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Abstract

Machine Learning has emerged in the last years as the main solution to many

of nowadays’ data-based decision problems. However, while new and more pow-

erful algorithms and the increasing availability of computational resources con-

tributed to a widespread use of Machine Learning, significant challenges still

remain. Two of the most significant nowadays are the need to explain a model’s

predictions, and the significant costs of training and re-training models, espe-

cially with large datasets or in streaming scenarios. In this paper we address

both issues by proposing an approach we deem predictive and user-centric. It is

predictive in the sense that it estimates the benefit of re-training a model with

new data, and it is user-centric in the sense that it implements an explainable

interface that produces interpretable explanations that accompany predictions.

The former allows to reduce necessary resources (e.g. time, costs) spent on re-

training models when no improvements are expected, while the latter allows for

human users to have additional information to support decision-making. We

validate the proposed approach with a group of public datasets and present a

real application scenario.
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1. Introduction

The recent growth of Machine Learning (ML) on business tasks and value-

added operations is undeniable. Machine Learning algorithms have outpaced
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human decision performance in many domains, and this has convinced decision

makers to rely increasingly on them [1]. Thus, Machine Learning is nowadays5

used in virtually all spheres of our existence, controlling our routines in pervasive

and transparent ways, and often used to take decisions that have a measurable

impact in our lives[2, 3].

The increase in the use of Machine Learning has been accompanied by the

increase in the volume of data used. Generally, the more complex the prob-10

lem/domain is and the larger the dataset, the more complex the models learned

are. This poses two main challenges: 1) models are harder to understand and

interpret by human decision-makers; and 2) the training of models becomes

more expensive in terms of time and resources.

The first challenge poses an interpretability problem: a human user obtains15

a decision/prediction from a model, but often lacks the necessary information to

properly judge and evaluate the outcome. Namely, "how good is it?", "how good

are neighboring decisions?", "what is the rationale behind it?", "how does the

model behave and how can it’s behavior be understood and predicted?". This is

especially true when so-called black box models are used, such as Deep Learning,20

or ensembles such as Random Forests. Coincidentally, these are among the most

popular models nowadays.

The second challenge is related to efficient resource management in Machine

Learning [4]. Indeed, as the size of datasets increases, so do the necessary

resources to train the models and the corresponding costs [5], both in terms25

of infrastructure/services, time and energy. These costs are also higher in data

streaming scenarios or in domains with concept drift [6]. In these cases, frequent

updates of the model are necessary, to ensure that it remains up to date with

recent data. On the one hand, this encompasses significant costs as the training

of models are computationally intensive tasks. On the other, it may ultimately30

be impractical, if the training of the model takes so much time that it is already

outdated when it is finished.

In this paper we propose an integrated approach to deal with both these

challenges. While the approach is generic, it is instantiated for a specific case

2



study on tax fraud detection. The key takeaways from this work are thus:35

• We propose a way to build instance-level explanations for any Machine

Learning model, using a proxy explainable model that does not require

access to the original data but only to the model being explained;

• Explanations are symbolic in the sense that they are based on the concepts

of the domain, thus being easier to understand by Human practitioners;40

• We propose an approach for predicting model performance, that is es-

pecially useful for deciding when to update a model in data streaming

scenarios.

The rest of the paper is organized as follows. Section 2 provides some back-

ground and related work on the two main topics addressed in this work: ex-45

plainability and learning in streaming scenarios. Afterwards, Section 3 presents

the methodology followed to address the two main challenges tackled in this

work, already identified. This section starts by presenting the case study that

inspires this work, and then details the methodology followed in each problem

individually. Next, the results are detailed in Section 4. The paper ends with a50

discussion of these results, some concluding remarks, acknowledgement of some

limitations, and pointers for future work.

2. Related Work

2.1. Explainability in Machine Learning

Machine Learning problems and algorithms have been growing in complexity55

in the past years, mostly due to the increase in the volume and complexity of

data. As a consequence, models and their behavior are increasingly harder

fathom by Humans.

This creates challenges for researchers, regulatory bodies of industry specific

applications and other decision makers where there is the need to guarantee60

principles such as non-discrimination, to adhere to regulations, to comply with

the scientific domain, or to follow certain legislation.
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Thus, the ability of human agents to understand the decision process of

models or the rationale behind their predictions is nowadays a common require-

ment in the field of Machine Learning. It has been addressed by a relatively65

recent field known as Explainable Artificial Intelligence (xAI)[7]. While xAI

is a very broad field that can encompass multiple knowledge domains, in this

paper we focus on the aspects more related to Machine Learning models. In

this scope, it is important to first make the distinction between two important

terms: explainability and interpretability.70

While these concepts are often used interchangeably, they represent different

notions according to the direction in which information flows [8, 9]. Explainabil-

ity relates to the ability of the model to detail why and how a given prediction

is being made, or how the model behaves internally. Interpretability, on the

other hand, is the ability of the human user to understand the explanations75

provided. Asides from these, the research community has put forward other

desirable properties such as transparency - the ability to visualize the inner

workings of the model, the ability to use domain-knowledge in the explanation,

or its scientific consistency [9].

