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Abstract

Identifying stress in people is not a trivial or straightforward task, as several factors are
involved in detecting the presence or absence of stress. Since there are few tools on the
market that companies can use, new models have been created and developed that can be
used to detect stress.

In this study, we propose developing a stress detection application using deep learning models
to analyze images obtained in the workplace. It will provide information from these analyses
to the company so they can use it for occupational health management.

The proposed solution uses deep learning algorithms to create prediction models and analyze
images. The new non-invasive application is designed to help detect stress and educate
people to control their health conditions. The model trained achieved an F1=79.9% with a
binary dataset of stress/non-stress that have an imbalanced ratio of 0.49.

Keywords: Stress detection, Deep Learning, Convolutional Neural Network, Workplace,
Application, TensorFlow
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Resumo

Identificar o estresse nas pessoas não é uma tarefa trivial ou simples, pois vários fatores
estão envolvidos na detecção da presença ou ausência de estresse. Como existem poucas
ferramentas no mercado que as empresas podem utilizar, foram criados e desenvolvidos
novos modelos que podem ser utilizados para detectar o estresse.

Neste estudo, propomos desenvolver um aplicativo de detecção de estresse usando modelos
de aprendizado profundo para analisar imagens obtidas no local de trabalho. Ele fornecerá
informações dessas análises para a empresa para que possa utilizá-las para a gestão da saúde
ocupacional.

A solução proposta usa algoritmos de aprendizado profundo para criar modelos de previsão
e analisar imagens. O novo aplicativo não invasivo foi projetado para ajudar a detectar o
estresse e educar as pessoas para controlar suas condições de saúde. O modelo treinado
alcançou um F1=79,9% com um conjunto de dados binários de estresse/não estresse que
continha um ratio de desbalanceamento de 0.49.
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Chapter 1

Introduction

This chapter provides a context for the problem studied and discusses the reasons that
motivated the present dissertation, its purpose, expected contributions, the methodology
adopted, and the document’s organization.

1.1 Context

For many people, work is the central feature that structures their lives and identities. Quality
and meaningful work can positively impact mental health, well-being, and community inclu-
sion. As a negative working environment may lead to physical and mental health problems,
substance use disorders, absenteeism, and loss of productivity, there is a growing recog-
nition, across the European Union and globally, of mental health problems’ economic and
social impact (OSHWiki 2020).

The World Health Organisation (WHO) suggests that work-related stress is the response
people may have when presented with work demands and pressures that do not match their
knowledge and abilities and which challenge their ability to cope. It is caused by poor work
organization, poor work design, poor management, unsatisfactory working conditions, and
lack of support from colleagues and supervisors (Organization et al. 2020).

The disability caused by stress is just as significant as the disability caused by workplace
accidents or other common medical conditions, such as hypertension, diabetes, and arthritis
(Kalia 2002). In Europe, researchers estimate that 25% of European citizens will experi-
ence a mental health problem in their lifetime, and approximately 10% of long-term health
problems and disabilities can be related to mental and emotional disorders (OSHWiki 2020).
Studies also suggest that stress is a factor between 50% and 60% of all lost working days.
Moreover, according to the survey ’The Workforce View in Europe 2018’, 18% of European
workers say that they endure stress at work every day, which is 5% higher than the 2017
results (Polska 2018).

Thus, the contemporary management of stress at work must encompass the design of a more
straightforward organizational structure and transparent practices, and selection and training
must be more appropriate to the reality of the work. Communication should emphasize
the resolution of problems so that teams’ social environment can promote conditions to
avoid stress in the workplace. Therefore, identifying the potential sources of stress for an
organization’s employees is the first step in dealing with this problem.
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1.2 Problem

Demanding jobs are a significant cause of stress for people. There is evidence that stressful
conditions are preventable and treatable in the workplace, and workers who receive treatment
are more likely to be more productive (Almeida and Rodrigues 2021). Hence, non-intrusive
stress sensing tools that continuously monitor stress levels, with a minimal impact on workers’
daily lives, could be used to initiate stress-reduction interventions automatically.

1.3 Purpose

The aim of this dissertation is to provide an alternative to detect stress in the workplace
through the analysis of images collected in a non-invasive way in order to create models that
can detect stress using deep learning techniques.

1.4 Contributions

The contributions and results expected by the realization of this thesis can be synthesized
with the following artifacts:

• Data transformation: organization of data files and folders from a public experiment
into a format that can be used for machine learning and deep learning analysis;

• Stress detection model: the development of a case study, where a stress detection
model is created using deep learning techniques which explore the processes behind
parametrizing a deep learning architecture and the usage of a public stress detection
experiment dataset;

• Model Evaluation: the study is comparing precision, accuracy, and recall for the archi-
tecture models defined previously.

This dissertation has also contributed to the student’s personal and professional development
by providing a chance to explore deep learning techniques and exploring alternatives to
overtake the challenges of stress detection in the workplace.

1.5 Methodology

Published in 2000 (Chapman et al. 2000) to standardize data mining processes across in-
dustries, the CRoss Industry Standard Process for Data Mining, CRISP-DM (Rüdiger Wirth
and Hipp 2000), is a process model that provides a framework for conducting data min-
ing projects independently of the industry sector and technology used. In this framework,
any software can either be used for analysis or be applied to data mining problems. This
methodology has six phases that naturally describe the data science life cycle. Whatever
the nature of the data mining project, CRISP-DM will provide sufficient structure for the
project (Rogalewicz and Sika 2016).

In this project, the six phases of CRISP-DM can be described as follows:

• Business Understanding: studies performed on physiological markers used in stress
detection;
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• Data Understanding: selection of a public data source that uses non-invasive ways to
detect stress;

• Data preparation: data quality assessment of the public database information that is
consumed in the construction of the models;

• Modeling: the definition of a deep learning architecture to be used to create the model
for stress detection;

• Evaluation: statistical analysis of the performance of the model in stress detection;

• Deployment: publish the stress detection model on a web page so that it can be reused
by other people.

1.6 Document Organization

This document is organized into seven chapters which contain several sections, subsections,
and, at times, sub-sub-sections that provide an incremental specification for the theme
discussed in each. The chapters are as follows:

Introduction: This chapter provides a context overview of stress in the workplace. Post
contextualizing comes to the definition of the motivation for this thesis, and objectives for
the solution are determined. Finally, it presents the methodology used for the development
of the thesis.

Value Analysis: The value analysis of this development is presented succinctly, as well as
the potential of this dissertation as a business idea and how it would fit into the market.

State of the Art: This chapter confines a descriptive presentation of deep learning, convo-
lutional neural networks, and an overview of deep learning technologies.

Design: In this chapter, it is presented the information about the system view from a
structural point of view, analyzing the intended features, the architecture, and alternatives
to the architecture of the system.

Implementation: This chapter features most of the technical details through which the
implementation of the project was possible and the methodology used in the development.

Experimentation and Evaluation: In this chapter, it is presented the experiments that
were conducted as the analysis of the performance of the models built accordingly to the
considered performance metrics.

Conclusions: In this chapter, a summary of the dissertation is made, presenting what
conclusions can be made and what should be the next steps.
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Chapter 2

Value Analysis

In this chapter, an analysis of the solution proposed in this project will be carried out. In this
analysis, the five key elements of the NCD model (New concept development model) are
identified, the value proposition for the customer will be presented, and finally, the Canvas
business is developed.

2.1 The New Concept Development (NCD)

"The New Concept Development Model (NCD) provides a common language and definition
of the key components of the Front End of Innovation" (Martikainen 2017). The model
divides the front end into three distinct areas. The first is the engine, or center of the
model, which accounts for the vision, strategy, and culture which drives the Front End of
Innovation. The second or inner part defines the five activity elements of the front end.
The third element consists of the external environmental factors. The model is represented
in figure 2.1.

Figure 2.1: NCD Model. Retrieved from (Martikainen 2017)
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2.1.1 Opportunity Identification

The opportunity analysis process starts with market analysis to identify the market needs to
explore opportunities for new or different tools capable of adding value to the market.

The workplace stress management market expects to grow in the forecast period of 2020 to
2026. Recent research shows that the market accounts for USD 15.4 billion by 2026 with a
CAGR (Compound Annual Growth Rate) of 8.7% in the forecast for the mentioned period
(Factors 2022).

The rise in competition in the workplace and the increase in stress management awareness
are the major factors driving the market growth. However, the lack of skilled counselors and
limited awareness of workplace stress management in developing countries are expected to
limit the growth of the workplace stress management market.

In addition, due to the spread of coronavirus disease (COVID-19) worldwide, the market
in the early stage of the forecast period has undergone significant changes. The impact
of COVID-19 has resulted in the reduction of employees in many organizations. For this
reason, many companies have been forced to lay off employees to cut costs. These layoffs
as part of cost-cutting measures during the COVID-19 pandemic have negatively impacted
the workplace stress management market.

Workplace-related stress and anxiety have rapidly increased the level of disorder with nega-
tive consequences for physical health, mental well-being, workplace productivity, and career
opportunities. The COVID-19 pandemic worsened the already widespread and largely un-
addressed mental health workplace problems. Therefore, the factors mentioned earlier are
expected to affect the market growth during the forecast period.

2.1.2 Opportunity Analysis

Opportunity analysis is a process that aims to study business opportunities to understand
how the market will be able to understand and take advantage of the solution so that the
solution design is profitable.

It is essential to detect and diagnose stress symptoms and conditions at early stages. Clin-
ically, the methods which are in practice involve direct observation and interpretation by
the examiner for stress assessment. These methodologies include questions related to the
participant’s life and the evaluator grades based on the answers. In this manner, interpreta-
tions are made regarding the stress status depending on the question. Besides these clinical
practices, many different techniques have also been developed to recognize its patterns by
physiologic signals and images.

The preliminary works for detecting stress have started in controlled laboratory environments.
However, scientists realized that the stress level experienced in the laboratory is different
compared to the stress in daily life (Picard 2016). Another important reason for this trend
shift in stress recognition studies was that users do not want to be evaluated by invasive
measurement techniques because they are uncomfortable. For these reasons, non-invasive
stress measurements in daily life have become a trend for researchers.

This project wants to provide a non-invasive alternative to detect stress in the workplace
to start addressing the problem in its early stages. With that information, it is also possi-
ble to provide more specific workplace stress management tools for employees to decrease
occupational health problems in the long term.
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2.1.3 Idea Generation and Enrichment

Idea generation is the creative process of generating new methods to solve problems and
improve the product’s conditions or the company itself. It is based on factors like idea
development, group discussion, choosing the best alternative, and finally, implementing the
idea in real-world scenarios. It has a direct relation to the opportunity identification phase
and can usually be translated into a high-level view of the envisioned solution for the problem
creating the opportunity.

Currently, there are several studies related to stress identification or stress in the workplace
that covers medical, psychological, or technological points of view. From the technological
perspective, there are other methodologies for data processing and analysis, using, for exam-
ple, machine learning for pattern recognition. The main difference present in this dissertation
is the use of a recently published stress experiment dataset.

In this phase, the main idea was how to explore the existing information in the dataset; here
were the suggestions:

• use deep learning techniques to identify stress through image analysis;

• transpose physiological data to graphics and create models that predict stress from
graphics;

• explore the dataset and learn which features related to stress can be derivated from
the original information from the dataset;

• to present this service in an application with a user-friendly interface for occupational
health technicians.

2.1.4 Idea Selection

After generating ideas, it is necessary to define and prioritize ideas; according to author
Robert B. Tucker (Tucker 2008), a clear set of criteria for screening ideas and having properly
trained people on the selection team is critical to systematic innovation. To transform an
idea into the development of a solution, a transparent selection process is essential.

Thus, for the solution, it was defined that it would be an asset for the first phase to be
able to identify stress with the highest possible rate of success and try to understand which
physiological data are most relevant for that same diagnosis.

These ideas were selected based on technological risk, development costs, and the benefit
they bring to the occupational health professionals. The remaining ideas will remain as future
work to be carried out after this project.

2.1.5 Concept Definition

Concept development is one of the essential and critical stages in the development of a new
product. After an idea is generated and screened for its quality, the concept development
stage follows. The development of the concept is established by acknowledging the needs
of the customers as well as the nature of the product.

The identification of stress is a sensitive area since stress is a normal human reaction that
happens to everyone. It can be affected by numerous factors, known as stressors, and they
are not easily identified, such as physical and emotional symptoms, like aches and pains,
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chest pain or a feeling like the heart is racing, exhaustion or trouble sleeping, headaches,
dizziness or shaking, high blood pressure, muscle tension or jaw clenching, anxiety or irri-
tability, depression, panic attacks, sadness, and etc.

This development will be carried out using deep learning, applying different technologies for
the processing and classification of data.

With this development, it will be possible to improve the identification of stress in the
workplace and support occupational health technicians.

2.2 Value

This concept can be defined in many different ways, and according to theoretical contexts
where it was used, it was defined as need attitudes and preferences (Nicola, E. P. Ferreira,
and J. P. Ferreira 2012).

2.2.1 Business Model

Verna Allee’s value network

Verna Allee’s value network, shown in figure 2.2, is defined as any network of relationships
that create tangible and intangible value through the exchange of individuals, groups, and
organizations.

Figure 2.2: Verna Allee’s value network (Allee 2006)

The tangible value can be interpreted as any interaction to which it is possible to assign
a numerical value. Be it the sale of goods or services, payments, requests for proposals,
invoices, etc. However, the intangible value is more directed to the human factor. It bases on
interactions and exchange of information between stakeholders in the business process, who
exchange knowledge and benefits. The purpose of value networks is to create the maximum
benefit for the actors involved, from suppliers to producers and finally to customers. The
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value network differs from the value chain in that it accepts the value produced by the
interrelationships of the stakeholders, not only by the activities performed by them. While
according to the value chain, the business process can be optimized only by changing the
modus operandi of activities. In the value network, sharing information and knowledge also
adds value to the process. If an employee does not know how to perform a task, it is more
feasible to provide someone who can teach or offer training than to always fire and hire new
employees until he finds one who knows how to perform all tasks (Allee 2002).

Porter’s value chain

The idea of a value chain is based on the organization process overview, the systemic idea
of an organization as a manufacturer or a service, made up of subsystems, each with inputs,
transformation processes, and outputs. Inputs, transformation processes, and outputs in-
volve acquiring and consuming resources like money, labor, materials, equipment, buildings,
land, administration, and management.

Most organizations have hundreds, even thousands, of activities that convert inputs to out-
put. Porter’s value chain allows modeling a company’s activities as a sequence by analyzing
the links between activities and looking for ways to improve or optimize them. If in the
analysis of the activities it is found that one of them is stopped due to another needing
the same resource, then it can be concluded that an optimization possibility would be the
availability of additional relevant resources.

Porter’s value chain, as shown in Figure 2.3, is defined by the set of activities that a com-
pany/organization performs in order to distribute a product or service to the market.

Figure 2.3: Porter’s value chain (Michael et al. 1985)

Analysis

According to the two models presented, Verna Allee’s model seems to be the one that best
fits this project since the exchange of information and value are central aspects and one of
the reasons why its implementation brings several advantages for all actors.



10 Chapter 2. Value Analysis

The relationships established with companies that hold a large amount of data from their
workers would be the basis of success in a business linked to this project, as it would be
through a web of influencing factors that it would be possible to discover the knowledge,
more specifically, the correlation of patterns.

2.2.2 Value for the customer

This concept represents the advantage of personal association with the organizational offer.
It can occur through the reduction of sacrifices, the existence of benefits, and the result
obtained through the weighted combination of sacrifice and benefit (Woodall 2003). The
customer perceives this balance before, during, and after purchasing the product or service
(Nicola, E. P. Ferreira, and J. P. Ferreira 2012). The way a customer evaluates a product
or service varies from customer to customer.

As already mentioned, the combination of the products offered is quantified in a balance
between benefits and sacrifices for the customer before, during, and after the purchase
of the product or service (Nicola, E. P. Ferreira, and J. P. Ferreira 2012). The way a
customer evaluates a product or service varies from customer to customer. This variation in
perceived value is so fragile that the perceived value of that product varies from a longitudinal
perspective. The customer’s perception of the value of the product changes during the
acquisition and use process. A customer has an idea of the value of the item before buying
it; it can vary at the time of purchase due to several factors, such as price or construction.
The perception of value can also change after purchase and also after using the product or
service.

Table 2.1 presents the longitudinal perspective of the value with the benefits and the sacri-
fices for the client in this context.

Benefits Sacrifices
Before Purchasing - Price
Transaction - Acquisition cost

After Purchasing
• Customization
• Support

Learning time

Utilization
• Early detection of stress
• Reliability

Effort to insert new data

Table 2.1: Longitudinal perspective of value

2.2.3 Perceived Value

Perceived value is a customer’s evaluation of a product or a service’s merit or desirability to
them, especially in comparison to a competitor’s product.

Prior research (R. Li and Liu 2020) has shown that analyzing physiological signals is a reliable
predictor of stress. Such signals are collected from sensors that are attached to the human
body. There have been attempts to detect stress by using traditional machine learning
methods to analyze physiological signals. Results, ranging between 50 and 90% accuracy,
have been mixed. A limitation of traditional machine learning algorithms is the requirement
for hand-crafted features. Accuracy decreases if features are misidentified.

To address this deficiency, the development of deep neural network models does not require
hand-crafted features but instead extracts features from raw data through the layers of the
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neural networks. The deep neural networks can analyze not only physiological data collected
from sensors but also images collected by cameras to perform the classification. This new
non-invasive image analysis tool can be used to perform stress assessments in the workplace
without supervision.

2.2.4 Value Proposition

Develop a deep learning model that helps classify images with stress with a high accuracy
rate to ensure the reliability of the forecast.

