosumer concept – where a consumer can also produce 
their energy and sell to the market. In work developed in Ref. [115], the 
authors proposed a data-driven methodology considering the k-nearest 
neighbor method (kNN) and a weighted ensemble model to deal with the 
load prediction problem. First, kNN requires small amounts of data, and 
considering that each consumer may receive a request for load curtail-
ment only a few times a year, the method is adequate. Regarding the 
disparity between consumers, a single prediction method may not cover 
all the consumers – it provides a remarkable prediction operation for one 
consumer but is poor for the remainder. The authors used a weighted 
ensemble model to apply distinct models for different consumers. 
Following the same line of thought, Wang et al. [143] focused on the 
uncertainty related now to the prosumers, the increasing installation of 
photovoltaic systems (PV), how load patterns become more random, and 
the consumer baseline load (CBL) difficult to estimate. Especially hard to 
distinguish between increased PV output power and decreased actual 
load power. However, in this case, the k-means algorithm was used to 
divide the consumers into control groups, after calculating a curve 
similarity index where each DR participant was matched with the most 
similar cluster based on the similarity between its load curve and cluster 
centroids during periods when the distributed photovoltaic output 
power was equal to zero. 

Several issues were addressed throughout the uncertainty topic, and 
the models were used to provide suitable solutions in each authors’ 
opinion. The topic is highly complex. The active consumers’ participa-
tion is very hard to predict since it depends on several factors. Some 
authors tried to predict their contribution and deal with uncertainty 
using probabilistic models [100,107,123,214] since the process is sto-
chastic, statistical, and stationary. However, both AMI failures and ap-
pliances participation context impact the response [24,108,111,211]. A 
focus on ways to incentive their participation and anticipate their 
schedule to avoid discomfort or losses must be included in the final 
solution to implement DR. Still, the active consumers have control over 
these appliances, and some consider that they act as rational and eco-
nomic agents, always to achieve their individual goal [110,172,250]. 
However, some studies found that sharing the information may benefit 
individual and group perspectives [54,144]. Nevertheless, including the 
prosumer definition may also be valuable since the definition of active 
consumer is changing [143]. 

5.2. DR performance 

The performance definition throughout the present paper refers to 
the level of success of the consumers regarding their participation in DR 
events. In other words, when the managing entity sends a signal to 
change its load consumption, it is expected to comply and participate in 
the event, considering this active consumer as a trustworthy player. 
Even though the participation is voluntary, some DR programs require 
participation in a certain context, agreed by both parties. And although 
in the previous section, the active consumer is considered a rational and 
economic agent, always striving to achieve their goals in a “perfect” 
way, the reality may be different. As new players, they have low infor-
mation regarding the market transactions and often do not have the 
availability to decide the proper approach. Aid, understanding, and 
enhancing their performance in DR events are goals. 

5.2.1. Impact of the consumer behavior 
The following works consider the complex non-deterministic nature 

of consumer behavior regarding performance in DR events. For instance, 
Konda et al. [195] proposed an adaptive fuzzy inference system (FIS) 
strategy to improve the performance of DR schedules. The fuzzy method 
is not new for analyzing consumer behavior in responsive loads – 
regarding load type, sectoral and seasonal variation. However, in the 
actual scheduling implementations, the inappropriate strategies may 
lead to consumer dissatisfaction and the consequent decrease of their 
participation in DR events. These authors bet on FIS for DR scheduling 
considering this key aspect: rule-based development and membership 
function (MF) parameter setting/adjustment. However, the idea that MF 
parameters must be tuned using expert knowledge or intelligent 
computational approaches should be reinforced. Thus, the results 
demonstrated improved convergence and performance compared to the 
traditional random willingness assignment methodology regarding 
consumer availability for market participation. 

Still focusing on the importance of FIS in the investigation of the 
impact of consumer behavior, impact of load profile, and temporal 
characteristics of load profile by load sector and load type, the same 
author published another research [149] contemplating the utilization 
factor and availability factors for modeling consumer behavior using 
linear, non-linear, and exponential functions. Firstly, in the Linear 
Response Behavior, the relation of the utilization factor and cost factor is 
linearly proportionate. The Non-linear Response Behavior approach is 
represented as the product between the utilization and availability 
factors. The results revealed the non-linearity/non-smooth nature of 
load profile attributes combined with consumers’ willingness. 