Depending on the requirements, there can also be varying degrees of expla-80

nation. For instance, it is possible to explain a decision process without actually

understanding the model which generated such decision, or the intricate rela-

tionships between cause and effect in the decision process [1]. An example is

the use of saliency maps to explain the classification of an image: while such

an explanation may be used to understand a prediction, it is not helpful to85

understand how a Deep Learning model works.

Building explanations is naturally easier in some models, namely those based

on statistical or rule-based algorithms (e.g. Decision Trees). It is much harder

and less intuitive in the so-called "black-box" models (e.g. Deep Learning), that

are characterized by high complexity and abstraction levels.90

Nonetheless, many different approaches are being undertaken in both ex-

plainable and black-box models. These approaches are sometimes specific to a

given algorithm, or generic and applicable to a broad range of them.
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One of the most interesting examples is the use of counterfactuals or evidence

based on the interpertability of the model. These require a deep understanding95

of the Machine Learning model being used and how changes in the input may

alter the outcome [10]. These decisions are characterized by the complete cat-

egorization of a specific decision and how the decision would be altered given

some changes in the input.

This is a generic idea which may have different implementations depending100

on the algorithm being studied. In the literature this approach can be found in

linear classification algorithms [11], where a linear Machine Learning algorithm

is exploited to find how changes in coefficients or inputs change the final decision,

as well as in black box models such as mutlilayer perceptrons [12].

Indeed, explanations are often more valuable when it comes to black box105

models, as there is here, clearly, a trade-off between interpretability and accu-

racy [13]: models that are generally more accurate, such as Deep Learning, are

usually also harder to explain. As a consequence, when interpretability and/or

explainability are critical project requirements, other less accurate models are

often used.110

New explainable methods can, however, allow for these complex models to

be explained and thus allow their use even in domains where explanations are

critical. A common strategy is to use an additional or external algorithm or

methodology to provide the necessary explanation, while still using the under-

lying original model.115

Examples of generic and domain-agnostic approaches that follow this strat-

egy are LIME [14] and SHAP [15]. LIME approximates inputs to predictions

using a local linear explanation model while SHAP uses metrics represented by

SHAP values to denote the expectation of the prediction change in the model

based on a determined feature. LIME and SHAP are not mutually exclusive120

and can be used together [15]. These approaches have been used to explain algo-

rithms’ decisions in fields such as intrusion detection [16] or anomaly detection

[17].

Other approaches are dependent on the type of black box algorithms be-
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ing explained. For instance, in the case of imagery and neural networks the125

DeepLIFT [18] approach tries to explain which are the most relevant pixels in a

image through the analysis of the weight activation in a neural network alike al-

gorithm. Layer-Wise Relevance Propagation [19] is yet another neural networks

specific method that interprets the predictions in a similar way to DeepLIFT.

There are, however, additional concerns to be taken into consideration espe-130

cially when it comes to streaming scenarios, in which ML algorithms must not be

stationary in time but be updated. This creates additional concerns with model

deployment and adds the need to monitor models and audit models throughout

their lifecycle. Even more specifically, there a need to guarantee that local and

global explainability and model trustworthiness is maintained between deploy-135

ments [20]. These issues are analyzed in more detail in the following Section.

Explainable AI will always have to be a two-way road, in which models need

to be able to explain decisions in a way that human users can understand them.

While some types of explanation can be generic and apply to any problem,

domain-dependent ones are probably more valuable as they will add insights140

that are specific to that problem, and thus more relevant to support decision-

making. This is related with the notion of completeness, which is the extent to

which an explanation allows a complete understanding of all the domains for

each attribute in the decision-making process [21].

The general perception is that all models can be explained to some extent.145

However, some are easier to explain than others. In any case, explanations

should consider the mental model of the user and the domain of the applica-

tion, something that is not always considered by existing methods. This is the

approach to explainability proposed in this paper, which will be further detailed

in the following sections.150

2.2. Learning in Streaming Scenarios

Current ML algorithms face several issues that stem from the new nature of

data (e.g. volume, complexity, velocity, variety) [22]. One of the most significant

is to learn from high-speed streaming data. In these scenarios, learning becomes
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continuous, and models are often initially trained with small amounts of data,155

and are later updated or re-trained when new data are available.

There are, however, additional issues. Namely, there is the need to decide

which data will be used to train future models or when will future models

be trained or updated. There is here clearly a trade-off between the use of

computational resources and how outdated a model is.160

A small period between model updates or re-trains may lead to a system

that adapts faster to changes in the data, but also to one more sensitive to

noise. It will also be a more costly system in the sense that it will require more

computational resources and time for the constant re-training of the models.

Ultimately, depending on the complexity of the model and the velocity at which165

time changes, it may be impossible to update models in due time.

On the other hand, a system with a large period between updates will re-

quire less computational resources, but may perform worse over time as models

become obsolete and no longer reflect the patterns in the data.

When learning from streaming data, a key assumption from traditional batch170

ML systems is violated: that the training and test data are drawn from the same

feature space and have the same distribution.

One of the recently proposed techniques for dealing with this is Transfer

Learning: the goal is to extract knowledge from a task and use it to improve

learning on a different task. Different elements can be transferred, including175

instances, feature representation or parameters. Various approaches exist, in-

cluding inductive, transductive and unsupervised transfer learning [23].

