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a b s t r a c t

The high reliability and flexibility of Battery Energy Storage (BES) resources in comparison with other
renewable technologies promote the development of this technology in smart grids. The fast response of
BES to load variations could help the power system operators to maintain the balance of generation and
consumption in real-time, and improve the flexibility of the smart grid, effectively. In this work, a new
model is presented that determines the aggregated scheduling of BES and Wind Power Resource (WPR)
in the joint energy and reserve markets. To evaluate the performance of BES in different markets, the
proposed model is divided into day-ahead and real-time planning horizons. According to market prices,
ramp rates, marginal costs, and technical constraints of units, the optimal participation levels in different
markets are determined. The deployed power in real-time and wind power are considered as the un-
certain parameters and the Robust Optimization (RO) framework is proposed to manage the related
financial risk based on the worst-case realizations of uncertain parameters. The robust strategy is
formulated based on the Mixed Integer Linear Programming (MILP) technique, which can be solved via
the branch-and-bound method. Finally, the performance and effectiveness of the model are analyzed via
different case studies. Simulation results show that the day-ahead and real-time markets are the best
options for buying and selling the energy of BESs, and participation in the reserve market and regulation
service increases their profit, significantly. Furthermore, the expected profit greatly depends on the risk
preferences of decision-makers, and reducing the variation interval of wind generation by 40 % leads to
an increase of 74.65 % in revenues.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

By increasing the penetration level of renewable energy re-
sources in smart distribution grids, market operators face a new
challenge that is the balance of consumption and generation in
real-time operation. A study by Ref. [1] found that 10 % wind
penetration for Scandinavian countries increases reserve re-
quirements by 1.5%e4% of installed wind capacity. Uncertainty of
renewable resources such as solar and wind power could disrupt
the energy balance and threaten the security of grid. The system
operators can utilize flexible resources to neutralize the unpre-
dicted fluctuations of renewable units. Battery Energy Storage (BES)
is a promising solution to improve the flexibility of grid. BESs can be
used as the backup unit to compensate variations of renewable
r Ltd. This is an open access article
energy resources such as wind power [2e4]. Despite other
renewable units such as wind and solar units that use free energy
resources, BESs shall purchase the required electrical energy for
charging in low-price periods, and resell it to the grid by dis-
charging electricity in high price periods. Therefore, the profit-
ability of BESs is highly dependent on the structure of the electricity
and distribution grid tariffs. Moreover, continues charging and
discharging cycles reduce the lifetime of BES that shall be consid-
ered in the optimal scheduling [5]. The main advantages of BES in
comparison with other renewable technologies are the controlla-
bility, fast response, and high ramp rates that could increase its
participation level in the reserve and ancillary service markets.
Additionally, participation of BES in the joint energy and reserve
markets improves the profitability of these units as well as profit
margin [6].

The optimal scheduling of BESs and WPRs has been studied in
different technical references. Aspects of energy storage economics
with respect to arbitrage and regulation are discussed in Ref. [7].
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Nomenclature and abbreviation

Indices and Set
t;T Index and set of hourly time category
jð&j0;kÞ;Nj Index and set of intra-hourly time category
s;Ns Index and set of storages
w;Nw Index and set of wind resources

Constants and Parameters
pDA Day-ahead prices ($/MWh)
pRS Reserve price ($/MWh)
pUR;pDR Up and down regulation prices ($/MWh)
rCHs ;rDCHs Marginal cost of BES sth in charging and discharging

modes ($/MWh)
rw Marginal cost of WPR wth ($/MWh)
Rs Ramp-rate of BES sth (MW)
Rw Ramp-rate of WPR wth (MW)
Pmin;DCH
s ;Pmax;DCH

s Minimum and maximum power of BES sth in
discharging mode (MW)

Pmin;CH
s ;Pmax;CH

s Minimum and maximum power of BES sth in
charging mode (MW)

Emin
s ;Emax

s Minimum and maximum energy of BES sth (MWh)
Pmin
w ;Pmax

w Minimum and maximum capacity of WPR wth (MW)

P
UR

;P
DR

Expected deployed power in up and down regulation
services (MW)

DPUR;DPDR Variation interval of deployed power in up and down
regulation services (MW)

P
RT
w Expected wind power realization wth (MW)

DP
RT
w Variation interval of wind power realization wth

(MW)
M Auxiliary constant for linearization
DS Duration of intra-hourly interval (h)

Functions
B Income function of owner
C Cost function of owner

Decision variables
PDA;S;PDA;B Selling and buying bids in the day-ahead market

(MW)
PRS Reserve bid (MW)
PUR;PDR Deployed power in the up and down regulation

services (MW)
PDA;CHs ;PDA;DCHs Day-ahead scheduling of BES sth in charging and

discharging modes (MW)
PUR;CHs ;PDR;CHs Deployed up and down regulation power of BES

sth in charging mode (MW)
PUR;DCHs ;PDR;DCHs Deployed up and down regulation power of BES

sth in discharging mode (MW)
PRS;CHs ;PRS;DCHs Reserve scheduling of BES sth in charging and

discharging modes (MW)
PDAw Day-ahead scheduling of WPR wth (MW)
PURw ;PDRw Deployed up and down regulation power ofWPR wth

(MW)
PRSw Reserve scheduling of WPR wth (MW)
PSPw Spilled power of WPR wth (MW)
Es Energy level of BES sth (MWh)
PRTw Realization of wind power in real-time (MW)
A Auxiliary variables for linearization
G Auxiliary variable of RO

Binary Variables
as;bs Charging and discharging binary variables of BES sth
uw Commitment status binary variable of WPR wth

