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Abstract: Contamination of soil and groundwater by chlorinated solvents is an environmental
issue of primary concern. Recently, electrically conductive iron particles have been proposed as
a novel approach to accelerate anaerobic bioremediation processes. In fact, it was demonstrated
that conductive particles facilitate the exchange of electrons between microorganisms via Direct
Interspecies Electron Transfer (DIET) processes, thus enhancing the pollutant-degrading potential of
the microbial community. However, the use of natural minerals in this context has not been reported
so far. In this study, we applied, for the first time, natural magnetite and hematite to accelerate
the reductive dechlorination of 1,2-dichloroethane by an enrichment culture in lab-scale anaerobic
microcosms. After four feeding cycles, low magnetite-amended microcosms (13 mg/L) yielded the
highest rate of 1,2-DCA reductive dechlorination and reduced methanogenic activity. By contrast,
hematite did not display any apparent stimulatory effect. Surprisingly, in the presence of higher
amounts of iron oxides, a weaker effect was obtained, probably because iron(III) present in the
minerals competed for the electrons necessary for reductive dechlorination. For all microcosms, the
concentration of the toxic byproduct vinyl chloride was negligible throughout the whole study. The
SEM/EDS analysis confirmed the close interaction between the conductive iron oxide particles and
the dechlorinating bacteria. This work opens the possibility of using natural conductive minerals for
bioremediation applications as well as shedding light on the previously unrecognized role of such
minerals in contaminated ecosystems.

Keywords: magnetite; hematite; conductive particles; reductive dechlorination; groundwater reme-
diation; direct interspecies electron transfer (DIET); 1,2-dichloroethane

1. Introduction

1,2-Dichloroethane (1,2-DCA) is a widespread chlorinated aliphatic hydrocarbon
(CAH) mostly used as a degreasing agent and a precursor to produce polyvinylchloride
(PVC) plastics. Due to incorrect handling, storage and disposal practices, it is often found
in soil and groundwater [1]. In subsurface environments, especially after contamination
events, molecular oxygen is usually scarce or completely unavailable [2]. In this context,
1,2-DCA needs to be removed either via chemical or biological reductive dechlorination
under anaerobic conditions.

Reductive dechlorination of 1,2-DCA may follow alternative pathways (Figure 1):
(i) direct dichloroelimination to harmless ethene, a reaction that involves the simultaneous
removal of the two chlorine substituents from the contaminant and the formation of a
double bond between the two carbon atoms; (ii) dehydrochlorination to vinyl chloride (VC),
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a non-redox reaction occurring spontaneously in aqueous systems. This latter reaction
can be followed by a reductive hydrogenolysis step (i.e., involving the replacement of the
chlorine substituent with hydrogen), resulting in the transformation of VC into ethene [3].
While dehydrochlorination is typically an abiotic reaction, the dichloroelimination and the
hydrogenolysis pathways can be catalyzed by so-called organohalide respiring bacteria
(OHRB), which thrive using CAHs as respiratory electron acceptors and hydrogen or acetate
as electron donors. The most well-studied OHRB belongs to the genus Dehalococcoides [4,5],
Dehalobacter [6] and Desulfitobacterium [7,8].
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A typical strategy for 1,2-DCA remediation relies on in situ biostimulations of such
dechlorinating microorganisms. As compared to other technologies, this approach benefits
from generally lower costs and higher environmental sustainability [9]. It usually involves
the injection of fermentable electron donors, such as acetate, lactate, citrate, glycerol, etc., di-
rectly into the subsurface of the contaminated site [10]. In this context, several recent studies
reported that the addition of electrically conductive minerals such as magnetite or hematite
could improve the degradation process by facilitating the electron transfer between microor-
ganisms [11,12] in the so-called direct interspecies electron transfer (DIET) [13]. Indeed,
several microorganisms can use conductive or redox active minerals as electron acceptors
or donors for extracellular respiration [14], natural batteries for electron storage [15], or
electrical conduits for intercellular electron transfer [16].

