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Abstract

Over-the-air (OTA) software update system has emerged as an important feature to

remotely analyze and upgrade the vehicle inside systems, coordinated by different ECUs

(Electronic Control Unit). Inside vehicle architecture, there exists two types of ECU (Pri-

mary and Secondary ECU) with specific functions that allow a efficient, cost-effective and

convenient workflow mechanism in the vehicle system.

With the rising popularity of the OTA updates in automotive industries it introduces

new security challenges requiring immediate precaution, as attackers can gain control of

the vehicle through these update systems to undermine vehicle security, and in the worst

case, putting in danger the driver’s life.

During this journey, we developed a new secure design framework using Uptane

framework implementation combined with Trusted Execution Environment (TEE) tech-

nology. We leverage Intel SGX to isolate and execute the Verification method performed

on Primary ECU, thereby improving the security of Secondary ECUs that perform Partial

verification by relying on remote attestation provided by the Primary ECU to verify if the

downloaded update is genuine or not.





Resumo

O sistema de actualização de software Over-The-Air (OTA) surgiu como uma carac-

terı́stica importante para analisar e actualizar remotamente o veı́culo dentro dos sistemas,

coordenado por diferentes ECUs (Electronic Control Unit) no interior da arquitectura do

veı́culo, existem dois tipos de ECU ( Primário e Secundário) com funções especı́ficas que

permitem um mecanismo de fluxo de trabalho eficiente, rentável e conveniente no sistema

do veı́culo.

Com a crescente popularidade das actualizações OTA na indústria automóvel, intro-

duz novos desafios de segurança que requerem precaução imediata, uma vez que os ata-

cantes podem ganhar controlo do veı́culo através destes sistemas de actualização para

pertubar a segurança do veı́culo, e no pior dos casos, por em perigo a vida do condutor.

No decorrer deste projeto, desenvolvemos uma nova estrutura de concepção segura

utilizando a implementação da estrutura Uptane combinada com a tecnologia Trusted

Execution Environment (TEE). Utilizamos a tecnologia Intel SGX para isolar e executar

o método de Verificação realizado na ECU Primária, melhorando assim a segurança das

ECU Secundárias que realizam Verificação parcial, confiando na certificação remota for-

necida pela ECU primária para verificar se a actualização descarregada é genuı́na ou não.
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Chapter 1

Introduction

Vehicles are quickly transforming from a simple means of transportation into complex

computers on wheels, that are increasingly smart and deeply integrated into our digital

lifestyles. Growing increasingly connected and computer-like, vehicles now have capa-

bilities to sync with mobile phones, provide navigation updates, and communicate safety

information to other vehicles and surrounding infrastructure.

One great advantage is the user experience often comes down to how quickly remote

updates can be made, by downloading an updated code from a cloud server provided by

the Original Equipment Manufacturer (OEM) instead of physically visiting a technician.

Also, with Over The Air (OTA) updates, it is possible to enhance the consumer experience

by allowing drivers to add new features [1]. In terms of security, OTA updates can also

maintain a secure drive by handle the patching of security gaps in a quick and efficient

way.

The update process on the Electronic Control Unit (ECU) is composed of an intelligent

and innovative architecture, giving specific roles for each type of ECU. The Primary ECU

manage the outside vehicle communication by downloading and verifying the package

and it is responsible of supplying this update to its Secondaries ECUs which should not

communicate with outside for security and efficiency purposes [2–4].

1.1 Motivation

The concept software OTA updates brings along not only automation and efficiency ben-

efits, but also increased exposure to Cybersecurity threats.

1
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Hackers tend to use attacks via updates by the fact that this mechanism gives them

power over the system once it is compromised. Not only this problem is worrying for

the automotive industry but also for the other technological industries in which attack

scenarios have already occurred multiple times [5–9].

An example happened a few years ago in South Korea [10], when attackers exploited

a software update mechanism to spread malware. Government officials estimated that

the attack had cost three-quarters of a billion US dollars in economic damage. In the

case of vehicles, the impact is far more serious because human lives are at stake. This is

commonly done by compromising the repository that serves software users and inserting

malicious updates [11].

In automotive industries, various scenarios of OTA updates attacks occurred as well

[12–15]. Therefore, it is important to operate repositories that serve software to vehicles

while assuming that attackers can control communications anywhere between the repos-

itory, where the software updates are contained, and the ECUs [16].

Uptane [16], has become the first software update framework for automobiles that ad-

dresses a comprehensive and broad threat model and gives effective solutions to provide

protection against multiple security threats using repository roles in order to distribute re-

sponsibilities and enhance security guarantees during the update [16–18]. For example,

previous update systems were not capable of adding and validating new types of signed

metadata to improve resilience to attacks.