Abbreviation
BES Battery energy storage
DoD Depth of discharge
DA Day-ahead
MILP Mixed integer linear programming
RO Robust optimization
RT Real time
WPR Wind power resource
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Moreover, a deterministic linear model is proposed for scheduling
BESs in the day-ahead and real-time markets based on the lifetime
constraint and the ancillary market is considered as a source of
revenue for the BES. The performance of this model can be
improved by considering the technical characteristics of BESs such
as ramp-rate. Base on the results of the model, participating in the
regulation service market has the potential to generate high reve-
nues. In smart distribution grids, batteries of the electric vehicle can
be used to provide the required energy and flexibility of grid [8].
However, the accessibility and location of mobile batteries are still
the main challenges of grid operators in utilizing these resources. In
Ref. [9], hybrid artificial intelligence technique is proposed for the
coordination in the scheduling of mobile BES and photovoltaic
panels. In the proposed objective function, different terms such as
operation cost of distributed generation units, energy procurement,
remunerations of storages, and penalty cost are considered. The
uncertainty of renewable resources is an important parameter that
has been neglected in this model. Additionally, the proposed model
is non-linear and meta-heuristic method is used to solve it.
Therefore, the global optimum solution cannot be guaranteed in all
circumstances. The proposed stochastic model in Ref. [10] dem-
onstrates that utilizing BES and demand response programs could
decrease the operational cost of distribution grids. In this work, a
2

two-stage stochastic model is presented that the optimal sched-
uling of resources and constraints of grid are evaluated in the upper
and lower sub-problems. The available capacity of portable energy
storages is considered as an uncertainty. According to the presented
results, BES or demand response programs can diminish the
negative impact of uncertain parameter. In Refs. [11,12], the un-
certainty of mobile BESs' location is modeled in the scheduling
problem. It shall be noted that mobile batteries can be charged or
discharged in different locations. In Ref. [11], an integer-based
stochastic model is proposed to determine the transportation
scheme (time and location) of mobile batteries. Therefore, the un-
certainty of batteries’ location can be considered in the optimal
scheduling. Towards minimizing the cost of power imported from
the grid, a day-ahead energy management system is proposed for
mobile BES in Ref. [12]. Additionally, in the proposed model of [12],
the mobile energy storages are used for the voltage control in the
distribution network. Purchasing energy in low price period and
reselling it within high price period is a solution for gaining profit
[13]. A method for generating predictive electricity price signals is
presented in Ref. [13] to aid BES operators in making arbitrage
decisions. In the proposed stochastic model of [13], the low and
high price thresholds are determined for selling and buying energy
in the energy market, respectively. In Ref. [14], the scheduling of



Fig. 1. BES and WPR participation in multiple markets.
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BES in the joint energy and regulation markets is formulated as a
stochastic bi-level optimization problem that the expected profit of
energy storages and social welfare are maximized in the upper and
lower sub-problems, respectively. The optimal solution of the
proposed model determines the day-ahead scheduling, deployed
power in the reserve market, and the balancing market prices. To
solve the proposed problem, the lower sub-problem is replaced by
the Karush-Kuhn-Tucker (KKT) optimality conditions, and the bi-
level problem is converted to a single-level problem. The uncer-
tainty of consumption is evaluated by different scenarios. In other
words, the results are sensitive to the initial assumptions, which are
considered to generate scenarios. In smart grids, the market-
clearing prices are determined by the grid operators, and accord-
ing to the price signals, participants schedule their self-generating
units [15]. The bi-level optimization framework that is presented by
Ref. [15] specifies the market-clearing price and scheduling of BESs.
The proposed upper minimization sub-problem calculates the
clearing price, and the lower maximization sub-problem de-
termines the optimal scheduling of BES. In this work, a possibilistic-
stochastic approach is presented to model the data-based and
human dependent uncertain parameters such as consumption,
generation of photovoltaic panels, wholesale prices and swapping
request. One of the main challenges in the aggregated scheduling of
BESs andWPRs is variations of uncertain parameters such as energy
prices, wind generation [2], deployed power in the regulation
market [16]. The proposed methods for modeling the uncertain
parameters can be categorized as stochastic and deterministic
frameworks [15,17,18]. In the stochastic framework, the behavior of
uncertain parameters is approximated by probabilistic distribution
functions. Therefore, the achieved results depend on the assump-
tions and approximations, which are considered to calculate the
probabilistic distribution functions. In Ref. [19], the operation of
wind and photovoltaic systems with energy storage devices in
terms of a two-stage stochastic programming problem is presented.
This model has two variables, first-stage variables are the optimal
bids and energy flow in the batteries, and second-stage variables
are the energy deviations. Additionally, electricity market price,
wind, and photovoltaic powers are main sources of uncertainties
that is considered in this model. Sometimes due to the lack of data
to reliably select a probabilistic model or incomplete understanding
of the behavior of uncertain parameters, it is not possible to use
stochastic models [20]. In the deterministic or robust framework, a
variation interval is considered for the uncertain parameter, and the
optimal strategy is determined based on the worst-case realization
of uncertain parameters. Therefore, within the variation bound, the
optimal strategy guarantees that the expected profit/cost will not
be less/more than the calculated value. In other words, the optimal
solution is robust against the fluctuations of uncertain parameters
within the variation interval.

In [21], a two-stage robust model is presented for coordination
between BESs and demand response programs to promote the
profit of electricity supplier. An analysis of the profitability strategy
has also been conducted based on the energy storage system's ca-
pacity. In Ref. [22], a robust model is proposed for the scheduling of
BES according to the uncertainties of solar power and energy prices.
In the proposed model, BES is used as the backup resource to
compensate variations of produced power by solar panels. The
production of solar panels and electricity price are two sources of
uncertainty, which are considered in Ref. [22]. These uncertain
parameters are characterized by a controllable polyhedral uncer-
tainty. In Ref. [16], a robust model is proposed for simultaneous
offering of BES in day-ahead energy, spinning reserve, and regula-
tion markets. In this work, market prices as well as energy
deployment in spinning reserve and regulation markets are
considered as the uncertain parameters. This model is linearized by
3

strong duality theorem that reduces the computational complex-
ities. In Ref. [23], the coordinated operational dispatch scheme for
WPR and BES is evaluated. The main advantage of the proposed
dispatch scheme is that it can reduce the impact of wind power
forecast errors while extending the lifetime of BES. The model is
suitable for planning problems, but not for operations. To reduce
the impact of wind power fluctuations by using BES, a new coor-
dination control method is presented in Ref. [24] that determines
optimal set power point of BES based on the variations of wind
generation. However, this model can be used to control the coor-
dinated generation of BES and WPR without considering economic
optimization. The proposed risk-based model [25] for the coordi-
nated operation of WPR and BES, minimizes the power deviation
penalty for the real-time operation while simultaneously maxi-
mizing profit for the real-time bidding. Additionally, the wind un-
certainty is modeled by the stochastic approach. The battery
degradation model developed in Ref. [26] can accurately predict
battery degradation and related costs during battery operation and
cycling.

