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Abstract: Adversarial attacks pose a major threat to machine learning and to the systems that rely
on it. In the cybersecurity domain, adversarial cyber-attack examples capable of evading detection
are especially concerning. Nonetheless, an example generated for a domain with tabular data must
be realistic within that domain. This work establishes the fundamental constraint levels required to
achieve realism and introduces the adaptative perturbation pattern method (A2PM) to fulfill these
constraints in a gray-box setting. A2PM relies on pattern sequences that are independently adapted
to the characteristics of each class to create valid and coherent data perturbations. The proposed
method was evaluated in a cybersecurity case study with two scenarios: Enterprise and Internet of
Things (IoT) networks. Multilayer perceptron (MLP) and random forest (RF) classifiers were created
with regular and adversarial training, using the CIC-IDS2017 and IoT-23 datasets. In each scenario,
targeted and untargeted attacks were performed against the classifiers, and the generated examples
were compared with the original network traffic flows to assess their realism. The obtained results
demonstrate that A2PM provides a scalable generation of realistic adversarial examples, which can
be advantageous for both adversarial training and attacks.

Keywords: realistic adversarial examples; adversarial attacks; adversarial robustness; machine
learning; tabular data; intrusion detection

1. Introduction

Machine learning is transforming the way modern organizations operate. It can be
used to automate and improve various business processes, ranging from the recognition
of patterns and correlations to complex regression and classification tasks. However,
adversarial attacks pose a major threat to machine learning models and to the systems
that rely on them. A model can be deceived into predicting incorrect results by slightly
modifying original data, which creates an adversarial example. This is especially concerning
for the cybersecurity domain because adversarial cyber-attack examples capable of evading
detection can cause significant damage to an organization [1,2].

Depending on the utilized method, the data perturbations that result in an adversarial
example can be created in one of three settings: black-, gray- and white-box. The first
solely queries a model’s predictions, whereas the second may also require knowledge
of its structure or the utilized feature set, and the latter needs full access to its internal
parameters. Even though machine learning is inherently susceptible to these examples, a
model’s robustness can be improved by various defense strategies. A standard approach
is performing adversarial training, a process where the training data is augmented with
examples generated by one or more attack methods [3,4].

Nonetheless, a method can only be applied to a given domain if the examples it
generates are realistic within that domain. In cybersecurity, a domain with tabular data, if
an adversarial example does not resemble real network traffic, a network-based intrusion
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detection system (NIDS) will never actually encounter it because it cannot be transmitted
through a computer network. Furthermore, if an example can be transmitted but is incom-
patible with its intended malicious purpose, evading detection will be futile because no
damage can be caused. Consequently, training machine learning models with unrealistic
cyber-attack examples only deteriorates their generalization to real computer networks and
attack scenarios. Therefore, the generation of realistic adversarial examples for domains
with tabular data is a pertinent research topic.

This work addressed the challenge of generating realistic examples, with a focus
on network-based intrusion detection. The main contributions are the establishment of
the fundamental constraint levels required to achieve realism and the introduction of the
adaptative perturbation pattern method (A2PM) to fulfil these constraints in a gray-box
setting. The capabilities of the proposed method were evaluated in a cybersecurity case
study with two scenarios: Enterprise and Internet of Things (IoT) networks. It generated
adversarial network traffic flows for multi-class classification by creating data perturbations
in the original flows of the CIC-IDS2017 and IoT-23 datasets.

Due to the noticeably different internal mechanics of an artificial neural network
(ANN) and a tree-based algorithm, the study analyzed the susceptibility of both types of
models to the examples created by A2PM. A total of four multilayer perceptron (MLP)
and four random forest (RF) classifiers were created with regular and adversarial training,
and both targeted and untargeted attacks were performed against them. To provide a
thorough analysis, example realism and time consumption were assessed by comparing the
generated examples with the corresponding original flows and recording the time required
for each A2PM iteration.

The present article is organized into multiple sections. Section 2 defines the funda-
mental constraint levels and provides a survey of previous work on adversarial examples.
Section 3 describes the proposed method and the key concepts it relies on. Section 4 presents
the case study and an analysis of the obtained results. Finally, Section 5 addresses the main
conclusions and future work.

2. Related Work

In recent years, adversarial examples have drawn attention from a research perspective.
However, since the focus has been the image classification domain, the generation of
realistic examples for domains with tabular data remains a relatively unexplored topic. The
common adversarial approach is to exploit the internal gradients of an ANN in a white-box
setting, creating unconstrained data perturbations [5–7]. Consequently, most state-of-the-
art methods do not support other types of machine learning models nor other settings,
which severely limits their applicability to other domains. This is a pertinent aspect of the
cybersecurity domain, where white-box is a highly unlikely setting. Considering that a
NIDS is developed in a secure context, an attacker will commonly face a black-box setting,
or occasionally gray-box [8,9].

