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Abstract: A wavelet-based method for bathymetry retrieval using a sequence of static images of the
surface wave field, as obtained from video imagery, is proposed. Synthetic images of the water surface
are generated from a numerical Boussinesq type model simulating the propagation of irregular waves.
The spectral analysis is used to retrieve both wave periods and wavelengths by evaluating the spectral
peaks in the time and spatial domains, respectively. The water depths are estimated using the linear
dispersion relation and the results are validated with the model’s bathymetry. To verify the proposed
methodology, 2D and 3D simulations considering effects of wave shoaling and refraction were
performed for different sea conditions over different seafloors. The method’s ability to reproduce the
original bathymetry is shown to be robust in intermediate and shallow waters, being also validated
with a real case with images obtained with a shore-based video station. The main improvements
of the new method compared to the consideration of a single image, as often used in Satellite
Derived Bathymetry, is that the use of successive images enables the consideration of different wave
periods, improving depth estimations and not requiring the use of subdomains or filters. This image
processing methodology shows very positive results to provide bathymetry maps for shallow marine
environments and can be useful to monitor the nearshore with high time- and space-resolution at
low cost.

Keywords: bathymetry retrieval; wavelength; wavelet analysis; image sequences

1. Introduction

The littoral is one of the most dynamic regions of the Earth. Numerous complex
interactions of atmospheric, hydrodynamic and sedimentary processes cause sea bottom
changes and detailed nearshore bathymetry is essential to understand environmental
processes, assess threats and mitigate climate change effects. Nevertheless, the spatial
and temporal resolutions of bathymetric coverages of littoral areas are poor. A constant
up-date of the morphological changes is essential, but this is impractical using standard
methodologies. Particularly, the nearshore bathymetry in high energetic coastal regions,
where waves steepen and break and intense bottom changes occur, do not allow to make use
of conventional in situ survey methods such as acoustic systems (e.g., single and multibeam
echosounders and other geophysical equipment) due to energetic hydrodynamic conditions
in some periods of the year and consequent logistical commitments [1,2].

Given the economic and social implications of short-term scale bathymetry changes
in littoral areas (e.g., safe navigation purposes at port entrances, potential hazardous
situations associated to changes and developments of the coastline), it is important to
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develop methodologies that can provide bathymetric updates where changes are most
frequent and faster [3,4]. Remote sensing, especially in wave-dominated areas, can be a
good alternative to obtain bathymetric information when conventional surveys (traditional
echo sounding measurements) are difficult to conduct. Although the bathymetry derived
from imagery is estimated rather than directly measured, it is one of the most cost-effective
technologies covering large and remote areas [5,6]. Several image-based remote sensing
algorithms to infer shallow water bathymetry can be found in the literature, being generally
divided in two different main approaches [7]: the radiative transfer of light into the
water and its interaction with the seafloor (e.g., [8,9]), and based on wave characteristics
(e.g., [10,11]) methods. Since we envisage to monitor morphologic changes associated
to energetic hydrodynamic conditions, we focus on wave-based algorithms where the
bathymetry can be inferred from the surface wave field, making use of inverse methods
and linear wave theory. The nearshore swell wave pattern is detected from the images and,
through adequate processing steps that make use of spectral techniques, the corresponding
wavelengths are calculated, and the depths inferred, relying on the inversion of the wave
number dispersion relationship [10–12].