These challenges are more significant when there is concept drift [24]. That

is, when data, their concepts, their variables or their patterns change over time.

In these scenarios, algorithms must learn and forget concepts incrementally, and180

the act of forgetting becomes as relevant that of learning new concepts.

To deal with these scenarios, the notion of Evolving Ensemble has been pro-

posed [25]. This denotes an Ensemble whose weights are fine-tunned using some

optimization mechanism, generally of biological inspiration (e.g. genetic algo-

rithm) [26]. However, when concept drift is too significant, models eventually185
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have to be replaced. Adaptive Random Forests address this issue by training

a new model in the background when concept drift is detected, which later

replaces the original model [27].

The approach proposed in this paper differs from the previous ones in the

sense that our main goal is to predict the performance of a given model when190

trained on a given set of data. Thus, rather than updating models at regular

intervals or when a certain amount of new data exist, we provide an additional

decision layer, that is the predicted performance of the future model. The main

goal is to avoid re-training a model if it is not expected to perform better than

the previous one, thus more efficiently managing resources.195

3. Methodology

3.1. Case Study

Section 1 detailed the relevance of the two main problems being addressed

in this work: 1) to predict the performance of a Machine Learning model before

its training; and 2) to explain the predictions of a model in a way that can be200

understood by a human. The importance of explaining decisions in an Intelli-

gent Environment has already been addressed in Section 2. However, nowadays,

explanations are not only desirable from a perspective of interpretability but are

starting to become a legal requirement. In the context of the GDPR, the EU

recently regulated on algorithmic decision-making and, specifically, addressed205

the issue of a "right to explanation"[28]. There are particularly sensitive do-

mains in which algorithmic decisions significantly affect one’s life, such as credit

scoring, sentencing, or fraud detection.

This section describes the Case Study that motivates this work, which is

inserted in these sensitive areas of application of Machine Learning. Specifi-210

cally, this work is being developed in the context of the Neurat funded project

(31/SI/2017 - 39900). One of the goals of the Neurat project is to develop a

Machine Learning environment for tax fraud detection. There are however some

particular characteristics, namely:
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• There are two types of variable in this problem: static variables (which215

are obtained through the feature extraction process from the raw data),

and dynamic variables (which are proposed by human users);

• Labeled data is scarce since most of the dynamic variables cannot be

extracted from the raw data and must be provided manually by human

users (some of them reflect subjective or abstract concepts);220

• Users’ actions change the dataset over time as they validate the mod-

els’ predictions (contributing to the labeled dataset) or provide their own

contribution, for example;

• New raw data is added regularly;

• Models must be updated frequently to adapt to new data. However, new225

data is not necessarily different from existing data;

The system can thus be described as a cooperative environment in which

Machine Learning tools and human experts (auditors) work together to increase

the efficiency of tax audits. However, the use of Machine Learning, and in

particular of supervised methods, requires vast amounts of labeled data. The230

problem is that in this case data can only be labeled by auditors and, in this

case, it comes at a high cost: auditors must undergo extensive training and

their time is very limited. As a consequence, they are able to review but a small

portion of the transactions of a company, usually by sampling, and thus provide

a small amount of labeled data.235

Thus, an Active Learning (AL) approach is being followed to implement it

[29]. Generally, AL approaches aim to make Machine Learning less expensive

by reducing the need for labeled data. To achieve this, a so-called Oracle, which

may be a human expert or some automated artifact, is included in an cycle

in which a Machine Learning model is continuously improved by training on a240

growing pool of labeled data. In this case, the Oracle are the auditors.

However, we introduce several major changes to the "traditional" AL scheme

(Figure 1). First, we consider a pool of models rather than a single model. In
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practice, one model is maintained for each dynamic variable in the problem.

This is necessary since dynamic variables, as opposed to static ones, cannot be245

extracted from the raw data. Thus, one model is maintained to predict each

variable. When models are updated, so are the predictions for these variables.

Predictions are then validated or changed by the auditors, in what constitutes

one way of incorporating human knowledge into the system.

Secondly, we add an additional input to the Oracle. When assessing one250

instance of data i, the auditor has also access to a prediction p for each dynamic

variable, and a corresponding explanation e. The former is provided by each

model f associated to each dynamic variable, while the latter is provided by

the Explanation Interface as a result of f(i). Now, when the auditor receives

the instance to label (that is, when the auditor performs an audit action), he255

also receives the labels proposed by the system for the data not yet validated,

as well as an intelligible explanation for it, tailored for this specific domain.

Finally, we also introduce a fork in the typical AL process in the moment of

training new models. While, typically, models are updated at regular intervals

or when a certain amount of new labeled data exist, we include a module for260

predicting the performance of a future model if it is trained with a given dataset.

The goal is to avoid training new models if this is not expected to result in a

significant performance improvement. The following two sub-sections detail

these last two key aspects.

Figure 1: High-level view of the main elements of the proposed system.

