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ABSTRACT The energy resource management (ERM) problem in today’s energy systems is complex and
challenging due to the increasing penetration of distributed energy resources with uncertain behavior. Despite
the improvement of forecasting tools, and the development of strategies to deal with this uncertainty (for
instance, considering Monte Carlo simulation to generate a set of different possible scenarios), the risk
associated with such variable resources cannot be neglected and deserves proper attention to guarantee the
correct functioning of the entire system. This paper proposes a risk-based optimization approach for the
centralized day-ahead ERM taking into account extreme events. Risk-neutral and risk-averse methodologies
are implemented, where the risk-averse strategy considers the worst scenario costs through the conditional
value-at-risk (CVaR) method. The model is formulated from the perspective of an aggregator that manages
multiple technologies such as distributed generation, demand response, energy storage systems, among
others. The case study analysis the aggregator’s management inserted in a 13-bus distribution network in the
smart grid context with high penetration of renewable energy and electric vehicles. Results show an increase
of nearly 4% in the day-ahead operational costs comparing the risk-neutral to the risk-averse strategy, but
a reduction of up to 14% in the worst-case scenario cost. Thus, the proposed model can provide safer and
more robust solutions incorporating the CVaR tool into the day-ahead management.

INDEX TERMS Aggregator, conditional value-at-risk, energy resource management, risk-based
optimization, uncertainty.

NOTATION
Binaries:
xDG State of DG units.
xext State of external supplier units.

Indices:
e Energy storage system (ESS) unit.
ex Extreme scenarios.
i Distributed generator (DG) unit.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiwei Xia .

k External supplier unit.
l Load unit.
m Electricity market.
r Consumption energy resource unit.
s Scenarios.
t Time period.
v Electric vehicle (EV) unit.

Parameters:
α Confidence level.
β Risk aversion factor.
1t Period resolution (hour).
ηc Charging efficiency of ESSs and EVs.
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ηd Discharging efficiency of ESSs and EVs.
ρs Scenario probability.
CCurt Cost of load curtailment (m.u./MWh).
CDG Cost of DG unit generation (m.u./MWh).
CENS Cost of energy not supplied (m.u./MWh).
Cext Cost of external supplier unit generation

(m.u./MWh).
CGCP Cost of excess generation (m.u./MWh).
EBatCap Battery capacity of ESSs and EVs (MWh).
EMinC Minimum energy required for ESSs and

EVs (MWh).
ESSMaxC Maximum active charging power of

ESSs (MW).
ESSMaxD Maximum active discharging power of

ESSs (MW).
ESSCDisch Cost of ESS unit discharge (m.u./MWh).
EVMaxC Maximum active charging power of

EVs (MW).
EVMaxD Maximum active discharging power of

EVs (MW).
EVCDisch Cost of EV unit discharge (m.u./MWh).
MP Electricity market prices (m.u./MWh).
Nk ,Ni,Ne Number of external suppliers/DGs/ESSs.
Nm,Ns,Nex Number of markets/scenarios/extreme

scenarios.
Nv,Nl,Nr Number of EVs/loads/resources.
PDGmin/max Minimum and maximum active power

generation of DG unit (MW).
PDGnd Forecasted active power generation of

non-dispatchable DG unit (MW).
Pextmin/max Minimum and maximum active power

generation of external supplier unit (MW).
Pload Forecasted active power of load unit (MW).
PMaxB Maximum active power bid in electricity

market (MW).
PMaxDR Maximum active load reduction

power (MW).
PMaxS Maximum active power offer in electricity

market (MW).
T Number of periods.

Sets and subsets:
�DG Set of DG units.
�d

DG Subset of dispatchable DG units.
�nd

DG Subset of non-dispatchable DG units.

Variables:
CVaRα Conditional value-at-risk (m.u.).
Estored Stored energy in ESSs and EVs (MWh).
ESScost Total discharging cost of ESS unit (m.u.).
ESSPower Active power of ESS unit (MW).
EV cost Total discharging cost of EV unit (m.u.).
EV Power Active power of EV unit (MW).
OF Objective function costs (m.u.).
PCurt Active power reduction of load unit (MW).

PDG Active power generation of DG unit (MW).
PENS Active power of non-supplied demand (MW).
Pext Active power generation of external supplier

unit (MW).
PGCP Active excess power of DG unit (MW).
PMarket Active power traded in the market (MW).
Ps Penalty for bound violation (m.u.).
VaRα Value-at-risk (m.u.).
ZEx Expected cost (m.u.).
Z In
s Scenario revenue (m.u.).
ZOC
s Scenario operational costs (m.u.).
Z tot
s Total scenario costs (m.u.).

I. INTRODUCTION
The The current evolution of energy management systems,
supported by modern smart grid technologies, foresees a
significant penetration of fluctuating renewable generation.
The increased adoption of these types of generation helps
European (and consequently worldwide) targets to counteract
climate issues, expecting to achieve a 27% share of renewable
generation in addition to a 40%of greenhouse gases reduction
in Europe by 2030 [1].

Renewable generation, either solar or wind types, is usually
weather-dependent. Therefore, their management has always
associated an uncertain variability that jeopardizes the oper-
ation of the entire energy chain [2]. One solution to consider
such uncertainties is to rely upon the accuracy of forecasting
techniques, assuming a low degree of error (or none at all)
in the predictions. Unfortunately, different works use this
assumption in the mathematical formulation of the problem,
oversimplifying themodel to a level inwhich their application
into real-world scenarios is not realistic [3], [4]. Other
solutions search to handle technical constraints considering
active control and the use of flexible devices such as energy
storage systems or demand respond [5]–[8]. However, these
types of solutions mitigate the uncertainties to some degree
and do not consider extreme scenarios that might still occur
in the day-ahead operation.

In this context, an energy management system should be
both reliable and resilient, operating as expected in the case of
events with a high probability of occurrence and a reasonably
small effect (e.g., reliable under different faults in the power
system), and prepared to deal with events that despite a low
probability, have a considerable influence in the outcome
of the operation (e.g., resilient to extreme events such as
hurricanes, thunderstorm, etc.) [9].