Depending on image resolution and employed algorithms, the results involve differ-
ences in terms of accuracies, depth ranges, point spacings and temporal variations. Despite
these constraints, the development of Satellite Derived Bathymetry (SDB) led the Interna-
tional Hydrographic Organization (IHO) to consider acceptable SDB for areas uncovered
by reference hydrographic surveys [13]. Better satellite image resolution is now available,
but the spatial resolution is usually of (O > 10 m) [5]. Therefore, SDB are not suitable to
monitor, for example, the evolution of longshore bars or of rip channels that require higher
resolution. Major challenges are associated with requirements to resolve very small spatial
features, of O(<10 m), and to track changes at small time scales. The use of video remote
sensing systems (e.g., monitoring installations) seem to offer excellent spatial temporal
resolutions, in combination with cost-efficient long-term data acquisition [14–16]. Different
techniques to derive bathymetry in the very nearshore from shore-based video systems
have also been under active development. Most of them are based on the wave phase
estimation and depth inversion through linear and non-linear wave theories [17–20]. The
accuracy of video-derived bathymetry is generally estimated with a spatially varying accu-
racy of tens of centimeters (e.g., [21,22]). By using a modified version of the cBathy spectral
method [19] that allows to obtain depths from the wave number retrieval from video
imagery, Bergsma et al. [23] evidenced the capability of near-continuous monitoring for
1.5 years. Their long-term video-derived bathymetry dataset demonstrates the possibility to
continuously monitor the evolution of the beach morphology, allowing to make interesting
morphological analyses with distinctive temporal resolution. Using a cross-correlation
temporal method for depth inversion, Thuan et al. [24] provided three-year time-series
of a beach profile evolution from video cameras. The authors also present guidelines on
the limits of video-based depth inversion and for error assessment, which is crucial for
operational systems.

Recently, Santos et al. [25] developed an image processing methodology using wavelet
spectral analysis for the detection of the wavelength variation to map shallow marine
environments. From the analysis of satellite images with a pixel resolution of 10 m, Santos
et al. [26] derived bathymetry along 220 km of the high energetic Portuguese west coast
and demonstrated the wavelet method extends the depth inversion limits of FFT towards
shallower depths. This study aims to extend this conceptual wavelet methodology to a
sequence of static images of the surface wave field, as obtained from video imagery. The
method is based on a depth inversion technique, where both wave periods and wavelength
variations along the wave propagation are identified from spectral analysis. Firstly, simu-
lations of propagating waves are obtained from a numerical Boussinesq-type model that
provides the sequence of images. The simulations are carried over different bottoms, with
2D and 3D features such as longshore bars or headlands. The inferred depths are validated
with the real bathymetry, providing a comprehensive assessment of this methodology to



Remote Sens. 2022, 14, 2155 3 of 16

reproduce main morphological features of shallow areas. The proposed methodology is
then applied to a set of shore-based video system images and the estimated bathymetry is
compared with measurements.

2. Methodology
2.1. Depth Estimates

The use of remote sensing to estimate bathymetries in the nearshore can be based on
physical wave characteristic changes (celerity, wavelength, wave height), due to the interac-
tion with the seabed [27]. Waves propagating in intermediate and shallow waters show
sea surface patterns (e.g., wavelength) directly related to the local bathymetry and can be
detected with remote sensing. The wave crests and troughs present different characteristics
in terms of pixel intensity values, allowing to retrieve bathymetric information through
spectral analysis.

In this work, a wavelet spectral analysis technique is used for bathymetry retrieval.
The wavelet transform (WT) allows decomposition of a signal into several parts to analyze
them separately. In this way, it is possible to carry out a frequency analysis along the
spatial/temporal domain, getting to know exactly when or where each of the frequency
components occurs [28]. When applying the WT to a signal, an energy spectrum is obtained
where the dominant frequencies correspond to the most energetic region of the energy
spectrum.

Figure 1 shows an example of an energy spectrum of a periodic signal, η, resulting
from the application of the Morlet wavelet used in this work. In a spatial domain of 4000 m,
the signal contains a variation in its wavelength, λ, from left to right, changing almost
linearly from 100 m to 300 m. The energy spectrum evidences the wavelength increase
along the entire spatial domain, revealing that the application of the WT correctly estimates
the variations of λ.
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There is a strong correlation between the local water depth of the seabed, h, and the
wavelength of propagating waves via the dispersion relation

h =
λ

2π
atanh(

λ

λ0
), (1)

where λ0 represents the wavelength at deep waters, which depends on the gravitational
acceleration, g, and the wave period, T:

λ0 =
gT2

2π
. (2)

Equation (1) represents the analytical solution of the dispersion relation of the Airy
wave theory (often referred to as linear wave theory) that gives a linearized description of
the propagation of gravity waves on the surface of a homogeneous fluid layer. In previous
works (e.g., [11]) the value of λ0 is retrieved from the analysis of sea surface imagery (e.g.,
SAR images) at offshore locations in deep waters and assumes a constant value in the
dispersion relation. In this work, where a set of sequential images is considered, the wave
period is estimated along time by the WT in the same way as the wavelength, and the
ability to solve Equation (1) with constant or variable values of T is assessed. This is one
of the major differences regarding Santos et al.’s [25] methodology that considers a single
image to retrieve bathymetric data and, as for most satellite techniques based on wave
characteristics, adopts a constant offshore wave frequency.