However as all security solutions, Uptane does not give full safe guarantees for the

ECUs [16, 17]. The Primary ECU, that has a sophisticated verification process (Full ver-

ification) which verifies and caches the timestamp, release, root, and targets metadata, is

vulnerable to some security attacks, depending on the attacker capabilities, such as hav-

ing compromised a set of keys used to sign updates [16]. When compromised, the impact

can be huge, and the Secondaries ECUs must perform their own verification process to

avoid to worst-case scenarios. Still, some Secondary ECUs have less hardware resources

than others and those particular ECUs perform a basic verification process (Partial ver-

ification) which verifies and caches only the director metadata. The Partial verification

method is susceptible to more attacks (like Arbitrary software and Rollback attacks) than

to those that perform Full verification [16, 17, 19].

Therefore, the security of the Secondary ECUs that perform Partial verification should

be taken into consideration. Within this context, our main goal in this dissertation is to
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give this Secondaries ECUs the security guarantees provided by the Primary ECU (Full

Verification), resulting in an improvement on their security process. We will use Intel SGX

to isolate and execute the Full verification method and the Secondaries ECUs will rely on

remote attestation provided by the Primary ECU.

1.2 Thesis Goals

To achieve our goal, we redesign the way that Primary ECUs which perform Full verifi-

cation, providing their verification guarantees to the Secondary ECUs, which some only

perform Partial verification. In particular, we will go through the following steps:

• Refactor Uptane implementation particularly the Primary ECU for better under-

standing of critical components (which are methods of metadata verification) and

non-critical components in the client-side.

• Design an API by creating a Verification Service which is going to contain the critical

components of full verification process and communicate between the non-trusted

components of the client-side.

• Implement critical components of Full verification within the TEE.

• Implement a remote attestation interface on the Uptane process, the Primary ECU

generates and sends the Quote to the Secondaries ECUs which corresponds to at-

testing that the Full verification process was performed correctly inside the enclave.

1.3 Document Structure

In this thesis, we will clarify the development of this research plan.

Chapter 2 will provide some required background on general OTA [20], Uptane [16,

17, 19] and TEEs [21, 22]. In the end of this chapter, we will describe some related work

on the use of OTA, Uptane and/or TEEs.

Chapter 3 will clarify with more detail our thesis goals, step by step. We describe our

TEE-enabled secure update framework, break down the relationship between the Uptane

standard and a client implementation, and define concretely which parts of the client

implementation shall be executed inside a TEE according to our framework.
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Chapter 4 describe the design and the implementation of our modified Uptane justi-

fying why we use certain types of technologies.

Chapter 5 show the results of our proposed solution, the evaluation of the perfor-

mance of our modified Uptane comparing to the native Uptane. Finally we evaluate the

security of our solution explaining what additional benefits it brought.

Finally, Chapter 6 presents the conclusions and discusses possible improvements left

for future work.



Chapter 2

Background and Related Work

This chapter describes the relevant background for this dissertation. This includes an

overview of the Uptane Framework. Also, this chapter will explain the concepts related

to Trusted Execution Environments, followed by a description of some types of TEEs that

are commonly used by manufacturers of constrained chipsets and Internet of Things (IoT)

devices. To finish this section, we cover a brief description of some of the most relevant

related work.

2.1 Automotive context

Nowadays, modern vehicles are made up of mechanical components (e.g., brakes, engine,

battery, etc...) that are controlled via software or firmware on small devices called ECUs.

These units are responsible for controlling a specific function of the car. For example, if an

accident happens, the airbag ECU would choose which airbags to deploy, depending on

the location of the passengers, or an automatic emergency breaking ECU would receive

inputs from the sensors that detect an approaching obstacle [23].

Inside the vehicle, the data flow of the ECUs is through multiple types of communi-

cation buses [24] which include the Controller Area Network (CAN), Local Interconnect

Network (LIN), Media Oriented System Transport (MOST), Ethernet and FlexRay. Among

these in-vehicle communication buses, the most popular is CAN [25] since this bus is the

main communication network used in automotive applications [26].

These buses have their own local gateway and to be able to communicate with each

other, there is a node called the central gateway that acts as a communication controller.

Figure 2.1 shows an in-vehicle network architecture topology where multiple ECUs are

5
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installed in each data bus and the buses are connected through the central gateway which

converts data from one bus format to another bus format.

