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ABSTRACT
The adoption of Software Defined Networks (SDNs) in a Mobile
ad-hoc network (MANET) could present several benefits, such as
adaptability and performance increase. However, to assess this pos-
sibility, a simulation tool may be necessary to test new protocols
and solutions in a large combination of scenarios and traffic pat-
terns, without the need of real equipment. Unfortunately, few tools
are available for wireless SDNs, and none have the ability to also
support MANETs with multiple radio access technologies. While
NS-3 has the ability to simulate heterogeneous MANETs, it does not
support wireless OpenFlow capable devices or wireless OpenFlow
channels. In this work we present a simulation environment that,
besides creating an ad-hoc data plane, enables the possibility of cre-
ating wireless hybrid SDN devices capable of connecting to legacy
devices, alongside with an LTE OpenFlow channel connected to
an external SDN Controller (RYU). Results show that the simula-
tion environment supports large networks with both legacy and
SDN devices, although these will bear an effective running time
higher than their simulation time. Moreover, when comparing to
an OLSR-only network, the proposed network (with a basic path
search metric) has the same or higher performance.

CCS CONCEPTS
• Networks→ Network simulations; Hybrid networks; Pro-
grammable networks; Mobile ad hoc networks.
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1 INTRODUCTION
SDNs have been studied for many years promising a more efficient,
dynamic and programmable network management compared to the
traditional routing protocols [11]. Still, the majority of the works
published in the literature are focused on wired environments, i.e.
the SDN domain is restricted to non-mobile network nodes [15].

The adoption of SDN in Wireless Local Area Networks (WLANs)
is inevitable, as they are one of the most common access technolo-
gies. Moreover, SDN in WLANs can have several benefits, such as
efficient network management, unified management of wired and
wireless networks, unplanned and uncoordinated deployment, flex-
ible control, and improvement of quality of service [28]. In WLANs,
several access technologies can share the spectrum. By removing
the control from the devices, the controller can gain a global view,
allowing a dynamic selection of data transmission schemes, efficient
allocation of radio resources, and better handover policies, thus,
improving the use of bandwidth resources and Quality of Service
(QoS) [24].

Among the several WLANs, we have Mobile Ad-Hoc Networks
(MANETs): their elements are capable of moving around, creating
connectivity links with other mobile elements and/or with the
infrastructure - through Access Points, also denoted as Points of
Attachment - for extended connectivity, including the Internet.
Amongst the several scenarios where these networks can be useful,
one can enumerate vehicular networks for the dissemination of
traffic-related information and infotainment purposes [36], or even
in more critical scenarios such as disaster recovery or military
operations [15, 33].

In MANETs, it is common for a single node to not have all the
information about the network in order to determine if a given
path has sufficient resources for a certain QoS or to perform load
balancing features, to name a few. This limitation is sometimes
related with the decentralized nature of these networks or with the
energy-constrained characteristic of its elements. Therefore, it is
suitable to have a global point of view capable of taking control
decisions. The SDN approach can be used to overcome this problem
by gaining global knowledge of the available topology, state, and
requirements, providing a better QoS [2]. Still, the introduction
of the SDN paradigm in such networks is far from being an easy
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task. From one side, these networks are frequently built with het-
erogeneous devices, and therefore, the network needs to support
legacy and SDN-based devices. On the other hand, the introduction
of a centralized control (SDN controller) still remains a challenge
in MANETs, where many works believe that the benefits brought
by the SDN centralized control are worth the application to such
networks [15].

Simulation or emulation platforms are a tool to facilitate the
evaluation of network-related mechanisms and new approaches.
Several platforms exist for SDNs and OpenFlow, being the most
common ones NS-3 [30] and MiniNet [16]. However, only NS-3
supports the deployment of mobile wireless nodes with multiple
radio access technologies. Moreover, as previously referred, in a real
ad-hoc scenario, not all devices may be SDN capable, as devices are
chosen opportunistically as they are available. Therefore, a simula-
tion approach should account for the existence of legacy devices in
the MANETs. Furthermore, the most widely accepted southbound
interface, OpenFlow, does not support wireless environments [28],
which is incompatible with an ad-hoc environment.

In this paper we propose an NS-3 SDN and wireless simulation
environment capable of supporting different technologies, in a wire-
less ad-hoc data plane with both legacy and SDN devices. Moreover,
this platform supports different technologies, such as WiFi and cel-
lular networks. This simulation platform is tested in a WiFi mobile
ad-hoc network, with legacy and SDN-capable devices, a cellular
OpenFlow channel, and an external Controller. Results show that
the platform can be scalable, and when compared to an OLSR-only
network, the proposed solution can have the same or better perfor-
mance while not taking full advantage of the centralized control.
Moreover, this work will be made available to the NS-3 community
for the support, for the first time, of legacy and SDN nodes in the
same scenario.