2.2. FUNWAVE Model

Our goal is to apply the WT to a set of sequential static images of the surface wave
field, as obtained from video imagery by remote sensing. Often, in real-life dynamic
seabed situations, at the time of image capture the bottom is rarely known. Therefore, to
validate the results of the proposed methodology, synthetic images were generated using a
wave propagation model that replicates the temporal and spatial variations of the waves
over different known bottoms. Furthermore, it is possible to simulate the propagation
of irregular waves with different characteristics, identifying the best scenarios to retrieve
nearshore bathymetric data from real images.

As the swell patterns in the ocean are associated to irregular waves, corresponding to
the sum of several independent regular waves, there is a whole set of complex hydrody-
namic processes related to nonlinear wave effects in shallow waters. Therefore, a numerical
model that solves the Boussinesq equations is useful to simulate the wave propagation
with different characteristics over different bathymetries. The use of numerical models
that solve these equations has been greatly improved over time due to improvements in
Boussinesq’s theory, which benefits the use of this type of numerical models [29]. This study
uses the FUNWAVE-TVD model developed by Kirby et al. [30], which is a numerical wave
propagation model that solves Boussinesq equations. New versions were made available
to improve and correct previous versions and these types of models have been widely used
by the scientific community to simulate the propagation of waves in coastal areas. This
model is based on the fully nonlinear Boussinesq equations proposed by Wei et al. [31],
which implies that the results of this model can only be validated for intermediate and
shallow waters.

Currently, the FUNWAVE model solves the equations using a hybrid method that
combines finite volume schemes with finite difference schemes. This method has been used
by several wave models of the Boussinesq type as it has shown a robust performance in
wave propagation towards coastal zones [32]. More details of the numerical model can be
found in Shi et al. [33].
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2.3. Numerical Simulations

FUNWAVE was used to produce surface wave patterns in 2D and 3D domains where
different scenarios were tested to assess the ability of the WT to estimate different bathyme-
tries.

The 2D simulations consider three observed beach cross-shore profiles at Mira, Baleal
and Carvalhido, which are located in the west coast of Portugal (Figure 2). All beaches ex-
hibit submerged bars, but show different average slopes (5.2 8.6, 15.3 m/km, respectively).
This data was obtained by the Portuguese COaStal Monitoring Program—COSMO—at
https://cosmo.apambiente.pt/ (accessed on 18 October 2021), which was conceived and
developed by the Portuguese Environment Agency. This program consists of the collection,
processing, and analysis of information on the evolution of beaches, dunes, nearby sub-
marine bottoms, and cliffs along the mainland coast of Portugal. It is noted that the local
depth measurements were taken up to about 22 m with multibeam echosounder. To extend
the spatial domain to 3 km for the numerical simulations of Carvalhido steeper cross-shore
profile, despite some bedform oscillations and since the average slope is fairly constant,
interpolated values of the bathymetry were adopted for deeper depths, assuming the
average slope of 15.3 m/km. Mira beach presents a gentler slope (5.2 m/km), evidencing a
clear longshore bar and trough system. The submerged longshore bar extends for about
500 m in length and the location of the crest is located at about x = 500 m. Baleal cross-shore
profile also exhibits submerged longshore bars and bedform oscillations close to the shore
but with much smaller extensions.
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The simulations were carried with a JON_1D wavemaker and the length of the bathy-
metric profiles was 3500 m. This wave generation method is based on JONSWAP formu-
lation and is widely accepted and commonly used by the scientific community [34]. The
peak enhancement factor, Υ, adopted was 3.3. Since the simulations were carried out on
transverse profiles perpendicular to the coast, the waves propagate at normal incidence.

