
Criar Animais Virtuais Através de Machine
Learning

HUGO TIAGO TRINDADE ROCHA
Outubro de 2022

Creating Virtual Animals Through
Machine Learning

Hugo Tiago Trindade Rocha
Student No.: 1200131

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Artificial Intelligence

Supervisor: Doutora Isabel Cecília Correia da Silva Praça Gomes Pereira, Pro-
fessora Coordenadora do Instituto Superior de Engenharia do Instituto Politéc-
nico do Porto

Evaluation Committee:
President:
Doutora Ana Maria Neves Almeida Baptista Figueiredo, Professora Coordenadora do Insti-
tuto Superior de Engenharia do Instituto Politécnico do Porto

Members:
Doutor Carlos Fernando da Silva Ramos, Professor Coordenador Principal do Instituto Su-
perior de Engenharia do Instituto Politécnico do Porto
Doutora Isabel Cecília Correia da Silva Praça Gomes Pereira, Professora Coordenadora do
Instituto Superior de Engenharia do Instituto Politécnico do Porto

Porto, October 25, 2022

Abstract

Approximately 42 percent of threatened or endangered species are at risk due to invasive
species. Some invasive species find the new habitat by themselves during migrations, others
are misplaced by humans, be it by mistake or necessity.

This project aims to create a virtual habitat, populated by intelligent agents that represent
the animals present in it. Programmers and scientists can add invasive species, and simulate
what might happen. This will allow a more proactive response to this type of crisis.

Different data-driven models are explored in order to find the best one for the problem at
hands.

Game engines are discussed, they have improved greatly over the last decade, and are
accessible to everyone. Reliable tools to build simple or complex prototypes that give us
graphic representations that can be photo realistic.

Keywords: Artificial Intelligence, Intelligent Agents, Artificial Neural Network, ANN, Fuzzy
Logic, FL, Adaptive Neuro Fuzzy Inference System, ANFIS, Unity, Habitat Simulation, ML-
Agents.

iii

Resumo

Aproximadamente 42 por cento das espécies em vias de extinção estão em risco devido a
espécies invasoras. Algumas dessas espécies invasoras chegam aos novos habitats através
de migrações, outras chegam através da mão humana, voluntaria ou involuntariamente.

Este projeto tem como objetivo criar um habitat virtual, com agentes inteligentes que rep-
resentam os animais presentes nesse mesmo habitat. Programadores e cientistas poderão
adicionar espécies invasoras, e simular o que pode acontecer. Isto irá permitir uma resposta
mais proativa quando estes tipos de crises acontecem.

Diferentes modelos orientados a dados são explorados, a fim de perceber qual será o melhor
para resolver o problema.

Game engines são discutidos, este tipo de ferramenta tem evoluído bastante ao longo da
última década, são ferramentas grátis, que podem ser usadas para criar protótipos com
gráficos simples, ou foto realistas.

Palavras-chave: Artificial Intelligence, Intelligent Agents, Artificial Neural Network, ANN,
Fuzzy Logic, FL, Adaptive Neuro Fuzzy Inference System, ANFIS, Unity, Habitat Simulation,
ML-Agents.

v

Contents

List of Source Code xi

List of Acronyms xiii

1 Introduction 1
1.1 Contextualization . 1
1.2 Problem Description . 1
1.3 Objectives . 2
1.4 Research Hypotheses . 2
1.5 Document Structure . 2

2 State of Art 5
2.1 Fuzzy Logic . 5
2.2 Artificial Neural Network . 5

2.2.1 Feedforward Neural Network . 7
2.2.2 Radial Basis Function Neural Network 8
2.2.3 Kohonen Self Organizing Neural Network 8
2.2.4 Recurrent Neural Network . 8
2.2.5 Convolutional Neural Network . 8
2.2.6 Modular Neural Network . 8

2.3 Adaptive Neuro Fuzzy Inference System 9
2.4 Machine Learning . 9

2.4.1 Supervised Learning . 9
2.4.2 Unsupervised Learning . 10
2.4.3 Reinforcement Learning . 10

Proximal Policy Optimization . 11
Soft Actor Critic . 11

2.4.4 Imitation Learning . 11
Generative Adversarial Imitation Learning 12

2.5 Game Engines . 12
2.6 Unity ML-Agents . 13
2.7 Related Work . 15

2.7.1 Realistic animal behaviors in a virtual island 15
2.7.2 Physical Habitat Simulation . 15
2.7.3 Machine Learning Algorithms in the Unity Environment 16
2.7.4 Imitation Learning for a Custom Gameplay Using ML-agents 16

3 Methods 17
3.1 Technology & Tools . 17

3.1.1 Hardware & Software . 17
3.2 Model Developed . 17

vii

3.2.1 Environment . 18
3.2.2 Intelligent Agents . 20

Components . 20
Attributes . 22
Behavior . 23
Neural Network . 24
Rewards . 26
Observations . 27
Training PPO With Ray Casting 28
Training PPO With Visual Sensor 32

3.2.3 Results . 35

4 Conclusion And Future Work 39
4.1 Contributions . 39
4.2 Validation of the Research Hypotheses . 39
4.3 Final Remarks and Future Work Considerations 40

Bibliography 41

viii

List of Figures

2.1 Biological neuron next to a artificial neuron (Pramoditha 2021). 6
2.2 Artificial neural network architecture (Ahire 2018). 7
2.3 Reinforcement Learning (RL) architecture. 10
2.4 Classification of Imitation Learning (IL). 11
2.5 Simplified block diagram of ML-Agents (ML-Agents 2021a). 14
2.6 Example block diagram of ML-Agents Toolkit (ML-Agents 2021a). 15

3.1 3D aquarium environment used for the training. 18
3.2 Object pooling script parameters. 19
3.3 Aquarium with seaweeds randomly spawned. 19
3.4 Seaweed 3D model and attributes. 19
3.5 Intelligent agent box collider and rigidbody. 20
3.6 ML-Agents components. 21
3.7 ML-Agents ray casting. 22
3.8 Intelligent agent snail 3D model and attributes. 22
3.9 Intelligent agent clownfish 3D model and attributes. 23
3.10 Clownfish agent swimming next to anemone. 23
3.11 Snail and clownfish recorded demos. 30
3.12 Multiple snails training, each with its own environment. 30
3.13 Snail training IL (blue) vs RL (orange). 31
3.14 Snail IL improved. 31
3.15 Clownfish IL training sessions. 32
3.16 Snail camera component. 33
3.17 Normal camera left. Agent camera center. PNG sent to the Convolutional

Neural Network (CNN) right. 33
3.18 Demo with the intelligent agent using camera sensor. 34
3.19 First and second training with camera sensor and CNN. 34
3.20 Second and third training with camera sensor and CNN. 35
3.21 Experimenting with clownfish and snail intelligent agents competing for food. 35
3.22 Number of snail, clownfish and seaweeds during the experiment, Y axis is for

total number of agents, X axis is for time passed in seconds. 36
3.23 Zoomed version of the graphic 3.22 containing only the snail and clownfish. 37

ix

List of Source Code

3.1 Yaml file used to configure the parameters of the neural network. 24
3.2 Change calories method. 26
3.3 Burning calories method. 27
3.4 Die method. 27
3.5 Snail observations method. 28
3.6 Clownfish observations method. 28
3.7 ML-Agents method OnEpisodeBegin overwritten. 29
3.8 EndTraining method invokes EndEpisode ML-Agents method. 29

xi

List of Acronyms

AI Artificial Intelligence.
ANFIS Adaptive Neuro Fuzzy Inference System.
ANN Artificial Neural Network.

CNN Convolutional Neural Network.

FL Fuzzy Logic.
FNN Feedforward Neural Network.

GAIL Generative Adversarial Imitation Learning.

IL Imitation Learning.

KSONN Kohonen Self Organizing Neural Network.

ML Machine Learning.
MNN Modular Neural Network.

PPO Proximal Policy Optimization.

RBFNN Radial Basis Function Neural Network.
RL Reinforcement Learning.
RNN Recurrent Neural Network.

SAC Soft Actor Critic.

TSK Takagi-Sugeno-Kang.

xiii

Chapter 1

Introduction

This chapter contains a brief presentation of the project, a description about the context
and the problem that it aims solve.

1.1 Contextualization

Since there’s life in our planet, every single species live in a daily struggle for survival. The
world is in a constant state of stress due to its fragile equilibrium. The famous “survival
of the fittest” (Spencer 1864), is a key process “On the Origin of Species” (Darwin 1859),
nature puts itself to the test constantly, hindering those who don’t have the capacity to
adapt, and favoring those who can, with a place in the ecosystem.

A species capacity to adapt can be put to the test when a invasive species arrives in a new
habitat. This event can trigger a brutal clash between the indigenous species and the invasive
one, by the end of it, the new ecosystem will eliminate those who didn’t adapt and adjust
itself accordingly. This is a natural process, part of the evolution, and unless the outcome
is catastrophic for the environment, humans should not interfere if possible.

When talking about invasive species introduced by humans, everyone agrees that we have
the moral and vital necessity of interfere, and try to repair the damage done at the best of
our capacity. We might be part of the ecosystem like all the other animals, but we have
shaped the land too drastically due to our intellect and technology, so those same attributes
should be used to mend the world we live in.

The destruction of the ecosystem, is another factor for the extinction of many species that
lose the habitat they evolved for.

1.2 Problem Description

Approximately 42 percent of threatened or endangered species are at risk due to invasive
species (Federation 2020). Through past and recent history, we have many examples of
humans introducing invasive species, for example feral pigs who will eat almost anything
and spread diseases (Federation 2020). Humans over hunting can also cause species to be
endangered or extinct, like for example the Tasmanian Tiger (Peace 2020).