FIGURE 2.1: In-vehicle networks

2.1.1 OTA process

The OTA update mechanism refers to the method of delivering the update wirelessly, i.e.,

“over the air,” and sent directly to the device. OTA updates have been in the software

industry a long time ago for the deployment of functional enhancements and correct de-

ficiencies to both the operating systems and application programs [27]. With regard to

the automotive industry, OTA updates for cars are expected to grow rapidly as a result of

the expansion of integrated vehicles. The OEMs (Original Equipment Manufacturers) are

increasingly adopting this technology for delivering updates to embedded devices that

are part of the vehicle [2, 20, 28].

The following elements should be considered in the ECU software update process:

• Ensure the integrity of software update.

• Reduce software update time.

• Secure software update.

Two main types of OTA updates are used in practice, Software Over-The-Air (SOTA)

and Firmware Over-The-Air (FOTA). SOTA updates generally refer to downloading soft-

ware components meant for any system in a device, not restricted to firmware for ECUs.

On the contrary, FOTA updates are more specific, as the term refers to downloading an

update that involves replacing a specific firmware image in a embedded device. In other
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words, the process of updating firmware concerns the updating of the main system soft-

ware that controls an specific hardware [20, 29, 30].

The following update scenario proposed by Kim and Park [2] and Onuma et al. [3]

gives us an overview of how OTA updates on an ECU are processed. Before perform-

ing an ECU software update, the vehicle must be parked for safety purposes. The OEM

server generates new update information, which it transmits to the OTA Master of the

vehicle. The role of the OTA master is to check which target ECU is mentioned in the

update process and to forward the update towards to it. The OTA Master will store the

information received from the server and wait for approval from the ECU to update via a

Human Machine Interface (HMI). If the driver agrees, the package from the OTA Master

will be sent and the ECU will proceed with the software update process. After the driver

selects the ECU to update, the vehicle will restart with the new updated ECU installed.

2.1.2 TUF

Before we talk about Uptane, we have to explain how and why it emerged. It all started

with a project that was designed from the scratch called TUF (The Update Framework).

TUF is an open-source secure OTA framework designed to protect users of software

repositories by focusing on protection from key compromise attacks [31, 32].

The security-aware system has four key principals:

• Separate the duties: TUF uses multiple keys and roles to expand the verification

process by distributing responsibilities and increase compromise resilience. Four

main roles are used in this framework: Root, Timestamp, Target and Snapshot [31].

• Optional use of a threshold number of signatures: Thresholds were added to each

role to increase security, meaning that you must sign a minimum number of t out of

n keys to compromise the a role.

• Process to revoke keys: To verify a metadata file, public keys can be revoked by

including an expiration date in the metadata file which helps to protect clients from

trusting outdated keys.

• Use offline keys, or private keys to sign the most sensitive roles: Even if the at-

tackers controls the repository, they can not be able to sign malicious versions of

sensitive metadata.
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At the same time, industrial partnerships were seeking OTA update solutions for the

automotive, and explored in particular the use of TUF as a secure update framework. One

thing that they realized is that TUF only offers one secure view to a repository and cannot

provide a customized view based on the client’s needs. Other discoveries pointed that

this framework has vulnerabilities in some critical security attacks. For example, for deny

updates attacks, Freeze attacks are easily performed against Primary and Secondaries

ECUs. Also, the attacker can perform deny functionality attacks like endless data attacks

and mixed bundle attacks on the Secondaries ECUs with no need to compromise any keys

roles [16].

2.1.3 Uptane

Uptane has then emerged as an adaptation of TUF for the automotive, targeting the se-

cure updating of ECUs. Since its inception, Uptane [16] has become a popular open source

secure software update framework that has achieved very positive adoption in the auto-

motive industry in order to prevent large-scale updates attacks – the team of researchers

behind its development worked in close collaboration with representatives of OEMs that

manufacture 78% of all cars on US roads [17]. Not only is Uptane present in the automo-

bile industry, but it can also be employed in other vehicles such as trains [33] or drones [34]

or other constrained IoT devices. The original Uptane implementation was written in Py-

thon but also another project named Aktualizr [35, 36] was designed and implemented in

C++ the OTA client-side functionality according to the Uptane framework mechanisms.

2.1.3.1 Uptane process

We now briefly describe how Uptane works. The standard implementation of the Uptane

framework is composed by a secure communication channel between the secure server

representing the OEM and the client representing the Primary ECU.