Recently, energy management models are incorporating
risk-based methods to handle the uncertainty associated with
variable parameters. For instance, some works have included
the value-at-risk (VaR) in their formulations, a concept
widely used in economics to measure the risk of an
investment [10], [11]. The VaR parameter is a statistical
mechanism that allows measuring the losses associated with
a portfolio over time with a given confidence level. In other
words, the VaR parameter opens the possibility of finding
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solutions that are resilient to the occurrence of extreme
scenarios (i.e., scenarios with a high variation and a low
probability of occurrence) [12].

Although VaR is a suitable tool for risk analysis, one of its
significant drawbacks lies in considering extreme scenarios
that might occur beyond the established confidence level.
To overcome this drawback, the concept of conditional VaR
(CVaR) was introduced as an extension of VaR, allowing
the evaluation of risk when least likely scenarios, beyond
the confidence level, occur [13]. The CVaR provides higher
security, protecting the investor against extreme scenarios at a
higher cost. From the perspective of optimization, the CVaR
transforms the problem into a Pareto optimization with two
objectives: the expected return and the inherent risk of a given
solution. Although CVaR is a concept widely associated with
the economy and its aspects, some literature is adopting this
strategy in the field of electric power systems, considering,
for instance, the return as the aggregator costs and the risk
associated with the management of renewable generation
among other uncertain parameters [14]–[16].

In this work, we model the energy resource man-
agement (ERM) problem under uncertainty of renewable
generation, load consumption, market prices, and electric
vehicles (EVs) trips [7], [17]. The stochastic behavior of
these parameters is considered through various scenarios
associated with a probability of occurrence. The novelty of
our approach lies in the incorporation of risk strategies into
the formulation, allowing the aggregator to plan its operation
considering different degrees of risk associated with diverse
scenarios (risk-neutral and risk-averse considerations). The
contributions of this work are as follows:
• a day-ahead ERM model considering uncertainties of
renewable generation, load consumption, market prices,
and EVs trips.

• incorporation of risk analysis strategies using VaR and
CVaR measures in the mathematical formulation of
the ERM problem to deal with the uncertainty of
parameters. In this way, we aim at getting solutions that
protect the aggregator against extreme scenarios creating
a unique optimization model considering a large number
of distributed energy resources (DER).

• implementing a solution method based on modern meta-
heuristic optimization to deal with the computational
burden of considering diverse possible scenarios of
uncertain parameters and the large number of variables
considered.

• analyzing the impact of VaR and CVaR measures over a
set of case studies using real power and energy systems
data.

In this article, we hypothesize that the incorporation of
risk parameters into the formulation results in solutions
that, despite their higher cost, protect the aggregator (and,
in consequence, the end-user) against possible scenarios that
might endanger the entire system. The paper is organized
as follows: Section II presents the literature regarding
similar work to the topic of the article. In Section III

the mathematical formulations regarding the risk-neutral
and risk-averse methodologies are described. The ERM
formulation and scenario generation are given in Section IV,
and in the following section, the structure of the optimization
technique used is presented. Section VI gives the case study
utilized for the application of the proposed methods and
shows obtained results for the risk-neutral and risk-averse
strategies. Finally, Section VII draws significant conclusions
from the work.

II. RELATED WORK
The incorporation of risk-based techniques in the context of
electrical energy systems is usually devoted to the planning
of microgrid reconfiguration to reduce utility blackouts
or natural disasters or for emergency islanding mode
control [13]. In recent studies, risk-based techniques are used
to support the planning of hybrid energy systems considering
the uncertainty arising from river streamflow [18], or in
energy storage systems planning taking into consideration,
the variation of wind production [19]. Also, risk-based
strategies have been applied for the optimal microgrid
planning considering the uncertainty of DER to reduce power
loss and energy not supplied (ENS) [20].

Even though most of the literature does not consider
a risk-based methodology when it comes to the operation
of energy resources (for instance, by an aggregator), the
occurrence of extreme events can massively affect the
management solution of network operators [21]. In fact,
some papers have proposed a risk-based formulation for
aggregators. For instance, in [22], a decision-making problem
is presented for profit maximization of a wind generation
provider and the supply of EV and demand response (DR)
aggregators. In that work, the risk measuring parameter
is implemented to minimize the impact of the uncertainty
associated with market prices, EV, DR demand, and offers
made by other wind production entities. Reference [23]
provides a two-stage model for the operation of an aggregator
pursuing end-users cost minimization and risk minimization
for day-ahead and real-time operation. In the risk minimiza-
tion stage, the aggregator can purchase energy from the
wholesalemarket tomeet the scheduled day-ahead electricity,
either in the day-ahead or real-time markets (to achieve
imbalance reduction). The risk-constrained stochastic power
procurement problem of electrical retailers is formulated
in [24] taking into consideration load and pool-market
prices uncertainty. The authors propose a risk strategy to
achieve equal cost in all uncertainty scenarios, making it a
scenario-independent process that imposes more costs to the
retailer but almost zero risk. In [25], a risk-based mechanism,
using CVaR, is utilized in a bi-level optimization problem
to evaluate the risk associated with the uncertainty of the
renewable generation. Results show that by incorporating this
risk mechanism, the total expected cost increases with the
risk aversion but the value associated with CVaR decreases
guaranteeing a more robust solution. Furthermore, optimal
management of DER for profit maximization considering the
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CVaR to evaluate the risk associated with the uncertainties
of multiple DER is proposed in [26]. This work shows that
the average profits decrease with the weight given to the risk
aversion, whereas theCVaR cost increases. However, the EVs
have not been considered in the model as included in this
research work.

In the literature, one of the topics where risk measurement
is considered is related to market participation and offers
from the aggregating entities to the end-user, mainly for
profit maximization. In [27], [28] the risk mechanism is
implemented to deal with the uncertainties associated with
EV demand, day-ahead, and balance market prices, and other
offers presented by competing EV aggregators. In this case,
the risk measuring parameters are used, so the EV aggregator
participates in both proposed markets and provides offers
to EV owners for profit maximization (resulting in cost
minimization from the EV user point of view). Reference [29]
proposes a decision-making model for a demand DR aggre-
gator for profit maximization considering market bids and
energy offers for customer attraction. This work contemplates
the CVaR and VaR risk measurement mechanisms for regret
minimization in the event of worst-case scenarios realization.