To fix the problems stated above, many efforts have been done in order to reintroduce
species into the wild, some are still present in the habitat, but their numbers are dwelling,
others where completely drove away.

1

Chapter 1. Introduction

This solution is problematic and can be unpredictable, adding species into a habitat requires
some variables to be present, like for example food and shelter. There is more to take
into account, the habitat could have been invaded by new species, who is itself endangered.
Nature is highly complex, and extremely hard to predict.

1.3 Objectives

This project aims to simulate ecosystems, with intelligent agents that represent different
individuals from different species, and try to simulate what happens when a given species is
added/removed from the ecosystem. This simulations can help experts predict the outcomes
of such complex scenarios.

The more complex the system, the more accurate the predictions will be, however there are
many variables to take into account, and the smallest factor can have a butterfly effect.

For the sake of simplicity, the simulation will be performed with fictitious animals inspired
by real ones. Every single aspect of the agents will be parameterized, since flexibility is
important to give experts the ability to create realistic animals.

1.4 Research Hypotheses

Since the objective of this project is to simulate a natural habitat in a virtual environment,
first of all the intelligent agents need to learn the behavior of the animals that live in the
habitat. This can be hard to do the classic way where a programmer would have to code
each and every single interaction and place multiple systems to make sure everything works
as planned. Reinforcement Learning (RL) with Imitation Learning (IL) could be the answer
to help developers and experts in the task of creating virtual replicas of the animals.

To achieve this objective there are two questions that need to be answered first, that will
help understand if this solution is possible or not.

1. Can experts create realistic behaviors by using RL with IL?

Can IL help experts and developers recreate a realistic behavior. An expert can control
the intelligent agent in the virtual environment, and show the agent whats expected
from it. The model would be saved when the performance was satisfactory, and used
in the simulation.

2. Can intelligent agents interactions be used to predict changes in a given habitat pop-
ulation?

If this simulation can predict changes in the food available and number of individuals
of each species that are left.

1.5 Document Structure

This dissertation has a structure composed by 4 chapters, they aim to explain each part of
the process in a simple and comprehensive way.

It begins with the introductory chapter which explains the motivation behind the study, the
problem it aims to explore and solve. The hypotheses and objectives are laid out in order to
understand the plan that was followed.

2

1.5. Document Structure

The second chapter discusses the state of art, where the available technology’s are explored
to give a broad picture of which technology’s are available to solve the problem. There’s
also mentions to papers that used the same tools that will be used in this study, or try to
solve the same problems.

The third chapter explains all the methods used, starts by showcasing the hardware used,
the game engine chosen, the plugin used to create the artificial intelligence environment,
and the algorithms used to train the intelligent agents. The intelligent agents development
is also discussed, to explain how they were built and how they perceive the environment.
The training results are showed and a simulation is with the developed intelligent agents is
performed.

The forth chapter talks about the contributions of this study and discusses if the hypotheses
have been proven and highlights future works that could be done.

3

Chapter 2

State of Art

In this chapter there will be examples of systems that try to simulate habitats, be it for
predicting the outcome of changes, or just for entertainment, the models they used and
some of the tools that were/can be used to build the virtual environments.

2.1 Fuzzy Logic

The term Fuzzy Logic Fuzzy Logic (FL) was created in 1965 on a proposal of fuzzy set
theory by scientist Lotfi Zadeh (Hajek 2010). But its creation dates back to 1920s, as
infinite-valued logic—notably by Łukasiewicz and Tarski (Pelletier 2000).

FL is based on degrees of truth rather than the usual true or false Boolean logic on which
modern computers are based. This makes FL perfect to imitate living beings reasoning and
cognition. Instead following a strict binary cases of truth, FL uses 0 and 1 as extreme cases
of truth, but with various intermediate levels of truth. When talking about fuzzy models we
can describe them as a mathematical way of representing vague or imprecise information.
These models can recognize, represent, manipulate, interpret and use data/information that
is vague and uncertain (Babuška 1998).

As it was highlighted previously, FL is used in projects where the certainty or lack of it,
isn’t clear. Such projects are found in the automobile systems, aerospace, natural language
processing, medicine, among many others.

There are two main fuzzy systems, Mamdani and Takagi-Sugeno-Kang Takagi-Sugeno-Kang
(TSK). Mamdani is one of the best known fuzzy systems, are designed to incorporate expert
knowledge in form of IF-THEN rules expressed in natural language. This is an attractive fea-
ture for modelling and simulating social and other complex systems (Segismundo S. Izquierdo
2018). TSK model on the other hand is characterized by a high accuracy of modeling com-
bined with a very fast learning process. The model was proposed as a systematic approach
to generate fuzzy rules from a given set of input-output data and where the structure of the
system if not known in advance (Miodrag Petkovic 2018).

2.2 Artificial Neural Network

Artificial Neural Networks Artificial Neural Network (ANN) are models that imitate the bio-
logical neural network. ANN were invented in 1943 by neurophysiologist Warren McCulloch
and the logician Walter Pits (Kleene 1956).

5

Chapter 2. State of Art

In its simplest form, biological brains are a huge collection of neurons. Each neuron takes
electrical or chemical signals as inputs through its many dendrites and transmits the output
signal through its axon. Axons then make contact with other neurons at specialized junctions
called synapses where they pass on they’re output signals to other neurons, and this process
repeats over millions and millions of times (Klimasauskas 1989).

Figure 2.1: Biological neuron next to a artificial neuron (Pramoditha 2021).

By taking inspiration from the brain, ANN are collections of connected units named neurons,
figure 2.1 shows a biological neuron next to its digital counterpart. The connection between
the neurons can carry signals between them. Each connection carries a real number of value
which determines the weight/strength of the signal. The units between the input units and
the output units, are called hidden layer (N. Murata and Amari 1993). In figure 2.2 it’s
possible to see a basic representation of the architecture of a artificial neural network, con-
taining the input and output layer, and between them two hidden layers, in the connections
between the neurons the weights are also visible.

6

2.2. Artificial Neural Network

Figure 2.2: Artificial Neural Network architecture (Ahire 2018).

ANN instead of using the classic digital model of zeros and ones, it works by creating
connections between processing elements called neurons like the ones in biological brains.
The organization and weights of the connections determine the output (Laboratory 2021).

ANN are effective for predicting events when the networks have a large database of prior
examples to work on. ANN are designed to recognize patterns. They interpret sensory data
through some sort of machine perception, labeling or clustering raw input. The patterns
they recognize are numerical, contained in vector, into which all real-world data, such as
images, sound, text or time series, must be translated (Mohaiminul Islam 2019).

ANN come in many different types, there are Feedforward Neural Network Feedforward Neu-
ral Network (FNN), Radial Basis Function Neural Network Radial Basis Function Neural Net-
work (RBFNN), Kohonen Self Organizing Neural Network Kohonen Self Organizing Neural
Network (KSONN), Recurrent Neural Network Recurrent Neural Network (RNN), Convo-
lutional Neural Network Convolutional Neural Network (CNN) and Modular Neural Network
Modular Neural Network (MNN). These types are implemented based on the mathematical
operations and a set of parameters required to determine the output (J. A. Bradshaw 1991).

2.2.1 Feedforward Neural Network

FNN is one of the simplest form of ANN. Data or input travels in one direction. The data
passes through the input nodes and exit on the output nodes. This ANN may or may not
have the hidden layers. It has a front propagated wave and no back propagation by using
classifying activation function usually. FNN can be applied to computer vision and speech
recognition where classifying the target classes are complicated. FNN are responsive to noisy
data and easy to maintain (Mohaiminul Islam 2019).

7

Chapter 2. State of Art

2.2.2 Radial Basis Function Neural Network

RBFNN consider the distance of a point with respect to the center. Its function have two
layers, first where the features are combined with the Radial Basis Function in the inner
layer and then the output of these features are taken into consideration while computing the
same output in the next time-step which is basically a memory (Mohaiminul Islam 2019).
RBFNN can be applied to power restoration systems, those systems have increased in size
and complexity, and for that reason the risk of a major power outage has increased as well.
After blackouts power needs to be restored as soon as possible (Murphy 2012).

2.2.3 Kohonen Self Organizing Neural Network

KSONN map input vectors of arbitrary dimension to discrete map comprised of neurons. The
map needs to be trained to create its own organization of the training data, it comprises of
either one or two dimensions. When training the map the location of the neuron remains
constant but the weights differ depending on the value (Mohaiminul Islam 2019). Since
KSONN are good recognizing patterns in data, they are applied in medical analysis to cluster
data into different categories. KSONN was able to classify patients having glomerular or
tubular with an high accuracy (D. H. Hubel 1959).

2.2.4 Recurrent Neural Network

RNN work on the principle of saving the output of a layer and feeding this back to the input
to help in predicting the outcome of the layer. The first layer is formed similar to the FNN
with the product of the sum of the weights and the features. RNN process starts once this
is computed, which means that from one time step to the next each neuron will remember
some information it had in the previous time-step. Each neuron act like a memory cell in
performing computations. During this process the RNN works on the front propagation and
remember what information it needs for later use. If the prediction is wrong the learning
rate or error correction is used to make small changes so that it will gradually work towards
making the right prediction during the back propagation (Mohaiminul Islam 2019).

2.2.5 Convolutional Neural Network

CNN are similar to FNN, the neurons have learn-able weights and biases. Can be applied
to signal and image processing which takes over OpenCV in field of computer vision (Mo-
haiminul Islam 2019). They are very accurate in images classification, so have been used
in image analysis and recognition. This led them to be used on analyses of agriculture
and weather features extracted from the open source satellites LSAT to predict the future
growth and the yield of a particular land (Lawrence 1994).