https://cosmo.apambiente.pt/
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Figure 3 shows a 3D spatial domain where a virtually headland was generated, corre-
sponding to a N × M bathymetric profile (N = 1000 m and M = 1500 m). The waves were
generated using a wavemaker (JON_2D), a method like JON_1D. In these simulations, also
considering Υ = 3.3, an incidence angle of 15◦ was used to assess if the methodology was
able to correctly retrieve the bathymetry in the presence of refraction effects.
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In all simulations, a computational simulation time of 30 min was adopted, with
the results being recorded every second (∆t = 1 s). The grid spacing (∆x) is 1 m and the
elevation z = 0 refers to the mean sea level. The values of the model parameters related to
wave propagation that are not indicated in this work were defined as default according to
Shi et al. [29].

3. Results
3.1. Dispersion Relation: Influence of λ0

As waves propagate towards the coast, they present variations in their characteristics
(wave height, celerity, wavelength) due to the interaction with the seabed. To analyze
the propagation of irregular waves over Mira beach cross-shore profile, simulations were
carried with a significant wave height of Hs = 1 m, a peak wave period of Tp = 10 s and
with a frequency range between 0.033 Hz to 0.33 Hz. After extracting each obtained 1D
surface elevation pattern from FUNWAVE, a timestack image was generated for a time
interval of 1200 s (Figure 4), corresponding to 20 min data records. The figure evidences the
propagation of the wave crests over time making the wave trajectories visible and allowing
to recover both wavelengths (along a line for a specific time) and wave periods (for each x
in time) from spectral analysis. For each time, Equation (1) is solved to derive the estimated
cross shore beach profile. To calculate a single depth result for each cross-shore position,
the median statistical estimator was applied to the 1200 ensemble of solutions obtained
in the temporal domain. The median is a robust statistical measure of central tendency
capable of removing outliers, allowing automatically to extract anomalous wavelength
estimations at each position.

By applying the methodology with a constant Tp = 10 s, the inferred bathymetry is
shown in Figure 5. The results obtained show large discrepancies of the depth estimations.
Furthermore, for x > 1.5 km, unexpected oscillations appear, accentuating the differences in
relation to the real bottom profile.
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A detailed analysis of the results for the wavelength estimates revealed the WT
correctly computes the wavelength variations. Consequently, the errors observed in Figure 5
must be related to the application of the linear theory dispersion relation by considering
a constant value in the computation of λ0. Figure 6 represents the wave period and
wavelength variation over time for x = 1000 m by applying the WT. Analyzing the estimates
of the wave period and wavelength at that location, it is observed that there is a very similar
pattern between the oscillations of the two variables in the course of time. The wave period
changes over time between T = 6 s and T = 14 s, oscillating around the expected average
value of T = 10 s. Therefore, the presence of this range of values of the irregular propagating
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waves can imply that the depth estimates are being miscalculated when applying a constant
value of T = 10 s.
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Figure 7 presents the results obtained from the dispersion relation, considering both
wavelengths and wave periods variations. The results are clearly improved, corroborating
the influence of T in the depth estimates. Along the spatial domain, the errors increase
for greater water depths with mean absolute errors of 0.25 m up to x = 2 km and 0.67 m
between x = 2 km and x = 3 km. This represents relative mean errors always below 5%,
denoting an almost complete overlap of the two bathymetries. Noteworthy is the ability to
detect the longshore bar with high precision, something that was not possible using the
dispersion relation with a constant value of T.
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3.2. Slope Influence

The bathymetric inversion methodology of Santos et al. [25] does not accurately
estimate bathymetric profiles with steep slopes [26]. To analyze the performance of the
proposed methodology based on a sequence of images, wave propagation simulations were
carried over the sharp bathymetric profile of Carvalhido beach. Three swell patterns were
evaluated: (i) Tp = 6 s with a frequency range between 0.05 Hz to 0.5 Hz; (ii) Tp = 10 s with
a frequency range between 0.033 Hz to 0.33 Hz; and (iii) Tp = 14 s with a frequency range
between 0.02 Hz to 0.2 Hz.