III. RISK-BASED ENERGY RESOURCE MANAGEMENT
The proposed ERMmodel uses a risk-based technique for the
day-ahead operation. This section explains how to formulate
a risk-neutral and risk-averse strategy. The risk-neutral
process does not take into account risk-related characteristics.
On the other hand, the risk-averse employs these charac-
teristics to ensure a more robust solution against extreme
events.

A. RISK-NEUTRAL METHODOLOGY
The risk-neutral strategy for the day-ahead ERM considers
the uncertain behavior of aggregator’s technologies such as
renewable generation, load consumption, market prices, and
EV consumption behavior. The stochastic behavior of these
parameters is considered in the approach through various
scenarios with an associated probability of occurrence.

The aggregator’s management is formulated based on the
expected scenario when the risk is not considered. The cost
and the value of the objective function when a risk aversion
strategy is not considered is given by the expected cost
as:

Z tot
s = ZOC

s − Z
In
s + Ps (1)

ZEx
=

Ns∑
s=1

(ρs × Z tot
s ) (2)

where Z tot
s is the total objective function (OF) value of each

scenario s given by the difference between operational costs
in each scenario (ZOC

s ), the income in each scenario (Z In
s ), and

the penalty for bound violations (e.g., power capacity limits)
of any variable (Ps). The expected OF cost is represented by
ZEx, and ρs is the probability of the respective scenario.

B. RISK-AVERSE METHODOLOGY
A risk-aversion strategy considers the risk associated with the
uncertainty of the previously mentioned technologies. In this
situation, the aggregator considers the worst-case scenario
when day-ahead management is performed. This situation is
due to extreme scenarioswith a low probability of occurrence,
significantly affecting management. As a result, they present
significant variations compared to the other scenarios, that
is, scenarios with high consequences. For example, these
scenarios can represent a high peak in market prices, load
demand, a reduction, or even the absence of renewable
production.

In this work, the CVaR is implemented as a risk measure-
ment mechanism that will consider these extreme events to
minimize their impact. CVaR adds to the concept of VaR
because VaR can only measure risk when the expected cost
ZEx does not exceed the confidence level (α) for all simulated
scenarios. On the contrary, CVaRα allows measuring risk
for scenarios that surpass the confidence level. That is, this
parameter is added to the expected cost ZEx when the value
of the OF of the scenarios is higher than ZEx

+ VaRα which
gives them the notation of conditional expected cost. For the
simulations involving risk-aversion, α was 95% which is a
typical value for this parameter. The VaRα , CVaRα , and ZEx

concepts are represented in Figure 1 through the normal and
cumulative probability distribution functions. Considering
the cost of each scenario and for the α value already known,
the VaRα was calculated using the cumulative probability
distribution function as shown in Figure 1.

As previously mentioned, CVaRα is an additional cost that
is added to ZEx in (1-α)% of the scenarios with the highest
costs. After calculating the value of VaRα , the CVaRα is
calculated using the following formulation [30]:

CVaRα(Z tot
s ) = VaRα(Z tot

s )+
1

1− α

Ns∑
s=1

ρs × ϕs (3)

where ϕs = Z tot
s − ZEx

− VaRα(Z tot
s ) if Z tot

s ≥ ZEx
+

VaRα(Z tot
s ), and ϕs = 0 otherwise. This parameter is

associated with the cost in the worst scenarios, that is, when
the cost of each scenario s exceeds the expected cost with the
addition of the VaRα value. If the opposite occurs ϕ is given
the value of zero.

Taking this parameter into account, the OF of the
management problem varies according to the level of risk
aversion considered as:

OF = ZEx
+ β · CVaRα(Z tot

s ) (4)

In this situation, the β parameter represents the percentage
of aversion to the risk. This parameter can vary between 0 and
1 when β = 0, the OF value is only equal to the expected
cost, which is considered a risk-neutral strategy. On the other
hand, if β = 1, we say that the strategy has 100% aversion to
risk, presenting the safest solution when it comes to the worst
scenarios. As it can be seen in Eq. (4), the aggregator tries to
minimize the OF value, which is a weighted sum of the ERM
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expected costs, and the consideration ofCVaR through the use
of β. Therefore, the consideration of theCVaR is proportional
to the weight given by β. This consideration means that the
more β increases, themore importance is given to the extreme
events in the next 24 hours.

IV. PROPOSED METHODOLOGY
This section presents the proposed mathematical problem
formulation of the day-ahead ERM model, as well as the
scenarios generation mechanism to represent the uncertainty.

A. ENERGY RESOURCE MANAGEMENT FORMULATION
The mathematical formulation of the day-ahead ERM takes
into consideration the total operation cost and the profits in
each scenario s (see the first and second term of Eq. (1)).
Thus, the total operational cost for each scenario s is given
by:

ZOC
s =

T∑
t=1

·



∑
i∈�d

DG

PDG(i,t) · C
DG
(i,t)+

Nk∑
k=1

Pext(k,t) · C
ext
(k,t)+∑

i∈�nd
DG

PDG(i,t,s) · C
DG
(i,t)+

Ne∑
e=1

ESScost(e,t,s) +

Nv∑
v=1

EV cost
(v,t,s)+

Nl∑
l=1

PCurt(l,t,s) · C
Curt
(l,t)+

Nr∑
r=1

PENS(r,t,s) · C
ENS
(r,t)+

Ni∑
i=1

PGCP(i,t,s) · C
GCP
(i,t)



·1t ∀s

(5)

where:

ESScost(e,t,s) =

{
ESSPower(e,t,s) · ESSC

Disch
(e,t) if ESSPower(e,t) ≤ 0

0 otherwise

(6)

EV cost
(v,t,s) =

{
EV Power

(v,t,s) · EVC
Disch
(v,t) if EV Power

(v,t) ≤ 0
0 otherwise

(7)

Notice that ESSPower(e,t,s) / EV Power
(v,t,s) are continuous variables

that take a negative value when discharging, and a positive
value when charging. Therefore, ESScost(e,t,s) and EV cost

(v,t,s) in
Eq. (5), are only taken into account when the battery system
is discharging, as modeled in Eqs. (6)-(7). In other words,
the aggregator needs to pay a cost for the energy used
coming from these technologies. On the other hand, the cost
of charging the batteries is not considered in Eq. (5) since
this is a payment that the aggregator receives for supplying

FIGURE 1. Representation of VaRα , CVaRα and ZEx through a) normal;
b) cumulative distribution functions.

the demanded energy. Similarly, these payments are not
considered in Eq. (8) because we only take into consideration
market transactions.