The secure server implementation has three core components (i.e. the Image Reposi-

tory, the Director Repository, and the Time Server) to provide security through the valida-

tion of images before downloading. The Director repository has the function of instruct-

ing ECUs about which images should be installed, by producing a mandatory signed

metadata. The Image repository stores every image currently deployed, along with the

metadata files that have been securely signed by OEM offline keys, proving their authen-

ticity. Finally, the Timeserver repository generates timestamp tokens that enable checking
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if the most recent package that was updated is being delivered to the client. Figure 2.2 il-

lustrates an overview of the elements involved in the Uptane update process and how the

system behaves. The right box contains a Primary ECU which is the gateway ECU in the

vehicle, and communicates with the external cloud and the internal Secondary ECUs. On

the left side is the external cloud where the repositories are located. If the ECU requires

an update, the Primary ECU generates and sends its vehicle version manifest with vehi-

cle metadata to the Director repository. The function of the Director is to choose which

images should be installed next. A set of new images and metadata for these selected im-

ages is then sent to the Primary, from both the Director Repository and Image Repository.

After receiving the package, the Primary ECU will run a verification process to check if

the images and metadata are genuine. If no anomalies are found during the verification

process, the Primary ECU will transmit the update package to the Secondary ECUs. Also,

the Secondary ECUs will perform a verification process which can be Full or Partial Veri-

fication depending on the resources and importance of the ECU. The Secondary ECU will

install the new images if the verification succeeds and the vehicle version manifest will be

updated.

FIGURE 2.2: Uptane workflow [17, 18].

2.2 Trusted Execution Environment

Trusted Execution Environments (TEEs) are special modules of modern CPUs that allow

the isolated execution of security-critical applications. They offer added security, in the

sense that sensitive data from such applications is not known to the rest of the system.

In summary, according to the Confidential Computing Consortium [37], a TEE pro-

vides a level of assurance characterized by the following three properties [38]:
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• Data confidentiality: Unauthorized entities cannot view data while in use within

the TEE.

• Data integrity: Unauthorized entities cannot add, remove, or alter data while it is

in use within the TEE.

• Code integrity: Unauthorized entities cannot add, remove, or alter code executing

inside the TEE.

A TEE establishes a secure execution environment by creating a safe, isolated space using

hardware and software primitives. Most TEE threat models consider a powerful adver-

sary controlling user-space applications, the operating system, or even the hypervisor,

trying to influence the execution of applications in the trusted environment. To achieve

the protection needed for this threat model, TEEs require strong isolation between the

TEE and the Rich Execution Environment (REE).

The innovative and appealing idea of shifting security critical applications into a trusted

execution environment is already adapted by major vendors like Intel, ARM, and Apple.

Common TEE designs use hardware extensions like Intel SGX [22] and ARM TrustZone

[39] to create a virtual secure processor in the main application processor. Other technolo-

gies like Google’s Titan [40] and Apple’s T2 [41] mount a dedicated security processor

next to the main CPU [42].

2.2.1 ARM Trustzone

The ARM System on Chip (SoC) processors created a way to keep data and code secure

at its highest level. This is done via separation of computation into two separate worlds,

the secure world and the normal world [21]. The separation is accomplished by a Secure

Configuration Register bit called monitor mode [43, 44], the non-secure bit is set to 1 and

a bit set to 0 means that is secure. This isolation between those two worlds actually affects

parts of the infrastructure like the main memory, system bus, peripheral devices and the

interrupt configuration.

Diagram 2.3 illustrates the division between the two separate sections. The REE Nor-

mal World, which contains generic applications and possibly application with security,

communicates with the trusted applications in the TEE via the TEE Client API [44] and is

managed by the secure monitor. The secure monitor then communicates with the secure

operating system/kernel and with different secure standalone applications or services.
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Client Applications running in REE need to connect to the TEE Secure World before

connecting to Trusted Application. To open a session, the Universally Unique Resource

Identifier (UUID) of the target TA needs to be specified. At this time, the library will then

look for a trusted application with that UUID, and pass the whole trusted application

image to the TEE without the client application’s knowledge of how the actual communi-

cation happens.

The ARM TrustZone, unlike Intel SGX, does not provide a native mechanism for re-

mote attestation, preventing relying parties from proving that the execution took place

inside the TEE remotely [45, 46]. Many protocols provides implementation of additional

end-to-end security solutions, likewise, remote attestation [47–49]. However, these pro-

tocols require the availability of extra hardware with additional security features [50].

FIGURE 2.3: Concept of a TrustZone supported execution environment

2.2.2 Intel SGX

Unlike ARM Trust Zone, where two separate sections of execution – or two worlds –

are defined, Intel SGX provides a mechanism of creating secure enclaves. These secure

enclaves are essentially containerized sections of memory, a place where data and code

can be loaded or executed securely and while being verified by cryptography attestation

keys. This trusted memory space, called the Enclave Page Cache (EPC), is divided into
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4Kb pages that are encrypted in Dynamic Random Access Memory (DRAM) using Mem-

ory Encryption Engine which sits at the edge of CPU, connected to Memory Controller

[51]. The decryption of the pages only occurs inside the physical processor core.

