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Abstract: Critical infrastructures are an attractive target for attackers, mainly due to the catastrophic
impact of these attacks on society. In addition, the cyber–physical nature of these infrastructures
makes them more vulnerable to cyber–physical threats and makes the detection, investigation, and
remediation of security attacks more difficult. Therefore, improving cyber–physical correlations,
forensics investigations, and Incident response tasks is of paramount importance. This work describes
the SMS-I tool that allows the improvement of these security aspects in critical infrastructures.
Data from heterogeneous systems, over different time frames, are received and correlated. Both
physical and logical security are unified and additional security details are analysed to find attack
evidence. Different Artificial Intelligence (AI) methodologies are used to process and analyse the
multi-dimensional data exploring the temporal correlation between cyber and physical Alerts and
going beyond traditional techniques to detect unusual Events, and then find evidence of attacks.
SMS-I’s Intelligent Dashboard supports decision makers in a deep analysis of how the breaches
and the assets were explored and compromised. It assists and facilitates the security analysts using
graphical dashboards and Alert classification suggestions. Therefore, they can more easily identify
anomalous situations that can be related to possible Incident occurrences. Users can also explore
information, with different levels of detail, including logical information and technical specifications.
SMS-I also integrates with a scalable and open Security Incident Response Platform (TheHive) that
enables the sharing of information about security Incidents and helps different organizations better
understand threats and proactively defend their systems and networks.

Keywords: cyber–physical systems; digital forensics; cyber–physical systems forensics; machine
learning; rule mining; security incident response

1. Introduction

Cyber–physical systems (CPS) combine the physical and cyber worlds, which allows
an improvement of the entire operating environment by adding different promising ca-
pabilities to these environments [1]. Therefore, CPS are being used in several domains,
including manufacturing processes, healthcare, transportation, and commercial and res-
idential smart buildings [2]. For example, recently, several studies have been done to
explore the full potential of CPS in the context of Industry 4.0 [3,4]. This can happen
because CPS use and integrate different technologies, from software systems, networks,
and sensors to hardware devices such as microcontrollers and actuators. However, this
combination enabling interactions between cyber and physical components, not only brings
new and more complex paths of attack but also increases the attack impact, since an event
caused by a cyber component can have a huge impact on physical ones or vice-versa [5].
The connections between the physical systems and the critical software components are
especially vulnerable, since with a cyber attack in these connections the attacker can ma-
nipulate, disrupt or power off the physical system [6]. Thus, beyond damage to cyber and
physical components, a cyber–physical attack can also have major consequences that may
include human deaths and injuries, infrastructure damages, loss of resources, and machine
breakdowns or malfunctions. Furthermore, these damages can have an even greater impact

Information 2022, 13, 403. https://doi.org/10.3390/info13090403 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13090403
https://doi.org/10.3390/info13090403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-8075-531X
https://orcid.org/0000-0003-2919-4817
https://orcid.org/0000-0002-5030-7751
https://orcid.org/0000-0002-9711-4850
https://orcid.org/0000-0002-2519-9859
https://doi.org/10.3390/info13090403
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13090403?type=check_update&version=2


Information 2022, 13, 403 2 of 28

on critical infrastructure such as hospitals and airports. Stuxnet worm [7], the US power
grid attack [8], German steel-mill Incident [9], the Ukrainian power grid Incident [10],
and the recent Florida Water Treatment Plant [11] and Colonial Pipeline [12] attacks, are
some examples of security attacks on CPS that have caused huge impacts on the normal
operation of the systems.

After an attack, it is crucial to understand how it was performed, who did it and why
it happened. This will help to understand which assets were compromised but also will
allow the creation of defense mechanisms for future attacks [13]. For that, security analysts
need to analyse and investigate several sources of information. In CPS, this investigation
process becomes much wider and complex, due to the amount of components that need to
be analysed. Not only software and hardware components need to be considered but also
all interactions across all CPS. Several investigations have been done to develop tools to
secure CPS as well as techniques and frameworks to evaluate CPS security; however, CPS
forensic investigation area is still in its early stage. Mohamed et al. [14] reviewed examples
of current research efforts in the field and the types of tools and methods proposed for CPS
forensics. The authors also discussed some issues and challenges in the domain that need
to be addressed. One of the issues pointed out was the need for data analytics tools to find
correlations between digital and physical evidence. Furthermore, Fausto et al. [15] pointed
out that finding complex attack patterns through the combination of physical and cyber
Events is a very challenging task. Moreover, they stated that the correlation strategies of
heterogeneous Events for security reasons, and the techniques and algorithms to exploit
this correlation are still open issues.

Additionally, for a successful correlation of the security Events, it is essential to
keep track of the currently handled Events. For that, cybersecurity teams typically use
ticketing systems that allow the follow up of the event for analysis, after the reporting,
and until closure. However, due to the complexity of modern attacks, increasingly
multi-step, the Events handled can be part of a larger attack that spans different parts of
systems. Thus, the information crucial to detecting such attacks is often distributed in
time and space, which makes detection difficult. Hence, an important feature of these
systems is the collaboration among the security professionals, such as Security Operations
Center (SOC) and Computer Emergency Response Team (CERT) security analysts, with
diverse knowledge, skills and experience, to improve the quality of their investigation.
Moreover, collaboration is important not only between the security professionals of the
same institution, but also between companies, sectors, and even countries to improve the
exchange of information to prevent, mitigate and recover from cyber-attacks. Collaboration
between these actors is crucial to restricting the spread of new attacks, particularly zero-day
attacks. Sharing new vulnerabilities, attacks, breaches or any other type of information
allows a proactive detection of these newly identified threats [16]. This way, the company,
sector or even country under attack will benefit from the analysis and correlation actions
previously defined by others to resolve the same or similar issues. Governments with
their national cybernetic emergencies response team (CERT) or CSIRT are boosting this
collaboration to provide support in information security Incidents to the government or
corporate entities for the management of cybersecurity and cyberdefense. In addition,
European regulatory directives [17] and technical recommendations [18] are promoting
actions to ensure a high common level of network and information security across the
Union, by developing technologies and procedures for sharing security information to
combat modern attacks and mitigate their effects in a timely manner. [19] The aim is to
work in a collaborative framework between the CERTs and CSIRTs of the governments that
allow the share of information at the taxonomy level about vulnerabilities and reports to be
interconnected, providing a large scale security situation awareness which is in turn critical
to the overall security posture of an entire nation [20].