Regarding the profits, the aggregator achieves monetary
value by participating in the market according to:

Z In
s =

T∑
t=1

[
Nm∑
m=1

PMarket
(m,t) ·MP(m,t,s)] ·1t ∀s (8)

By combining both terms into a minimization problem,
the proposed algorithm tries to minimize Eq. (5) while
maximizing Eq. (8) for each scenario s. Depending on the
market prices and operational costs, the aggregator trades
energy as much as possible to make a profit.

The OF of the management problem is subject to different
constraints as follows:

Active power balance: At each period t , the generation
must be equal to the consumption for each scenario s:

∑
i∈�d

DG

PDG(i,t) +
Nk∑
k=1

Pext(k,t)+

∑
i∈�nd

DG

(PDG(i,t,s) − P
GCP
(i,t,s))+

Nl∑
l=1

(PCurt(l,t,s) − P
load
(l,t,s))+

Ne∑
e=1

ESSPower(e,t,s) +

Nv∑
v=1

EV Power
(v,t,s)+

Nr∑
r=1

PENS(r,t,s) +

Nm∑
m=1

PMarket
(m,t)



= 0 ∀s (9)
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Active power generation:Maximum and minimum limits
for active power generation at each period t is as follows:

PDGmin
(i,t) · x

DG
(i,t) ≤ PDG(i,t) ∀i ∈ �

d
DG, ∀t (10)

PDG(i,t) ≤ PDGmax
(i,t) · x

DG
(i,t) ∀i ∈ �

d
DG, ∀t (11)

The external supplier power generation:Maximum and
minimum limits at each period t can be modeled as:

Pextmin
(k,t) · x

ext
(k,t) ≤ Pext(k,t) ∀k, ∀t (12)

Pext(k,t) ≤ Pextmax
(k,t) · x

ext
(k,t) ∀k, ∀t (13)

The non-dispatchable generation: Formulated according
to each scenario s:

PDG(i,t,s) = PDGnd
(i,t) · x

DG
(i,t) ∀i ∈ �

nd
DG, ∀t (14)

Energy storage systems: The battery balance constraint
for each ESS unit is defined as follows:

Estored
(e,t,s) = Estored

(e,t−1,s) + η
c
(e) · ESS

Power
(e,t,s) ·1t

−
1

ηd(e)

· ESSPower(e,t,s) ·1t ∀e, ∀t, ∀s (15)

The maximum discharge and charge limits for each ESS
unit can be formulated as:

−ESSMaxD
(e,t) ≤ ESS

Power
(e,t,s) ≤ ESS

MaxC
(e,t) ∀e, ∀t, ∀s (16)

The maximum battery capacity limit for each ESS unit can
be written as:

Estored
(e,t,s) ≤ E

BatCap
(e) ∀e, ∀t, ∀s (17)

The minimum energy stored required to be guaranteed at
the end of period t can be modeled as:

Estored
(e,t,s) ≥ E

MinC
(e,t) ∀e, ∀t, ∀s (18)

Electric vehicles: The constraints for the EVs are similar
to the ESSs since both are storage systems. We consider
the set of EVs as a collection of loads representing virtual
batteries in this work. However, notice that EVs have
some restrictions and requirements that ESSs have not.
For instance, EVs are located in predetermined network
locations and have traveling requirements associated with
user preferences. These requirements are also related to
the uncertainty related to EV travel behavior. While these
requirements are set as an input to the problem, EVs’
constraints do not change.With this consideration, the battery
balance constraint of each individual EV is formulated as
follows:

Estored
(v,t,s) = Estored

(v,t−1,s) + η
c
(v) · EV

Power
(v,t,s) ·1t

−
1

ηd(v)

· EV Power
(v,t,s) ·1t ∀v, ∀t, ∀s (19)

The discharging and charging limits for each EV are
represented by the following:

−EVMaxD
(v,t) ≤ EV

Power
(v,t,s) ≤ EV

MaxC
(v,t) ∀v, ∀t, ∀s (20)

The maximum battery capacity limit for each EV unit is
given by:

Estored
(v,t,s) ≤ E

BatCap
(v) ∀v, ∀t, ∀s (21)

The minimum energy stored required to be guaranteed at
the end of period t for each EV can be defined as:

Estored
(v,t,s) ≥ E

MinC
(v,t) ∀v, ∀t, ∀s (22)

Demand response: The DR model, namely direct load
control where consumption is reduced by the end-user in
exchange for an incentive. The maximum amount of load that
can be reduced can be formulated as:

PCurt(l,t,s) ≤ P
MaxDR
(l,t) ∀l, ∀t, ∀s (23)

Electricitymarket:Themaximum andminimum amounts
of energy that the aggregator can buy and sell in the electricity
market are given by:

−PMaxB
(m,t) ≤ P

Market
(m,t) ≤ P

MaxS
(m,t) ∀m, ∀t (24)

In addition, in our formulation, if any of the restrictions
in Eqs. (10)-(14), Eq. (16), Eq. (20), and Eqs. (23)-(24) is
violated, a monetary penalty (1,000 m.u. in this work) is
added to Ps for each variable that exceeded the specified
bounds.

B. SCENARIO GENERATION
In the considered model, the aggregator needs to deal with
uncertainty coming from numerous resources, e.g., random
driving patterns of EV users and charging behavior, variations
in market prices, uncontrollable renewable generation, etc.
Since the exact outcome of these resources is nearly hard
or impossible to predict (due to the randomness of these
variables), the success of the decision-making process cannot
be completely guaranteed. Therefore, the proposed method
considers the uncertainties associated with the mentioned
resources by using a scenario-based optimization technique.