In this way, we are providing users and occupational health technicians with a new tool that
does not require the presence of a technician or specialist and can ensure the early detection
of stress in the workplace.

With the increase in the amount of correctly cataloged people data, the increase in the
volume of data trained in the deep learning model, and the constant update in the stress
predictions over time, the result is an increasingly effective model to be used in stress
detection.

In short, early detection of stress in the workplace can help occupational health technicians to
prepare prevention plans so that employees can learn how to manage stress in the company,
which translates into a significant improvement in the quality of life.

Figure 2.4: Value proposition canvas (Osterwalder et al. 2015)

2.3 Canvas Business Model

Alex Osterwalder invented the canvas as a visual chart with various elements that describe
an organization’s value proposition, infrastructure, markets, and finances.

The analysis of the value of a given product allows us to identify the reason why the market
should accept the product that we are analyzing at the expense of a possible competitor.
In this sense, the canvas business, presented in Figure 2.5 is a great help to demonstrate a
value proposal, describing the strategic plan in a quick, agile, and elucidative way.
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Figure 2.5: Canvas Model

2.4 AHP Method

The AHP (Analytic Hierarchy Process) method, initially proposed by Saaty is one of the
multicriteria decision methods found in the literature that creates a hierarchy for the decision
divided into levels.

Figure 2.6: AHP decision tree (Xi and Qin 2013)

The first step of the AHP method is the construction of the decision tree, as in the example
of figure 2.6, where at the top level, the goal is defined. At the middle level, the criteria
used for decision-making are located, and these criteria can be grouped into clusters. At the
last level, decision alternatives are reached. The advantage of a hierarchical method is the
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clarity of information devoted to decision-making.

AHP uses a pair-wise comparison between criteria according to the scale of importance. This
scale is called the Saaty scale, shown in Figure 2.7, and quantitatively evaluates between 1
and 9, being 1 for equal importance and 9 for very important (Mu and Pereyra-Rojas 2017).
This evaluation will generate a comparison matrix (Ramos Filho, Atamanczuk, and Marçal
2010).

Figure 2.7: A summary of Saaty’s nine-point ratio scale

After obtaining the comparison matrix, it must be normalized, and all priorities need to be
leveled to the same unit. After the normalization of the matrix, the relative priority of each
criterion will have to be identified. This calculation is done through the average of each row
of the comparison matrix.

The fourth phase is to calculate the consistency ratio (CR) to assess whether the evaluations
were consistent, for which the following equation must be executed:

CR =
CI

RI
(2.1)

To obtain the Consistency Index (CI), the following equation should be used, where n is the
number of criteria used, and λmax is the average of the matrix division compared with the
respective weights.

CI =
λmax −−n
n −−1 (2.2)

To obtain the Randomness Index (RI), Table 2.2 is used to identify this value, where n is
the number of criteria used.

N 1 2 3 4 5 6 7 8 9 10
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Table 2.2: Randomness Index

After obtaining the CR value, if it is less than 0.10, we can conclude that the values of the
priorities used are consistent; if the CR is greater than 0.10, this conclusion is not verified
(Ramos Filho, Atamanczuk, and Marçal 2010).
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The fifth phase of the AHP method consists of making a comparison matrix, where each
row of the matrix will be an alternative, and each column will be a criterion; these values
will be evaluated using the table in Figure 2.7.

The sixth phase is to multiply the alternative comparison matrix by the weights of the criteria
obtained in phase three, thus making it possible to choose the best alternative in the seventh
and last step.

For this project, we intend to identify the best deep learning libraries using AHP, taking into
account that further tests will be carried out in the future to determine the best libraries to
use. This identification will be made in the following sections.

2.4.1 Decision Tree

Figure 2.8 represents the decision tree of the AHP method, where the problem to solve is to
find the best Deep Learning library to classify stress images; the criteria for evaluating the
alternatives are layer methods available in each library, activation function available to help
deal with the non-linearities of the input data, loss function which measures the performance
of the data transformation, and optimizers which adjust the data to improve the performance
of the loss function. The alternatives were selected based on state-of-the-art and are as
follows: TensorFlow, Keras, PyTorch, and Caffe (Stančin and Jović 2019).

Figure 2.8: Decision tree of the project.

2.4.2 Pair-wise comparison between criterias

After building the decision tree, a Criteria Comparison Matrix was constructed based on the
scale in Figure 2.8 and then the matrix was normalized. The comparison matrix and its
comparison are shown in Tables 2.3, 2.4.
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Criteria Layers Activation Function Loss Function Optimizers
Layers 1 1 1/5 1/9

Activation Function 1 1 1/3 1/9
Loss Function 5 3 1 1
Optimizers 9 9 1 1

Total 16 14 38/15 20/9

Table 2.3: Pair-wise comparison criteria matrix

Criteria Layers
Activation
Function

Loss
Function Optimizers

Criterias
Weight

Layers 1/16 1/14 3/38 1/20 0.0657
Activation Function 1/16 1/14 5/38 1/20 0.0789
Loss Function 5/16 3/14 15/38 9/20 0.3429
Optimizers 9/16 9/14 15/38 9/20 0.5125

Table 2.4: Normalized pair-wise comparison criteria matrix

Eigenvector

The contribution of each criterion to the goal is determined by calculations made using the
priority vector (or Eigenvector). The Eigenvector shows the relative weights between each
criterion; it is obtained in an approximate manner by calculating the mathematical average
of all criteria, as depicted in Table 2.5. The sum of all values from the vector is always equal
to one.

Criteria Eigenvector Calculation EigenVector
Layers [ 1/16 + 1/14 + 3/38 + 1/20 ]/4 = 0.0657 0.0657

Activation Function [ 1/16 + 1/14 + 5/38 + 1/20 ]/4 = 0.0789 0.0789
Loss Function [ 5/16 + 3/14 + 15/38 + 9/20 ]/4 = 0.3429 0.3429
Optimizers [ 9/16 + 9/14 + 15/38 + 9/20 ]/4 = 0.5125 0.5125

Table 2.5: Eigen Vector

Consistency Index

The next step is to look for any data inconsistencies. The objective is to capture enough
information to determine whether the decision-makers have been consistent in their choices.

The inconsistency index is based on the maximum Eigenvalue, which is calculated by sum-
ming the product of each element in the Eigenvector Table 2.5 by the respective line total
of the original comparison matrix Table 2.3. Table 2.6 demonstrates the calculation of
maximum Eigenvalue λmax .

The calculation of the consistency index Saaty is given by the following formula:

CI =
λmax −−n
n −−1 =

4.1634− 4
4− 1 = 0.0545 (2.3)
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Criteria Layers Activation Function Loss Function Optimizers
Eigen Vector 0.0657 0.0789 0.3429 0.5125
Total (Sum) 16.00 14.00 2.53 2.22
Maximum
Eigenvalue
λmax

[ (0.0657 * 16) + (0.0789*14) + (0.3429*38/15) + (0.5125*20/9) ] = 4.1634

Table 2.6: Eigenvalue λmax

Consistency Ratio

The fourth step is to calculate the Consistency Ratio, the calculations to obtain this ratio
are present in Equation 2.1 (the RI value is 0.9 since the project uses four criteria, this value
is obtained in Table 2.2 ), and through this ratio, it was possible to conclude that the criteria
priorities and weights are consistent since the ratio is less than 0.1.

CR =
CI

RI
=
0.0545

0.9
= 0.0605 (2.4)

2.4.3 Pair-wise comparison between criteria and alternatives

In this step, it is necessary to evaluate each alternative in the different criteria, thus ob-
taining a comparison matrix for each criterion. Calculating the weight of each alternative in
each criterion allows evaluating the alternatives in each criterion as it is possible to analyze
in Figure2.9.

Layers TensorFlow Keras PyTorch Caffe Criterias Weights
TensorFlow 1 1/5 2 3 0.1855

Keras 5 1 5 7 0.6266
PyTorch 1/2 1/5 1 2 0.1186

Caffe 1/3 1/7 1/2 1 0.0693
Total 6 5/6 1 1/2 8 1/2 13

Table 2.7: Layers comparison matrix

Activation Function TensorFlow Keras PyTorch Caffe Criterias Weights
TensorFlow 1 1/5 1 5 0.1946

Keras 5 1 3 5 0.5294
PyTorch 1 1/3 1 3 0.1777

Caffe 1/5 1/5 1/3 1 0.0688
Total 7 1/5 1 3/4 5 1/3 14

Table 2.8: Activation Function comparison matrix
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Loss Function TensorFlow Keras PyTorch Caffe Criterias Weights
TensorFlow 1 1 1 2 0.2665

Keras 1 1 1 2 0.2665
PyTorch 1 1 1 2 0.2665

Caffe 1/2 1/2 1/2 1 0.1332
Total 3 1/2 3 1/2 3 1/2 7

Table 2.9: Loss Function comparison matrix

Optimizer TensorFlow Keras PyTorch Caffe Criterias Weights
TensorFlow 1 2 1 2 0.4285

Keras 1/2 1 1 3 0.2674
PyTorch 1 1 1 2 0.2665

Caffe 1/2 1/3 1/2 1 0.1062
Total 3 4 1/3 3 1/2 8

Table 2.10: Optimizer comparison matrix

Through the weights that each alternative has in each criterion, it is possible to build the
final matrix that contains the evaluation of each alternative in each criterion, like the matrix
shown in Figure 2.9.

Figure 2.9: Decision tree with all weights

2.4.4 Alternatives priorities and Choice of the best alternative

Finally, the last step is to multiply the last matrices obtained, presented in Tables 2.7, 2.8,
2.9 and 2.10, by the weights of each criterion also presented in the Figure2.4. This final
calculation, shown in Equation 2.5, allowed us to conclude that the best option would be
the TensorFlow library.
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0.1855 0.1946 0.2665 0.4285

0.6266 0.5294 0.2665 0.2674

0.1186 0.1777 0.2665 0.2665

0.0693 0.0688 0.1332 0.1062

 x

0.0657

0.0789

0.3429

0.5125

 =

0.3385

0.3114

0.2498

0.1101

 (2.5)

Given the lack of prerequisites in the current project, it was agreed with Professor Susana
Nicola that it did not make sense to implement the QFD (Quality Function Deployment)
and FAST (Function Analysis and System Technique) techniques.
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Chapter 3

State of the art

This chapter presents the literature review of the existing technologies to approach the
proposed problem.

3.1 Artificial Intelligence, Machine Learning and Deep learning

Artificial Intelligence, Machine Learning, and Deep Learning are three terms that are often
used interchangeably, but they do not entirely refer to the same things. Here is an illustration
with the fundamental differences between artificial intelligence, machine learning, and deep
learning.

Figure 3.1: Artifial Intelligence diagram (Shruti 2022)

Figure 3.1 shows that Artificial Intelligence is the concept of creating innovative, intelligent
machines, as Machine Learning is a subset of artificial intelligence that helps to build AI-
driven applications. Deep Learning is a subset of machine learning that uses vast volumes
of data and complex algorithms to train a model.

3.1.1 Artificial intelligence

Artificial intelligence, commonly referred to as AI, is the process of imparting data, infor-
mation, and human intelligence to machines. The main goal of Artificial Intelligence is to
develop autonomous machines that can think and act like humans. These machines can
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mimic human behavior and perform tasks by learning and problem-solving. Most AI systems
simulate natural intelligence to solve complex problems.

Types of Artificial Intelligence

• Reactive Machines - These are systems that only react. These systems do not form
memories, and they do not use any past experiences to make new decisions.

• Limited Memory - These systems reference the past, and information is added over a
period of time. The referenced information is short-lived.

• Theory of Mind - This covers systems that are able to understand human emotions and
how they affect decision-making. They are trained to adjust their behavior accordingly.

• Self-awareness - These systems are designed and created to be aware of themselves.
They understand their own internal states, predict other people’s feelings, and act
appropriately.

3.1.2 Machine learning

Machine learning is a discipline of computer science that uses computer algorithms and
analytics to build predictive models that can solve business problems. As per McKinsey &
Co., machine learning is based on algorithms that can learn from data without relying on
rules-based programming (Pyle and José 2015).

Machine learning accesses vast amounts of data (both structured and unstructured) and
learns from it to predict the future. It learns from the data by using multiple algorithms and
techniques. Below is a diagram that shows how a machine learns from data.

Figure 3.2: Machine Learning Flow (Shruti 2022)

Types of Machine Learning

Machine learning algorithms are classified into three main categories:

Supervised Learning

In supervised learning, the data is already labeled, which means it knows the target variable.
Using this learning method, systems can predict future outcomes based on past data. It
requires at least an input and output variable to be given to the model for it to be trained.
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Unsupervised Learning

Unsupervised learning algorithms use unlabeled data to discover patterns from the data on
their own. The systems can identify hidden features from the input data provided. Once
the data is comprehensive, the patterns and similarities become more evident.

Reinforcement Learning

The goal of reinforcement learning is to train an agent to complete a task within an uncertain
environment. The agent receives observations and a reward from the environment and
sends actions to the environment. The reward measures how successful action is concerning
completing the task goal.

3.1.3 Deep learning

Deep learning is a subset of machine learning that deals with algorithms inspired by the
structure and function of the human brain. Deep learning algorithms can work with an
enormous amount of structured and unstructured data. Deep learning’s core concept lies in
artificial neural networks, which enable machines to make decisions.

The significant difference between deep learning and machine learning is how data is pre-
sented to the machine. Machine learning algorithms usually require structured data, whereas
deep learning networks work on multiple layers of artificial neural networks.

This is what a simple neural network looks like:

Figure 3.3: Deep learning overview (Shruti 2022)

The network has an input layer that accepts inputs from the data. The hidden layer is used
to find any hidden features from the data. The output layer then provides the expected
output.

Deep Learning Flow

1. Calculate the weighted sums.

2. The calculated sum of weights is passed as input to the activation function.

3. The activation function takes the "weighted sum of input" as the input to the function,
adds a bias, and decides whether the neuron should be fired or not.
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4. The output layer gives the predicted output.

5. The model output is compared with the actual output. After training the neural
network, the model uses the backpropagation method to improve the network’s per-
formance. The cost function helps to reduce the error rate.

Types of Deep Neural Networks

There are some types of neural networks in deep learning, such as:

Convolutional neural networks (CNN) are one of the most popular models today. It uses a
variation of multi-layer perceptrons and contains one or more convolutional layers that can
be either entirely connected or pooled so that the convolutional layers can create feature
maps that record a region of the image, which is ultimately broken into rectangles and sent
out for nonlinear processing.

The main reason for the development of CNN was that the previous neural network archi-
tectures (e.g., feed-forward neural networks) could not scale up to handle image and video
processing tasks. So, CNNs were explicitly tailored to image and video processing tasks.

The CNN applications to solve problems in the real world include a wide range of scientific
fields which fall into the two main categories: pattern identification and classification (Bhujel
and Pant 2017).

Recurrent neural network (RNN) is a type of network more complex because it saves the
output of processing nodes and feeds the result back into the model (they do not pass the
information in one direction only). It is how the model is said to learn to predict the outcome
of a layer. Each node in the RNN model acts as a memory cell, continuing the computation
and implementation of operations. If the network’s prediction is incorrect, the system self-
learns and continues working towards the correct prediction during backpropagation.

3.1.4 Difference between ML and DL

Machine Learning Deep Learning
Data

dependencies
Excellent performances on a
small/medium dataset

Excellent performance on a
big dataset

Hardware
dependencies Work on a low-end machine.

Requires powerful machine,
preferably with GPU: DL
performs a significant amount
of matrix multiplication

Feature
engineering

Need to understand the features
that represent the data

No need to understand the
best feature that represents
the data

Interpretability

Some algorithms are easy to
interpret (logistic, decision tree),
some are almost impossible
(SVM, XGBoost)

Difficult to impossible

Training time Short Long

Table 3.1: Comparison between Machine Learning and Deep Learning
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The first advantage of Deep Learning over machine learning is the needlessness for Feature
Extraction. Traditional machine learning methods like Decision Trees, SVM, Naïve Bayes
Classifier, and Logistic Regression cannot be applied directly to the raw data (such as .csv,
images, text, and others.) but requires Feature Extraction. Feature Extraction results are an
abstract representation of the given raw data that these classic machine learning algorithms
can now use. Feature Extraction is usually complicated and requires detailed knowledge of
the problem domain. This step must be adapted, tested, and refined over several iterations
for optimal results.

Neural networks do not require feature extraction because the layers can learn an implicit
representation of the raw data directly on their own. A more and more abstract represen-
tation of the raw data is produced over several layers to be used to produce the result with
automatic optimization for the best possible abstract representation of the input data with
no manual effort to perform and optimize the feature extraction process.

Deep Learning models increase their accuracy with the increasing amount of training data,
but traditional machine learning models like SVM and Naive Bayes classifier stop improving
after a saturation point.

3.2 Modeling Lifecycle

In contrast with the traditional approach of feature engineering followed by model learning,
deep learning is an end-to-end learning approach. The features do not need to be previously
labeled; instead, they should be learned automatically from the input data. Besides, the
features learned are usually complex and have a hierarchy along with the network represen-
tation.

Since it requires less domain expertise and experience from the modeler, adjusting and
tuning the learned model (its network structure and hyper-parameters) are crucial when
developing new models (Miao et al. 2017). The main complexity of this process relies on
understanding and explaining the models’ results. Figure 3.4 shows a typical deep learning
modeling lifecycle.

Figure 3.4: Deep learning modeling lifecycle (Miao et al. 2017)

Much time is spent at the beginning gathering data. Even if it has enough data available
to create a model, data may require some processing. When working with image data for
object detection, it needs bounding box data for the items in each image.