It was proven that magnetite stimulated the reductive dechlorination of CAHs
(e.g., trichloroethene) using acetate as an electron donor [17,18]. In a recent study, we
demonstrated that magnetite nanoparticles enhanced the syntrophic reductive dechlo-
rination of 1,2-DCA to ethene up to 3.3-times compared to unamended controls, while
decreasing the lag time by 0.8 times (i.e., 23 days) [19]. This is because magnetite facilitated
the syntrophic interaction between acetate oxidizing bacteria and halorespiring microor-
ganisms by shuttling electrons from the first to the second. Whilst much work can be
found in the literature on the use of “synthetic” iron oxides, very few focused on natural
samples [20], which, however, may possess distinctly different surface properties with
respect to their lab-synthesized counterpart [21]. To the best of the authors’ knowledge, the
application of natural electrically conductive minerals to the bioremediation of chlorinated
compounds has not been explored so far.
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Along this line, it is worth mentioning that the chemical synthesis of magnetite or
hematite nanoparticles is a complex and expensive procedure that requires several steps and
produces a fair amount of waste, thus making the use of synthetic iron (nano)particles for
“real world” applications unsustainable from an environmental and economic standpoint.
Herein, natural magnetite and hematite minerals sampled in the north of Portugal were
evaluated for their capability of enhancing 1,2-DCA reductive dechlorination in bench-
scale microcosms.

2. Materials and Methods
2.1. Magnetite and Hematite Minerals

Natural magnetite (Fe3O4) and hematite (α-Fe2O3) minerals were sampled in the
Northeast region of Portugal, the first one in Marão and the second in Moncorvo (Figure 2).
The minerals were kindly offered from the collection of the Mining Engineering Department
of the Faculty of Engineering from the University of Porto (Portugal).
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Figure 2. Identification of the origin in Portugal from magnetite and hematite minerals used for
this experiment.

The minerals were pretreated by grinding for 15 min in a Siebtechnik laboratory
disc mill (SIEBTECHNIK TEMA, Mülheim an der Ruhr, Germany). Particle size analysis
was performed by the laser diffraction particle size analyzer Malvern Mastersizer 2000
(Malvern Panalytical Ltd., Marvern, UK) coupled with the dispersion unit Hydro2000G
(Malvern Panalytical Ltd., Marvern, UK). Samples were dispersed in water, combined with
agitation and ultrasound when needed to separate aggregates. Elemental composition was
determined by the X-ray fluorescence X-MET7500 (Oxford Instruments, Abingdon, UK).

2.2. 1,2-DCA-Dechlorinating Mixed Microbial Culture

The inoculum used for the experiments was an anaerobic electroactive culture previ-
ously enriched in an H-type bioelectrochemical cell with 1,2-DCA as electron acceptor and
a polarized (−900 mV vs. the standard hydrogen electrode) graphite rod serving as the
sole electron donor [22]. Prior to being used, the culture was transferred into an anaerobic
serum bottle (120 mL of total volume and 95 mL of liquid volume), sealed with Teflon-faced
butyl rubber stoppers. This bottle was operated in a semi-batch mode through sequential
feedings with 1,2-DCA (0.05 mmol) and H2 (0.8 mmol) on a weekly basis. Prior to each new
feeding, the headspace of the bottle was flushed with N2 to remove volatile compounds
(i.e., the remaining 1,2-DCA, its dechlorination products and methane), and a fixed volume
of liquid phase was replaced with a fresh medium to maintain the average hydraulic
retention time at approximately 30 days. Before usage in this experiment, 4.5 hydraulic
retention times passed.

2.3. Microcosm Setup

The experiments were conducted in 120 mL serum bottles sealed with Teflon-faced
butyl rubber stoppers that were flushed with N2 to establish anaerobic conditions. Table 1
shows the experimental conditions in each microcosm setup. All microcosms were incu-
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bated upside down, in the dark, at 25 ◦C under mild agitation, with acetate (10 mM) and
1,2-DCA (approximately 0.45 mM).

