
Reliability of Replicated Distributed Control
Systems Applications Based on IEC 61499

Adriano A. Santos1,2(B) , António Ferreira da Silva1,2 , António Magalhães3 ,
and Mário de Sousa3

1 CIDEM, School of Engineering of Porto, Polytechnic of Porto, 4249-015 Porto, Portugal
{ads,afs}@isep.ipp.pt

2 INEGI - Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial,
Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal

3 Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
{apmag,msousa}@fe.up.pt

Abstract. Theuse of industrial anddomestic equipment is increasingly dependent
on computerized control systems. This evolution awakens in the users the feeling
of reliability of the equipment, which is not always achieved. However, system
designers implement fault-tolerance methodologies and attributes to eliminate
faults or any error in the system.

Industrially, the increase in system reliability is achieved by the redundancy
of control systems based on the replication of conventional and centralized pro-
grammable logic controllers. In distributed systems, reliability is achieved by
replicating and distributing the most critical elements, leaving a single copy of
the remaining components. On the other hand, given the nature of the distributed
systems, it will also be necessary to ensure that the data set received by each of the
replicas has the same order. Thus, any change in the order and data set receivedwill
result in different results, in each of the replicas, which may manifest in erroneous
behavior.

In this paper, the interactions and the erroneous behavior of the replicas are
explained, depending on the data set received, in a fault tolerant distributed sys-
tem. Its tendency, behavior and possible influences on reliability are presented,
considering the failure rate and availability based on the mean time to failure.

Keywords: Dependability · Distributed systems · Event-base control ·
Fault-tolerance · IEC 61499 · Industrial control · Real-time · Reliability ·
Replication

1 Introduction

Technological developments that have occurred in recent years have led to the prolif-
eration of computerized systems both at the industrial level and for consumption and
domestic use. At the industrial level, the technology used is based on a control sys-
tem centralized in Programmable Logical Controllers (PLCs), sometimes redundant to
ensure the reliability of the systems, running in a single machine. On the other hand,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Machado et al. (Eds.): icieng 2021, LNME, pp. 301–312, 2022.
https://doi.org/10.1007/978-3-030-79168-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79168-1_28&domain=pdf
http://orcid.org/0000-0001-8991-6768
http://orcid.org/0000-0003-2067-7601
http://orcid.org/0000-0003-3293-6500
http://orcid.org/0000-0001-7200-1705
https://doi.org/10.1007/978-3-030-79168-1_28

302 A. A. Santos et al.

the use of computerized systems at the domestic and consumer level is more discreet.
Embedded systems are present in our daily lives in the most diverse devices and with
more visibility in traditional computers for daily use.

This proliferation makes us more and more dependent on computerized systems,
becoming us more vulnerable to the occurrence of failures both in terms of the control
of domestic systems and in terms of industrial systems. Failures in the control system of
a reactor at a nuclear power plant will have more serious consequences than in domestic
systems. The reactor, when subject to a failure, can put thousands of people in danger
and seriously affect the ecosystem. On the other hand, a failure an embedded system in a
washing machine or toaster, keeping the equipment energized, can also, at a lower level,
put people and property at risk. Obviously, if a fire occurs due to system failure, the
housing in question and the contiguous ones can be in great danger. From the point of
viewof the reliability of a computer system, the underlying idea is that the systembehaves
according to its specification, in view of the numerous problems that can occur (natural
accidents, software and hardware errors, among others). In fact, what we expect from
computer systems is that they will work correctly to guarantee integrity and availability.

Industrially, the process control is based on centralized PLCs, generally programmed
according to the languages standardized in IEC 61131 [1]. On the other hand, with the
proliferation of communication networks in the industrial domain, PLCs were intercon-
nected with each other resulting in distributed control applications. However, according
to the semantics of IEC 61131, programming languages and their execution are not pre-
sented as a good practice for the requirements used in flexible automation and distributed
control applications. It was mainly for this reason that the International Electrotechnical
Commission (IEC) developed the standard IEC 61499 [2] to facilitate the development
of Distributed Industrial Process Measurement and Control Systems (DIPMCS). This
standard proposes the use of Function Blocks (FBs) as a basis for the development of
reusable software modules for the control system. Each function block is a functional
software unit that encapsulates local data and algorithmic behavior within an event/data
interface where operations, within a function block, are controlled by an event-driven
state machine.