To this end, Monte Carlo Simulation (MCS) method is
utilized to obtain a sizeable random sampling of the possible
numerical results. This situation means that simulations
are repeated numerous times to determine the heuristic
probability. MCS builds a viable product model for any
variable with uncertainty using a probability distribution (the
normal distribution function for simplicity in this work).
After that, the results are recalculated with a range of
values between the determined minimum and maximum. The
scenarios xs can be represented using the sum of a forecasted
mean value and errors obtained from historical data as given
by [17]:

xs = xforecasted(t)+ xerror,s(t) (25)

where xforecasted(t) is the mean forecasted value in each
instant t , which can have a negative or positive value,
xerror,s(t) is the term associated with the error involving
each scenario s with a normal distribution function with a
zero-mean noise, and standard deviation σ (N (0, σ )).
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FIGURE 2. Scenario tree.

Figure 2 shows an example of a scenario tree where
each circle represents a node which gives the state of
a random variable at a certain time t , and each branch
represents the specific scenario s. Many scenarios are initially
created, resulting in a large-scale problem. The larger the
number of scenarios is, the more accurate the model is.
However, there is a trade-off between computational time
and memory requirements despite higher accuracy (i.e., the
larger the set of scenarios is, the more time and memory are
required).

A scenario reduction strategy is employed to deal with the
problem’s tractability [31]. To do so, similar scenarios are
grouped while scenarios with a low chance of occurrence
are excluded. As a result, a scenario subset is produced near
the initial distribution in terms of a probability measure. The
essential purpose of scenario reduction is to reduce the size
of the large-scale problem. Furthermore, the number of vari-
ables and constraints is reduced by applying these strategies.
Also, the processing time significantly decreases, allowing
faster discovery of suitable solutions while preserving the
original data set statistical properties. The computing effort is
likewise lowered, requiring less system memory. Notice that,
despite maintaining the statistical properties of the original
data set, it is impossible to avoid some imprecision in the final
solutions as a product of this reduction.

This article also considers the possibility of scenarios with
low probability but a more drastic impact on the operation.
To this end, ten random extreme scenarios were produced
from the database for the risk-based strategy, modeling
natural settings for extreme events as shown in Figure 3.
In the first extreme scenario, a 50% increase in load during
the day was modeled. In the second extreme scenario, we set
a drop of 80% in buy/sell market capacity throughout the
day. In the third scenario, the external supplier’s maximum
generation capacity was cut to 8 MW in hours 1 to 7 and

FIGURE 3. Extreme scenarios generated.

23 to 24 to represent, for instance, the damage to distribution
lines that can significantly impact the power capacity coming
from an external supplier. The fourth scenario was designed
to evaluate DR absence due to, for instance, a breakdown
of the communication system between aggregator and end-
user. Thus, the DR was set to zero throughout the day, and
demand increased by 40% from hours 16 to 22. In the fifth
scenario, we consider a simulation in which the aggregator
might be at risk, combining a 60% increase in load, a 20%
increase in wind output at different times of the day, and
a 30% increase in PV production. In the sixth extreme
scenario, a 30% load increase was projected from hours
13 to 20, and no market capacity for trading was considered
from hours 1 to 12 and 22 to 24. For the seventh scenario,
the external supplier capacity was again constrained, plus a
consideration of market price increments at different times.
In the eighth scenario, we set the market capacity to 4 MW
and a 30% increase in renewable generation. In the ninth
scenario, we put a load increase of 50%, a 30% drop in DR
capacity, and an 80% increase in market prices throughout the
day. Finally, the tenth risk scenario considered a 120% rise in
market prices from the hours 17 to 22 and a 60% loss of DR
capability from hour 9 to hour 19.

The total probability of the extreme scenarios was equal
to 0.5%. By doing this, the probability of the remaining
scenarios needed to be altered to match a total of 100% of
probability. In order to do this, we modify the probability of
scenarios as:

Ss−ex =
1−

∑Ns
s=1 ρs

Ns − Nex
(26)

where Ss−ex represents the probability added to the rest of the
scenarios, excluding the extreme scenarios.
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V. OPTIMIZATION TECHNIQUE
For the optimization of the risk-based day-ahead ERM
problem, a metaheuristic proposed in [32] was implemented.
This section describes the algorithm optimization process,
the solution representation used by the metaheuristic, and the
fitness evaluation when considering the risk strategies.

A. ALGORITHM PROCEDURE
The Cellular Univariate Marginal Distribution Algorithm
with Normal-Cauchy Distribution (CUMDANCauchy)
(Algorithm 1) is an evolutionary algorithm (EA) that
searches for novel solutions using the Normal and Cauchy
distributions.

Initially, the algorithm starts by setting the control param-
eters needed for the optimization (step 1). Such parameters
include the number of parent individuals (p) selected from
the initial population size (NP), the number of individuals
chosen from the parent solution (s), and the maximum
number of iterations (iterMax). After NP initial solutions
are randomly generated between specified variable bounds
(step 2), the fitness evaluation of these solutions is made,
obtaining the OF cost of each individual (step 3). Next,
the resulting fitness values are sorted in decreasing order,
obtaining a rank for each solution depending on their position
(step 4). Then, some solutions are selected according to the
number of parents specified by the parameter p (step 5),
and the best parent individual is saved as the best global
solution found (step 6). After this, the algorithm enters
into an iterative process for a given number of iterations
(step 8).

The first step in this iterative process estimates the parent
individuals according to the Normal and Cauchy distributions
(step 9). Then, based on the learning process of the estimated
distribution, a new population of NP individuals is generated
for (step 11), updating the variables according to boundary
constraints (step 12). s individuals are selected from this
new population and saved as auxiliary solutions (step 13).
The best individual from these auxiliary results is also saved
(step 15), and a comparison is made between this individual
and the global best individual (step 16), keeping theminimum
as the new global best solution (step 17). Finally, The best
solution is updated (step 18), and the iterative process starts
again.