10



3.2. Model Performance Prediction265

The main goal of the Performance Prediction module is to predict one or

more performance metrics of a future model, if it is trained from a dataset with

given statistical properties. The underlying assumption is that certain features

of a dataset can be associated to the quality of the resulting dataset. For

instance, it is generally accepted that a dataset in which there is a significant270

amount of missing data leads to a poorer model. Likewise, a larger number of

variables and instances tends to result in better models. Other examples could

be given, related for instance with the complexity of the data, its distribution,

the relationship between its variables, or numerous statistical and information-

theoretic features that described the characteristics of a dataset.275

This section describes the approach implemented for predicting the perfor-

mance metrics of a future model. The process by which the approach was

implemented and its results validated is detailed in Figure 2.

The process starts by consuming a large amount of datasets, called the train-

ing datasets. These datasets are first pre-processed, namely to normalize the280

values of the dependent variable of each one. Then, these datasets go through a

process of meta-feature extraction. Meta-features describe important statistical

and information-theoretic characteristics of the dataset, that are expected to be

related in some degree to the quality of a model trained with the dataset.

Meta-features are often used in other applications of Machine Learning, such285

as in AutoML. In a sense, they are like hyperparameters in the search for an

optimal model, used to control the learning process. This field, known as meta-

learning [30] can be briefly described as learning to learn. The goal is to find the

best model for a given problem by experimenting with different configurations.

The main different in the proposed work is that our goal is to estimate290

performance metrics without the need to train models. This may lead to a

significant decrease in the necessary computational resources.

Meta-features were extracted using the pymfe library [31]. While this library

allows the extraction of hundreds of meta-features, only a subset of 57 were used

in this work.295
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Once the meta-features are extracted, an actual model is trained with the

dataset, and its performance metrics are extracted (e.g. RMSE, mae, r2). Mod-

els were trained using the scikit-learn library [32]. The meta-features of all the

datasets are then combined with the performance metrics of the corresponding

models, to generate what we call the meta-dataset. In this meta-dataset, meta-300

features are the independent variables while performance metrics and the model

training time are the dependent variables. Typically, the meta-dataset has one

line for each dataset/model combination, although we followed a different ap-

proach for validation purposes, as detailed in Section 4.

Once the dataset has a large enough dimension, the so-called meta-model305

is trained. This meta-model is trained from the meta-dataset by selecting all

the independent variables and one of the dependent variables, corresponding to

the performance metric that one intends to predict. The performance of the

meta-model itself is obtained through cross-validation.

The previously described approach considers the training of a number of310

models that can be relatively large. However, once the meta-model is trained,

it can be used to predict the performance metric of future models. Given that

the models in the pool will only be re-trained if the meta-model predicts a

performance improvement, the number of models trained in the long-term is

expected to be smaller than if the models in the pool were updated on a regular315

basis. Moreover, if the meta-model is robust enough, it can be used to predict

the performance on any kind of problem.

The goal is, indeed, that it can be used in any Machine Learning problem,

independently of the nature of the problem. This can be done by simply ex-

tracting the same meta-features of the dataset of the new problem, and using320

the meta-model for predicting the intended performance metrics. This is de-

tailed in the lower part of Figure 2, in which a group of datasets that were not

used for training, deemed test datasets, are used to assess the performance of

the meta-model.

The difference, in this case, is that the models are actually trained so that the325

predictions of the meta-model can be compared against the actual performance
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metrics of the models. In a real use of the system, such as that described in the

previous section, the meta-model would be used for predicting the performance

of a model when trained on a specific set of data, and the model would only

be trained if the prediction was for better performance metrics than that of330

the current model. Thus a reduction in the number of models trained, and

consequently in the amount of necessary computational resources, is achieved.

Section 4 details the process through which this approach was validated.

Figure 2: Methodology followed to validate the proposed approach for model performance

prediction.

3.3. Explainable Interface

The main goal of the Explainable Interface is to generate elements that can335

be used to create different types of intelligible explanations for human users.

This means that explanations should be domain-dependent and in-line with the

users’ conceptual models.

To achieve this, we are using a modified version of the CART algorithm[33],

an algorithm of the Decision Tree category. A Decision Tree is, in itself, an340

explainable model: it can be analyzed visually to understand which variables

and values are used at each level to take a decision. However, this may be
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difficult for example if the tree is too large. There is also additional information

that can be provided that is not explicitly in the tree’s structure. In this section

we detail the explainable elements that are generated by the system, to support345

the Human auditor in decision-making.

This algorithm allows to build a Decision Tree from a group of observations.

Each node of the tree contains boolean rules about the observations (e.g. value

of variable x is greater than y) and each leaf contains the result of the prediction

for a given path in the tree. While the tree is being built, the training set is350

increasingly split at each node, leading to smaller sub-sets of the data. This

splitting process ends when one or more stopping criteria are met, which may

include a minimum size of the split or a minimum degree of variance/purity.

Variance denotes how much the values for the dependent variable of a split

are spread around their mean value (in regression tasks), while purity considers355

the relative frequency of classes: if all classes have roughly the same frequency

the node is deemed "impure". The Gini index is used in the CART algorithm

to measure impurity [34].

