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Abstract: The MHD convective Walters-B memory liquid flow past a permeable accelerating surface
with the mechanism of Soret-Dufour is considered. The flow equation constitutes a set of partial
differential equations (PDEs) to elucidate the real flow of a non-Newtonian liquid. The radiation
thermo-physical parameters were employed based on the use of Roseland approximation. This
implies the fluid employed in this exploration is optically thick. Utilizing suitable similarity terms,
the flow equation PDEs were simplified to become total differential equations. The spectral homotopy
analysis method (SHAM) was utilized to provide outcomes to the model. The SHAM involves
the addition of the Chebyshev pseudospectral approach (CPM) alongside the homotopy analysis
approach (HAM). The outcomes were depicted utilizing graphs and tables for the quantities of
engineering concern. The mechanisms of Soret and Dufour were separately examined. The imposed
magnetism was found to lessen the velocity plot while the thermal radiation term elevates the
temperature plot because of the warm particles of the fluid.

Keywords: Soret and Dufour influence; free convection; Walters-B memory; permeable surface;
SHAM; MHD; magnetic field

1. Introduction

Mixed convective flow has been of great importance and has attracted the attention of
many researchers in recent decades because of its importance in the field of engineering
and environmental and geophysical applications. In view of these applications and the
importance of Soret and Dufour for fluids that have a light molecular weight, as well
as fluids with a medium molecular weight, investigators have published many works.
Alam et al. [1] examined the contribution of Soret together with Dufour on free convection
MHD as well as mass transport flow using a numerical approach. Mahdy [2] performed
a non-similar boundary layer analysis to examine the contribution of Soret together with
Dufour with heat plus mass transport for a power-law non-Newtonian liquid. Thermal
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diffusion means that heat transport is induced using a concentration gradient, while
diffusion-thermo refers to mass diffusion, which is induced using a thermal gradient. The
problem of mixed convective flow together with incompressible flow under the impact of
buoyancy plus transverse magnetism simultaneously with Dufour–Soret has been investi-
gated by Makinde [3]. Cheng [4] elucidated the contribution of Soret together with Dufour
to mixed convection heat, together with mass transport through a downward-pointing
vertical wall. Heat and mass movement of the natural convection motion in a saturated
penetrable channel with Soret–Dufour, as well as variable viscosity, was analyzed by Moor-
thy and Senthilvadivy [5]. Sharma et al. [6] explored Soret together with Dufour on mixed
convection MHD plus unsteadiness motion past a radiative porous vertical plate. Seini and
Makinde [7] numerically solved the simultaneous contribution of Soret and Dufour on a
mixed convection flow by elucidating viscous together with ohmic dissipation. Uwanta
and Halima [8] examined how Soret and Dufour behave in the exploration of heat together
with mass transportation with viscous dissipation plus constant suction. Aruna et al. [9]
extensively discussed the effects of adding Soret to Dufour in the model of unsteady mixed
convection MHD heat alongside mass motion. Tella et al. [10] explored the Soret–Dufour
phenomenon in their study of viscous as well as chemically reactive fluid.

The elucidation of Walters-B liquid flow has been considered in most recent published
research because of its various applications in food processing industries and technology.
The flow of such fluids has been studies by Joneidi et al. [11] whose model involved a
vertical channel together with a penetrable wall. Kumar [12] solely presented work on
viscoelastic liquid in a penetrable channel. Vijaya et al. [13] studied viscoelastic fluid
thermal convection flow through a porous channel and biot number influence. In another
development, the study of Walters-B liquid flow through porous and tampered asymmetric
channels was elucidated by Abdukhadi and Tamara. Pandey et al. [14] explored the
behavior of Walters-B liquid in a nanofluid layer that is heated at the bottom. Moatimid
and Hassan [15] presented non-Newtonian Walters-B term flow in a nanofluid vertical
layer. Islam and Haque [16] studied Walters-B memory flow with a radiative and induced
magnetic field. Rana and Chand [17] studied elastico-viscous and Walters-B nanofluid
layers as well as Rayleigh-Benald convection. Hayat et al. [18] investigated the behavior of
homogeneous, together with heterogeneous, reactions on Oldroyd-B fluid flow.

Alam et al. [1] investigated free convection MHD together with the mass flow of a
viscous chemical reacting together with an electrically conducting fluid. Moorthy et al. [19]
analyzed heat together with the mass transport of natural convection by considering vari-
able viscosity as well as Soret–Dufour effects. Regarding heat together with the mass
transport of two-dimensional and steady free convection MHD motion with viscous dissi-
pation, Soret–Dufour was studied by Lavanya and Ratnam [20]. Reddy et al. [21] explained
the behavior of thermal radiation, as well as MHD mixed convection flow, by considering
oscillatory suction. Krishna et al. [22] explored the convective motion of an incompress-
ible viscous plus chemically reacting fluid with a heat source. The results of diluted
convective heat together with mass motion in a Darcy with pores were elucidated by
Srinivasacharya et al. [23].