This paper is organized as follows. The related work is discussed
in Section 2. The proposed approach for the simulation of spon-
taneous wireless hybrid SDN, in both wireless ans cellular net-
works, is addressed in Section 3 (architecture) and 4 (controller and
Openflow channel). The simulation performance is presented and
discussed in Section 5. Finally, Section 6 concludes the paper and
discusses future research directions.

2 RELATEDWORK
Network simulators can be used to evaluate network approaches
related to routing protocols, controller placement, scalability and
others [6, 18]. The most popular open source network simulators
are NS-2 [12], NS-3 [30], OMNET++; usually, NS-3 is the fastest
simulator and is suitable for large networks [19].

Moreover, specifically for SDN environments, EstiNet [35] and
MiniNet [16] are evaluated in [34], in which EstiNet has a better
accuracy for larger networks, but lower time efficiency.

2.1 MiniNet
MiniNet supports fast prototyping using limited resources [21]. It is
lightweight on virtualization features and network namespaces. It
also allows to debug in real time, while NS-3 does not. The forward-
ing devices are OpenFlow switches, also known as open vSwitches,
and the links are developed using Ethernet or Wi-Fi in the version

Mininet-WiFi. However, it lacks any other technology support, and
mobility modeling [4].

2.2 Hybrid (OpenNet)
Chan et al. [4] proposed a hybrid simulator, joining NS-3 and
MiniNet. They integrate MiniNet controllers in NS-3 to overcome
the lack of controllers compatibility and the incomplete handover
process. This solution, called OpenNet, supports wireless networks
given by NS-3 and controller compatibility, enabling handover in
mobile nodes in different channels. However, it is not a maintained
simulator, being the last release on September of 2017. Moreover, it
is only compatible with Ubuntu version 14.04.5, that ends its life
on 2022.

2.3 Network Simulator 3 (NS-3)
NS-3 has been created to support traditional network protocols;
it also supports SDN. However, this official module only supports
version 0.8.9 of the OpenFlow protocol [26]. Moreover, because
real OpenFlow controllers are user-level programs, they cannot be
compiled and linked with NS-3. Thus, only controllers specifically
developed for NS-3 can be run [27].

Chaves et al. [7] developed an enhanced module called OF-
Switch13, that includes all features of OpenFlow version 1.31, where
External libraries are linked and compiled with NS-3 simulation
engine in order to simulate the operations between forwarding
devices and controllers. However, it does not support wireless tech-
nologies or hybrid routing mechanisms. Moreover, this module in
NS-3 has several disadvantages: (1) at run-time, the manager cannot
add or remove nodes from the simulation; (2) it has limited support
for SDN controllers; and (3) in SDN, the handover process is not
implemented completely. However, it also has the advantages of
supporting several communication technologies, mobility patterns,
protocols, and others, with the support of a big community, having
several testbed platforms for wireless heterogeneous SDNs [8, 10].

Park et al. [14] proposed a testbed in NS-3 simulator for wireless
heterogeneous software defined networks, where OpenDayLight
is used as the controller with tap bridging to solve the support
and realism regarding controllers. However, the source code is not
public, and OpenDayLight only supports version 1.0 of OpenFlow
[17].

Manjeshwar et al. [23] developed a SDN-based network architec-
ture in NS-3 for unified control of multiple radio access technologies.
Despite proving that this architecture improves the performance
of the proposed approach, only the base stations are OpenFLow
enabled devices.

Shastry et al. [32] uses a mesh network to connect legacy devices
to wireless switches. However, the switch acts as a cluster head, and
is connected by a wired link to the controller. Labraoui et al. [20]
developed a NS-3 platform with out-of-band controller in an ad-hoc
environment. The hybrid SDN-OLSR protocol proves to outperform
three of the most widely used MANET routing protocols (AODV,
DSDV, and OLSR). However, the architecture uses a mesh network,
which many off-the-shelf devices may not support.

1http://www.lrc.ic.unicamp.br/ofswitch13/
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2.4 Hybrid SDN
By having a MANET, which uses the already in-place devices, we
can combine it with the advantages of an SDN architecture, there-
fore having a hybrid SDN without the need to replace the existing
legacy devices [9]. A hybrid architecture can be achieved by (1)
having hybrid SDN-capable devices [3], or (2) by deploying SDN
switches as gateways in a legacy network [22]. However, this last
approach increases the traffic and load in those switches, and cre-
ates points of failure. Moreover, in order for the SDN device to
communicate with the legacy devices, it has to run a common rout-
ing protocol, making the first solution the most adequate for our
problem. However, such device does not exist in NS-3.