The depth estimates are shown in Figure 8 evidencing the consideration of different
wave periods. The results show that as the wave period increases, the ability to reproduce
greater depths increases. For Tp = 6 s, the depth estimates show small scale errors up to
about 0.5 km where the depth is about 12 m. For Tp = 10 s it is possible to extend the
calculation domain up to 1.3 km where the depth is about 26 m, and for Tp = 14 s it is
possible to estimate the depth with minor errors up to x = 2.5 km where the depth is 41 m. In
brief, the estimated depths in intermediate and shallow waters practically overlap the real
bathymetric profile. This observation is in line with expectations since, for deeper depths,
the interaction between the wave and the seabed is small and wavelength variations are
not expected.
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In general, due to the present seabed irregularities in shallow depths, there are rela-
tively larger errors than those obtained for Mira beach. Figure 8b highlights the differences
by zooming the previous results to the first kilometer of Carvalhido beach, evidencing
errors always below 2 m. It is verified that there is a good approximation between all depth
estimations and the profile used in the model, mainly in the first 500 m. The errors tend
to increase when there are sudden variations in the bed profile, as for example, between
x = 0.15 km and x = 0.25 km. The estimates appear to smooth out sudden variations in the
beach profile and average errors obtained for the first 1000 m are 0.36 m, 0.54 m and 0.68 m,
respectively, for Tp = 6 s, Tp = 10 s and Tp = 14 s. Despite these small errors, the results
clearly show that this methodology allows to retrieve bathymetric data for steeper slopes
with a high degree of precision, overcoming the limitations of Santos et al. [25] by using a
single image.

3.3. Wave Period Influence on the Detection of Longshore Bars

Mira beach results show that the use of waves with Tp = 10 s allow to obtain good depth
estimates enabling a good longshore bar description. The characteristics of the longshore
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bars can change in terms of extension and elevation and multiple sandbar systems can
appear along the spatial domain. To analyze the ability to detect smaller morphological
variations, wave propagation over the Baleal beach was considered. In this case, narrow
longshore bars appear close to the coastline.

Figure 9 shows the results by using three swell patterns with the previous hydrody-
namic forcing (Tp = 6 s, Tp = 10 s and Tp = 14 s). As in the case of the former analysis,
as the wave period increases, the ability to obtain better estimations for greater depths
increases. As expected for greater water depths, the bathymetric inversion fails. For this
bathymetric profile presenting a smoother slope than Carvalhido beach, with Tp = 6 s,
the depth estimates present small-scale errors (error less than 1 m) up to about 1.25 km,
where the depth is approximately 12 m. For Tp = 10 s it is possible to extend good depth
estimations up to 2 km, where the depth is about 20 m, and for Tp = 14 s it is possible to
estimate the depth with small errors throughout the entire spatial domain.
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By zooming in the previous results for shallower depths corresponding to x < 1 km
(Figure 9b), it is verified that there is a good approximation of the depth estimations. The
errors are always bellow 1 m, but larger fluctuations are observed for the different Tp,
particularly at the location of the bars. Regarding the representation of bed forms such as
the longshore bar at 0.25 km, smaller wave periods tend to have greater ability to represent
this narrow bar. In the first 350 m, where there are sudden variations in depth, the average
errors obtained for Tp = 6 s, Tp = 10 s and Tp = 14 s were, respectively, 0.23 m, 0.31 m
and 0.57 m. These errors evidence that waves with shorter Tp and, therefore, shorter
wavelengths allow better estimation of small variations in the nearshore morphology.
Conversely, between x = 350 m and x = 1000 m, for Tp = 6 s the errors approach 0.42 m
while for Tp = 10 s and Tp = 14 s, the obtained errors decrease to about 0.11 m and 0.15 m,
respectively. In general, for small wave periods, the surface waves can better adapt to the
bottom reproducing smaller morphological variations present in shallow depths. However,
it is necessary to consider that small wave periods only allow detecting with high precision
a small part of the cross-shore profile.

3.4. Wave Refraction Influence on Depth Estimation

In the previous case studies, the waves approached perpendicular to the coastline
(incidence angle of 0◦). In the ocean, normally the waves hit the coast with an angle of
incidence, θ, making the waves to slowly change their direction due to refraction. This pro-
cess makes wave crests bend according to water depth variations, driving them to become
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perpendicular to the bathymetric gradient and inducing wavelength changes. To verify if
the proposed methodology was able to correctly represent complex 3D bathymetries with
refraction effects, a beach with a headland was considered in the numerical simulations.
The simulations were carried with Hs = 1 m, θ = 15◦ and Tp = 10 s with a frequency range
between 0.033 Hz to 0.33 Hz.