Table 1. Experimental setup of the microcosms.

Magnetite
Control

Hematite
Control Unamended Magnetite

Low Magnetite Hematite

Inoculum (mL) / / 4 4 4 4
Magnetite (mg) 5.3 ± 0.3 / / 1.2 ± 0.3 5.3 ± 0.3 /
Hematite (mg) / 5.3 ± 0.3 / / / 5.3 ± 0.3

The total liquid volume in the microcosms was 90 mL, and each treatment was per-
formed in duplicate. The medium contained the following components: NH4Cl (0.5 g/L),
MgCl2·6H2O (0.1 g/L), K2HPO4 (0.4 g/L), CaCl2·2H2O (0.05 g/L), trace metal solution
(10 mL/L) [23], vitamin solution (10 mL/L) [24] and NaHCO3 (15 mL/L, 10% w/v). The pH
value of the medium was around 7.5. All microcosms were operated in a semi-batch regime,
consisting of repeated feeding cycles, each with an average duration of approximately
20 days. At the beginning of each feeding cycle, the microcosms were purged with N2 for
10 min to remove volatile compounds and maintain anaerobic conditions. Then, a fixed
volume of liquid phase was replaced with a fresh anaerobic medium containing acetate
(10 mM), with a resulting average hydraulic retention time of approximately 120 days.
The concentration of acetate, which served both as an oxidizable substrate and carbon
source for biomass growth, was maintained in excess during the whole experiment. Then,
10 mL of CO2 was added to the headspace of each bottle, along with a given amount
of 1,2-DCA. Throughout the study, all microcosms were analyzed daily to quantify the
residual 1,2-DCA, the reductive dechlorination products, methane and acetate, as described
in the following paragraph.

2.4. Analytical Methods

Volatile components, namely 1,2-DCA, vinyl chlorine (VC), ethene (ETH) and methane
(CH4), were quantified by injecting 50 µL of headspace (taken with a gas-tight locked
syringe) into a Shimadzu GC-2014 gas chromatograph (2.4 m × 2.1 mm packed column
60/80 Carbopack B/1% SP-1000; N2 carrier gas 40 mL/min; oven temperature 60 ◦C with
an increment of 40 ◦C per min until 180 ◦C; flame ionization detector temperature 200 ◦C).

To determine the total amount of each volatile compound present in the bottles,
headspace and liquid phase concentrations were calculated using tabulated Henry’s law
constants [25]. At the end of the experiments, samples were analyzed by SEM/EDS to study
the spatial distribution and the morphology of microorganisms and the iron oxide particles.
Sample pre-treatment and analysis were carried out as detailed previously [19]. All samples
were viewed with FEI Quanta 400FEG ESEM/EDAX Genesis X4M (FEI Company, Hillsboro,
OR, USA) in high-vacuum mode at 10 or 15 kV. X-ray microanalysis was performed in
specific fields of the samples for elemental analysis.

For each feeding cycle, the RD rate and CH4 production rate (both expressed as
meq/L d) were calculated from the measured amounts of ETH and CH4, respectively, and
considering that 2 mol of electrons (meq) are needed for the formation of 1 mol of ETH
from 1,2-DCA and 8 meq are needed for the formation of 1 mol CH4 from CO2.

An unpaired t-test (Graphpad software, San Diego, CA, USA) was used to compare
values and assess the statistical significance of observed differences.

