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Abstract. As the availability of computational power and communication technologies increases, Humans and systems are able
to tackle increasingly challenging decision problems. Taking decisions over incomplete visions of a situation is particularly
challenging and calls for a set of intertwined skills that must be put into place under a clear rationale. This work addresses how to
deliver autonomous decisions for the management of a public street lighting network, to optimize energy consumption without
compromising light quality patterns. Our approach is grounded in an holistic methodology, combining semantic and Artificial
Intelligence principles to define methods and artefacts for supporting decisions to be taken in the context of an incomplete
domain. That is, a domain with absence of data and of explicit domain assertions.
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1. Introduction

Urban areas, given their increasing size and popu-
lation density, are expected to be at the forefront of
the current environmental revolution. However, cities
are also facing their own challenges, such as envi-
ronmental stressors, overpopulation, traffic problems,
air pollution or the growing complexity of managing
the city’s infrastructure. In the search for technology-
mediated solutions for the current challenges, the so-
called Smart Cities emerged [1].

By definition, the concept of Smart City depends on
the use of Information and Communication Technolo-
gies (ICT) to connect its different services and/or re-
sources. This communication layer allows data to be
collected, analyzed and acted upon in real time [2].
However, the simple interconnection of these elements
is not enough. Thus, Smart Cities also consider the no-
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tion of digital agents performing autonomous actions
to provide a new level of support to the management
of resources or services [3, 4]. This is paramount in
the current scenario of information overload, as Hu-
man deciders cannot possibly be expected to deal with
the increasing volume and complexity of the data [5].

Smart Cities also have a general goal, towards which
all autonomous agents converge in their actions: to im-
prove the citizens’ quality of life [6]. This rather broad
and abstract goal can be broken down into more spe-
cific and well-defined ones, such as to improve the
efficiency of the city management [7], the manage-
ment of resources and energy[8, 9], the management
of infrastructures and assets[3, 4, 10], the response
to disasters[11], or the city’s sustainable growth [12]
including smart mobility[13]. Hence, the challenges
posed by smart city projects are socio-technical in na-
ture [14].

In this context, energy management is one of the
most complex[8]. This paper focuses on the specific
issue of public lighting. Public lighting is, currently,
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one the the most important subjects on the cities’ man-
agement agenda, not only for economic and environ-
mental issues, but also because it has a direct impact
on citizen’s comfort, safety and perceived security [15,
16]. In Portugal, the latest available data, pertaining
to 2017, show that 1.46 TWh (Terawatt-hours) were
spent with public lighting in that year. This amounts
to 3.1% of the country’s energy consumption[17]. At a
global level, the total energy consumption for all types
of lighting was estimated to amount to 3,418 TWh.
This figure represents 19% of the world’s total electric-
ity consumption. Public lighting alone amounts to 281
TWh, which represents around 1.6% of all the electric-
ity consumed worldwide[18].

In this paper we describe a solution to improve the
efficiency of energy consumption in public lighting
networks taking into account internal, external and so-
cial factors related to public light fixtures, following a
knowledge-based approach. The goal is twofold: 1) to
devise a methodology to manage lighting level dynam-
ically to minimize energy consumption, taking into ac-
count the individual characteristics of each fixture in
the network (e.g. location, orientation, operating con-
ditions) and current guidelines and legislation; 2) to
formalize and produce knowledge about the system,
thus contributing to a real understanding of the prob-
lem by Human experts. The developed approach was
validated in a real public lighting network of more than
300 fixtures.

Thus, the key distinguishing factor in this work
is that it addresses the problem by combining two
approaches: a data-based and a semantic one. Data-
based[19–21] and semantic approaches[22, 23] are of-
ten used in the domain of Smart Cities, albeit sepa-
rately. The holistic nature of this work, on the other
hand, emerges to address a twofold perspective of the
problem, wherein data analysis and AI is only a part of
the solution: identified data patterns should be contex-
tualized by means of semantic artefacts, adding value
to the information to be provided in the scope the the
decision support process.

As the literature shows (Section 4), most of exist-
ing approaches rely on data and use Machine Learn-
ing (ML) or other AI techniques to address the prob-
lem. One limitation of these approaches is that they
all treat fixtures equally, while we take into consid-
eration their individual differences. These differences
may stem from various factors, including the location
or orientation of the fixture, or physical features (e.g.
a poorly placed heat sink that increases heat and di-
minishes light quality and lifetime). Nonetheless, they

all impact the operation of the luminary in some way,
and make each luminary unique in the network. We
take into account these differences[24] to implement
an individualized management of each fixture in the
network, thus maximizing gains.

Moreover, data-based approaches often have limita-
tions concerning the interpretability of the results. That
is, purely data-based approaches tend to work and ef-
fectively improve energy efficiency, but they lack in
contributing to a real understanding of the system by
Human experts. This is especially true in the cases in
which so-called "Black Box" models are used [25].

The key innovative aspects of the proposed system
can thus be enumerated:

– We take into consideration the individual charac-
teristics of each fixture, that stem from their lo-
cation, orientation or physical properties, when
modelling their behavior;

– We use an outdoors laboratory in which addi-
tional luminosity sensors are used, and model the
relationship between fixture dimming, weather,
ambient luminosity, and the luminosity experi-
enced by the user;

– We create a model that can be used to predict the
luminosity at the pedestrian level, given these fac-
tors, and use this model to set the ideal dimming
of each individual fixture;

– We simulate the use of this model during four
months of operation of a real public lighting net-
work with 305 fixtures, to assess the potential en-
ergy savings.

The results show that, when compared to the scheme
that is currently used by the municipality to manage
this lighting network, the use of the proposed system
leads to a decrease in energy consumption of 28%
while still maintaining the levels of luminosity de-
fined in National and European standards (e.g. EN
13201:2015)[26]. These results were obtained by com-
paring the energy spent in a public lighting network
during 4 months of regular operation, to the energy
that would have been spent if the proposed system
was in operation. Energy savings are obtained through
a dynamic dimming of each individual fixture, im-
plemented through a Machine Learning model, that
embodies multiple dimensions of the problem includ-
ing individual characteristics of each fixture, place-
ment/orientation, or ambient light.

The rest of the paper is structured as follows. Sec-
tion 2 describes the Research Methodology followed,
namely how the two complementary approaches were
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combined to achieve the intended goal. Section 3 pro-
vides some fundamental context on the domain of pub-
lic lighting. Next, Section 4 provides an overview of
recent literature, framing it in different levels of in-
creasing specialization and complexity. Section 5 de-
tails the knowledge model for the proposed Decision
Support System (DSS). The following two Sections
detail the Case Study in which the proposed approach
was validated, as well as the results, in terms of both
the accuracy and the energy savings obtained. The doc-
ument closes with the concluding remarks in Section
8.