Figure 10 shows the bathymetric estimations as well as the differences in relation to the
bathymetry introduced in the model. The results reveal an interesting agreement, showing
that the simulated isobaths contours present a very similar pattern in relation to what is
expected. Small differences can be observed but, in general, the bathymetry was reproduced
with errors of less than 1 m throughout the entire spatial domain (average absolute error
of 0.45 m). The biggest differences are found in shallow depths of the surf zone, where
the validity of the linear dispersion relation is questionable [35,36]. Nevertheless, the
application of the methodology enables to satisfactory retrieve good bathymetry data when
refraction effects are present.
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3.5. Case Study—Figueira da Foz

The proposed algorithm was tested with real data at the inlet of Figueira da Foz harbor
(FFH) located in the west coast of Portugal. This is a wave dominated ebb-tidal delta with
a submerged sand bar that constrains or endangers the navigation to the port. The sandbar
is a persistent shallow feature which is quickly reestablished after dredging due to the
intense longshore drift (Figure 11). Consequently, high frequency bathymetric surveys are
carried out by the port authorities. A recent shore-based video station was installed at
this location. The system captures video images with a 4K camera (Vivoteck IP9191-HP,
New Taipei City, Taiwan) installed at the Sweet Atlantic Hotel and Spa building (40.15058◦;
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−8.86633◦) at 70 m height and 1.5 km away from the study site (Figure 11). The camera
was calibrated to eliminate distortions caused by the curvature of the lens and the video
frames were rectified to transform oblique images into image-products typically projected
on a horizontal plane (e.g., [15]).
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Figure 11. Figueira da Foz inlet. Location of the profile where the Timestacks are generated over a
calibrated and rectified image. The orange-lined area shows the area covered by the video camera.

Video images for two consecutive days were selected (1 December 2020 and 2 Decem-
ber 2020), corresponding to a multibeam survey performed on 2 December 2020. During
the analyzed period, the wave climate was very similar. On 1 December 2020 the wave
period and wave height were, respectively, Tp = 10 s and Hs = 1.3 m, while on 2 December
2020 they were Tp = 9 s and Hs = 1.2 m. The video images considered for the analysis
report to periods close to the slack high tide, where no breaking waves were observed in
the area of interest and tide-induced currents were minor, and with no reflection of the sun
on the water. The Timestack images for the chosen periods were generated for the profile
indicated in Figure 11 with a spatial resolution of ∆x = 1 m and a temporal resolution of
∆t = 0.5 s (Figure 12).
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Figure 13 shows the results obtained for both days denoting the agreement between
measured and estimated depths along the profile. The estimations practically overlap,
allowing to identify the presence of the sandbar and its crest with errors of about 0.25 m. In
most of the profile, the errors are below 0.8 m, except for the range x = (290, 440) m. In this
case, we confirm the inability of the wave to completely adapt to sudden bottom variations,
increasing the errors. It is also noticed that such differences decrease after the passage of
the waves through the bar trough, which is in accordance with the patterns identified in
the synthetic data case studies. Further offshore of the bar, there is a gradual increase in
the error, which might be associated with the spatial resolution to far-field zones of the
projected area, but it is also within the range of differences observed for the synthetic cases.
The expected similarity of the estimated results for the two consecutive days shows the
consistency of the methodology.
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4. Discussion

The simulations carried out in this work reveal that the use of a sequence of static
images, as obtained from video remote sensing systems, allow to retrieve bathymetric
data with great precision (<O(1) m) if no sudden bottom changes appear. Commonly, both
optical [37] and radar [38] satellite techniques based on wave characteristics, use a wave
frequency estimated offshore and consider it to be constant when the wave approaches the
coast. This leads to assume a constant value of T, when applying the dispersion relation
to retrieve depths [11]. However, if a wide dispersion of wave period values around T
exists, large discrepancies between expected and estimated results appear. The improved
methodology of Santos et al. [25] for a sequence of images, using the wavelet transform
to detect both wavelength and wave period, clearly improves the predictions, with quite
small-scale bathymetric errors either for longshore sandbars with different configurations or
more complex bathymetric features such as headlands. In addition, the adoption of variable
values of T that can be extracted from video imagery does not need to use subdomains or
filters as required by Santos et al. [25] when analyzing single static images. Conceptually,
the novelty of this method is that the computation of both parameters is intrinsically
deriving the wave celerity from the wavelet analysis.