Several works have tried to support SDN and cellular networks,
or SDN and wireless environments in the several network simula-
tors. However, to the best of our knowledge, works with multiple
radio access technologies and the ability to support multi-hop for-
warding through both legacy and SDN-based devices on a mobile
ad-hoc scenario are still lacking. With this work, our contribution
is an NS-3 simulation environment with WiFi and cellular technolo-
gies, capable of supporting both legacy and SDN network elements
in an ad-hoc opportunistic environment.

3 SIMULATION ARCHITECTURE
Our approach supports multi-hop forwarding through both legacy
and SDN-based devices in a mobile ad-hoc network with multiple
radio access technologies. However, as stated before, NS-3 does not
support SDN devices in a MANET context, hybrid SDN networks,
or even a wireless OpenFlow channel.

NS-3 contains an SDN controller in its platform, the ofswitch13.
Despite ofswitch13 module is capable of supporting a newer version
of OpenFlow, it does not support wireless technologies or hybrid
routing mechanisms. A better approximation to the reality can be
achieved by using an existent external controller, instead of a devel-
oped internal one. The ofswictch13 module enables the connection
to an external controller through a tap bridge interface. However,
this functionality was developed for Floodlight 1.2 controller, and
other newer controllers have not been tested or implemented. The
ofswitch13 module was built under the assumption that each SDN
switch is connected to the controller by a Point-to-Point or Ether-
net connection, which in a MANET cannot be supported, as the
SDN-capable devices can also be mobile. Therefore, an wireless
OpenFlow Channel needs to be implemented.

Figure 1 shows the architecture of the proposed simulation en-
vironment, where an external controller is connected to the NS-3
platform. Furthermore, the proposed simulation environment can
run in a docker container, so that multiple instances can be ran
simultaneously and independently from the computer’s configura-
tions. However, the proposed platform only supports one external
controller, which is described in Section 4.1.

The proposed NS-3 simulation environment is composed of an
LTE eNodeB, described in Section 4.2, several nodes (hence forth
referred to as legacy devices), and several Hybrid SDN (H-SDN)
devices, described in Section 3.1. To create a MANET, the data
plane needs to work under ad-hoc mode, where each H-SDN device
needs at least one wireless interface in this mode. Moreover, despite
the original ofswitch13 module supporting virtual interfaces, the

Figure 1: Proposed simulation environment - architecture
overview.

proposed platform only works under the assumption that an Open-
Flow port is mapped to a physical interface. In order for the SDN
device to be connected to the legacy devices, a common routing
and discovering protocol needs to be used.

Furthermore, in these networks, heterogeneous devices may
exist with several different radio access technologies; however, each
technology has an unique network address so that the controller
can distinguish each interface’s technology.

3.1 Hybrid Device
Figure 2 depicts how each module is connected to create the hy-
brid device in this SDN-enabled simulation environment. The blue
modules and interfaces are the ones already existing in NS-3. The
rose modules are the ones that had to be changed for the proposed
simulation environment.

Figure 2: Hybrid Device architecture.

When a packet is received (except on the control interface), the
monitoring tool gathers link measurements on both the physical
andMediumAccess Control (MAC) layers. Afterwards, the received
packet, depending on the connection to the controller, can go to
the traffic control module, which then forwards it to the upper OSI
layers, or the OpenFlow module.

When the OpenFlow pipeline is selected, before entering the
pipeline, a header change is performed if the packet was received
in a Wi-Fi interface. This mechanism is further explained in Sec-
tion 3.1.2.

Moreover, several features were added to the proposed node:
• ’Keep Alive’ mechanism;
• Wireless OpenFlow ports;
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• Workflow manager;
• Locally created packets are sent to the OpenFlow tables;
• LTE OpenFlow Channel;
• Monitoring Tool;
• Logging Tool.