Hence, due to the unclear response characteristics, it would be 
beneficial for the profit-oriented managing entity to employ non-linear 
tools instead of a linear method. Dehghanpour et al. [185] presented 
an Artificial Neural Network (ANN) approach to capture the loads’ 
behavior using a non-linear ANN-based model to capture the 
non-linearities from loads’ aggregate behavior. Based on the study re-
sults, these authors believe that as the penetration level of 
price-sensitive appliances increases in the system, the higher the 
improbability. Their methodology was based on a multiagent frame-
work with machine learning that allows these authors to address inter-
operability and decision-making under incomplete information in a 
system that maintains data privacy, which can be crucial for active 
consumers to participate in DR programs. 

5.2.2. Consumer behavior learning and prediction 
ANN and ARMA prediction techniques to identify unclear load pro-

files. In work done by Mahmud et al. [104] and according to the results, 
day-ahead energy management mitigates indecision by implementing 
preventive measures. So, by considering a “learning” approach, the DR 
could be defined as automated as in the Aras Sheikhi, Mohammad 
Rayati, and Ali Mohammad Ranjbar [180] study. These authors consider 
the participant a price taker consumer with a fully automated energy 
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management scheme (EMS) based on Reinforcement Learning (RL) to 
minimize their energy bills simultaneously. The EMS learns behaviors 
over time, the insecurity of energy prices, and appliance efficiency into 
making optimal decisions in a stochastic environment. The extracted 
information from AMI technologies can be used in a panoply of situa-
tions, namely, DR programs, load profiling, consumer consumption 
prediction, or even theft detection. Thus, the effects of the imprecise and 
incomplete information from failures in AMI technologies may condi-
tion outcomes from an approach, namely clustering algorithms. 

However, many DR implementation solutions include consumer 
clustering to process consumer input data for possible flexibility such as 
occupancy, temperature, humidity, bidding strategy design, etc. 
Focusing on the AMI from the perspective of the residential consumer, 
Table 3 organizes studies that used clustering methods to analyze in-
formation from smart metering data. The table contains the number of 
participants, the data source, the location of the study, the clustering 
method, and the data size. 

Some of the studies have a big dataset. However, as already 
mentioned, clustering is sensible to the input information, and errors 
from smart equipment may result in erroneous outputs. Thus, the a 
priori processing of the dataset with adequate data mining tools is 
crucial. This enables the aggregator to access meaningful information 
that helps deal with active consumers properly and enhance their per-
formance. The incorporation of fuzzy variables to mitigate impact was 
suitable in the study conducted by Mansour Charwadn et al. [91]. This 
study aimed to represent the consumer load pattern, modeling the 
indecision and non-determinacy (hesitation) using the intuitionistic 
fuzzy divergence technique, which contains the membership, 
non-membership, and hesitancy function. Hence, this thresholding 
method considers each consumer’s load pattern as an image, and each 
load value is assigned as a pixel. A minimization procedure is required to 
guarantee high separation accuracy for indecision in the consumer’s 
pattern. Each consumer’s Typical Load Pattern (TLP) is extracted using 
neighbor information (2-dimensional daily load values). The results 
evidenced that, with fewer thresholds, the simulation time is reduced 
and TLP accuracy. 

5.2.3. Economic influence in the DR events 
Employing a Deep Neural Network (DNN) to predict the unknown 

prices and energy demands can be useful to overcome future un-
certainties and enhance performance, according to the Renzhi LU and 
Seung Ho Hong [87] work. In cooperation with DNN, RL is adopted to 
obtain the optimal incentives for different consumers considering both 
service providers and consumers’ profits. RL is model-free, adaptive, and 
concise. Contrarily to the previous methods, the service provider does 
not need prior knowledge. Instead, it discovers the optimal incentive 
rates by “learning” from direct interaction with each active consumer. 