Spectral techniques have become important tools for scientist and engineers in provid-
ing solution to systems of differential equations. The spectral techniques are known for
their elegance, accuracy, and lower computational analysis time. SHAM combines CPM
with HAM. SHAM was explained by Motsa et al. [24,25] in solving nonlinear ordinary
differential equations. After his introduction of SHAM, many researchers have used it in
solving boundary layer problem. Motsa et al. [26] presented the use of SHAM in solving
PDEs. Bivariate SHAM for the outcome of heat together with the mass transport of bound-
ary layer motion was elucidated by Motsa and Makukula [27]. Fagbade et al. [28] used
SHAM in solving the problem of MHD natural convection Walters-B liquid flow.

Motsa et al. [29] presented an improved SHAM for solving boundary layer motion
problems. Among other authors that have used SHAM in the literature discussed in this
work are Khidir and Sibanda [30], Fagbade et al. [31], Mehmood et al. [32], Walter et al. [33],
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Liao et al. [34], Canuto et al. [35], Fornberg et al. [36], Trefethen et al. [37] etc. Authors
who worked extensively on nano fluids and fluid behavior in multiple conditions include
Doaa Rizk et al. [38], Asad Ullah et al. [39], Shahid Khan et al. [40], Khan et al. [41], Rashid
Nawaz et al. [42], and Zahir Shah et al. [43].

In all the above-mentioned works, little or no attention has been given to elucidating
the steady MHD convective motion of Walters-B term liquid past an accelerating porosity
surface with the consideration of Soret together with Dufour. SHAM is utilized to obtain
thee numerical solution of the nonlinear ODE. This work is necessary because the results
obtained will be useful for engineers in the industry, especially in the food processing
industry. The rest of this work is organized as follows: The mathematical formulation is
presented in Section 2 and the numerical solution using SHAM is presented in Section 3. We
elucidate the outcomes and discussions in Section 4, and the final remarks of the findings
are made in Section 5.

2. Model Equations

We considered a problem of steady, laminar, and viscous, as well as two-dimensional
MHD mixed convection motion, of Walters-B liquid flow. The x-axis is considered an up-
ward surface in a vertical area; likewise, the y-axis is considered normal to fluid motion. In
the model, heat source/absorption and thermal radiation together with viscous dissipation
is taken into consideration. Magnetism B(x) is imposed transversely to fluid flow toward
the y-axis. The Joule heating effect is neglected in the energy equation, while the chemical
reaction influence is neglected in the concentration equation. However, concentration
and temperature gradients are so high that Soret, as well as Dufour, effects cannot be
neglected. The velocity and temperature together with species concentration given by
Uw(x, y), Tw(x, y), Cw(x, y) are functions of x and y. In this analysis, all attributes of fluid
are presumed uniform, with density variations in the momentum flow equation as an
exceptional case.

We consider in our study the flow equations for Walters-B viscoelastic liquid because it
involves one parameter of fluid. The tensor S of the liquid follows the following equations
by Mehmood [32] and Walter [33].

S = −PI + τ (1)

where p = pressure, I = identity tensor and

τ = 2η0e− 2k0
δe
δt

(2)

where e = the rate of strain tensor given as:

2e = ∇(v) +∇(v)T (3)

where v means velocity, ∇ = gradient operator, δ
δt = the tensor quantity of the convected

differentiation subject to motion material, η0 = the viscosity limit at a small shear rate, and
k0 = the short relaxation time. Hence, η0 and k0 are expressed as:

η0 =
∫ ∞

0
λ(ξ)dξ, k0 =

∫ ∞

0
τλ(ξ)dξ (4)

where λ(ξ) is the relaxation spectrum, by Walters [33]. The rate of the stream tensor
differential term δe

δt in Equation (2) is expressed as:

δe
δt

=
∂e
∂t

+ v · ∇(e)− e · ∇(v)− (∇(v))T · e (5)
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The model in this study is based on Walters-B liquid fluid approximation, considering
that the relaxation time is short in such a way that any terms involving∫ ∞

0
τnλ(τ)dτ n ≥ 2 (6)

have been forgone.
Because of the simplifications above on the Walters-B model and the assumptions

together with Boussinesq’s evaluation, the model analysis, which is presented in Figure 1
of the present investigation, is:

∂u
∂x

+
∂v
∂y

= 0 (7)∣∣∣∣∣ u −v
∂u
∂y

∂u
∂x

∣∣∣∣∣+
∣∣∣∣∣ −nu −u

σβ2
0(x)
ρ

∂2u
∂y2

∣∣∣∣∣+
∣∣∣∣ −g g
βc(C− C∞) βt(T − T∞)

∣∣∣∣
+ K0

[∣∣∣∣∣ ν u
∂3u

∂y2∂x − ∂3u
∂y3

∣∣∣∣∣+
∣∣∣∣∣

∂u
∂x

∂u
∂y

∂2v
∂y2 − ∂2u

∂y2

∣∣∣∣∣
]
= 0 (8)

∣∣∣∣∣ u −v
∂T
∂y

∂T
∂x

∣∣∣∣∣+
∣∣∣∣∣

1
ρcp

α

∂2T
∂y2

∂qr
∂y

∣∣∣∣∣+
∣∣∣∣∣∣
− µ

ρcp
DkT
cscp

∂2C
∂y2

(
∂u
∂y

)2

∣∣∣∣∣∣− Q0

ρcp
(T − T∞) = 0 (9)