The performance of the method depends on the beach profile depths and the morphol-
ogy of the bed features. In general, the errors tend to increase offshore, especially for smaller
wave periods. For the lower wave period simulations, the interference of wave orbital
motions with the bottom is expected to be small or inexistent at deeper waters. In shallow
waters, high spatial gradients of the wavelength are expected to occur in such cases, and
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the use of several images, identifying wave period variations, enables to estimate depths
with greater precision. Despite the complexities of the bathymetric profiles, the differences
are not significant. In some places, errors slightly greater than 1 m can be found, but they
happen in the presence of sudden morphological variations, so that the waves have no time
to completely adapt to the bottom profile. In general, within the region of intermediate and
shallow waters, the results between the different wave patterns demonstrate that a better
description of sudden changes can be obtained for lower values of Tp. The shorter the wave
period, the shorter the local wavelength. Therefore, more easily the waves adapt to the
underlying seafloor, since there is not a very large variation in depth along the estimated
wavelengths. Nevertheless, to extend the prediction to greater depths, longer wave periods
are more suitable. This dependency on the wave period was also noted by Thuan et al. [24]
by associating error estimates in deep waters with physical limits, since there is a loss of
celerity-bathymetry relationship in deep water.

The wavelength and period estimations can also depend on the FUNWAVE spatial and
temporal resolutions. The simulations are carried out in specified discrete temporal and
spatial domains, and both wavelength and period estimations would be improved if lower
values of ∆t and ∆x than 1 s and 1 m were adopted. As demonstrated by Pereira et al. [11],
when the linear dispersion relation is applied for greater depths, the expected accuracy
of the computed depth estimations is lower, depending on wavelength and wave period
uncertainties. However, the numerical model was already run on a computing cluster
where up to 24 processors were used and the computational cost would be much higher to
further reduce the values of ∆t and ∆x. Despite this, one observes depth differences always
bellow 1 m, accurately identifying nearshore morphological singularities as longshore.

When applying the methodology to a real case, the results corroborate what was
observed for the synthetic cases. An analysis of two consecutive days allowed to derive
consistent depth estimates. The atmospheric and maritime conditions existing on the video
images capture, correspond to sunny days, without wind and without wave breaking in the
area of interest. Swell waves were observed of around T = 10 s and Hs = 1.2 m. Challenges
related to depth inversion methodologies are to be expected under extreme environmental
conditions such as, for example, reduced visibility, large surf zones, strong winds or messy
sea states. In the future, it will be interesting to carry out tests on other atmospheric and
maritime conditions to evaluate the application limits of this methodology.

5. Conclusions

This work proposes a new wavelet-based method for bathymetry retrieval using a
sequence of static images of the surface wave field, as obtained from video imagery. This
improves Santos et al.’s image processing methodology for single images, by using the
wavelet spectral analysis to retrieve wave periods and wavelengths variations.

Synthetic images of the water surface are generated from a numerical Boussinesq
type model to simulate the propagation of irregular waves, exploring shoaling and wave
refraction processes. The tested conditions lead the waves to break close to the shoreline,
excluding surf zone effects from this analysis. The simulations were carried over different
beach cross-shore profiles, highlighting the importance to retrieve different wave periods
from the sequence of images. This procedure allowed to infer depths for shallow and
intermediate waters from the linear dispersion relation with relatively high depth accuracy
and for different bottom slopes configurations. It is shown that small-scale bathymetry
variations, such as nearshore longshore bars are better reproduced with lower wave peak
periods, corresponding to short wavelengths. On the contrary, good depth predictions
for deeper depths are obtained with longer wave periods. The application to a shore-
based video system confirmed the synthetic data observations, evidencing that developed
sandbars in length allow a better detection of the bar crest and its morphology. In addition,
errors tend gradually to increase to far-field zones of the projected area.