Formula 1, as proposed by [35], describes the relationship between the out-

come y and features x. Each instance of the training set is attributed to a single360

leaf node (subset Rm). I{x ∈ Rm} is a function that returns 1 if x is in the

subset Rm or 0 otherwise. In a regression problem the predicted outcome ŷ = cl

of a leaf node R1 is given by the average value of the instances in that same

node. The algorithm can be used for both classification and regression tasks.

ŷ = f̂(x) =

M∑
m=1

cmI{x ∈ Rm} (1)

The core of the Explanatory Interface is thus a tree-based model, so-called365

explanatory model. A different explanatory model is trained to explain the

predictions of each model in the pool.

If there is access to the original dataset, the explanatory model can be trained

with the original data or with a subset of it.

However, if there is no access to the original dataset as in cases of proprietary370
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models, the explanatory interface is able to generate a synthetic dataset given

some basic meta-data about the original dataset (e.g. minimum and maximum

value for each variable). First, the data corresponding to the independent vari-

ables are generated, at random. The main goal is to cover the search space as

much as possible. However, it may also happen that data instances that are375

unrealistic, in the sense that they would not happen in real life, are generated.

While this may lead to an increased complexity of the explainable model, there

are no other disadvantages in the sense that, if those instances never happen in

real life, no explanations will ever be requested for them either. If they were,

these would eventually be nonsensical. These random dataset is then fed to the380

original model, so that it can predict on each of its instances. The resulting

synthetic dataset is then used to train the explainable model. Figure 3 details

the process of training an explainable model when there is no access to the orig-

inal dataset by the explanation interface. When this access exists, the original

dataset is used directly to train the explainable model.385

Whether the explainable model was trained with or without access to the

original data, its goal is to be used in parallel with the original model. That

is, whenever a new prediction is issued by the original model, its corresponding

explainable model does a prediction as well, in order to generate the elements

that are used to create explanations.390

The algorithm to create the explainable models works as follows. When the

tree is being built and each split generated, additional information is stored in

the node which includes: the boolean rule that generates the split (mentioning

the variable and the value interval), the prediction ŷ based on that split (i.e.

the average or most frequent value, depending on the problem), measures of395

dispersion or purity (variance, standard deviation and Gini index), and the

indexes of the instances in the split.

These values are then used to provide a notion of confidence and support to

the decision-maker. Confidence is given by dispersion and purity measures: the

lower the dispersion or the higher the purity, the higher the confidence on the400

decision is. Support is given by the number of instances in the split: the higher
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Figure 3: Process for generating explanations when there is no access to the original dataset.

the number of instances, the higher the support is.

This information on the nodes allows to incorporate a group of explainable

elements in the user interface. Figure 4 shows a prototype of the graphical

user interface that is used to provide explanations. When an auditor wants405

to analyze a specific instance she/he selects that instance and is redirected to

this interface, which receives the data of the instance, the prediction, and an

explanation. The user interface has three main areas, marked in the Figure as

(a) - Explore, (b) - Decision path and (c) - Last results.

Area (a) allows the user to explore the search space and analyze each fea-410

ture according to their relative importance. Features and values are collected

from the internal nodes when traversing the tree to make a prediction. In this

context, feature relevance is based on how much that split/feature decreases dis-

persion/purity. For each feature that the interface shows the following elements

(depending on whether the variable is numeric or nominal): the domain of the415

feature (range/enumeration of possible values), the interval/values for which the

prediction holds (blue bar or values highlighted in blue), and the value of the

feature in the instance being audited (gray dot).

This allows the auditor to gain a sense of how risky the decision is. If the

value of a given feature is very close to the upper or lower limits of the blue420
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Figure 4: Prototype of the main screen of the application, with some of the explainable

elements created, and three main areas highlighted: Explore (a), Decision Path (b) and Last

Results (c).

bar, it indicates that a slight change of this feature towards the limit would

significantly alter the prediction of the tree. Likewise, the size of the blue bar

is also related to this sense of risk: the shorter the bar the more risky the

decision is. In the case of a nominal feature, multiple values can be highlighted

to show for which values of the enumeration the prediction holds. The risk of425

the decision grows with fewer highlighted values.

In Figure 4, the graphical interface is shown in "Edit Mode". This means

that the user may change the values of the variables to perform a counterfactual

analysis. That is, what would be the prediction if the value of a feature had

been v2 instead of v1. These "what-if" scenarios allow the auditor to interact430

with the tree and to understand how predictions would change under different

scenarios. This contributes significantly to the interpretability and interactivity

of the explanation, as addressed in Section 2. The user does this by changing

the value of the features by means of a slider, or by selecting a value from a list.
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The scenarios created by the user can be added to area (c), to be compared.435

The user can also reset area (a), returning all the values and the associated

prediction to the initial state of the instance being audited.

There is also a pagination mechanism that controls the amount of informa-

tion provided to the user, to avoid overload. Indeed, depending on the training

set, the number of levels/nodes/features on a tree may be too large to be ef-440

ficiently analyzed by a Human. In that sense, in this interface we show only

the n most relevant features. The user can then choose to request additional

features (and the associated prediction) by clicking on the "More variables"

button. These are gradually added upon request by decreasing relevance.