3.1.1 OpenFlow Module: ofswitch13. As mentioned in Sec-
tion 2.3, the ofswitch13 library was used to implement the Open-
Flow node. However, this module does not have support for wireless
interfaces, wireless OpenFlow channels or any other hybrid mech-
anism2. Figure 3 shows the new developed class that works with
the ofswitch13 library. This new module has four main functions:
• InstallSwitch: Responsible for installing wireless inter-
faces as OpenFlow ports, along with the legacy routing pro-
tocol. Moreover, it also installs the Energy model (BasicEner-
gySource) on the node;
• InstallExternalController: Hybrid OPF Device Helper
only supports calling this function if the Channel type is
SINGLECSMA or SINGLELTE. textitSINGLECSMA is the de-
fault behaviour from the library. In textitSINGLELTE the
LTE infrastucture, eNodeB, and the Controller are created.
• CreateOpenFlowChannels: If the Controller was created by
the above function, it only allows the two mentioned Chan-
nel Types. In SINGLELTE, a new LTE interface is added to
the nodes installed as switches. Afterwards, each node is
connected to the eNodeB installed before.
• SendStatsMsgtoCtrl: This function is responsible for sched-
uling the periodic Experimental message that is sent to the
controller, as will be described later in Section 5.1.

Changing the OpenFlow channel from a CSMA or point-to-point
interface to a wireless interface creates the problem of connection
loss, where an alternative behaviour needs to be implemented for
the situation when the connection is broken. Each time an Open-
Flow message is sent or received, the module sends a message to a
callback stating that a message from or to the controller was sent.
This starts the ’Keep Alive’ mechanism, where the state machine
instantiated in the NetDevice class will parse these messages to
evaluate the connection to the controller.

Several changes were made to theWifiNetDevice class, as shown
in Figure 4. These changes have to be performed on every wireless
NetDevice that is mapped as an OpenFlow port.

3.1.2 Net Device Class. This class has a state machine with two
states BrokenConn or Connected, where if the connection to the
controller does not exist, the node behaves like a legacy device
(state BrokenConn), and if there is one, it behaves like an SDN node
(Connected state). This state machine is one of the components of
the previously mentioned ’Keep Alive’ mechanism. This mechanism
requires the controller to send an OpenFlow Echo reply message
after receiving five experimenter messages from the same H-SDN
device. These replies act as an Acknowledge message to the exper-
imenter messages. As stated before, the OpenFlow module sends
a message to the WorkflowMonitor function, stating that a packet

2The ofswitch13 module, on release 3.29, had an issue on the Ethernet 802.3 packet
header parsing, whose solutions were published on the git repository of the ofswicth13
library (https://github.com/ljerezchaves/ofswitch13/issues/43). Moreover, other minor
issues were fixed.

Figure 3: Hybrid device NS-3 helper.

Figure 4: Changes to NetDevice module on NS-3.

was received or sent to the controller. When more than five exper-
imenter messages are sent without any message being received,
the connection is considered broken, passing to BrokenConn state.
Afterwards, all packets are forwarded by the function ForwardUp
to the upper layers until the connection is re-established. If the
connection is up, the packets are sent to the OpenFlow module by
the callback m_openFlowRxCallback.
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Figure 5: Header change scheme.

If the received packet’s interface is a wireless one, a header
change needs to be performed, so off-the-shelf OpenFlow solutions,
like the ofswitch13 library, can be used. This solution was adopted
because it does not increase the overhead in the wireless link on the
Data Plane (DP), like tunneling solutions [31]. Another advantage
is that it does not require the 4addr mode [29], which many off-the-
shlef devices do not support, not restraining its adoption to real
environments.

Figure 5 shows how the header change process is done for an ex-
emplary IEEE 802.11 frame. The receiver and transmitter addresses
are mapped to IEEE 802.3 source and destination addresses. After
this packet is set to be transmitted through a wireless interface, the
transmitter address is filled with the wireless interface’s IP, and the
receiver is given by the Rule on which this packet matched in the
tables.

Another feature of the H-SDN device is the ability to forward
created messages through the OpenFlow tables. Each message that
is created and reaches the function Send or SendFrom is sent to
the OpenFlow Callback, which then uses the function OPF_Send to
send the message to the desired output interface.

Moreover, the OPF_NORMAL output port action was also im-
plemented by the function OPF_ForwardUp, which receives the
messages sent to this OpenFlow port and forwards them to the
upper layers of the node to be treated like in a legacy device.

3.1.3 Monitoring Tool. This tool gathers device and link mea-
surements in a passive way by the received messages, and in an
active way by receiving packets sent by the controller from a neigh-
bour, therefore making it a hybrid tool.

Functions MonitorSniffRx, MonitorMacRx, MonitorMacTx, shown
in Figure 6, are the functions mapped to the trace sources from
the Phy/Rx, MacRx and MacTx, respectively. They are then used to
gather and calculate measurements like SNR, delivery ratio, band-
width, and delay. These are in turn used to compile the experimenter
message used by the topology discovery process in the controller
(described in Section 5) along with information from the local rout-
ing tables.