The application code is attested by a remote entity and calculated during enclave cre-

ation. The verification procedures are based in two measurement registers: the MREN-

CLAVE that provides an identity of the enclave code and data; and the MRSIGNER that

provides an identity of an authority over the enclave. This feature gives the relying party

increased certainty that the software is running inside an enclave an on a fully updated

system at the latest security level [52, 53]. If an enclave proves its identity to a remote

party, an encrypted communication channel can be established between the two. The re-

mote host creates a cryptographic report (Quote) that is signed by a hardware-specific

key. A Quote contains information about the enclave that signed it.

Intel SGX currently supports two types of remote attestation [52, 54, 55]:

• Enhanced Privacy ID (EPID) enables signing objects anonymously by dividing

signers to groups (i.e. EPID groups). The EPID groups create signatures with their

own secret keys, and this signatures can only be verified by a public key of the group

they belong to. With this method, it is possible to check if the signer belongs to the

right group; however, the EPID scheme does not uniquely identify the signer [54].

• Data Center Attestation Primitives (DCAP) provide an architecture to benefit from

remote attestation without contacting Intel services to validate the attestations at

runtime. Thus, a data center can create its attestation infrastructure using the Elliptic

Curve Digital Signature Algorithm (ECDSA) algorithm [55].

Looking at the enclave setup, a part of memory is reserved as Processor Reserved

Memory (PRM) and the CPU has to protect this memory structure from external memory

accesses. The PRM controls the enclave page cache, storing critical enclave information

such as code and data [56].

2.2.3 Other solutions

In 2019, Google launched OpenTitan, an open-source secure chip design project [57]. The

objective of the OpenTitan project is to make the execution of Root of Trust (RoT) which is

defined as “system element that provides services, including verification of system, soft-

ware/data integrity and confidentiality, and data (software and information) integrity
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attestation between other trusted devices in a system or network” [58]. The RoT shall

provide the methods for maintaining and verifying the security and integrity of the em-

bedded boot code and firmware, as well as cryptographic material.

In 2016, AMD introduced a new extension called Secure Memory Encryption (SME)

[59]. This extension defines a simple and efficient architectural capability for main mem-

ory encryption with a purpose to protect security-relevant assets that reside there. It uses

an encryption key that is randomly generated by the AMD secure processor and is loaded

into the memory controller at boot time to encrypt the memory. In order to make the

memory encryption more transparent and be able to run with any operating system, Se-

cure Encrypted Virtualization (SEV) [60, 61] extends SME to AMD-V, allowing individual

Virtual machines to run SME using their own secure keys.

In 2018, the Apple T2 chip was introduced [41]. The T2 processor is used to imple-

ment the “Secure Boot” feature. Compared to its predecessor (Apple T1 chip) the T2 chip

has better performance handling more tasks such as early boot tasks. It is securing data

storage at-rest by encrypting it on the Solid State Drive (SSD) using dedicated hardware

that has a 256-bit key. This processor also has a built-in “Secure Enclave” that can store

and/or process critical information like user’s fingerprint data [62].

2.3 Related work

Due to several possible types of threats and the importance of OTA updates, research

efforts have been made to achieve various levels of protection against these attacks. In

this section, we will visit some previous work related to OTA updates, with or without

TEEs, and other alternatives besides Uptane. Then, to end this section, we will provide a

brief overview of a project that combined Uptane with TEE [63], which will also serve as

a comparison with our proposed solution.

Dhobi et al. [64] propose to use Secure Firmware Update OTA of embedded devices,

leveraging ARM TrustZone technology to checks integrity, authenticity and security of

firmware updates. During the update verification process, the RSA algorithm is used to

verify the image and signature to authenticate the firmware and ensure security. Their

empirical analysis showed some improvements on the integrity of the system. Some tests

were made based on security parameters (i.e. Load Trusted Aplication with fake UUID,

Loading a fake Trusted Aplication from non-secure world); other measured time con-

sumed by the process based on size of the firmware and the key.
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The article written by Al Blooshi and Han [34] applies Uptane framework in Drone

Environments. They consider a “drone swarm” which consists in multiple drones, like

vehicles which possess multiple ECUs. Based on the Uptane process in vehicles, the

“drone swarm” has a CH (Cluster Head) which has the same function as the Primary

ECU who communicates with the repositories, downloads and verifies the package. If

no issue is found during the verification process, the package will be transmitted to each

following Drone, who is a member of drone swarm controlled by CH, which in an auto-

motive perspective, they are the Secondary ECUs [34]. The GS (Groud Station), which is

a drone operator who has information of public keys of drones. The GS has the function

of establishing a drone swarm, uploading the updates to the update server and defining

the URL of the update server. They conclude that the proposed design is suitable for the

drone environments while supporting the fundamentals of Uptane.