3. Results and Discussion
3.1. Natural Magnetite and Hematite Characterization

Particle size and elemental composition of the natural magnetite and hematite used
as amendments in the microcosms were analyzed by means of laser diffraction and X-ray
fluorescence, respectively. From the granulometric curves presented in Figure 3A, it can be
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observed that magnetite minerals have a larger grain size compared to hematite, where
80% of hematite particles are ≤9.5 µm, while for magnetite, 80% of particles are ≤26 µm.
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Regarding the elemental composition, as expected, both minerals present a similar
percentage of iron, which is about 42% on a mass basis. The percentage of unidentified
elements (N.D.) is about 55% for both samples. In all likelihood, this number mostly
accounts for oxygen, which is a constituent part of both minerals. Among the other
elements, calcium, potassium, titanium, manganese and barium were the most abundant
in the analyzed samples.

3.2. Influence of Magnetite and Hematite on Anaerobic Dechlorination

The effect of iron mineral supplementation on dechlorination of 1,2-DCA and compet-
itive methane production was evaluated (Figure 4). During the 80 days of experimentation,
four feeding cycles were performed, each lasting about 20 days.
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Figure 4. Trends of 1,2-DCA, ETH, VC and CH4 for all treatments, namely: (A) Unamended con-
trol; (B) Magnetite low; (C) Non-inoculated Magnetite control; (D) Magnetite; (E) Non-inoculated
Hematite control; (F) Hematite. The values are obtained as average of two replicates.

It can be noticed how the dechlorination process during the first cycle is almost
negligible in all treatments. This finding is likely due to the fact that the inoculated culture
used hydrogen as a direct electron donor for 1,2-DCA dechlorination, whereas acetate
was herein supplied. Starting from the second cycle, the decrease in the total amount of
1,2-DCA in the bottles and the production of ethene can clearly be observed in all inoculated
microcosms (Figure 4A,B,D,F), while no indication of dechlorinating activity was found in
the non-inoculated controls (Figure 4C,E).

The reductive dechlorination (RD) products measured in the microcosms consist
primarily of ethene, and the presence of VC remains negligible throughout the whole study.
Accordingly, the direct dichloroelimination pathway (Figure 1A) seems to be prevalent
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relative to the dehydrochlorination route (leading to the formation of VC), with this latter
being eventually followed by the reductive hydrogenolysis of VC to ethene (Figure 1B).
The one-step conversion of toxic 1,2-DCA into ethene without the intermediate formation
and/or accumulation of VC is a positive outcome for the remediation process since this
latter compound is far more toxic and dangerous than its parent compound [26].

The RD products formation rate increased as the experiment progressed for all inocu-
lated microcosms (Figure 5A). In the first three feeding cycles, the unamended microcosms
had the highest RD rates; however, in the last feeding cycle, the best performance was
clearly observed for the microcosms amended with 1.2 mg of magnetite (Magnetite Low),
which displayed a substantially (p < 0.05) higher RD rate. For the experiments amended
with natural iron oxides, the lag time preceding the onset of dechlorination was substan-
tially longer with respect to the unamended control.
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This result is in contrast with previous findings related to the use of synthetic magnetite
nanoparticles, with these latter reducing the lag time for dechlorination by about 20% [19].
It is possible that impurities present on the natural magnetite and hematite and the larger
particle size reduce the affinity between the minerals and bacterial cells. Moreover, other
mineral characteristics, such as crystallinity, stoichiometry, surface properties, etc., may also
have influenced the DIET-based stimulatory effect [20]. Among the different treatments, it
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can be noticed that the microcosm amended with a lower amount of magnetite (Magnetite
Low) outperformed both the microcosms amended with a higher amount of magnetite
(Magnetite) and with hematite during the last cycle. This phenomenon can be explained
by the fact that Fe(III) present in magnetite and hematite can be biologically reduced to
Fe(II) [20]. Thus, when the concentration of these minerals becomes too high, they may start
to compete for the electrons resulting from acetate degradation, which are then diverted
away from the dechlorinating metabolism. Since the iron in hematite is solely Fe(III), its
negative impact on the RD production rate is likely more pronounced than the one of
magnetite, which instead contains both Fe(II) and Fe(III). Along this line, some studies
pointed out that Fe and Mn minerals may cause inhibition of CAH dechlorination as they
can represent energetically more favorable terminal electron acceptors [27].