This final process of comparison between xsbest and
xglobalbest is an upgrade from the CUMDANCauchy algo-
rithm, which results in the new CUMDANCauchy++
algorithm [33], an algorithm created especially to deal with
the uncertainty present in the ERM problem, which highly
placed in a competition on evolutionary computation in the
energy domain [34].

B. SOLUTION ENCODING
The solution structure is an essential feature of metaheuristics
for expressing a given solution (e.g., an individual in DE [35],
a particle in PSO [36], or a genotype in GA [37]). Because

Algorithm 1 Cellular Univariate Marginal Distribution
Algorithm With Normal-Cauchy Distribution
1: Initialize control parameters p, s,NP, iterMax
2: Generate initial population (NP) randomly
3: Evaluate fitness of NP individuals
4: Sort obtained solutions
5: Select p individuals from sorted solution
6: Save best individual from p solutions as xglobalbest
7: t ← 1
8: while t ≤ iterMax do
9: Estimate Normal(µ, σ )×Cauchy(µ, σ ) of p individ-

uals
10: for all NP do
11: Sample new NP individuals according to the

estimated distribution
12: Verify boundary constraints
13: Apply selection of s individuals and update

population
14: end for
15: Save best individual from s solution as xsbest
16: if xsbest < xglobalbest then
17: xglobalbest = xsbest
18: Update solution
19: end if
20: t ← t + 1
21: end while

we’re dealing with an EA, the solution to the metaheuristic is
determined by the individuals (solutions) involved.

The metaheuristic’s initial solution is created randomly
between the maximum and minimum values set for each vari-
able. The vector representation of the generated population
for the day-ahead is shown in Figure 4. Each individual is
composed of a group of sequentially repeated variables per
period (S1, S2, . . . , S24). The variables in each group are
defined by the technologies present in the DN. All variables
are of continuous type varying according to the specified
bounds, except for the state of the generators, which is
represented by a binary state; that is, it can only be 0 or 1. This
variable when its 0 means that the generator is not connected
to the grid, and 1 when it is.

The first group of variables generated is the active
power generation which includes renewable production. The
non-dispatchable generation cannot be controlled due to solar
and wind factors, respectively. Even though the variables
associated with this type of generation are demonstrated in
the solution vector, it is essential to note that these variables
have an unchangeable value that depends on the uncertainty
scenario, so the bounds of these variables are limited to the
maximum production value.

EV and ESS solutions are set to vary from the maximum
active power discharge to the maximum active power charge,
assuming the discharging as a negative variable (generation)
and the charging as a positive variable (consumption). The
DR is only assumed as a load reduction, but a load increase
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FIGURE 4. Encoding of metaheuristic solutions.

program could also be considered. Hence, the DR variable
varies from 0 to the maximum active power reduction. When
it comes to market variables, it is assumed that the negative
value is the power bought in the market, and the positive
variable value is the power sold.

In this case, the metaheuristic does not consider binary
variables for ESSs, EVs, and the marketplace because it
would increase problem complexity with a considerable
rise in the number of variables. To avoid this situation,
as presented in Figure 4 the metaheuristic generates a
value between the specified limits for each period. This
situation means that the solution for each instance can only
be negative (discharge) or positive (charge) and not both
simultaneously, guaranteeing that the technologies do not
charge/discharge simultaneously. The same approach is used
for the marketplace. For each period, the offer/bid values
are given by a continuous variable that can only be positive
or negative and not both. In [7], [17] similar formulations
are made to the proposed work but considering deterministic
methods where binary variables are considered for the state
of charge/discharge of ESSs and EVs and power bought/sold
in the electricity market.

The considered ERM has 49,680 variables per individual
given by 2,070 variables per period, with 21 variables
composing the generators’ active power and state. A total of
2,000 EVs were also considered with 25 load types, 2 ESSs,
and 1 market.

C. FITNESS EVALUATION
Regarding the optimization process of the risk-basedmethod-
ology, Figure 5 shows the fitness function that the chosen
metaheuristic evaluates for cost minimization. Initially, the
database with the formulated scenarios is passed as an

FIGURE 5. Flowchart of fitness function for risk-based strategies.

argument to the function, containing the scenarios with
extreme events. The value of the variable that controls
risk aversion is also initialized. It is only set to 0 and 1,
but a variation could be applied in this situation. Next,
each scenario is evaluated according to the equations in
Section IV-A. This evaluation is done to obtain each scenario
cost, which is saved to calculate the expected cost as in
Eq. (2).

The expected cost, the cost of each scenario, and the
probabilities of each scenario are used to calculate VaRα and
CVaRα values according to the formulation in Section III-B.
After the parameters that measure risk have been calculated,
the aggregator enters a decision process according to the risk
aversion factor. Through the value of the OF, the aggregator
chooses the best strategy.

The metaheuristic does this evaluation to minimize the
value of the OF in a given number of iterations, so when the
β is zero, the metaheuristic will only minimize the expected
cost. When β is 1, the metaheuristic minimizes the expected
cost as well as the CVaRα .
The value of CVaR in the optimization process decreases

as the value of the risk-aversion factor increases like it is
formulated in Eq. (4). Since we are in the presence of a
minimization problem, as we increase β, the heuristic will try
to decrease the CVaR to the extent that it does not massively
affect the OF. In the final step of the flowchart in Figure 5, the
aggregator decides which β to use. Meaning by choosing β as
zero, the aggregator is more prone to risk in its solution, not
caring about the occurrence of extreme events. By choosing β
as one, he becomes less susceptible to the risk in its solution,
adopting a safer and more robust solution against extreme
events.

VI. RESULTS AND DISCUSSION
This section contains the case study details adopted in this
research paper. It also presents the numerical results obtained
for the risk-neutral and risk-averse methods regarding the
aggregators’ costs and energy management results.
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FIGURE 6. Line-diagram of the 13-bus DN [38].