2. Research Methodology

Moving to intelligent LED based public light fix-
tures allowed to adopt a data flow model with up-
stream and downstream communication channels, pro-
viding both the information flow and control flow. New
challenges emerge from this data driven technological
shift, where decisions are no longer based just on peo-
ple experience and on one-size-fits-all policies or pro-
cedures defined by manufactures and energy providers.
Real-time computed data, plays a key role on identi-
fying usage patterns and/or thresholds from historical
datasets. Based on this, the following research ques-
tion emerged:

How to accommodate domain specific knowl-
edge, internal data from fixtures and information
obtained from data driven analysis processes, in a
model capable of classifying each public light fix-
ture, according to its consumption behavior and
dimming adjustment interval?

To answer the aforementioned research question, a
knowledge-based methodology (see figure1) was de-
signed combining semantic modelling and data-driven
AI methods.

The semantic approach is underpinned by a con-
ceptual analysis[27] followed by a ontology engineer-
ing process, whose aim is to provide a shareable and
reusable knowledge representation of public lighting
energy performance factors. The result of this frame-
work of understanding is articulated in an ontology,
capable of processing and reasoning over public light
fixture data.

As to the AI approach, it has a twofold role a well:
i) to perform an initial investigation on data to dis-
cover patterns and identify anomalies, and; ii)to quan-
titatively determine the extend to which internal and
external variables might influence public lighting oper-

ation patterns. This was accomplished using ML tech-
niques, wherein it was considered the following arte-
facts: i) the original dataset; ii) the domain model re-
sulting from the conceptual analysis, and; iii) exter-
nal factors, such as weather data and illuminance, ob-
tained trough a lab experiment (see section 5), whose
setup was based on the data understanding provided
by EAD and the domain conceptualisation (see figure
3). The results obtained at this stage (i.e, patterns and
thresholds that could be associated to an optimal op-
eration behaviour of public light fixtures) are to be ac-
commodated by the ontology as semantic rules (see ta-
ble 3), providing a knowledge-based decision-support
artefact. The ontology is capable of automatic classify
each fixture, according to its operation pattern and con-
text, as well as the range of actions that might be taken
in order to improve its efficiency. In practical terms, a
specific fixture might be classified (or tagged) as op-
erating in a “base efficiency pattern” and simultane-
ously be associated to a "decrease of dimming” action
type through the reasoning engine. Due to physical de-
vices constraints, the available actions for the control
flow are limited to dimming adjustments and switch
ON/OFF operations.

Table 1 summarizes the role of each scientific per-
spective towards answering the research question.

3. Energy Consumption Efficiency in the Context
of Street Lighting

Energy issues continue on the agenda, in particu-
lar concerning efficiency aspects. In fact, we are wit-
nessing a transitional period, wherein existing renew-
able and clean energy sources are not economically
viable or are not sufficiently mature to answer cur-
rent global demands. Meanwhile, new solutions fo-
cused on redesigning energy distribution and con-
sumption patterns emerge, in order to overcome the
sustainability unbalance. This is part of what Smart
cities stand for: they are on pursuit of new resource
management through digital sustainability approaches.
Within this context, cities’ street lighting networks
have been shifting towards a new technology paradigm
that allows it to benefit from significant energy sav-
ings. However, despite the economic return, energy
consumption efficiency is not guaranteed. Energy ef-
ficiency in the context of street lighting is a broader
concept and socio-technical in nature. Measuring en-
ergy consumption efficiency in a decision-support per-
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Fig. 1. Knowledge-based Research Methodology

Table 1
The role of each scientific perspective, towards answering to the re-
search question.

Semantic Approach Data Driven AI Approach
i) analyse domain knowledge and make do-
main assumptions explicit

i) analyse PL data to detect "mistakes" and
check domain assumptions

What ii) semantic categorisation of PL topics ii) finding coherency of PL topics
iii) provide a framework of common under-
standing about PL behaviour to provide bet-
ter data management

iii) provide relationships among exploratory
variables, to predict PL behaviour

How i) Conceptual Analysis i) Exploratory Data Analysis
i) Semantic Reasoning ii) Machine Learning

Artefacts i) Semantic Model (Ontology) i) Correlation Model and ML classifica-
tion/prediction algorithm

Goal Classification of PL Behaviour and carrying out inference about PL behaviour impact on
energy consumption performance

spective implies understanding energy efficiency at its
basis and in a socio-economic perspective.

The European Union has been making efforts to in-
crease energy efficiency within its member states. The
2030 climate and energy framework, revised in 2018
for the period of 2021 to 2030, aims at the reduction
of 32.5% in energy consumption replacing 32% of the
energy production with renewable sources and keep-
ing the value of 40% in greenhouse gas emissions. Por-
tugal has also defined its own energy strategy in ac-

cordance do the European Union commitment and de-
veloped the PNAEE (National Action Plan for Energy
Efficiency), containing measures and guidelines to be
followed in Portugal.

In the energy efficiency panorama, "lighting repre-
sents approximately 50% of the electricity consump-
tion of European cities" [28], endows street lighting
a crucial role on cities energy efficiency road map,
whose guidelines were expressed in a set o docu-
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ments/standards for road lighting (EN 13201:2015)
[26].

4. Related Work

So-called Knowledge-based or Expert Systems have
been widely used to address the challenges of manag-
ing infrastructure, services or even the design of build-
ings or entire areas in cities. Early foundational exam-
ples include the use of Expert Systems to design large
structures [29], to design floors in highrise buildings
[30], to assess earthquake damage [31], among others
[32].

Knowledge-based systems applied to energy man-
agement and distribution have increased in the last
years, motivated especially by various factors includ-
ing those related with the environment, sustainability,
industrial competitiveness and energy security [33].
This Section focuses on this domain. More specifi-
cally, we look at systems dedicated to the management
of public lighting networks.

The methodology followed to carry out the snapshot
of the current state of public lighting detailed in this
Section was to search for indexed papers in relevant
journals and conference proceedings in the last 5 years.
Specifically, we searched for the term “public light-
ing”, in combination with related terms such as ”intel-
ligent systems”, “knowledge-based systems”, “energy
efficiency” or “IoT”.

The wide range of works found in the literature can
be organized in a layered fashion, according to their
level of sophistication and the degree to which they
make use of the data (Figure 2).

From a bottom-up approach, we have considered, at
the first level, related works describing relative sim-
ple actions such as the replacement of obsolete fix-
tures, generally based on High-pressure Sodium (HPS)
Lamps, by more modern Light Emitting Diode (LED)
ones. At the opposite end, we classify articles with
more advanced technical-scientific approaches, such
as knowledge-based systems that support rich Hu-
man decision-making, through the provision of inter-
pretable and actionable insights.

Depending on the level of sophistication of the sys-
tem, literature shows that savings can go up to 50%,
mainly due to fixture replacement, but also due to in-
telligent management solutions [34, 35]. Moving to
LED-based fixtures, allows to significantly decrease
energy consumption [36]. Infrastructure moderniza-
tion has been the cities’ main focus in their pub-

lic lighting management policies [37, 38]. This fairly
straightforward action not only reduces energy and op-
erational costs [39], but it is also the fundamental step
for achieving the so-called smart public lighting, with-
out which the higher levels depicted in Figure 2 are not
attainable.