Given the nature of distributed control applications, many new problems must be
considered. Therefore, when developing a distributed application, the designer must be
aware of the possibility of partial failures, that is, the possibility of some device stopping
its execution and the others continue with their normal processing. So, when developing
IEC 61499 applications with high dependability requirements, the implementation of
solutions to tolerate these partial failures should be considered. The increase in the
reliability can be obtained by masking the failed devices, introducing fault-tolerance in
the application architecture.

The purpose of this text focuses on the presentation and definition of some concepts
related to the dependability attributes of computer systems. In this way, it is also intended
to expose some of the classicmechanisms that allow to solve the dependability problems,
namely the faut-tolerance techniques. The analysis presented in the next sections are an
adaptation of traditional approaches to partial fault-tolerance. Some of the problems
associated with the reliability of replicated systems will be explained considering the
various possibilities of communication between the devices.

Reliability of Replicated Distributed Control Systems Applications 303

2 Dependability

Replication iswidely used in distributed systems as a Fault-Tolerance (FT)mechanism to
maintain the desired availability and reliability. Among other reasons for its use, the fact
that replication fits naturally in the topology of distributed systems stands out. So, it is
for these reasons that fault-tolerance techniques are generally used to satisfy dependabil-
ity requirements. Dependability of systems engineering – computational, mechanical,
physical, and human systems – must be expressed by a relatively small number of fail-
ures. On the other hand, it is necessary to consider that the acceptable levels of failure
of the systems vary according to their measured specifications, in percentage, according
to theMean Time Between Failures (MTBF) and the Availability (A).

Dependability systems has been defined by [3] as “…the trustworthiness of a com-
puting systemwhich allows reliance to be justifiably placed on the service it delivers…”.
Another similar definition is given by Avizienis et al. [4] “… the ability to deliver ser-
vice that can justifiably be trusted …”. However, the main idea of dependable systems
is that they must be able to ensure that the service provided meets the specifications
and, as such, does not fail. This means that the use of dependable systems is always
desirable, as they are “trustworthy” [5]. The perception of dependability can be very
generic and understood in different ways by different people, however this must inte-
grate the following attributes: Availability, Reliability, Safety, Integrity, Maintainability,
and Confidentiality.

Availability is used to measure the probability that a system or component will
become operational and perform its functionality after a failure. Mathematically, the
“availability is a measure of the fraction of time that the item is in operating condition
in relation to total or calendar time.” [6]. More formally, availability can be defined as
the “… proportion of time a system is in a functioning condition” [7]. The availability
of the system at time t is defined by A(t) which represents the fraction of time that the
system is available. It is also called inherent availability or steady-state availability and
can be expressed at time t by:

A(t) = u

u + d
(1)

where u is the mean uptime and d is the mean downtime of the system.
The next attribute, reliability, is define as “… the ability of an item (a product or a

system) to operate under designated operating conditions for a designated period of time
or number of cycles.” [6]. More formally, reliability can be defined as “… the ability of a
system to function under stated time and conditions” [7]. So, reliability is the probability
that the system is operating normally in the range [t0, t], therefore, reliability at time t
is denoted as R(t). On the other hand, the abnormal operating condition of the system at
[t0, t] is defined as unreliability degree at time t and it denoted as F(t). The relationship
between reliability and unreliability can be expressed at time t by:

R(t) = 1 − F(t) (2)

Safety is defined as “the nature of a system not to endanger personnel and equipment.”
[7], however Avizienis et al. [4] define safety considering the environment as the “…

304 A. A. Santos et al.

absence of catastrophic consequences on the user(s) and the environment”. Note that
availability and reliability are related, however they are not synonymous with security.
The availability or unavailability and the reliability or unreliability of a system does
not translate into security. Therefore, high reliability results in high security, but high
security does not necessarily result in high reliability [7]. Safety is denoted as S(t).