∣∣∣∣∣ u −v
∂C
∂y

∂C
∂x

∣∣∣∣∣+
∣∣∣∣∣−D DkT

Tm
∂2T
∂y2

∂2C
∂y2

∣∣∣∣∣ = 0 (10)

with the boundary constraint:

u(x, 0) = ax, v(x, 0) = νw, T(x, 0) = Tw(x) = T0 + A0x (11)

C(x, 0) = Cw(x) = C0 + M0x, u(x, ∞) = 0, T(x, ∞) = T0, C(x, ∞) = C0 (12)
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Assuming the difference between the temperatures when flow region is small and T4

implies a linear parameter of T∞, we simplified T4 by expanding Taylor’s series about T∞
as well as avoiding higher terms. The process of Taylor’s series expansion is given below:

f (T) = f (T∞) + (T − T∞) f ′(T∞) +
(T − T∞)2

2!
f
′′
(T∞) + . . .

where
f (T) = T4, then f ′(T) = 4T3, f

′′
(T) = 12T2

which implies that

f (T∞) = T4
∞, then f ′(T∞) = 4T3

∞, f
′′
(T∞) = 12T2

∞

Evaluating the above, as well as avoiding a higher term, we have

T4 ≈ 4T3
∞T − 3T4

∞ (14)

Substituting Equation (14) into (13) and using the result on the second term at RHS of
the energy equation gives

− 1
ρcp

∂qr

∂y
=

16σ∗T3
∞

3ρcpk∗
∂T
∂y

(15)

Using the above simplification on energy Equation (8), we have:

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

16σ∗T3
∞

3ρcpk∗
∂T
∂y

+
µ

ρcp

(
∂u
∂y2

)2
+

Q0

ρcp
(T − T∞) +

DkT
cscp

∂2C
∂y2 (16)

To evaluate the flow equations into coupled ODE, the following similarity terms are
introduced:

ϕ =
√

νax f (η), η =

√
(

a
ν
)y, u =

∂ϕ

∂y
, v = −∂ϕ

∂y
(17)

T = T∞ + (Tw − T∞)ϑ(η), C = C∞ + (Cw − C∞)φ(η) (18)

The stream function defined above is found to satisfy the continuity Equation (7).
Introducing the similarity transformation above on the governing Equations (7)–(12), the
fourth-order coupled ODEs are derived:

β f
d4 f
dη4 +

d3 f
dη3 −M2 d f

dη
−

∣∣∣∣∣∣
f − d f

dη
d f
dη

d2 f
dη2

∣∣∣∣∣∣+ β

∣∣∣∣∣∣−2 d f
dη − d2 f

dη2

d2 f
dη2

d3 f
dη3

∣∣∣∣∣∣+ Gtϑ + Gmφ = 0 (19)

(
1 + R

Pr

)
d2ϑ

dη2 +

∣∣∣∣∣ f − d f
dη

ϑ dϑ
dη

∣∣∣∣∣+ Ec
d2 f
dη2

d2 f
dη2 + αϑ + D f

d2φ

dη2 = 0 (20)

1
Sc

d2φ

dη2 +

∣∣∣∣∣ f − d f
dη

φ dϑ
dη

∣∣∣∣∣+ Sr
d2φ

dη2 = 0 (21)

subject to
d f
dη

= 1, f = Sw, ϑ = 1, φ = 1 at η = 0 (22)

d f
dη

(∞)→ 0, ϑ(∞)→ 0, φ(∞)→ 0 as η → ∞ (23)

where β = ak0
νρ is the viscoelastic parameter, M =

(
σβ2

0
ρa

) 1
2

represents the magnetic term,

Gt = gβ(Tw−T∞)
a2x represents the Grashof number, Gm = gβ∗(Cw−C∞)

a2x means represents the
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Grashof number, R = 16σT3
∞

3k∗k represents thermal radiation, Pr = ν
α represents the Prandtl

number, Ec = ax
cp(Tw−T∞)

represents the Eckert number, α = Q0
ρcpa represents the heat

generation or absorption term, and Sc = ν
D represents the Schmidt number.

3. Numerical Approach: SHAM

SHAM is a version of HAM that numerically solves problems of heat together with
mass transport. Detailed steps and explanations of HAM can be found in Liao [34] who
was credited for proposing the method. SHAM, as proposed by Motsa et al. [35,36], uses
CSC to decompose the deformation higher-order HAM in a case whereby the nonlinear
differential equations cannot be solved analytically. Therefore, SHAM combines CSC with
HAM to solve boundary layer equations. SHAM considered that the linear operator is
employed to develop an algorithm that selects the entire linear part of the flow equations.
It leads to a tedious sequence of linear ODE, which can be solved numerically using SHAM.
Due to the elegance and high accuracy achieved by the spectral methods with few grid
points [37–39], it has become a major tool for scientists and engineers in solving nonlinear
differential equations. To apply SHAM, the problem-simplified domain is changed from
[0, 1] to [−1, 1] for an easy model. Furthermore, the boundary constraints are explored
homogeneously using the following functions:

ξ =
2η

L
− 1, ξ ∈ [−1, 1], f (η) = f (ξ) + f0(η), ϑ(η) = ϑ(ξ) + ϑ0(η), φ(η) = φ(ξ) + φ0(η) (24)

where f0(η), ϑ0(η) and φ0(η) are initial approximations constraints:

f0(η) = − fw + 1− e−η , ϑ0(0) = φ0(0) = e−η (25)

By substituting Equations (24) and (25) into the simplified governing Equations (19)–(21),
it gives

f
′′′ − 2β f ′ f

′′′
+ a1 f ′ + a2 f

′′′
+ β f

′′
f
′′
+ a3 f

′′ −M2 f ′+

β f f
′′′′

+ a4 f + a5 f
′′′′

+ Gtϑ− f f
′′
+ a6 f + a7 f

′′
+ Gmφ− f ′ f ′ + a8 f ′ = J1(η) (26)

(1 + R)ϑ
′′
+ Pr f ϑ′ + b1 f + b2ϑ′ + αϑ− Pr f ′ϑ + b3 f ′ + b4ϑ + PrE f

′′
f
′′
+ b5 f

′′
+ D f Prφ

′′
= J2(η) (27)

φ
′′
+ Sc f φ′ + c1 f + c2φ′ + ScSrϑ

′′ − Sc f ′φ + c3 f ′ + c4φ = J3(η) (28)

subject to:

f ′(−1) = f ′(1) = 0 f (−1) = 0, ϑ(−1) = ϑ(1) = 0, φ(−1) = φ(1) (29)

where the prime in Equations (26)–(29) denotes differentiation w.r.t ξ, and we have set

b1 = Prϑ0, b2 = Pr f0, b3 = −Prϑ0, b4 = Pr f ′0, b5 = 2PrE f
′′

0, a1 = −2ϑ f
′′′

0, a2 = −2β f ′0, a3 = 2β f
′′

0

a4 = β f
′′′′

0(β), a5 = β f0, a6 = − f
′′

0, a7 = − f0, a8 = −2 f ′0

c1 = Scφ′0, c2 = Sc f0, c3 = −Scφ0, c4 = −Sc f ′0 (30)

J1(η) = − f
′′′

0 + 2β f ′0 f
′′′

0 − β f
′′

0 f
′′

0 + M2 f ′0 − β f0 f
′′′′

0

− Gtϑ0 + f0 f
′′

0 − Gmφ0 − f ′0 f ′0 (31)

J2(η) = −(1 + R)ϑ
′′

0 − Pr f0ϑ′0 − αϑ0 + Pr f ′0ϑ0 − PrE f
′′

0 f
′′

0 − PrD f φ
′′

0 (32)

J3(η) = −φ
′′ − Sc f0φ′ − ScSrϑ

′′
+ Sc f ′0φ (33)

where f0, θ0, and φ0 are functions of η. The linear part of Equations (26)–(28) is given by:

f
′′′

l + a1 f ′ l + a2 f
′′′

l + a3 f
′′

l −M2 f ′ l + a4 fl + a5 f
′′′′

l + Gtϑl + a6 fl + a7 f
′′

l + Gmφl + a8 f ′ l = J1(η) (34)
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(1 + R)ϑ
′′

l + b1 fl + b2ϑ′ l + αϑl + b3 f ′ l + b4ϑl + b5 f
′′

l + D f Prφ
′′

l = J2(η) (35)

φ
′′

l + c1 fl + c2φ′ l + ScSrϑ
′′

l + c3 f ′ l + c4φl = J3(η) (36)

subject to

fl(−1) = f ′ l(1) = 0, ϑl(−1) = ϑl(1) = 0, φl(−1) = φl(1) = 0 (37)

CPm is used to obtain the solution to Equations (34)–(37), and we further approx-
imate functions fl(ξ), ϑl(ξ) together with φl as a series of truncations using Chebyshev
polynomials given as:

fl(ξ)¬ f N
l (ξ j) +

N

∑
k=0

f kT1k(ξ j), j = 0, . . . , N (38)

ϑl(ξ)¬ϑN
l (ξ j) +

N

∑
k=0

ϑkT2k(ξ j), j = 0, . . . , N (39)

φl(ξ)¬φN
l (ξ j) +

N

∑
k=0

φkT3k(ξ j), j = 0, . . . , N (40)

T1k, T2k and T3k represent the kth polynomial with ξ0, ξ1, . . . , ξN = collocation region
of Gauss-Lobatto given as:

ξ J = cos
(

π j
N

)
, j = 0, 1, . . . , N (41)

where N = collocation numeric points and fl(ξ), ϑl(ξ) and φl(ξ) are derivatives within the
collocation point, given by:

dr fl
dξr =

N

∑
k=0

Dkj fl(ξ j),
drϑl
dξr =

N

∑
k=0

Dkjϑl(ξ j),
drφl
dξr =

N

∑
k=0

Dkjφl(ξ j) (42)

where r = the differentiation order and D = the spectral differentiation matrix. Using
Equations (38)–(40) on Equations (34)–(36) yields