Fig. 2. Levels of sophistication of the papers analyzed in this litera-
ture review.

The next level requires these lamps to be connected
through a data communication network. Indeed, new
LED lamps which are now being used in public light-
ing, generally have a wide range of hard and soft sen-
sors that collect data on the state of the fixture in real-
time. These variables include driver temperature, in-
stantaneous voltage, instantaneous current, and life-
time, among others. The collected data can be trans-
ferred to be stored by the managing entity. The stored
data can later be analyzed to elaborate dashboards and
reports, and allow decision-makers to better know the
network and how to manage it.

Most of new LED fixtures are also endowed with
remotely-controlled actuators. This means that the data
communication network might also act in a controlled
network mode, allowing several of the operating pa-
rameters to be set remotely. The most frequent oper-
ations are to turn fixtures on or off or to adjust their
dimming. Currently, most of the fixtures have on-board
machine-to-machine communication modules that al-
low them to do so. However, there are also cases in
which a control and communication network was in-
stalled in a public lighting setting using an external
Wireless Sensor Network (WSN). A WSN is made of
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several modules: a computational unit for data process-
ing, hard and soft sensors for acquiring physical quan-
tities regarding the operation of the fixture or the envi-
ronment around it, and a radio transceiver for sending
and receiving data and/or commands [35].

The existence of sensors and actuators on the fix-
ture is sometimes used to implement a first level of au-
tomated services, albeit relatively basic. At this level,
services are generally not centralized and there is no
centralized control. Services are rather reactive, gener-
ally implemented using simple rules, and tend to oper-
ate at the fixture level or encompassing a few nearby
fixtures. In [34], the authors use motion detection sen-
sors to automatically regulate the luminous flux of
each individual street fixture. The system allows en-
ergy savings of up to 40% while respecting the lighting
norms for all road users.

More recently, a new type of public lighting net-
works started to emerge, representing the next level of
related works depicted in Figure 2. This encloses ap-
proaches characterized by a full integration between
three main elements: sensors, actuators, and a central-
ized governing entity. Systems that exist at this level
are also often deemed smart public lighting, with the
term smart referring both to the ability of sensing the
state of the network and of autonomously managing
it. Accordingly, many different architectures and ap-
proaches can be found in the literature, with varying
degrees of sophistication, namely concerning the de-
gree of autonomy.

At this point, it is important to distinguish between
the concepts of automation and autonomy as a system
may implement an automatic management of the net-
work but have very low autonomy. Automatic manage-
ment refers to the ability of the system to manage the
public lighting network without the interference of Hu-
mans, following a pre-determined set of rules. These
rules are, however, static, and the system does not have
the ability to change them. Autonomy, on the other
hand, implies the ability of the system to manage the
network and to manage itself; that is, it has the ability
to change the rules.

An example of an automatic system can be found in
[35], in which the authors use a hierarchical WSN to
control public lighting. It is hierarchical in the sense
that there is a central control unit that controls special
nodes of the network that act as a coordinators (gate-
ways), and these gateways in turn are responsible for
monitoring and controlling nearby fixtures. Gateways
are also responsible for sending and receiving data to
the central control unit. The control unit decides when

to turn the fixtures on or off, as well as their dimming.
The authors used a network of 737 fixtures, individu-
ally controlled through a network of 11 gateways. To
reduce energy consumption the authors used a lower
and time-varying power profile with adaptive dimming
rules, achieving savings of around 30%.

In [40] the authors study the impact of retrofit ac-
tions in urban lighting systems and show that energy
and economic savings can be obtained in different sce-
narios: time-based dimming strategy, changing of light
bulbs by more efficient ones, or both. This is also an
example of how an automatic system would result in
energy savings by controlling the public lighting net-
work according to pre-determined rules. When replac-
ing light bulbs with more efficient ones while also
automatically controlling dimming, the authors report
energy savings and a reduction of CO2 of 66%.

Automatic systems have also been used to control
light intensity based on car traffic. In [41], the authors
implemented a situation-based traffic adaptive control
of public lighting. That is, rather than controlling pub-
lic lighting based on time of day, the authors do so
with information of traffic flow. Traffic level is dis-
cretized into categories and then a group of rules is
used to remotely control the intensity of light based
on the amount of traffic, in real-time. On the different
test sites in which the authors validated their system,
they reached energy savings between 35% and 50%. A
similar approach can be found in [42].

There are also systems that, while automatic, are
less deterministic in the way they take decisions, and
are closer to autonomous ones. In [43], for instance,
the authors present a hierarchical system in which fix-
tures are organized in a tree fashion. The authors im-
plemented a voting scheme in which each parent node
collects votes from the children nodes regarding “what
to do” when ambient lighting changes. Decisions are
thus taken, at different levels, according to a majority
vote of each sub-tree. While not completely determin-
istic, the system is not yet deemed autonomous in the
sense that it cannot change the voting rules.

At a higher level, one can find examples of true “in-
telligent systems” for PL management. In [25] the au-
thors present an adaptive architecture that deals with
control and intelligent management of public lighting
to minimize energy consumption while maintaining vi-
sual comfort in illuminated areas. The authors com-
bine elements from Artificial Intelligence and statis-
tics, including Artificial Neural Networks and Multi-
Agent Systems. Cost savings are twofold: in terms of
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energy consumption and by using a modular and easily
scalable architecture.

Similarly, in [44] the authors present a decision
making tool to support in selecting the optimal energy
interventions on the public lighting network. In this
specific case the authors approach the problem of en-
ergy efficiency through a quadratic integer program-
ming formulation, with the goal to reduce the energy
consumption and ensure an optimal allocation of the
retrofit actions among the street lighting subsystems.

Economic savings can however be obtained by other
means than dimming control. In [45] the authors in-
vestigate the use of solar energy and adapting lighting
schemes based on motion sensor data, to improve the
energy balance of PL networks. Not only that, but the
authors also develop algorithms for forecasting the en-
ergy produced and consumed, and use these forecasts
to optimize the energy management of the system by
determining when to sell and when to buy electricity
to/from the grid. The main goal of the optimization
function is to minimize the cost of electricity in the
context of a time-of-use variable energy tariff. Results
show that adaptive lighting can decrease energy con-
sumption by up to 55% in low traffic environments,
and that the energy balance of the network can be pos-
itive throughout long periods.

An analysis of other smart lighting systems that
share the characteristics of those addressed so far can
be found in [46–50].