2.2.6 Modular Neural Network

MNN have a collection of different networks working independently and contributing towards
the output. Each ANN has a set of inputs which are unique compared to other networks
constructing and performing sub-tasks. There is no interaction between the ANN in accom-
plishing the tasks. They breakdown a large computational process into smaller components
decreasing its complexity (Mohaiminul Islam 2019).

8

2.3. Adaptive Neuro Fuzzy Inference System

2.3 Adaptive Neuro Fuzzy Inference System

Adaptive Neuro Fuzzy Inference System or adaptive network-based fuzzy inference system
Adaptive Neuro Fuzzy Inference System (ANFIS) were developed in 1990s and are based on
TSK fuzzy inference system (Jang 1991).

This model uses both models discussed previously, FL and ANN, so it captures the best
of both, in a single model. The inference system corresponds to a set of fuzzy IF-THEN
rules that have a learning capacity similar to nonlinear functions (Abraham 2005). ANFIS is
considered a universal estimator (Jyh-Shing Roger Jang 1997).

ANFIS has a five-layer architecture, namely, fuzzy layer, product layer, normalized layer,
defuzzifier layer and output layer. Output variables at each layer are calculated with input
variables from the previous layer and parameters at each node (Sung-Uk Choi 2018).

2.4 Machine Learning

A way to introduce the machine learning Machine Learning (ML) methodology is by com-
paring it with the conventional engineering design flow. The conventional design flow starts
with in-depth analysis of the problem domain, and then the definition of a mathematical
model. The mathematical model captures the key features of the problem under study, and
usually results of the work of many experts. The mathematical model is then leveraged to
derive hand-crafted solutions to the problem that offer given optimally guarantees (Simeone
2018a).

ML on the other hand, collects large data sets, e.g., of labelled speech, images or videos,
and uses this information to train general-purpose learning machines to carry out the desired
task. It lets large amounts of data dictate algorithms and solutions. Instead of requiring a
precise model of the set-up under study, ML requires the specification of an objective, of a
generic model to be trained, and of an optimization technique (Simeone 2018a).

The following rules can help identify tasks for which ML may be useful (Erik Brynjolfsson
2017):

1. the task involves a function that maps well-defined inputs to well-defined outputs;

2. large data sets exist or can be created containing input-output pairs;

3. the task provides clear feedback with clearly definable goals and metrics;

4. the task does not involve long chains of logic or reasoning that depend on diverse
background knowledge or common sense;

5. the task does not require detailed explanations for how the decision was made;

6. the task has a tolerance for error and no need for provably correct or optimal solutions;

7. the phenomenon or function being learned should not change rapidly over time; and

8. no specialized dexterity, physical skills, or mobility is required.

2.4.1 Supervised Learning

Supervised learning builds a knowledge base from patterns previously classified that sup-
ports and classifies new patterns. Its major task is to map the input features to an output

9

Chapter 2. State of Art

called class. The outcome is used to construct a model by examining the input patterns.
The model can be used to correctly classify unseen instances. There are many supervised
learning algorithms, some of which are Decision Trees, Random Forest, k-Nearest Neigh-
bor, Logistic Regression, ANN, Support Vector Machines, Naive Base, Bayesian Networks
(Y. C. A. Padmanabha Reddy 2018).

2.4.2 Unsupervised Learning

Unlike supervised learning, unsupervised learning tasks operate over unlabelled data sets con-
sisting solely of inputs, and the general goal is that of discovering properties of the data
(Simeone 2018b). Unsupervised learning studies how systems can learn to represent partic-
ular input patterns in a way that reflects the statistical structure of the overall collection
of input patterns. Unlike supervised learning or RL, there are no explicit target outputs
or environmental evaluations associated with each input. Instead it brings to bear prior
biases as to what aspects of the structure of the input should be captured in the output.
Examples of unsupervised learning algorithms are, Clustering, Expectation Maximization,
Principal Component Analysis, Independent Component Analysis, Singular Value Decompo-
sition (Y. C. A. Padmanabha Reddy 2018).

2.4.3 Reinforcement Learning

The concept of RL begins from the way the machine learns i.e. unsupervised learning
technique. In unsupervised learning the machine has unlabeled data, and from it draws
its own conclusions. RL can be used to teach a machine to perform specific task, like for
example playing chess, chess has rules that the machine would have to follow. In this example
the machine would be the agent, and the chess board would be the virtual environment. The
agent performs actions in the virtual environment. In real life we are the agents that plays
the game, according to what we need to do or what our brain tells us to do, and the physical
chess board is the environment. But it is different for machines, because we know that we
have to accomplish a task to win the game but the machine doesn’t know that. For this
purpose exists the reward and punishment approach. If the action did by the agent takes
it towards the goal it is rewarded and if it takes it far from the goal it will be punished.
In machine terms they are just some positive and negative values, positive means a reward
and negative means it was punished. Figure 2.3 shows the RL architecture that helps
visualise the process described previously. Examples of RL algorithms are Bellman Equation,
Markov Decision Processes, Q-Learning, Deep Q-Learning and Proximal Policy Optimization
Proximal Policy Optimization (PPO) (Mahajan 2020).

Figure 2.3: RL architecture (Bhatt 2018).

10

2.4. Machine Learning

Proximal Policy Optimization

PPO is motivated by the question: how can we take the biggest possible improvement step
on a policy using the data we currently have, without stepping so far that we accidentally
cause performance collapse? PPO is a family of first-order methods that use a few other
tricks to keep new policies close to old. PPO methods are simpler to implement, and seem
to perform well. This is an on-policy algorithm, can be used for environments with either
discrete or continuous action spaces and the implementation supports parallelization (John
Schulman 2017).

Soft Actor Critic

Soft Actor Critic (SAC) is off-policy so it can learn from experiences collected at any time
during the past. Collected experiences are placed in an experience replay buffer and randomly
drawn during training. Which means SAC is significantly more sample-efficient, usually
requiring 5-10 times less samples to learn the same task as PPO, on the down side, it will
require more model updates. SAC can be a good choice for heavier or slower environments
(ML-Agents 2021a).

2.4.4 Imitation Learning

In IL, the agent learns manipulation by observing an expert’s demonstration. This process
extracts information of the behavior and surrounding environment, while learning the map-
ping between the observation and the performance. The task of agent manipulation can
be viewed as a Markov decision process, it encodes the action sequence of the expert into
state-action pairs that are consistent with the expert. When the trained data available has
good quality, the learning is very efficient since it is learning from trained data, and not from
scratch (Bojarski M. 2016). In combination with RL, the speed and accuracy of IL can be
improved, currently the methods of IL can be divided into behavior cloning, inverse RL and
Generative Adversarial Imitation Learning (GAIL) (Kumar V. 2016). Figure 2.4 contains the
classification of IL.

Figure 2.4: Classification of IL (Jiang Hua 2021).

11

Chapter 2. State of Art

Generative Adversarial Imitation Learning

In this study it was used GAIL, it is the type of IL available in ML-Agents. The method
compares the difference between the generated strategy and the expert strategy. Iterative
confrontation training can be performed to make the distribution between the expert and
the agent as close as possible (Kuefler A. 2017). Pure learning methods and simple rewards
functions, often result in non-natural behavior, and too rigid movement behaviors, algorithms
like GAIL can generate more natural motion patterns from limited demonstrations without
access to actions, it constructs strategies that can be reused to solve tasks when controlled
by a higher-level controller (Merel J. 2017).

2.5 Game Engines

This section discusses two of the current best and most widely used game engines. Game
engines are perfect for prototyping and developing games in a short period of time. When
using such tools developers don’t need to create everything from scratch, many functions
common to every game like for example graphics rendering, input handlers, sound managers,
objects collisions, gravity simulation and many more features, are already present, and easy
to use without programming a single line of code. If the developers need any of those
features more personalized to their project, they can create their own solutions as well.

Unreal Engine is a game engine developed by Tim Sweeney, founder of Epic Games (Pharr
2005). It uses C++, and also has a code blocks system named blueprints, that allows users
to prototype ideas really fast and without programming knowledge. It has the capabilities of
producing photo realist 3D visuals, which is perfect for immersive experiences. The downside,
not every workstation has the hardware to run the engine smoothly.

Unity is another example of a game engine accessible to the public and was introduced in
2005. Just one year after its release in 2006, it won an award at Apple’s 2006 Worldwide
Developer’s Conference (AXON 2016). It uses C Sharp and has many plugins that allow
users increase the engine features. Among those plugins we can find one that was created
especially for Artificial Intelligence (AI), the Unity ML-Agents Toolkit, which is a great tool
for creating realistic and complex AI environments to train models (Arthur Juliani 2018).
Unity also has the advantage of being less demanding on the hardware, while still maintaining
the capabilities of achieving photo realistic results.

As it was highlighted previously, game engines are perfect for developers who want to proto-
type game ideas fast, but they can also be used to create other kind of projects that nothing
have to do with entertainment software. They can be used in the movie industry, projects like
the movie Demonic by Neill Blomkamp are a perfect example of how such technology’s can
be used to expand the boundaries of what’s been done before and what there is to explore
(Failes 2021). Real world simulations can also be done, in the paper "Modeling Realistic 3D
Trees Using Materials From Field Survey for Terrain Analysis of Tactical Training Center",
the researchers developed a system that simulated a terrain with realistic trees, military units
could then used the simulation to help them define a strategy to better prepare themselves
(Robert Ornprapa P. 2019). Examples like this show us that game engines have transcend
their main purpose, and are now a tool that is only limited by the users imagination and
ingenuity.

12

2.6. Unity ML-Agents

2.6 Unity ML-Agents

ML-Agents is a unity open source toolkit library under the Apache 2.0 license. It gives the
possibility of training intelligent agents in both games and simulated environments. Some of
the machine learning methods it can use are RL, IL and neuro-evolution. They can be used to
train the intelligent agents through simple Python API. It also provides the implementation
of the most advanced algorithms so that game developers and hobbyist can train intelligent
agents to use in their games. The agents can then be used for controlling non playable
characters, automatically test game builds, and evaluating pre-released versions of different
game design decisions (Jun LAI 2019).