Moreover, the incentive rates are acquired and adapted autono-
mously, considering the uncertainties and flexibilities of the system. 
Finally, it is based on a look-up table, its implementation in the real 
world becomes much easier. As mentioned earlier, consumers are 
finitely rational as agents. However, due to psychological factors, such 
as cognitive or experimental judgment biases, consumers’ positive 
outlook on participating in a DR program (viewing it as either loss or 
gain) depends on the reference point. So, their risk attitudes – risk- 
seeking, risk-averse, or risk-neutral, will shift. Remani T., E. A. Jas-
min, and T. P. Imthias Ahamed [40] also consider RL an efficient tool for 
solving the decision-making problem under doubt. Their study intends 
to solve a load commitment problem considering consumer comfort, 
stochastic renewable power, and tariff. The problem was modeled as a 
Markov decision process. To use RL, state, state space, transition func-
tion, action, and reward function were identified. 

Furthermore, other algorithms were also used to overcome this 
problem. Nsilulu Mbungu et al. [131] used an adaptive Time of Use 
(TOU) Model Predictive Control (MPC) approach to create a managing 
system for a real-time electricity pricing environment, integrating both 
solar energy generation and an energy storage system in an isolated 
power grid. The authors achieved good results in managing energy 
consumption by prioritizing some loads while centralizing the power 
supply as a demand function. In this approach, the consumer had the 
opportunity to keep track of their fee and decide on the use of the 
energy. 

The Nash bargaining theory can be used to achieve the overall sys-
tem’s maximum social welfare when studying the economic interaction 
between the DSO and microgrids. In work performed by Hung Khanh 
Nguyen et al. [125], the authors concluded that when the system’s social 
welfare is positive – the saving cost from the peak ramp reduction of the 
DSO is greater than the total cost of microgrids – the bargaining problem 
is feasible. Mosaddek Hossain Kamal Tushar et al. [59] created an en-
ergy planning noncooperative game for residential consumers with at 
least a Nash Equilibrium in the prediction phase. It was considered that, 
according to the Nash theorem, every noncooperation game with a finite 
number of players and action profile has at least one mixed strategy with 
a Nash equilibrium. So, the game ends when the equilibrium state is 
achieved, and no consumers are willing to change their strategy, 
reducing their payoff. 

A fuzzy stochastic CVaR can be used to manage the risk associated 
with doubt, mainly focusing on price-based DR. The study done by Jiafu 
Yin and Dongmei Zhao [121] established that the price elastic response 
curve is inaccurate, the fuzzy characteristics of consumer behaviors are 
visible. Hence, to mathematically characterize the indecision of DR, the 
authors introduced the concept of self–elastic to formulate the response 
behavior-changing percentage of demand reduction concerning the 
changing percentage in incentive price during the same time interval. To 
assess the probabilistic risk, the authors pointed to the popularity of the 
stochastic CVaR criterion and the necessity to design a coherent risk 
measure in this fuzzy environment. Furthermore, the evidence that 
compared with the Value at Risk (VaR) method, the unit commitment 
model based on the CVaR expands the required reserves to minimize the 
complexity of indecision, protect against the operational risk and meet 
the system trustworthiness requirement. 

Although several methods are used to improve the performance of 
DR schedules, namely fuzzy methods [149,195], it is important to 
deliberate those inappropriate strategies that may lead to consumer 
dissatisfaction and the consequent decrease of their participation in DR 
events. So, the managing entity of these new players must “learn” and 
capture their behavior to be able to provide the correct assistance in all 
situations [104,180,185]. Another approach considered in the former 
works was the clustering method, that although it has input problems, is 
widely used in the literature, as can be seen in Table 3. It was also 
noticed that the economic incentives could be useful for enhancing DR 
performances [40,59,125]. So, learning and understanding consumer 
behavior is a step forward to improving the contribution of these new 

Table 3 
Clustering methods applied to residential consumers’ smart metering data.  

Ref. # Location Method Data size 

[53] 197 UK, 
Bulgaria 

Bayesian non-parametric 9 months 

[50] 1.057 US Dynamic Time wrapping 1 month 
[219] 1.200 China FCM clustering 1 Month 
[252] 3.622 Ireland Finite mixture model 1 year 
[221] 300 – Hierarchical clustering 104 days 
[222] 265 Portugal Hierarchical clustering 2 months 
[51] 656 Switzerland k-means 1 year 
[52] 197 UK, 

Bulgaria 
k-means 1 year 

[218] 4.181 China k-means and spectral 
clustering 

1 Month 

[217] 218.090 – K-Means, Hierarchical 
Clustering 

3 years 

[220] 4.232 Portugal k-means, Logistic 
Regression, Decision trees 

1 year and 6 
months  
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players in the power and energy market. 