In the left side of the interface there is the area marked as (b). This area445

shows the path followed through the tree to make the prediction. Like in (a),

this area may not show the whole path as it implements the same pagination

mechanism: when features are added to (a) they are also added to (b). This el-

ement allows the user to understand (part of) the reasons for a given prediction:

"because feature f1 is smaller or equal than v1 and feature f2 equals v2".450

In this area the user may also click on a specific node to see its details (Figure

5). The details show, in the left side, the information for the feature that is also

visible on (a). On the center and right, the "details" modal provides information

regrading the confidence and support of the prediction. The graphical represen-

tation shows the prediction (blue dot) and the interval given by the standard455

deviation. A smaller interval indicates an increased confidence as instances in

this split are more closely distributed around the mean, and vice-versa.

The central part of the modal shows values which include the support (num-

ber of instances in this split) and a button that allows the user to access the

instances that fall into this split. The user may thus visualize the instances,460

which are shown sorted by similarity to the current instance in descending or-

der. Similarity is calculated based on a weighted sum of differences, given by

the euclidean distance for numerical variables and by the cosine similarity for

the vector of nominal data (if any). While visualizing specific instances the user

may add them to a list for comparison (area (c)).465
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Figure 5: Details of a split node, with confidence and support measures.

As the user moves down the path, splits become smaller but confidence

increases. It is up to the user to decide how far down to travel: an early stop may

lead to a more general decision (with high support and potential low confidence),

while going further down will lead to low support but high confidence. Finally, in

area (c) the user has access to a list of previous prediction results (the scenarios470

that were simulated) and/or to actual instances that were visualized by the

user and added for comparison. This allows to more easily compare a group of

scenarios or real cases and their results.

4. Results

The methodology proposed for creating a meta-dataset for predicting model475

performance, detailed in Section 3.2, was instantiated to assess its suitability to

solve the proposed challenge. This section details the results obtained.
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A total of 53 datasets were used in the process, covering both regression

and classification problems, as well as streaming and batch scenarios. Table 1

describes some of them. Of these, 47 were used for training the meta-model and480

6 were used for testing it.

Concerning specifically the test datasets, the first 3 are batch datasets while

the other 3 are streaming datasets. Given that streaming and batch ML prob-

lems are fundamentally different, the meta-model was evaluated differently for

each case.485

Table 1: Characterization of some of the 53 datasets used for the validation of the proposed

approach. The first 17 are part of the 47 datasets used for training the meta-model while the

last 6 are used for testing it (3 batch, 3 streaming). (R: Regression, B: Binary Classification)
Dataset Source Type N Features

School grades https://www.mldata.io/dataset-details/school_grades/ R 649 33

Cardiovascular diseases https://kaggle.com/aiaiaidavid/cardio-data-dv13032020 B 10000 12

Killed or Seriously Injured https://kaggle.com/jrmistry/

killed-or-seriously-injured-ksi-toronto-clean

B 12557 56

Contains Aditives https://kaggle.com/jadeblue/openfoodfactsclean B 774 13

Starbucks proteins https://kaggle.com/jadeblue/openfoodfactsclean R 243 7

McDonalds proteins https://kaggle.com/jadeblue/openfoodfactsclean R 260 6

Medical Cost https://kaggle.com/mirichoi0218/insurance R 1338 7

Car Price Prediction https://kaggle.com/hellbuoy/car-price-prediction R 205 26

Social Network Ads https://kaggle.com/dragonheir/logistic-regression B 400 5

Abalone https://www.mldata.io/dataset-details/abalone/ R 4177 9

Auto mpg https://www.mldata.io/dataset-details/auto_mpg/ R 398 9

Exercise Calories https://kaggle.com/fmendes/fmendesdat263xdemos R 9000 8

Computer Hardware https://www.mldata.io/dataset-details/computer_hardware/ R 209 10

Forbes Billionaires https://www.mldata.io/dataset-details/forbes_billionaire/ R 2043 6

House Price https://kaggle.com/harlfoxem/housesalesprediction R 4600 19

Fraud Detection Proprietary R 22225 13

Wine quality (red) https://kaggle.com/uciml/

red-wine-quality-cortez-et-al-2009

R 1599 12

Wine quality (white) https://data.world/uci/wine-quality/workspace/

data-dictionary

R 4500 12

Diabetes https://kaggle.com/kandij/diabetes-dataset B 768 9

Breast Cancer https://archive.ics.uci.edu/ml/

machine-learning-databases/breast-cancer-wisconsin/

B 699 10

Airlines https://moa.cms.waikato.ac.nz/datasets/ B 10000 8

AWS Prices https://moa.cms.waikato.ac.nz/datasets/ R 10000 8

Electricity https://moa.cms.waikato.ac.nz/datasets/ B 10000 9

One challenge of this work is indeed to obtain a number of datasets that

is large enough for building a sufficiently representative meta-dataset. This is

related not only to the sheer number of datasets, but also to the variety of

their statistical properties: datasets that are similar to others do not add value.

The list of datasets considered has both regression and binomial classification490
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problems. However, these must be dealt with differently as they have different

performance metrics and the training process is also different. To this end, all

binomial classification problems have been transformed into regression problems

by replacing the binary labels with the values 0 and 1.