AFL = G (43)

subject to

fl(ξN) = −Sw,
N

∑
k=0

D0,m fl(ξm) = 1, ϑl(ξN) = φl(ξN) = 1, ϑl(ξ0) = ϑl(ξ0) = 0 (44)

where

A =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 (45)

and

A11 = D3 + a1D + a2D3 + a3D2 −M2D + a4 + a5D4 + a6 + a7D2 + a8D
A12 = GtI, A13 = GmI, A21 = b1 + b3D + b5D2 A22 = (1 + R)D2 + b2D + α + b4
A23 = D f PrD2, A31 = c1 + c3D, A32 = ScSrD2, A33 = D2 + c2D + c4

FL = [ fl(ξ0, . . . , ) fl(ξN , )ϑl(ξ0, . . . , )ϑl(ξN), φl(ξ0), . . . , φl(ξN)]
T

G = [H1(η0), H1(η1, . . . , )H1(ηN), H2(η0), H2(η1), . . . , H2(ηN , )H3(η0), H3(η1, . . . , )H3(ηN)]
ai = diag([ai(η0), ai(η1, . . . , )ai(ηN−1)])
bi = diag([bi(η0), bi(η1), . . . , bi(ηN−1)])
ci = diag([ci(η0), ci(η1, . . . , )ci(ηN−1)]), i = 1, 2, 3, 4, 5, 6, 7, 8
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where T represents transpose, diag represents the matrix diagonal, and I represents the
matrix identity of magnitude (N + 1)× (N + 1). To use the constraints in (44), we first
eliminate the first rows and columns together with the last rows with columns of A. In
the same vein, we delete the first rows together with the last rows of fl(ξ), θl(ξ), ϑl(ξ)
and G. The conditions in (44) is further utilized on the first rows together with the
last rows of matrix A, which is a reframed matrix. Finally, we set the first rows as
well as the last rows of matrix G (modified version) to be zeros. Thus, the values of
fl(ξ0), . . . , fl(ξN), ϑl(ξ0), . . . , ϑl(ξN), φl(ξ0), . . . , φl(ξN) can be determined from

FL = A−1G (46)

Equation (46) provides the initial function to determine the SHAM outcome of the
flow model. Hence, to find the SHAM outcomes of (26)–(28), it requires that we define the
linear operator:

L f [ f (η; q), ϑ(η; q), φ(η; q)] =
f
′′′

l + a1 f ′ l + a2 f
′′′

l + a3 f
′′

l −M2 f ′ l + a4 fl + a5 f
′′′′

l + Gtϑl + a6 fl + a7 f
′′

l + Gmφl + a8 f ′ l
(47)

Lϑ[ f (η; q), ϑ(η; q), φ(η; q)] = (1 + R)ϑ
′′

l + b1 fl + b2ϑ′ l + αϑl + b3 f ′ l + b4ϑl + b5 f
′′

l + D f Prφ
′′

l (48)

Lφ[ f (η; q), ϑ(η; q), φ(η; q)] = φ
′′

l + c1 fl + c2φ′ l + ScSrϑ
′′

l + c3 f ′ l + c4φl (49)

In the above equations, q ∈ [0, 1] = functions embedded and f (η; q), ϑ(η; q) and
φ(η; q) are undetermined terms. The deformation zero equation is expressed as:

(1− q)L f [ f (η; q)− f 0(η)] = qh f H f (η)Nh f [ f (η; q), ϑ(η; q), φ(η; q)] (50)

1(−q)Lϑ[ϑ(η; q)− ϑ0(η)] = qhϑ Hϑ(η)Nhϑ[ f (η; q), ϑ(η; q), φ(η; q)] (51)

1(−q)Lφ[φ(η; q)− φ0(η)] = qhφHφ(η)Nhφ[ f (η; q), ϑ(η; q), φ(η; q)] (52)

In the above equations, } f ,}ϑ and }φ = nonzero convergence controlling auxiliary
parameters, and Nh f , Nhϑ, Nhφ = nonlinear operators defined by:

Nh f [ f (η; q), ϑ(η; q), φ(η; q)] = f
′′′
+ a1 f

′ − 2β f
′
f
′′′
+ a2 f

′′′
+ a3 f

′′
−M2 f

′
+ a4 f

+ β f
′′

f
′′
+ a5 f

′′′′
+ Gtϑ + β f f

′′′′
+ a6 f + a7 f

′′
− f f

′′
+ Gmφ + a8 f

′ − f
′
f
′

(53)

Nhϑ[ f (η; q), ϑ(η; q), φ(η; q1)] = (+R)ϑ
′′
+ Pr f ϑ

′
+ b1 f + b2ϑ

′
+ αϑ− Pr f

′
ϑ

+ b3 f
′
+ b4ϑ + PrE f

′′
f
′′
+ b5 f

′′
+ D f Prφ

′′
(54)