The applicability of a method for adversarial training is significantly impacted by the
models it can attack. Despite an adversarially robust generalization still being a challenge,
significant progress has been made in ANN robustness research [10–14]. However, various
other types of algorithms can be used for a classification task. This is the case of network-
based intrusion detection, where tree-based algorithms, such as RF, are remarkably well-
established [15,16]. They can achieve a reliable performance on regular network traffic,
but their susceptibility to adversarial examples must not be disregarded. Hence, these
algorithms can benefit from adversarial training and several defense strategies have been
developed to intrinsically improve their robustness [17–20].

In addition to the setting and the supported models, the realism of the examples
generated by a method must also be considered. Martins et al. [21] performed a systematic
review of recent developments in adversarial attacks and defenses for cybersecurity and
observed that none of the reviewed articles evaluated the applicability of the generated
examples to a real intrusion detection scenario. Therefore, it is imperative to establish the
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fundamental constraints an example must comply with to be applicable to a real scenario
on a domain with tabular data. We define two constraint levels:

1. Domain constraints—Specify the inherent structure of a domain.
2. Class-specific constraints—Specify the characteristics of a class.

To be valid on a given domain, an example can solely reach the first level. Nonetheless,
full realism is only achieved when it is also coherent with the distinct characteristics of its
class, reaching the second. In a real scenario, each level will contain concrete constraints for
the utilized data features. These can be divided into two types:

• Intra-feature constraints—Restrict the value of a single feature.
• Inter-feature constraints—Restrict the values of one or more features according to the

values present in other features.

In a real computer network, an example must fulfil the domain constraints of the
utilized communication protocols and the class-specific constraints of each type of cyber-
attack. Apruzzese et al. [8] proposed a taxonomy to evaluate the feasibility of an adversarial
attack against a NIDS, based on access to the training data, knowledge of the model and
feature set, reverse engineering and manipulation capabilities. It can provide valuable
guidance to establish the concrete constraints of each level for a specific system.

Even though some methods attempt to fulfil a few constraints, many exhibit a clear
lack of realism. Table 1 summarizes the characteristics of the most relevant methods of the
current literature, including the constraint levels they attempt to address. The keyword ‘CP’
corresponds to any model that can output class probabilities for each data sample, instead
of a single class label.

Table 1. Summary of relevant methods and addressed constraint levels.

Method Setting Supported
Models

Domain
Constraints

Class-Specific
Constraints

FGSM [3] White-box ANN 7 7

C&W [22] White-box ANN 7 7

DeepFool [23] White-box ANN 7 7

Houdini [24] White-box ANN 7 7

StrAttack [25] White-box ANN 7 7

ZOO [26] White-box ANN 7 7

JSMA [27] White-box ANN X 7

Polymorphic [28] Gray-box ANN 7 X
Reconstruction [29] Gray-box ANN 7 7

OnePixel [30] Black-box CP X 7

RL-S2V [31] Black-box CP 7 7

BMI-FGSM [32] Black-box Any 7 7

GAN [33] Black-box Any 7 7

WGAN [34] Black-box Any 7 7

Boundary [35] Black-box Any 7 7

Query-Efficient [36] Black-box Any 7 7

Regarding the Polymorphic attack [28], it addresses the preservation of original class
characteristics. Chauhan et al. developed it for the cybersecurity domain, to generate
examples compatible with a cyber-attack’s purpose. The authors start by applying a
feature selection algorithm to obtain the most relevant features for the distinction between
benign network traffic and each cyber-attack. Then, the values of the remaining features,
which are considered irrelevant for the classification, are perturbed by a Wasserstein
generative adversarial network (WGAN) [34]. On the condition that there are no class-
specific constraints for the remaining features, this approach could improve the coherence
of an example with its class. Nonetheless, the unconstrained perturbations created by
WGAN disregard the domain structure, which inevitably leads to invalid examples.
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On the other hand, both the Jacobian-based saliency map attack (JSMA) [27] and
the OnePixel attack [30] could potentially preserve a domain structure. The former was
developed to minimize the number of modified pixels in an image, requiring full access to
the internal gradients of an ANN, whereas the latter only modifies a single pixel, based on
the class probabilities predicted by a model. These methods perturb the most appropriate
features without affecting the remaining features, which could be beneficial for tabular
data. However, neither validity nor coherence can be ensured because they do not account
for any constraint when creating the perturbations.

To the best of our knowledge, no previous work has introduced a method capable of
complying with the fundamental constraints of domains with tabular data, which hinders
the development of realistic attack and defense strategies. This is the gap in the current
literature addressed by the proposed method.