Literature review demonstrates that less attention has been paid
to the aggregated bidding strategy of BESs and WPRs in the mul-
tiple markets based on the technical constraints of resources and
uncertainties of the market. As shown in Fig. 1, based on the
technical constraints of generating units and forecasts, owners of
BESs and WPRs can submit aggregated energy and reserve bids in
the day-ahead market. The power system operator deploys reserve
power based on the accepted bids, in order to maintain a balance
between generation and consumption. It shall be noted that the
deployed power in the regulation service is an uncertain parameter
that is determined based on the imbalance power of the system in
the real-time. Furthermore, wind power is very volatile, and if the
owners cannot provide the deployed power that is determined by
the power system operator, theywill be penalized. BESs can be used
as a backup resource to compensate the uncertainty of wind power.
The aggregated bidding strategy gives the owner of resources an
opportunity to compensate for variation in wind power through
proper scheduling of BESs. In this work, a robust model is proposed
for the aggregated bidding strategy of BESs and WPRs in the joint
energy and reserve markets. In the presentedmodel, the renewable
resources' owners can sell the generating power to day-ahead,



Fig. 2. Procedure of the proposed scheduling model.
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reserve markets. Moreover, the required energy for BES charging
can be supplied from the day-ahead market. To cover the fluctua-
tions of WPRs, BES is used as the backup resource. Therefore, the
proposed model could demonstrate the value of BES's flexibility to
compensate the uncertainty of WPR in the aggregated bidding
strategy.

To show the effectiveness of BESs, the optimization problem is
decomposed in the day-ahead and real-time planning horizons.
The wind power generation and the deployed power in the real-
time regulation service are considered as uncertainty resources,
and the ROmethod is proposed tomanage the related financial risk.
In the ROmethodology, the uncertain parameters are characterized
by a variation bound, and the optimal scheduling in joint energy
and ancillary service markets is determined based on the worst-
case realizations of prices and wind power. To improve the accu-
racy of results, the model is linearized by the big M theory, and it is
formulated based on the MILP method [26]. Finally, the branch-
and-bound algorithm is addressed to solve the proposed MILP-
based optimization problem. The research gaps, which are
covered in this work are:

- Modeling of technical aspects of BESs and WPRs for aggregated
bidding strategy in the joint energy and reserve markets,

- Evaluating the impacts of uncertainties associated with
deployed power in the regulation service and wind power
generation.

The main contributions of this work can be summarized as
follows:

- In this work, a new aggregated bidding strategy is proposed for
coordinated operation of BESs and WPRs instead of using the
storage as the backup unit of the wind resources. Therefore, the
decision makers are able to reschedule their resource after
acceptance of bids in the joint energy and reserve markets.

- Based on the uncertainties of wind generation and the deployed
power in the regulation service market, a robust model is pre-
sented for the aggregated bidding strategy of BESs and WPRs in
the joint energy and reserve markets. Using the aggregated
bidding model, owners can reduce the financial risk associated
with uncertain parameters in the optimal strategy.

- Based on technical constraints and flexibility of generating units,
this model can determine the optimal participation level of re-
sources in multiple markets. The proposed model can show the
value of BESs' flexibility in reserve and regulation markets. To
improve the accuracy of the results, the risk-based model is
linearized, which increases the model's running speed in real-
time simulations.

Fig. 2 summarizes the procedure of proposed scheduling model.
The rest of the paper is organized as follows: In section 2, the

deterministic linear model for aggregated bidding strategy of BES
and WPR in the multiple markets is presented. In section 3, the
uncertain parameters and the related financial risk are modeled by
RO methodology. To evaluate the performance and effectiveness of
the model, the simulation results are given in section 4. Finally,
conclusions are presented in section 5.
4

2. Deterministic model for aggregated scheduling of BESs and
WPRs

The profit maximization is the main objective of renewable re-
sources’ owner, as a private investor that is shown in Eq. (1):

Max
XT
t¼1

Bt � Ct (1)

where:

B is the income function of owner,
Cis the cost function of owner,
t and T are index and set of hourly time category.

As mentioned before, the generating power of BESs and WPRs
can be sold in the day-ahead energy and reserve markets. More-
over, the required power for the charging BES can be purchased
from the day-ahead market. Within the real-time horizon, the
reserve bids are deployed in the up or down-regulation services.
Therefore, the income function can be formulated by Eq. (2):

Bt ¼
�
pDA
t :PDA;St �pDA

t :PDA;Bt þpRS
t :PRSt

�

þ
0
@XNj

j¼1

DSj:
�
pUR
t;j :P

UR
t;j þpDR

t;j :P
DR
t;j

�1A (2)

where DS is the duration of interval hourly interval that is 5 min for
the regulation service. In (2), the first and second terms represent
the day-ahead and real-time incomes, respectively. The day-ahead
income is calculated based on the net value of trading power in the
energy market and reserve markets. The real-time income is
specified based on the deployed power in the regulation ancillary
service.

According to Eq. (3), the generation cost is calculated based on
the marginal costs of BES and WPR:
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Ct ¼DSj:
XNj

j¼1

0
BBBBBBBB@

XNs

s¼1

0
B@ rDCHs :PDA;DCHt;j;s

þrCHs :PDA;CHt;j;s

1
CA

þ
XNw

w¼1

rw:P
DA
t;j;w

1
CCCCCCCCA

þ DSj:
XNj

j¼1

0
BBBBBBBB@

XNs

s¼1

0
B@ rDCHs :

�
PUR;DCHt;j;s � PDR;DCHt;j;s

�

þrCHs :
�
PDR;CHt;j;s � PUR;CHt;j;s

�
1
CAþ

XNw

w¼1

rw:
�
PURt;j;w � PDRt;j;w

!

1
CCCCCCCCA
; ct2T

(3)

where, rCHs rDCHs , and rw are marginal costs of BES in charging and
discharging modes, and wind resources, respectively. The first and
second terms of Eq. (3) show the day-ahead and real-time costs.
BES can participate in the up-regulation service by increasing/
decreasing discharging/charging power. Similarly, in the down-
regulation service, the discharging/charging power of BES shall be
decreased/increased. Therefore, participation in the down/up-
regulation service in discharging/charging mode decreases the
generation cost of BESs and vice versa.

Equality constraints (4)e(6) shows that the day-ahead bids are
fixed within intra-hourly periods.