Nhϑ[ f (η; q), ϑ(η; q), φ(η; q)] = φ
′′
+ Sc f φ

′
+ c1 f + c2φ

′
+ ScSrϑ

′′
− Sc f

′
φ+ c3 f

′
+ c4φ (55)

Differentiating (50)–(52) m times w.r.t. q and taking q = 0 and dividing the outcome
expressions by m!, we obtain the mth deformation order equations:

L f [ f (ξ)− χm f m−1(ξ)] = h f (ξ)R f
m(ξ) (56)

Lϑ[ϑ(ξ)− χmϑm−1(ξ)] = hϑ(ξ)Rϑ
m(ξ) (57)

Lφ[φ(ξ)− χmφm−1(ξ)] = hφ(ξ)Rφ
m(ξ) (58)

subject to:

f m(−1) = ϑm(−1) = φm(−1) = 0, f ′m(1) = ϑm(1) = φm(1) = 0 (59)

where
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R f
m(ξ) = f m−1 + a1 f

′
m−1 + a2 f

′′

m−1 + a3 f
′′′

m−1 + a4 f m−1 −M2 f
′
m−1 + a5 f

′′′′

m−1 + Gtϑm−1 + a6 f m−1 + a7 f
′′

m−1

Gmφm−1 + a8 f
′
m−1 +

m−1
∑

n=0

(
−2β f

′
n f
′′′

m−1−n + β f
′′

n f
′′

m−1−n + β f n f
′′′

m−1−n − f n f
′′

m−1−n − f
′
n f
′
m−1−n

)
−H1(η)1(−χm)

(60)

Rϑ
m(ξ1) = (+R)ϑ

′′

m−1 + b1 f m−1 + b2ϑ
′
m−1 + αϑm−1 + b3 f

′
m−1 + b4ϑm−1 + b5 f

′′

m−1 + PrD f φ
′′

m−1

+
m−1

∑
n=0

(
Pr f nϑ

′
m−1−n − Pr f

′
nϑm−1−n + PrE f

′′

n f
′′

m−1−n

)
− H2(η)1(−χm) (61)

Rφ
m(ξ) = φ

′′

m−1 + c1 f m−1 + c2φ
′
m−1 + ScSrϑ

′′

m−1 + c3 f
′
m−1 + c4φm−1

+
m−1

∑
n=0

(
Sc f nφ

′
m−1−n − Sc f

′
nφm−1−n

)
− H3(η1)(−χm) (62)

4. Results and Discussion

Equations (18)–(20) subject to constraints (21) and (22) have been numerically ad-
dressed utilizing SHAM for all controlling terms such as the viscoelastic term (β), Mag-
netism term (M), thermal Grashof (Gt), mass Grashof (Gm), thermal radiation term (R),
Prandtl (Pr), Eckert (E), heat generation/absorption parameter (α), Dufour number (Df),
suction/injection velocity (Sw), Schmidt (Sc), and Soret term (Sr). SHAM combines the
Chebyshev psedospectral techniques with HAM in solving differential equations. Through-
out our computational analysis, we employ M = 1.0, Gt = 2.0, R = 0.5, Pr = 0.71, E = 0.01,
Sw = 0.1, α = 0.01, β = 0.01, Sr = 0.2 and Df = 0.3, Sc = 0.61 to compute tables and plot
graphs, unless stated otherwise.

Figure 2 explains the contribution of the thermal radiation term on the velocity, con-
centration, and temperature plots. Thermal radiation boasts convective flow as an upsurge
in thermal radiation causes a significant elevation in the fluid velocity together with tem-
perature. This ascension is shown in Figure 2a,b because, as thermal radiation increases,
the velocity plus temperature plot increases.
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Figure 3 represents the contribution of the magnetic term to the velocity, concentration,
and temperature plot. From Figure 3a, it is seen that increases in the magnetic term produces
a reduction in the velocity profile. This is owing to the fact the Lorentz force produced by
the applied magnetism strength in the direction of the flow. In Figure 3b,c, it observed that
an increase in the magnetism term increases the temperature and concentration plots.
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Figure 3. Effect of magnetic parameter M on (a) velocity, (b) temperature, and (c) concentration profiles.

Prandtl number behavior is elucidated in Figure 4. It is noticeable that an increase in
Prandtl (Pr) reduces the velocity and temperature profiles. This is because small values
of Pr lead to elevation in thermal conductivities, which causes heat to diffuse out of the
heated plate faster than when the Pr number is high. It is noted that when the Prandtl
number is small (meaning Pr < 1), the fluid will be conducive.
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Figure 4. Effect of Prandtl number Pr on (a) velocity, (b) temperature, and (c) concentration profiles.

Figure 5 represents the contribution of the viscous/energy term (i.e., Eckert) on temper-
ature and velocity, as well as concentration distributions. The viscous/energy dissipation
represents the relationship existing between the kinetic energy of fluid movement and the
enthalpy. It is obvious from Figure 5a,b that as the Eckert number increases, elevation in
the velocity and temperature of the fluid is observed.
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Figure 5. Effect of Eckert number E on (a) velocity, (b) temperature, and (c) concentration profiles.