Promising results to infer variable bathymetries of shallow sandy coasts using this
methodology may foster the implementation of new video-based operational systems, sup-
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porting the quasi-real time bathymetry where bathymetric surveys are greatly conditioned
by favorable maritime and meteorological conditions.
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28. Zieliński, T. Wavelet transform applications in instrumentation and measurement: Tutorial and literature survey. Metrol. Meas.
Syst. 2004, 11, 61–101.

29. Shi, F.; Kirby, J.T.; Tehranirad, B.; Harris, J.; Choi, Y.-K.; Malej, M. FUNWAVE-TVD: Fully Nonlinear Boussinesq Wave Model with
TVD Solver; Center for Applied Coastal Research, Ocean Engineering Laboratory, University Delaware: Newark, DE, USA, 2016.

30. Kirby, J.T.; Wei, G.; Chen, Q.; Kennedy, A.B.; Dalrymple, R.A. FUNWAVE 1.0, Fully Nonlinear Boussinesq Wave Model, Documentation
and User’s Manual, ReportCACR98-06; Center for Applied Coastal Research, Department of Civil and Environmental Engineering,
University of Delaware: Newark, DE, USA, 1998.

31. Wei, G.; Kirby, J.T.; Grilli, S.T.; Subramanya, R. A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear,
unsteady waves. J. Fluid Mech. 1995, 294, 71–92. [CrossRef]

32. Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer Science and Business Media LLC: Berlin/Heidelberg,
Germany, 2009.

33. Shi, F.; Kirby, J.T.; Harris, J.C.; Geiman, J.D.; Grilli, S.T. A high-order adaptive time-stepping TVD solver for Boussinesq modeling
of breaking waves and coastal inundation. Ocean Model. 2012, 43–44, 36–51. [CrossRef]

34. Chakrabarti, S. Handbook of Offshore Engineering; Elsevier Publications: Amsterdam, The Netherlands, 2005; Volume 2.
35. Flampouris, S.; Seemann, J.; Ziemer, F. Sharing our experience using wave theories inversion for the determination of the local

depth. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–7.
36. Ge, H.; Liu, H.; Zhang, L. Accurate Depth Inversion Method for Coastal Bathymetry: Introduction of Water Wave High-Order

Dispersion Relation. J. Mar. Sci. Eng. 2020, 8, 153. [CrossRef]
37. Leu, L.-G.; Chang, H.-W. Remotely sensing in detecting the water depths and bed load of shallow waters and their changes.

Ocean Eng. 2005, 32, 1174–1198. [CrossRef]
38. Pleskachevsky, A.; Lehner, S.; Heege, T.; Mott, C. Synergy and fusion of optical and synthetic aperture radar satellite data for

underwater topography estimation in coastal areas. Ocean Dyn. 2011, 61, 2099–2120. [CrossRef]

http://doi.org/10.1016/j.coastaleng.2018.07.009
http://doi.org/10.1016/j.margeo.2016.02.001
http://doi.org/10.1016/j.coastaleng.2018.01.003
http://doi.org/10.3390/rs11050519
http://doi.org/10.3390/jmse7070233
http://doi.org/10.3390/jmse8100772
http://doi.org/10.1016/j.rsase.2021.100674
http://doi.org/10.1109/LGRS.2013.2274475
http://doi.org/10.1017/S0022112095002813
http://doi.org/10.1016/j.ocemod.2011.12.004
http://doi.org/10.3390/jmse8030153
http://doi.org/10.1016/j.oceaneng.2004.12.005
http://doi.org/10.1007/s10236-011-0460-1

	Introduction 
	Methodology 
	Depth Estimates 
	FUNWAVE Model 
	Numerical Simulations 

	Results 
	Dispersion Relation: Influence of 0 
	Slope Influence 
	Wave Period Influence on the Detection of Longshore Bars 
	Wave Refraction Influence on Depth Estimation 
	Case Study—Figueira da Foz 

	Discussion 
	Conclusions 
	References