The topmost level of the Figure 2 includes Knowledge-
based systems. These are systems that are not only
able to manage a public lighting infrastructure, but also
to compile knowledge about the its operation. This
knowledge is then shared with Human experts in a way
that contributes to their understanding of the system
and potentiates good decisions. An example is detailed
in [51]. The main goal of the authors is to assess street
lighting tenders based on energy performance indica-
tors and environmental criteria. For this, they built a
decision tool that ranks actions, and provides Human
experts with recommendations regarding the most and
least beneficial ones.

In [52], the authors detail an approach in which
graph-based models and methods are used to manage
adjustable fixtures through a dynamic sensor-based op-
eration. Specifically, control is performed by means of
rule-based systems and pattern matching and is applied
to the system using graph transformations. The for-
mal framework proposed by the authors includes in-
formation regarding the spatial characteristics of the
area under consideration, illumination requirements,

parameters of the fixtures, all inputs and outputs, and
the methods for selecting appropriate configurations.
The main advantage of the graph-based approach pro-
posed by the authors is that of addressing the com-
plexity of designing and controlling lighting systems
given all the variables and requirements. A graph-
based approach is also used in [53] to dynamically
control street lighting. While the dynamic control of
dimming has already been addressed before in this
section and placed at a lower level, this system has
the added advantage of having an increased expressive
power, which makes it more easily interpretable for a
Human expert. Namely, the graph represents features
such as traffic intensity detector, ambient light inten-
sity detector, road segments, fixtures and fixtures’ con-
figurations. Aside from this, the authors also show that
they are able to improve efficiency by reducing prob-
lem size at run-time. Specifically, experimental results
show a reduction of computing time by a factor of 2.8.
Other graph-based approaches to the problem of street
lighting control can be found in [54, 55].

Regarding the approach proposed in this paper, it
can be classified at the topmost layer of Figure 2, dis-
tinguishing itself from the others by combining two
usually independent approaches: a semantic one and a
data-driven one.

5. On the specification of decision support
knowledge model

5.1. The conceptualisation phase

The process of managing the street lighting be-
haviour, towards its best balance between energy ef-
ficiency and light comfort patterns, implies an under-
standing of the underlying consumption factors and
how they contribute to the performance of a fixture.

In this context, energy efficiency must be approached
as an holistic concept [26] including several factors or
parameters that might be classified as internal and ex-
ternal. Internal factors are related to current (I), ten-
sion (v), electric power (w), color, and temperature.
External factors include ambient data [56] and the lo-
cation of street lighting installation [26], as well as
parameters describing quality of light [6]. To this end
we followed a conceptual analysis, through which we
proceed to concept identification by means of domain
terms extraction, analysis of the knowledge they refer
to, and representing their semantic relations between
concepts in an network. This knowledge representation
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creates a framework for understanding in the scope of
public street light consumption behaviour.

The conceptualisation process was triggered by
defining a set of Competency Questions (CQs)[57] or
focus questions, which aim at defining the scope of
the conceptual analysis. Additionally, CQs might also
act as a kind of stop criterion, to the extent that if all
questions were answered, the process might finish.

– CQ#1 - What kind of factors might contribute to
the public lighting consumption behaviour?

– CQ#2 - What are the main types consumption be-
haviour of LED fixtures?

– CQ#3 - What "circumstances" determine public
light consumption behaviour?

– CQ#4 - What kind of elements define light com-
fort?

– CQ#5 - What kind of light comfort constraints
contribute to public lighting consumption be-
haviour?

– CQ#6 - What kind of "elements" determine the
energy efficiency performance of a Public Street
Lighting source?

– CQ#7 - What is the range of actions that might be
performed in the scope of Public Lighting man-
agement?

Figure 3 depicts a conceptual ontology for street
lighting consumption performance, representing a
common understanding upon the domain. It is grounded
on the rationale that street LED fixtures have a con-
sumption behaviour that may be classified in relation
to its energetic performance and light quality perfor-
mance. This classification is obtained according to the
fixture’s energy consumption pattern defined accord-
ing to several factors: i) savings, given by the fixture’s
efficacy ratio; ii) internal factors such as dimming,
temperature and power; iii) external factors (moon-
light, weather, traffic, dust), and; iv) light quality fac-
tor, which depends on the location of the street light in-
stallation and the underlying illuminance pattern. The
location is classified in EN 13201 according to the
street utility and user needs, which in turn has an asso-
ciated illuminance pattern. Additionally, it is also con-
sidered that the consumption behaviour might indicate
that the street lighting source is operating in an ineffi-
cient or out of scope mode. For each pattern of street
lighting behaviour, some action might be required, ei-
ther a maintenance action or a dimming action, i.e.,
perform adjustments to the dimming value. According
to the characteristics of the fixture, the available in-

terfaces, and the technical setup, no other actions are
feasible.

This conceptualisation work was implemented through
an iterative and incremental process, supported by lit-
erature reviews, with interactions with domain experts.
The conceptual ontology is to be further developed to-
wards its formalisation. Meanwhile, it contributes for
data interpretation and the classification of consump-
tion patterns within an holistic perspective. The for-
mulation of useful decisions, typically composed of a
chain of actions, must be aligned to the intended out-
comes. Actions and outcomes relations are better un-
derstood when there is a shared vision of the domain.
In this sense, the conceptualisation eases the classi-
fication of the "system status", promoting decisions’
utility.

5.2. The formalisation phase

Figure 3 depicts the conceptual ontology containing
the key terms and concepts of the domain, semanti-
cally structured by means of conceptual relations. For
this model to be used as a computational semantic ar-
tifact, its constructs must be defined through logical
constraints.

The formal ontology was built using Protégé 1 ontol-
ogy editor, whereinto the following actions were per-
formed:

– Creation of the Class hierarchy;
– Creation of the ObjectProperties hierarchy;
– Modelling the class associations through Object-

Properties identifying the appropriate Domain
and Range classes;

– Creation of the DataProperties identofying the
appropriated Domain (Classes) and Range (lit-
eral, i.e., a value type);

– Identification of domain relevant semantic restric-
tions for the main "classification duties" of the on-
tology (table 2);

– Definition of the Classes through logical con-
straints, using axioms and rules, as sated in table
3. These descriptions allow the ontology to clas-
sify Public Street Lighting behaviour, regarding
both the light comfort performance and energy ef-
ficiency performance, and determine simple ac-
tions in accordance to the status. The rules and ax-
ioms were developed in Semantic Web Rule Lan-
guage and Description Logic, respectively.

1http://protege.stanford.edu
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Fig. 3. Conceptual Ontology for street Lighting consumption behaviour

Again, benefiting from this intertwined methodolog-
ical approach, some of the created assertions were de-
rived from the data-driven AI outcomes. The definition
of thresholds and illuminance prediction are examples
of aspects used on the definition of the inference rules.

At the end of the formalisation phase a inference-
ready and computable ontology artefact, represented in
Web Ontology Language (OWL), was achieved.