We also acknowledge that 47 datasets for training is also a relatively small495

number, as it would result in a meta-dataset with only 47 instances. In order

to increase the number of instances, the following approach was followed. Each

dataset was streamed in blocks of 200 instances. A first model is trained with the

first 200 instances, and additional models are trained by adding 200 instances

to the previous dataset. That is, for a dataset with 650 instances, 4 models are500

trained: the first with 200 lines, the second with 400, the third with 600, and

the last one with the whole 650. For training each of these models, a Random

Forest algorithm was used. Each model is constituted by 20 trees, each with a

maximum depth of 20 levels.

Given the number and size of the datasets used for training (partially detailed505

in Table 1), and the approach described, the resulting meta-dataset contains a

total of 673 instances.

While the instances in the meta-dataset generated from a same dataset are

not very diverse, which is a limitation, this allows to create a relatively large

meta-dataset with a small number of input datasets. However, in future work510

we will continue to include additional datasets so that the meta-model learns to

predict on a more variate range.

The meta-dataset is also composed of 111 columns. Of these, 105 correspond

to the meta-features extracted from the datasets, while the remaining six corre-

spond to relevant performance metrics: training time, RMSE, mae, mse, rmsle515

and r2. This means that the meta-dataset can be used to train six different

models, one to predict each of these individual metrics. However, in this paper

we only trained one model to predict the RMSE and focus our analysis on this

metric.

Table 4 describes some of the meta-features considered. The criteria for520

selecting a sample of the meta-features was based on the relative importance of
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each one during the training of the meta-model.

Table 2: Ten most relevant meta-features, out of 105 used to build the meta-model.

Meta-feature Scaled Importance Description

linear_discr 100 Linear Discriminant classifier

mut_inf.sd 48.38 Standard deviation of mutual information

sparsity.sd 29.87 Standard deviation of sparsity metric

eq_num_attr 20.21 Attributes equivalent for a predictive task

one_itemset.sd 14.15 Standard deviation of one itemset

elite_nn.sd.relative 10.21 Performance of Elite Nearest Neighbor

one_itemset.mean 10.05 Mean of one itemset

ns_ratio 9.73 Noisiness of attributes

attr_ent.mean 8.29 Mean of Shannon’s entropy

mut_inf.mean 7.25 Mean of mutual information

Once the meta-dataset was built, the meta-model was trained. The same

algorithm (Random Forest) and configuration used in the training of each model

was also used to train the meta-model. To assess the quality of the meta-model525

during the training phase, a 10-fold cross-validation approach was followed, as

depicted in Figure 2. Metrics were computed for each holdout prediction, and

averaged at the end, resulting in the following values: RMSE = 0.000355,

r2 = 0.98 and mae = 0.007.

Next, the performance of the meta-model was assessed on the test datasets.530

To this end, a different approach was followed depending on whether it was being

evaluated on a batch or streaming dataset. In any case, the same meta-model

already trained was used as the basis for evaluation.

For batch datasets, its meta-features were extracted and the performance

of a model (RMSE) was predicted by the meta-model. An actual Random535

Forest was then trained with each batch dataset, and its actual RMSE value

was obtained. Table 3 shows, for each dataset, the RMSE predicted by the

meta-model and the actual RMSE of the trained Random Forest.
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Table 3: Observed vs. predicted RMSE for the three test datasets.

Dataset Observed RMSE Predicted RMSE

Wine quality (white) 0.102 0.111

Diabetes 0.400 0.321

Breast Cancer 0.161 0.093

Streaming datasets were tested differently, to simulate a realistic streaming

scenario. Specifically, for each dataset, data were streamed in blocks of 200540

instances. For each block, its meta-features were extracted, and the meta-model

was used to predict the performance of a model trained on that block. Then, a

Random Forest was actually trained with the block. The RMSE of the resulting

model was compared with the RMSE predicted by the meta-model (Figure 6),

to assess the quality of the meta-model. For each model trained, a new instance545

was added to the meta-dataset, as previously described. The meta-model was

updated at 10 block intervals (2000 instances of streamed data).

So, the main difference between the batch and the streaming scenario is that

in the latter the meta-model is updated as new data is received.

Given the size of the Wine Quality dataset, it was tested following both the550

batch and the streaming approach.

Figure 6 shows the observed vs. the predicted RMSE for the 3 streaming

datasets and the Wine Quality one. The data points are generally close to the

diagonal, which indicates a relatively good predictive performance. However, in

the AWS dataset there are some instances in which the prediction is slightly off,555

and in the Wine Quality dataset there seems to be a tendency to overestimate

the value of the RMSE. Nonetheless, the values are close to the diagonal.

Table 4 shows how the performance of the meta-model evolved over time, as

new versions of it were trained including the streaming data received so far. It

can be seen that, even for streaming data, the performance of the meta-model560

is maintained or improves over time, as new data arrives and is incorporated

into the meta-model.
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Figure 6: Observed vs. predicted RMSE for the 3 streaming datasets and the wine quality

dataset, with models trained at 200-instance intervals. The solid line represents the diagonal.