In this work, we describe the SMS-I tool, which deals with the analysis of data from
heterogeneous systems over different time frames, correlates them to find evidence of the
causes of an attack, and supports the definition of remediation measures in a collabora-
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tive way. SMS-I was firstly designed in the scope of the SATIE project, which aimed to
build a security Toolkit [21] in order to protect critical air transport infrastructure against
combined cyber–physical threats by improving the cyber–physical correlations, forensics
investigations and dynamic impact assessment at airports. However, SMS-I can work with
data from any security CPS since it analyses additional security details, providing con-
textual and semantic data to identify causes for security events and threats. Furthermore,
Machine Learning (ML) methodologies have been applied for outlier detection, exploring
the temporal correlation between cyber and physical Alerts, going beyond traditional
one-class algorithms, and considering ensemble methods to detect unusual events, taking
into account its sequential nature, which may help to find evidence of attacks. An intel-
ligent dashboard is also part of the SMS-I in order to support decision makers in a deep
analysis of how the breaches and the assets were explored and compromised. SMS-I also
integrates with a scalable and open Security Incident Response Platform (TheHive) that
enables the sharing of information about security Incidents. This can make the difference to
the organizations security, since this collaborative sharing of information can help different
organizations better understand threats and proactively defend their systems and networks.

SMS-I can be easily extended with new modules that can increase its capabilities.
Therefore, this work presents a more complete version of the SMS-I tool. A first draft was
presented at [22], and a more complete version of this draft was presented at [23]. This work
shows in more detail the capabilities presented in the previous works, but also introduces a
new capability: the Incident response. Therefore, the main contributions of this paper are:

• detail the SMS-I tool capabilities. The different components of this investigation tool
are fully described in this work, presenting its different features;

• present all the different experiments done regarding the SMS-I Machine Learning
Engine. Some of these results are already presented in the previous papers; however,
in this work, we detail all the work carried out and the results obtained;

• introduce the Incident response capability of SMS-I tool. This is a new SMS-I capability
that promotes the sharing of information between organizations. The integration of
this feature with TheHive is also detailed in this work;

• show SMS-I Intelligent dashboard in detail, highlighting the added value for the
security analysts of each view;

• demonstrate the convenience and usefulness of the SMS-I tool in the decision-making
process of security analysts, using a very simple and realistic example.

The remainder of this paper is organized as follows: in Section 2, we introduce the
SMS-I architecture, and we briefly describe each component. The Machine Learning Engine
is the heart of the SMS-I tool. Hence, Section 3 presents this SMS-I component with more
detail. Section 4 describes the SMS-I intelligent dashboard, another important element
of the SMS-I tool. The SMS-I Incident Response capability is detailed in Section 5. In the
scope of SATIE project, the SMS-I tool was validated and demonstrated in three different
airports. Section 6 briefly describes an example that shows the ability of SMS-I to support
the security experts work. Finally, the conclusions are presented in Section 7.

2. SMS-I Tool Overview

SMS-I is a forensics investigation system that was initially designed to be part of the
SATIE security Toolkit. However, as already mentioned, it can be part of any security
system. To explain the integration of SMS-I in a security environment, we will use the
SATIE example. Note that the referred SATIE systems can be easily replaced by any other
similar security systems.

In the SATIE security environment, cyber and physical sensors are scattered across
the whole airport’s infrastructure, collecting vast amounts of Events related to the airport
system’s activity. These Events are sent to the Correlation Engine (CEngine), a pattern
matching mechanism that contains expert written rules which are periodically reviewed
and updated under a strict protocol, to possibly identify abnormal behaviour. When a set
of Events trigger a specific rule, an Alert is originated and sent to the Incident Management
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Portal (IMP). In the IMP, after investigating the Alert occurrence, the security operator
classifies Alerts as either Incidents or not, triggering a security response. SMS-I tool inspects
these Incident and Alert occurrences to provide a deeper analysis of an attack. For that, the
system periodically fetches data from the CEngine and the IMP using HTTP(S) requests
to obtain Alerts and Incidents generated by the SATIE Toolkit. These data are parsed
into predefined formats and stored in specific indexes of the SMS-I Database. This is a
crucial part of the SMS-I tool since it allows the system to keep track of the new data that is
generated within the SATIE Environment. Then, the SMS-I ML Engine gets this new data
and executes the ML models capable of determining, for each Alert, the probability of it
being an Incident based on its own features, features of related Events and the features of
other Alerts of a regarded time window (Incident Prediction). The employed models are
expected to grow smarter over time with system usage. SMS-I ML engine also analyses
these data to understand if the system already has remediation measures for the Incident
that have occurred and, if not, supports the security analyst in its definition (Incident
Response). Additionally, using the Association Rule Mining (ARM) Engine, the SMS-I
ML Engine provides an API endpoint for executing rule mining algorithms on the SMS-I
Database data according to a set of parameters specified in the request header (Association
Rules). It retrieves the list of association rules to identify potential relationships between
Alerts for a given timeframe.

The SMS-I Intelligent Dashboard provides a Graphical User Interface of all of these data
that handle the interaction with the security analyst. It encapsulates Kibana dashboards
and allows the operator to make use of several functionalities such as consulting Alert lists,
performing filtering, mining new association rules, managing association rule base, and
consulting Alert details. SMS-I also integrates with the TheHive Incident management tool
that allows the collaborative investigation of Incidents. TheHIVE platform is a popular and
recommended tool for the management of Incident cases [20]. It is tightly integrated with
MISP (Malware Information Sharing Platform), which allows the exchange of information on
information security Incidents, both internally and between other security teams. TheHive
platform can be complemented with the Cortex engine to analyze the Incidents using advanced
intelligence. An overview of the SMS-I architecture can be seen in Figure 1.

Figure 1. SMS-I architecture overview.
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2.1. SMS-I Integration

In this section, SMS-I functionality and integration features are described. The SATIE
system’s security framework from the SMS-I perspective will be used to provide a better
understanding of both SMS-I functionalities and its integration with other SATIE Tools
such as the CEngine and the IMP. Note that this should be seen just as an example, and the
referred tools can be easily replaced by other security tools, as already mentioned.

As a first step, it is crucial to formally define the fundamental business concepts—Events,
Alerts, and Incidents—since they are constantly mentioned throughout the document:

• Events are discrete change of state or status of an Asset or group of Assets. They can
have multiple heterogeneous sources and are categorized as either cyber or physical,
depending on the system that originated them. They contain low-level information
about the system’s activity, such as network traffic or baggage handling system data.
Specific Events may trigger Alerts.

• Alerts are notifications that a specific attack has been directed at an organization’s
information systems. They are triggered when abnormal activity is detected. They are
usually related to several Events that have triggered security rules.