6. Case Study

Providing smart decisions on how to minimize en-
ergy consumption requires contextualized data accord-
ing to environmental factors (e.g., weather data, moon-
light, traffic), normative factors, and the street light-
ing installation blueprint. Nonetheless, most existing
data-based approaches lack this rich contextual infor-
mation. Such is the case of the main source of data
used in this work: a public lighting production setting
in a Portuguese municipality with 305 ARQUILED’s
ARQUICITY R1 fixtures. This specific model of fix-
ture allows to collect data from its operation in real-
time, and also allows the change of its operating pa-
rameters in real time. That is, we can for instance con-
trol the level of dimming of each individual luminary.

In this model, a level of dimming of 100% means that
the fixture is working at full power, while a dimming
of 0% turns the fixture off.

According to EN13201 normative, the set of fix-
tures of the production setting are installed in a P2
zone, characterised as a pedestrian zone defined by
horizontal illuminance patterns. The fixtures are dis-
tributed unilaterally in a 4 meter wide street plus 1 me-
ter of sidewalk. To this type of location, the average lux
should be 15, with a minimum of 3. In this scenario it
is assumed that the fixtures are at 4 meters high, with
14,5 meters distance in between.

The dataset collected from the production setting
contains 3.963.730 instances of data. Each instance
describes 5 minutes of operation of a specific fixture
and includes, among others, features describing instant
voltage, fixture temperature, instant power, accumu-
lated energy (Wh), uptime or dimming. These data
were collected over a period of four months, between
September 5th 2017 and January 3rd 2018.

Before their use, data were cleaned. This included
removing instances from warm up periods (first 1 to 4
minutes when a fixture is turned on) or shutting down
periods. During the cleaning operation, 107.912 in-
stances were removed. The resulting dataset thus con-
tains 3.855.818 instances.
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Table 2
Public street lighting relevant semantic restrictions

Objective Logic statements description

Dimming Restriction A Public Street Lighting must be located at 1 and only 1 location . A location , by its
turn, must have a location type where it belongs to.

PL performance pattern
restriction #1

Public Street Lighting instances might have, at least 1 energetic efficiency pattern and, at
most 1 light quality pattern.

PL performance pattern
restriction #2

Public Lighting instances could be classified as one of the following patterns: Inefficient,
Optimized or OutOfScope. If so, no other pattern is allowed to classify the instance. But,
if a PL instance were classified under a specific energetic efficiency pattern, it might also
be associated (classified) to a light quality pattern . This implies Inefficient, Optimized
and OutOfScope patterns to be disjoint.

Table 3
PL Sates and Actions Axioms and facts

Objective Logic Statements
PL Sates

Reveal all PL operating at
Base Efficiency Pattern

SWRL Rule: PublicStreetLighting(?PL), hasWatt(?PL, ?watt), hasLumens(?PL, ?lu-
mens), greaterThan(?lumens, 1559), greaterThan(?watt, 15), lessThanOrEqual(?lumens,
7460), lessThanOrEqual(?watt, 66) -> BaseEfficiencyPattern(?PL)

Reveal all PL operating at
High Efficiency Pattern

RULE: PublicStreetLighting(?PL), hasWatt(?PL, ?watt), hasLumens(?PL, ?lumens),
greaterThan(?lumens, 1583), greaterThan(?watt, 12), lessThanOrEqual(?lumens,
12142), lessThanOrEqual(?watt, 102) -> HighEfficiencyPattern(?PL)

Reveal all PL operating at
Ultra Efficiency Pattern

RULE: PublicStreetLighting(?PL), hasWatt(?PL, ?watt), hasLumens(?PL, ?lumens),
greaterThan(?lumens, 1651), greaterThan(?watt, 12), lessThanOrEqual(?lumens,
15502), lessThanOrEqual(?watt, 127) -> UltraEfficiencyPattern(?PL)

Reveal all PL, operating
within the appropriated lu-
minous flux range, accord-
ing to their local

RULE: PublicStreetLighting(?PL), isLocatedIn(?PL, ?L), luminaireLux(?PL, ?llux), am-
bientLux(?PL, ?aLux),LocationType(?LT), belongsTo(?L, ?LT), minimumLux(?LT, ?min-
Lux), swrlb:greaterThan(?llux, 2) -> NormalIlluminancePattern(?PL)

Discover all PL having the
dimming settings at an Op-
timal Level

PublicStreetLighting(?PL), Dimming(?D), Dimming(OptimalDimming), hasDimming-
Percentage(?PL, ?dim), dimmingTopThreshold(OptimalDimming, ?tdim), dimming-
BottomThreshold(OptimalDimming, ?bdim), swrlb:greaterThanOrEqual(?dim, ?bdim),
swrlb:lessThanOrEqual(?dim, ?tdim) -> hasDimming(?PL, OptimalDimming)

Discover all PL having
the dimming settings at an
High Level (over 90)

PublicStreetLighting(?PL), Dimming(?D), Dimming(HighDimming), hasDimming-
Percentage(?PL, ?dim), dimmingTopThreshold(HighDimming, ?tdim), dimming-
BottomThreshold(HighDimming, ?bdim), swrlb:greaterThanOrEqual(?dim, ?bdim),
swrlb:lessThanOrEqual(?dim, ?tdim) -> hasDimming(?PL, HighDimming)

Reveal all PL, whose set-
tings (data) are Out of
Scope

DL Axiom: OutOfScopePattern ≡ ¬ (BaseEfficiencyPattern t HighEfficiencyPattern t
UltraEfficiencyPattern)

Reveal all PL operating in
an inefficient mode

DL Axiom: InefficientPattern ≡ LowIlluminancePattern u ( hasDiming :OptimalDim-
ing)u ( hasPower :HighPowerMode)

Reveal all PL, operating in
an optimized mode

DL Axiom: OptimizedPattern≡ NormalIlluminancePattern u UltraEfficiencyPattern u (
hasDiming :OptimalDiming)

PL Actions
Discover PL instances that
need to increase dimming,
which is mainly related to
light confort patterns

PublicStreetLighting(?PL), LowIlluminancePattern(?PL), hasDimmingPercentage(?PL,
?dim), swrlb:lessThan(?dim, 100), hasWatt(?PL, ?watt), swrlb:lessThan(?watt, 127),
hasLumens(?PL, ?lm), swrlb:lessThan(?lm, 15502) -> requiresAction(?PL, increaseD-
imming)

Discover PL instances that
might decrease dimming,
Towards its optimisation

PublicStreetLighting(?PL), NormalIlluminancePattern(?PL), UltraEfficiency-
Pattern(?PL), hasDimmingPercentage(?PL, ?dim), swrlb:lessThan(?dim, 100),
swrlb:greaterThan(?dim, 50) -> requiresAction(?PL, decreaseDimming)
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The resulting dataset is a very homogeneous one in
the sense that it reflects the rigid management of the
network by the municipality. For instance, 90% of the
data were collected from fixtures set at a dimming be-
tween 80% and 90%. This prevents us to explore the
whole search space.