5.3. DR reliability 

In the literature, reliability is defined by the system being in a certain 
operating state and measured through indicators such as discontinuity 
duration, interruptions frequency, or not supplied energy [190]. The 
present paper is described from the system operator perspective 
regarding the DR events and all the intervenient. The previous two 
keywords mainly focus on active consumers, empowerment, and ways to 
enhance their role in the energy market. But the introduction of these 
new players will impact the system operation. In this way, the authors 
intend to understand the influence of DR on system security and reli-
ability. Reliability will refer to the quality of being trustworthy or per-
forming consistently well in such events, avoiding further problems. 

Focusing on the perspective service provider, the randomness of DR 
responses caused by the consumers’ volatile behavior when achieving a 
DR target can impact the system’s reliability. Amir Ghasemkhani and Lei 
Yang [112] approach involve incurring a penalty on the participants. 
The authors mentioned that current research on pricing-based DR as-
sumes that consumers’ response functions are available to this player or 
maybe predicted by it. The RL-based algorithm was then used to aid the 
serving entity in learning the customers’ aggregated behaviors to 
determine an optimal pricing strategy instead of using pre-defined 
response functions. 

The non-necessity of gathering a priori information to allow each 
service provider and consumer to understand their position in the grid is 
supported by Byoung-Gook Kim et al. [20] when developing an RL to 
overcome the challenges of implementing dynamic pricing and energy 
consumption schedule. The authors compared two distinct scenarios in 
their study: the consumers with learning capability and the second in-
volves myopic consumers. Not all consumers in the microgrid are not 
necessarily strategic. For them, it is more important to learn the dy-
namics of the entire system and find its optimal energy consumption 
scheduling based on the observations. However, Byoung-Gook Kim et al. 
[20] did not discard studying the strategic behaviors of the rational 
agents and their impact on system operation. Xiaodong Yang et al. [103] 
designed an adaptive MPC scheduling strategy to dynamically deal with 
predicted errors and update decision strategies according to the system’s 
latest status and short-term predicted values. Three objectives were set: 
finding an optimal trajectory for power trade between the cooperating 
microgrids system and the main grid, addressing supply and demand 
uncertainties, and operating with outage events during emergency 
conditions. After several attempts, it was proven that supply-demand 
balance could be enhanced by implementing shift loads in each micro-
grid and can be adjusted by exchanging power with the adjacent 
microgrids. 

Online MPC can be suitable for high indecision regarding the 
renewable generation and consumer responses. In the study performed 
by Farzad Arasteh and Gholam Riahy [123], this method was used for 
optimal real-time operation of wind integrated power systems, including 
coordinating energy storage systems and DR programs. In addition, 
these authors believed that the possibility of shifting load to off-peak 
hours makes the controller more flexible, resulting in a lower amount 
of load shedding and improvement of supply management. In the 
Prajwal Khadgi and Lihui Bai [86] case, MPC was interested in consumer 
response to DR events when applied to control the new active players. In 
this case, the consumers determined their optimal consumption by 
maximizing a multi-attribute utility function based on changing elec-
tricity prices, temperature, and thermal comfort. The results obtained by 
the authors indicate that among various static variable pricing schemes, 
the TOU rate is the most robust in achieving a higher Coincident Load 
Factor – the ratio of average load over a household’s contribution to the 
system peak load in a daily cycle and reducing the costs from the 
perspective of the consumer. 

Regarding the distinct dynamic variable pricing schemes, the former 

improves when comparing Demand Charge with Flat Rate. At the same 
time, Sudip Misra et al. [47] used a robust game theory to account for 
energy management constraints associated with indecision since it 
generally impacts the algorithms in this area. In this way, imperfect 
information was considered regarding all the indecision issues to opti-
mize energy trading in the smart grid. Although, as a result, the con-
sumers and the network act as players and the payoff values are 
optimized, the results showed an improvement compared to the existing 
energy management models. 