ML-Agents contains five high-level components that can be seen in figure 2.5 and are as
following:

The first is the learning environment which contains the unity scene and game characters.
Unity provides the environment from which the agents will collect the observations, act, and
learn. The unity scene should be built having in mind the goal the agent has to achieve. If
the agent is being trained to operate in a complex game or simulation, its more efficient and
practical to create different environments from which the agent will learn specific actions,
before training in the final game or simulation complex environment. ML-Agents includes a
Unity SDK that allows the transformation of any Unity scene into a learning environment
by defining the agents and their behaviors (ML-Agents 2021a).

The second component is the Python low-level API which contains the low-level Python
interface for the interacting and manipulating a learning environment. Unlike the learning
environment the Python API is not part of Unity, it lives outside and communicates with
Unity through the communicator. The API is in a dedicated mlagents_env Python package
and is used by the Python training process to communicate with and control the training.
However the API can also use Unity as the simulation engine for machine learning algorithms
(ML-Agents 2021a).

The third is the external communicator, briefly referenced in the second component, it is
responsible for connecting the learning environment with the Python Low-Level API, and it
lives within the learning environment.

The forth is the Python trainer, which contains all the machine learning algorithms that
enable the training agents. Those algorithms are implemented in Python and are part of
their own mlagents Python package. The packages exposes a single command-line utility
mlagents-learn that supports a couple of training methods and options. Python Trainers
interface only with the Python Low-Level API (ML-Agents 2021a).

The fifth is the Gym Wrapper, it’s not present in the figure 2.5. Usually machine learning
researchers interact with simulation environments via a wrapper provided by OpenAI called
gym. ML-Agents provides a gym wrapper in a dedicated gym-unity Python package that
allows using it with existing machine learning algorithms that use gym (ML-Agents 2021a).
Gym is an open source Python library used to develop and compare reinforcement learning
algorithms and environments, as well as a standard set of environments compliant with that
API. Gym’s API has been the field standard since it has been released (OpenAI 2022).

13

Chapter 2. State of Art

Figure 2.5: Simplified block diagram of ML-Agents (ML-Agents 2021a).

Exploring further the learning environment, it contains two Unity components to help orga-
nize the Unity scene. The first one are the agents, who are attached to a Unity GameObject
(GameObjects are any kind of object present in the Unity scene), and handles generating its
observations, performing actions received be it by inference or heuristic, and assigning posi-
tive and negative rewards. Agents are linked to the second Unity component, the behaviors,
which define specific attributes of the agent such as the number of actions that the agent
can take. Each behavior is identified by a Behavior Name field that needs to be unique.
Behaviors can be seen as functions that receive observations and rewards from the agent
and return actions. Behaviors can be one of three types: learning, heuristic or inference. A
Learning Behavior is one that is not defined but about to be trained. A Heuristic Behavior is
one that is defined by a hard-coded set of rules implemented in code. An Inference Behavior
is one that includes a trained Neural Network file. In essence, after a Learning Behavior is
trained, it becomes an Inference Behavior (ML-Agents 2021a).

Learning environments will always have one agent for every character in the scene. Each
agent must be linked to a behavior, agents with similar observations and actions can have
the same behavior, but different instances, this ca be seen in figure 2.6.

14

2.7. Related Work

Figure 2.6: Example block diagram of ML-Agents Toolkit (ML-Agents
2021a).

2.7 Related Work

This section contains works in the field of RL, IL and habitat simulation, that helped define
the course of action to develop this study.

2.7.1 Realistic animal behaviors in a virtual island

In this paper the authors created a virtual representation of the island of Chios located on
the East Aegean Sea. The simulation was created with Unity 3D, which is a game engine
that’s been growing in popularity and features.

The authors chose to use FL to simulate the animals behavior. In fuzzy systems the uncer-
tainty of the real world are met more appropriately due to the formation of soft or vague
boundaries instead of crisp boundaries (Ertan Turan 2019).

In this simulation the animals have three possible behaviors, they can be passive, cautious
or aggressive. Besides their behavior, they have a health system and a confidence level. By
combining this three variables, when another animal enters their field of vision, they chose
what seems to be the best option, fight or flight, or simply ignore the new presence.

2.7.2 Physical Habitat Simulation

In this study the authors created a physical habitat simulation, to predict the impact of weir
removal on the composition of fish community in the river. The simulation site was a 900

15

Chapter 2. State of Art

meters long reach in the Gongneung-cheon Stream in Korea, at the middle of which the
weir was located (Sung-Uk Choi 2018).

The simulation used ANFIS method, and the results were compared with those from a
knowledge-based model, achieving better results than the latter. The results predicted
correctly the change in the composition of fish community after the weir removal.

2.7.3 Machine Learning Algorithms in the Unity Environment

"Analysis of the possibilities for using machine learning algorithms in the Unity environment"
is a paper that studied the applicability of machine learning on the Unity platform while using
ML-Agents. Two algorithms were compared, PPO and Soft Actor-Critic and both algorithms
results were improved with GAIL. The final results showed that PPO can perform better
in uncomplicated environments with non-immediate rewards, and using GAIL improved the
learning performance (Karina Litwynenko 2021).

2.7.4 Imitation Learning for a Custom Gameplay Using ML-agents

This paper begins by highlighting how hard it is to obtain a realistic behavior for non playable
characters in a video game, and proposes the hypothesis that Unity with ML-Agents could
be used to create the desired behavior, without it being explicitly written via code.

The method that was chosen was RL with IL, the work begins by recording a real person
playing the game, collecting all the observations and actions. The results reported where
accurate, stating that the agent playing style was the same as the player that recorded the
training sessions, but when the agent was added to the environment it started moving slowly
due to the environment graphical complexity (Amira E.Youssef 2019).

16

Chapter 3

Methods

This topic will discusses the methods and tools that were used to create the solution devel-
oped in this study.

3.1 Technology & Tools

3.1.1 Hardware & Software

The development of the present study was made in a desktop computer with the following
specifications, a central processing unit (CPU) AMD Ryzen 7 2700 Eight-Core Processor
3.20 gigahertz (GHz), 16 gigabytes (GB) of random access memory (RAM) running at
a frequency of 3200 megahertz (MHz), an M.2 solid-state driver (SSD) with a storage
capacity of 500 gigabytes (GB) and a Nvidia RTX 2070 graphics processing unit (GPU)
with 8 gigabytes (GB) of memory. This hardware might be slightly outdated, but it still
performed decently when training neural networks and developing the training environments.

The used operating system (OS) was Windows 10 64-bit. This choice was made based on
the processor that has a 64 bit architecture, and the chosen game engine runs smoothly and
is well supported in Windows platforms.

3.2 Model Developed

The model was developed in Unity for a couple of reasons highlighted in the game engines
section, it’s light on the hardware, allowing developers to work remotely on low end machines.
Prototyping ideas is easy and fast, while still giving room to improve the final result and
polish it to high end quality. Has been used widely by professionals and academics alike
which proves how versatile it can be. Most importantly it has a dedicated AI toolkit library
called ML-Agents that allows the creation and usage of environments to train intelligent
agents.

ML-Agents toolkit documentation recommends PPO algorithm stating that the method
seems to work for most cases, and refers its stability (ML-Agents 2021a), also the paper in
the subtopic 2.7.3 highlights how PPO performs better in uncomplicated environments, and
when training agents to perform in complex scenarios, the training environments should be
task oriented and uncomplicated, before increasing the difficulty of the task.

17

Chapter 3. Methods

3.2.1 Environment

The agents are all trained in the same environment, a 3D aquarium that can be seen in the
figure 3.1. The green lined boxes that are visible, exist all around the aquarium, and are
there to prevent the intelligent agents from leaving the training area. If they try to leave
the training area, a method is triggered when colliding with the green boxes, that method
will destroy the agents and finish the training session, and spawn them inside starting a
new training session. Ending the session this way, awards the intelligent agents a negative
reward, as this is not the desired outcome from the training.

Figure 3.1: 3D aquarium environment used for the training.

The aquarium ground is responsible for spawning the seaweeds that the intelligent agents
will be eating to survive. In order to spawn those seaweeds, it uses a object pooling script,
its parameters can be seen in the figure 3.2. Using this object pooling script is very simple
and user friendly. For the seaweed only matters the "Object To Pool" that is the object that
will be spawned, the "Amount To Pool" represents how many objects should be spawned
at a maximum, the "Spawn Area" defines the area where they can be spawn, to prevent
objects being spawned outside the training area and the "Spawn Interval" sets the interval
for the objects to spawn.

18

3.2. Model Developed

Figure 3.2: Object pooling script parameters.

Spawning the seaweeds randomly plays an important role in the intelligent agents training,
if the training environment had a static object spawned in the same position training session
after training session, the agent could be learning to move to that position instead of learning
the goal is to collect the food. Figure 3.3 shows the desired result.

Figure 3.3: Aquarium with seaweeds randomly spawned.

Figure 3.4 has a close up of the seaweed 3D model, and the script attached to it. Since
the seaweed is just an object used to help train the intelligent agents, it only needs the
parameter "Caloric Value", that defines how many calories the agents get when eating the
seaweed.

Figure 3.4: Seaweed 3D model and attributes.

19

Chapter 3. Methods

3.2.2 Intelligent Agents

In this topic it will be discussed the intelligent agents that were developed in this study,
the components they have, they’re behaviors, the neural network used, reward system and
training environment.