3.1.4 Logging. The logging module, whose class is represented
in Figure 7, is a tool that gathers measurements from the simula-
tion’s state every second, saving it to a file for later analysis.

Figure 6: Quality monitor class.

Figure 7: Logging Classes.

For each wireless interface mapped as an OpenFlow port, the
module subscribes to the trace sources of the Received and Drop
packets in the physical layer, and the received and sent packets in
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the MAC layer. Moreover, it also subscribes to the trace sources of
the packets output by the OpenFlow module to the legacy upper
layers, and the received and created packets from the Ipv4L3Protocol.
With all these functions, the module can gather measurements from
the control channel (like, for example, howmany OpenFlow packets
the node has received), and from the wireless interfaces (like the
number of packets received or dropped). However, in NS-3, we
cannot differentiate from dropped packets by collision from the
dropped packets from propagation loss.

For the delay variable, the MacTx Trace source on the legacy
devices needs to be subscribed, so that the delay can be calculated.
In a real network, the network protocol can timestamp the packets,
so no modules need to be inserted in the legacy devices.

4 CONTROLLER AND OPENFLOW CHANNEL
4.1 Ryu Controller
As mentioned before, the ofswitch13 module enables the use of
external controllers to NS-3 through a tap bridge interface. A better
approximation to reality can be achieved by using an existing (in
use) controller.

Zhu et al. [37] compared most of the existing SDN controllers.
From the more common controllers, both OpenDayLight and ONOS
used Java as their programming language. However, there are a
lot more applications written in Python available online. RYU and
POX use such language, and RYU is one of the only controller that
supports the newer versions of OpenFlow.

Therefore, despite the fact that RYU has a centralized architec-
ture, it was chosen because of its popularity in the open source
community, its versatility (applications can be rapidly developed
by using python), and its support for OpenFlow version 1.3, which
is compatible with the NS-3 ofswitch13 module.

The simulation, when using an external controller, should use
the RealtimeSimulatorImpl. However, because the simulation time
on a scenario with more than 4 H-SDNs is slower than in the real
time, the default SimulatorImplementationType is used. The delay
from the controller is therefore not constant, since it depends on
the number of events processed by the NS-3 in the time that the
controller takes to process the message and respond to it. However,
a delay can be added to the packets entering the tap bridge, if
needed.

4.2 Wireless OpenFlow Channel - LTE
Southbound interfaces were designed with Ethernet in mind. How-
ever, for mobile nodes, the OpenFlow channel needs to be wireless.
Adapting such interface to wireless links comes with challenges,
such as the increasing time between request and reply, more fre-
quent connection loss, lack of coverage, etc..

Taking into consideration all the wireless technologies provided,
LTE was chosen due to the ratio between covered area and band-
width for more demanding services like video transmission and
others. In a real scenario, the controller would be in a remote lo-
cation, accessible through the Internet. In NS-3, this description
is emulated by a remote host connected to a network that has ac-
cess to the LTE Core. Moreover, Figure 8 shows an example of
this connection to two hybrid SDN devices, where one eNodeB

provides coverage to the entire scenario. This is done by the func-
tion InstallExternalController shown in Figure 3, where one
eNodeB is installed and a CSMA channel is created between the
PGW node and the controller to simulate the Internet. This CSMA
interface in the controller is then used by the tap bridge module to
connect to the External Controller.

Afterwards, in the function CreateOpenFlowChannels, each H-
SDN is attached to the eNodeB. However, because the Internet
backbone is not configured, and is being simulated by a CSMA link,
the ARP tables in the remote host need to be updated manually
with the H-SDN LTE interfaces’ IP and the MAC of the PGW. This
is done by the function PopulateARPCacheWithSDNinterfaces,
and only then is the OpenFlow channel configured.

Afterwards, the Ryu controller is connected to the remote host
node by a tap bridge interface, and the respective routes are added
in the operating system, so the RYU controller knows where to
send the OpenFlow packets.

Figure 8: Simulation environment with an Out-of-band Open-
Flow channel (from each H-SDN device to the Remote Host)
connected to an NS-3-External Controller.

5 ROUTING APPLICATION AND TOPOLOGY
DISCOVERY PROCESS

The routing is performed like in a normal SDN routing application,
by sending a Packet_Out message with the actions for the received
Packet_In message, or sending an OpenFlow Modification message
with the rule for a specific matched field.