3. Proposed Method

A2PM was developed with the objective of generating adversarial examples that fulfil
both domain and class-specific constraints. It benefits from a modular architecture to assign
an independent sequence of adaptative perturbation patterns to each class, which analyze
specific feature subsets to create valid and coherent data perturbations. Even though it
can be applied in a black-box setting, the most realistic examples are obtained in gray-box,
with only knowledge of the feature set. To fully adjust it to a domain, A2PM only requires
a simple base configuration for the creation of a pattern sequence. Afterwards, realistic
examples can be generated from original data to perform adversarial training or to directly
attack a classifier in an iterative process (Figure 1).
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Figure 1. Adaptative perturbation pattern method (business process model and notation).

The generated examples can be untargeted, to cause any misclassification, or targeted,
seeking to reach a specific class. New data perturbations could be generated indefinitely,
but it would be computationally expensive. Hence, early stopping is employed to end the
attack when the latest iterations could not cause any further misclassifications. Besides
static scenarios where the full data is available, the proposed method is also suitable for
scenarios where it is provided over time. After the pattern sequences are created for an
initial batch of data, these can be incrementally adapted to the characteristics of subsequent
batches. If novel classes are provided, the base configuration is used to autonomously
create their respective patterns.

The performed feature analysis relies on two key concepts: value intervals and value
combinations. The following subsections detail the perturbation patterns built upon these
concepts, as well as the advantages of applying them in sequential order.
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3.1. Interval Pattern

To perturb uncorrelated numerical variables, the main aspect to be considered is the
interval of values each one can assume. This is an intra-feature constraint that can be
fulfilled by enforcing minimum and maximum values.

The interval pattern encapsulates a mechanism that records the valid intervals to create
perturbations tailored to the characteristics of each feature (Figure 2). It has a configurable
‘probability to be applied’, in the (0, 1] interval, which is used to randomly determine if an
individual feature will be perturbed or not. Additionally, it is also possible to specify only
integer perturbations for specific features.
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Instead of a static interval, moving intervals can be utilized after the first batch to
enable an incremental adaptation to new data, according to a configured momentum. For a
given feature and a momentum k ∈ [0, 1], the updated minimum mi and maximum Mi of
a batch i are mathematically defined as:

mi = mi−1 ∗ k + min(xi) ∗ (1− k) (1)

Mi = Mi−1 ∗ k + max(xi) ∗ (1− k) (2)

where min(xi) and max(xi) are the actual minimum and maximum values of the samples
xi of batch i.

Each perturbation is computed according to a randomly generated number and is
affected by the current interval, which can be either static or moving. The random number
ε ∈ (0, 1] acts as a ratio to scale the interval. To restrict its possible values, it is generated
within the standard range of [0.1, 0.3], although other ranges can be configured. For a
given feature, a perturbation Pi of a batch i can be represented as:

Pi = (Mi −mi) ∗ ε (3)

After a perturbation is created, it is randomly added or subtracted to the original value.
Exceptionally, if the original value is less or equal to the current minimum, it is always
increased, and vice-versa. The resulting value is capped at the current interval to ensure it
remains within the valid minimum and maximum values of that feature.

3.2. Combination Pattern

Regarding uncorrelated categorical variables, enforcing their limited set of qualitative
values is the main intra-feature constraint. Therefore, the interval approach cannot be
replicated even if they are encoded to a numerical form, and a straightforward solution
can be recording each value a feature can assume. Nonetheless, the most pertinent aspect
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of perturbing tabular data is the correlation between multiple variables. Since the value
present in a variable may influence the values used for other variables, there can be several
inter-feature constraints. To improve beyond the previous solution and fulfil both types of
constraints, several features can be combined into a single common record.

The combination pattern records the valid combinations to perform a simultaneous
and coherent perturbation of multiple features (Figure 3). It can be configured with locked
features, whose values are used to find combinations for other features without being
modified. Due to the simultaneous perturbations, its ‘probability to be applied’, in the
(0, 1] interval, can affect several features.
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Besides the initially recorded combinations, new data can provide additional possi-
bilities. These can be merged with the previous or used as gradual updates. For a given
feature and a momentum k ∈ [0, 1], the number of updated combinations Ci of a batch i is
mathematically expressed as:

Ci = Ci−1 ∗ k + unique(xi) (4)

where unique(xi) is the number of unique combinations of the samples xi of batch i.
Each perturbation created by this pattern consists of a combination randomly selected

from the current possibilities, considering the locked features. It directly replaces the
original values, ensuring that the features remain coherent.