Components

The intelligent agents contain two important basic components, the box collider and the
rigidbody, those are Unity components, that allow the intelligent agents to interact with the
environment and detect collisions. Figure 3.5 shows an example of a intelligent agent inside
its box collider on the left, and on the right it has the box collider and rigidbody components.

Figure 3.5: Intelligent agent box collider and rigidbody.

The intelligent agent attributes are set in the same script that can be seen in figure 3.3,
those attributes play a role in the training sessions, all attributes will be explained bellow.

"Life Span" is how long the agent is active, after that time the agent will be destroyed, it
serves two purposes, for the simulation it represents how long an animal can live, for the
training sessions can be used to prevent the agent from procrastinating, because when the
timer ends the agent will be destroyed and a negative reward will be given.

"Move Speed" defines how fast the agent can move itself and "Turn Speed" how fast he
can change direction.

"Caloric Ceiling" is how many calories the agent can store. "Calories Meter" is how many
calories the agent has to burn currently. "Caloric Value" is how many calories the agent
gives if other agents eats it. "Caloric Need Reproduce" is how many calories the agent
needs to have offspring’s. "Caloric Lost Reproduce" is how many calories the agent loses
when having offspring’s.

"Calories Cost Per Min" is how many calories the agent loses per minute or second, depend-
ing on the configuration. It can be used to give a negative reward in the same amount of
calories lost, preventing the agent from not taking action and staying still, and also simulate
death by starvation.

20

3.2. Model Developed

Figure 3.6: ML-Agents components.

The figure 3.6 shows the ML-Agents components used in the intelligent agents. In the
"Behavior Parameters" we have the "Behavior Name" which needs to be the same as the
neural network ID parameter.

"Vector Observations" defines how many observations we want to send to the neural net-
work, for example an Boolean variable uses 1 position, a Vector3 since it is 3 coordinates (x,
y, z) uses 3 positions. Observations should contain all the variables needed for the intelligent
agent to solve the given problem.

"Actions" defines how many branch’s of inputs the neural network can send to the intelligent
agent. Continuous means that the values can be floats, while in discrete the values are
integers. Each branch supports multiple inputs values, for example, in the figure 3.6 we can
see the branch 0 with 3 inputs, those 3 inputs represent left right and no action, so the
neural network can move the agent left right or not move it at all.

"Model" allows the agent to use a trained neural network, this is useful to use the intelligent
agent in a simulation or game.

"Inference Device" picks the inference mode that will be used to train the model, it supports
the following options. "Burst" inference, CPU using Burst, corresponds to CSharpBurst
in Barracuda. "CPU" inference, corresponds to in CSharp Barracuda. "GPU" inference,
corresponds to ComputePrecompiled in Barracuda.

"Behavior Type" defines from where the agent receives the inputs, if set as inference, it
receives them from the neural network, its used when training the neural network. Heuristic
option receives the inputs from the computer peripherals (keyboard, mouse, etc), its used
to test the intelligent agent and environment while developing, and can be used in IL. Set as
default it chooses between inference and heuristic depending on the first inputs it receives.

The "Decision Requester" component automatically request decisions for an intelligent agent
instance at regular intervals. "Decision Period" is the number of steps an agent can take
before requesting a decision. "Take Actions Between Decisions" indicates whether or not
the agent will take an action before requesting a decision.

"Demonstration Recorder" component allows the developer to start recording training ses-
sions, to be used in IL. "Record" whether or not to record the training session. "Num Steps
To Record" sets the number of steps that the component will record, if the value is 0 it will
record unlimited number of steps. "Demonstration Name" is the name the recording will
have, and "Demonstration Directory" is the saving folder.

21

Chapter 3. Methods

Figure 3.7: ML-Agents ray casting.

Figure 3.7 shows the "Ray Perception Sensor 3D" component. This component casts rays
with spheres on the ending side. By using this rays the intelligent agent can observe the
environment. "Detectable Tags" in Unity tags are a way to classify or categorize objects,
this parameter defines which tags the rays will be able to detect, defining which objects the
intelligent agent will be able to work with. "Ray Layer Mask" in unity the objects can be
distributed across layers, this parameter defines which layers the rays will be able to detect
objects, defining which layers the intelligent agent will be able to see. The rest of the
parameters are essentially used to change the rays attributes, on the left side of the figure
3.7 we can see an intelligent agent casting rays and the rays hitting in the different objects.

Attributes

The intelligent agents attributes have been set for training purposes only, they do not rep-
resent any resemblance to the real world, and are not based in any real animal. Nonetheless
all attributes can be changed by an expert if needed. In the figure 3.8 we can see the snail
intelligent agent and its attributes. The figure 3.9 contains the clownfish intelligent agent
and its attributes, it is inspired by the real world clownfish, but its not suppose to represent
a realistic counterpart.

Figure 3.8: Intelligent agent snail 3D model and attributes.

22

3.2. Model Developed

Figure 3.9: Intelligent agent clownfish 3D model and attributes.

Behavior

The snail behavior consists in eating the seaweed and increase its calories, when the snail
has enough calories it doesn’t need a mate to reproduce, it can use self fertilisation, this is
based in something that snails can actually do in nature. The cycle will repeat until the snail
life span ends.

In the clownfish behavior it also needs to ingest calories until it has the necessary amount to
reproduce. What differs from the snail is that the clownfish can’t use self fertilisation and
has to find an anemone. First a female has to place the eggs in the anemone, and then the
male can fertilize the eggs and the offspring’s will spawn from the anemone. We can see an
example of a clownfish next to an anemone in figure 3.10.

Figure 3.10: Clownfish agent swimming next to anemone.

23

Chapter 3. Methods

Neural Network

b e h a v i o r s :
C l own f i s h :

t r a i n e r_ t y p e : ppo
h y p e r p a r ame t e r s :

b a t ch_s i z e : 128
b u f f e r _ s i z e : 2048
l e a r n i n g _ r a t e : 0 .0003
be ta : 0 .005
e p s i l o n : 0 . 2
lambd : 0 .95
num_epoch : 3
l e a r n i n g_ r a t e_ s c h e d u l e : l i n e a r

n e two r k_s e t t i n g s :
n o rma l i z e : f a l s e
h i d d e n_un i t s : 256
num_layers : 2
v i s_encode_type : s im p l e

r ew a r d_s i g n a l s :
e x t r i n s i c :

gamma : 0 .99
s t r e n g t h : 1 . 0

g a i l :
s t r e n g t h : 0 . 1
demo_path : Demos/Clownf i shDemo . demo

keep_checkpo i n t s : 5
max_steps : 500000
t ime_hor i zon : 128
summary_freq : 20000
t h r e a d ed : t r u e

Listing 3.1: Yaml file used to configure the parameters of the neural network.

The YAML file 3.1 contains the configurations used to build the neural network. To under-
stand the different parameters and what values would be more fitting for model developed,
the ML-Agents documentation was used (ML-Agents 2021b). Right besides behavior the
word "Clownfish" can be read, that means the neural network will be used for the clownfish
behavior seen in the figure 3.6, if the name isn’t the same, the model wont work properly.
trainer_type was set to PPO, cause that’s the RL algorithm that is being used.

keep_checkpoints are the maximum number of model checkpoints to keep and it was set
as 5. max_steps are how many steps the agent must take in the environment before
ending the training session, the value was left at 500000, past this value the training would
return similar results and was just taking longer to end. time_horizon was set as 128, it
controls how many steps of experience to collect per-agent before adding it to the experience
buffer. summary_freq was set to 20000, it defines the number of experiences that needs
to be collected before generating and displaying training statistics, the generate graphs can
be seen in the Tensorboard. threaded was set as true, allow environments to step while
updating the model, it speeds up the training.

The hyper parameters were set as follow:

batch_size is the number of experiences in each iteration of gradient descent, the documen-
tation recommends PPO with discrete actions to be between 32 and 512, 128 was the value
picked to begin with, and can be changed later on if the training results aren’t satisfactory.

24

3.2. Model Developed

Next is the buffer_size, which is the number of experiences to collect before updating the
policy model, for PPO the documentation recommends between 2048 and 409600. The
buffer size should always be multiple times bigger than the batch_size, so the value as set
to 2048 to begin with.

learning_rate corresponds to the strength of each gradient descent update step. It was left
with the default value.

beta was also left with the default value, and is the strength of the entropy regularization,
it makes the policy more random. Increasing this value increases the agent random actions.

epsilon was also left with the default value, it corresponds to the acceptable threshold of
divergence between the old and new policies during gradient descent updating. Small values
result in more stable updates and slow training process.

lambd was also left as default, is the regularization parameter (lambda) used when calculating
the Generalized Advantage Estimate. It is how much the agent relies on its current value
estimate when calculating an updated value estimate.

emph_epoch was left as 3, number of passes to make through the experience buffer when
performing gradient descent optimization. It should increase as the batch_size is increased.
Reducing the value ensures more stable updates but slower learning.

learning_rate schedule determines how the learning rate changes over time. The documen-
tation recommends linear for PPO, so the value was set to linear. Linear means it will decay
the learning rate linearly, reaching 0 at max steps.

Changing to the network settings, are as follow:

normalize was set with default value false, it controls whether normalization is applied to
the vector observation inputs. This normalization can be helpful in cases with continuous
control problems, but can be harmful with discrete control problems, since the model uses
discrete actions, it was left as false.

hidden_units are the number of units in the hidden layers of the neural network. The more
complex the problem, the more hidden units should be needed, default value is 128, but in
this instance the value was set to 256.

num_layers are the number of hidden layers in the neural network. The value was set to
2, since those layers are enough for the problem that’s being solved, and increasing that
number would increase the training time and reduce its efficiency.

vis_encode_type is configured as simple. This is used to define the encoder type for
encoding visual observations, it uses a simple encoder which consists if two convolutional
layers. Due to the size of the convolutional kernel, the observations size can’t be lower than
20x20.