At the start of the project, it must also define the categories or labels in which data falls.
In addition to gathering "correct" data examples to make predictions for the types of data
expected, it is also necessary to gather "incorrect" data to create a negative label.

The deep learning cycle is iterative, and the model creation process involves frequent loops
of model creation and testing. The overall process looks like these steps.
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1. Use initial data to create the dataset and model.

2. Test the model.

3. Refine the dataset based on the model test results.

4. Create a new test model and compare it to the previous models.

5. When satisfied with the results, create a final production model from the most recent
dataset.

Due to a lack of understanding about why models work, the adjustments and tuning inside
the loop are driven by heuristics, for instance, adjusting hyperparameters that appear to have
a significant impact on the learned weights, and applying novel layers of tricks seen in recent
empirical studies, and so on. Thus, many similar models are trained and compared, and a
series of model variants must be explored and developed.

Due to the expensive learning/training phase, each iteration of the modeling loop takes a
long period of time and produces many (checkpointed) snapshots of the model.

3.3 Pre-processing

Data preprocessing is the process of transforming raw data into a suitable format for a
machine learning or deep learning model. It is impossible to work with raw data in data
mining, so data quality should be checked before applying machine learning or data mining
algorithms (García, Luengo, and Herrera 2015).

Real-world data generally contains noises, missing values, and maybe a format that cannot
be used for machine learning models. Data preprocessing requires cleaning the data and
making it suitable for data mining, machine learning, and other data science tasks. It is a
technique generally used to increase the accuracy and efficiency of a machine learning model
(Chandrasekar and Qian 2016).

Figure 3.5: Data preprocessing pipeline (Azevedo 2021)

Among these techniques, some of the most fundamental approaches will be presented in the
following sections.
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3.3.1 Data Integration

Data Integration refers to a technique that involves combining data from multiple hetero-
geneous data sources into a coherent data store and providing a unified view of the data.
These sources may include multiple data cubes, databases, or flat files. The data sources can
be homogeneous or heterogeneous. The data obtained from the sources can be structured,
unstructured, or semi-structured (Mhon and Kham 2020).

3.3.2 Data Cleaning

Data cleaning is the process that increases the quality of the input data, removing noisy
data, completing incomplete data, and correcting inconsistencies in the data. If this step is
not applied, it becomes complicated to consider that the data is reliable, leading to distrust
in any algorithm learning process results (Alasadi and Bhaya 2017).

3.3.3 Data Transformation

Data Transformation is a technique used to convert the raw data into a suitable format
that efficiently eases data mining and retrieves strategic information. Data transformation
includes data cleaning techniques and a data reduction technique to convert the data into
the appropriate form. It must be performed on the data before data-mining to understand
patterns better. It can change the data's format, structure, or values and convert them into
clean, usable data (Mhon and Kham 2020).

Some algorithms expect that the input data be transformed, so if it does not complete this
process, it may get a poor model performance or even create bias.

Data Transformation involves the following:

• Normalization: It scales the data values in a specified range (-1.0 to 1.0 or 0.0 to 1.0)

• Attribute Selection: In this strategy, new attributes are constructed from the given
set of attributes to help the mining process.

• Discretization: It replaces the raw values of a numeric attribute with interval levels or
conceptual levels.

• Concept Hierarchy Generation: Converts the attributes from a lower level to a higher
level in the hierarchy, i.e., the attribute "city" can be converted to "country".

3.3.4 Imbalanced Data

Imbalanced Data Distribution happens when perceptions in one class are much higher or lower
than in different classes. It poses a difficulty for learning algorithms, as they will be biased
towards the majority group. At the same time, the minority class is usually the one more
important, as, despite its rareness, it may carry essential and valuable knowledge. Therefore,
when facing such disproportions, one must design an intelligent system to overcome such a
bias. This domain is known as learning from imbalanced data (García, Luengo, and Herrera
2015).

One of the most exciting directions in imbalanced binary classification is that the imbalance
ratio is not the only source of learning difficulties. Even if the disproportion is high, but
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the classes are well represented and come from non-overlapping distributions, it may obtain
reasonable classification rates using canonical classifiers (Krawczyk 2016).

There are three main techniques that can be used to address this deficiency in the dataset:

• Oversampling: The oversampling approach increases the dataset with synthetic data
from the minority class. The most popular technique is the Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al. 2002). It takes a random example from
the minority class. Then another random data point is selected through k-nearest
neighbors of the first observation, creating a new record between these two selected
data points.

• Undersampling: The undersampling technique, in contrast, is the process of reducing
the dataset and removing inaccurate data from the majority class. The main algorithms
used in this approach are the TomekLinks, which removes the observation based on the
nearest neighbor, and the Edited Nearest Neighbors (ENN), which uses the k-nearest
neighbor instead of only one as in Tomek.

• Hybrid: The hybrid approach combines the oversampling and undersampling techniques
in the dataset. One of the algorithms that are used in this method is the SMOTEENN,
which for the oversampling technique, it uses the Synthetic Minority Oversampling
Technique (SMOTE) that randomly creates artificial samples along the line joining
a minority sample and one of its nearest neighbors. The undersampling technique
uses Random undersampling, a sampling technique to improve imbalance levels of
the classes to the desired target by randomly removing instances from the majority
class(es).

3.4 Convolutional neural network

Convolutional Neural Networks (CNNs) are the most used Deep-Learning model to solve
Computer Vision tasks, particularly for image classification. The basic building blocks of
CNNs are convolution, pooling (downsampling) operators, activation functions, and fully
connected layers, which are essentially similar to the hidden layers of a Multi-layer Perceptron
(MLP). Architectures such as VGG and ResNet, presented in Section 3.6, became very
popular and used subroutines to obtain offered representations as input to other algorithms
to solve different tasks.

It is possible to describe a network as a composition of a sequence of functions fl(.) (related
to some layer l) that takes as input a vector xl and a set of parameters Wl , and outputs a
vector xl+1:

f (x) = fL(· · · f2(f1(x1, W1);W2) · · · ),WL) (3.1)

where x1 is the input image, and in a CNN, the most characteristic functions fl(.) are
convolutions. Convolutions and other operators function as fundamental building blocks in
constructing a CNN and its layers; they are the activation function, pooling, normalization,
and linear combining (produced by the fully connected layer).



3.4. Convolutional neural network 27

3.4.1 Convolutional Layer

A convolutional layer comprises a set of filters, each applied to the entire input vector. Each
filter is a matrix k×k of weights (or values) wi and the weights are parameters of the model
to be learned (Gonzalez and Woods 2007).

The result of the sum of each filter produces the transformation of the input. In other
words, each filter produces a linear combination of all pixel values in a neighborhood defined
by the size of the filter, and each region that the filter processes is called a local receptive
field so that the output value (pixel) combines the input pixels in this local receptive field
(see Figure 3.6). In a convolutional layer, the output value f (i , x , y) is based on a filter i ,
and local data are coming from the previous layer centered at a position (x, y).

Figure 3.6: Example of a convolution processes

Figure 3.6, shows a convolution processes local information centred in each position (x, y):
this region is called local receptive field, whose values are used as input by some filter i with
weights wi in order to produce a single point (pixel) in the output feature map f (i , x , y)

For example, if the input is an RGB image, and it wants the first convolutional layer to have
four filters of size 5 × 5 to operate over this image, that means it needs a 5 × 5 × 3 filter
(the last 3 is for each color channel). Let the input image have size 128 × 128 × 3, and a
convolutional layer with four filters; then the output will have four matrices; stacked, it has
a tensor of size 128× 128× 4. Assuming that it uses a zero-padding approach to perform
the convolution to keep the image’s dimensions.

The most commonly used filters are 5×5×d , 3×3×d , and 1×1×d , where d is the depth
of the tensor, considering that in the case of 1× 1, the output is a linear combination of all
feature maps for a single pixel and not the spatial neighbors but only the depth neighbors.

It is important to emphasize that the convolution operator can have different strides, which
defines the step taken between each local filtering. For the default stride equals 1, the
convolution considers all pixels, but in stride equals 2, it processes every odd pixel, skipping
the others. As a result, it is common to use an arbitrary value of stride s, for example s = 4
in AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and s = 2 in DenseNet (Huang et al.
2017), to reduce the running time.
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3.4.2 Activation Function

The rectified linear function (ReLU) is often used in CNNs after convolutional layers or fully
connected layers (Nair and Hinton 2010), in contrast to the use of a sigmoid function such
as the logistic or hyperbolic tangent in MLP. Although ReLU can be employed before layers
in a pre-activation setting (Larsson, Maire, and Shakhnarovich 2016), activation functions
are not useful after pooling layers because such layer only downsamples the input data.

Figure 3.7 shows the plots of some activation functions: ReLU, in Figure 3.7(c), cancels out
all negative values, and it is linear for all positive values. It is related to the non-negativity
constraint often used to regularize image processing methods based on subspace projections
(Ponti et al. 2015). The Parametric ReLU (PReLU), in Figure 3.7(d),allows small negative
features, parametrized by 0 ≤ a ≤ 1 (He et al. 2015). Designing the layers to be learnable
during the training stage is possible when it is fixed at a = 0.01, it has the Leaky ReLU.

Figure 3.7: Activation functions

Figure 3.7, illustrates that the activation functions, (a) and (b) are often used in multilayer
perceptron networks, while ReLUs (c) and (d) are more common in CNNs. Note (d) with
a = 0.01 is equivalent to leaky ReLU.

3.4.3 Feature or Activation Map

Each convolutional neuron produces a new vector that passes through the activation func-
tion, and it is then called a feature map. Those maps are stacked, forming a tensor offered
as input to the next layer.

For example, in Figure 3.8, the first convolutional layer outputs a 64 × 64 × 4 tensor. If
a second convolutional layer is set with filters of size 3 × 3, those will be 3 × 3 × 4 filters.
So, each one independently processes the entire tensor and outputs a single feature map.
Figure 3.8 illustrates two convolutional layers producing a feature map.
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Figure 3.8: Feature maps

Figure 3.8 illustrates two convolutional layers, the first with four filters 5×5×3 that get as
input an RGB image of size 64× 64× 3 and produces a tensor of feature maps. A second
convolutional layer with five filters 3× 3× 4 gets as input the tensor from the previous layer
of size 64× 64× 4 and produces a new 64× 64× 5 tensor of feature maps. The circle after
each filter denotes an activation function, for example, ReLU.

3.4.4 Pooling

After a few convolutional layers, pooling is applied, and it is used to downsample the image
to reduce the spatial dimensionality of the vector. The max-pooling operator is the most
frequently used. This type of operation has two primary purposes: first, it reduces the size
of the data: as it will show in the specific architecture, the depth (3rd dimension) of the
tensor often increases, and therefore it is convenient to reduce the first two dimensions.
Second, by reducing the image size, it is possible to obtain a multiresolution filter bank by
processing the input in different scale-spaces.

Although, there are studies in favor of discarding the pooling layers to reduce the size of
the representations via an enormous stride in the convolutional layers (Springenberg et al.
2014). The effort to train a generative model with pooling layers is even greater because
there is probably a tendency for future architectures to avoid pooling layers.

3.4.5 Normalization

It is common to apply normalization to both the input data and after convolutional layers.
In preprocessing, it is common to apply to the input data a z-score normalization (centered
by subtracting the mean and normalizing the standard deviation to unity) as described by
(LeCun et al. 2012), which can be seen as a whitening process. For layer normalization,
there are different approaches, such as the channel-wise layer normalization, that normalize
the vector at each spatial location in the input map, either within the same feature map or
across consecutive channels/maps, using L1-norm, L2-norm, or variations.

In AlexNet architecture (Krizhevsky, Sutskever, and Hinton 2012) the Local Response Nor-
malization (LRN) is used: for every particular input pixel (x, y) for a given filter i , it have a
single output pixel fi(x, y), which is normalized using values from adjacent feature maps j ,
in other words fj(x, y). This procedure incorporates information about the outputs of other
kernels applied to the same position (x, y).
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Nevertheless, more recent methods such as GoogLeNet (Szegedy et al. 2016) and ResNet
(He et al. 2016a) do not mention the use of Local Response Normalization. Instead, they
use Batch normalization (BN) (Ioffe and Szegedy 2015).

3.4.6 Fully Connected Layer

After many convolutional layers, it is common to include fully connected (FC) layers to learn
the weights to classify the representation. In contrast to a convolutional layer, each filter
in a fully connected layer produces a matrix of local activation values. The fully connected
layer looks at the entire input vector, producing a single scalar value. It reshapes the data
from the last layer as input. For example, if the last layer outputs a 4 × 4 × 40 tensor, it
reshapes it to be a vector of size 1× (4× 4× 40) = 1× 640. Therefore, each neuron in the
FC layer will be associated with 640 weights, producing a linear combination of the vectors.

The last layer of a CNN is often the one that outputs the class membership probabilities for
each class c using logistic regression:

P (y = c |x;w; b) = softmaxc(xTw + b) =
ex
Twc+bc∑
j e
xTwj+bj

, (3.2)

where y is the predicted class, x is the vector coming from the previous layer, and w and b
are, respectively, the weights and the bias associated with each neuron of the output layer.

3.5 CNN Architectures and Parameters

Typical CNNs are organized using blocks of convolutional layers (Conv) followed by an
activation function (AF), eventually Pooling (Pool), and then a series of fully connected
layers (FC) which are followed by activation functions. Normalization of data before each
layer can also be applied.

Figure 3.9: Transition between a convolutional and a fully connected layer

Figure 3.9 illustrates the transition between a convolutional and a fully connected layer: the
values of all five activation/feature maps of size 2 × 2 are concatenated in a vector x and
neurons in the fully connected layer will have full connections to all values in this previous
layer producing a vector multiplication followed by a bias shift and an activation function in
the form f (xTw + b).
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To build a CNN, it is necessary to define the architecture, which is given first by the number
of convolutional layers (for each layer also the number of filters, the size of the filters, and
the stride of the convolution). Typically, a sequence of Conv + AF layers is followed by
Pooling (for each Pool layer, it is necessary to define the window size and the stride that
will define the downsampling factor). After that, it is common to have a fully connected
layer (each FC layer should have a defined number of neurons). The pre-activation is also
possible (He et al. 2016b), in which the data goes through AF and then to a Conv. layer.

The number of parameters in a CNN is related to the number of weights used for learning.
Those correspond to the values of all filters in the convolutional layer, all weights of fully
connected layers, and bias terms.

3.5.1 Loss Function

A loss or cost function is a way to measure how bad the current model performs for a given
input and an expected output; because it is based on a training set, it is an empirical loss
function. Considering that the CNN is used as a regressor to discriminate between classes,
then the loss ℓ(y , ŷ) will express the penalty for predicting some ŷ , while the true output
value should be y . The hinge loss or max-margin loss is an example of this function used in
the SVM classifier optimization in its primal form. Let fi ≡ fi(xj ,W ) be a score function for
some class i given an instance xj and a set o parameters W , then the hinge loss is:

ℓ
([ht])
j =

∑
c ̸=yj

max(0, fc − fyj +△), (3.3)

where class yj is the correct class for the instance j , the hyperparameter ∆ minimizes the loss,
while the score of the correct class increases and gets more significant than the incorrect
class scores by ∆ at least. The squared version of this loss is called squared hinge loss.

The softmax classifier is often used in neural networks when the cross-entropy loss is em-
ployed. The minimization of the cross-entropy between the estimated class probabilities can
be expressed as:

ℓ
(ce)
j = − log

(
e
fy jj∑
k e
fk

)
(3.4)

in which k = 1 · · ·C is the index of each neuron for the output layer with C neurons, one
per class.

This function transforms a vector of real-valued scores into a vector of values between
zero and one with a unitary sum. There is an interesting probabilistic interpretation of
minimizing Equation 3.4 in which the minimization of Kullback-Leibler divergence between
two class distributions with zero entropy for true distribution has a single probability of 1
(Ioffe and Szegedy 2015). Also, we can interpret it as minimizing the negative log-likelihood
of the correct class, which is related to the Maximum Likelihood Estimation.

The full loss of some training set is the average of the instances’ xj outputs, f(xj ;W ), given
the current set of all parameters W :
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L(W ) =
1

N

N∑
j=1

ℓ(yj , f (xj ;W )). (3.5)

Now, it needs to minimize L(W ) using some optimization method.

3.5.2 Regularization

The exclusive use of the loss function can lead to a possible problem. It happens because
there might be many similar W for which the model can classify the training set correctly,
which can mislead the process of finding suitable parameters via minimization of the loss,
in other words, making it difficult to converge. In order to avoid ambiguity in the solution,
it is possible to add a new term that penalizes undesired situations, called regularization.
The most common regularization is the L2-norm: by adding a sum of squares, we want to
discourage individually large weights:

R(W ) =
∑
k

∑
l

W 2k,l (3.6)

After, we expand the loss by adding this term, weighted by a hyperparameter λ to control
the regularization influence:

L(W ) =
1

N

N∑
j=1

ℓ(yj , f (xj ;W )) + λR(W ). (3.7)

The parameter λ controls how large the parameters in W are allowed to grow, and it can
be found by cross-validation using the training set.

3.5.3 Optimization Algorithms

After defining the loss function, it is necessary to adjust the parameters to minimize the
loss. First, the gradient descent is chosen as the optimization algorithm, followed by the
backpropagation method that helps calculate the gradient of a loss function concerning all
the weights in the network.