Maintainability is defined as “the ability of a system to recover its required function”
[7]. It is the ability of the system to be successfully repaired under certain conditions.
The degree maintainability is denoted asM(t). Integrity is the non-occurrence of undue
changes to the information in the systems, they cannot bemodifiedwithout authorization,
while confidentiality is defined as the absence of unauthorized disclosure of information,
that is, the information is not disclosed without authorization.

From the above, we can say that these attributes are interconnected, so, a product
or system will be considered dependable if it has all the attributes. On the other hand,
we must also consider that the degree of dependability for a system is not a binary
phenomenon but is based on the degradation of these attributes and the limits that are
considered acceptable [5]. It is a combinationof availability, confidentiality, and integrity.

2.1 Relationship Between Fault, Error, and Failure

According to the above, a service will only be performed correctly when it meets the
conditions mentioned in the specifications. The existence of an error (see Fig. 1), is due
to the occurrence of a component failure caused by physical phenomena of mechanical
or electrical origin, internal or external. This can spread, manifesting itself in the degra-
dation of the service, such as, for example, limiting services, decreasing speed of service
provision, etc., causing a failure. In software, faults resulting from wrong programming
will translate into the existence of a latent fault that, when activated, called the wrong
instructions or the use of the wrong data. This event will give rise to an error that in turn
will propagate to produce a failure [8].

activation
fault error failure

propagation causation
fault

Fig. 1. Error propagation chain [4].

A fault is a static feature of a system and is the cause of an error. The error is an
incorrect internal state of the system that can lead to failure. A failure is considered as
the occurrence of an unexpected behavior of the system, that is, when the system does
not fulfill its mission. This is caused by an error. So, if we look at a car tire, we can say
that the failure in this system can be caused by an external event (a nail, a wire, or a
glass) that causes a puncture or an internal cause like the tube’s trail (causation). This
fault will give rise to an error (activation), deflating the tire, compromising its use for
the specified purposes (propagation) (see Fig. 1). The tire deflating causes the failure,
preventing the vehicle moving forward. Therefore, we can say that the faults, however
small, they can cause major errors, however the presence of an error will not necessarily
be considered the cause of a failure [9].

Reliability of Replicated Distributed Control Systems Applications 305

Note, however, that the classification of the several internal states of a system for
fault, error or failure situations will depend on the system and its specific character-
istics. Therefore, based on the characteristics of the systems, for example, centralized,
distributed and/or replicated, will be in the presence of organic software and/or hardware
failures. In this perspective, we must consider them different since the software does not
wear out. Thus, it can be said that there will be a software error or failure if consider the
definition presented in [10] “… work according to the original contract or according
to the requirements documentation…” whenever its MTBF, for example, exceeds the
default value. In this assessment, will be in the presence of a fault, but the system will
remain operational.

2.2 Means to Attain Dependability

Over the years, various means have been used to achieve the attributes of dependability.
These attributes can be grouped into four groups [4]: Fault Prevention (use of design
methodologies, techniques, and technologies to avoid faults), Fault-Tolerance (use of
means to provide service even in the presence of faults), Fault Removal (use of review,
analysis, and testing techniques to reduce the number and severity of faults) and Fault
Forecasting (estimate of the number, incidence, and future consequences of faults).

The development of flawless computer systems is rarely achieved, so some of the
attributes of dependability, such as fault-tolerance, are often used. Fault-tolerance is used
to increase the probability that the final design of the application will show acceptable
behaviors and thus produce correct outputs. On the other hand, correctness of the system
is closely linked to the structure of the application, so, the greater or lower level of fault-
tolerancewill directly depend on the characteristics of itself and its design.Dependability
based on fault-tolerance is generally achieved by redundancy. Redundancy is the dupli-
cation (triplication, quadruplication, etc.) of a specific component, considered critical,
for which the failure of the component or subcomponent will not result in the failure of
the entire system.

 a) b) c)

Fig. 2. Fault-tolerance architecture: a) Normal implementation; b) Standby implementation
(Replica in standby, rum in parallel); c) Parallel implementation, voting validation.