At last the reward signals are the following ones:

The extrinsic rewards strength was left as default 1.0, it’s the factor by which to multiply
the reward given by the environment. The extrinsic gamma was left as 0.99, it’s the dis-
count factor for future rewards coming from the environment. Since the agent has to take
immediate actions, its value should be bellow 1.

The GAIL intrinsic reward enables the use of the recorded training sessions to be used in
IL. The demo_path is the path of the .demo file with the recorded training sessions. The

25

Chapter 3. Methods

strength was initially set to 0.9, and gradually reduced to 0.1, it defines how much the
training will mimic the demos, in the begin the agent should mimic the demo until it is
trained for the task, and after that the value can be reduced to allow the agent to surpass
the human that recorded the training sessions.

Rewards

Achieving the correct value for the rewards, was a work of planning and trial by error. Positive
rewards will be discussed first with code examples.

When the intelligent agent is spawned, the first steps should be towards getting food, so
every time the intelligent agent gathers food, the ChangeCalories method that can be seen
in the code snippet 3.2 is invoked. The amount of the reward is the amount of calories eaten
divided by 10, doing this normalizes the value and keeps the reward value under control. This
way the model is scalable, and if more sources of food were to be added, the agent could
pick between them.

/// <summary>
/// Change the c a l o r i e s v a l u e a c c o r d i n g the g i v e n c a l o r i e s V a l
/// </summary>
p u b l i c f l o a t Chang eCa l o r i e s (f l o a t c a l o r i e s V a l)
{

AddReward (c a l o r i e s V a l / 10) ;
c a l o r i e s M e t e r = c a l o r i e s M e t e r + c a l o r i e s V a l ;
c a l o r i e s M e t e r = c a l o r i e s M e t e r <= c a l o r i c C e i l i n g ? c a l o r i e s M e t e r

: c a l o r i c C e i l i n g ;
r e t u r n c a l o r i e s M e t e r ;

}

Listing 3.2: Change calories method.

When the snail intelligent agent reaches the necessary amount of calories he has to re-
produce, when reproducing successfully it will be given a reward of 100. The clownfish
intelligent agent on the other hand, gets a reward of 200, since he can process the double
of the calories from the same food source.

All the positive rewards are covered. The negative rewards, the ones responsible from
preventing the intelligent agents from taking the wrong actions, will be explained bellow.

To force the agent to take action from the beginning, negative rewards are given as time
passes, the method responsible for that can be seen in 3.3. The amount of negative reward
is equal to the attribute "Calories Cost Per Min" seen in figure 3.9.

26

3.2. Model Developed

/// <summary>
/// Burn the c a l o r i e s c o s t p e r minute
/// </summary>
p r i v a t e v o i d B u r nC a l o r i e s ()
{

f l o a t c a l o r i e s = Chang eCa l o r i e s (c a l o r i e s C o s t P e rM i n) ;

i f (c a l o r i e s <= 0)
{

Die () ;
}

}

Listing 3.3: Burning calories method.

Any action that kills the intelligent agent will invoke the method 3.4, giving a negative
reward of -50. Currently those actions include trying to leave the training environment and
not consuming enough calories. More situations could easily be added, by simply detecting
the situation and invoking the method.

/// <summary>
/// Func t i o n to run when the agent " d i e s "
/// </summary>
p u b l i c v o i d Die ()
{

EndTra i n i n g (f a i l u r e , −50) ;
}

Listing 3.4: Die method.

When trying to reproduce without enough calories the snail intelligent agent receives a
negative reward of -100. The clownfish agent on the other hand, receives a negative reward
of -200 for the same reason explained before, receiving the double of the calories from the
same food sources.

Observations

ML-agents supports observations vectors that were briefly discussed in topic 3.2.2 and can
be seen in figure 3.6. The decisions the intelligent agent has to take, are based on the
observations it takes from the environment, but some variables needed for those decisions,
might not be in the environment, or might not be visible for the agent at a given moment.
That’s where observation vector can help, the developers can use them to send relevant
information to the intelligent agent, that it wouldn’t be able to gather any other way. The
observations needed for the project will be explained bellow.

The intelligent snail agent observations method can be seen in the code snippet 3.5. The
intelligent agent needs to know when its a good time to reproduce, and that information
can’t be gathered from observing the environment. The caloric value needs to be sent to
the intelligent agent, but instead of sending the amount of calories, its better to send a
Boolean, the model receives the value true or false and takes a decision, it won’t even know
what the true or false represent, but it will take actions depending on the value, and get the
reward accordingly, and learn from it.

27

Chapter 3. Methods

p u b l i c o v e r r i d e v o i d C o l l e c t O b s e r v a t i o n s (Vec to rSen so r s e n s o r)
{

canReproduce = c a l o r i e s M e t e r >= c a l o r i c C e i l i n g /
c a l o r i cNe e dRep r o du c e ;

s e n s o r . AddObse r va t i on (canReproduce ? 1 : 0) ;
}

Listing 3.5: Snail observations method.

The clownfish intelligent agent, also needs the observation containing the Boolean signaling
if it can reproduce or not. But besides that it needs a couple more information’s. Since the
it cant reproduce by itself and besides that needs to place/fecund its eggs in an anemone.
That said the intelligent agent needs 3 more observations in order to remember where the
anemone is if he strays too far. The distance to the anemone, the direction to the anemone
and the direction it is facing, this can be seen in the method 3.6.

p u b l i c o v e r r i d e v o i d C o l l e c t O b s e r v a t i o n s (Vec to rSen so r s e n s o r)
{

canReproduce = c a l o r i e s M e t e r >= c a l o r i c C e i l i n g /
c a l o r i cNe e dRep r o du c e ;

gameObject . tag = canReproduce ? " C l o w n f i s h F u l l " : " C l own f i s h " ;

s e n s o r . AddObse r va t i on (canReproduce ? 1 : 0) ;

s e n s o r . AddObse r va t i on (Vecto r3 . D i s t a n c e (h ideOut . t r a n s f o rm .
l o c a l P o s i t i o n , t r a n s f o rm . l o c a l P o s i t i o n)) ;

s e n s o r . AddObse r va t i on ((h ideOut . t r a n s f o rm . l o c a l P o s i t i o n −
t r a n s f o rm . l o c a l P o s i t i o n) . n o rma l i z e d) ;

s e n s o r . AddObse r va t i on (t r a n s f o rm . f o rwa r d) ;
}

Listing 3.6: Clownfish observations method.

Training PPO With Ray Casting

To train the agents ML-Agents provides two important methods, the OnEpisodeBegin and
the EndEpisode, that can be seen in code snippet 3.7 and 3.8 respectively. OnEpisodeBegin
method is invoke every time a new training session begins, and is useful to randomize the
agent spawn location all its attributes and randomize the agent shelter location if it has
one, this will prevent the agents from learning bad behaviors focused in going to a specific
coordinate instead of completing a specific objective like eating or reproducing. EndTraining
method was created to end the training session, give the reward, and give a visual feedback
to the developers and experts about how the training session went. EndEpisode method
belongs to the ML-Agents API and that’s what actually ends the training session.

28

3.2. Model Developed

/// <summary>
/// ML−Agents o v e r r i d e s
/// </summary>
p u b l i c o v e r r i d e v o i d OnEp i sodeBeg in ()
{

Can c e l I n v o k e () ;

c a l o r i e s M e t e r = d e f a u l t C a l o r i c M e t e r ;
t r a n s f o rm . r o t a t i o n = Qua t e r n i on . i d e n t i t y ;

i f (t r a i n i n g)
{

f l o a t x = Random . Range(− spawnArea . x , spawnArea . x) ;
f l o a t y = spawnArea . y ;
f l o a t z = Random . Range(− spawnArea . z , spawnArea . z) ;
t r a n s f o rm . l o c a l P o s i t i o n = new Vecto r3 (x , y , z) ;

i f (h ideOut != n u l l)
{

x = x > 0 ? x + 15 : x − 15 ;
z = z > 0 ? z + 15 : z − 15 ;
s h e l t e r SpawnA r e a = new Vecto r3 (x , y , z) ;
h ideOut . t r a n s f o rm . l o c a l P o s i t i o n = new Vecto r3 (x , y , z) ;

}
}

I n v o k e ("Die " , l i f e S p a n) ;
I n v o k eRep e a t i n g (" Bu r nC a l o r i e s " , 1 . 0 f , 1 . 0 f) ;

}

Listing 3.7: ML-Agents method OnEpisodeBegin overwritten.

/// <summary>
/// End ep i s od e , change env i r onmen t m a t e r i a l and add reward
/// </summary>
p u b l i c v o i d EndTra i n i n g (M a t e r i a l r e s u l t , f l o a t r ewa rd)
{

AddReward (r eward) ;

i f (t r a i n i n g)
{

env i r onmentBase . GetComponent<MeshRenderer >() . m a t e r i a l = r e s u l t ;
EndEp i sode () ;

}
e l s e
{

gameObject . S e tA c t i v e (f a l s e) ;
}

}

Listing 3.8: EndTraining method invokes EndEpisode ML-Agents method.

The training environment for the snails contains the aquarium that was previously developed,
and one snail in it. The snail has to adopt the pretended behavior explained in the previous
topic. When the training session is a success the ground remains yellow, if the intelligent
agent fails, the ground turns red. This visual effect allows the developers to detect problems,
for example if every single intelligent agent is succeeding and only one is failing, it could be
due to a specific reason in the environment that can be explored to fix the problem.