3.3. Pattern Sequences

Domains with diverse constraints may require an aggregation of several interval and
combination patterns, which can be performed by pattern sequences. Furthermore, the
main advantage of applying multiple patterns in a sequential order is that it enables the
fulfilment of countless inter-feature constraints of greater complexity. It is pertinent to note
that all patterns in a sequence are independently adapted to the original data, to prevent
any bias when recording its characteristics. Afterwards, the sequential order is enforced to
create cumulative perturbations on that data.

To exemplify the benefits of using these sequences, a small, but relatively complex,
domain will be established. It contains three nominal features, F0, F1 and F2, and two
integer features, F3 and F4. For an adversarial example to be realistic within this domain, it
must comply with the following constraints:

• F0 must always keep its original value,
• F1 and F4 can be modified but must have class-specific values,
• F2 and F3 can be modified but must have class-specific values, which are influenced

by F0 and F1.
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The base configuration corresponding to these constraints specifies the feature subsets
that each pattern will analyze and perturb:

1. Combination pattern—Modify {F1};
2. Combination pattern—Modify {F2, F3}, Lock {F0, F1};
3. Interval pattern—Modify {F3, F4}, Integer {F3, F4}.

A2PM will then assign each class to its own pattern sequence. For this example, the
‘probability to be applied’ will be 1.0 for all patterns, to demonstrate all three cumulative
perturbations (Figure 4). The first perturbation created for each class is replacing F1 with
another valid qualitative value, from ‘B’ to ‘C’. Then, without modifying the original F0 nor
the new F1, a valid combination is found for F0, F1, F2 and F3. Since the original F2 and F3
were only suitable for ‘A’ and ‘B’, new values are found to match ‘A’ and ‘C’. Finally, the
integer features F3 and F4 are perturbed according to their valid intervals. Regarding F3, to
ensure it remains coherent with F0 and F1, the perturbation is created on the value of the
new combination.
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4. Experimental Evaluation

A case study was conducted to evaluate the capabilities of the proposed method, as
well as its suitability for multi-class classification on the cybersecurity domain. Assessments
of example realism and time consumption were performed by comparing the examples
generated by A2PM with the original data and recording the time required for each iteration.
To thoroughly analyze example realism, the assessment included examples generated by
the potential alternatives of the current literature: JSMA and OnePixel.

Since the internal mechanics of an ANN and a tree-based algorithm are noticeably
different, the susceptibility of both types of models to A2PM was analyzed by performing
targeted and untargeted attacks against MLP and RF classifiers. Two scenarios were
considered: Enterprise and IoT networks. For these scenarios, adversarial network traffic
flows were generated using the original flows of the CIC-IDS2017 and the IoT-23 datasets,
respectively. In addition to evaluating the robustness of models created with regular
training, the effects of performing adversarial training with A2PM were also analyzed.

The study was conducted on relatively common hardware: a machine with 16 gi-
gabytes of random-access memory, an 8-core central processing unit, and a 6-gigabyte
graphics processing unit. The implementation relied on the Python 3 programming lan-
guage and several libraries: Numpy and Pandas for data preprocessing and manipulation,
Tensorflow for the MLP models, Scikit-learn for the RF models, and Adversarial-Robustness-
Toolbox for the alternative methods. The following subsections describe the most relevant
aspects of the case study and present an analysis of the obtained results.
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4.1. Datasets and Data Preprocessing

Both CIC-IDS2017 and IoT-23 are public datasets that contain multiple labeled cap-
tures of benign and malicious network flows. The recorded data is extremely valuable
for intrusion detection because it includes various types of common cyber-attacks and
manifests real network traffic patterns.

CIC-IDS2017 [37] consists of seven captures of cyber-attacks performed on a standard
enterprise computer network with 25 interacting users. It includes denial-of-service and
brute-force attacks, which were recorded in July 2017 and are available at the Canadian
Institute for Cybersecurity. In contrast, IoT-23 [38] is directed at the emerging IoT networks,
with wireless communications between interconnected devices. It contains network traffic
created by malware attacks targeting IoT devices between 2018 and 2019, divided into
23 captures and available at the Stratosphere Research Laboratory.

From each dataset, two captures were selected and merged, to be utilized for the
corresponding scenario. Table 2 provides an overview of their characteristics, including the
class proportions and the label of each class, either ‘Benign’ or a specific type of cyber-attack.
The ‘PartOfAHorizontalPortScan’ label was shortened to ‘POAHPS’.

Table 2. Main characteristics of utilized datasets.