Nilsson et al. [65] present a framework for self-verification of firmware updates over

the air. To deploy the firmware, they have chosen Microkernel Architecture as the rea-

sonable candidate platform for memory isolation. The device architecture was split into

two parts: a portal that contains the new firmware and is considered to be trusted by the

vehicle, and a vehicle that has a wireless gateway and an in-vehicle network consisting of

interconnected ECUs. They developed a prototype system based on the virtual machine

monitor SPUMONE [66]. SPUMONE provides memory isolation and communication

between the control and functional system, where the control system is based on the mi-

crokernel and it handles the flashing and verification procedure of the functional system.

In their analysis, they ensure that the verification code in the control system cannot be

modified by an attacker because of the effectiveness of memory isolation.

Qureshi et al. [67] mention that the traditional Uptane Framework has vulnerabili-

ties against control attacks, so they proposed a framework called eUF (enhanced Uptane

framework) where they add a new layer in the traditional Uptane Framework based on

DL (deep learning) techniques in order to detect control attacks launched during OTA

software update. As ECUs under Partial Verification are more susceptible to attacks, they

aimed to detect control attack in those ECUs. The result from training those DL models

was stored in secondary ECUs. They also report an improvement on compromise re-

silience and detection of malicious software updates at Secondary ECUs when the partial

verification method is employed.

Asokan et al. [68] proposes a secure firmware update framework called ASSURED for
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large-scale IoT. ASSURED provides end-to-end security based on the TUF framework in

order to improve the functionality of update constraints IoT devices in terms of deploya-

bility and performance. For more security guarantees, the authors leverage two low-end

security architectures: ARM TustZone-M [69] which isolates critical resources (e.g mem-

ory and interrupt lines) from the non-trusted code, and HYDRA [70] which checks if the

code in the secure world has been correctly performed by hybrid remote attestation. The

results conclude that this solution enhances the current update mechanisms in terms of

performance and deployability in realistic settings.

Mukherjee et al. [63] proposed to isolate and deploy Uptane entirely inside a TEE

using ARM TrustZone in order to protect the integrity of (BEV/EVSE) and avert any ex-

ternal or internal system vulnerabilities. The Uptane framework was decoupled into a

secure server and a modified client-side implementation (which consists only communi-

cation channel and a metadata staging area, and services client-specific functionalities) to

run as trusted application(s) within the secure world inside TEE. They used the Univer-

sal Asynchronous Receiver-Transmitter (UART) [71] for communication and to transfer

data and between the server and the client-side. The OTA update requests were triggered

periodically and the subsequent responses with image and metadata download from the

server through a secure UART communication. They also included a software analysis

and used a verification tool (SAWScript [72]) which detects any logical and programming

correctness errors of the client application which runs inside the TEE in order to verify its

reliability against any security vulnerabilities.





Chapter 3

Extending the Uptane trust-chain

using TEE

In this chapter, at first we will describe Uptane implementation and its relation with the

standard Uptane. Then, we present the overview of the proposed approach, a detailed

description of each phase and relevant activities. Finally, we explain the main challenges

of the proposed solution.

3.1 Standard Uptane client

This section provides a detailed description of how a concrete Uptane client should be

implemented. We are going to describe the latest standard version released (V2.0.0) [19].

3.1.1 Roles on repositories

• Root role: The Root role is responsible for certificating the authority of the repos-

itory by distributing and revoking public keys used to verify the root, timestamp,

release, and targets role metadata.

• Targets role: The Target role has the function of signing metadata such as the cryp-

tographic hashes and file sizes of images that verify the image.

• Snapshot role: The Snapshot Role is responsible for signing metadata about all Tar-

gets metadata that the repository releases, including the current version number of

the top-level Targets metadata, and the version numbers of all delegated Targets

metadata.

17



18
SECURE OVER-THE-AIR VEHICLE UPDATES USING TRUSTED EXECUTION

ENVIRONMENTS (TEE)

• Timestamp role: The Timestamp role indicates whether there is any new image or

metadata available on the repository.