• An Incident results from the classification of Alerts by the SOC operator. They
represent real identified threats to the system. Additionally, it has some sort of impact
within the organization, which is described by its severity and completion level.

Unified Modeling Language (UML) and a combination of C4 Model [24] with 4+1
Architectural View Model [25] are used as a formalism to graphically represent software
architecture from different views with different degrees of granularity. For example, the
following diagram, Figure 2, provides a logic view of the SATIE security ecosystem without
the SMS-I tool.

Figure 2. SATIE security ecosystem without SMS-I tool.

Different cyber and physical sensors present in the airport’s infrastructure send a large
amount of Events related to the airport system’s activity. CEngine receives all these Events
and stores them in the Correlation Database. When a set of Events triggers a specific rule of
CEngine, an Alert is sent to the IMP to be analysed by a security expert and classified as an
Incident or not, triggering a security response if needed.

SMS-I, as a forensics investigation system, will use an intelligent layer to help the
security expert to inspect Incident and Alert occurrences. For that, the system periodically
fetches data from the CEngine and the IMP, using HTTP(S) requests to obtain new Events,
Alerts and Incidents generated by the SATIE Toolkit. These data are processed and stored
in the Investigation Database of SMS-I, so it can be used by a web application to display
several useful visualizations and by an ML Engine. The internal architecture of the SMS-I
tool is described in greater detail in the next section. The following diagram, Figure 3,
places SMS-I in the context of the SATIE solution as example of integration.
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Figure 3. SATIE security ecosystem with SMS-I.

2.2. SMS-I Internal Architecture

SMS-I is a complex system with many different software requirements such as periodic
data synchronization, Incident prediction and response computing with ML Engine, associ-
ation rule mining, dashboard visualization and a series of other functionalities involving
different lists and filters. To assure separation of concerns, modularity, and maintainability
the system’s architecture was designed with the Single Responsibility Principle (SRP) [26]
in mind and inspired by a microservices-oriented architecture. Therefore, SMS-I is com-
posed of multiple components with specific well-defined responsibilities. The internal
architecture of the forensics investigation system is described in Figure 4.

Figure 4. SMS-I architecture.

Each component of the SMS-I architecture can be described as follows:

• Synchronization Mechanism: It is the component responsible for acquiring new
Events, Alerts and Incidents from the Correlation Engine and the Incident Manage-
ment Portal, parsing them into predefined formats and storing them into specific
indexes of the Investigation Database. The synchronization mechanism is one of the
most critical processes of the SMS-I since it allows the system to keep track of the
new data generated within the SATIE Environment. Additionally, as new Alerts are
added to the database, they are also processed by the ML Engine. The synchronization
process is represented in Figure 5.

• ML Engine: The ML Engine is responsible for executing the ML models capable of
determining, for each Alert, the probability of it being an Incident based on its own
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features, features of related Events and the features of other Alerts of a regarded time
window. The employed models are expected to grow smarter over time with system
usage. The ML engine also analyses the data received from an Incident response point
of view, taking into account a collaborative approach and providing confidence scores
over other related cases.

• Scheduler: The Scheduler performs the orchestration of both Synchronization Mecha-
nism and ML Engine by triggering their execution by a configurable time constraint
(e.g., every five minutes, every hour, every day).

• ARM Engine: The Association Rule Mining (ARM) Engine provides an API endpoint
for executing rule mining algorithms on the Investigation Database data according to a
set of parameters specified in the request header. It retrieves the list of generated rules.

• Investigation Database: It corresponds to an Elastic Search database that stores all
system data—Events, Alerts, Incidents, ML probabilities and association rules.

• Kibana: It is part of the ELK Stack and can be described as an interface to the In-
vestigation Database. It provides several methods to build interesting visualizations
that are combined to produce intuitive and informative dashboards for inspecting the
system’s behaviour over time.

• Web Application: It provides a Graphical User Interface (GUI) that handles the
interaction with the SOC operator. It encapsulates the Kibana dashboards and allows
the operator to make use of several functionalities such as consulting Alert lists,
performing filtration, mining new association rules, managing association rule base
and consulting Alert details.

An Authentication module also grants authentication to the Web Application by match-
ing user credentials with those stored in a shared LDAP server between all SATIE Tools.
Lightweight directory access protocol (LDAP) is a protocol for accessing and maintaining
data through directory servers often used for authentication and storing information about
users, groups, and applications. This implementation allows every user to access every
SATIE Tool with the same credentials.

Figure 5. SMS-I Synchronization process.
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3. SMS-I Machine Learning Engine

The ML methods present in the SMS-I can be categorized into three groups: Incident
probability prediction, association rule mining and Incident response. For the first, super-
vised algorithms were trained on the sequential data of cyber and physical Alerts to predict
the probability of a given Alert being an Incident based on previous occurrences. The
second group of methods uses the same data to derive new correlation rules between Alerts
that can be analysed to understand the complex pattern inherent to such data. The third
group analyses the data to understand if the needed mitigation measures are already in
place for the Incident reported. All these groups will be described in the following sections.

3.1. Incident Probabilities

There are many approaches for building ML models that can efficiently detect anoma-
lies in time series data. To properly investigate and explore state of the art methods for such
task, a study on public datasets was first performed. One of the difficulties of this study was
to find an appropriate testbed for testing the employed methods performance. Currently, in
the literature, there is not a huge amount of cyber–physical datasets being one of the most
relevant the Secure Water Treatment (SWaT) dataset [27]. However, the physical data are
too context-specific and there is no sufficient guarantees that a method able to safeguard
a water treatment facility is going to exhibit the same kind of performance in the airport
security domain, since they regard different physical sensors. The solution to this problem
was to consider only the data from the network under study, which are more general
and share many similarities between several domains, providing a better estimate of the
model’s performance. For example, the same kind of attacks, such as brute force and denial
of service can be performed on many different networks to disrupt one or several services.
Therefore, we decided to consider network intrusion detection datasets. And despite the
lack of good and reliable datasets has been appointed in the literature as one of the main
obstacles in intrusion detection research [28], some datasets were recently introduced to
solve this issue, namely NSW-NB15 [29], CICIDS2017 [30] and CIDDS-001 [28]. From all
the ones previously mentioned, CIDDS-001 was the one selected to be used for several
reasons, such as the number of records, the recording period duration and the considered
attack types. A comparison between the datasets mentioned above can be found in Table 1.

Table 1. Dataset comparison.