However, although some appliances may belong to the same cate-
gory, they can belong to different consumers, so flexibility is quite 
different because of power consumption and the owners’ habits. 
Therefore, the authors determined that analyzing the DR potential by 
only considering appliance type and power consumption is irrational 
because consumer behavior strongly affects consumption, leading to big 
variations in the energy consumed by the same type of appliance. 
Therefore, the human factor cannot be discarded. To prove this view, a 
more specific study was presented by Maomao Hu and Fu Xiao [137] 
using the Markov Chain Monte Carlo model to quantify indecision in the 
aggregate energy flexibility considering stochastic occupancy and 
occupant behavior which characterizes the randomness of people 
entering or leaving a specified space at a particular time – influencing 
the appliances. As affirmed by these authors, the Markov-chain tech-
nique is widely used to simulate this process and generate stochastic 
occupancy patterns. 

A negative impact of the active consumers in the network can lead to 
loss of security and jeopardize the system’s reliability. So, many authors 
opt for economic strategies to test the trustworthiness of the participants 
in DR events using penalties [112] or distinct DR programs [20,86,103], 
some in real-time [123]. The game theory approach was still mentioned 
but explored imperfect information [47]. Again, the human factor 
cannot be discarded, and the different factors that may impact their 
decisions must be widely studied. 

6. Discussion of the identified challenges and future Research 

The active consumers that emerge in power systems are complex, 
and their actions rarely follow the traditional theory of decision-making, 
which makes their behavior hard to predict from this standpoint. 
Instead, psychology and behavioral economics must be employed for 
greater prediction accuracy. Contrasting both theories, traditional eco-
nomic models expect consumers to make optimal decisions that result in 
optimal outcomes. On the other hand, behavioral economics considers 
that consumer choices can be improved by providing more information 
and other options to influence the consumers’ behavioral patterns. 

A growing number of scientific research intends to demystify tradi-
tional economic theory and point to the importance of understanding 
the context in which the consumer operates so that solutions can be 
found to influence their behavior, to make the desired decision easier, 
quicker, and more convenient from their perspective, minimizing the 
physical and psychological effort and reducing the perceived doubt. This 
can be achieved by, for instance, providing the consumer with com-
parisons between themselves and the other players’ performances, 
possessions, and wellbeing. By demonstrating that consumers with a 
profile like theirs (the same power contract, the same consumer type, 
etc.) are using less energy and taking energy-saving actions that are 
beneficial, the consumer will be more encouraged to follow these posi-
tive energy-saving norms and reduce their consumption accordingly. 

Moreover, implementing fair rewards and monetary incentives can 
motivate the DR event participation regarding intrinsic and extrinsic 
compensation. Finally, the trust factor is important to give the right 
message for the demand side to make the right decisions – if they seem 
skeptical can either disengage or react defensively to the information. 
Using simple and easy-to-understand messages to communicate with 
consumers who have limited knowledge of the energy market can help 
increase confidence in the solution. If there is doubt around the 

C. Silva et al.                                                                                                                                                                                                                                    



Energy Strategy Reviews 41 (2022) 100857

13

electricity supply, market prices, government policies, and long-term 
financial payoffs, investment in this approach may seem risky for 
many consumers. 

Furthermore, there is a need to upgrade to smart equipment to 
enable communication between the active consumer and the energy 
market. The active consumers must improve and integrate technologies 
capable of, for instance, being controlled by the local community 
manager or equipment to simply receive the proper signals to participate 
in the market transactions. Focusing on each appliance instead of 
considering the whole building may reduce doubt in DR events. Thanks 
to advances in AMI technologies and the extracted information, the 
managing entity can delineate and understand its strategy to succeed in 
the energy market by persuading active consumers to opt for coopera-
tion instead of rivalry. 

The above discussion evidence that context-awareness approaches 
are necessary to handle consumer participation more accurately [1]. 
Activating consumers according to the context and providing adequate 
performance evaluation, for example, through key performance in-
dicators [253], makes the consumer better integrated into the process, 
increasing their motivation and understanding of the rewards process. 
Moreover, contracts between consumers and entities requesting DR 
should be drawn up according to the preferences and interests of each 
player [254]. Aggregators will play a key role in collecting the available 
DR from small consumers and establishing contracts using the potential 
of DR to the fullest [122]. Moreover, Artificial Intelligence methods help 
support decisions on DR management, namely load forecasting [255, 
256]. This method helps understand future consumption, which is 
crucial when estimating potential flexibility in managing a DR event. 