A. CASE STUDY
Amedium voltage (MV) distribution network (DN) of a smart
city (SC) located in the BISITE laboratory in Salamanca,
Spain, was chosen for this case study [38]. This DN features
one 30 MVA substation in bus 1, 15 DG units (2 wind farms
and 13 PV parks), and four 1 MVAr capacitor banks (which
in this problem are not considered since we are not taking into
account reactive power). When it comes to consumption, this
DN has 25 different loads composed of residential and office
buildings and some buildings that provide a service (hospital,
fire station, and shopping mall). The SC has seven charging
stations allowing EVs to charge their batteries, including
four 7.2kW slow charging stations and 50kW fast-charging
stations. The single-line diagram presented in Figure 6 of the
13-bus 30-kV DN shows the single-line diagram as well as
the loads, generation, and equipment attached to each node.
This case study takes into account the high penetration of EVs
and renewables.

Various scenarios were created to deal with the uncertainty
of the technology under consideration. It is assumed a normal
distribution to model the error but with a standard deviation
variation. The maximum standard deviation values for the
load consumption and electricity market prices are 15%
and 10%, respectively. The minimum values for standard
deviation are 8% and 6%, correspondingly. Randomized
values adopting the Gaussian/normal distribution are created
for the forecast scenarios. The error for the PV generation
forecast varies between 0 and 20%, and the wind production
forecast error varies between 20% and 35% [39]. The MCS
approach is used to produce 5000 scenarios, then reduced
to 150 scenarios using a fast backward-forward procedure in
GAMS/SCENRED as described in subsection IV-B.

FIGURE 7. Scenario range for day-ahead load demand, and renewable
generation.

An EV travel behavior simulator tool proposed in [40] was
used to model EV uncertainty. Different classes of vehicles
are used with two different types of EVs: battery EV and
plug-in hybrid EV with the characteristics presented in [39].
This simulator allows us to obtain data regarding each EV’s
trips, such as maximum charge and discharge rate, minimum
charging required so the EV can make its trip in the next
hour(s), and several other parameters that serve as input for
the optimization.

Variations in load demand and renewable generation can
be observed in Figure 7, which shows the range of scenarios
for the total load demand and renewable generation ranging
between the minimum and maximum values. From period
10 to 20, a considerable variation in load limits can be seen,
with the highest load value being 19.01 MW in period 15.
When it comes to renewable generation variation, the extreme
scenarios have little impact on the minimum and maximum
values because the range is smaller when compared to load
demand.

Regarding the considered costs in this scenario, Figure 8
presents the forecasted wholesale market prices and the
external supplier prices. A significant variation can be seen
regarding the market prices due to the multiple extreme
scenarios that consider an increase in market costs. Here
the maximum value of 116.22 m.u. can be seen in period
20, where the minimum value is 38.14 m.u., a difference of
78.09 m.u., which is considerable. The external supplier is
contracted without uncertainty in cost, and the value is set to
50 m.u. in off-peak hours and 90 m.u. in peak hours.

The aggregator must manage its respective resources,
power bought from the external supplier, and energy
bought/sold in the marketplaces to satisfy the consumption.
Two ESSs units were also considered in the situation.
Table 1 presents the energy resources data associated with
the aggregator for the day-ahead formulation. The minimum
and maximum values assumed for the prices of the resources,
capacity, forecasted values from the renewables and loads,
and the number of units corresponding to each resource are
indicated.
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FIGURE 8. Day-ahead external supplier, and forecasted market prices.

TABLE 1. Energy resources information for the day-ahead.

CUMDANCauchy++ was the metaheuristic used for
this optimization problem due to its already demonstrated
outstanding performance in ERM problems [33]. The first
parameter that is set is NP with 20 individuals. We studied the
sensibility of the NP parameter in [39] for the day-ahead, and
we concluded that the overall best value for this parameter
in the proposed algorithm was 20. The number of iterations
(iterMax) is set up with 250 iterations corresponding to 5,000
objective function evaluations. The following parameters are
p and s set to 16 and 2, respectively. All simulations were run
in MATLAB 2018a on a device with a 4 core AMD Ryzen 5
3500U processor running at 2.1GHz, Windows 10 Pro,
and 16 GB of RAM.

B. CASE 1 - RISK-NEUTRAL OPTIMIZATION
In the risk-neutral methodology, the aggregator schedules the
energy resources for the day-ahead based on expected cost,
i.e., it considers the scenarios with the highest probability
of occurrence. Table 2 shows the values in each hour of
the cost components and revenue obtained by the day-ahead
optimization when β is zero. In this situation, the highest
generation cost was verified in hour 12 due to the high
load demand at this period (see Figure 9). Interestingly,
the aggregator can obtain a profit at this hour due to the
excess of energy bought from the external supplier and sold
at a higher price in the market. In hours 2, 5, and 6, the
optimization presents a penalization for ENS and a market
profit. This situation is quite interesting because it reflects

TABLE 2. Cost components, and revenue obtained per hour in the
risk-neutral optimization.

the aggregator’s preference to buy energy from the external
supplier and sell it in the market to profit (primarily due to
the significant increase in market prices in some scenarios).
In this situation, the aggregator is not interested in the penalty
assigned to the ENS or using the ESSs and EVs to meet the
power balance constraint.

In the risk-neutral case, the total operational costs of the
aggregator are 21,485.23 m.u., where the cost components
corresponding to the ENS, the generation, and the market bid
are equal to 31.02 m.u., 18,283.07 m.u., and 3,171.15 m.u.,
respectively, which translates to the total day-ahead invest-
ment as seen in Table 4. In this case, the OF value when
adding the CVaR0.95 value is 29,701.23 m.u., and the worst
scenario cost is 84,232.70m.u. because this optimization only
minimizes the expected cost (20,006.37 m.u.), as can be seen
in Figure 10. Here the metaheuristic is mainly concerned with
the scenarios where the probability is higher in contrast to the
risk-averse optimization method.

Figure 9 depicts the risk-neutral day-ahead energy man-
agement outcomes. In this case, the total supplied energy
was 241.58 MWh, while the total consumed energy was
241.59MWh, resulting in 10.34 kWh of ENS. The generation
side includes 100.52 MWh of renewable power, 73.42 MWh
of external supplier output, and 67.63 MWh of market bids.
196.93 MWh of load demand, 13.08 MWh of EV charging,
and 31.57 MWh of market offers account for the consump-
tion. The ENS happens in three of the 24 optimization
periods, which is not optimal for the aggregator due to the
extreme scenarios examined. The aggregator did not have
a way to buy the energy needed to satisfy the load in this
circumstance due to load increase, market capacity decreased,
and DR capacity decreased.
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FIGURE 9. Day-ahead management results for the risk-neutral strategy
regarding power a) generation; b) consumption.