Dataset Year Format Count Duration Kind

NSW-NB15 2015 packet, other 2 M 31 h Emulated
CICIDS2017 2017 uni. flow 3.1 M 5 Days Emulated
CIDDS-001 2017 uni. flow 33 M 28 Days Emulated and Real

Anomaly detection for the CIDDS-001 dataset, considering the AttackType label, was
addressed using two different approaches: single-flow and multi-flow. The first regards
individual flows as separate records and attempts to find differences between normal and
attack related ones. The latter considers a given window of flows, performing an analysis
on the entire data sequence to detect anomalies. For each approach three ML algorithms
were experimented and compared: Random Forest (RF), Multi-player Perception (MLP)
and Long-Short Term Memory (LSTM). In the next sections, we briefly describe this work.
For more detail please see [31].

3.1.1. Incident Probabilities Testbed

The CIDDS-001 network traffic data are represented in unidirectional netflow format
which, is a universal standard. The data were recorded for approximately four weeks from
two different environments, an emulated small business environment, OpenStack, and
External Server, which captured real traffic from the internet. The OpenStack environment
includes several clients and servers, such as e-mail and web server. In this testbed, four
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different types of attacks were performed: ping scans, port scans, brute forces and denial of
service. The considered traffic data regards several features such as source and destination
ports, source and destination IPs, communication protocol, number of transmitted bytes,
number of transmitted packets, flow duration and TCP flags. Additionally, the data has
three different labels, Class, AttackType and AttackDescription. For this investigation, the
AttackType label was used since it provides a categorization of the different attacks that
were performed. The considered algorithms were trained with this label so that they could
recognise and distinguish the different attacks present in the testbed.

Random Forest (RF) is a supervised learning algorithm that uses an ensemble of
decision trees, useful for classification or regression problems. Each decision tree that
composes the “forest” reaches a prediction and the results of all of them is selected by
majority voting or the average of outputs. By having multiple uncorrelated models for
each of the trees, the possible individual errors of each one were diluted, relying on the
“wisdom of the crowd” [32]. Another helpful model for classification and regression is
a feed-forward neural network, Multilayer Perceptron (MLP). An MLP is a network of
several layers of nodes, or neurons, each one with an activation function that maps the
weighted inputs to the output of each node. Although feed forward means the data moves
in only one direction, this model does benefit from back propagation during training, where
the error between the prediction and the real value is fed back through the network to
adjust the weights of each connection [33]. Due to the nature of the dataset used, a Long
Short-Term Memory model were also employed. This neural network, unlike normal feed
forward networks such as the previous example, has feedback connections. This allows it
to process sequences of data such as network or Intrusion Detection System (IDS) [34].

3.1.2. TestBed Results

For evaluating and comparing the algorithms performance the dataset was split into
three sets, training, validation and testing. The models were trained using the labelled
data of the train set and their predictions were computed for the validation and testing
set. By comparing these predictions with the real values several indicators of the methods
performance can be calculated such as:

Accuracy = Number of correct predictions
Total number of predictions , Precision = Correct positives

Total number of positives ,

Recall = Correct positives
Total number of positive samples , F1-score = 2×Precision×Recall

Precision+Recall ,

FPR = number of false positives
total number of negatives .

Accuracy is biased towards the majority class, normal traffic, since it is obtained by
dividing the number of correct predictions by the total number of observations. Hence,
F1-score provides a better evaluation of an algorithm’s performance since it is the harmonic
mean of precision and recall. For the single-flow approach the obtained results are presented
in Table 2.

Table 2. Results for the single-flow approach.

Model Accuracy Precision Recall F1-Score FPR

LSTM 99.91 98.37 71.40 74.23 00.05
RF 99.90 79.43 95.68 85.04 00.02

MLP 99.92 78.68 73.75 75.79 00.06

Analysing the results, it can be said that the best performing model was the RF with a
F1-score of 85.04, it also exhibits lower recall in comparison to its value of precision. On
the other hand, the LSTM has better precision with lower recall presenting an F1-score of
74.23. The MLP is quite balanced in terms of both metrics which resulted in an F1-score of
75.79, higher than the one of the LSTM. The RF also presents the lowest occurrence of false
alarms, a FPR of 00.02 being arguably the best model for the single flow viewpoint.
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For the multi-flow approach, the results are quite different. With the increase of the
flow window size the results of the LSTM keep improving while the ones of RF and MLP
decrease. Nevertheless, the RF for a window of 10 flows presents an F1-score of 89.82,
close to the best value found, 91.66, for the LSTM with a window size of 70. The methods
performance over the increase of window size is represented in Figure 6.

Figure 6. Performance over window size.

The best performing models are LSTM-70 and RF-10, and they share the same value
of FPR (Table 3). However, the LSTM presents a higher precision and lower recall in
comparison with the RF. Since the values of these metrics are more balanced for the LSTM
94.03 precision and 89.71 recall, it results in the highest F1-score, 91.66. The complete results
are presented in Table 3.

Table 3. Results for the multi-flow approach.

Model Accuracy Precision Recall F1-Score FPR

LSTM-70 99.94 94.03 89.71 91.66 00.04
RF-10 99.95 96.83 85.65 89.82 00.04

These results lead to believe that the multi-flow approach outperforms the single-flow-
based one and that the LSTM is a robust algorithm for understanding complex patterns
in sequential data, in particularly, network traffic data. Furthermore, the algorithms
performance seems to keep improving as the window size grows larger. Optimizing the
value of the window can be a crucial point for obtaining the best possible intrusion detection
classifier for the CIDDS-001 context.

3.1.3. SATIE Toolkit Preliminary Results

The normal usage of the SATIE Toolkit and the scenario simulation runs produced,
on a regular basis, several Alerts and Incidents. These data, although not being the best
to serve as testbed for ML models, were used to obtain some preliminary results for the
Incident probability algorithm. These experiments were essential to understand which
approaches are better for the SATIE data and how well can the algorithms distinguish
between malicious Alerts, which were tagged as Incidents, and false positive Alerts. The
considered dataset was built with data extracted from the Investigation Database, which
was in turn obtained by the Synchronization Mechanism continuous execution. All the
Alerts related to Incidents, 368, were labelled as malicious while the remaining ones, 9215,
were marked as normal. The dataset is not large in terms of data volume and has a high-
class imbalance since more than 96% of records are benign. These characteristics made the
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application of deep learning approaches such as MLP and LSTM unviable. Additionally,
there were multiple challenges regarding data quality such as Alerts related to Incidents
that were not manually labelled in the IMP, Alerts with a lot of empty fields that were only
generated to test SATIE Tools and many repeated entries due to simulations that are exe-
cuted daily. To mitigate these problems, every feature with over 60% missing values were
discarded as well as all the Alerts related to the repeated daily executions. Furthermore, an
oversampling method, Synthetic Minority Oversampling Technique (SMOTE) was used to
produce synthetic examples of Incidents to minimize the class imbalance.