29

Chapter 3. Methods

With the training environment ready, the training sessions were recorded to be used later on
with GAIL in IL. The result of those demonstrations can be seen in figure 3.11. It has the
meta data, it contains the number of steps taken, the number of training sessions recorded
and the mean reward value, a good demo will have only the necessary amount of reward
for the desired behavior to be a success. It also contains the observations and the discrete
actions it can receive. More and better information in the demos will improve the training
success greatly.

Figure 3.11: Snail and clownfish recorded demos.

With the environment and the demos ready to be used, the intelligent agents could start
training. In the figure 3.12 we can see multiple intelligent agents training. The chosen
inference device was GPU, and 9 environments at once was the maximum the desktop could
handle without heavy stuttering.

The clownfish has all the same training characteristics discuss in the last paragraph, in
addition to the anemone seen in the figure 3.10, that spawns in a different place each
training season, otherwise the intelligent agent would be learning to move to a specific
location instead moving towards the anemone.

Figure 3.12: Multiple snails training, each with its own environment.

30

3.2. Model Developed

The snail was the first intelligent agent to be trained, since its behavior was more simple when
compared to the clownfish. Two training sessions were made, one with RL and one with IL,
the results can be seen in figure 3.13. This two training sessions had several problems that
will be explained later on, but to notice how the IL demo achieved higher rewards in less
time, it shows the potential in the technology.

Figure 3.13: Snail training IL (blue) vs RL (orange).

Figure 3.13 training sessions had two major problems in the intelligent agent, the intelligent
agent had no observation to notify it when he could reproduce or not, which was the main
objective of the training session, and the reward for trying to reproduce at the time was too
low, making the intelligent agent avoiding the action in search of bigger rewards.

After the observations were added and the rewards for successfully reproducing updated, a
new demo with training sessions had to be recorded, so the agent could have that additional
information when training. Figure 3.14 contains three training sessions. The red line one
was the first, with GAIL extrinsic strength of 0.9. In the blue line the GAIL was reduced
to 0.5. In the pink line the GAIL was reduced to 0.1. Its possible to see the reward value
got more stable, and the episode length reduced greatly, meaning the intelligent agent was
achievement the objective faster and efficiently.

Figure 3.14: Snail IL improved.

When it came to the clownfish many more training sessions were required, as can be seen in
figure 3.15, most of the training sessions have a reward value bellow 0, the intelligent agent

31

Chapter 3. Methods

was managing to collect food, but not to reproduce, cause it wasn’t finding the anemone
most of the times.

After some research it was clear the agent needed some way to remember where the anemone
was if he strayed too far away. So new observations were added, the direction the anemone
was, the distance to it, and the direction the agent was facing. A new demo was recorded
with this new observations, the GAIL extrinsic strength was set to 0.5 in the first new
training session, and the intelligent agent start achieving more satisfactory results. Those
results can be seen in 3.15, the two lines above 0. The second training session with the new
observations was done with GAIL extrinsic strength of 0.1, showing the intelligent agent
achieving a more stable reward value, and finishing the tasks way faster.

Figure 3.15: Clownfish IL training sessions.

Training PPO With Visual Sensor

As it could be seen in the previous topic, PPO with ray casting sensors works great for
training intelligent agents to simulate the behavior of animals, but there is one weakness
from the point of view of fidelity. Using ray casting sensor seen in figure 3.7 to detect the
other objects, is a great advantage since there’s no deceiving, the agent can clearly identify
everything and know exactly what they are. In nature some animals use vision, there’s
different type of vision and different type of sensors for those who don’t have sight, but
some sort of vision is a pretty common sense in nature.

In order to explore a solution based in visual observations, the snail intelligent agent will be
configured to do so. ML-Agents parameter vis_encode_type, explained in 3.2.2, allows the
use of two CNN to encode visual observations.

Besides the parameter set to the value simple, the agent needs a couple of changes as well,
to begin with the agent needs a camera sensor to capture the images that will be encoded by
the CNN, figure 3.16 shows the camera sensor component. The width and height parameter
are for the number of pixels in each direction. Gray scale is left unchecked since the images
need to have color. Observation stack is set to 1, if the agent had to track moving objects
that number had to be much higher. Observation type is left as default, the other option
would be to set it as goal signal, that would collect observations containing goal information.
Compression is set to PNG, and its the compression that will be applied to the generated
images.

32

3.2. Model Developed

Figure 3.16: Snail camera component.

The environment had to change as well, since the agent uses visual observations and the
environment boundaries are invisible, the agent wont be able to detect them and understand
how far it can go. Figure 3.17 shows the same scene rendered from a normal camera on
the left, and on the middle its possible to see the same scene, but from the intelligent agent
perspective, the differences are on the walls that are now blue instead invisible, and the
seaweed is a big green cube. Both changes are important to help the agent and reduce the
training time. On the right we have a third example of the same scene, and its an example
of image that’s sent to the CNN for encoding, sending low resolution images speeds the
process greatly, the objective is to reduce the resolution the maximum possible, while keeping
it with enough information for the intelligent agent to use.

Figure 3.17: Normal camera left. Agent camera center. PNG sent to the
CNN right. All representing the same scene.

To use IL with this new intelligent agent, a new demo had to be recorded, since the previous
demo used different sensors the information in it isn’t exactly the same. Figure 3.18 has a
demo recorded with camera sensor.

33

Chapter 3. Methods

Figure 3.18: Demo with the intelligent agent using camera sensor.

Figure 3.19 show’s the first two training’s with the new recorded demo. In the first training
the GAIL strength was set to 0.5, and in the second training the GAIL strength was reduced
to 0.1. In the first episode, the length was increasing with time, due to the quality of the
demo. Reducing the GAIL strength in the second demo, made the intelligent agent look
less to the demo, and improved over the mistakes that were done while recording the demo,
which decrease greatly the time the agent took to achieve the goal. The mistakes that
happened when recording the demo, where based on the difficulty in controlling the agent
with a first person camera. This highlights two important topics to have in mind when
developing such solution. The first one is that when using IL, is really important to record
sessions with quality. Second its about the camera and controls that are used to interact
with the agent, if the controls are not user friendly, the expert may not be able to recreate
the behavior he desires.

Figure 3.19: First and second training with camera sensor and CNN.

Figure 3.20 contains the second and third training session. The second session by the
end had already almost reach the desired behavior, but it could be improved, so the third
training session was configured to improve over the second, but without GAIL. Which give
the intelligent agent the ability to go straight to the goal without external noise from the
demo and reduce the episode length greatly.

34

3.2. Model Developed

Figure 3.20: Second and third training with camera sensor and CNN.

3.2.3 Results

To test the intelligent agents that have been trained, a new environment was created,
containing the seaweeds and anemones. The objective is to simulate what would happen if
the clownfish would invade the snail environment. Figure 3.21 is a screenshot taken during
the experiment.

Figure 3.21: Experimenting with clownfish and snail intelligent agents com-
peting for food.

Before spawning the agents, the seaweeds were left alone to populate to a maximum of
800 individuals, looking at graphic 3.22 its possible to see the seaweeds took around 110

35

Chapter 3. Methods

seconds to reach the 800 individuals milestone, with no predators. By the time 4 snails were
spawned in the environment, the seaweed population start dropping. When 4 clownfish were
introduced, it dropped drastically. Looking only to the seaweeds for now its clear that since
the predators were introduced it dropped to less then 2.5 percent of its peak, but then it
remained with a stable population.

Figure 3.22: Number of snail, clownfish and seaweeds during the experiment,
Y axis is for total number of agents, X axis is for time passed in seconds.

Looking at graphic 3.23, its possible to see a zoomed version of the graphic 3.22, and
its more clear what happened between the snail and the clownfish. The snails jumped to
almost 30 individuals, but by the time the clownfish were added, its population start dropping
drastically. It then raises again and eventually it dropped to 0 individuals while the clownfish
eventually seemed to hit a stable population for the available food sources.

36

3.2. Model Developed

Figure 3.23: Zoomed version of the graphic 3.22 containing only the snail
and clownfish.

This experiment was not planned and the agents attributes were given randomly. But the
results is what matters, cause it shows the potential of this study. By looking at the graphics
and the attributes its easy to conclude that the snails population dropped due to the food
sources dwelling when they start eating it too much and reproducing too fast. Also the
clownfish were added, and they move faster than the snails, and started competing with
them for food. The snails had the upper hand when reproducing since they didn’t need a
mate, but that wasn’t enough cause they were failing to get food, and as the clownfish
population rose, the snails had more and more competition, until they went instinct in the
environment.

Changing some variables, or changing the environment, would change the result, and that’s
the purpose of this study, while not a final solution, show whats possible, and is flexible
enough to try different scenarios.

37

Chapter 4

Conclusion And Future Work

This study had as main goal to see if it was possible to use intelligent agents based on
animals, to simulate the outcome of different species colliding with each others in a given
habitat. The results were positive, and show what could be possible to achieve in a more
structured and well financed project. It also helped to highlight some of the problems that
appear while developing such intelligent agents. The next topics will discuss all this in more
detail.

4.1 Contributions

The work developed in this study can help other students or professionals to understand the
different tools ML-Agents has, and how to use them in order to teach a desired behavior into
an intelligent agent. It also explains how to set up and configure a YAML file, containing all
the necessary parameters, what each one is and does. Different neural networks were used,
the process for using both of them was explained, the advantages and short comings are
well documented, making it simple to understand the strengths and weakness and making
it easy to choose between them. But mainly it shows that it is possible to use the virtual
world, to simulate the natural world, in a more safe inexpensive and ethical way.

4.2 Validation of the Research Hypotheses

The first question was the following, can experts create a realistic behaviors by using RL
with learning by imitation?

It was possible to show that IL is a very powerful tool, topics 3.2.2 and 3.2.2 show that’s
possible to create even a cooperation between two agents to reproduce, more complex
behaviors can be achieved and experts are really free to explore as far as they want.