Scenario Dataset
(Captures)

Total
Samples

Class
Samples

Class
Label

Enterprise
Network

CIC-IDS2017
(Tuesday and
Wednesday)

1,138,612

873,066 Benign
230,124 Hulk
10,293 GoldenEye
7926 FTP-Patator
5897 SSH-Patator
5796 Slowloris
5499 Slowhttptest

11 Heartbleed

IoT
Network

IoT-23
(1-1 and 34-1) 1,031,893

539,587 POAHPS
471,198 Benign
14,394 DDoS
6714 C&C

Before their data was usable, both datasets required a similar preprocessing stage.
First, the features that did not provide any valuable information about a flow’s benign
or malicious purpose, such as timestamps and IP addresses, were discarded. Then, the
categorical features were converted to numeric values by performing one-hot encoding.
Due to the high cardinality of these features, the very low frequency categories were
aggregated into a single category designated as ‘Other’, to avoid encoding qualitative
values that were present in almost no samples and therefore had a small relevance.

Finally, the holdout method was applied to randomly split the data into training
and evaluation sets with 70% and 30% of the samples. To ensure that the original class
proportions were preserved, the split was performed with stratification. The resulting CIC-
IDS2017 sets were comprised of eight imbalanced classes and 83 features, 58 numerical and
25 categorical, whereas the IoT-23 sets contained four imbalanced classes and approximately
half the structural size, with 42 features, 8 numerical and 34 categorical.

4.2. Base Configurations

After the data preprocessing stage, the distinct characteristics of the datasets were ana-
lyzed to identify their concrete constraints and establish the base configurations for A2PM.
Regarding CIC-IDS2017, some numerical features had discrete values that could only have
integer perturbations. Due to the correlation between the encoded categorical features,
they required combined perturbations to be compatible with a valid flow. Additionally,
to guarantee the coherence of a generated flow with its type of cyber-attack, the encoded
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features representing the utilized communication protocol and endpoint, designated as
port, could not be modified. Hence, the following configuration was used for the Enterprise
scenario, after it was converted to the respective subset of feature indices:

1. Interval pattern—Modify {numerical features}, Integer {discrete features};
2. Combination pattern—Modify {categorical features}, Lock {port, protocol}.

Despite the different features of IoT-23, it presented similar constraints. The main
difference was that, in addition to the communication protocol, a generated flow had to be
coherent with the application protocol as well, which was designated as service. The base
configuration utilized for the IoT scenario was:

1. Interval pattern—Modify {numerical features}, Integer {discrete features};
2. Combination pattern—Modify {categorical features}, Lock {port, protocol, service}.

It is pertinent to note that, for the ‘Benign’ class, A2PM would only generate benign
network traffic that could be misclassified as a cyber-attack. Therefore, the configurations
were only applied to the malicious classes, to generate examples compatible with their
malicious purposes. Furthermore, since the examples should resemble the original flows
as much as possible, the ‘probability to be applied’ was 0.6 and 0.4 for the interval and
combination patterns, respectively. These values were established to slightly prioritize
the small-scale modifications of individual numerical features over the more significant
modifications of combined categorical features.

4.3. Models and Fine-Tuning

A total of four MLP and four RF classifiers were created, one per scenario and training
approach: regular or adversarial training. The first approach used the original training sets,
whereas the latter augmented the data with one adversarial example per malicious flow. To
prevent any bias, the examples were generated by adapting A2PM solely to the training
data. The models and their fine-tuning process are described below.

An MLP [39] is a feedforward ANN consisting of an input layer, an output layer and
one or more hidden layers in between. Each layer can contain multiple nodes with forward
connections to the nodes of the next layer. When utilized as a classifier, the number of input
and output nodes correspond to the number of features and classes, respectively, and a
prediction is performed according to the activations of the output nodes.

Due to the high computational cost of training an MLP, it was fine-tuned using a
Bayesian optimization technique [40]. A validation set was created with 20% of a training
set, which corresponded to 14% of the original samples. Since an MLP accounts for the loss
of the training data, the optimization sought to minimize the loss of the validation data.
To prevent overfitting, early stopping was employed to end the training when this loss
stabilized. Additionally, due to the class imbalance present in both datasets, the assigned
class weights were inversely proportional to their frequency.

The fine-tuning led to a four-layered architecture with a decreasing number of nodes
for both training approaches. The hidden layers relied on the computationally efficient
rectified linear unit (ReLU) activation function and the dropout technique, which inherently
prevents overfitting by randomly ignoring a certain percentage of the nodes during training.
To address multi-class classification, the Softmax activation function was used to normalize
the outputs to a class probability distribution. The MLP architecture for the Enterprise
scenario was:

1. Input layer—83 nodes, 512 batch size;
2. Hidden layer—64 nodes, ReLU activation, 10% dropout;
3. Hidden layer—32 nodes, ReLU activation, 10% dropout;
4. Output layer—8 nodes, Softmax activation.