The data, after being pre-processed, was split into two sets: 70% for training and 30%
for the test. Then, a RF model was used as a classifier (RF-1), obtaining an accuracy of
98.08%. However, the value of F1-score, 60.94%, indicated that the model was performing
poorly on the minority class, failing to classify most of the Incidents. In an attempt to
improve the obtained results, three time-based features were engineered for a given window
of time (30 min): the number of Alerts, the number of distinct sensors and the most common
sensor. With these new features, the accuracy and F1-score of this new classifier (RF-2)
improved significantly, 98.54% and 76.60% respectively. The preliminary results lead us to
believe that an approach which combines both individual Alert features and time-based
engineered features can work quite well on the SATIE data. On the other hand, the dataset
extracted from the Correlation Engine, despite its limitations, was a good starting point
to fine tune the SMS-I ML algorithms. This was improved using the different scenario
simulation executions that were executed on the platform, learning new patterns that was
used to identify Incidents more accurately in the demonstration phase.

3.2. Association Rule Mining

Apriori is a very popular algorithm for data mining focusing on association rules,
developed by Agrawal and Srikan in 1994 [35]. It identifies the items or patterns in a
transactional dataset and then relates frequent occurrences to those patterns, generating
association rules to describe them [36]. These rules are comprised of statements that
describe the relationships between seemingly unrelated items inside a transaction.

Let X = {i1, 12, . . . , im} be the set of all items concerned in a dataset, and T = {t1, t2, . . . , tm}
be a set of transactions, where each transaction is a set of items. The association rule,
noted as X ⇒ Y indicates a certain relation between two itemsets X and Y. An associa-
tion rule X ⇒ Y is supported if the percentage of transactions that contain both itemset
X and Y in T exceeds a certain threshold, called support threshold, i.e., Support(X ⇒
Y) = Number of transactions containing X and Y

Total number of transactions . Furthermore, the confidence for the association rule
X ⇒ Y is defined by the percentage of transactions that contain itemset Y among transac-
tions containing itemset X, i.e., Confidence(X ⇒ Y) =

Number of transactions containing X and Y
Number of transactions containing X .

The support represents the usefulness of the discovered rule and the confidence repre-
sents certainty of the rule. Lift is a simple correlation measuring whether X and Y are
independent or dependent and correlated Events. It is calculated by Lift(X ⇒ Y) =
Number of transactions containing X and Y/Number of transactions containing X

Percentage of transactions containing Y . If a rule has a lift of one, X
and Y are independent and no rule will be generated containing either event. If a rule has a
lift greater than one, X and Y are dependent and correlated positively.

To build the association rule mining for the SMS-I tool, using the apriori algorithm,
the sequences of Alerts in a mineable database were grouped by using a certain criterion to
form transactions. That criterion is a time window, and the focus will be the name of the
sensor that originated the Alert. In order to compile the transactional dataset, for each Alert,
the selected window was subtracted to its “detect_date” field. From the obtained time
range, all Alerts that fell inside that interval were joined and a list with their sensor’s name
was created, performing this operation on all entries, and obtaining the set of transactions.
Using this set of transactions several rules are generated to allow the user to understand
the correlation of the different sensor Alerts in an attack.
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3.3. Incident Response

After positive identification of an Alert as a security threat, measures need to be
taken to limit the impact of the attack. These mitigation measures are usually described
in procedures that detail, step-by-step, how to proceed when dealing with a given type
of attack. These procedures are then compiled into playbooks [37] that can be extended
to perform other important tasks in the mitigation or remediation process, tailored to the
organization that is using them. A “phishing email” playbook, for example, might not
only include the normal steps of deleting emails from affected inboxes and running scans
on the machines of victims to make sure nothing was compromised, but also send out
personalized memos raising awareness about this type of attack.

Compiling a list of playbooks for different types of attacks allows automation of much
of their steps, considerably streamlining a SOCs workflow [37]. Additionally, multiple
Alerts originating from the same type of attack, or even the same attack, can be aggregated
in cases where playbooks can be applied to all the Alerts in a case at the same time.

In order to further automate cybersecurity, and focusing on Incident Response in a
SOC workflow, a new module of SMS-I tool (Incident Response) was designed to be capable
of slotting into current SOC tools, as a way of enriching incoming Alerts. This module is
leveraged as a decision support system, employing multiple models to perform identifi-
cation and classification of Alerts, adding their results as another point of consideration
for security expert analysis. The additional information helps analysts not only decide if a
given Alert is in fact an attack, but also by identifying which case contains playbooks to
treat similar Alerts.

SMS-I Incident Response module aims to tackle two problems of the SOC pipeline:
classification of incoming Alerts for security threats (Alert Classification); and grouping of
similar Alerts in cases for bulk processing (Alert Aggregation). Although different in their
nature, both of these are classification problems where a set of data points are categorized
into classes. In this context, the data points will be Alerts and the classes their possible label.

In the Alert Classification problem, only two possible classes exist for an Alert, either
attack or normal. In contrast, in the Attack Aggregation problem, the possible classes are
the existing cases in the system. Furthermore, the nature of the data for Attack Aggregation
binary classification problem guarantees that all the future incoming entries will only ever
be of two possible types.On the other hand, classifying each Alert into groups will fail
when a never before seen Alert, i.e., from a new type of attack, arrives in the queue. In
this case, the multiclass classification model, trained with known classes will incorrectly
identify the new Alert as one of the existing classes. For this reason, a middle step needs to
exist between both classification problems—Attack Identification. After being classified as
an attack by the first model, the system needs to decide if this Alert is similar to other Alerts
already in the database or if it is a new one. As such, an anomaly detection model will be
trained with Alerts already in the system to create a baseline of known Alerts, filtering any
outliers and skipping the final step. The third model is trained on groups of Alerts that
compose a case, selecting the relevant case for every incoming entry. The sequence of these
three steps can be seen in Figure 7.

Each of the three different phases of the SMS-I Incident Response module, requires
ML models tuned to the unique specifications of their given problem. These models will
undergo a selection stage where data originating from the final system is used to train and
compare the results among them.