From the perspective of the operational requirements of fault-tolerance systems,
they can have classified into two classes of operability (Continuous and Non-continuous
operations) and three main approaches. In the first case, the systems remain operational
even in the presence of faults (provides a continuous service) while in the second case the
systems interrupt their operation. On the other hand, the fault-tolerance implementation
architectures will be based on the use of error detection (ED), with modules operating

306 A. A. Santos et al.

in standby or in parallel, and the use of voters that validate and consolidate the output
values of the redundant elements (see Fig. 2).

The criteria for choosing one of these implementations will depend on the sys-
tem itself. It will be obvious, and therefore logical, that the application designer only
replicates devices with a high influence on the application, while maintaining a sin-
gle copy of the remaining devices. However, regardless fault-tolerance approach used,
the availability, reliability, and safety properties (see item 2) for the system, must be
maintained.

The measurement of these properties involves knowledge of MTBF based on the
Mean Times To Failure (MTTF) and Mean Time To Repair (MTTR). So, MTBF can be
expressed as:

MTBF = MTTF + MTTR (3)

then availability, according to (1), will translate into the following expression:

A = MTTF

MTTF + MTTR
(%) (4)

On the other hand, from a reliable point of view, it can be said that the system’s reliability
represents the probability that there will be no fault during a given period, in which more
than one failure is possible [11]. In this sense, it can be considered that the ratio of the
number of faults (fault rate) will also be an indicator of reliability showing the portion
of components or equipment that must survive in an instant t. The fault rate (λ) will be
given by the following expressions:

λ = Number of faults

Time of use
or λ = 1

MTBF
(5)

Safety must be a propriety for the entire system, including hardware and software, and
for its entire life cycle. Thus, when addressing security issues, a set of attributes must be
considered that must be verified at the same time: 1) availability for authorized actions,
2) confidentiality and 3) integrity [4].

3 Overview of IEC 61499 Replications

In the industrial context, control processes are dominated by PLCs. With the increase
in demand for new, more flexible productive markets, flexibility requirements become
preponderant and lack real-time responses. On the other hand, it must be considered
that these new needs for flexibility demand greater availability of productive systems
and, consequently, greater reliability of them. Reliability or redundancy in centralized
applications using PLCs, is usually achieved using a second or more identical PLCs.
However, if the same criterion were used in a distributed system, the replication of all
devices would become very complex and with exaggerated dimensions.

To address the problems associated with distribution and reliability based on device
replication, the International Electrotechnical Commission (IEC) has developed the IEC

Reliability of Replicated Distributed Control Systems Applications 307

61499 standard. The distributed nature of this standard allows each device to perform a
simple replica or a sub-application of other devices that are running on the same system.

Based on a several FB – Basic FB (BFB – which runs an Execute Control Chart
(EEC) on the head and several algorithms on the body), Composit FB (CFB – several
FBs running inside of theFB) andSpecial InterfaceFB (SIFB–communicationFB)–, the
application designer decides which component, as a software unit (FB), to be replicated.
The designer replicates the FBs or sub-applications that have greatest influence on the
dependability of the system (defining new input and output events and data port, (see
Fig. 3a), keeping a single copy of the remaining (see Fig. 3b).

a) b)

Fig. 3. a) Basic Function Block (BFB) with input and output ports; b) Distribution of replicated
and non-replicated applications among divices.

A distributed IEC 61499 application can be distributed or replicated between divices.
Thus, the replica of an application can be performed on a single device (application A
– replica 3), while other replicas of the same application are distributed between two or
more devices (application A – replicas 1 and 2), see Fig. 3b. Based on these distribution
possibilities, several interaction scenarios can be identified.