PDA;DCHt;j;s ¼ PDA;DCHt;j0;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj; j0 ¼ 1;…;Nj

(4)

PDA;CHt;j;s ¼ PDA;CHt;j0;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj; j0 ¼ 1;…;Nj

(5)

PDAt;j;w ¼ PDAt;j0;w; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj; j0 ¼ 1;…;Nj

(6)

The day-ahead energy and reserve bids, and the real-time
deployed power in the up and down regulation services can be
represented by Eqs. (7)e(11), respectively.

PDA;St ¼
XNs

s¼1

PDA;DCHt;j;s þ
XNw

w¼1

PDAt;j;w; ct2T (7)

PDA;Bt ¼
XNs

s¼1

PDA;CHt;j;s ; ct2T (8)

PRSt ¼
XNs

s¼1

PRS;CHt;j;s þ PRS;DCHt;j;s þ
XNw

w¼1

PRSt;j;w; ct2T (9)

PURt;j ¼
XNs

s¼1

PUR;DCHt;j;s þPUR;CHt;j;s þ
XNw

w¼1

PURt;j;w; ct¼1;…;T ;cj¼1;…;Nj

(10)

PDRt;j ¼
XNs

s¼1

PDR;DCHt;j;s þPDR;CHt;j;s þ
XNw

w¼1

PDRt;j;w; ct¼1;…;T ;cj¼1;…;Nj

(11)
5

According to Eq. (12)e(14), the reserve bids are fixed within the
intra-hourly period.

PRS;CHt;j;s ¼ PRS;CHt;j0;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj; j0 ¼ 1;…;Nj

(12)

PRS;DCHt;j;s ¼ PRS;DCHt;j0;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj; j0 ¼ 1;…;Nj

(13)

PRSt;j;w¼ PRSt;j0;w; ct ¼ 1;…; T;cw ¼ 1;…;Nw;cj; j0 ¼ 1;…;Nj

(14)

In the day-ahead planning interval, PRS is a variable and it is
added as a constraint to the real-time optimization problem.

Moreover, PURt;j and PDRt;j are uncertain parameters, which are speci-
fied by the power system operator. The procedure of modeling
these uncertain parameterswill be presented in the next section. As
shown in Eq. (15) and (16), the deployed power in the up and
down-regulation services shall be less than the offered reserve
capacity:

PURt;j � PRSt ; ct ¼ 1;…; T ;cj ¼ 1;…;Nj (15)

PDRt;j � PRSt ; ct ¼ 1;…; T;cj ¼ 1;…;Nj (16)

One of the main parameters that limits the operation of BES is
the energy capacity. Eq. (17) provides the hourly and intra-hourly
stored energy of BES.

Et;k;s ¼ Et;k�1;s þ
Xk
j¼1

DSj:
�
PDA;CHt;j;s � PDA;DCHt;j;s þ PDR;CHt;j;s � PUR;DCHt;j;s

�
;

ct ¼ 1;…; T;cs ¼ 1;…;Ns;ck ¼ 1;…;Nj

(17)

As seen in Eq. (17), the stored energy depends on the energy
level within the previous intra-hourly interval. Moreover, the index
j is started from 1. To calculate Et;1, the energy level at the previous
period or Et;0 is needed. According to Eq. (18), Et;0 is equal to Et�1;Nj

.
Equality constraint Eq. (19) shows that within the operation period,
the net value of charged and discharged power is zero.

Et;0;s ¼ Et�1;Nj;s; ct ¼ 1;…; T;cs ¼ 1;…;Ns (18)

Eini;s¼ ET;Nj;s; cs ¼ 1;…;Ns (19)

The main technical limitations of BESs and WPRs are capacity
and ramp-rate constraints, which are represented as follows:

Capacity constraint: The capacity constraint contains the power
capacity of BES in day-ahead planning (Eq. (20)e(25)), the deployed
power of BES in regulation service (Eq. (26)e(31)), the energy ca-
pacity in the real-time (Eq. (32)), the capacity of WPR in the day-
ahead planning (Eq. (33)e(36)), the deployed power of WPR in
the regulation service (Eq. (37) and (38)). As mentioned before, that

the wind generation capacity (PRT ) is an uncertain parameter.
Therefore, in the day-ahead horizon, it is considered as a parameter
that is specified in real-time planning.

Pmin;CH
s :at;j;s� PDA;CHt;j;s � Pmax;CH

s :at;j;s; ct ¼ 1;…; T ;

cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(20)
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0� PRS;CHt;j;s � Pmax;CH
s :at;j;s � PDA;CHt;j;s ; ct ¼ 1;…; T ;

cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(21)

PDA;CHt;j;s þ PRS;CHt;j;s � Pmax;CH
s :at;j;s; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;

cj ¼ 1;…;Nj

(22)

Pmin;CH
s :at;j;s � PDA;CHt;j;s � PRS;CHt;j;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj

¼ 1;…;Nj

(23)

Pmin;DCH
s :bt;j;s � PDA;DCHt;j;s � Pmax;DCH

s :bt;j;s; ct ¼ 1;…; T ;cs

¼ 1;…;Ns;cj ¼ 1;…;Nj

(24)

0� PRS;DCHt;j;s � Pmax;DCH
s :bt;j;s � PDA;DCHt;j;s ; ct ¼ 1;…; T;cs

¼ 1;…;Ns;cj ¼ 1;…;Nj (25)

0� PUR;CHt;j;s � PRS;CHt;j;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(26)

0� PDR;CHt;j;s � PRS;CHt;j;s ; ct ¼ 1;…; T;cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(27)

0� PUR;DCHt;j;s � PRS;DCHt;j;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj

¼ 1;…;Nj (28)

0� PDR;DCHt;j;s � PRS;DCHt;j;s ; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj

¼ 1;…;Nj (29)

PDA;DCHt;j;s þ PRS;DCHt;j;s � Pmax;DCH
s :bt;j;s; ct ¼ 1;…; T ;cs

¼ 1;…;Ns;cj ¼ 1;…;Nj (30)

Pmin;DCH
s :bt;j;s � PDA;DCHt;j;s � PRS;DCHt;j;s ; ct ¼ 1;…; T ;cs

¼ 1;…;Ns;cj ¼ 1;…;Nj (31)

Emin
s :

�
at;j;sþ bt;j;s

�� Et;j;s � Emax
s :

�
at;j;s þ bt;j;s

�
; ct

¼ 1;…; T ;cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(32)