Note that L(W ) is based on a finite dataset, so it has to calculate Montecarlo estimations
of the actual distribution that generates the parameters. Since CNNs can have many param-
eters to be optimized, there is the need to be trained using thousands or millions of images.
Nevertheless, an extensive set of examples is not viable for Gradient Descent because the
algorithm has to calculate the gradient for all examples individually. The difficulty here is
that if it tries to run an epoch, in other words, a pass-through of all the data, it would
have to load all the examples into a limited memory, which is impossible. The alternatives
to overcome this problem are described below, including the Stochastic Gradient Descent
(SGD), Momentum, AdaGrad, RMSProp, and Adam.

Stochastic Gradient Descent (SGD)

One possibility to accelerate the process is to use approximate methods that go through the
data and create samples composed of random examples drawn from the original dataset.
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This method is called Stochastic Gradient Descent, and it is not interested in inspecting all
available data at a time. However, it creates a random sample which adds uncertainty to
the process. It is possible to calculate the Gradient Descent using a single example at a time
(a method often used in streams or online learning). Nevertheless, in practice, it is common
to use mini-batches with size B to perform enough iterations (each iteration will calculate
the new parameters using the examples in the current mini-batch), and it approximates the
Gradient Descent method.

Wt+1 = Wt − η
B∑
j=1

∇L(W ; xBj ), (3.8)

where η is the learning rate parameter: a large η will produce more significant steps in the
direction of the gradient, while a small value produces a minor step in the direction of the
gradient. It is common to set a larger initial value for η and then exponentially decrease it
as a function of the iterations.

Stochastic Gradient Descent is a rough approximation, producing a nonsmooth convergence.
Because of that, variants were proposed to compensate, such as the Adaptive Gradient
(AdaGrad), Adaptive learning rate (AdaDelta), and Adaptive moment estimation (Adam).
Those variants use the ideas of momentum and normalization, as we describe below.

Momentum

Adds a new variable α to control the change in the parameters W . It creates a momentum
that prevents the new parametersWt+1 from deviating too much from the previous direction:

Wt+1 = Wt + α(Wt −Wt−1) + (1− α)[−η∇L(Wt)] (3.9)

where L(Wt) is the loss calculated using some examples using the current parameters Wt
(often a mini-batch). Notice the magnitude of the step for the iteration t + 1, which
constrains the step taken in the iteration t.

AdaGrad

It works by putting more weight on infrequent parameters. It creates a history of how
a parameter can change the loss by accumulating the individual gradients gt+1 = gt +
∇L(Wt)2. Next, it is scaled/normalized for each parameter:

Wt+1 = Wt −
η∇L(Wt)2√
gt+1 + ϵ

(3.10)

since this historical gradient is calculated feature-wise, the infrequent features will have more
influence in the next gradient descent step.

RMSProp

It calculates averages of recent gradient magnitudes and normalizes them using these aver-
ages to normalized loosely gradient values. It is similar to AdaGrad, but here gt calculates
an exponentially decaying average and not the simple sum of gradients:
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gt+1 = γgt + (1− γ)∇L(Wt)2 (3.11)

g is called the second order moment of L. The final parameter update is given by adding
the momentum:

Wt+1 = Wt + α(Wt −Wt−1) + (1− α)
[
−
η∇L(Wt)√
gt+1 + ϵ

]
(3.12)

Adam

It is similar to AdaGrad and RMSProp, but the momentum is used for the first and second-
order moment, so it has α and γ controlling the momentum of respectively W and g. The
influence of both decays is perceived over time so that the step size decreases when it
approaches a minimum. It is used as an auxiliary variable m for clarity:

mt+1 = αt+1gt + (1− αt+1)∇L(Wt)

m̂t+1 =
mt+1
1− αt+1

m is called the first order moment of L and m̂ is m after applying the decaying factor. Then
it needs to calculate the gradients g to use in the normalization:

gt+1 = γt+1gt + (1− γt+1)∇L(Wt)2

ĝt+1 =
gt+1
1− γt+1

g is called the second order moment of L. The final parameter update is given by:

Wt+1 = Wt −
ηm̂t+1√
ĝt+1 + ϵ

(3.13)

3.5.4 Adjustments and tuning

The process of setting the hyper-parameters requires expertise and extensive trial and error.
There are no simple and easy ways to set hyper-parameters — learning rate, batch size,
momentum, and weight decay. These hyper-parameters act as knobs that can be tweaked
during the model’s training. For our model to provide the best result, we need to find the
optimal value of these hyper-parameters. Here are some extra configurations that can help
in its optimization.
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Initialization

Random initialization of weights is important to the convergence of the network, and the
Gaussian distribution N (µ, σ) is often used to produce the random numbers. However, for
models with more than eight convolutional layers, the use of a fixed standard deviation (for
example, σ = 0.0]) as in (Krizhevsky, Sutskever, and Hinton 2012) was shown to hamper
convergence. Therefore, when using rectifiers as activation functions it is recommended to
use µ = 0, σ =

√
2/nl , where nl is the number of connections of a response of a given layer

l ; as well as initializing all bias parameters to zero (He et al. 2015).

Mini-batch size

Due to the need to use SGD optimization and variants, it is necessary to define the size of
the mini-batch of images that will be used to train the model, taking into account memory
constraints and the behavior of the optimization algorithm. For example, while a small batch
size can make the loss minimization more difficult, the convergence speed of SGD degrades
when increasing the mini-batch size for convex objective functions (M. Li et al. 2014). In
particular, assuming SGD converges in T iterations, then mini-batch SGD with batch size
B runs in O(1/

√
BT + 1/T ).

However, increasing B is essential to reduce the variance of the SGD updates (by using
the average of the loss), which allows it to take bigger step-sizes (Bottou, Curtis, and
Nocedal 2018). Also, larger mini-batches are interesting when using GPUs since it gives
better throughput by performing backpropagation with data reuse using matrix multiplication
(instead of several vector-matrix multiplications) and needing fewer transfers to the GPU.

Therefore, it can be advantageous to choose the batch size to fully occupy the GPU memory
and choose the largest experimentally found step size. While popular architectures use from
32 to 256 examples in the batch size, a recent paper used a linear scaling rule for adjusting
learning rates as a function of mini-batch size, also adding a warmup scheme with large step
sizes in the first few epochs to avoid optimization problems.

Dropout

A technique proposed by Goyal et al. that, during the forward pass of the network training
stage, randomly deactivates neurons of a layer with some probability p in particular from FC
layers (Goyal et al. 2017). It has relationships with the Bagging ensemble method (Warde-
Farley et al. 2013) because, at each iteration of the mini-batch SGD, the dropout procedure
creates a randomly different network by subsampling the activations, which is trained using
backpropagation. This method became known as a form of regularization that prevents the
network from overfitting. In the test stage, the dropout is turned off, and the activations
are re-scaled by p to compensate for those activations that were dropped during the training
stage.

Batch normalization (BN)

Also used as a regularizer, it normalizes the layer activations at each batch of input data by
maintaining the mean activation close to 0 (centering) and the activation standard deviation
close to 1 and using parameters γ and β to produce a linear transformation of the normalized
vector, in other words:
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BNγ,β(xi) = γ

 xi − µB√
σ2B + ϵ

+ β, (2)

In which γ and β are parameters that can be learned during the backpropagation stage (Ioffe
and Szegedy 2015). It allows, for example, to adjust the Normalization and even restore the

data to its un-normalized form; so, when γ =
√
σ2B and β = µB.

BN became a standard in recent years, often replacing the use of both regularization and
dropout (for example, ResNet (He et al. 2016a) and Inception V3 (Szegedy et al. 2016)
and V4).

Data-augmentation

As mentioned previously, CNNs often have many parameters to optimize, requiring many
training examples. Because it is tough to have a dataset with sufficient examples, it is
common to employ some data augmentation. Images in the same dataset often have similar
illumination conditions, a low variance of rotation, pose, and others; therefore, one can
augment the training dataset by many operations in order to produce five to ten times more
examples (Chatfield et al. 2014) such as:

• cropping images: CNNs often have a low-resolution image input (for example, 224×
224), so it can create several cropped versions of an image with higher resolution;

• flipping images horizontally and/or vertically;

• adding noise (Nazaré et al. 2017);

• creates new images using PCA as in the Fancy PCA proposed by (Krizhevsky, Sutskever,
and Hinton 2012).

The augmentation must be performed to preserve the labels.

Fine-tuning

When there is a small dataset, that can be challenging to train a CNN. Data augmentation
can be insufficient since augmentation will create perturbed versions of the same images.
In this case, it is beneficial to use a model already trained in a large dataset (for example,
the ImageNet dataset (Deng et al. 2009)) with initial weights that were already learned.
To obtain a trained model, adapt its architecture to the dataset, and re-enter the training
phase using such a dataset is a fine-tuning process.

3.6 CNN Architectures for Image Classification

There are many proposed CNN architectures for image classification, so in this section, we
compare the main image classification architectures used in this work and their performance.
First, each architecture is described, and later it shows an overall comparison in Table 3.2.
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3.6.1 VGG-Net

Figure 3.10: VGG-16 architecture (networks 2018)

It is an architecture developed to increase the depth while making all filters with at most
3× 3 size. This idea is that two consecutive 3× 3 convolutional layers will have an effective
receptive field of 5 × 5, and 3 of such layers an effective receptive field of 7 × 7 when
combining the feature maps.

Thus, stacking three convolutional layers with 3 × 3 filters instead of addressing just one
with filter size 7×7 has the advantage of incorporating more rectification layers, making the
decision function more discriminative. In addition, it incorporates 1× 1 convolutional layers
that perform a linear projection of a position (x, y) across all feature maps in a given layer.
The two most commonly used versions of this CNN are VGG-16 and VGG-19, respectively,
with 16 and 19 weight layers. In Figure 3.10, there is a diagram of the layers of VGG-16.

3.6.2 Residual Networks (ResNet)

Figure 3.11: ResNet architecture (Joseph 2021)

He et al. claims this could be an optimization problem and proposes using residual blocks
for CNNs with 34 to 152 layers (He et al. 2016a). Those blocks’ designs preserve the
characteristics of the original vector x before its transformation by some layer fl(x) by
skipping weight layers and performing the sum fl(x) + x .

Figure 3.11 shows an architecture with 34 layers plain and with shortcuts that implement
the residual block and residual block with pooling. As a result of the gradient being an
additive term, it is unlikely to vanish even with many layers. However, this architecture does
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not contain any fully connected layer hidden; after the last convolution layer, the pooling
calculates an average, followed by the output layer.

3.6.3 Comparison of archictectures

Figure 3.12: Example network architecture for ImageNet (He et al. 2016a)

Figure 3.12 compares VGG-19 to Resnet 34, on the left is the VGG-19 model as a reference.
In the middle, there is a plain network with 34 layers. On the right is a residual network
with 34 layers. The dotted shortcuts increase dimensions. The comparison of architectures
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continues in Table 3.2 and uses the same criteria, which were the training parameters, model
size, and top one errors in the VGGNet and ResNet.

Training Parameters Model ImageNet
CNN Batch size Learn.rate Optm.alg. Optm.param. Epochs Regularization # Layers Size top-1 error

VGGNet 256 0.01 SGD α =0.9 74 L2 + Dropout 16-19 574MB (19 lay.) 24.4%
ResNet 256 0.1 SGD α =0.9 120 BN 34-152 102MB ( 50 lay.) 19.3%

Table 3.2: Comparison of CNN models

Since Resnet blocks’ designs can preserve the original vector’s characteristics, increasing
dimensions by adding layers to the model can improve the gradient performance as additive
terms are unlikely to vanish within the layers. Opting for Resnet has advantages, such as
having more layers than VGG but a smaller model size, which is crucial when working with
limited hardware performance.

3.7 Evaluation Metrics

Many performance metrics are available to compare and evaluate deep models. However,
one must ponder which metric is the best for the problem. There are different metrics for
the tasks of classification and regression. Using different metrics for performance evaluation,
we should be able to improve our model’s overall predictive power.

3.7.1 Classification

Classification is about predicting the class labels given input data. In binary classification,
there are only two possible output classes.

Figure 3.13: Confusion Matrix

• True Positive (TP): number of instances correctly accepted or predicted/classified as
positive.

• True Negative (TN): number of instances correctly rejected or predicted/classified as
negative.

• False Positive (FP): number of instances incorrectly accepted or predicted/classified
as positive.

• False Negative (FN): number of instances incorrectly rejected or predicted/classified
as negative.

Considering that there are many ways for measuring classification performance, these are
some of the most popular metrics:

• Accuracy: proportion of true results (both positive and negative)

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
(3.14)
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• Recall: true positive rate

Sensitiv ity = Recal l =

(
TP

TP + FN

)
(3.15)

• Precision: true negative rate

Specif icity =

(
TN

TN + FP

)
(3.16)

• F1 Score: harmonic mean of precision and recall. This evaluation measure calcu-
lates the effectiveness of a classifier algorithm, combining the accuracy and sensitivity
measures.

F1Score =

(
2× TP

2× TP + FN + FP

)
(3.17)

3.8 Stress Detection Review

There are many studies on stress detection that still use machine learning as a feature
extractor to classify a person’s stress state. This requires the developer to have previous
knowledge about the area of study to interpret the results obtained. However, in recent years,
with the improvement in hardware performance and the popularization of deep learning, it
is possible to use deep learning to achieve results equal to or better than machine learning.
The developer can create models without previous knowledge about the area of study.

Here we present the latest efforts to automate the prediction and detection of stress by
machine learning and deep learning models, which are trained using psychological experiments
to address the responses to stress and emotional stimuli.

Addressing the employees’ reports on stress at work, Koldijk et al. developed automatic
classifiers to examine the relationship between working conditions and mental stress-related
conditions from sensor data: body postures, facial expression, computer logging, and phys-
iology (ECG and skin conductance). They found that the performance of the specialized
model was just as well or better than a generic model in almost all cases when similar users
were subgrouped and models were trained on specific subgroups. In order to differentiate
between a stressor and non-stressor working conditions, posture provides the most crucial
information among the most valuable modalities. Performance could be further improved
by adding data about one’s facial expressions. They got an accuracy of 90% employing the
SVM classifier (Koldijk et al. 2014).

Facial cues are another significant factor that can define a person’s stress. Adding to this,
Giannakakis et al. developed a framework for detecting and analyzing emotional states of
stress/anxiety via video-recorded facial cues. The investigated features were mouth activ-
ity, events related to the eye, camera-based photoplethysmographic heart rate estimation,
and head action parameters. Participants were placed 50 cm apart in front of a camera-
integrated computer monitor. Methods like Generalized Likelihood Ratio, Naive Bayes clas-
sifier, Support Vector Machines, K-nearest neighbors, and AdaBoost classifier were used and
tested. In the social exposure process, the highest classification performance was achieved
using the Adaboost classifier, reaching an accuracy of 91.68% (Giannakakis et al. 2017).

Video-based stress detection leverages facial expressions without the interference of artificial
traits and factors to predict stressful states. Zhang et al. developed a Two-leveled Stress
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Detection Network (TSDNet), which firstly learns face-level and action-level representations
separately, and then fuses the results through a stream weighted integrator for stress identi-
fication. In comparison, the Facial Cues-based approach, Action Units-based approach, and
TSDNet results demonstrated the feasibility and advantage of using the TSDNet classifier,
reaching an accuracy of 85,42% (Zhang et al. 2020).

Sabour et al. focuses on the link between stress and physiological responses. Although public
datasets have limitations, the new dataset UBFC-Phys proposes to evaluate the possibility
of using video-based physiological measures compared to more conventional contact-based
modalities. The experimental results of contact and non-contact data comparison and stress
recognition obtained a stress state recognition accuracy of 85.48%, achieved by remote Pulse
Rate Variability features (Sabour et al. 2021).

Early detection of mental stress can prevent many health problems associated with stress.
Bobade and Vani proposes different machine learning and deep learning techniques for stress
detection on individuals using multimodal datasets. The accuracies for three-class (amuse-
ment vs. baseline vs. stress) and binary (stress vs. non-stress) classifications were evaluated
and compared by using machine learning techniques like K-Nearest Neighbour, Linear Dis-
criminant Analysis, Random Forest, Decision Tree, AdaBoost, and Kernel Support Vector
Machine. During the study, using machine learning techniques, the accuracy of up to 81.65%
and 93.20% were achieved for three-class and binary classification problems, respectively.
By using deep learning, the achieved accuracy is up to 84.32% and 95.21%, respectively
(Bobade and Vani 2020).

Since prolonged exposure to stress leads to physical and mental health problems. Given
that most laptops have inbuilt cameras using video data for personal tracking of stress levels
could be a more affordable alternative. Viegas et al. uses five one-hour-long videos from
the dataset collected by Lau (Maxion and Lau 2018) to perform binary classification using
several simple classifiers on AUs extracted in each video frame and were able to achieve an
accuracy of up to 74% in subject independent classification and 91% in subject dependent
classification (Viegas et al. 2018).
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No. Title Author Methodology & Performance

1

The swell knowledge
work dataset for stress

and user modeling
research

Koldijk, Saskia and Sappelli,
Maya and Verberne, Suzan
and Neerincx, Mark A and

Kraaij, Wessel. 2014

Computer logging, facial expression,
posture of Employees. Accuracy of

90% using SVM.

2
Stress and anxiety

detection using facial
cues from videos

G. Giannakakis and M.
Pediaditis and D. Manousos
and E. Kazantzaki and F.

Chiarugi and P.G. Simos and
K. Marias and M. Tsiknakis.

2017.

Analysis of stress/anxiety emotional
states through video-recorded facial
cues. A feature selection procedure

followed by classification. Accuracy of
91,68% using AdaBoost

3
Video-based stress
detection through

deep learning

Zhang, Huijun and Feng, Ling
and Li, Ningyun and Jin,

Zhanyu and Cao, Lei. 2020.