Moreover, learning approaches can be used to learn about consumer 
behaviors. These approaches learn from events and apply them to 
similar future events. This enables them to make more accurate de-
cisions in the future [257]. 

In summary, with all the information studied through the present 
paper, the authors believe that future lines of research should focus on 
the consumer side, emphasizing comfort and behavioral aspects, 
privacy-awareness in the DR programs definition, and the contextual 
management of the resources to implement DR solution in the future 
smart grid successfully. 

7. Final remarks 

The role of the end-user is changing together with the gradual 
implementation of the Smart Grid concept. This concept urges for 
greater consumer flexibility: consumers who can control and change 
their consumption according to signals given by the energy market. 
However, this new paradigm also enables on-site production for small 
entities. The new active consumer will have more power over the 
transactions on the market, and thus, understanding and dealing with 
their decisions will be crucial to a successful implementation. Consumer 
empowerment will have an impact on the operation of the grid. If the 
right solution were designed to include all the necessary features to deal 
with the uncertainty introduced by new players, a huge step would be 
taken towards developing a smarter grid. However, when empowering 
the consumers’ many factors should be considered:  

• Consumers should not be considered agents that have access to 
perfectly accurate information – the behavior of real people tends to 
differ dramatically. Although, after the discussion, the authors 
believe that participants will always be active and willing to change 
their strategy and consider them as “perfect” economic and rational 
agents with complete awareness of the market environment, seeking 
the optimal decision may be a faulty assumption. To solve this 
problem and reduce the response uncertainty, the authors suggest a 
contextual solution: giving the right signals according to the different 
behaviors and the different types of participants in the DR event.  

• The DR participants’ actions in the energy market will be complex 
and rarely follow the traditional economic decision-making theory. 
So, they are considered hard to predict from this standpoint but are 
rather predictable from psychology and behavioral economics. In the 
authors’ opinion, implementing DR in the market should discover 
what influences the participants: the social influence, intrinsic and 
extrinsic rewards, and trust may play a key role.  

• Sharing the full information between players, retailers, and other 
consumers leads to better results. However, privacy concerns can be 
raised. The authors believe that trust should be crucial and instigated 
from both sides. Therefore, define limits and boundaries regarding 
which information should or not be shared.  

• Approaches must consider non-linear tools regarding load profiles’ 
uncertain nature combined with consumers’ willingness to partici-
pate. Several study results prove that a stochastic approach can 
handle more uncertainties than a deterministic approach. In this 
case, the authors believe that each type of active consumer has its 
characteristics and should be treated accordingly. 

• Focus on the appliances for DR, through Advanced Metering In-
frastructures, instead of solutions where all the consumers’ flexibility 
is considered. By understanding the functioning of the appliance and 
the impact of the consumer comfort, since it has freedom of choice to 
disconnect any time, the uncertainty of the response can be reduced. 
However, another problem derived from this perspective is the 
correlated DR relationships. For instance, in a load shifting approach, 
an appliance that generates heat may require other cooling equip-
ment to maintain the consumers’ comfort. For this case, the authors 
believe that all the appliances should be listed in the DR contract and 
further define their relationship and consequences.  

• Despite several existing approaches in DR and DSM field, it has been 
found that the consumers deserve more knowledge to support their 
decisions in DR participation instead of reacting to incentives and 
prices. Given that the knowledge is self-reported, there may be a 
considerable divergence between attitudes and observable behav-
iors, for example, the consumers who still depend on non-renewable 
resources, do not rely on public transport, and make heavy use of 
their vehicles, neglect recycling, and any other actions that harm the 
environment. The authors believe that more information should be 
shared on social media, new policies including and giving more 
awareness on the impacts of this concept. 

Thus, influencing the behaviors of active consumers and their de-
cisions to reduce uncertainty and enhance their performance on DR 
events can bring several advantages for all the players involved in 
market transactions and facilitate the penetration of renewable re-
sources in the system. Therefore, more projects should focus on under-
standing how to influence and reduce uncertainty on the consumer side. 
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