Moreover, the data collected from this production
setting is devoid of attributes other than those related
to the fixtures’ internal factors.

We hypothesize that the ideal value of dimming is
not static, i.e., it varies according to the conditions of
the environment, and that it may be outside of the 80%-
90% interval. Thus, there was a process of enriching
the available data with other relevant attributes, taking
into consideration the aforementioned domain model
(Figure 3).

6.1. Data Enrichment

Data enrichment was achieved by a twofold ap-
proach (Figure 4). First, data obtained from a weather
station located near the production setting was inte-
grated with the production dataset. The data from the
fixtures was merged with weather data, also collected
at 5-minute intervals from a local weather station.
These data include air temperature (oC), dew tempera-
ture (oC), humidity (%), wind speed (m/s), wind direc-
tion (degrees), wind gust (m/s), pressure (mbar), solar
irradiance (W/m2) and rain (mm/h). This allows the
studying of the influence of external factors, such as
temperature, on energy efficiency.

Second, an outdoors laboratory setting with the
same fixtures of the production setting was set up, and
equipped with additional sensors. The main difference
between the production and laboratory settings, asides
from the additional sensors, is that the operation of the
laboratory setting can be changed at will, to generate
and study specific scenarios, while the production set-
ting cannot.

In the laboratory, data were also collected at 5-
minute intervals between July 31st and October 4th,
2018. These data include, like in the production set-
ting, data from the fixtures and weather data. However,
additional sensors were also used to collect data re-
garding luminosity at two different levels: one at the
pedestrian level and the other above the fixtures. This
allows the studying of the effect of two key variables
– dimming and ambient luminosity – in the level of
luminosity experienced by the pedestrian.

Moreover, the fixtures were programmed to change
dimming at every 20 minutes, continuously changing

between 50% and 100% with steps of 10%. This pro-
vides a much more complete dataset in what concerns
the fixtures’ behavior and operation under different
conditions.

For instance, it is possible to analyze how the lumi-
nosity measured at pedestrian level under the fixture
varies according to different settings of dimming (Fig-
ure 5). As expected, luminosity tends to increase with
dimming. Nonetheless, there are significant variations
which may be related to variations in ambient lumi-
nosity (e.g. cloudy vs. clear night). It is thus important
to model this relationship and quantify, at each level
of dimming, the effect of ambient luminosity, so that
this can be explored to minimize energy consumption
(Section 5).

One major difference between both datasets is thus
the lack of data describing ambient luminosity in the
production dataset. Thus, it would be impossible to
implement a context-aware and dynamic management
mechanism, as the one proposed in this paper. To over-
come this limitation, this dataset was further enriched
as follows. For each night of data in the production
dataset, a night was randomly selected in the labora-
tory dataset. Ambient luminosity data was transferred
from the laboratory to the production dataset, accord-
ing to the selected nights.

While the resulting production dataset is not real
in the sense that the ambient luminosity data were
transferred from a different location, it is still a real-
istic dataset. It allows to answer the following ques-
tion: "How would energy-efficiency improve, if the
proposed approach was implemented in the production
network, assuming the transferred ambient luminos-
ity?".

6.2. Dimming, ambient luminosity and pedestrian
luminosity

As addressed previously, the level of light experi-
enced by the pedestrian depends on two main factors:
the level of dimming of the fixtures and level of ambi-
ent light. However, this relationship is not direct. For
instance, the same level of ambient light will have a
stronger effect at the pedestrian level if the dimming of
the fixture is low, and vice-versa.

Moreover, this depends on additional factors, in-
cluding environmental ones, as well as on the loca-
tion of the fixtures: a fixture that is under a bridge or
close to a tall building will have a different relation-
ship with ambient light than one that is under the open
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Fig. 4. Sources of data and process followed to train a model with the laboratory data and using it in the production setting.

Fig. 5. Distribution of luminosity measured at pedestrian level at different levels of dimming, without ruling out the effect of ambient light.

sky. Hence the need for taking into consideration the
individual factors of each fixture.

To model these relationships and obtain a model
that can be used to predict the level of light at pedes-
trian level under a given fixture/conditions, the follow-
ing methodology was implemented. A ML experiment
was implemented with the data collected at the labora-
tory setting. The goal of this experiment is to obtain a
model that infers the influence of each variable (among
which dimming and ambient light) on the level of lu-
minosity experienced by a pedestrian.

A hyper-parameter search was implemented over
five different state of the art algorithms, that include
boosting and bagging ensembles [58]. Specifically, the
following algorithms were assessed: XGBoost, Gra-
dient Boosting Machine, Distributed Random Forest,
Deep Learning and Generalized Linear Model. The
data was split, with 30% of it being held out for test-
ing and 70% being used for training. For evaluating the

models during the training phase, 5-fold cross valida-
tion was used with the training data. At the end, the
best model of each class is selected and is evaluated on
the test data. The performance on each of these best-
of-class models on the test data will be the main crite-
rion used for selecting the final model used in produc-
tion. The results of this process are reported in Section
7

The main limitation of this approach is that it was
trained on the laboratory data and not on the produc-
tion data. This is due to the previously mentioned fact
that the production setting does not have the necessary
sensors. Moreover, the model depends significantly on
the fixtures that produced the data, as each one has
unique operational conditions and placement charac-
teristics.

To overcome this limitation and transfer the model
to the production setting, the following approach was
followed. For each fixture in the production setting,
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the most similar fixture in the laboratory was selected.
Fixture similarity is calculated using the cosine simi-
larity and takes into consideration a feature vector that
includes orientation, position, context (e.g. open sky,
covert, on the side of building), and statistical sum-
maries of the main variables (e.g. operation tempera-
ture, energy consumption). Then, when the model is
used in the production setting, the identifier of the fix-
tures (which are unknown to the model) are replaced
by the most similar identifiers of the laboratory setting.

The resulting model can thus be used in real-time to
manage the public lighting network, by finding the best
configuration for each fixture, in order to minimize en-
ergy consumption while maintaining appropriate light-
ing levels. This process and the corresponding results
are described in the following Section.

7. Results

As described in Section 5, a hyper-parameter search
with five models was implemented to find the best
model to predict luminosity at the pedestrian level. Ta-
ble 4 shows the best model of each class, together with
the RMSE and r2 calculated during training (5-fold
cross validation) and the RMSE calculated on test data.

Figure 6 shows how the errors of the model are dis-
tributed when predicting luminosity for the test data.
The solid line marks the diagonal, i.e., the region
where predictions have no error. Given the train/test
split methodology followed, these data points were ex-
tracted, at random, from different nights. Figure 7, on
the other hand, shows the observed luminosity at the
pedestrian level for a randomly selected fixture/night
that was not used for the training of the models, against
the luminosity predicted by the model for the same
data. The correlation between observed and predicted
values is 0.89.