Action Units (AUs) based applied
Random Forest, Gaussian Naive Bayes,

and Decision Tree classifiers, Facial
Cues (FCs) based applied Deep

Learning with accuracy of 85,42%

4

Ubfc-phys: A
multimodal database

for
psychophysiological

studies of social stress

Sabour, Rita Meziati and
Benezeth, Yannick and De

Oliveira, Pierre and Chappe,
Julien and Yang, Fan. 2021.

Four classifiers were considered:
Support Vector Machine (SVM) with a
linear kernel, SVM with Radial Basis
Function (RBF), Logistic Regression
(Log Reg) and K-Nearest Neighbors

(KNN). Accuracy of 85.48%, achieved
by remote PRV features.

5

Stress Detection with
Machine Learning and
Deep Learning using

Multimodal
Physiological Data

Bobade, Pramod and Vani, M.
2020.

Machine learning techniques like
K-Nearest Neighbour, Linear

Discriminant Analysis, Random Forest,
Decision Tree, AdaBoost and Kernel
Support Vector Machine and Deep

Learning. Machine learning
techniques, accuracy 93.20% for binary

classification problems and by using
deep learning, the achieved accuracy

is 95.21%.

6

Towards Independent
Stress Detection: A
Dependent Model

Using Facial Action
Units

Viegas, Carla and Lau,
Shing-Hon and Maxion,
Roy and Hauptmann,

Alexander. 2018.

Classifiers used were Random Forest,
LDA, Gaussian Naive Bayes and

Decision Tree. Accuracy of up to 74%
in subject independent classification

and 91% in subject dependent
classification.

Table 3.3: Summary table of reviewed articles with methodology & perfor-
mance evaluation.

3.9 Technologies

All the investigated frameworks support the standard routines for CNNs, which are crucial
for image classification to perform Computer Vision related tasks and applications. Since a
video frame is a sequence of single images, it is possible to compare the following frameworks
as long as they are suited for the more generic use case of image recognition when effectively
combining them with computer vision libraries such as OpenCV.

In general, GPUs (Graphics Processing Units) are strongly preferred over CPUs (Central
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Processing Units) for CNNs and computer vision applications due to the performance gain
(Chollet 2021), (Redmond and Sauer 2017). Concerning performance improvements via
hardware acceleration, all four compared frameworks support GPU acceleration via the
NVIDIA cuDNN (CUDA Deep Neural Network) library, which was released in 2014 (Red-
mond and Sauer 2017) and provided highly optimized access to the standard routines used
in Convolutional Neural Networks.

It is relevant for the development since shorter training times lead to shorter testing times,
likely resulting in better overall CNN models. CUDA dominates OpenCL (its Open-Source
non-proprietary variant) (Redmond and Sauer 2017), which can be linked to NVIDIA’s ex-
tensive research and investments in Deep Learning (Chollet 2021). All of the investigated
frameworks support the popular Python programming language.

3.9.1 TensorFlow

TensorFlow is a machine learning framework publicly introduced by a deep learning research
team called the Google Brain in 2015 (Redmond and Sauer 2017) that is intended to be
used in large-scale system environments using dataflow graphs. It enables developers to use
parallelization schemes and share the state across multiple machines and devices. It can run
on multicore CPUs, GPUs, and specialized hardware units for Machine Learning known as
TPUs (Tensor Processing Units) (Abadi et al. 2016).

TensorFlow offers extensive documentation and tutorials in industrial and research applica-
tions (Dubovikov 2017). For visualization, TensorBoard can display the TensorFlow graph,
which includes images that compare different training runs of a model and can be utilized
as a powerful debugging tool (Dubovikov 2017). With extended features such as distributed
training and specialized deployment options for the models via TensorFlow Serving, Tensor-
Flow can be considered very flexible for developers who want to use the full potential of their
Deep Learning models and also deploy on mobile devices (Dubovikov 2017).

Because of TensorFlow’s origin, image classification is an essential task for the framework,
engineered with computer vision applications and performance in mind(Abadi et al. 2016).

3.9.2 Keras

Compared to TensorFlow, Keras is a higher-level library released in early 2015 (Chollet 2021)
and sits on top of a backend that handles the low-level actions. Keras is a model-level library
for a specified backend comparable to a "frontend" made for ML developers. The backend
can be exchanged anytime without changing the Keras model implementation. At the same
time, it enables the developer to test and use multiple backends, which can also be helpful to
compare performance among the different backends with additional support to TensorFlow,
the Microsoft Cognitive Toolkit, and Theano (Chollet 2021). When using TensorFlow as a
backend, Keras can be used to run on multiple processing units seamlessly (such as GPU
and CPU) and is therefore qualified to use CNNs for computer vision applications (Chollet
2021).

Keras is one of the most used libraries by entrants specializing in Deep Learning (to solve
perceptual problems like image classification) on Kaggle.com (Chollet 2021). After all,
Keras’ purpose is to make Deep Learning more accessible and more usable for everyone by
providing a user-friendly and high-level library that abstracts the often more complicated
code constructs of its backends (Chollet 2021).



44 Chapter 3. State of the art

3.9.3 PyTorch

PyTorch was initially released in 2016 (Redmond and Sauer 2017) by the Facebook devel-
opment team and is the Python descendant of the Torch Lua framework (Dubovikov 2017).
The framework is highly Python-specific, while the core logic of PyTorch itself is written in
C++ for better performance and less overhead (Dubovikov 2017).

The main difference to TensorFlow: PyTorch features dynamic computational graph defini-
tions, making it easier to interact with external data. As in TensorFlow, special placeholders
have to be used, which will be replaced by the actual data at runtime; the graph itself has
to be defined statically before. Because the computational graph is dynamic in PyTorch, it
is possible to use dynamic inputs for a model. In contrast, in TensorFlow, it is necessary to
import an additional library called TensorFlow Fold.

For the same reason, debugging is possible with standard Python tools, where a specialized
debugging tool like TensorFlow Debugger (tfdbg) is needed in TensorFlow to view the in-
ternal states of the computational graph (Dubovikov 2017). PyTorch is extensively used by
the transport network company Uber. Its AI Labs team has built Pyro based on PyTorch
to improve the transportation experience by predictions and route optimizations (Goodman
2017).

3.9.4 Caffe

Caffe stands for Convolutional Architecture for Fast Feature Embedding and was created by
Yangqing Jia. At the same time, he was a student at the University of California, Berkeley
starting in 2014. Caffe is a C++ library utilizing CUDA with well-supported bindings to
Python and MATLAB. It attempts to follow software engineering best practices to offer a
good code quality made possible by complete unit tests (code coverage) and clean coding,
for example, through modularization, separation of concerns, and abstraction (Jia et al.
2014).

Caffe targets multimedia scientists, researchers, and the industry. The first release in 2014
focused on computer vision for object classification, which still is one of Caffe’s leading
applications. Later, it has grown through community contributions to support uses such as
robotics and speech recognition (Jia et al. 2014). The members of Berkeley also cooperated
with significant industry corporations like Adobe and Facebook.

A significant architectural difference from the other frameworks is the separation of the
model’s representation and the implementation. Hence, model definitions are stored in
separate configuration files written in the Protocol Buffer Language (contrary to the other
frameworks, not actual code). As a result, Caffe has a static computational graph structure
(like TensorFlow) and is not dynamic like Keras (Jia et al. 2014).

A famous architecture that uses Caffe for person re-identification was introduced in 2015
(Dinghofer and Hartung 2020), which uses a CNN to detect if two images show the same per-
son more efficiently by comparing local relationships of images using a thoughtfully adapted
nearest neighbor layer and another one that outlines differences between the images (Ahmed,
Jones, and Marks 2015).

For the means of evaluating the best framework for this project, the Analytical Hierarchy
Process (AHP) was utilized in Section 2.4. The frameworks were evaluated using the criteria:
the number of layers, activation function, loss function, and optimizers, and accordingly to
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this multi-criteria decision support method, the best option would be the TensorFlow library,
which will be adopted in this project.
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Chapter 4

Analysis and Design

This chapter contains information about the view of the system from a structural point of
view, analyzes the intended features and the architecture, and then presents the approach to
solve the problem. In this chapter, it is possible to view the proposed solution architecture
that contains details about each procedure performed to solve the problem and the prototype
delivered.

4.1 Requirements Analysis

The project’s first critical issue and requirement is the availability of different input/upload
options for the user, such as images, videos, and streaming. Consequently, the capacity of
the system folder needs to be managed by the application for uploading images or videos
since these files will be saved in a temporary folder. However, in the case of streaming, it
will not be necessary to control the size of the files since the images will be stored using the
in-memory allocation to perform real-time analysis.

Second, the critical point of this solution is creating and training Deep Learning models,
which will use the UBFC-Phys public dataset of video captures as a reference source for
identifying facial expressions associated with stress (Sabour et al. 2021).

Finally, the system should provide an interface to check the output predictions. However, this
interface should be built on the premise that the users who will use it have potentially little
technical experience, especially regarding deep learning concepts. Therefore, the interface
should be simple and concise to show all the information for understanding the output
prediction.

4.1.1 Functional Requirements

After the analysis of the requirements that were collected above, these are the 5 use cases
idealized:

• UC1: Upload a video

• UC2: Predict stress

• UC3: View prediction

• UC4: Manage algorithm

• UC5: Manage parameters

The Use Case diagram is represented in Figure 4.1.
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Figure 4.1: Use case diagram

In Figure 4.1, UC3 represents the model prediction process. It will be necessary for the user
to push a button to start the prediction process (UC3). It happens when a prediction request
is made, and the generated model stored in the folder is accessed to make a prediction. In
this case, the system will predict a new image and show the user the result.

4.1.2 Non-Functional Requirements

To evaluate and assess the non-functional requirements, the FURPS+ model was used. This
model categorizes the non-functional requirements into 5 + categories: Functionality, Us-
ability, Reliability, Performance, and Supportability. The "plus" refers to Design Constraints,
Implementation requirements, Interface requirements, and Physical requirements. Table 4.1
contains the identified non-functional requirements, organized by category.
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Code Requirements Type

F01
HTTPS protocol should be used in the communications
between components

Functionality

F02
All videos should be converted to images so the models
can be used to make predictions.

Functionality

F03
Share with the user the main steps to make a predition
using Deep learning

Functionality

U01
The User Interface should be simple, effective, and
adapted to the User’s needs

Usability

U02
The User Interface for showing the predictions that
were made should not show technical data that could
not possible be understood by the maintenance managers

Usability

P01
The prediction for the stream videos should not block
the usage of the website

Performance

S01
The system should allow only supported images and
videos format. It will require a specification of all
available formats.

Supportability

S02
The system should have two different forms for
input information: an upload link or the computer
camera for stream.

Supportability

Table 4.1: Non-Functional Requirements

Implementation constraints

The analytical data used in this dissertation come from the UBFC-Phys public dataset
(Sabour et al. 2021), which has considerably labeled data that helps reduce the overhead of
starting the project. Ideally, a real-life dataset could be used; however, it was decided that a
public dataset would be a better option to achieve high-performance results in training the
model during the system’s development and evaluation stages.

In addition, there is a list of allowed formats for images and videos. This list contains the
following formats:

• image: bmp, jpeg, jpg, jpe, jp2, png, tiff, tif, hdr, pic

• video: aiff, asf, avi, bfi, caf, flv, gif, gxf, hls, iff, mp4, mov, qt, 3gp, mkv, mk3d, mka,
mks, mpeg, mpg, mxf, nut, ogg, oma, rl2, txd, wtv

Physical constraints

One of the main requirements for building the models using Deep Learning techniques is the
machine’s processing units, GPUs. The GPU uses thousands of smaller and more efficient
cores for a massively parallel architecture that handles multiple functions simultaneously.
Modern GPUs provide superior processing power, memory bandwidth, and efficiency over
their CPU counterparts, as mentioned in Section 3.9.
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4.2 Model Architecture Design

Unlike the traditional software development lifecycle that meets functional and non-functional
requirements, deep learning models’ development aims to optimize a specific metric, for ex-
ample minimizing a loss function. Therefore, a typical deep learning modeling lifecycle like in
Figure 3.4 goes through many cycles before reaching a satisfactory result. It includes exper-
imenting with different architectures, fine-tuning the hyperparameters, and trying different
software libraries.

The experiments are organized in Section 6.2 to show the impacts of the parametrization
in a neural network.

4.3 System Architecture Design

This dissertation emphasizes the creation of deep learning models to detect stress, so a
prototype of a centralized solution was created for the role of the standard user using a
single-page application (SPA) to enable the use of the classification application, whose
architecture is represented in Figure 4.2.

Figure 4.2: Component diagram

The Deep Learning prediction application is implemented in Flask 1, a lightweight framework
for Python applications, and adopts the MVC architecture pattern for implementing User
Interface (UI).

1https://flask.palletsprojects.com/en/2.1.x/
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Considering the basic idea of Client-Server, where the Client sends a request to the Server
and after manipulating the Database response, the Server then sends a response to the
Client. In this approach, the Server response returns the entire page requested by the
Client.

For example, in Figure 4.3 the user requests the page /stress to do a prediction using an
image and it returns all the HTML, CSS, and JS for that. This is a practical understanding
of the render_template method from Flask, and the format is limited to a specific Client
and RESTful APIs because it removes the backend responsibility to render templates.

Figure 4.3 presents the sequence of the application.

Figure 4.3: Sequence diagram

4.4 Alternative analysis

This section will focus on the alternatives of the application as a whole, that is, different
combinations of components to find the best one. Alternatives:

• Centralized Solution: This solution consists of having the entire application in the
same language. Such as, the data extraction is done in python language, followed
by data storage in the python compatible databases such as SQLAlchemy. Creating
models using python libraries such as Tensorflow or PyTorch, and the web application
using the python frameworks, such as Flask. The main advantage of this solution is
to allow direct interaction between the project components; as a disadvantage, there
are possible conflicts between them.

• Decentralized Solution: This solution consists of having various components in dif-
ferent languages and locations, unlike the previous solution. Such as, the application
would be developed in HTML and PHP, the models in python, the database stored in
MySQL, and then data preprocessing would be done with some python algorithm or
external tool. This solution has the advantage that there are no conflicts between the
components, but it has the disadvantage that the interaction between the components
is not so direct.
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Figure 4.4: Alternative application solution

Figure 4.4 illustrates the different architectures; it is possible to verify that in the centralized
solution, the elements appear in the same block and interact directly with each other, while
in the decentralized solution, each component of the system is isolated in its block, being
necessary to have interoperability between the blocks for the system work. As this project
requires a great deal of interaction between the data and the models, the best choice is the
centralized solution because it permits a direct interaction between data and models.
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Chapter 5

Implementation

The content of this chapter provides visibility on how the implementation was handled con-
sidering the approach defined earlier in this document, mainly in the Design chapter. It also
provides technical details on the decisions taken during the execution phase, which were
previously mapped.

5.1 Dataset

This project uses the UBFC-Phys dataset (Sabour et al. 2021), which is a public multimodal
dataset that has 56 participants in the experiment with a rigorous protocol inspired by the
well-known Trier Social Stress Test (TSST), and was conducted in three stages: a rest,
a speech, and arithmetic tasks with different levels of difficulty. During the experiment,
participants were filmed with a RGB digital camera, with a Motion JPEG compression and
a 35 frame per second rate. The frame resolution was of 1024x1024 pixels.

Before and after each experiment, the participants completed a form to calculate their self-
reported anxiety scores. The dataset contains participants’ video recordings, blood volume
pulse (BVP), and electrodermal activity (EDA) signals measured during the three tasks.
Also, their anxiety score was calculated before and after the experimental sessions.

Data is organized into 56 folders, corresponding to individual folders for each participant. In
each folder, we find three videos, one for each task inspired by the T r ierSocialStressT est.
Only three minutes were kept for concerns of equalizing the duration of the three tasks and
alleviating the dataset size.

In this study, each video frame was converted into an image, creating a dataset with
1,038,769 images. The dataset comprised 340,374 images classified as stress and 698,395
images classified as non-stress. Moreover, the experiments used subsets of 20,000 images
randomly sampled due to computational capacity limitations.

5.2 Pre-processing

As mentioned earlier, in Section 4.1.1 , preprocessing is an essential part of UC2 for stress
detection of the system. It allows formatting, cleaning, and transforming data for model
creation and prediction. This session will present the implementations used both in the
development of the model and the web application.
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5.2.1 Data Integration

This step regards the applications since there are two different ways to input information, as
mentioned in the non-functional requirement S02. Images, videos, and streams will need to
be processed to deliver the same formatted information to the algorithm that detects faces.
So, that information is fed to the prediction algorithm.

1 # p r e d i t i o n s ( pa s s to p i p e l i n e mode l s )
2 i f f i l e _ t y p e i n image_types :
3 w = ge tw i d t h ( path )
4 c l a s s i f y _ i m a g e ( path , f i l e n ame , ’ bg r ’ )
5 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =True ,

t ype= ’ image ’ , img_name= f i l e n ame ,w=w)
6

7 i f f i l e _ t y p e i n v i d eo_type s :
8 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =True ,

t ype= ’ v i d e o ’ , f i l e n a m e= f i l e n ame , s t a t u s = s t a t u s )
9

10 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =Fa l s e , img_name="
imageNotFound . png" )

Listing 5.1: Example of different datasource integration

1 # step −1: r e ad v i d e o i n cv2
2 p r i n t ( ’ C l a s s i f i n g V ideo . . . . . ’ )
3 i f s t a t u s == ’ s t r eam ’ :
4 cap = cv2 . V i deoCaptu r e (0 ) # en a b l e v i d e o c a p t u r e from st ream
5 e l s e :
6 cap = cv2 . V i deoCaptu r e ( path ) # en a b l e v i d e o c a p t u r e from f i l e
7

8 w h i l e True :
9 # read each f rame from a v i d e o

10 s u c c e s s , f rame = cap . r e ad ( ) # read the v i d e o f i l e

Listing 5.2: Example of data source input

5.2.2 Data Cleaning

This step is handled by the application and seeks to answer the non-functional requirement
S01, which needs to constrain the format types of video and image available to be treated
by the application. This is achieved by the two if conditions (if filetype in image types) and
(if filetype in video types).