3.3.1. Alert Classification

The first step in this Incident Response pipeline will analyse an Alert in order to
classify it as an attack, or not attack. If the Alert receives the “not attack” classification, then
the Alert is the result of a false positive and can be safely disregarded. On the other hand,
if the Alert is considered an attack, it will continue to the next step of this pipeline. This
binary classification problem is extensively studied in this domain, with multiple models
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continually being researched in the literature [38–40]. Three models were selected for this
first step:

• Random Forest, as already mentioned, is a tree based model, employing a set of
decision trees and taking in account the output of each one. A decision tree aggregates
datapoints by iteratively splitting the features of a given dataset into consecutive
binary nodes, ending each branch on its outcome, or label. Although very good with
low complexity data, higher sized trees can lead to overfitting. Random Forest models
mitigate this issue by using an ensemble of unrelated decision trees and consolidating
their results, achieving significant results in the literature for both classification and
regression problems.

• Support-Vector Machines (SVM) [41] is a probabilistic model that maps training data
to points in space, and finds the hyperplane with the maximum margin that separates
the two classes. Newer data points are mapped in space in the same way and classified
according to which side of the hyperplane they have landed. This model is a very
robust classifier with the caveat that it is limited to binary-class classification.

• Similarly to Random Forest, XgBoost [42] is an ensemble of decision trees, but using
a gradient boosting algorithm. Instead of concurrently training a group of decision
tree models and averaging their output, models are trained consecutively using the
residuals from each iteration to train the next one.

Figure 7. SMS-I Incident Response module Architecture.

3.3.2. Attack Identification

In order to classify an incoming Alert as “unknown”, an anomaly detection based
approach was selected. Although this approach is not uncommon for the cybersecurity
domain, it is normally applied to the detection of attacks, whereas here, it is used to identify
Alerts different from everything in the system.

After classification in the first step, an Alert classified as attack is analysed for known
information. The objective is to aggregate this new Alert with other Alerts in the system. If
the incoming Alert is known, it will be assigned to a case containing playbooks on how to
deal with this type of attack. If it is unknown, the Alert is marked as such, to be analysed
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and procedures prepared on how to deal with this type of attack. For this novel use case,
two models were picked from the literature, as the most suitable:

• Isolation Forest [43] is a tree based model that uses distance between data points to
detect outliers, hinging on the principle that outliers are distinct from normal data.
During the construction of the binary tree, data are grouped into branches according
to their similarity, with more similar entries needing longer branches to differentiate
them. As such, data closer to the root of the tree can be considered an anomaly since it
was easily distinguishable from the rest.

• One-Class Support-Vector Machines [44] is a similar implementation to SVM but
instead of using an hyperplane to separate two classes, it uses an hypersphere around
normal data and classifies new data based on its distance to the sphere.

3.3.3. Attack Aggregation

Finally, in the third step, Alerts previously marked as both “attack” and “known” in
previous steps are matched to the Alerts in the system, searching for a suitable case to
be assigned to, allowing automatic application of remediation or mitigation techniques
contained in the related playbook.

The multiple possible results for this step, cases, makes this a multiclass classification
problem, a subset of normal classification. As such, some models from the first step were
also selected:

• Random Forest due to its robust results and straightforward implementation, behav-
ing no differently in binary and multiclass classification problems.

• Although models such as Support-Vector Machines in its most simple type only
supports binary classification, implementations exist where the problem is compart-
mentalized into multiple binary classification problems followed by the same principle:
discovering the hyperplane that linearly separates classes [45,46].

• K-Nearest Neighbors (KNN) [47] uses distance between datapoints to identify clus-
ters of similar data. Despite its good results it is not very scalable due to being
computationally demanding.

3.4. Preliminary Results

Despite our first evaluation of which models should be used for each phase of the
SMS-I Incident Response module, we need to test them in a dataset to select the one that
should be deployed. For that, we used the testbed dataset already described in Section 3.1.1.
In Table 4, we present the results for each phase. Note that we only consider the models
described in the previous section, because they have already been chosen as the best
approaches to be tested.

Table 4. Incident Response Experiment Results.

Steps Models Accuracy F1-Score Macro F1-Score

Alert
Classification

RF 97.1 69.2 96.8

SVM 97.3 63.1 96.5

XgBoost 97.3 70.4 96.9

Attack
Identification

IF 80.9 82.8 80.8

One Class SVM 67.6 73.7 65.6

Attack
Aggregation

RF 80.2 58.5 77.8

SVM 80.2 59.2 78.3

KNN 88.3 54.9 85.4
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F1-score was selected as the metric of choice given its good balance between Precision
and Recall while paying attention to class imbalance existent in the data. This imbalance
can also be observed in the difference between macro and weighted metrics, since macro
metrics take into account the number of each class’ members during result calculations.
As such, for the first and third steps, the macro F1-score was used to evaluate the impact
differently sized classes have in the final results. For the second phase F1-score was also
used, only this time focusing on the score for the outlier class, i.e., the Alerts considered
unknown to the system. For the first and second step of the SMS-I Incident Management
module, tree based models achieved the best performance in the experiments, with XgBoost
and Isolation Forest respectively selected for the mentioned steps. For the third step’s
experiments, although a mostly inconclusive affair due to the closeness of results, SVM did
manage to edge out ahead.

4. SMS-I Intelligent Dashboard

SMS-I allows the analysis of data from heterogeneous systems over different time
frames. To provide this information regarding the system’s Events, Alerts, and Incidents
in a useful way, it implements a visualization tool—the SMS-I Intelligent Dashboard.
Furthermore, it assists and facilitates the security analyst’s work using graphical dashboards
and Alert classification suggestions, which derive from the SMS-I ML Engine previously
presented. Consequently, users can more easily identify anomalous situations that can be
related to possible Incident occurrences. They can also explore information, with varying
levels of detail, including logical information and technical specifications. An overview of
the different information provided can be seen in Figure 8.

Figure 8. SMS-I Intelligent Dashboard overview.

Two different detailed dashboards were accessible: Alerts and Incidents Dashboards.
Both were developed using Elasticsearch and Kibana technologies. Elasticsearch is respon-
sible for the analysis, normalization, enrichment and storage of Alert and Incident data,
as well as data provided by ML algorithms. Then, these data are accessed by Kibana to
create these two dashboards, which allow the user to search and visualize airport security
related data.