The variations in luminosity throughout the night
are due to the ongoing changes in dimming in the op-
eration of the fixtures of the laboratory setting, and to
eventual natural changes in ambient light. The model
thus satisfactorily predicts luminosity as a function of
dimming, ambient light and the fixtures’ individual
characteristics.

Figure 8 shows how the level of luminosity varies
during one randomly selected night, and the predic-
tion of the model for different levels of dimming. This
Figure shows that, for this specific night, the optimum
dimming would be around 60% as it provides the min-
imum desired level of luminosity according to the EN

Fig. 6. Observed luminosity (test data) vs. luminosity predicted by
the best model.

13201 standard while minimizing energy consump-
tion.

Once the model was trained and selected, the next
step was to devise a method to implement the au-
tonomous management of the public lighting network
to optimize energy consumption while maintaining
light quality. The current scheme used by the munici-
pality to manage the production setting is rather rigid:
in weekdays the fixtures are set to 80% of dimming
and in weekends they work at 100%. This is hardly op-
timized for energy consumption. However, given that
this is a production setting, we are not allowed to use
this approach on site without prior validation.

To overcome this drawback, the following approach
was implemented with the goal to estimate the en-
ergy savings of implementing an optimized manage-
ment scheme in the production setting. First, we must
note that the fixtures in the production setting do not
have ambient luminosity sensors. This prevents us to
directly apply the model. In that sense, for each day
of data in the production dataset, we randomly se-
lected one day of ambient luminosity data from the test
dataset, and combined them. The goal is, in the ab-
sence of luminosity data, to simulate it in a realistic
manner.

With this, we are able to predict the luminosity at the
pedestrian level. The next step was to devise a method
for selecting the optimum dimming for each fixture. To
this end, it is first necessary to predict power consump-
tion from dimming. Since the power consumption in a
fixture grows with dimming, a quadratic fit was calcu-
lated to model the relationship between the two vari-
ables (Figure 9). The resulting quadratic function can
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Table 4
Best-of-class models, sorted by RMSE calculated on test data

Model RMSE (5-fold CV) r2 (5-fold CV) RMSE (test data)

Gradient Boosting Machine 6.03 0.87 7.50

XGBoost 6.18 0.86 8.09

Random Forest 7.49 0.80 9.27

Deep Learning 10.46 0.60 10.38

Generalized Linear Model 11.33 0.54 11.82

Fig. 7. Observed luminosity at pedestrian level for a randomly selected night, and luminosity predicted by the model (ρ = 0.89).

Fig. 8. Observed ambient luminosity (bottom line) and predicted luminosity at pedestrian level with different dimmings.

thus be used to predict the power consumption associ-
ated to a given dimming.

The following approach is implemented to select the
optimum dimming for a specific fixture, at any given
time. A binary search scheme is used for the interval
50%-100% dimming. Thus, it starts at a dimming of
75%. For this dimming, and given the ambient light,
both the power consumption and luminosity level at

pedestrian level are estimated: the former using the
quadratic regression, the latter using the trained model.

If the predicted luminosity is below the 20 Lux
threshold established in the EN 13201 standard, the
search continues to the right, i.e., at a dimming of
87.5%. Otherwise, it continues to the left, at a dim-
ming of 62.5%. At each step, the estimations of power
consumption and luminosity are updated. The process
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Fig. 9. Relationship between dimming and power consumption (RMSE = 1.95).

goes on until a value lower than 20 Lux is reached and

there is no possible search to the right. At this point,

the previous value of dimming is selected.

This approach was used for every instance of data in

the production dataset, in order to simulate the opera-

tion of an autonomous system carrying out a real-time

management of each individual fixture, based on real-

time data on ambient luminosity and fixture state. Re-

sults show a decrease in power consumption of around

28%. The observed energy consumption over the 4

months of data was approximately 95.728 kWh. In

contrast, the estimated power consumption using the

optimization scheme is of approximately 69.585 kWh.

7.1. Ontology results and setup

In the context of the case study, the ontology was

validated in relation to its utility, that means, the ontol-

ogy must classify, properly, all the fixtures within the

provided dataset. The process comprises five steps or

stages (figure 10): i) Model configuration; ii) Parsing

data; iii) Inference; iv) Store and Publish results, and;

v) Visualisation.

Fig. 10. Ontology service architecture

The Model configuration consists of adding do-
main specific setup instances to the ontology, before
it being populated with the luminaries dataset. This
data is related to specific normative thresholds (e.g,
EN13201 standard), locations’ type and fixtures beam
types. This is done only one time at the beginning
of the process. Afterwards, specific setup instances
were uploaded to the ontology. This is performed only
once, at the beginning of the process. Accordingly,
instances have been added to each of the following
classes: Dimming, Power, LuminousFlux, BeamType,
LocationType, Actions and AmbientConditions.

Afterwards, specific setup instances were uploaded
to the ontology. This is performed only once, at the
beginning of the process. Accordingly, instances have
been added to each of the following classes: Dimming,
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Power, LuminousFlux, BeamType, LocationType, Ac-
tions and AmbientConditions.

Finally, dimming increase and dimming decrease
actions were also added to the model. For the time
being this are the only operations remotely available.
This is due to contractual constraints between market
players, but it is also related to the fixtures’ technical
constraints.

After the configuration stage, the parse phase starts,
using Apache Jena2, to load and validate the luminaire
data to the ontology.

Once the ontology was populated, the next step was
to perform some reasoning over the data. For this, we
used the Pellet engine 3 and SWRL plus Drools rules
engine 4, both implemented using apache Jena Infer-
ence API 5.

After the execution of the rules and synchronisation
of the reasoner, ontology was enriched with the in-
ferred data containing new statements and the results
stored and publish to Apache Jena Fuseki 6, through
which it is possible to access the classification being
done by the model. Table 5 discusses, shortly, the be-
haviour of the model in classification process of spe-
cific entities. For the visualisation of the results, a
front-end prototype was built using Microsoft Power
BI 7, directly consuming data form FUSEKI SPARQL
8 endpoint through HTTP/REST.

This ontology brings together domain knowledge
and data science to offer a knowledge-based decision
support model. Within the current case study the on-
tology was able to retrieve the necessary and sufficient
data to answer the set of predefined competency ques-
tions (domain focus questions).

In general, every inferred assertion, fit the uploaded
dataset and the results are considered suitable and de-
sirable answers according to the knowledge model.

8. Conclusions

Most of the developed countries are currently com-
mitted with energy efficiency plans in which renew-
able energy sources and more efficient devices are used
in order to decrease energy consumption and the as-

2https://jena.apache.org/index.html
3https://www.w3.org/2001/sw/wiki/Pellet
4https://github.com/protegeproject/swrlapi/wiki
5https://jena.apache.org/documentation/inference/index.html
6https://jena.apache.org/documentation/fuseki2/
7https://powerbi.microsoft.com/en-au/
8https://www.w3.org/TR/rdf-sparql-query/

sociated carbon emissions. However, other technolog-
ical developments such as those made possible by IoT
and the Smart Cities umbrella, allow further improve-
ments. In this paper we presented a twofold method-
ological approach combining a data-oriented and a se-
mantic approach for the autonomous management of
public lighting networks.