Fig. 4. Distributed system with the several interaction scenarios of the replicated FBs [12].

The interaction scenarios depend on the system distribution and the replication per-
formed by the application designer, that is, on the components that send events and/or

308 A. A. Santos et al.

data ➁ (one-to-many), the receivers ➄ (many-to-one) or both ➃ (many-to-many) are
replicated components or not, as you can see in Fig. 4 and explained in [12] and [13].

4 Example for Redundancy Implementation

To implement redundancy, all replicas must be identical. Therefore, for this requirement
to be met, all replications must be performed assuming a deterministic behavior, that is,
the algorithm of each of the replicated FBs must be deterministic. In this sense, when
executing the FBs, in IEC 61499 execution environment, if it is guaranteed that they will
be executed in the same way, the determinism of the replicas will be guaranteed. This
means that the order in which each event is run will be the same in all replicas and will
produce the same results.

To illustrate the implementation of redundancy, based on IEC 61499, we will present
a simple example.The fault tolerance approachwill be basedon simple active redundancy
of software and hardware. This application is a small part of a more complex application
for conveyor-based pieces distribution systems. In this sense, the case study will be
limited to the analysis of the interconnection of two types of conveyors (linear, C1
and C2, and rotating, C3) that working, perpendicularly. C3 receives parts from both
conveyors considering that all conveyors are relatively small and will only be able to
transport one part at a time and its work according to the layout shown in Fig. 5.

C1 C4

C2

C3 C5

Fig. 5. Example conveyor layout.

Workpieces arrive from the left (C1) and the top (C2) and must be transferred to the
rotating conveyor belt (C3) at the center. Each conveyor belt is controlled by a single
FB based on the conveyor type (linear or rotating) that runs on an independent low-cost
device (Raspberry Pi) that controls the entire mechatronic device of the conveyor.

The pieces to be transferred are simulated by a simple algorithm in each of the FBs.
The linear conveyors feed (C1 and C2) provides two integers value corresponding to
each of the conveyors, data 1 and 2, respectively. The rotating conveyor (C3) receives
data from the feed conveyors. This conveyor processes the data according to the event’s
availability time (the oldest first) and transfers the part and data information to the
following conveyor. Each of these timed messages will be ordered according to the time
they were available. A conveyor will be free to receive a new piece as soon as the piece
in transport is transferred to the next conveyor.

The design of the application and the replication of elements considered critical of the
system are shown in Fig. 6. Note that the conveyors need to receive events and data from

Reliability of Replicated Distributed Control Systems Applications 309

the previous ones and send events and data to the following ones. So, conveyors belts on
the left, which are feed conveyors, are triggered by a start event sent simultaneously to
C1 and C2 and the data produced are sent to the subsequent replicas. Device 3 and 4 are
replicas of conveyor C3 that will receive information from the clients C1 and C2. The
information received in each of the replicas is an indicator of availability for delivery a
work piece. The data received in each of the replicas must belong to the same data set
and in the same order.

Fig. 6. Design application and replicated elements, interconnection with Publish/Subscribe pair.

4.1 Execution Semantics

In this item, a brief description of the design process and how the replication/distribution
was performed in IEC 61499 application will be made. The application design is very
simple, and it is focuses on the fault-tolerance approach. To develop the replicated
distributed system, we used the open-source Eclipse 4diac™ and the FORTE IEC 61499
execution environment [14]. Application was replicated according to scenario ➁ (one-
to-many), shown in Fig. 4 and the final design of it is shown in Fig. 6.