Figure 6 exhibits the velocity, concentration, and temperature plots for distinct num-
bers of Schmidt (Sc). Sc defined the quotient of momentum over mass diffusivity. Thus,
in Figure 6c, a decrease in the concentration distribution is observed when Sc is increased.
In fact, it shows that larger values of Sc are equivalent to very small mass diffusivity. In
Figure 6a, a degeneration in the fluid velocity is noted when Sc is increased.
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Figure 6. Effect of Schmidt number Sc on (a) velocity, (b) temperature, and (c) concentration profiles.

The influence of suction velocity (Sw) is explored in Figure 7. It is noticeable that
acceleration in the suction velocity causes an elevation in the velocity, as well as temperature
at the plate, but decreases when it is further from the plate as shown in Figure 7a,b.
Moreover, from Figure 7c, an elevation in the concentration can be observed when the
suction velocity is higher.
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Figure 7. Effect of suction velocity Sw on (a) velocity, (b) temperature, and (c) concentration profiles.

The contribution of Dufour and Soret is explained separately for thorough investiga-
tions. We plotted the contribution of Dufour on the velocity, concentration, and temperature
graphs in Figure 8. It is noticed that the Dufour or diffusion thermal parameter alters the
temperature. From Figure 8a, as the Dufour parameter is intensified, the fluid velocity
increases, whereas Figure 8b shows that a higher value of the Dufour term produces an
acceleration in the fluid temperature. In the same vein, the effect of Dufour on the fluid
concentration is very minimal, as shown in Figure 8c.
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contribution of the Soret term (Sr) and Dufour parameter (Df) on the temperature and 

concentration plot is opposite. 

Figure 8. Effect of Dufour parameter Df on (a) velocity, (b) temperature, and (c) concentration profiles.

Figure 9 represents the consideration of a distinct Soret number in the concentration,
velocity, and temperature plots. Figure 9c shows that an increment in the Soret term
produces an acceleration in the concentration plot, as expected. In Figure 9a, an increase
in the velocity graph is detected with a higher value of the Soret term. We observed that
the contribution of the Soret term (Sr) and Dufour parameter (Df) on the temperature and
concentration plot is opposite.
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Figure 9. Effect of Soret parameter Sr on (a) velocity, (b) temperature, and (c) concentration profiles.

The contribution of the viscoelastic term (β) (i.e., Weissenberg numeric) is plotted
in Figure 10. The viscoelastic parameter β describes the influence of the coefficient of
normal stress on the motion. Figure 10a portrays the contribution of the viscoelastic
term on the velocity graph. It is detected from the graph that at any moment in the
flow regime, an increase in β produces a drastic degeneration in the velocity of the fluid,
whereas we observed in this study that a higher value of the viscoelastic term has no
contribution to the temperature and concentration plot as depicted in Figure 10b,c. The
result in Figure 10a signifies that a higher value of β has the tendency to decrease the
hydrodynamics layer thickness.
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the temperature within the layer is enhanced. 

Figure 10. Effect of Weissenberg number β on (a) velocity, (b) temperature, and (c) concentration profiles.

We plotted the contribution of the heat absorption/generation term (α) on the velocity,
concentration, and temperature distributions in Figure 11. It is detected from Figure 11a,b
that a higher α produces an acceleration in the fluid velocity and temperature. This signifies
that temperature together with velocity in the boundary layer increases when α > 0 while
the reverse is the case when α < 0. Thus, when α > 0, more heat is generated and the
temperature within the layer is enhanced.
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Figure 11. Effect of heat generation parameter α on (a) velocity, (b) temperature, and (c) concentration
profiles.

The contribution of the thermal Grashof number (Gt) is elucidated in Figure 12. Gt
defined the ratio of the force of buoyancy to that of viscous material affecting the liquid. The
thermal Grashof number can also be called the thermal buoyancy force term. As expected, in
Figure 12a. the fluid velocity elevates as the thermal buoyancy force parameter is intensified.
Furthermore, from Figure 12b, the temperature field decreases with a higher value of
thermal Grashof. It is interesting to observe a slight degeneration in the concentration field
when Gt is increased.
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Figure 12. Effect of thermal Grashof number Gt on (a) velocity, (b) temperature, and (c) concentration
profiles.

Figure 13 represents the effect of the mass Grashof number (Gm) on the velocity,
concentration, and temperature graphs. In Figure 13a, it is discovered that an increment
in the Gm number allows a rise in the velocity of the fluid. In the same vein, as seen in
Figure 13b,c a higher mass Grashof decreases both the temperature and concentration.
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Figure 13. Effect of mass Grashof number Gm on (a) velocity, (b) temperature, and (c) concentration
profiles.