1 # S e t t i n g s
2 image_types = [ ’bmp ’ , ’ j p e g ’ , ’ j p g ’ , ’ j p e ’ , ’ j p 2 ’ , ’ png ’ , ’ t i f f ’ , ’ t i f ’ , ’ hd r ’ , ’

p i c ’ ]
3 v i d eo_type s =[ ’ a i f f ’ , ’ a s f ’ , ’ a v i ’ , ’ b f i ’ , ’ c a f ’ , ’ f l v ’ , ’ g i f ’ , ’ g x f ’ , ’ h l s ’ , ’ i f f

’ , ’mp4 ’ , ’mov ’ , ’ q t ’ , ’ 3gp ’ , ’mkv ’ , ’mk3d ’ , ’mka ’ , ’mks ’ , ’mpeg ’ , ’mpg ’ , ’ mxf ’ ,
’ nut ’ , ’ ogg ’ , ’ oma ’ , ’ r l 2 ’ , ’ t xd ’ , ’ wtv ’ ]

4

5 de f s t r e s s ( ) :
6 i f r e q u e s t . method == "POST" :
7 s t a t u s = r e q u e s t . form [ ’ b t n r a d i o ’ ]
8 i f s t a t u s == ’ s t ream ’ :
9 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =True , t ype= ’

v i d e o ’ , f i l e n a m e= ’ n u l l ’ , s t a t u s = s t a t u s )
10 e l s e :
11 f = r e q u e s t . f i l e s [ ’ image ’ ]
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12 f i l e n a m e= f . f i l e n a m e
13 f i l e _ t y p e = f i l e n a m e . l owe r ( ) . s p l i t ( ’ . ’ ) [ 1 ]
14 path = os . path . j o i n (UPLOAD_FOLDER, f i l e n a m e )
15 f . s a v e ( path )
16 p r i n t ( ’ Up l o ad i ng f i l e . . . . . . ’ )
17

18 # p r e d i t i o n s ( pa s s to p i p e l i n e mode l s )
19 i f f i l e _ t y p e i n image_types :
20 w = ge tw i d t h ( path )
21 c l a s s i f y _ i m a g e ( path , f i l e n ame , ’ bg r ’ )
22 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =True ,

t ype= ’ image ’ , img_name= f i l e n ame ,w=w)
23

24 i f f i l e _ t y p e i n v i d eo_type s :
25 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =True ,

t ype= ’ v i d e o ’ , f i l e n a m e= f i l e n ame , s t a t u s = s t a t u s )
26

27 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =Fa l s e , img_name="
imageNotFound . png" )

Listing 5.3: Filter image and video type in stress function

5.2.3 Data Transformation

This step applies to both models and applications; since we have already removed the
unwanted file formats, it is necessary to convert videos to image sequences so the model
can make predictions, as required by the non-functional requirement F02.

1 impo r t cv2
2 impo r t s y s
3

4 de f conve r t 2 Image ( v ideo_path ) :
5 video_name = v ideo_path . s p l i t ( ’ . ’ ) [ 0 ]
6 v i d c a p = cv2 . V i deoCaptu r e ( v ideo_path )
7 s u c c e s s , image = v i d c a p . r e ad ( )
8 count = 0
9 w h i l e s u c c e s s :

10 f r amecount = "{number :06} " . fo rmat ( number=count )
11 name = video_name + "_"+f ramecount+" . j p g "
12 cv2 . imw r i t e ( name , image ) # save f rame as JPEG f i l e
13 s u c c e s s , image = v i d c a p . r e ad ( )
14 count += 1

Listing 5.4: Function that converts video in images

Since the application does not have constraints related to the image size, it is necessary to
address this situation by standardizing the size of the input images and considering that the
prediction algorithms usually have a predefined input shape.

1 # Crea t e a f u n c t i o n to impo r t an image and r e s i z e i t to be a b l e to be
used w i t h our model

2 de f prep_image ( img , img_shape =224) :
3 """
4 Reads an image from memory , t u r n s i t i n t o a t e n s o r
5 and r e s h a p e s i t to ( img_shape , img_shape , c o l o u r_channe l ) .
6 """
7 # Conve r t image to RGB color_mode
8 img = cv2 . c v tCo l o r ( img , cv2 .COLOR_BGR2RGB)
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9 # Re s i z e the image ( to the same s i z e our model was t r a i n e d on )
10 img = t f . image . r e s i z e ( img , s i z e = [ img_shape , img_shape ] )
11 # Ad j u s t the image f o r ba tch fo rmat
12 img = t f . expand_dims ( img , a x i s =0)
13 # Norma l i z e image
14 img = img /255 .
15 r e t u r n img

Listing 5.5: Example of image resize

Normalization is also crucial because it helps the algorithms converge more quickly. It is
essential to normalize the images in order to use some transfer learning algorithms.

1 ## Set data i n p u t s
2 f rom t e n s o r f l o w . k e r a s . p r e p r o c e s s i n g . image impo r t ImageDataGene ra to r
3

4 t r a i n _ d i r = " sho r t_crop / t r a i n /"
5 t e s t _ d i r = " sho r t_crop / t e s t /"
6 v a l i d a t i o n _ d i r = " sho r t_crop / v a l i d a t i o n /"
7

8 t r a i n_da t ag en = ImageDataGene ra to r ( r e s c a l e =1/255.)
9 t e s t_datagen = ImageDataGene ra to r ( r e s c a l e =1/255.)

10 v a l i d a t i o n_d a t a g e n = ImageDataGene ra to r ( r e s c a l e =1/255.)

Listing 5.6: Example of image normalization

5.3 Models

The development of a classification model was one of the critical steps of the project since
it concerns one of the central questions of this dissertation: "It is possible to create an
application capable of classifying stress in an image, with a degree of confidence, capable of
being viable for a professional in the sector?"

5.3.1 Split Dataset

The recommended approach for model evaluation is to separate the input data randomly
into different sets:

Figure 5.1: Split visualization
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• Training Dataset: It is the data set used to train and make the model learn the hidden
features/patterns in the data.

• Validation Dataset: It is a set of data, separate from the training set, used to validate
our model performance during training. The validation process gives information that
helps tune the model’s hyperparameters and configurations accordingly.

• Test Dataset: It is a separate set of data used to test the model after completing the
training. It provides an unbiased final model performance metric regarding accuracy,
precision, and others.

Here are the functions used to split the dataset.

1 impo r t os
2 impo r t random
3 impo r t s h u t i l
4 impo r t g l o b
5

6 s o u r c e= ’C : / I s e p /PyNotebooks /T − ImageData / a l l ’
7 d e s t= ’C : / I s e p /PyNotebooks /T − ImageData / a l l _ s p l i t ’
8 s p l i t _ t r a i n = 0 .7
9 s p l i t _ t e s t =0.2

10 s p l i t _ v a l i d a t i o n =0.1
11

12 #### SPLIT DATASET
13 de f s p l i t _ t r a i n _ t e s t _ v a l i d a t i o n ( sou rce , d e s t i n a t i o n , s p l i t _ t r a i n ,

s p l i t _ t e s t , s p l i t _ v a l i d a t i o n ) :
14 # S p l i t d a t a s e t
15 s p l i t _ s e t = [ ]
16 s p l i t _ s e t . append ( s p l i t _ v a l i d a t i o n )
17 s p l i t _ s e t . append ( s p l i t _ t e s t )
18 s p l i t _ s e t . append ( s p l i t _ t r a i n )
19

20 # S e t t i n g f o l d e r s
21 f o l d e r s = os . l i s t d i r ( s o u r c e )
22 d i r e c t o r i e s = [ ’ v a l i d a t i o n ’ , ’ t e s t ’ , ’ t r a i n ’ ]
23

24 # c r e a t e new d a t a s e t
25 f o r g roup i n f o l d e r s :
26 i n d e x = 0
27 o r i g i n_pa t h = sou r c e + ’ / ’+ group
28 count = l e n ( g l o b . g l ob1 ( o r i g i n_pa th , "∗" ) )
29

30 f o r name i n d i r e c t o r i e s :
31 d e s t i n a t i o n_pa t h = d e s t i n a t i o n + ’ / ’ + name + ’ / ’ + group
32

33 # S p l i t Data se t
34 f i l e s = os . l i s t d i r ( o r i g i n_pa t h )
35 no_o f_ f i l e s = round ( s p l i t _ s e t [ i n d e x ] ∗ count )
36 f o r f i l e_name i n random . samp le ( f i l e s , n o_o f_ f i l e s ) :
37 s h u t i l . move ( os . path . j o i n ( o r i g i n_pa th , f i l e_name ) ,

d e s t i n a t i o n_pa t h )
38 i n d e x +=1

Listing 5.7: Function to split dataset
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1 impo r t os
2 impo r t random
3 impo r t s h u t i l
4 impo r t g l o b
5

6 s o u r c e= ’C : / I s e p /PyNotebooks /T − ImageData / a l l ’
7 d e s t= ’C : / I s e p /PyNotebooks /T − ImageData / a l l _ s p l i t / ’
8 s p l i t _ t r a i n = 0 .7
9 s p l i t _ t e s t =0.2

10 s p l i t _ v a l i d a t i o n =0.1
11

12 s p l i t _ t r a i n _ t e s t _ v a l i d a t i o n ( sou rce , des t , s p l i t _ t r a i n , s p l i t _ t e s t ,
s p l i t _ v a l i d a t i o n )

Listing 5.8: implementation of split function

5.3.2 Balanced Data

This step concerns the balance of the train dataset that was initially unbalanced through
undersampling. This step shows a function to perform sample reduction and balancing.

1 impo r t os
2 impo r t random
3 impo r t s h u t i l
4 impo r t g l o b
5

6 de f unde r s amp l e_da ta s e t ( sou rce , d e s t i n a t i o n , ba l ance , max_size ) :
7 f o l d e r s = os . l i s t d i r ( s o u r c e )
8 path = s ou r c e + ’ /∗∗/∗ ’
9 n b _ f i l e s = l e n ( g l o b . g l o b ( path ) )

10

11 f o r i , f o l d e r i n enumerate ( f o l d e r s ) :
12 no_o f_ f i l e s = 0
13 o r i g i n_pa t h= sou r c e+ ’ / ’+ f o l d e r
14 d e s t i n a t i o n_pa t h= d e s t i n a t i o n + ’ / ’+ f o l d e r
15 i f not os . path . e x i s t s ( d e s t i n a t i o n_pa t h ) :
16 os . maked i r s ( d e s t i n a t i o n_pa t h )
17 nb_fo l d e r = l e n ( g l o b . g l ob1 ( o r i g i n_pa th , "∗" ) ) #d i r i s you r

d i r e c t o r y path as s t r i n g
18 i f b a l a n c e :
19 r a t i o = 0 .5
20 no_o f_ f i l e s = i n t ( max_size∗ r a t i o )
21 e l s e :
22 r a t i o = round ( nb_fo l d e r / n b_ f i l e s , 2 )
23 no_o f_ f i l e s = i n t ( max_size∗ r a t i o )
24 p r i n t ( ’ r a t i o : ’ , r a t i o )
25

26 p r i n t ( ’ numbr o f f i l e s : ’ , n o_o f_ f i l e s )
27 f i l e s = os . l i s t d i r ( o r i g i n_pa t h )
28 f o r f i l e_name i n random . samp le ( f i l e s , n o_o f_ f i l e s ) :
29 s h u t i l . copy ( os . path . j o i n ( o r i g i n_pa th , f i l e_name ) ,

d e s t i n a t i o n_pa t h )

Listing 5.9: Example of image undersample function
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1 impo r t os
2 impo r t random
3 impo r t s h u t i l
4 impo r t g l o b
5

6 s o u r c e= ’D: / Datase t / a l l_ c r o p ’
7 d e s t= ’D: / Datase t / short_crop_2 ’
8 b a l a n c e=True
9 max_size =20000

10

11 unde r s amp l e_da ta s e t ( sou rce , d e s t i n a t i o n , ba l ance , max_size )

Listing 5.10: Reference of image undersample function

5.3.3 Face Recognition

This step applies to both models and applications, considering that the project’s main in-
terest is to analyze the expression of the faces, regardless of the context. We chose to use
the Haar Classifier (Cascade Classifier n.d.), which allows recognizing faces, as required in
the UC3. After extracting faces from the images, they are sent to the algorithm for analysis.

1 # l o a d i n g mode l s
2 haa r = cv2 . C a s c a d e C l a s s i f i e r ( ’ . / model / h a a r c a s c a d e_ f r o n t a l f a c e_d e f a u l t .

xml ’ )
3

4 de f f a c e_de t e c t ( img , c o l o r = ’ bg r ’ ) :
5 i f c o l o r == ’ bg r ’ :
6 g r a y = cv2 . c v tCo l o r ( img , cv2 .COLOR_BGR2GRAY)
7 e l s e :
8 g r a y = cv2 . c v tCo l o r ( img , cv2 .COLOR_RGB2GRAY)
9 f a c e s = haa r . d e t e c t M u l t i S c a l e ( gray , 1 . 3 , 5 )

10 f o r x , y ,w , h i n f a c e s :
11 # Crop image
12 p r ed i c t_ img = img [ y : y+h , x : x+h ] # crop image
13 # Make a p r e d i c t i o n
14 p r e d i c t i o n = pred_and_plot ( c l a s s i f i c a t i o n _ m o d e l , p red i c t_ img ,

c lass_names )
15 # Draw f a c e r e c t a n g l e
16 cv2 . r e c t a n g l e ( img , ( x , y ) , ( x+w, y+h ) , (0 , 255 ,0 ) , 3 )
17 # Wri te P r e d i c t i o n t e x t
18 t e x t = f " P r e d i c t i o n : { p r e d i c t i o n }"
19 cv2 . putText ( img , t e x t , ( x , y ) , f on t , 1 , ( 0 , 2 5 5 , 0 ) , 2 )
20 r e t u r n im
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5.3.4 Model Development

To detect stress in an image, it was necessary to create, train and test a few models so that
we could have options and choose the model that performs best during the test stages. The
following architectures were available to choose from:

• VGG-16

• VGG-19

• Resnet101

• Resnet50

To create a specific model to detect stress, we opt for the transfer learning technique, and
these are the steps to create our model.

Create a model

In this initial stage, it is necessary to choose one of the available architectures so that a
model can be customized. After selecting the architecture, it is necessary to adjust the
model’s top layer using a GlobalAveragePooling layer to flatten the data and a Dense layer
at the top so that the model can comply with the number of classes analyzed, which in our
case is a binary classification.

1 # Make the c r e a t i o n o f our model a l i t t l e e a s i e r
2 impo r t t e n s o r f l o w as t f
3

4 # Setup i n p u t shape , base_model and f r e e z e the base_model l a y e r s
5 i npu t_shape = (224 ,224 ,3 )
6 base_model_vgg16 = t f . k e r a s . a p p l i c a t i o n s . vgg16 . VGG16( i n c l u d e_top=Fa l s e )
7 base_model_vgg16 . t r a i n a b l e =F a l s e
8 # Crea t e i n p u t l a y e r
9 i n p u t s = t f . k e r a s . l a y e r s . I n p u t ( shape=input_shape , name= ’ i n p u t_ l a y e r ’ )

10

11 # Give base_model the i n p u t s and don ’ t t r a i n i t
12 x = base_model_vgg16 ( i n p u t s , t r a i n i n g =F a l s e )
13

14 # Pool out f e a t u r e s on the base_model
15 x= t f . k e r a s . l a y e r s . G l oba lAv e r ag ePoo l i n g2D ( name= ’

g l o b a l_a v e r a g e_poo l i n g_ l a y e r ’ ) ( x )
16

17 # Put a Dense l a y e r on as the ou tpu t
18 ou t pu t s = t f . k e r a s . l a y e r s . Dense (1 , a c t i v a t i o n = ’ s i gmo i d ’ , name= ’

ou t pu t_ l a y e r ’ ) ( x )
19

20 # Combine the i n p u t s w i t h the ou t pu t s i n t o a model
21 model_vgg16_1= t f . k e r a s . Model ( i n p u t s , o u t pu t s )

Listing 5.11: Create the model
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Compile the model

Further, it is necessary to compile the model by choosing a loss function and an optimizer.
In our project, we use binary cross-entropy as a loss function and Adam as Optimizer to
compile the model.

1 # Compi l e the model
2 model_vgg16_1 . c omp i l e ( l o s s = ’ b i n a r y_c r o s s e n t r o p y ’ ,
3 o p t i m i z e r = t f . k e r a s . o p t i m i z e r s . Adam( ) ,
4 me t r i c s =[ ’ a c c u r a c y ’ ] )
5 #model_vgg16_1 . summary ( )

Listing 5.12: Compile the model

Fit the model

To fit the model, each custom model goes through a formal training and testing stage. In
the project, we chose to train each model for 20 epochs for the most accurate test results,
and in this stage, we used the train and validation dataset.