3.1.2 Types of metadata

To ensure security, the Uptane Framework relies on a properly created metadata having

a designated structure. The four Uptane roles described before share a common struc-

ture. They SHALL sign a playload of metadata and contain an attribute which stores the

signature(s) of the payload. The following Table 3.1 provides a description of the four

different types of metadata and some common characteristics shared between them, each

corresponding to a metadata role.

3.1.3 Server implementation

The Uptane implementation SHALL make the following repositories available in order to

communicate with the Primary ECU:

• Director repository: The Director repository has the function of instructing ECUs as

to which images should be installed by producing a required signed metadata. This

repository also possesses a private inventory database containing critical informa-

tion about the vehicle (contains a unique identifier called VIN (Vehicle Identification

Number)) and its ECUs (contains ECU type, key and unique identifier). Also, this

inventory should record a hardware identifier for each ECU to prevent installation

of incompatible firmware. The interface should be public so that the Primary ECU

uploads its vehicle version manifest. The implemented storage permits an auto-

mated service to change generated metadata files.

• Image repository: The Image repository stores every image currently deployed,

along with the metadata files that are securely signed by a private key, proving

their authenticity. The interface should be public, permitting the Primary ECU to

download the image and metadata. It shall provide a method that allows authorized

users to upload images and their associated metadata. It also verifies if the images

are trustworthy by checking the chain of delegations.

• Timeserver repository: Finally, the timeserver repository generates timestamp to-

kens that check and validate if the most recent package that was updated is being

delivered to the client.
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Metadata type Description

Root Metadata

• The repository’s Root metadata has the responsibility
to distribute the public keys of top-level Root, Targets,
Snapshot, and Timestamp roles.

• It SHALL contain two attributes:

1. A representation of the public keys for all four roles.
The public keys SHALL have a unique identifier.

2. An attribute mapping each role to its public key,
and the threshold of signatures required for that
role.

Targets Metadata

• The repository’s Target metadata contains all the infor-
mation about the images to be installed on ECUs (i.e.,
filename, file sizes, hashes).

• Can also contain metadata about delegations, enabling
one Target role to delegate its authority to another.

Snapshot Metadata

• Lists version numbers and filenames of all Targets meta-
data files, ensuring protection against mix-and-match at-
tacks.

• Lists filename and version number of the Root metadata
in order to provide backward compatibility.

Timestamp Metadata

• Timestamp Metadata SHALL contain the filename and
version number of the latest Snapshot metadata and one
or more hashes of the Snapshot metadata file besides the
hashing function used.

TABLE 3.1: Description of each type of metadata used by the Uptane Framework.
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3.1.4 Client-side

In this subsection we are going to describe the procedures made by a client side imple-

mentation, with a particular emphasis on distinguishing the Primary and Secondary ECU

operations. In figure 3.1 represents the respective procedures of each ECU.

3.1.4.1 What the Primary ECU does

The role of Primary ECU is to download, verify, and transmit the images and metadata to

the Secondary ECUs.

The Primary SHALL execute the following steps:

1. Construct and send vehicle version manifest: Before starting any download pro-

cess, the Primary ECU needs to build a vehicle version manifest and send it to the

Director Repository. The Director checks the manifest and determines an appropri-

ate update package for the vehicle.

2. Download and check current time: For secure attestation of a sufficiently recent

time.

3. Download and verify metadata: After downloading the metatada, the Primary

ECU MUST perform Full Verification. The Full verification method will be speci-

fied in Section 3.1.4.2.

4. Download and verify images: The Primary ECU will verify and validate that the

latest image matches the latest metadata.

5. Send the update package to the Secondaries ECUs: If the Primary verification

method is performed without failure, ensuring that the downloaded package was

legitimate, the metadata and image are sent to the associated Secondaries and SHALL

include the necessary content required for another verification process. As explained

before, the Secondary ECUs have two types of verification depending on their re-

sources and how security critical they may be (i.e. Full verification (Section 3.1.4.2)

and Partial verification).

6. Install image If all pre-conditions are correctly checked, an ECU SHALL attempt

the installation process. If the installation process fails, we need to ensure that the

ECU has a backup of its current image and metadata.
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FIGURE 3.1: An illustration of full and partial verification methods. [67]

3.1.4.2 Full Verification

The Full verification process MUST have the full set of metadata from Director and Image

repository, which is comprised of Root, Targets, Snapshot, and Timestamp. The files are

obtain from the primary, which are already verified. To defend against security attacks,

the ECU checks all of these metadata following the TUF protocols. During the process,

Full Verification must verify if hashes and version numbers of the downloaded firmware

image match those of the file in both the Director and Targets metadata.