Table 1 shows the numeric local skin friction, local Nusselt (Nu), and local Sherwood
number (Sh). For distinct values of the viscoelastic parameter (β) and thermal Grashof
number (Gt), they produce a notable elevation in the skin friction, local Nusselt, and local
Sherwood numbers, respectively. In Table 2, we present the numeric local skin friction,
local Nusselt, and Sherwood numbers for distinct values of the heat generation parameter
(α) and Soret number (Sr). The results in Table 2 revealed that an increase in both heat
generation α and the Soret number causes an increase in the skin friction, Nusselt, and
Sherwood numbers.
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Table 1. Numeric values of local skin friction, local Nusselt, and local Sherwood numbers for distinct
values of viscoelastic parameter (β) and thermal Grashof number when M = 1.0, R = 0.5, Pr = 0.71,
E = 0.01, Sw = 0.1, α = 0.01, Sr = 0.2, Df = 0.3, Sc = 0.61.

β Gt Cf Nu Sh

0.0 0 0.35362 0.65313 0.92109
0.5 0.53971 0.67986 0.94349
1 0.72152 0.70418 0.96415
2 1.07430 0.74707 1.001256

0.01 0 0.35618 0.65291 0.92095
0.5 0.54379 0.67981 0.94351
1 0.72714 0.0.70430 0.96431
2 1.08301 0.0.74750 1.00168

0.05 0 0.36766 0.65211 0.92051
0.5 0.56172 0.67975 0.94369
1 0.75155 0.70493 0.96508
2 1.12046 0.74942 1.00358

Table 2. Numeric values of local skin friction, local Nusselt, and local Sherwood numbers for distinct
values of heat generation parameter (α) and Soret number (Sr) when M = 1.0, R = 0.5, Pr = 0.71,
E = 0.01, Sw = 0.1, Sr = 0.2, Df = 0.3, Sc = 0.61.

β = 0, Sw = 0.02 β = 0.01, Sw = 0.06

α Sr Cf Nu Sh Cf Nu Sh

0.0 0 1.09417 0.70364 1.01421 1.05091 0.74833 1.06656
0.5 1.13712 0.74918 0.88981 1.09354 0.79586 0.92930
1 1.18712 0.80057 0.74683 1.14279 0.84920 0.77128
2 1.31471 0.92566 0.38704 1.26665 0.97771 0.37455

0.02 0 1.09968 0.69008 1.01670 1.05523 0.73602 1.06848
0.5 1.14095 0.73666 0.89450 1.09652 0.78449 0.93333
1 1.18941 0.78945 0.75314 1.14456 0.83905 0.77707
2 1.31473 0.91886 0.39461 1.26665 0.97114 0.38196

0.08 0 1.11955 0.64363 1.02623 1.06975 0.69593 1.07521
0.5 1.15414 0.69539 0.91000 1.10609 0.74877 0.94608
1 1.19652 0.75529 0.77245 1.14970 0.80902 0.79406
2 1.31363 0.90744 0.40934 1.26587 0.95815 0.39801

5. Conclusions

This study presents the numerical outcomes of the MHD free convective motion of
Walters-B liquid past a permeable accelerating surface with the contribution of Soret and
Dufour. The equations of motion PDEs, which modeled the problem under investigation,
were evaluated into fourth-order coupled and highly nonlinear total differential equations
with suitable similarity functions. We solved the transformed fourth-order coupled and
highly nonlinear ordinary differential equations in Equations (19)–(21) using SHAM. SHAM
uses the traditional HAM in conjunction with the Chebyshev pseudospectral method to
solve differential equations. Spectral methods are now an essential instrument for scientist
and engineers to solve complex problems. Detailed explanations of SHAM are presented in
the previous section.

The present results show that the application of magnetism gives rise to a drag-like
force (i.e., Lorentz force), thereby lowering the fluid velocity. This study also explains the
application of the MHD flow of viscoelastic fluid in biomechanics, the petroleum industry,
etc. The present results reveal that the velocity decreases drastically with an increase in the
viscoelastic parameter (β). Furthermore, this study shows that an increase in the Dufour
parameter intensifies the fluid velocity alongside temperature. This is owing to the energy
flux, which rises due to the concentration gradient, which is inversely proportional to the
velocity. In the same vein, a higher Soret term increases the velocity and concentration field.
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Finally, the influence of Soret, Dufour, thermal radiation, and heat generation/absorption
on the flow region is significant and thereby finds application in diverse problems in
engineering such as isotope separation, nuclear waste disposal, petroleum reservoirs, etc.
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Nomenclature

u x-axis velocity component (Unit: m/s)
v y-axis component (Unit: m/s)
g gravity
D diffusivity
β0 Constant magnetism
cp specific heat (Unit: J/kgk)
qr radiative heat flux (Unit: W/m2)
kT Ratio of thermal diffusion
cs concentration susceptivity
Tw Temperature (Unit: K)
Cw concentration
k0 viscoelastic term
Q0 heat generation term
ks absorption coefficient
σ* Stefan-Boltzman
βt, βc Thermal expansion and concentration, respectively
α Angle of inclination (Unit: degree)
ϑ Dimensionless temperature (Unit: K)
ϕ Dimensionless concentration
T∞ temperature far from layers (Unit: K)
C∞ Concentration far from layers (Unit: mol)
σ electrical conductivity
ρ Density of liquid (Unit: kg/m3

ν Viscosity of liquid (Unit: m2/s)
ψ stream relations (Unit: m2/s)
η Distance variable (Unit: dimensionless)
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