0� PDAt;j;w � PRTt;j;w:ut;j;w; ct ¼ 1;…; T;cw ¼ 1;…;Nw;cj

¼ 1;…;Nj (33)

0� PRSt;j;w � PRTt;j;w:ut;j;w � PDAt;j;w; ct ¼ 1;…; T ;cw ¼ 1;…;Nw;cj

¼ 1;…;Nj

(34)
6

PDAt;j;wþ PRSt;j;w � PRTt;j;w:ut;j;w; ct ¼ 1;…; T ;cw ¼ 1;…;Nw;cj

¼ 1;…;Nj

(35)

0� PDAt;j;w � PRSt;j;w; ct ¼ 1;…; T;cw ¼ 1;…;Nw;cj ¼ 1;…;Nj

(36)

0� PURt;j;w � PRSt;j;w; ct ¼ 1;…; T ;cw ¼ 1;…;Nw;cj ¼ 1;…;Nj

(37)

0� PDRt;j;w � PRSt;j;w; ct ¼ 1;…; T ;cw ¼ 1;…;Nw;cj ¼ 1;…;Nj

(38)

Decision variables ut;j;w;at;j;s; bt;j;s are day-ahead planning bi-
nary variables that demonstrate the commitment status of WPRs,
and BESs in the charging and discharging modes, respectively.
Within the intra-hourly intervals, the commitment status of BESs
and WPRs cannot be changed that is shown by Eq. (39)e(41).
Additionally, Eq. (42) prevents simultaneous charging and dis-
charging in BESs.

ut;j;w ¼ut;j0;w; ct ¼ 1;…; T ;cw ¼ 1;…;Nw;cj; j0 ¼ 1;…;Nj

(39)

at;j;s¼at;j0;s; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj; j0 ¼ 1;…;Nj

(40)

bt;j;s ¼ bt;j0;s; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj; j0 ¼ 1;…;Nj

(41)

0�at;j;s þ bt;j;s � 1; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(42)

Ramp-rate constraint: For the safe operation of BESs and WPRs,
the rate of changing power shall be within the permissible in-
tervals. According to Eq. (26)e(29) and Eq. (37) and (38), the
deployed power in the real-time horizon is less than the offered
capacities. In other words, the satisfaction of ramp-rate constraint
in the day-ahead horizon guarantees the safe operation of re-
sources in the real-time horizon. The ramp-rate constraints of BESs
and WPRs in the day-ahead planning can be represented by Eq.
(43)e(48) and Eq. (49)e(51), respectively.

�Rs � PDA;CHt;j;s � PDA;CHt;j�1;s � Rs; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj

¼ 1;…;Nj

(43)

�Rs � PDA;DCHt;j;s � PDA;DCHt;j�1;s � Rs; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj

¼ 1;…;Nj

(44)

PRS;CHt;j;s þ PRS;CHt;j�1;s � Rs; ct ¼ 1;…; T;cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(45)
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PRS;DCHt;j;s þ PRS;DCHt;j�1;s � Rs; ct ¼ 1;…; T ;cs ¼ 1;…;Ns;cj

¼ 1;…;Nj (46)

�Rs �
�
PDA;CHt;j;s � PDA;CHt;j�1;s

�
þ
�
PRS;CHt;j;s þ PRS;CHt;j�1;s

�
� Rs; ct

¼ 1;…; T ;cs ¼ 1;…;Ns;cj ¼ 1;…;Nj (47)

�Rs �
�
PDA;DCHt;j;s � PDA;DCHt;j�1;s

�
þ
�
PRS;DCHt;j;s þ PRS;DCHt;j�1;s

�
� Rs; ct

¼ 1;…; T ;cs ¼ 1;…;Ns;cj ¼ 1;…;Nj

(48)

�Rw � PDAt;j;w � PDAt;j�1;w � Rw; ct ¼ 1;…; T;cw ¼ 1;…;Nw;cj

¼ 1;…;Nj

(49)

PRSt;j;w þ PRSt;j�1;w � Rw; ct ¼ 1;…; T;cw ¼ 1;…;Nw;cj

¼ 1;…;Nj (50)

�Rw �
�
PDAt;j;w � PDAt;j�1;w

�
þ
�
PRSt;j;wþ PRSt;j�1;w

�
� Rw; ct

¼ 1;…; T ;cw ¼ 1;…;Nw;cj ¼ 1;…;Nj (51)

Similar to the energy level of BES Eq. (17), the ramping
constraint depends on the output power of generating unit within
the previous intra-hourly interval. To calculate Pt;0, the equality
constraints Eq. (52)e(57) are added to the problem:

PDA;DCHt;0;s ¼ PDA;DCHt�1;Nj;s
; ct ¼ 1;…; T ;cs ¼ 1;…;Ns (52)
Max
DA: PDA;DCH

t;j;s ;PDA;CH
t;j;s ;PRS;CH

t;j;s ;PRS;DCH
t;j;s ;

PRS
t;j;w;ut;j;w;at;j;s;bt;j;s

RT : PUR;DCH
t;j;s ;PUR;CH

t;j;s ;PUR
t;j;w;P

DR;DCH
t;j;s ;

PDR;CH
t;j;s ;PDR;DCH

t;j;w ;PSP
t;j;w;P

UR
t;j ;P

DR
t;j P

RT
t;j;w

; ct;cj;cs;cw

PT
t¼1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0
BBBBBBBBBBBBBBB@

pDA
t :

 XNs

s¼1

PDA;DCHt;j;s � PDA;CHt;j;s þ
XNw

w¼1

P

þpRS
t :

 XNs

s¼1

PRS;CHt;j;s þ PRS;DCHt;j;s þ
XNw

w¼1

�
XNs

s¼1

rDCHs :PDA;DCHt;j;s þ rCHs :PDA;CHt;j;s �

XNj

j¼1

DSj:

0
BBBBBBBBBBBBBBB@

pUR
t;j :

 XNs

s¼1

PUR;DCHt;j;s þ PUR;CHt;j;s

þpDR
t;j :

 XNs

s¼1

PDR;DCHt;j;s þ PDR;Ct;j;s

�
XNs

s¼1

rDCHs :PUR;DCHt;j;s þ rCHs :P

s:t: : DA Constraints : Eq:ð4Þ � ð6Þ; ð12Þ � ð13Þ; ð20Þ � ð25Þ; ð33
RT Constraints : Eq:ð15Þ � ð16Þ; ð18Þ � ð19Þ; ð26Þ � ð32Þ; ð37Þ
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PDA;CHt;0;s ¼ PDA;CHt�1;Nj;s
; ct ¼ 1;…; T ;cs ¼ 1;…;Ns (53)