A similar architecture was utilized for the IoT scenario, although it presented a de-
creased batch size and an increased dropout:

1. Input layer—42 nodes, 128 batch size;
2. Hidden layer—32 nodes, ReLU activation, 20% dropout;
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3. Hidden layer—16 nodes, ReLU activation, 20% dropout;
4. Output layer—4 nodes, Softmax activation.

The remaining parameters were common to both scenarios because of their equivalent
classification tasks. Table 3 summarizes the MLP configuration.

Table 3. Summary of multilayer perceptron configuration.

Parameter Value

Objective Loss Categorical Cross-Entropy
Optimizer Adam Algorithm

Learning Rate 0.001
Maximum Epochs 50

Class Weights Balanced

On the other hand, an RF [41] is an ensemble of decision trees, where each individual
tree performs a prediction according to a different feature subset, and the most voted class
is chosen. It is based on the wisdom of the crowd, the idea that a multitude of classifiers
will collectively make better decisions than just one.

Since training an RF has a significantly lower computational cost, a five-fold cross-
validated grid search was performed with well-established hyperparameter combinations.
In this process, five stratified subsets were created, each with 20% of a training set. Then, five
distinct iterations were performed, each training a model with four subsets and evaluating
it with the remaining one. Hence, the MLP validation approach was replicated five times
per combination. The macro-averaged F1-Score, which will be described in the next
subsection, was selected as the metric to be maximized. Table 4 summarizes the optimized
RF configuration, common to both scenarios and training approaches.

Table 4. Summary of random forest configuration.

Parameter Value

Splitting Criteria Gini Impurity
Number of Trees 100

Maximum Depth of a Tree 32
Minimum Samples in a Leaf 2

Maximum Features
√

Number of Features
Class Weights Balanced

4.4. Attacks and Evaluation Metrics

A2PM was applied to perform adversarial attacks against the fine-tuned models
for a maximum of 50 iterations, by adapting to the data of the holdout evaluation sets.
The attacks were untargeted, causing any misclassification of malicious flows to different
classes, as well as targeted, seeking to misclassify malicious flows as the ‘Benign’ class. To
perform a trustworthy evaluation of the impact of the generated examples on a model’s
performance, it was essential to select appropriate metrics. The considered metrics and
their interpretation are briefly described below [42,43].

Accuracy measures the proportion of correctly classified samples. Even though it is
the standard metric for classification tasks, its bias towards the majority classes must not
be disregarded when the minority classes are particularly relevant to a classification task,
which is the case of network-based intrusion detection [44]. For instance, in the Enterprise
scenario, 77% of the samples have the ‘Benign’ class label. Since A2PM was configured to
not generate examples for that class, even if an adversarial attack was successful and all
generated flows evaded detection, an accuracy score as high as 77% could still be achieved.
Therefore, to correctly exhibit the misclassifications caused by the performed attacks, the
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accuracy of a model was calculated using the network flows of all classes except ‘Benign’.
This metric can be expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP and TN are the number of true positives and negatives, correct classifications,
and FP and FN are the number of false positives and negatives, misclassifications.

Despite the reliability of accuracy for targeted attacks, it does not entirely reflect the
impact of the performed untargeted attacks. Due to their attempt to cause any misclassifi-
cation, their impact across all the different classes must also be measured. The F1-Score
calculates the harmonic mean of precision and recall, considering both false positives
and false negatives. To account for class imbalance, it can be macro-averaged, which
gives all classes the same relevance. This is a reliable evaluation metric because a score
of 100% indicates that all cyber-attacks are being correctly detected and there are no false
alarms. Additionally, due to the multiple imbalanced classes present in both datasets, it
is also the most suitable validation metric for the employed fine-tuning approach. The
macro-averaged F1-Score is mathematically defined as:

Macro-averaged F1−Score =
1
C
∗

C

∑
i=1

2 ∗ Pi ∗ Ri
Pi + Ri

(6)

where Pi and Ri are the precision and recall of class i, and C is the number of classes.

4.5. Enterprise Scenario Results

In the Enterprise network scenario, adversarial cyber-attack examples were generated
using the original flows of the CIC-IDS2017 dataset. The results obtained for the targeted
and untargeted attacks were analyzed, and assessments of example realism and time
consumption were performed. To assess the realism of the generated examples, these were
analyzed and compared with the corresponding original flows, considering the intricacies
and malicious purposes of the cyber-attacks. In addition to A2PM, the assessment included
its potential alternatives: JSMA and OnePixel. To prevent any bias, a randomly generated
number was used to select one example, detailed below.

The selected flow had the ‘Slowloris’ class label, corresponding to a denial-of-service
attack that attempts to overwhelm a web server by opening multiple connections and
maintaining them as long as possible [45]. The data perturbations created by A2PM
increased the total flow duration and the packet inter-arrival time (IAT), while reducing the
number of packets transmitted per second and their size. These modifications were mostly
focused on enhancing time-related aspects of the cyber-attack, to prevent its detection.
Hence, in addition to being valid network traffic that can be transmitted through a computer
network, the adversarial example also remained coherent with its class.