In all microcosms, methanogenesis starts during the last feeding cycle. The methanogenic
activity competes with the RD since it also exploits the reducing power deriving from
acetate degradation. Indeed, methane generation was about one order of magnitude
higher in the controls, where no dechlorination was taking place (Figure 5B). Moreover,
all amended microcosms showed a significantly lower methane production as compared
to the Unamended ones. This fact could be a reason why the Magnetite Low microcosms
outperformed the Unamended ones during the last cycle: the instauration of the competing
methanogenic pathway negatively affected the RD production rate more strongly in the
Unamended microcosms with respect to the Magnetite Low ones.

Notably, the observed methane production in non-inoculated “abiotic” treatments was
most probably triggered by “biological” reactions that were established, after a long period
of operation, in the bottles since they were neither autoclaved at the start of the study nor
operated under strictly sterile conditions.

3.3. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy Analysis

At the end of the experiments, samples from the treatments amended with mag-
netite and hematite were analyzed by SEM/EDS to study the spatial distribution and the
morphology of microorganisms and the iron oxide particles (Figure 6).

In the SEM images, it is possible to observe the presence of some conductive iron oxide
particles associated with the cell membrane of microorganisms for both the magnetite and
the hematite samples. The disc-shaped bacterial cells shown in Figure 6A resemble the
morphology of the OHRB Dehalococcoides mccartyi, although the apparent length of cells
(>1.8 µm) is substantially larger than that reported in the literature for this microorgan-
ism [28]. Indeed, these bacteria are probably the ones responsible for the observed RD
process in the microcosms.

From the EDS spectrum Z1 depicted in Figure 6A, it is possible to see that the main
elements present are carbon, nitrogen, oxygen, and sodium, confirming that analysis
was performed on a microorganism. Iron and iron precipitates are not present; thus, the
microorganisms did not incorporate magnetite into the cell wall.

The spectra Z2 in Figure 6A and Z1 and Z2 in Figure 6B all present an iron oxide
peak, which confirms the presence of magnetite and hematite particles. Overall, these
findings suggest that bacterial cells were likely utilizing iron oxide particles as a conductive
network to exchange electrons. The Si peak present in all spectra is most likely due to the
contamination of the samples, which may have occurred during the preparation procedure.
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4. Conclusions

This study investigated the application of natural, electrically conductive iron oxide
minerals to accelerate the anaerobic bioremediation of 1,2-DCA in lab-scale microcosms.
Low amounts of magnetite yielded the best performance in terms of dechlorination rate,
particularly upon long-term operation. Indeed, in such microcosms, the RD rate signifi-
cantly increased over the whole experimental period, whereas in other treatments, the RD
rate either peaked in correspondence of the third cycle (in unamended controls and mag-
netite supplemented microcosms) or increased far more slowly (in hematite supplemented
microcosms). In accordance with previous studies carried out using synthetic magnetite
particles, the stimulatory effect is possibly derived from the capacity of such minerals to
promote a DIET-based process between acetate-degrading microorganisms and dechlori-
nating bacteria. Additionally, in microcosms supplemented with low amounts of magnetite,
the establishment of a competitive methanogenic route was less pronounced with respect to
the other treatments. Interestingly, higher amounts of magnetite and hematite were not ben-
eficial to the reductive dechlorination of 1,2-DCA, probably because the reduction in Fe(III)
present in the minerals competed for the electrons necessary for the pollutant removal.

Finally, SEM imaging coupled with EDS analysis confirmed the close interplay between
dechlorinating bacteria and conductive iron oxide minerals. This work paves the way for
the implementation of natural conductive minerals for the bioremediation of chlorinated
compounds. Further studies should investigate the longer-term effect of iron oxide minerals
on the microbial communities present in the contaminated soil, as well as the optimization
of the conductive mineral dosage.
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