PDAt;0;w ¼ PDAt�1;Nj;w; ct ¼ 1;…; T;cw ¼ 1;…;Nw (54)

PRS;CHt;0;s ¼ PRS;CHt�1;Nj;s
; ct ¼ 1;…; T ;cs ¼ 1;…;Ns (55)

PRS;DCHt;0;s ¼ PRS;DCHt�1;Nj;s
; ct ¼ 1;…; T ;cs ¼ 1;…;Ns (56)

PRSt;0;w ¼ PRSt;Nj;w; ct ¼ 1;…; T;cw ¼ 1;…;Nw (57)

Spillage power: In real-time planning, to prevent the injection of
extra power byWPRs to the grid, and for the safe operation of these
resources, the spilled power is considered that is formulated by Eq.
(58). According to Eq. (59) the spilled power shall be less than the
real-time realization of wind power.

PSPt;j;w¼ PRTt;j;w �
�
PDAt;j;w þ PURt;j;w � PDRt;j;w

�
; ct ¼ 1;…; T ;cj

¼ 1;…;Nj;cw ¼ 1;…;Nw (58)

0� PSPt;j;w � PRTt;j;w:ut;j;w; ct ¼ 1;…; T ;cj ¼ 1;…;Nj;cw

¼ 1;…;Nw (59)

The spilled power of WPR is the difference between the reali-
zation of wind power and the scheduled power of WPR, and its
maximumvalue is limited to PRT that is an uncertain parameter. The
procedure of linearization is provided in Appendix A.

Accordingly, the objective function can be formulated as Eq.
(60), that the first and second terms represent the maximum day-
ahead and real-time profits.
DA
t;j;w

!

PRSt;j;w
�

XNw

w¼1

rw:P
DA
t;j;w

1
CCCCCCCCCCCCCCCA

þ

þ
XNw

w¼1

PURt;j;w

!

H þ
XNw

w¼1

PDRt;j;w

!

DR;CH
t;j;s þ

XNw

w¼1

rw:P
UR
t;j;w

1
CCCCCCCCCCCCCCCA

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Þ � ð36Þ; ð39Þ � ð57Þ:
� ð38Þ; ð58Þ � ð59Þ

(60)



M. Khojasteh, P. Faria and Z. Vale Energy 238 (2022) 121735
As mentioned before, in this work the deployed power in the
regulation services and available wind power are considered as
uncertain resources. The procedure of modeling these parameters
is presented in section 3.
3. Robust scheduling model

To model uncertain parameters, the variation intervals of
deployed power in the up and down-regulation services, and real-
time realization of wind power are represented by Eq. (61)e(63),
respectively.

�DPURt;j � PURt;j � P
UR
t;j � DPURt;j ; ct ¼ 1;…; T ;cj ¼ 1;…;Nj (61)
Po
w

er
 (M

W
)

T

Fig. 3. Expected values of e
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Fig. 4. Price data of January 24, 2016 of Ne
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�DPDRt;j � PDRt;j � P
DR
t;j � DPDRt;j ; ct ¼ 1;…; T;cj ¼ 1;…;Nj

(62)

�DPRTt;j;w � PRTt;j;w � P
RT
t;j;w � DPRTt;j;w; ct ¼ 1;…; T;cj ¼ 1;…;Nj

(63)

In the RO framework, the optimal strategy is determined based
on the worst-case realizations of uncertain parameters. According
to Eq. (64), the worst-case of a maximization objective function can
be rewritten as a Max-Min optimization problem.

Max
ime

xtracted wind power.

ime

w York electricity market-west region.
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PUR;DCHt;j;s ; PUR;CHt;j;s ; PURt;j;w; P
DR;DCH
t;j;s ; P

DR;CH
t;j;s ;PDR;DCH

t;j;w ;PSP
t;j;w Min

PUR
t;j ;P

DR
t;j ;P

RT
t;j;w

XT
t¼1

�
XNj

j¼1

DSj:

0
BBBBBBBBBBBB@

pUR
t;j :

 XNs

s¼1

PUR;DCHt;j;s þ PUR;CHt;j;s þ
XNw

w¼1

PURt;j;w

!

þpDR
t;j :

 XNs

s¼1

PDR;DCHt;j;s þ PDR;CHt;j;s þ
XNw

w¼1

PDRt;j;w

!

�
XNs

s¼1

rDCHs :PUR;DCHt;j;s þ rCHs :PDR;CHt;j;s þ
XNw

w¼1

rw:P
UR
t;j;w

1
CCCCCCCCCCCCA
(64)

In Eq. (64), the inner optimization problem specifies the worst-
case realization of uncertain parameters, and the outer optimiza-
tion problem determines the variables of the real-time scheduling
problem in a way that maximizes the worst-case. Eq. (65) shows
that the minimization problem can be replaced by the auxiliary
variable G [27]:
Max
DA: PDA;DCH

t;j;s ;PDA;CH
t;j;s ;PRS;CH

t;j;s ;PRS;DCH
t;j;s ;

PRS
t;j;w;ut;j;w;at;j;s;bt;j;s

RT : PUR;DCH
t;j;s ;PUR;CH

t;j;s ;PUR
t;j;w;P

DR;DCH
t;j;s ;

PDR;CH
t;j;s ;PDR;DCH

t;j;w ;PSP
t;j;w;P

UR
t;j ;P

DR
t;j ;P

RT
t;j;w;G

; ct;cj;cs;cw

PT
t¼1

0
BBBBBBBBBBBBB@

pDA
t :

 XNs

s¼1

PDA;DCHt;j;s � PDA;CHt;j;s þ
XNw

w¼1

PDAt;j;w

!

þpRS
t :

 XNs

s¼1

PRS;CHt;j;s þ PRS;DCHt;j;s þ
XNw

w¼1

PRSt;j;w
�

�
XNs

s¼1

rDCHs :PDA;DCHt;j;s þ rCHs :PDA;CHt;j;s �
XNw

w¼1

rw:P
DA
t;j;w

1
CCCCCCCCCCCCCA

þ G

s:t: :

G �
XNj

j¼1

DSj:

0
BBBBBBBBBBBBB@

pUR
t;j :

 XNs

s¼1

PUR;DCHt;j;s þ PUR;CHt;j;s þ
XNw

w¼1

PURt;j;w

!