The Alerts Dashboard includes all data related to airport security Alerts generated by
the different cyber and physical Threat Detection Systems available in the SATIE Toolkit.
One of the main goals of this dashboard is to monitor the quantity, nature, and severity
of Alerts, considering their Incident prediction probability, which is calculated by the
SMS-I ML Engine. More than 70% of security analysts feel overwhelmed with the number
of Alerts and Incidents they need to investigate for a day [48]. In addition, more than
50% of organizations receive over 10,000 Alerts daily, which can lead to Alert fatigue and
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neglect. Therefore, to maintain SOC efficiency and reduce the impact of the investigation
on the responsible personnel, it is essential to control the quantity of received Alerts and
Incidents. Therefore, a set of graphics and metrics were added to this dashboard (see
Figure 9) to monitor the number of Alerts received to help avoid a sudden overload of
Alerts by monitoring the total number of cyber and physical Alerts. In addition, an Alert
gauge was added to ensure that an overwhelming quantity of Alerts is not reached.

Figure 9. SMS-I Intelligent Dashboard: Alert quantity monitoring visualizations.

The severity of Alerts is another important parameter that needs to be monitored by
security analysts, since Alert’s severity defines if the Alert should be ignored or if there
is a need to conduct a more thorough investigation. For the SATIE project, four severity
levels were defined: high, medium, low, and info. Besides controlling the number of Alerts
for each severity level, to avoid the overburdening of security analysts, using the Alerts
dashboard is also possible to monitor the date of occurrence of Alerts (see Figure 10). This
is useful to perform pattern and trend identification and to study previous Incidents and
preceding Alerts.

Figure 10. Alerts Dashboard—Alert severity monitoring visualizations.

The results provided by the ML engine regarding the Incident prediction probability,
in other words, the probability of an Alert representing an Incident, can also be visualized
in the Alerts dashboard (Figure 11). A set of graphics and metrics display, from 0% to
100%, the number of Alerts that possess a certain probability of being an Incident, as well
as the average Incident prediction probability. In the example shown, most Alerts have an
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Incident prediction probability lower than 35%, which leads to a low average probability
value. This means that overall, there probably is not an occurrence of an Incident.

Figure 11. Alerts Dashboard—Incident prediction probability visualizations.

The most common source and target IPs and ports are also displayed to the user in
the Alerts Dashboard (Figure 12). This information can be very valuable for the security
analyst, as it helps to discover information about the attacks, namely where they come
from and what the targets are.

Figure 12. Alerts Dashboard—Target IP and Ports visualizations. Note that IPs have been obfuscated
for security reasons.

The Incidents Dashboard aggregates all detected Incidents related to airport security.
This dashboard follows the structure of the Alerts Dashboard by monitoring the quantity,
nature, and severity of Incidents (Figure 13). Thus, similar to what happens with the
Alerts Dashboard, it has similar visualizations available to the user, displaying information
regarding Incident quantity monitoring and Incident severity monitoring.
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Figure 13. Incidents Dashboard—Incidents severity monitoring visualizations.

SMS-I Intelligent Dashboard also makes available a set of different visualizations.
Events timeline is one of them. It provides ability to security analysts to preview a timeline
of Events within the system. Events are displayed in the form of an ordered timeline, with
summarized info of each event (Figure 14). Filters can be applied to customize the timeline,
such as: maximum Alerts number, minimum Incident probability, and time range.

Figure 14. SMS-I Intelligent Dashboard: Events timeline.

A Watch List section is also available and allows users to preview a list of the latest
Alerts within the system (Figure 15). Alerts in this list are being displayed in the form of
aligned cards, with summarized info of each Alert within the corresponding card. The list
can be sorted by detection time or Incident probability, and filtered by maximum Alerts
number, minimum Incident probability, and time range.



Information 2022, 13, 403 19 of 28

Figure 15. Watch List with example Alerts.

Each card within the list has highlights of the Alert details (Figure 16). Users can click
on any card to display the full details of the corresponding Alert (Figure 17). Furthermore,
cards are displayed using indexed colours that reflect the severity level of each Alert (red
for High, orange for Medium, and Green for low).

Figure 16. Watch List Alert Cards example (see [49] for more information on TraMICS).

When the user clicks on a specific Alert Card, the corresponding Alert details will be
displayed. Details include the Alert title and description, information identifying the Alert,
the source and target details, and the probability of this Alert being an Incident.

If the card is a specific Incident Card, the corresponding Incident details as well as the
related Alerts will be displayed (Figure 18).
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Figure 17. Alert Details example.

Figure 18. SMS-I Intelligent Dashboard: Incident and Alert details example.

It is also possible to display the distribution of Alerts as per their types (physi-
cal/cyber), and due to multiple levels of aggregation (no aggregation, by minutes, by
hours, by days, . . . ), using the Alert Types section of SMS-I Dashboard (Figure 19). Alerts
can be also filtered by their type, Incident probability, and detection time.

Figure 19. Alert Types visualization.
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Another important part of SMS-I Intelligent Dashboard is the Association Rules func-
tionality (Figure 20) which allows security analysts to automatically generate rules that can
help them understand, using historical data, the correlation of the different sensor Alerts in
an attack. The security analyst can customize the parameters, namely the time window, the
support and confidence, to generate different rules.

Figure 20. SMS-I Intelligent Dashboard: Association rules visualization.

5. SMS-I Incident Response Integration

TheHive is an Incident management tool focused on Incident analysis used by security
analysts to manage Incidents and give them an adequate treatment. This tool is often used
by the organizations due to its open-source implementation, and collaboration focused
functionalities. TheHive is designed to support multi-enterprise SOCs in a collaborative
Incident management and orchestration environment. This allows security analysts and
experts to share information between partners and work on cases collaboratively. Further-
more, TheHive contains connections to security threat databases, namely MISP, receiving
up-to-date intelligence on any new security threats.

SMS-I allows a direct integration with the TheHive tool. Due to TheHive’s highly
collaboration focused functionalities, this integration can be described as in Figure 21,
with the novel SMS-I Incident Response module capturing incoming Alerts from multiple
sources and, after ML analysis, augmenting their information with intelligent classification.

Figure 21. SMS-I Incident Response module information flow.

The improved Alerts are then submitted to TheHive’s new Alert queue, waiting for
manual verification (Figure 22). When security analysts log in to TheHive to perform this
verification, they can use the ML analysis contained in each Alert to help decide on how
to proceed with each one. This information is very useful, since the security analyst does
not need to try to understand if there already exist similar attacks in the database, for
example. This information is already provided by SMS-I in the additional fields of the Alert
(Figure 23).
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Figure 22. TheHive Alert Queue.

TheHive utilizes its own concept of observables [50], stateful properties of an Alert
that are likely to indicate an intrusion, allowing investigations to be run on individual or
groups of observables to verify their compromise level (Figure 23). Therefore, source IP, file
hash, or sender email domain are fields contained in an Alert received by SMS-I that can be
considered observables. In the scope of TheHive, this is information that may indicate an
attack. Since SMS-I already provides this information, the security analyst does not need to
manually add it.