On the other hand, JSMA could not generate a realistic example for the selected flow.
It created a major inconsistency in the encoded categorical features by assigning a single
network flow to two distinct communication endpoints: destination ports number 80 (P80)
and 88 (P88). Due to the unconstrained perturbations, the value of the feature representing
P88 was increased without accounting for its correlation with P80, which led to an invalid
example. In addition to the original Push flag (PSH) to keep the connection open, the
method also assigned the Finished flag (FIN), which signals for connection termination
and therefore contradicts the cyber-attack’s purpose. Even though two numerical features
were also slightly modified, the adversarial example could only evade detection by using
categorical features incompatible with real network traffic.

Similarly, OnePixel also generated an example that contradicted the ‘Slowloris’ class.
The feature selected to be perturbed represented the Reset flag (RST), which also causes
termination. Since the method intended to perform solely one modification, it increased
the value of a feature that no model learnt to detect because it is incoherent with that
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cyber-attack. Consequently, neither JSMA nor OnePixel are adequate alternatives to A2PM
for tabular data. Table 5 provides an overview of the modified features. The ‘–’ character
indicates that the original value was not perturbed.

Table 5. Modified features of an adversarial ‘Slowloris’ example.

Feature Original Value A2PM Value JSMA Value OnePixel Value

Flow duration 109,034,141 119,046,064 109,034,140 –
Mean flow IAT 13,600,000 19,374,259 – –

Flow packets per second 0.0825 0.0429 0.0824 –
Mean forward packet length 49.4 48.1 – –

Minimum forward segment size 40 36 – –
Connection flags ‘PSH’ – ‘PSH’ + ‘FIN’ ‘PSH’ + ‘RST’
Destination port ‘P80’ – ‘P80’ + ‘P88’ –

Regarding the targeted attacks performed by A2PM, the models created with regu-
lar training exhibited significant performance declines. Even though both MLP and RF
achieved over 99% accuracy on the original evaluation set, a single iteration lowered their
scores by approximately 15% and 33%. In the subsequent iterations, more malicious flows
gradually evaded MLP detection, whereas RF was quickly exploited. After 50 iterations,
their very low accuracy evidenced their inherent susceptibility to adversarial examples. In
contrast, the models created with adversarial training kept significantly higher scores, with
fewer flows being misclassified as benign. By training with one generated example per
malicious flow, both classifiers successfully learned to detect most cyber-attack variations.
RF stood out for preserving the 99.91% it obtained on the original data throughout the
entire attack, which highlighted its excellent generalization (Figure 5).
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The untargeted attacks significantly lowered both evaluation metrics. The accuracy
and macro-averaged F1-Score declines of the regularly trained models were approximately
99% and 79%, although RF was more affected in the initial iterations. The inability of both
classifiers to distinguish between the different classes corroborated their high susceptibility
to adversarial examples. Nonetheless, when adversarial training was performed, the
models preserved considerably higher scores, with a gradual decrease of less than 2% per
iteration. Despite some examples still deceiving them into predicting incorrect classes,
both models were able to learn the intricacies of each type of cyber-attack, which mitigated
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the impact of the created data perturbations. The adversarially trained RF consistently
reached higher scores than MLP in both targeted and untargeted attacks, indicating a better
robustness (Figures 6 and 7).
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To analyze the time consumption of A2PM, the number of milliseconds required for
each iteration was recorded and averaged, accounting for the decreasing quantity of new
examples generated as an attack progressed. The generation was performed at a rate
of 10 examples per 1.7 milliseconds on the utilized hardware, which evidenced the fast
execution and scalability of the proposed method when applied to adversarial training and
attacks in enterprise computer networks.

4.6. IoT Scenario Results

In the IoT network scenario, the adversarial cyber-attack examples were generated
using the original flows of the IoT-23 dataset. The analysis performed for the previous
scenario was replicated to provide similar assessments, including the potential alternatives
of the current literature: JSMA and OnePixel.
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The randomly selected flow for the assessment of example realism had the ‘DDoS’
class label, which corresponds to a distributed denial-of-service attack performed by the
malwares recorded in the IoT-23 dataset. A2PM replaced the encoded categorical features
of the connection state and history with another valid combination, already used by other
original flows of the ‘DDoS’ class. Instead of an incomplete connection (OTH) with a bad
packet checksum (BC), it became a connection attempt (S0) with a Synchronization flag
(SYN). Hence, the generated network flow example remained valid and compatible with
its intended malicious purpose, achieving realism.