þpDR
t;j :

 XNs

s¼1

PDR;DCHt;j;s þ PDR;CHt;j;s þ
XNw

w¼1

PDRt;j;w

!

�
XNs

s¼1

rDCHs :PUR;DCHt;j;s þ rCHs :PDR;CHt;j;s þ
XNw

w¼1

rw:P
UR
t;j;w

1
CCCCCCCCCCCCCA

DA Constraints : Eq:ð4Þ � ð6Þ; ð12Þ � ð13Þ; ð20Þ � ð25Þ; ð33Þ � ð36Þ; ð39Þ � ð57Þ:
RT Constraints : Eq:ð15Þ � ð16Þ; ð18Þ � ð19Þ; ð26Þ � ð32Þ; ð37Þ � ð38Þ; ð58Þ � ð59Þ; ð61Þ � ð63Þ

(65)
In Eq. (65), the maximum value of the continuous auxiliary
variable G represents the lower bound of the real-time problem.
The presented optimization problem is a MILP-based problem,
which is solved by the branch and bound method.

4. Simulation results

In this section, the proposed model is tested on a system with
one 3 MW WPR and 2 � 30 MW BESs. The initial energy, the
minimum and maximum capacities of BESs are 15, 0, and 30 MWh,
9

respectively [16]. The expected extractable wind power is repre-
sented in Fig. 3. Moreover, the price data of January 24, 2016 of New
York electricity market-west region is used in this section [16]. The
day-ahead, real-time, reserve and regulation prices are presented
in Fig. 4.

To evaluate the performance of the proposed model, different
case studies and scenarios are proposed in this section, which are
represented in Table 1.
4.1. Base case study for validating

Case I: In this case, only the day-ahead energy market is
considered for energy trading, and the reserve market and uncer-
tain parameters are neglected. Moreover, the ramp rates of BESs in
charging and discharging modes are 5 MW/h (BES#1) and 3 MW/h
(BES#2) [28], and the ramp rate of WPR is 3 MW/h [29]. Fig. 5
shows the optimal generation and energy level of BESs and WPR.
The charging and discharging powers of BESs are demonstrated by
the negative and positive values of power, respectively. Evidently,
BES has to purchase energy to charge batteries within the low-price
periods and resell it in discharging mode within the high-price
periods. Therefore, the profit of BESs depends on the difference
between energy prices in peak and off-peak periods. The marginal
costs of BESs and WPR are 1 and 3 $/MW, respectively. Moreover,
identical marginal costs are considered for charging and discharg-
ing. The profits of BES#1, BES#2, WPR are 206.10, 123.66, and
1690.20 $, respectively. By comparing BES#1 and BES#2, it is
evident that an increase in ramp rate increases profits for the
resource owner. Moreover, comparing the presented results with
[16] shows that the profit of BES is highly dependent on the ramp-
rate constraint and considering this limitation reduces the profit of
BES from 1622 $ to 206.10 $.



Table 1
Case studies and scenarios.

Case
study

Scenario Energy
market

Reserve
market

Uncertain
parameters

Description

I ✓ 7 7

II A ✓ ✓ 7 Reserve bids are deployed in the down-regulation.
B ✓ ✓ 7 Reserve bids are deployed in the up-regulation.
C ✓ ✓ 7 Charging and discharging bids are deployed in the down and up-regulation services,

respectively.
III A ✓ ✓ ✓ The variation intervals of wind power and deployed power are 10 %.

B ✓ ✓ ✓ The variation intervals of wind power and deployed power are 50 %.
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Fig. 5. State of charge and power of resources in Case I.
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Fig. 6. Day-ahead bids in Case II-Scenario A.
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4.2. Case studies for evaluating the impact of uncertainty
parameters

Case II: In the second case study, the day-ahead and reserve
markets are considered as available marketplaces for the trading of
energy. Additionally, the impacts of uncertain parameters are
10
neglected in this case study. For the regulation service, three sce-
narios are considered, which are:

- Scenario A: All the reserve bids are deployed in the down-
regulation service.
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- Scenario B: All the reserve bids are deployed in the up-
regulation service.

- Scenario C: Charging and discharging bids are deployed in the
down and up-regulation services, respectively.

Figs. 6 and 7 show the day-ahead and reserve bids in Case II-
Scenario A, respectively. In this case, BESs prefer to purchase the
required power for charging from the reserve case study and resell
it in the day-ahead market. In the down-regulation service, BES
shall reduce the discharged power. In other words, BESs purchase
energy from the reserve market but they cannot inject it into the
grid in the discharging mode that leads to full charging of storages
and reduces their participation levels in the reserve market.
Therefore, BESs prefer to sell their energy in the day-ahead market.
Additionally, WPRs shall spill their generating power to be able to
participate in the down-regulation service. Therefore, they just
receive the capacity price that is less than the day-ahead price.
Therefore, the WPRs prefer to sell energy in the day-ahead market.

As mentioned before, BESs can participate in the up-regulation
service by increasing/decreasing the discharging/charging power.
Therefore, participation of BESs in the up-regulation service in the
discharging mode could decrease the available energy that can be
sold to the energy market. In this scenario, the required energy for
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Fig. 7. State of charge and reserv
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Fig. 8. Day-ahead bids in

11
charging of storages is purchased from the day-ahead market and
BESs resell the stored energy to the reserve market in the dis-
charging mode. The day-ahead and reserve bids in Case II-Scenario
B are presented in Figs. 8 and 9, respectively.

Figs. 10 and 11 show day-ahead and reserve bids in Case II-
Scenario C. Evidently, considering both up and down-regulation
service improves BESs’ role in the reserve market. Simulation re-
sults show that the profit of WPRs in case of participation in the
day-ahead, down and up-regulation services are 1690, 1530, and
2812.64 $, respectively. However, there is no guarantee that all bids
ofWPRs are deployed in the up-regulation service. Therefore,WPRs
prefer to submit their bids in the day-ahead market that is more
reliable.

The profits of different scenarios in the day-ahead and real-time
planning horizon are tabulated in Table 2. According to the pre-
sented results and in Scenario B, BESs have to purchase power from
the day-ahead market. Therefore, the net profit of Scenario B in the
day-ahead planning is negative. Moreover, the total profit shows
that considering the reserve market and both up and down-
regulation services, increase the profit of BESs, significantly.