1 # f i t the model
2 h i s tory_vgg16_1 = model_vgg16_1 . f i t ( t r a i n_da ta ,
3 epochs =20 ,
4 steps_per_epoch= l e n ( t r a i n_da t a ) ,
5 v a l i d a t i o n _ d a t a= v a l i d a t i o n_da t a ,
6 v a l i d a t i o n _ s t e p s = l e n ( v a l i d a t i o n _ d a t a ) ,
7 c a l l b a c k s =[ c r e a t e_ t e n s o r b o a r d_ca l l b a c k

( dir_name=" ten so r f l ow_hub " ,
8

exper iment_name="vgg16_model_1" ) ,
9 cp_ca l l b a c k ] )

Listing 5.13: Fit the model

Predict with new data

In this stage, we export the model and make it available to predict unseen data. In our case,
the unseen data is the test dataset.

1 # Expor t model
2 model_vgg16_1 . s a v e ( ’ / con t en t / d r i v e /MyDrive / Datase t / saved_mode ls /

vgg16_model_1 . h5 ’ )
3

4 # Make a p r e d i c t i o n
5 p r e d i c t i o n = model_vgg16_1 . p r e d i c t ( t e s t_data )

Listing 5.14: Predict using the model
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5.4 Application

We use the Flask framework in this project to build the server application. Flask is also
extensible and does not force a particular directory structure. As part of the flask framework,
the Jinja template engine dynamically builds HTML pages.

In our application, we developed for the client-side using a single page application (SPA),
a web application that runs in a browser and does not require a page refresh to load new
content. Django is the framework used for handling the backend of single-page applications.

5.4.1 Directory structure

Figure 5.2: Application layout

The project directory contains:

• app/, a Python package containing the application code and files.

• venv/, a Python virtual environment where Flask and other dependencies are installed.
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• Installation files tell Python how to install the project.

• Version control config, such as git. It should habitually use some version control for
all the projects, no matter the size.

• Any other project files it might add in the future.

5.4.2 Creating Views

A view function is a code written to respond to application requests. Flask uses patterns to
match the incoming request URL to the view that should handle it. The view returns data
that Flask turns into an outgoing response.

Flask can also go the other direction and generate a URL to a view based on its name and
arguments.

1 de f base ( ) :
2 r e t u r n r ende r_temp l a t e ( " base . html " )
3

4 de f i n d e x ( ) :
5 r e t u r n r ende r_temp l a t e ( " i n d e x . html " )
6

7 de f s t r e s s a p p ( ) :
8 r e t u r n r ende r_temp l a t e ( " s t r e s s a p p . html " )
9

10 de f image ( ) :
11 r e t u r n r ende r_temp l a t e ( " image . html " )
12

13 de f v i d e o ( f i l e n ame , s t a t u s ) :
14 i f r e q u e s t . method == "GET" :
15 p r i n t ( ’ Load ing v i d e o . . . . . . . . ’ )
16 path = ’ . / s t a t i c / u p l o a d s / ’+ f i l e n a m e
17 p r i n t ( ’ Load ing path . . . . . ’ , path )
18 p r i n t ( ’ Load ing s t a t u s . . . . . ’ , s t a t u s )
19 r e t u r n Response ( c l a s s i f y _ v i d e o ( path , s t a t u s , ’ bg r ’ ) , mimetype= ’

m u l t i p a r t /x−mixed − r e p l a c e ; bounda ry=f rame ’ )
20 r e t u r n r ende r_temp l a t e ( ’ s t r e s s . html ’ , f i l e u p l o a d =Fa l s e , img_name="

imageNotFound . png" )

Listing 5.15: Views implemented

5.4.3 Routing URLs

After creating our views, it is necessary to map each view, so an URL must be created to
map that. Modern web applications use meaningful URLs to help users. Users are more
likely to like a page and come back if it uses a meaningful URL they can remember and visit
a page directly. It is through these URLs that they can access the application’s views.

1 # u r l
2 app . add_ur l_ru l e ( ’ / base ’ , ’ base ’ , v i ew s . base )
3 app . add_ur l_ru l e ( ’ / ’ , ’ i n d e x ’ , v i ew s . i n d e x )
4 app . add_ur l_ru l e ( ’ / s t r e s s a p p ’ , ’ s t r e s s a p p ’ , v i ew s . s t r e s s a p p )
5 app . add_ur l_ru l e ( ’ / s t r e s s a p p / s t r e s s ’ , ’ s t r e s s ’ , v i ew s . s t r e s s , methods =[ ’GET

’ , ’POST ’ ] )
6 app . add_ur l_ru l e ( ’ / s t r e s s a p p / s t r e s s /< f i l e n ame >/< s t a t u s > ’ , ’ v i d e o ’ , v i ew s .

v i d eo , methods =[ ’GET ’ , ’POST ’ ] )

Listing 5.16: Routing URL
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5.4.4 Prediction

In machine learning, it is generally unnecessary to retrain the entire model every time new
data arrives, as models can be saved and should be stable enough over time.

1 de f pred_and_plot ( model , image , c lass_names ) :
2 """
3 Impo r t s an image l o c a t e d a t the f i l e n ame , makes a p r e d i c t i o n on i t

w i t h
4 a t r a i n e d model and p l o t s the image w i t h the p r e d i c t e d c l a s s as the

t i t l e .
5 """
6 # Impor t the t a r g e t image and p r e p r o c e s s i t
7 img = prep_image ( image )
8 # Make a p r e d i c t i o n
9 p red = model . p r e d i c t ( img )

10 # Get the p r e d i c t e d c l a s s
11 p r e d_c l a s s = c lass_names [ i n t ( t f . round ( p r ed ) [ 0 ] [ 0 ] ) ]
12 r e t u r n p r e d_c l a s s

Listing 5.17: Prediction function

Also, in real-time systems, the predicted data arrives precisely at the same time it is being
processed, which is why the prediction should be separated into many systems.

1 de f c l a s s i f y _ v i d e o ( path , s t a t u s , c o l o r = ’ bg r ’ ) :
2 # step −1: r e ad v i d e o i n cv2
3 p r i n t ( ’ C l a s s i f i n g V ideo . . . . . ’ )
4 i f s t a t u s == ’ s t r eam ’ :
5 cap = cv2 . V i deoCaptu r e (0 ) # en a b l e v i d e o c a p t u r e from st ream
6 e l s e :
7 cap = cv2 . V i deoCaptu r e ( path ) # en a b l e v i d e o c a p t u r e from f i l e

Listing 5.18: Real-time processing option

5.4.5 Templates

As the user makes requests with the app running, it will get an exception that Flask cannot
find the templates. The templates in the template folder use Jinja2 syntax and have auto-
escaping enabled by default.

Figure 5.3: Templates folders
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5.4.6 Static Files

Dynamic web applications also need static files. That is usually where we store the CSS and
JavaScript files. Ideally, the web server is configured to serve them for the application, but
Flask can also do that during development.

Figure 5.4: Static folders

5.4.7 Dependencies

The solution depends on a number of external packages, which are documented on the file
requiremets.txt.

1 f l a s k
2 opencv −python
3 p i l l o w
4 pandas
5 m a t p l o t l i b
6 i p y k e r n e l
7 nb con v e r t
8 notebook
9 t e n s o r f l o w

Listing 5.19: Dependencies file

5.4.8 Interfaces

Creating a web application was one of the essential requirements in the project, as it is
one of the first layers of interaction between the AI model and the user. The Flask web
application allows the creation of a core layer, which other systems will use.

The initial page where the stress detection application is presented to the user is presented
in Figure 5.5.
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Figure 5.5: Main page

Followed by the Stress APP, in Figure 5.6, which has an initial explanation of how the
application works to detect stress.

Figure 5.6: Stress App

The Stress Classification page is where the user is invited to upload an image or video and
click for "Upload & Prediction". As shown in Figure 5.7, the user interface has a button to
select a file and another to request a prediction of stress.
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Figure 5.7: Stress Classification

Finally, this is the results interface for the stress classification, as shown in Figure 5.8.

Figure 5.8: Stress App

5.4.9 Technology

In the development of this prototype, the main technologies used were the following:

• Python, version 3.8;

• Pandas, version 1.1.5;

• Flask, version 2.0.1;

• Numpy, version 1.19.3;

• Tensorflow, version 2;

• OpenCV, version 4.5.5.64
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Chapter 6

Experiments and Evaluation

In this chapter, the measures that will be used in the evaluation of the experiences made
in the various classification models implemented are identified, as well as the evaluation
methodologies used in them.

6.1 Model Parameters

Numerous articles have been published that compare the performance of various deep learn-
ing architectures and their parameters (Srivastava et al. 2021). However, no clear solution
has been found to the question which algorithm is best for a particular application. Mooney
(Mooney 1996) argues that no inductive algorithm is universally better than any particular
other. Wolpert and Macready (Wolpert and Macready 1997) formed the "No Free Lunch
Theorems of Optimizations" in which they stipulate that there is no existing universal opti-
mization technique, however a particular algorithm can outperform others if it is specifically
designed for the structure of a particular problem.

This section assesses the experiments and results obtained by manipulating the parameters
to verify, within those parameters, which are the best options and if there are options that
make the objectives of the dissertation unfeasible.

6.1.1 Learning Rate

The learning rate is a parameter that allows defining the speed at which a CNN changes its
weights. For high learning rates, the weights of the neural network vary constantly. However,
models focusing on the last identified patterns have lower learning rates, and the weights
vary slowly.

6.1.2 Batch size

The batch size is a parameter linked to the number of epochs, as it defines the number of
elements the dataset uses in each epoch iteration cycle. An epoch represents a data iteration
composed of several cycles, where each cycle has a size corresponding to batch size.

6.1.3 Epochs

The number of epochs means the number of times the neural network iterates over training
values; that is, the number of times that the data iterates through the neural network to
provoke the adjustment of the weights. The epoch number impacts the training time when
a system has an adequate learning rate, making the model more accurate. Usually, the
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variations between earlier epochs impact more than later because of knowledge gained from
earlier epochs.

6.2 Experiments

In this section, we present the comparisons between various experiments to demonstrate the
influence of parameterization in elaborating models using the Tensorflow framework. This
process aims to show the impacts of the parametrization in a neural network.

6.2.1 Imbalance Data

Assessing the effects caused by imbalanced data in a prediction model is relevant to the
model’s performance, so two datasets were created for the data imbalance test.

Parametrization

The first dataset is balanced and has 20,000 images divided equally between the two classes,
10,000 images classified as stress and 10,000 images classified as the absence of stress.
After the classification classes were balanced, the dataset was divided into three groups,
70% train, 20% test, and 10% validation, corresponding in each group: 14,000 train, 4,000
test, and 2,000 validation, as referred to in Table 6.2.

The second dataset is unbalanced and follows the original dataset’s characteristics, with
67% of the images classified as the absence of stress and 33% of the images classified as
stress. To experiment with the data under the same conditions as the previous dataset, we
created an imbalanced dataset with 20,000 images divided into 6,600 images classified as
stress and 13,400 images classified as the absence of stress, as refered in Table 6.1.

No Stress Stress
Balanced Dataset 10,000 10,000
Imbalanced Dataset 13,400 6,600

Table 6.1: Dataset Distribution

After the classification classes were unbalanced, the dataset was divided into three groups,
70% train, 20% test, and 10% validation, corresponding to the following amounts of images
in each group. For the stress class, each group has the following number of images: 4,620
train, 1,320 test, and 660 validation. In the stress absence class, each group has the following
number of images: 9,380 train, 2,680 test, and 1,340 validation, as referred to in Table 6.2.

No Stress Stress
Train Test Validation Train Test Validation

Balanced Dataset 7,000 2,000 1,000 7,000 2,000 1,000
Imbalanced Dataset 9,380 2,680 1,340 4,620 1,320 660

Table 6.2: Dataset Split

To conduct this experiment, we set it for 20 epochs with a batch size of 32 and a learning rate
of 0.001. The CNNs architecture used were VGG-16, VGG-19, Resnet101, and Resnet50.
The experiment variable is the type of dataset.
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Observation

The image 6.1 represents the experiment summary and shows that the accuracy reached
in each architecture group has a different range, so to make consistent comparations, we
divided the experiments by the architecture groups VGGNet and ResNet.

Figure 6.1: Imbalanced Experiment

VGGNet

(a) VGG-16 (b) VGG-19

Figure 6.2: VGGNet for balanced experiment
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(a) VGG-16 (b) VGG-19

Figure 6.3: VGGNet imbalanced experiment

(a) VGG-16 (b) VGG-19

Figure 6.4: VGGNet confusion matrix for balanced experiment
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(a) VGG-16 (b) VGG-19

Figure 6.5: VGGNet confusion matrix of imbalanced experiment

ResNet

(a) Resnet101 (b) Resnet50

Figure 6.6: ResNet balanced experiment

(a) Resnet101 (b) Resnet50

Figure 6.7: ResNet imbalanced experiment



74 Chapter 6. Experiments and Evaluation

(a) Resnet101 (b) Resnet50

Figure 6.8: ResNet confusion matrix of balanced experiment

(a) Resnet101 (b) Resnet50

Figure 6.9: ResNet confusion matrix of imbalanced experiment

Metrics

Accuracy Precision Recall F1
VGG-16 0.49433 0.49483 0.54267 0.51765
VGG-19 0.50800 0.50761 0.53400 0.52047

Resnet101 0.46667 0.47371 0.60067 0.52969
Resnet50 0.49867 0.49778 0.29933 0.37386

Table 6.3: Metrics of balanced experiment
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Accuracy Precision Recall F1
VGG-16 0.63300 0.33451 0.14844 0.20563
VGG-19 0.66300 0.35833 0.06719 0.11316

Resnet101 0.67000 0.33871 0.03281 0.05983
Resnet50 0.67750 0.40000 0.01563 0.03008

Table 6.4: Metrics of imbalanced experiment

Results

Although accuracy is a good baseline, it does not tell the whole story, especially in class
imbalanced datasets such as the ones used in this work. Precision and Recall despite giving
results that explore the data more in depth, are two sides of the same coin, with Precision
focusing on the amount of correct entries retrieved by the model while Recall focuses on how
many correct entries were identified. Consequently, F1-score was selected as the metric of
choice given its good balance between Precision and Recall while paying attention to class
imbalance existent in the data.

As the imbalanced dataset’s accuracy has improved in both architecture, VGGNet and
ResNet, we use the F1 score to account for the number of prediction errors and the type of
errors made since the F1 score combines the precision and recall metrics into a single metric.
In our imbalanced dataset experiment, all architectures have an F1 score lower than 50%,
which indicates that precision and recall are very low, so our model has problems classifying
the data and may not find all the positives.

The confusion matrices in Figures 6.5, 6.9 show that for the imbalanced dataset model bias
towards predictions labeled with "No stress" because there are more examples of absence
of stress in the dataset, as refered in Table 6.2.

As such, we will use a training dataset with a slight imbalance, so the model learns the
imbalance of the original dataset when training, and a test set with the original imbalance
data distribution to assess models.

6.2.2 Data Augmentation

Data Augmentation is used to solve the problem of having imbalanced image classification
data. Having imbalanced training data can lead to bias in the classifier in scenarios where
it is not feasible to get more training data for under-represented classes. This process aims
to artificially increase the amount of data by generating new data from existing data.

Parametrization

In this experiment, we added a data augmentation layer to the base model and trained it
using the following parameters: an imbalanced dataset with 20,000 images divided 55% no
stress and 45% stress; learning rate of 0,001; the batch size of 32 and 20 epochs. The
CNNs architecture used were VGG-16, VGG-19, Resnet101, and Resnet50.

Observation

Since the accuracy reached in each architecture group has a different range, we divided the
experiments by the architecture groups VGGNet and ResNet.
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(b) VGG-19
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Figure 6.10: VGGNet for augmentation experiment
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Figure 6.11: Confusion Matrix for VGGNet augmentation experiment
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ResNet
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(a) Resnet101
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(b) Resnet50
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(d) Resnet50

Figure 6.12: ResNet for augmentation experiment
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Figure 6.13: Confusion Matrix for ResNet augmentation experiment
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Metrics

Accuracy Precision Recall F1
VGG-16 0.47475 0.327058 0.569794 0.415577
VGG-19 0.4905 0.321551 0.499619 0.391278

Resnet101 0.4175 0.321915 0.702517 0.441515
Resnet50 0.56825 0.31913 0.279939 0.298253

Table 6.5: Metrics of augmented experiment

Results

Random under-sampling is an essential technique to address a class imbalance problem.
However, more promising techniques try to improve the disadvantages of random-based
approaches, such as data augmentation, a technique used to increase the diversity of the
training set by applying random transformations, such as image rotation.

In this project, we created a data augmentation layer to address the demands of each
model. Each model configured the augmentation layers individually and added them as a
preprocessing layer. The results of the data augmentation layers are presented in Table 6.5.
These F1 scores are the starting point of our model improvement experiments.

6.2.3 Learning Rate

The learning rate hyperparameter controls the rate or speed at which the model learns. It
controls the amount of apportioned error that the model weights are updated with each time
they are updated, such as at the end of each batch of training examples.

Parametrization

In this experiment, we kept the data augmentation layer with the best results from the
previous experiment in the base model so that each experiment aggregates the best results
yet achieved.

Moreover, to evaluate the influence of the learning rate on the model’s performance, we
fixed some parameters to the following conditions, the number of images is 20,000 divided
by 55% no stress and 45% stress images, using a batch size of 32 and 20 epochs.

Regarding the evaluation of the learning rate impact in the model results, the experiments
considered the respective learning rates of 0.1, 0.01, 0.001, and 0.0001.