In the proposed platform two distinct handlers are used to parse
a packet: the ARP and IP handlers. They use the topology graph
(networkx library Graph) to search for a path to the destination
using the Dijkstra algorithm [13]. If no path is found, the packet is
sent to the legacy upper layers. However, in order for the routing
application to work, the controller needs an accurate and up-to-date
view of the entire network, provided by the topology discovery
mechanisms. If such mechanisms do not work properly, this will
affect the routing logic and decreases the performance [1]. The
frequency of such updates is a trade-off between network overhead
and accuracy. For scenarios with less movement, the updates can
be less frequent.

SDN controllers useOpenFlowDiscovery Protocol (OFDP), which
encapsulate Link Layer Discovery Protocol (LLDP) frames in an
OpenFlow packet-out message. Nevertheless, because the inter-
faces are wireless, the topology discovery process cannot be the
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same used for Ethernet links, and adapting this protocol to wireless
environments has several limitations [5]:
• The assumption that links are point-to-point, which is not
true in wireless networks;
• A wireless link does not have a binary state (on/off) like
wired links;
• LLDP protocol is not prepared to provide node or link related
attributes.

Therefore, we propose the following topology discovery mecha-
nism that takes advantage of Packet_In messages (like in a normal
SDN routing application), and the Experimenter messages sent by
each H-SDN.

Figure 9 shows how the topology discovery mechanism works
when receiving a Packet_In message. When a Packet_In message is
received, Node 1 can update the datapath_id and port_no from the
OpenFlow header. Moreover, the isOF flag can be set to true because
the sender’s node is an H-SDN node. Afterwards, depending on the
type of technology, the MAC header is parsed, which in a wireless
link, indicates that the Node 2 is directly linked to Node 1. However,
because it is a wireless link, Node 2’s IPv4 address may not be the
same address carried by the packet.

Figure 9: Topology discovery mechanism: Packet_In

When the IP Handler is used and a direct packet is received (like
for example an OLSR Hello message), we can conclude that Node 2’s
ipv4_addr is the source IP address. However, when other IP packets

Figure 10: ARP handler behaviour.

are received (IP Handler), nothing can be updated in Node 2. We
can only infer that two nodes exist, one with the source IP address
(Node 3), and the other with the destination IP address (Node 4).

When the ARP Handler is executed, two behaviours can happen,
as shown in Figure 10. The behaviour 1 (in black) is based on the
ARP Handler used by RYU, in which the controller replies to the
ARP request. The behaviour 2 (in pink) sends the ARP messages to
the legacy upper layers, so the local ARP table can be constructed.
The second behaviour is advantageous for networks with a faulty
controller connection because it takes less time to fill the local ARP
table in case the H-SDN node behaves like a legacy device. Despite
the two behaviours, the topology is acquired in the same way for
wireless interfaces. In case of an ARP request message, Node 3 is
created with the senders’ MAC and IP fields. For an ARP reply
message, Node 4 is created with the target’s MAC and IP fields.

Moreover, a path can be created when considering Node 1 and
Node 2 from Figure 9 in cooperation with: (1) Node 3 created by
the ARP Handler if the message is an ARP request; or (2) Node 4 in
case of an ARP reply; or (3) Node 3 created by the IP Handler. This
new path describes a route from Node 1 to Node 3/4, where Node 2
is the next hop of the packet. However, in this new path, no metric
can be inferred about the links (besides the fact that they exist).

In order to prevent conflicting rules between H-SDN and legacy
devices, if a packet received in a H-SDN device has a rule in which
the next device matches the sender of the packet, a new rule is
added, where the legacy device is avoided. This new rule has a
small expiration time, so the device is not avoided even when the
network changes.
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5.1 OpenFlow Experimenter message
Due to the assumption that the legacy network will work on ad-hoc
mode with a legacy routing protocol, we use the updated local
routing tables to gather a list of the 1-hop neighbours of the H-SDN
in the network. This process is done by the monitoring tool, by
merging the information gathered through the received packets,
the updated routing tables, and other device’s info, into the message
described in Figure 11.

Figure 11: OpenFlow Experimenter message payload.

Afterwards, the controller uses Algorithm 1 to process these
messages. First, we extract the node’s energy; then, for each SDN
port, we parse the IP and MAC addresses that compose 𝑁𝑜𝑑𝑒𝐴.
Then, for each neighbour of that OpenFlow port, we extract the
neighbour’s IP address (which describes 𝑁𝑜𝑑𝑒𝐵), and the link in-
formation, which is then used to add the edge between these two
nodes with the link information. Moreover, between ports, we also
add an edge with value zero, meaning that they are in the same
node (leaving space for further development). With the link infor-
mation on each edge, the routing algorithm can perform a better
path search based on metrics.