As in the previous scenario, both JSMA and OnePixel generated unrealistic examples.
Besides the original OTH, both methods also increased the value of the feature representing
an established connection with a termination attempt (S3). Since a flow with simultane-
ous OTH and S3 states is neither valid nor coherent with the cyber-attack’s purpose, the
methods remain inadequate alternatives to A2PM for tabular data. In addition to the states,
JSMA also assigned a single flow to two distinct communication protocols, transmission
control protocol (TCP) and Internet control message protocol (ICMP), which further evi-
denced the inconsistency of the created data perturbations. Table 6 provides an overview
of the modified features, with ‘–‘ indicating an unperturbed value.

Table 6. Modified features of an adversarial ‘DDoS’ example.

Feature Original Value A2PM Value JSMA Value OnePixel Value

Connection state ‘OTH’ ‘S0’ ‘OTH’ + ‘S3’ ‘OTH’ + ‘S3’
Connection history ‘BC’ ‘SYN’ – –

Communication protocol ‘TCP’ – ‘TCP’ + ‘ICMP’ –

Regarding the targeted attacks, A2PM caused much slower declines than in the pre-
vious scenario. The accuracy of the regularly trained MLP only started being lower than
50% at iteration 43, and RF stabilized with approximately 86%. These scores evidenced the
decreased susceptibility of both classifiers, especially RF, to adversarial examples targeting
the ‘Benign’ class. Furthermore, with adversarial training, the models were able to preserve
even higher rates during an attack. Even though many examples still evaded MLP detec-
tion, the number of malicious flows predicted to be benign by RF was significantly lowered,
which enabled it to keep its accuracy above 99%. Hence, the latter successful detected most
cyber-attack variations (Figure 8).
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The untargeted attacks iteratively caused small decreases of both metrics. Despite
RF starting to stabilize from the fifth iteration forward, MLP continued its decline for
an additional 48% of accuracy and 17% of macro-averaged F1-Score. This difference in
both targeted and untargeted attacks suggests that RF, and possibly tree-based algorithms
in general, have a better inherent robustness to adversarial examples of IoT network
traffic. Unlike in the previous scenario, adversarial training did not provide considerable
improvements. Nonetheless, the augmented training data still contributed to the creation of
more adversarially robust models because they exhibited fewer incorrect class predictions
throughout the attack (Figures 9 and 10).
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A time consumption analysis was also performed, to further analyze the scalability
of A2PM on relatively common hardware. The number of milliseconds required for each
iteration was recorded and averaged, resulting in a rate of 10 examples per 2.4 milliseconds.
By comparing the rate obtained in both scenarios, it can be observed that it was 41% higher
for IoT-23 than for CIC-IDS2017. Even though the former dataset had approximately
half the structural size, a greater number of locked categorical features were provided to
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the combination pattern. Therefore, the increased rate suggests that the more complex
inter-feature constraints are specified, the more time will be required to apply A2PM.
Nonetheless, the time consumption was still reasonably low, which further evidenced the
fast execution and scalability of the proposed method.

5. Conclusions

This work established the domain and class-specific constraint levels, which an ad-
versarial example must comply with to achieve realism on tabular data and introduced
A2PM to fulfil these constraints in a gray-box setting, with only knowledge of the feature
set. The capabilities of the proposed method were evaluated in a cybersecurity case study
with two scenarios: Enterprise and IoT networks. MLP and RF classifiers were created
with regular and adversarial training, using the network flows of the CIC-IDS2017 and
IoT-23 datasets, and targeted and untargeted attacks were performed against them. For
each scenario, the impact of the attacks was analyzed, and assessments of example realism
and time consumption were performed.

The modular architecture of A2PM enabled the creation of pattern sequences adapted
to each type of cyber-attack, according to the concrete constraints of the utilized datasets.
Both targeted and untargeted attacks successfully decreased the performance of all MLP
and RF models, with significantly higher declines exhibited in the Enterprise scenario.
Nonetheless, the inherent susceptibility of these models to adversarial examples was
mitigated by augmenting their training data with one generated example per malicious flow.
Overall, the obtained results demonstrate that A2PM provides a scalable generation of valid
and coherent examples for network-based intrusion detection. Therefore, the proposed
method can be advantageous for adversarial attacks, to iteratively cause misclassifications,
and adversarial training, to increase the robustness of a model.

In the future, the patterns can be improved to enable the configuration of more
complex intra and inter-feature constraints. Since it is currently necessary to use both
interval and combination patterns to perturb correlated numerical features, a new pattern
can be developed to address their required constraints. It is also imperative to analyze
other datasets and other domains to contribute to robustness research. Future case studies
can further reduce the knowledge required to create realistic examples.
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