Figure 23. TheHive Alert Example.

6. SMS-I Demonstration

SMS-I tool was validated and demonstrated in the scope of the SATIE project, using a
simulation platform and in the pilot sites [51–53]. The different security analysts were first
introduced to the platform. First, we explained the purpose of the SMS-I tool as a whole,
and then we showed how they can get useful insights from the information in the SMS-I
Intelligent Dashboard. Then, the security analysts used the SMS-I tool through the SMS-I
Intelligent Dashboard. During the simulations and then in the demonstrations several data
and opinions were gathered and used to fine tune the tool and refine the SMS-I ML engine.
All the experiments also highlighted the need to have tools such as SMS-I, that intelligently
correlate the different cyber and physical security Alerts and assist the security analysts
to detect highly sophisticated attacks of this time and the future. IBM stated that it took
an average of 287 days to identify and contain a data breach in 2020 [54]. This detection
time demonstrates how difficult is for companies to detect and mitigate cyber attacks [55].
This is even more difficult in CPS, where attacks usually involve multistage and multiple
components. Moreover, the analytic tasks conducted by security analysts rely heavily on a
cognitive decision-making process that can differ between analysts, depending on their
technical knowledge or level of experience [56]. This is why it is so important to have
intelligent tools, as SMS-I, to support security analyst decisions.

To demonstrate the efficiency of the different tools in the SATIE toolkit several realistic
scenarios incorporating a considerable number of potential cyber and physical attacks
were defined. In one of these threat scenarios, an attacker seeks to perform cyber attacks
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on the Airport Operation Control Center (AOCC) system to manipulate the information
displayed in the Flight Information Display System (FIDS), thus giving origin to passenger
movements which result in an irregular and disorderly movement of people in the terminal,
and odd plane movements on the platform to create confusion on the apron. The attacker’s
first actions can be used to demonstrate the effectiveness of the SMS-I tool and the help it
can give to security analysts in their decision-making process. The scenario starts with an
attacker who sends a spear-phishing email to a computer with administrator privileges.
An employee opens the email on that computer and clicks on the link which allows the
malware to be downloaded and executed. This malware allows the attacker to take remote
control of the computer. Then, the attacker performs a network scan to determine the
network address and port of the Airport Operation Database server—his main target. From
a security analyst’s perspective, it is important to correlate both Events and understand that
they are steps of the same multi-step attack. However, due to the difficulty of analyzing
these different Events, which can be, for example, observed and classified by different
analysts, they are sometimes classified as isolated Events instead of being correlated and
aggregated. This was what happened in the demonstration of this scenario. The security
operator reported the corresponding Alerts as two different Incidents, as can be seen in
Figure 24.

Figure 24. SMS-I Intelligent Dashboard: Malware Detection by Malware Analyser and Network Scan
detection by ALCAD system (part of SATIE Toolkit) [57].

Moreover, the port scanning Alert was classified as a low severity Incident, which
should not be the case since it is already the second step of the multi-step attack.

Using the SMS-I Intelligent Dashboard, after the reporting of the Incident by the
security operator, the security expert can observe that. Despite this being an Incident that
was reported as a low severity Incident, it is related to an Alert that has a 69% probability
of being an Incident (Figure 24), thus it should be reported with higher severity. Similarly,
the SMS-I Incident Response module classifies the port scan Alert as an attack with 66%
confidence (Figure 25), while not discovering similar Alerts in the system. This means a
playbook should be created with steps mitigating this type of attack so that future attacks
of the same type can more easily be treated.
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Figure 25. SMS-I Incident Response results for Network Scan example (TheHive view).

Furthermore, using association rules, the security analyst can understand that the
malware and the network scan Alerts are correlated and should be reported as being part
of the same Incident (Figure 26). This information can also be added to the playbook to
have more information about this type of attacks.

Figure 26. Association Rules generated by SMS-I tool. The rule marked is the one generated by the
example described.

Therefore, with this demonstration, we showed not only the ability of the SMS-I to
support the security experts work, but it also allowed us, using a very simple “real” example,
to illustrate the need for intelligent tools that can assist security analysts in their decision-
making process. Using the SMS-I tool, the security analyst can understand the weaknesses
of the first security analysis and have intelligent suggestions on how to combat and even
resolve them. Different suggestions are provided to the analyst to define mitigation measures
to avoid future attacks. Furthermore, SMS-I also simplifies the sharing of information,
through TheHive platform, to support the security awareness of other partners.



Information 2022, 13, 403 25 of 28

7. Conclusions

This work describes the SMS-I tool that allows the improvement of the forensics
investigation in cyber–physical systems. It is a complex system composed by multiple
components with specific functions, namely periodic data synchronization, Incident predic-
tion and response, association rule mining, dashboard visualization, and a several other
functionalities involving different lists and filters.

Several AI approaches were used to process and analyse the multi-dimensional data
exploring the temporal correlation between cyber and physical Alerts. Supervised algo-
rithms were trained on the sequential data of cyber and physical Alerts to predict the
probability of a given Alert to be an Incident based on previous occurrences. The results
obtained suggest that the multi-flow approach outperforms the single-flow-based one and
that the LSTM is a robust algorithm to understand complex patterns in sequential data,
in particularly, network traffic data. Forest-based models achieved the best performance
in all tasks considering Incident response analysis. In addition, several association rules
can be created by applying different ML techniques that allows the user to understand the
correlation of the different data in an attack.

All the information can be visualized in the SMS-I Intelligent Dashboard. Several
graphical dashboards, with different levels of detail can be used to easily identify anomalous
situations that can be related to possible Incident occurrences. Furthermore, the information
provided by the ML algorithms, namely the Incident probability can be analysed on SMS-I
intelligent dashboard. Moreover, for an additional insight about the association rules, a
management of the association rules by the security analysts can also be done.

The integration between SMS-I tool and TheHive, an Incident management tool, was
presented. This integration supports the collaboration among the security professionals,
not only inside the same institution but also between companies. Furthermore, SMS-I
provides an extra intelligent layer that adds useful information to the security occurrences,
which is automatically displayed in the Incident management tool facilitating information
sharing and improving the quality of the investigation.

SMS-I tool was tested in different European airports in the scope of SATIE project. A
very simple and authentic example, presented in this work, demonstrated the convenience
and usefulness of the SMS-I tool in the decision-making process of security analysts. As
future work, we plan to test SMS-I in other cyber–physical systems to improve the results
across the board. On the system’s side, a greatest improvement could be an automatic
retraining of the models, using labeled data from the SOC.
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