Algorithm 1: Experimenter Message Parser Algorithm
𝑁𝑜𝑑𝑒_𝑜𝑙𝑑 ← 𝑁𝑢𝑙𝑙 ;
𝑋 ←𝑚𝑠𝑔;
𝑁 ← 𝑙𝑒𝑛 (𝑚𝑠𝑔) ;
𝑈𝑝𝑑𝑎𝑡𝑒𝐸𝑛𝑒𝑟𝑔𝑦 (𝑋 ) ;
while 𝑁 ≠ 0 do

𝑙 ← 𝐿𝑒𝑛𝑔𝑡ℎ;
𝑝𝑜𝑟𝑡, 𝑖𝑝,𝑚𝑎𝑐 ← 𝐺𝑒𝑡𝑉𝑎𝑙𝑠 (𝑋 ) ;
𝑁𝑜𝑑𝑒𝐴← 𝐺𝑒𝑡𝑁𝑜𝑑𝑒 (𝑝𝑜𝑟𝑡, 𝑖𝑝,𝑚𝑎𝑐) ;
while 𝑙 ≠ 0 do

; /* For Each Port on the Device */

𝑣𝑎𝑙𝑠 ← 𝐺𝑒𝑡_𝑙𝑖𝑛𝑘_𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝑋 ) ;
𝑖𝑝 ← 𝐺𝑒𝑡𝐼𝑝 (𝑋 ) ; 𝑁𝑜𝑑𝑒𝐵 ← 𝐺𝑒𝑡𝑁𝑜𝑑𝑒 (𝑖𝑝) ;
𝐴𝑑𝑑𝐸𝑑𝑔𝑒 (𝑁𝑜𝑑𝑒𝐴, 𝑁𝑜𝑑𝑒𝐵, 𝑣𝑎𝑙𝑠) ;
𝑙 ← 𝑙 − 𝑙𝑒𝑛 (𝑣𝑎𝑙𝑠, 𝑁𝑜𝑑𝑒𝐵) ;

end
if 𝑁𝑜𝑑𝑒_𝑜𝑙𝑑 not Null then

𝐴𝑑𝑑𝐸𝑑𝑔𝑒 (𝑁𝑜𝑑𝑒𝐴, 𝑁𝑜𝑑𝑒_𝑜𝑙𝑑, 0) ;
; /* Same device */

end
𝑁𝑜𝑑𝑒_𝑜𝑙𝑑 ← 𝑁𝑜𝑑𝑒𝐴;
𝑁 ← 𝑁 − 𝐿𝑒𝑛𝑔𝑡ℎ;

end

Furthermore, every H-SDN device, before sending any Packet_In
message, first sends an OpenFlow Experimenter message, so the
controller knows theMAC and IP addresses (hw_addr and ipv4_addr
respectively) associated with the SDN port (port_no) to that device
(datapath_id).

However, this Hybrid SDN architecture is only advantageous
when the majority of paths do not have multiple hops between

legacy devices. The topology discovery mechanism will not be
able to quantify those links. It may be aware that the nodes exist,
but not their connections, which in time may affect the network
performance, or even create loops because themajority of the routes
would not be under the controller’s rules.

6 CASE STUDY SCENARIO
To study the performance of the proposed simulation environment,
a scenario was prepared where every device starts in a position
given by the GridPositionAllocator, with a step size of 50 meters,
and a GridWidth of 5 columns.

The mobility pattern is based on the RandomWaypointMobil-
ityModel with a Position Allocator given by the RandomRectan-
glePositionAllocator of NS-3, where the next position is chosen
randomly inside a rectangle with the same size as the grid. After-
wards, each node moves towards that position at a constant velocity
(Speed= 3𝑚/𝑠), without any Pause.

Each device is equipped with an IEEE 802.11ax NIC with a Mod-
ulation Code Scheme (MCS) index of 3, a frequency of 5 Ghz, a
channel width of 40 Mhz, and a guard interval of 800 ns.

As the routing legacy protocol, OLSR is used because it is one of
the most common protocols for ad-hoc environments.

All results shown in the next sub-sections are averages over five
or ten executions of each simulation with a standard deviation.