C. CASE 2 - RISK-AVERSE OPTIMIZATION
When considering the risk-averse optimization in the
decision-making process, a risk measurement parameter is
added to the OF, so the worst scenarios cost is considered.
This situation means that minimizing the OF the aggregator
minimizes the expected cost and the cost associated with
the extreme events. As Table 3 shows, the aggregator only
obtains a small profit compared to the previous model. The
highest generation cost occurs in period 21 (1,818.26 m.u.).
This price is higher than in the risk-neutral strategy because
the aggregator tries to protect himself against this extreme
event by investing more, as shown by the ENS, which is
lower. The aggregator only has to pay in the first period
compared to the risk-neutral strategy in which the aggregator
pays in three different periods. We also verify fewer periods
where the aggregator has market revenue. In the risk-averse
approach, the aggregator mostly tries to satisfy the demand
without taking extra risks by going to the market to make
offers.

From a risk-neutral to a risk-averse approach, there is a
787.66 m.u. increase in investment, owing primarily to the
generating cost as Table 4 shows. In an extreme occurrence,
the aggregator protects itself by increasing its investment
in energy production. The expenses of ENS are lowered
by around 70% from the risk-neutral to the risk-averse
technique in this scenario, which is a major improvement
because the ENS price evaluated in this methodology is
3,000 m.u./MWh, which is a very high price. In this case
the OF value (ZEx

+ CVaR0.95) is equal to 25,576.73 m.u.,

TABLE 3. Cost components, and revenue obtained per hour in the
risk-averse optimization.

FIGURE 10. Day-ahead management results for the risk-averse strategy
regarding power a) generation; b) consumption.

a decrease of 4,124.50 m.u corresponding to 13.89% from
the previous case (29,701.23 m.u.) even though the expected
cost increased 1,322.65 m.u. from the previous mechanism.
That is, the risk-based strategy implemented improved the
results obtained in the cost of the extreme events, mainly in
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TABLE 4. Overall intraday objective function results and optimization
time by the tested metaheuristics.

FIGURE 11. VaR, and CVaR values for the risk-neutral and risk-averse
models.

the worst scenario (scenario 22) with a 51.83% reduction as
Figure 10 shows. From the figure, it is possible to observe
that the extreme scenarios considered have mostly higher
costs. It is also worth noticing that in some extreme scenarios
generated, such as scenarios 57 and 108, the cost increase
was minimal compared to the remaining. These two scenarios
correspond to the seventh and tenth extreme scenarios created
in which both include an increase in market prices: the
first includes an external supplier capacity reduction and the
second a DR limit reduction (subSection IV-B). Also, in this
situation, the metaheuristic majorly focused on reducing the
worst scenario cost due to its significant impact on the
solution.

The day ahead management results for the risk-averse
strategy (β = 1) are shown in Figure 10. The total energy
consumed was 229.58 MWh with only 3.08 kWh of ENS,
a reduction of 70% from the previous case. This situation
of ENS was only verified in period one, whereas in risk-
neutral optimization, the ENS occurred in periods 2, 5, and 6.
When it comes to the generation, 100.52 MWh of renewable
energy was obtained. A total of 79.11 MWh of external
supplier generation was acquired, an increase from the risk-
neutral strategy, reflecting the rise in generation costs shown
in Table 4. A total of 49.94 MWh of market bid energy was
verified on the generation side. The load demand and EV
charging energy values remained equal to the risk-neutral
method. The energy value of the market offer was equal to
19.57 MWh, a smaller value than what was registered in the
risk-neutral.

FIGURE 12. Total scenario cost for risk-neutral and risk-averse
approaches.

Figure 11 shows the values of the risk instruments
employed (i.e., VaR and CVaR) for the risk-neutral and risk-
averse models. An increase in VaR to CVaR values (as shown
in the figure) was expected to obtain a safer solution against
worst events. In this regard, a rise of 604.56 m.u. from the
VaR to the CVaR value was verified using the risk-neutral
strategy, compared to an increase of 424.21 m.u. in the risk-
averse approach. It is also possible to observe that going
from the risk-neutral to the risk-averse strategy, the VaR value
decreases 57.94%, and the CVaR decreases 56.19%.

VII. CONCLUSION
This paper proposed aggregators’ optimal day-ahead ERM
considering the mathematical formulation of risk-neutral
and risk-averse strategies. The ERM model considers the
uncertainty and stochastic behavior of load, EV demand,
renewable generation, and market prices. We implemented
an MCS model to generate a set of scenarios to deal with
this uncertainty. The problem was solved using a pretty new
metaheuristic, the CUMDANCauchy++. This algorithmwas
improved from previous work to deal with uncertainty, which
showed excellent results in ERM problems.

The ERM problem considers the CVaRmechanism, which
analyses the cost for the worst scenarios. The aggregators’
ERM for the next day is made based on the OF cost in
the occurrence of extreme events. So in this situation, the
aggregator decides if he wants to accept the risk or if he wants
to mitigate the risk, thus investing more when it comes to the
operational costs. The results suggest that the risk mechanism
allows obtaining a better and more robust solution even with
the 4% increase in operational costs and the 6.2% increase
in expected costs. This situation occurs by reducing the risk
measuring parameters (VaR and consequently CVaR) and the
worst-case scenario cost. In other words, by opting for this
solution, the aggregator reduces its risk if the worst scenarios
happen, with a 13.89% reduction in price in the OF.

The proposed methodology could be implemented in
intraday management. Even though we are closer to real-time
and the uncertainty diminishes, extreme events can still
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occur, provoking a significant impact on the management
solution. This methodology could also be applied in a more
competitive environment with multiple aggregators in the DN
trying to provide the best service for the end-user for profit
maximization or cost minimization.
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