Case III: In this case, the impacts of uncertain parameters
(deployed power in the regulation service and available wind po-
wer) are evaluated by two scenarios:
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Fig. 9. State of charge and reserve bids in Case II-Scenario B.
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Fig. 10. Day-ahead bids in Case II-Scenario C.
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Fig. 11. State of charge and reserve bids in Case II-Scenario C.
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- Scenario A: The variation intervals of wind power and deployed
power are 10 %.
12
- Scenario B: The variation intervals of wind power and deployed
power are 50 %.



Table 2
Profit of different scenarios of Case II ($).

Day-ahead Real-time Total

BES#1 BES#2 WPR BES#1 BES#2 WPR

Scenario A 1281.25 966.24 1690.20 247.75 201.81 0 4387.25
Scenario B �662.55 �527.97 631.73 1427.47 1089.30 2180.92 4138.90
Scenario C 975.30 585.21 1690.23 2578.39 1547.03 0 7376.21
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Fig. 12. Day-ahead bids in Case III-Scenario A.
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Fig. 13. State of charge and reserve bids in Case III-Scenario A.
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Considering the uncertainty of deployed power in the regulation
service reduces the participation level of BESs in the reserve mar-
ket. As mentioned before, in RO methodology the optimal strategy
is specified based on the worst-case realization of uncertain pa-
rameters within the variation interval. Therefore, the generating
power of WPR in the day-ahead market is specified based on the
minimum generating power. It shall be noted that in this proced-
ure, the determined strategy is the optimal solution of worst-case
realization of uncertain parameters and for other realizations, it is
a feasible solution. Figs. 12 and 13 show day-ahead and reserve bids
in Case III- Scenario A, respectively. The length of the variation
interval is specified based on the risk preferences of decision-
makers. Moreover, increasing the length of the variation interval
covers more realizations of uncertain parameters.
13
The impact of increasing the variation interval of uncertain pa-
rameters is evaluated in Scenario B. The day-ahead and reserve bids
in Case III- Scenario B are shown in Figs. 14 and 15, respectively.
Comparing Figs. 12 and 14 shows that increasing the variation in-
terval of deployed power in the regulation service, increases the
traded power of BESs in the day-ahead market. Moreover, in this
scenario, BESs prefer to buy energy from the day-ahead market and
resell it in the reserve market.

The optimal profits in Scenarios A and B of Case III are provided
in Table 3. The length of variation interval depends on the risk
preferences of decision-makers. Risk-averse decision-makers
choose the greater variation interval to hedge the financial risk.
On the contrary, risk-taker decision-makers choose the smaller
variation interval in the hope that obtain the higher profit.
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Fig. 14. Day-ahead bids in Case III-Scenario B.
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Fig. 15. State of charge and reserve bids in Case III-Scenario B.

Table 3
Profit of difference scenarios of Case III ($).

Day-ahead Real-time Total

BES#1 BES#2 WPR BES#1 BES#2 WPR

Scenario A 783.40 470.04 1521.21 2198.22 1318.93 0 6291.80
Scenario B 594.65 397.53 845.11 1195.91 569.21 0 3602.41
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According to the presented results, increasing the uncertainty in-
terval reduces the optimal profit and vice versa. Therefore, the
optimal profit of risk-taker owners is higher than the risk-averse
ones.
5. Conclusions

In this paper, a robust model is proposed for the aggregated
bidding strategy of WPRs and BESs in the joint energy and reserve
markets. In the proposed model, the real-time realization of wind
power and the deployed power in the regulation services are
14
considered as uncertain parameters. The model is formulated as a
MILP optimization problem and the branch-and-cut method is
addressed to solve it. Simulation results show that participation of
BES in the reserve and regulation service can increase the expected
profit, significantly. According to our case studies, participating in
the joint energy and reserve markets increases owners' profit from
1622 $ to 4138.90 $ (in the worst case)/7376.21 $ (in the best case).
Comparing the presented results with [16] shows that the profit of
BES is highly dependent on the ramp-rate constraint. Moreover,
increasing the ramp rate leads to a higher profit for the owner of
resources. According to the presented results, participation of BESs
in the up-regulation service in the discharging mode could
decrease the available energy that can be sold to the energymarket.
For BESs, the best situation is that discharging and charging re-
serves are deployed in the up and down regulation services,
respectively. However, the risk of deployed power is a challenge for
decision-makers. Therefore, the deployed power in the regulation
service and the wind generation are modeled by the RO method-
ology. Considering the uncertainty of deployed power in the
regulation service reduces the participation level of BESs in the
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reserve market. In the RO framework, the optimal solution is
determined based on the worst-case realization of uncertainty
parameters. Therefore, the most reliable market for the participa-
tion of WPR is the day-ahead market. By increasing the uncertainty
of these parameters, the owners prefer to purchase the required
energy for charging storage from the day-aheadmarket and resell it
in the regulation service. The length of the variation interval is
specified based on the risk preferences of decision-makers. Simu-
lation results demonstrate that increasing the variation interval of
wind generation from 10 % to 50 % decreases the expected profit
from 6291.80 $ to 3602.41 $.

As future work, the authors are going to model the impact of
BESs’ lifetime in the aggregated bidding strategy of renewable
resources.
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Appendix A

Eq. (59) can be replaced by Eq. (A.1), as follow:

0� PSPt;j;w � At;j;w; ct ¼ 1;…; T;cj ¼ 1;…;Nj;cw ¼ 1;…;Nw

(A.1)

The linearization auxiliary variable or A is modeled as follows:

At;j;w �0; ct ¼ 1;…; T ;cj ¼ 1;…;Nj;cw ¼ 1;…;Nw (A.2)

At;j;w �M:ut;j;w; ct ¼ 1;…; T;cj ¼ 1;…;Nj;cw ¼ 1;…;Nw

(A.3)

At;j;w �PRTt;j;w; ct ¼ 1;…; T ;cj ¼ 1;…;Nj;cw ¼ 1;…;Nw

(A.4)

At;j;w �PRTt;j;w �M:
�
1�ut;j;w

�
; ct ¼ 1;…; T ;cj ¼ 1;…;Nj;cw

¼ 1;…;Nw

(A.5)

where, M is the auxiliary big value.
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