The second question was if Can intelligent agents interactions be used to predict changes
in a given habitat population?

Topic 3.2.3 shows a experiment developed with the previously trained intelligent agents, and
the result and information left after the experiment can be diagnosed and the reasons for the
outcome can be study and addressed, the more complex and the more agents interacting
with each other in the simulation, the harder is to predict what would happen, but this
example with two agents, shows whats possible.

39

Chapter 4. Conclusion And Future Work

4.3 Final Remarks and Future Work Considerations

The study was satisfactory to research the hypotheses that were suggested, and it give a
glimpse of what can be achieved in the future. In topic 3.2.2 its possible to see an example
of the same snail intelligent agent created in the topic 3.2.2, but with visual sensors, this
opens the possibility to developed solutions where the agents can camouflage themselves,
and having agents camouflaging successfully and agents detecting those camouflages could
be a whole new study. There are many animal attributes missing, adding those attributes
would give more realistic simulation and increase the model complexity greatly. This are just
some examples of what can be done to improve this study, there are many more, since the
model is nature itself.

Besides predicting nature this study could be apply to video games. Some video games
have heavy focus in simulation, its a genre in itself. When speaking about simulations, it
could also be used to create realistic virtual reality experiences for users who may not be
able to have access to them, for example, if a specific habitat is close to the public due to
conservation issues, a virtual reality solution would give the second best option to experience
it. The future should go through simulating everything that’s possible and avoid unnecessary
cost and loss in nature.

40

Bibliography

Abraham, A. (2005). “Adaptation of Fuzzy Inference System Using Neural Learning”. In.
ML-Agents (2021a). ML-Agents Toolkit Overview. url: https://github.com/Unity-
Technologies/ml-agents/blob/main/docs/ML-Agents-Overview.md. (accessed:
10.10.2022).

– (2021b). Training Configuration File. url: https://github.com/Unity-Technologies/
ml-agents/blob/main/docs/Training-Configuration-File.md. (accessed: 10.10.2022).

Ahire, Jayesh Bapu (2018). The Artificial Neural Networks handbook: Part 1. url: https:
//www.datasciencecentral.com/the-artificial-neural-networks-handbook-
part-1/. (accessed: 10.10.2022).

Amira E.Youssef, Sohaila El Missiry (2019). “Building your kingdom Imitation Learning for
a Custom Gameplay Using Unity ML-agents”. In: doi: 10.1109/IEMCON.2019.8936134.

Arthur Juliani, Vincent-Pierre Berges (2018). Unity: A General Platform for Intelligent
Agents. Ithaca. doi: 1809.02627. url: https://arxiv.org/abs/1809.02627.

AXON, SAMUEL (2016). Unity at 10: For better—or worse—game development has never
been easier. url: https : / / arstechnica . com / gaming / 2016 / 09 / unity - at - 10 -
for-better-or-worse-game-development-has-never-been-easier/. (accessed:
08.01.2022).

Babuška, Robert (1998). Fuzzy Modeling For Control. Springer. isbn: 978-9401060400.
Bhatt, Shweta (2018). 5 Things You Need to Know about Reinforcement Learning. url:
https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html.
(accessed: 10.10.2022).

Bojarski M. Testa D.D., Dworakowski D. (2016). End to End Learning for Self-Driving Cars.
doi: 1604.07316. url: https://arxiv.org/abs/1604.07316.

D. H. Hubel, T. N. Wiesel (1959). “Receptive fields of single neurones in the cat’s striate
cortex”. In.

Darwin, Charles (1859). On the Origin of Species. Empire Books. isbn: 978-1619491304.
Erik Brynjolfsson, Tom Mitchell (2017). “What can machine learning do? Workforce impli-

cations”. In.
Ertan Turan, Gürcan Çetin (2019). “Using artificial intelligence for modeling of the realistic

animal behaviors in a virtual island”. In.
Failes, Ian (2021). Neill Blomkamp on what Unity’s volumetric capture brought to his

new horror film, Demonic. url: https://blog.unity.com/entertainment/neill-
blomkamp-on-what-unitys-volumetric-capture-brought-to-his-new-horror-
film. (accessed: 08.01.2022).

Federation, The National Wildlife (2020). Invasive species—they may not sound very threat-
ening, but these invaders, large and small, have devastating effects on wildlife. url: https:
//www.nwf.org/Educational-Resources/Wildlife-Guide/Threats-to-Wildlife/
Invasive-Species. (accessed: 08.01.2022).

Hajek, Petr (2010). Fuzzy Logic. url: https://plato.stanford.edu/archives/fall2016/
entries/logic-fuzzy/. (accessed: 20.01.2022).

41

Bibliography

J. A. Bradshaw K. J. Carden, D. Riordan (1991). “Ecological applications using a novel
expert system shell”. In.

Jang, Jyh-Shing R. (1991). “Fuzzy Modeling Using Generalized Neural Networks and Kalman
Filter Algorithm”. In.

Jiang Hua, Liangcai Zeng (2021). “Learning for a Robot: Deep Reinforcement Learning,
Imitation Learning, Transfer Learning”. In: doi: 10.3390/s21041278.

John Schulman, Oleg Klimov (2017). Proximal Policy Optimization. url: https://openai.
com/blog/openai-baselines-ppo/. (accessed: 29.01.2022).

Jun LAI Xi-liang CHEN, Xue-zhen ZHANG (2019). “Training an Agent for Third-person
Shooter Game Using Unity ML-Agents”. In.

Jyh-Shing Roger Jang Chuen-Tsai Sun, Eiji Mizutani (1997). Neuro-Fuzzy and Soft Com-
puting: A Computational Approach to Learning and Machine Intelligence. Pearson College
Div. isbn: 978-0132610667.

Karina Litwynenko, Małgorzata Plechawska-Wójcik (2021). “Analysis of the possibilities for
using machine learning algorithms in the Unity environment”. In: doi: https://doi.org/
10.35784/jcsi.2680.

Kleene, S. C. (1956). “Representation of Events in Nerve Nets and Finite Automata”. In.
Klimasauskas, CC (1989). “The 1989 Neuro Computing Bibliography”. In.
Kuefler A., Morton J. (2017). Imitating driver behavior with generative adversarial networks.

doi: 1701.06699. url: https://arxiv.org/abs/1701.06699.
Kumar V. Gupta A., Todorov E. (2016). Learning Dexterous Manipulation Policies from

Experience and Imitation. doi: 1611.05095. url: https://arxiv.org/abs/1611.05095.
Laboratory, Pacific Northwest National (2021). Neural Networks. url: http://www.emsl.
pnl.gov:2080/docs/cie/neural/neural.homepage.html. (accessed: 08.01.2019).

Lawrence, Jeannette (1994). Introduction To Neural Networks: Design, Theory, and Appli-
cations, Sixth Edition 6th Edition. California Scientific Software. isbn: 978-1883157005.

Mahajan, Chetanya (2020). “Reinforcement Learning Game Training : A Brief Intuitive”. In.
Merel J., Tassa Y. (2017). Learning human behaviors from motion capture by adversarial

imitation. doi: 1707.02201. url: https://arxiv.org/abs/1707.02201.
Miodrag Petkovic Ilija Basicevic, Dragan Kukolj (2018). “Evaluation of Takagi-Sugeno-

Kang Fuzzy Method in Entropy-based Detection of DDoS attacks”. In: doi: 10.2298/
CSIS160905039P.

Mohaiminul Islam Guorong Chen, Shangzhu Jin (2019). “An Overview of Neural Network”.
In.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.
isbn: 978-0262018029.

N. Murata, S. Yoshizawa and S. Amari (1993). “Learning curves, model selection and com-
plexity of neural networks, in Advances in Neural Information Processing Systems 5”. In.

OpenAI (2022). Gym. url: https://github.com/openai/gym. (accessed: 10.10.2022).
Peace, Green (2020). 18 animals that became extinct in the last century. url: https :
//www.greenpeace.org.uk/news/18-animals-that-went-extinct-in-the-last-
century/. (accessed: 08.01.2022).

Pelletier, Francis Jeffry (2000). “Petr Hájek. Metamathematics of fuzzy logic. Trends in
logic, vol. 4. Kluwer Academic Publishers, Dordrecht, Boston, and London, 1998, viii +
297 pp.” In.

Pharr, Matt (2005). GPU Gems 2: Programming Techniques For High-Performance Graphics
And General-Purpose Computation. Addison-Wesley Professiona. isbn: 978-0321335593.

42

Bibliography

Pramoditha, Rukshan (2021). The Concept of Artificial Neurons (Perceptrons) in Neural
Networks. url: https://towardsdatascience.com/the-concept-of-artificial-
neurons-perceptrons-in-neural-networks-fab22249cbfc. (accessed: 10.10.2022).

Robert Ornprapa P. Kumsap Chamnan, Suksuchano Sibsan (2019). “Modeling realistic 3D
trees using materials from field survey for terrain analysis of tactical training center”. In.

Segismundo S. Izquierdo, Luis R. Izquierdo (2018). “Mamdani Fuzzy Systems for Modelling
andSimulation: A Critical Assessment”. In: doi: 10.18564/jasss.3660.

Simeone, Osvaldo (2018a). “A Brief Introduction to Machine Learning for Engineers”. In.
– (2018b). “A Very Brief Introduction to Machine Learning with Applications to Commu-

nication Systems”. In.
Spencer, Herbert (1864). Principles of Biology. Univ Pr of the Pacific. isbn: 978-0898757941.
Sung-Uk Choi Dongkyun Im, Seung Ki Kim (2018). “Physical Habitat Simulation with ANFIS

Method”. In.
Y. C. A. Padmanabha Reddy P. Viswanath, B. Eswara Reddy (2018). “Semi-supervised

learning: a brief review”. In.

43