As already explained, tomaintain replicas determinism, it will be necessary to ensure
that the execution of each replicated FBs occurs in a synchronized manner, that is, that
each event received generates the same sequence of actions in all replicated FBs. So, to
ensure communications between all replicated FBs andmaintain design application, you
must use Publish/Subscribe communication SIFBs pairs to implement timed-messages
protocol (one-to-many and many-to-one) as well internal synchronization. On the other
hand, all instances of the FORTE runtime environment and devices must be in the same
multicast group and be synchronized [15], as well as internal clocks by Network Time
Protocol (NTP) synchronization, for example. However, whenwe consider that “FORTE

310 A. A. Santos et al.

is relatively well suited for supporting the replication design …” [13] the expected
results will not be guaranteed, since “… its execution semantics almost guarantee a
deterministic execution of event sequences.” [13] as demonstrated in [16].

4.2 System Reliability

A system is usually composed of several components that will have different reliability
and that, in principle, will be known. In this sense, knowing the reliability and trend of
each component, determining the reliability of the system will be relatively simple, if
the system can be represented by a reliability block diagram (RBD). However, when it is
only possible to know the failure rate, without knowing the system’s tendency (decreas-
ing, constant or increasing), the adoption of any distribution to quantify the reliability
will become an almost impossible task. The RBD representation of the implemented
redundant system is shown in Fig. 7. This is a complex system composed of components
in series and in parallel. Determining the value of system reliability is a succession of
mathematical operations that combine redundancy in series and in parallel to obtain an
overall value for it.

Fig. 7. Reliability for scenario 2, communication one-to-many.

However, the study carried out aims, essentially, to analyze the deterministic behav-
ior of the Publish/Subscribe communication pairs, that is, quantify their guarantee of
determinism. Therefore, all communication errors between clients 1 and 2 and the repli-
cas C3 and C3′ were recorded and based on this analysis, it was possible to build the
graph shown in Fig. 8. The trend of the system can be determined through a process of
statistical inference based on hypothesis tests, that is, to verify if it is possible to confirm
or deny the formulated hypothesis. To verify H0 (constant rate) we will have to confirm
it or not using the statistical process called Laplace Test (ET). Following equation:

ET = √
12N

(∑N
i=1 ti
N .t0

− 0, 5

)
= √

12 × 567

(
2711967

567 × 10000
− 0,5

)
= −1,789 (6)

where N is the number of faults, ti the time of fault i, and t0 the total time. So, in this
case the test is conclusive, as there is evidence of acceptance of H0, since the ET value is
outside the rejection region [−ET(α/2) < ET < + ET(α/2)], that is, −1,960 < ET < +
1,960 with α = 5%. When accepting H0, rejecting H1 (non-constant), we consider that
the fault rate is constant, and the occurrences are Independent and Identically Distributed
(IID).

The fault rate of the system is λ = 0, 0567 fault/s (5) so, reliability components,
considering only replicas, is given by R(t) = e−λt . According to Fig. 7, the reliability

Reliability of Replicated Distributed Control Systems Applications 311

system (RS) will be obtained, based on the received components, considering the rest
with high reliability, by the expression: Rs = 1−(

1 − e−λt
)n
. Data received in the active

replicas, have an R10000
S = 0, 951, a MTTF = 17,637 s, and F(t) = 0, 049 (2).

Fault

Linear (Fault)

Fig. 8. Relation between fault number and time (F-T).

5 Conclusion

In a distributed system, there are usually partial failures that must be considered. Critical
component redundancy is one of the measures that must be used for fault-tolerance.
However, the adoption of redundancy measures will lead to replication with or without
voters inwhich the results outgoing replicasmust present the samevalues. This restriction
will require that all replicas remain synchronized.

The use of timedmessages protocol and NTP are an important contribution to ensure
the synchronization of the replicas. However, it will be necessary to consider the different
communication scenarios between replicated and non-replicated components and how
to guarantee the determinism of IEC 61499 applications, considering their restrictions.
Thus, to ensure the ordering of data in a FORTE execution environment, it will be
necessary to ensure that the Publish/Subscribe communication pairs send and receive
the same data set in the same order in which they are made available.