It is based on the acquisition of data from sev-
eral sources, including fixtures, weather stations, and
ambient sensors. The proposed management scheme
treats each fixture individually and takes into consid-
eration their surrounding conditions. When compared
to the current management policy, the proposed ap-
proach leads to a decrease of 28% in energy consump-
tion while still maintaining the lighting levels defined
in the European norm for the corresponding zone.

Despite the diversity of works in the literature,
which make direct comparisons difficult, our results
can be critically analyzed in light of these existing ap-
proaches. Specifically, we can compare it with other
approaches based on dimming control (either auto-
matic or autonomous).

For instance, in [34] the authors achieve savings of
up to 40%. However, their approach requires the use
of motion sensors on every fixture, which is then used
to regulate luminous flux. Our approach, on the other
hand, assumes that there are no additional sensors and
solves the issue by transferring the model learned in
a laboratory setting to the production setting, by es-
tablishing the similarity between fixtures (e.g. oper-
ation conditions, location, orientation). Similar solu-
tions that rely on additional sensors (e.g. traffic flow)
can be found, namely in [41, 42]. These approaches
report energy savings between 35% and 50%.

In [35], the authors use a hierarchical WSN to con-
trol public lighting, in which certain nodes (gateways)
monitor and control nearby fixtures according to a cen-
tral control unit. One major difference between both
works is topology of the network, which is more com-
plex in [35], namely when the network needs to be
changed or re-organized. In our case, each luminary
communicates directly with the central control unit.
Moreover, the authors used a lower and time-varying
power profile with adaptive dimming rules, while we
use a Machine Learning model. The authors achieved
savings of around 30%, which are similar to ours.

So, the proposed approach results in energy sav-
ings that are generally in line with the most similar
approaches found in the literature. However, the main
distinguishing factor is that most of these dimming-
based approaches rely on additional sensors, while the
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Table 5
Excerpt results inferred from the ontology

Use case Results discussion

Inferred required actions
according to Dimming
pattern and efficiency
pattern classification

Almost every PL instance were proposed by the system for dimming reduction action.
According to the original dataset dimming was at 80% in most cases, so, there is room
for some reduction. In this situation, the following property assertion was triggered: in-
stance:decreaseDimming ObjectProperty:isRequiredTo <PL Instance>

Efficiency pattern classi-
fication and derived sug-
gested actions

It is a type classification scenario. The system classified the PL instance with id
(201700220) as both UltraEffciencyPattern and NormalIlluminancePattern once it is ac-
cording to the luminous efficiency range, that is, between 123 lm/w and 163 lm/w. Still,
the reasoner informs that there is room for improvements and dimming could be de-
creased, once it is at 80%.

Efficiency pattern classifi-
cation on Optimal Dim-
ming range

In the case of PL instance (201700213) case, the dimming percentage of this specific in-
stance was changed to 60 (inside the optimal range identified by the AI approach) for
testing purposes. As expected the reasoner describes this instances as operating at an Op-
timizedPattern mode. It also states that this instance has an Optimal Dimming value, yet
it assumes the dimming should be decreased. This rational, despite of strange, is correct,
because the optimal range value for dimming goes from 55 to 65..

Data out of range accord-
ing to manufacturer data
sheet

it is illustrated the classification of the instance 201700377. For this Individual, it was
inferred that it is operating within a normal pattern of illuminance for its location, how-
ever, it is not possible to infer about its energetic performance. This is due to the fact that
the lumens associated to this fixture are, somehow, above the top threshold for this kind
of Street Lighting, which is around 16000 according to the manufacturer. One the other
hand, it does not make sense to classify this fixture according to an OutOfScope Pattern,
since the deviation is tiny and all the other assertions are correct.

approach proposed in this paper avoids their use in
production settings by transferring the model learning
from the outdoor laboratory setting.

Another major difference is related with the com-
bined semantic and Data-driven efforts, which re-
sulted in outcomes accommodated in an ontology,
which represents the domain knowledge enriched with
a set of axioms and semantic rules derived from the
data-driven approach. As a result, a knowledge-based
model was developed that overcomes (to a certain ex-
tent) the tacit knowledge gap during the conceptualisa-
tion process. On the other hand, the semantic approach
provides means for data intelligibility within a context.
The achieved ontology and its reasoning capabilities
are to be implemented as-a-service or as a part of a
DSS engine, performing a new paradigm for decision
support in IoT environments.

Thus, future work will be steered by several goals.
The major goal is to integrate the developed system
with the system currently in use to manage the pub-
lic lighting network. This integration will improve the
existing system by transforming it into an actual De-
cision Support System rather than just an autonomous
management system, in the sense that it will contribute
with knowledge that can be used by experts to better
understand the network.

Several steps will also be taken to address the lim-
itations of current work. Namely, there is the need to
study the behavior of other fixtures as the results pre-
sented on this paper apply only to a specific model
(ARQUILED’s ARQUICITY R1) and, as there are
changes between fixtures of the same model, there are
bound to be even more changes when comparing dif-
ferent models. Doing so will significantly increase the
reach and applicability of the proposed system and ap-
proach.

Another limitation of the present work is that the re-
sults were obtained by extrapolating from a laboratory
setting, namely by transferring the model to the pro-
duction setting. While this might give an estimate of
the system’s behavior in the production setting, it is not
as valid as a result obtained from the production set-
ting. In future work we will either install the necessary
sensors in part of the production setting to validate and
assess the operation of the system in a real environ-
ment, or expand the laboratory setting so that we have
a more representative group of fixtures to report on.

Finally, we will also investigate how the whole ap-
proach and developed system scales up to thousands
of fixtures. Indeed, one of the main advantages of
this work is that it considers the individual character-
istics of each fixture, as previously described. How-
ever, as larger lighting networks are considered, the
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problem will become computationally more complex,
with increasing training times and potentially more
complex models. To address the issue of model com-
plexity we will, on the one hand, use grid-search
and/or meta-learning techniques to find model config-
urations that avoid overfitting. This will prevent the
model from growing excessively while still maintain-
ing accuracy. Concerning space and time complexity,
we will use unsupervised learning techniques com-
bined with dimensionality reduction and feature selec-
tion techniques[59] to determine which and how many
types of fixture exist in a given network, according to
their characteristics. Then, we will use their type in-
stead of their unique identifier to identify them. This,
we expect, will decrease the complexity of the prob-
lem, with a minimum negative impact in the perfor-
mance of the model. To this effect, we will also look
into state of the art algorithms, especially those that
have faster learning rates or that are better at adapting
to changes in the data, such as Neural Dynamic Clas-
sification, Dynamic Ensemble Learning or Finite Ele-
ment Machine for fast learning [58, 60–62].
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