6.1 Environment Performance
We compare the scenario regarding two performance metrics, the
effective simulation time (using the system clock), and memory
usage (using the Valgrind tool [25]), on a computer with 16GB RAM
and AMDOpteron(tm) Processor 6128. Regarding the traffic pattern,
every device creates an UDP flow with every other device, creating
flows for all the combinations (of two devices) in that scenario. For
example, 5 devices create 𝐶 (5, 2) = 10 flows. In the results, the
network size ranges between a total of 8 nodes (4 legacy and 4
H-SDN devices) to 16 nodes (4 legacy and 12 H-SDN devices, or 12
legacy and 4 H-SDN devices). The process repeats until the end of
the simulation that lasts 30 seconds.

Figure 12 shows the results for the effective simulation time (the
real time that the simulation takes), where each curve represents a
specific data rate. In the first three curves, the experiment maintains
the number of legacy devices (4), and the last curve represents
an increase of the number of legacy devices with 4 H-SDNs. By
adding one H-SDN device, the effective simulation time increases,
on average, by 200 seconds for the 100 kbits data rate, and 160
seconds for the 1 Mbits. Comparatively, when only increasing the
number of legacy devices at 100 kbits, with 16 nodes (4 H-SDN
devices), we get a run time of 1335 seconds, which is 33% lower
than with 12 H-SDN and 4 legacy devices.

Figure 13 shows the results of memory usage, where each curve
represents different data rates for the UDP flows. As expected, the
memory usage increases when higher data rates are used. The
biggest contributor for the increase of memory usage when increas-
ing the number of nodes is the NS-3 application, while RYU only
spends on average 20 MB.
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Figure 12: Effective simulation time for the case study sce-
nario.

Figure 13: Memory usage for the case study scenario.

6.2 Network Performance
To test our first hypothesis (whether a detach control plane can
benefit MANETs), a test case was prepared in the same scenario
described before, where the proposed architecture is compared to
an only-OLSR MANET. However, the number of flows is fixed to 40
UDP flows, where the senders (chosen from the first grid column)
and receivers (chosen from the last grid column) are randomly
selected. Each flow has a data rate of 100 Kbits with a 500 bits
packet size.

Figures 14 and 15 show the results, where we test different num-
bers of legacy and H-SDN devices. The X axis represents the total
number of devices in the experiment, where the number of legacy
devices is the total number of devices minus the number of H-SDN
devices used in each curve, whose number is given by the legend of
the figure. The black curve represents an exclusive legacy network.

As shown in Figure 14, this scenario shows that the proposed
architecture has a higher delivery ratio for some points when com-
pared to an all legacy network. Furthermore, when comparing the
same amount of nodes but in different curves, we observe that, on
average, the delivery ratio increases when the number of H-SDN
is higher. This can be due to the centralized view of the network
gathered by the controller, which in turn updates the OpenFlow
rules faster than the spread of new neighboring information with

Figure 14: Packet delivery ratio.

Figure 15: Mean delay.

the OLSR "Hello" messages. Despite the number of flows being the
same throughout the experiment, we observe that, with an increase
in the number of network nodes, the delivery ratio decreases. This
can be explained by the increasing probability of a randomly se-
lected pair having more hops in the path when a higher number
of nodes are allocated. With a higher number of hops comes a
higher probability of collision drop or propagation loss, therefore
decreasing the delivery ratio.

As expected, with a higher number of total devices, meaning a
higher number of hops in each route, the delay tends to increase, as
shown in Figure 15. In addition, when comparing the OLSR curve
with the other curves, for some points the delay can be lower when
using H-SDN devices. This is due to the up-to-date view in the
controller, which describes a better shortest path when comparing
to an older network view on some legacy devices. Furthermore,
the search path mechanism uses the shortest path metric, not con-
templating any key performance indicators besides the number of
hops. Therefore, when adding other routing mechanisms to the
controller, a larger increase in the performance can be achieved. We
can also state that, depending on the scenario in hands, a proper
configuration of the SDN environment, i.e. applying the right set
of rules, may lead to a performance increase in the MANET.
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7 CONCLUSIONS AND FUTUREWORK
This paper proposed an approach for NS-3 using a WiFi mobile
ad-hoc network, with legacy and hybrid SDN-capable devices, a
cellular OpenFlow channel, and an external controller, intercon-
necting legacy devices to an SDN network. The performance results
show that the novel NS-3 environment can be scaled to support
large networks. However, the proposed H-SDN device increases
the effective simulation time. The test case results show that this
architecture can have at least the same performance as an OLSR-
only solution. However, if another mechanismwith QoS parameters
other than only the number of hops are used, a greater performance
can be achieved.

This approach will be further improved with more elaborate
routing mechanisms, and will be used as the platform for the test
of emergency scenarios and their algorithms.
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