The analyses carried out shows that the design of replicated systems, using the FBs
defined in the IEC61499 standard is not able to guarantee its determinism.Thus, based on
the lead time and the ordering of data received, it was possible to quantify the reliability
of the system, considering only the data received in the replicated pairs, so the measured
reliability was around 95%. These results define a 5% rate of unreliability (base in 10 K
data received in each replica), which will indicate that the replication based on the IEC
61499 FBs and FORTE runtime do not guarantee reliability by itself. Reliability will be
guaranteed by the development of additional FBs that implements it.

Acknowledgments. We acknowledge the financial support of CIDEM, R&D unit funded by
the FCT – Portuguese Foundation for the Development of Science and Technology, Ministry of

312 A. A. Santos et al.

Science, Technology and Higher Education, under the Project UID/EMS/0615/2019 and this work
was supported by FCT, through INEGI and LAETA, project UIDB/50022/2020.

References

1. IEC 61131: Programmable Logic Controllers Part 3 (IEC 61131-3). International Electrotech-
nical Commission, 3rd edn. IEC (2013)

2. IEC 61499: International Standard IEC 61499-1, Function Block Architecture Part 1, 2nd
edn. International Electrotechnical Commission. IEC (2012)

3. IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance. http://wg10.4.dep
endability.org/. Accessed 07 Dec 2020

4. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

5. Farrukh Khan,M., Paul, R.A.: Chapter 4 - pragmatic directions in engineering secure depend-
able systems. In: Advances in Computers - Dependable and Secure Systems Engineering, vol.
84. Elsevier, USA (2012)

6. Modarres, M., Kaminskiy, M.P., Krivtsov, V.: Reliability Engineering and Risk Analysis, a
Practical Guide. 3rd edn. CRC Press, Taylor & Francis Group (2017)

7. Yang,M.,Hua,G., Feng,Y.,Gong, J.: Chapter 1 - introduction. In: Fault-ToleranceTechniques
for Spacecraft Control Computers. Wiley (2017)

8. Bloomfield, R., Lala, J.: Safety-critical systems: the next generation. IEEE Secur. Priv. 11(4),
11–13 (2013)

9. Abdulhameed, O.A., Jumaa, N.K.: Designing of a real time software fault tolerance schema
based on NVP and RB techniques. Int. J. Comput. Appl. 180(26), 35–4 (2018)

10. ISO 9000-3:1997: Quality management and quality assurance standards - Part 3: Guidelines
for the application of ISO 9001:1994 to the development, supply, installation andmaintenance
of computer software. ISO (1997)

11. O’Connor, P.D.T., Kleyner, A.: Practical Reliability Engineering, 5th edn. Wiley, UK (2012)
12. Santos, A.A., de Sousa, M.: Replication strategies for distributed IEC 61499 applications. In:

IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2225–
2230. IEEE. Washington, DC (2018)

13. de Sousa, M.: Chapter 9 – fault-tolerance IEC 61499 applications. In: Distributed Control
Applications: Guidelines, Design Patterns, and Applications Examples with the IEC 61499,
2nd edn. CRC Press, Boca Raton (2016)

14. Eclipse 4diac. https://www.eclipse.org/4diac/. Accessed 29 Dec 2020
15. Pinho, L.M., Vasques, F.,Wellings, A.: Replicationmanagement in reliable real-time systems.

Real-Time Syst. 26(3), 261–296 (2004)
16. Santos, A.A., da Silva, A.F., Magalhães, A.P., de Sousa, M.: Determinism of replicated dis-

tributed systems-a timing analysis of the data passing process. Adv. Sci. Technol. Eng. Syst.
J. 5(6), 531–537 (2020)

http://wg10.4.dependability.org/
https://www.eclipse.org/4diac/

	Reliability of Replicated Distributed Control Systems Applications Based on IEC 61499
	1 Introduction
	2 Dependability
	2.1 Relationship Between Fault, Error, and Failure
	2.2 Means to Attain Dependability

	3 Overview of IEC 61499 Replications
	4 Example for Redundancy Implementation
	4.1 Execution Semantics
	4.2 System Reliability

	5 Conclusion
	References