Observation

Since the accuracy reached in each architecture group has a different range, we divided the
experiments by the architecture groups VGGNet and ResNet.
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(b) VGG-19
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(d) VGG-19

Figure 6.14: VGGNet for learning rate experiment
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Figure 6.15: Confusion Matrix for VGGNet learning rate experiment
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ResNet
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(a) Resnet101
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Figure 6.16: ResNet for learning rate experiment
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Figure 6.17: Confusion Matrix for ResNet learning rate experiment
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Metrics

Learning Rate
0.1 0.01 0.001 0.0001

Accuracy 0.481500 0.483500 0.493250 0.487500
Precision 0.321812 0.321175 0.334566 0.325296
Recall 0.525553 0.517162 0.552250 0.524790

F1 0.399189 0.396259 0.416691 0.401635

Table 6.6: Metrics VGG-16 learning rate experiment

Learning Rate
0.1 0.01 0.001 0.0001

Accuracy 0.573000 0.511000 0.517250 0.505250
Precision 0.341327 0.329815 0.320602 0.331483
Recall 0.325706 0.476735 0.422578 0.501144

F1 0.333333 0.389894 0.364594 0.399028

Table 6.7: Metrics VGG-19 learning rate experiment

Learning Rate
0.1 0.01 0.001 0.0001

Accuracy 0.445750 0.365750 0.480000 0.580250
Precision 0.326967 0.322832 0.316643 0.321012
Recall 0.652937 0.852021 0.506484 0.251716

F1 0.435734 0.468246 0.389671 0.282172

Table 6.8: Metrics Resnet101 learning rate experiment

Learning Rate
0.1 0.01 0.001 0.0001

Accuracy 0.538750 0.671000 0.534750 0.600250
Precision 0.321762 0.333333 0.333131 0.297753
Recall 0.367658 0.003814 0.418764 0.161709

F1 0.343183 0.007541 0.371071 0.209590

Table 6.9: Metrics Resnet50 learning rate experiment

Results

Generally, a significant learning rate allows the model to learn faster, at the cost of arriving
at a sub-optimal final set of weights. In our experiment, we considered learning rates equal
to or greater than 0.01 as large, which comprises Resnet101 best result for the learning rate
of 0.01, as in Table 6.8.

A lower learning rate may allow the model to learn a more optimal or globally optimal set
of weights but may take significantly longer to train. The learning rates lower than 0.01
comprises VGG-16, VGG-19, and ResNet50, which have the best learning rates results of
0.001, 0.0001, and 0.001, respectively, as shown in Tables 6.6, 6.7 and 6.9.
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At extremes, a learning rate that is too large will result in weight updates that are too
large, and the model’s performance, i.e., loss curve on the training dataset, will oscillate
over training epochs, such as Figure 6.16. Divergent weights cause oscillating performance.
At the same time, a learning rate that is too small may never converge or get stuck on a
suboptimal solution.

6.2.4 Batch size

Batch size is one of the most critical hyperparameters to tune in modern deep learning
systems. During training, larger batch sizes are often used to train models as it allows
computational speedups from the parallelism of GPUs.

Parametrization

In this experiment, we chose the best results achieved by the learning rate in the previous
experiment. We added them to the base model so that each experiment aggregates the best
results yet achieved.

Moreover, to evaluate the influence of the batch size on the model’s performance, we fixed
some parameters to the following conditions, the number of images is 20,000 divided by
55% no stress and 45% stress images, augmentation layer, and 20 epochs. In the previous
experiment, the learning rate achieved by the following architectures, VGG-16, VGG-19,
Resnet101, and Resnet50, was 0.001, 0.0001, 0.01, and 0.001, respectively.

Regarding evaluating the batch size impact on the model results, the experiments considered
the respective batches sizes 16, 32, 64, 128, and 256.

Observation

Since the accuracy reached in each architecture group has a different range, we divided the
experiments by the architecture groups VGGNet and ResNet.
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Figure 6.18: VGGNet for batch size experiment
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Figure 6.19: Confusion Matrix for VGGNet batch size experiment
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ResNet
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(d) Resnet50

Figure 6.20: Resnet for batch size experiment
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Figure 6.21: Confusion Matrix for Resnet batch size experiment
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Metrics

Batch size
16 32 64 128 256

Accuracy 0.543750 0.583500 0.569000 0.540500 0.555500
Precision 0.673216 0.340234 0.316444 0.320137 0.327675
Recall 0.624396 0.288330 0.271548 0.357742 0.338673

F1 0.647887 0.312139 0.292282 0.337896 0.333083

Table 6.10: Metrics VGG-16 experiment

Batch size
16 32 64 128 256

Accuracy 0.575500 0.556000 0.578000 0.556000 0.569750
Precision 0.672708 0.301112 0.330333 0.317647 0.332242
Recall 0.717739 0.268497 0.279939 0.308924 0.309687

F1 0.694494 0.283871 0.303055 0.313225 0.320568

Table 6.11: Metrics VGG-19 experiment

Batch size
16 32 64 128 256

Accuracy 0.375000 0.666000 0.525250 0.644750 0.627250
Precision 0.329510 0.307692 0.315327 0.309028 0.302632
Recall 0.876430 0.015256 0.382914 0.067887 0.105263

F1 0.478950 0.029070 0.345849 0.111320 0.156197

Table 6.12: Metrics Resnet101 experiment

Batch size
16 32 64 128 256

Accuracy 0.656750 0.572500 0.625750 0.464500 0.574500
Precision 0.331522 0.331075 0.341837 0.325786 0.290011
Recall 0.046529 0.298246 0.153318 0.592677 0.205950

F1 0.081605 0.313804 0.211690 0.420455 0.240856

Table 6.13: Metrics Resnet50 experiment

Results

It is known that too large a batch size will lead to poor generalization, and there is an inherent
dispute between the benefits of smaller and bigger batch sizes for function convergence. On
one side, using a batch equal to the entire dataset guarantees convergence to the global
optima of the objective function, but empirical convergence to that optima gets slower. On
the other hand, smaller batch sizes have been empirically shown to have faster convergence
to “good” solutions.

In our project, most of our models have better results for a smaller batch size of 16 for
VGG-16, VGG-19, and ResNet101, but the downside of using a smaller batch size is that
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the model is not guaranteed to converge to the global optima, as in Figure 6.20(a,c). It
will bounce around the global optima; staying outside the optima will depend on the ratio
of the batch size to the dataset size. On the other hand, the Resnet50 has an intermediate
batch size of 128, which better regulates the loss curve bounce around the global optima,
as in Figure 6.20(d).

6.2.5 Epochs

The number of epochs is a hyperparameter that defines the number of times the learning
algorithm will work through the entire training dataset. One epoch means that each sample
in the training dataset has had an opportunity to update the internal model parameters.

Parametrization

In this experiment, we chose the best results achieved by the batch sizes in the previous
experiment. We added them to the base model so that each experiment aggregates the
best results yet achieved.

Moreover, to evaluate the influence of the epochs on the model’s performance, we fixed
some parameters to the following conditions, the number of images is 20,000 divided by
55% no stress and 45% stress images and augmentation layer.

In the previous experiment, the architectures VGG-16, VGG-19, Resnet101, and Resnet50
had the best results or the learning rate of 0.001, 0.0001, 0.01, and 0.001, respectively. In
addition, the batch sizes also impacted the models, and the best results obtained in each
architecture were for the respective batch sizes 16, 16, 16, and 128.

Regarding evaluating the epochs’ impact on the model results, the experiments considered
the respective epochs 20, 40, 60, 80, and 100.

Observation

Since the accuracy reached in each architecture group has a different range, we divided the
experiments by the architecture groups VGGNet and ResNet.
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(d) VGG-19

Figure 6.22: VGGNet for epochs experiment
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Figure 6.23: Confusion Matrix for VGGNet epochs experiment
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Figure 6.24: Resnet for epochs experiment
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Figure 6.25: Confusion Matrix for Resnet epochs experiment
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Metrics

Epochs
20 40 60 80 100

Accuracy 0.562000 0.552500 0.563500 0.543500 0.546750
Precision 0.662957 0.668541 0.665729 0.667313 0.674086
Recall 0.708814 0.663072 0.704351 0.640015 0.630718

F1 0.685119 0.665795 0.684496 0.653379 0.651681

Table 6.14: Metrics VGG-16 experiment

Epochs
20 40 60 80 100

Accuracy 0.580500 0.570000 0.581500 0.536250 0.553250
Precision 0.671182 0.666552 0.679012 0.662637 0.670317
Recall 0.737077 0.721086 0.71588 0.631833 0.660097

F1 0.702588 0.692747 0.696959 0.646868 0.665168

Table 6.15: Metrics VGG-19 experiment

Epochs
20 40 60 80 100

Accuracy 0.595500 0.545000 0.644250 0.532750 0.460000
Precision 0.665944 0.674568 0.679219 0.670266 0.672763
Recall 0.799182 0.624396 0.892153 0.600223 0.383042

F1 0.726504 0.648513 0.771259 0.633314 0.488152

Table 6.16: Metrics Resnet101 experiment

Epochs
20 40 60 80 100

Accuracy 0.66825 0.633 0.45725 0.64075 0.63375
Precision 0.673991 0.672117 0.651817 0.676836 0.671717
Recall 0.981034 0.886575 0.413537 0.891038 0.890294

F1 0.799031 0.764593 0.50603 0.769305 0.765712

Table 6.17: Metrics Resnet50 experiment

Results

When the number of epochs used to train a neural network model is more than necessary,
the training model learns "noise," or irrelevant information, within the dataset. The model
becomes “overfitted,” and it cannot generalize well to new data, shown in Figure 6.22(a,c).
If a model cannot generalize well to new data, then it will not be able to perform the
classification or prediction tasks that it was intended for, shown in Tables 6.14, 6.15,6.16
and 6.17.

So, the configuration of epochs is seen as a kind of trade-off. On the one hand, the lower
number of epochs configuration conditions the adjustment of the weights, which makes
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training faster but may cause an increase in loss function and decrease in accuracy, as in
Figure 6.24(a,c). On the other hand, an increase in the number of epochs increases the
total training time of the model as it increases the number of iterations and the adjustment
of weights which improve the loss function and the accuracy.

Nevertheless, to mitigate overfitting and increase the neural network’s generalization capac-
ity, the models were trained for an optimal number of epochs, represented in the models
VGG-16, VGG-19, Resnet101, and Resnet50, with the respective values 20, 20, 60, and 20.

6.3 Evaluation

This section evaluates the results to identify the best model for stress classification using
images. As previously presented, the experiments progressively show their results in each
subsection using the best results of each experiment. Therefore, in this section, we justify
the decision process for our best model.

As previously mentioned, due to computational capacity limitations, the original dataset
that comprised 1,038,769 images was undersampled in the experiments for a 20,000 image
subset representing only 1.93% of the total images available.

In addition, our original dataset had an imbalance that corresponds to an imbalance ratio
of 0.49, so our original dataset classified 340,374 images as stress and 698,395 images as
non-stress.

Our decision process considers the best result obtained for the F1 score in the Tables 6.14,
6.15,6.16 and 6.17, as they have a good balance between Precision and Recall, paying
attention to the imbalance of data classes. The best results found for the F1 score in these
tables were 0.685119, 0.702588, 0.771259, and 0.799031 for the respective architectures
VGG-16, VGG-19, Resnet101, and Resnet50.

As for the accuracy and loss curves, in Figures 6.22 (a,b), 6.24 (b), they should have the
smallest possible gap between the training and validation data in both the curves. The
“generalization gap”, as it is called, has the smallest possible distance between the training
and validation in these architectures: VGG-16, VGG-19, and Resnet50.

Also, attention must be paid to the overfitting that occurs when the model has a high vari-
ance; that is, the model performs well on the training data but does not perform accurately
on the evaluation set. So, the model learns “noise,” or irrelevant information in the training
dataset but fails to generalize to new data. This type of curve occurs when the loss of the
validation dataset is less than the training dataset or when the precision in the validation
dataset is greater than the training dataset. In our experiments this can be seen in Figure
6.24 (a).

Last but not least, the confusion matrix of each model should follow the same distribution
of the original unbalanced dataset of 30% stress and 70% no stress, which is also used in
the test set and can be seen in Figures 6.23 (a,b) and 6.25 (a).

To summarize, our best model was Resnet50 which presented the best F1 score. This is
followed by reliable learning curves that present neither overfitting nor underfitting. Finally,
the confusion matrix shows that our model has very high Recall, which means that the
classifier predicted almost all positives as positives.
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6.4 Comparison with other systems

In this section, we compare our results to another similar study of stress classification that
uses the same dataset UBFC-Phys (Sabour et al. 2021). The UBFC-Phys dataset is a large,
multimodal, and publicly shared dataset that was collected to respond to the analysis of the
impact of social stress on physiological responses. The set consists of 168 videos, measures
of contact blood volume pulse (BVP) and electrodermal activity (EDA), and a self-reported
state anxiety score.

As previously mentioned, due to computational capacity limitations, the original dataset
that comprised 1,038,769 images converted from the video frames was undersampled in the
experiments for a subset o 20,000 images.

So, our study aims to identify the efficiency of deep learning algorithms in contrast to
machine learning algorithms when recognizing stress remotely.

In the reference articles (Sabour et al. 2021), the machine learning classifiers used were:
Support Vector Machine (SVM) with a linear kernel, SVM with Radial Basis Function (RBF),
Logistic Regression (Log Reg), and K-Nearest Neighbors (KNN). The four classifiers were
used to predict contact and remote pulse rate variability (PRV) measures, electrodermal
activity (EDA) measures, a combination of contact PRV and EDA features, and facial
expression.

Type Classifiers Accuracy (%) F1 score (%)

Machine Learning

SVM - linear kernel 54.42 -
SVM - RBF kernel 53.29 -
Log Reg 54.68 -
KNN 55.07 -

Deep Learning

VGG-16 56.20 68.51
VGG-19 58.05 70.26
Resnet101 64.43 77.13
Resnet50 66.83 79.90

Table 6.18: Algorithm comparison

Table 6.18 contains a comparison between the algorithms used in the reference article and
the results obtained in our experiments.

In the reference study, the evaluation metrics only consider accuracy; however, due to the
existing imbalance in the original dataset, our study considers the F1 score a more appropriate
metric to assess results rather than accuracy. In Table 6.18, our best model was the Resnet50
with an accuracy of 66.83% and an F1 score of 79.93%.

As a result, our Resnet50 model outperformed the best machine learning classifier (KNN) in
the reference article, with an accuracy of 66.83% over an accuracy of 55.07%. Moreover,
we can affirm that despite the “video-based PRV modality has proven to be reliable in
recognizing the stress state”, deep learning models are also reliable in recognizing the stress
levels using video-based features.

Finally, it proves that images and videos can be used in stress detection even though it is
not a simple activity. It demands a multimodal experiment to deal with all the complexity
involved in stress detection.
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Chapter 7

Conclusion

This chapter presents the conclusions and hypotheses resulting from the preparation of the
present work, as well as an approach to potential future work that could be carried out within
the scope of the stated theme and objectives.

7.1 Overview

Stress is often described as a complex psychological, physiological, and behavioral state
triggered by perceiving a significant imbalance between the demands placed on the person
and their perceived ability to meet those demands.

With the sudden onset of stress, the muscles tense up all at once and then release their
tension when the stress passes. Chronic stress causes the muscles in the body to be in a more
or less constant state of guardedness. Thus, stress also affects the respiratory, digestive,
and muscular systems, especially the facial muscles, where it causes facial tension.

Darwin argued that facial expressions are universal; that is, most emotions are expressed in
the same way on the human face, regardless of race or culture. In several recent studies,
there are reports on findings of facial signs and expressions that can provide information
about stress analysis and classification. Nevertheless, extracting craft resources requires
considerable time.

With the development of deep learning, visual feature extraction has become a standard
method for video emotion recognition. This study focuses on automated stress identification
using deep learning.

The main challenge of creating a stress detector application was to formulate a model
capable of learning how to detect stress reliably. Many challenges were faced when deciding
on the architecture and its parametrization to achieve valuable results. Nevertheless, the
web application developed for stress detection achieved its goals.

Like the valuable achievements, numerous lessons have been learned about using and applying
deep learning terms, concepts, and knowledge. The knowledge acquired allowed us to
evaluate the results using state-of-the-art architectures critically. Also, the new libraries
enable us to create models capable of making predictions with a high F1 score. At last,
many lessons were learned on how to deal with unbalanced data.
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7.2 Limitations and improvements

The main limitation found was the processing capacity of the GPU used. Our GPU only had
2GB of dedicated memory for processing, and this caused many bottlenecks in processing.
Therefore, our proposal to overcome this obstacle is to use a cluster solution or GPUs with
greater processing capacity.

Secondly, there was a limitation in the deployment of the application, which required a
particular host server for applications that use machine learning and deep learning resources.
So, assessing the server’s configuration before deploying the application on a regular web
hosting service is essential.

Therefore, as the objectives were accomplished, one could think there was no space for
improvement, but that is not the case. We suggest using a more extensive or full dataset,
as the original dataset comprises 1,038,769 images. Also, fine-tuning could be important in
the search for the key parameters that can be used to create a dedicated stress detection
model.

7.3 Final thoughts

When dealing with algorithms that run millions of iterations of non-trivial procedures, it is
vital to utilize every last bit of performance available. This project allowed me to understand
better the performance impacts of the decisions applied to the design and implementation
of applications, understanding the cost each operation might hold upon the execution of the
entire algorithm.

I am satisfied with the project’s outcome, as finding a model that detects stress using images
is a reality. I consider the final product acceptable, but the application could be incremented
with more information for the user or the use of more information available in the multimodal
dataset.

The investigation of topics such as the one presented focuses on helping not only companies
but also occupational health technicians to be able to identify stress in people in its early
stages. It would result in a more significant set of information on which companies could
act to prevent occupational health problems.
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