Figure 7, on the other hand, shows the evolution of RMSE for the Wine

Quality dataset over time, as each new model was trained using 200 additional

instances of data. It shows a tendency of the RMSE of the models to decrease as565

more instances of data are included. The RMSE predicted by the model tends

to follow this decrease, albeit with a positive bias, as described previously. The

predictions are, nonetheless, in line and close to the observed values.

Finally, Figure 8 shows the evolution of a selected group of meta-features

of each consecutive subset of data, and how it relates to the evolution of the570

RMSE. While the RMSE data is the same of Figure 7, the different scale makes

it more difficult to observe its descent over time.
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Table 4: Evolution of the RMSE of the meta-model as more instances of data are incorporated.

Dataset N=2000 N=4000 N=6000 N=8000 N=10000

Airlines 0.018 0.005 0.020 0.0105 0.006

AWS Prices 0.0103 0.001 0.001 0.003 0.0003

Electricity 0.013 0.008 0.003 0.003 0.001

Figure 7: Evolution of the predicted and observed RMSE for the wine quality dataset, with

models trained at 200-instance intervals.

5. Discussion and Limitation

In the last years, Machine Learning has seen a tremendous growth in its ca-

pabilities and applications. However, significant challenges still remain. These575

challenges stem mostly from the new characteristics of data: they are in un-

precedented volume, and they are generate faster than ever. The resources to

handle these data and to train models with them, for example, must thus also

be greater. This is especially so in streaming scenarios, in which new data,

with potentially different statistical properties, is added frequently, rendering580

the models potentially outdated.

At the same time, organizations rely increasingly on data and data-based
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Figure 8: Evolution of the values of several meta-features and corresponding RMSE for the

wine quality dataset, with models trained at 200-instances intervals.

techniques for decision support. While many decision problems are well struc-

tured and can be fully automatized, others require human decision capabilities

and accountability. In these cases, Machine Learning models play a role of585

decision-support rather than decision-maker. In these cases, especially, it is im-

portant that human decision-makers understand how models work and how and

why a given prediction is being made by a model, or what is the risk or certainty

associated to that decision. This is especially so in domains that affect people’s

lives, such as in credit concession or in courtrooms. However, as current prob-590

lems become more complex, so do Machine Learning models. Consequently,

models and their predictions are also harder to explain.

In this paper we addressed these two main problems. One the one hand we

propose an approach for minimizing the necessary resources to manage Machine

Learning models in data streaming scenarios, by predicting the performance595

metrics of models before they are trained. Using this information, a model will

only be re-trained if the statistical properties of the new data indicate that it

will lead to a better model.

On the other hand, we propose an approach for generating explanations for
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the predictions of a model, in the form of a so-called explanatory interface.600

The key element is a tree algorithm, that is able to generate elements during

training that can be used to create intelligible explanations. These explanations

are symbolic and domain dependent, based on features, their relevance, and

their statistical properties. They are, therefore, easier to be understood by

domain experts.605

One of the key aspects of both approaches is that they are independent of

the domain of application. That is, while we present a case study in the field

of tax fraud detection, which is the domain of the problem that inspired this

work, the proposed approaches can be applied in any problem. This is because

the approach is based on properties of the dataset (the meta-features) and not610

the dataset itself. And the meta-features can be obtained from any dataset.

Nonetheless, it must also be stated that performance may vary significantly

from one problem to the next, namely if the dataset of a new problem has very

different properties. Nonetheless, once the new dataset is incorporated into the

meta-dataset, it will contribute to improve the meta-model. Thus, the meta-615

model becomes increasingly better and more generalized as more datasets are

added.

The number of datasets used to create the meta-dataset is indeed the main

limitation of this work. This means that there is the risk of the meta-dataset

not being representative enough to have a good performance on every problem620

that it is used on. A relatively small number of test datasets was also used.

In order to overcome this limitation, the data in each dataset was divided into

multiple subsets of increasing size, to allow for the training of more models and

thus increasing the size of the dataset. To some extent this is, however, also a

limiting factor as these sub-sets share many of the statistical properties of the625

entire dataset.

In principle, this would be more problematic in streaming scenarios, in which

data and its patterns change over time. Nonetheless, we have shown that when

the meta-model is updated at regular intervals with new data, it can adapt and

maintain or even improve its performance.630
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The preliminary results are encouraging. We will continue to obtain and

curate additional datasets in order to increase the robustness and scope of the

meta-dataset.

Another limitation of this work is that only regression problems were con-

sidered. Indeed, regression and classification problems must be implemented635

differently. Given that this is an early validation of the proposed approach and

a first step towards its full implementation, the decision was to start with re-

gression problems. While some binomial classification problems were included,

these were transformed into regression as well. In future work we will validate

this approach for classification problems, in which we expect a similar degree of640

success.

Finally, in future work we will also use this approach while including multiple

algorithms rather than Random Forest alone. This will allow the use of the

meta-model for predicting the best algorithm to use, asides from the expected

training time and performance metrics.645

All in all, we believe that this meta-learning based approach can prove in-

teresting towards a more efficient and intelligent management of the processes

associated to model training and scoring, especially in scenarios in which there

are large volumes of streaming data.
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