To perform full verification, the ECU SHALL perform the following steps:

1. Load and verify the current time or the most recent securely attested time.

2. Download and check the Root metadata file from the Director repository.

3. Download and check the Timestamp metadata file from the Director repository.

4. Download the Snapshot metadata file from the Directory, and check if the hashes

and version numbers of that file don’t match the hashes and version number listed

in the new Timestamp metadata. Otherwise, there are no new updates and the

verification process SHALL be stopped and considered complete.

5. Download and check the Targets metadata file from the Director repository.

6. Download the Root metadata file from the Image repository, and check if the Targets

metadata from the Directory repository reveals that there are new targets that are

not currently installed. Otherwise, there are no new updates and the verification

process SHALL be stopped and considered complete.
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7. Download and check the Timestamp metadata file from the Image repository.

8. Download the Snapshot metadata file from the Image repository, and check if the

hashes and version number of that file do not match the hashes and version number

listed in the new Timestamp metadata. Otherwise, skip to the last step.

9. Download and check the top-level Targets metadata file from the Image repository.

10. This step depends on which ECU is running the verification process:

• Primary ECU SHALL verify that the Targets metadata from the Director and

Image repositories matches for all images listed in the Targets metadata file

from the Director repository downloaded in step 6.

• Secondary ECU SHALL verify that the Targets metadata from the Director and

Image repositories matches only on the metadata for the image it will install.

If any steps described fails, the ECU MUST return an error message indicating the

failure. In case during the verification process, if a security attack is detected, the

ECU SHOULD return a error message that indicate the type of attack.

3.1.4.3 Partial Verification

The partial verification is performed by following this steps:

1. Load and verify the current time or the most recent securely attested time.

2. Download and check the Targets metadata file from the Director repository.

3.1.5 Uptane implementation

The Uptane reference implementation is written in Python based on official Uptane repos-

itory [73]. The optional alternative Aktualizr written in C++ was not selected due to be

an outdated and complex implementation. In this implementation we assume that all

essential (MUST) requirements are implemented, and some optional (SHOULD/SHALL)

requirements are implemented.

3.1.5.1 Protocols

When the Primary ECU communicates with the Director repository, Image repository,

and time server, it uses HTTP POST protocol and requests over XML-RPC. During the
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communication, the Primary acts as a XML-RPC client and the server side (the Director

repository, Image repository, and time server) acts as XML-RPC server. When it comes

the communication between the Primary and the Secondaries ECUs, the Primary acts as

XML-RPC server and the Secondaries acts as XML-RPC client. The requests supported

by XML-RPC servers mentioned are described in the figure 3.2. The XML-RPC traffic is

transmited over TCP/IP and does not support CAN or other types of network.

3.1.5.2 Message Handler

The messages are sent using XML-RPC with the function names in the Request column

and data from the Data column. In addition to the table 3.2, both the Director and Image

repository hosts the Root Metadata, Targets Metadata, Snapshot Metadata, and Times-

tamp Metadata, and the Director repository hosts these metadata using XML-RPC.

FIGURE 3.2: Message Handler Table [74]

3.1.5.3 Operations

The following operations are part of the implementation:

• The Primary ECU as described in standard is the only ECU who communicates with

the Director repository, Image repository, and time server;
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• The Primary ECU sends the time server nonce tokens from each ECU that produces

a time attestation for each update cycle;

• The implementation supports asymmetric keys and uses the same keys for encrypt-

ing and signing

• The Director repository and Image repository have public interfaces for communi-

cation with ECUs and stores the metadata in a file system that is hosted to form the

public interface.

• The Primary ECU identifies to the Director repository using a vehicle version mani-

fest. As described in the standard, the Director verifies the vehicle version manifest,

however it does not make any additional checks.

3.1.5.4 Metadata

Some metadata features that are optional in the standard are supported in the existing

implementation. The details of the metadata features are the follow:

• When the metadata updates, the version number will increment.

• Root metadata supports mappings of others roles using a map file (described in

table 3.1)

• The ECUs contains encrypted images. As the Image repository does not know

which ECU should deliver the specific image, it is necessary that both Image and

Director repositories contain information about the unencrypted image in Targets

metadata.

• On the Director repository, the Target metadata supports a functionality that en-

crypts images per ECU. This functionality also contains a release counter and an id

from both the Director and Image repositories. This implementation the Director

repository cannot add a download URL to the custom field of Targets metadata, it

is not supported.

• The custom field of Target metadata on the Director repository is not compared

to the one that is on the Image repository, meaning that this verify functionality

described in the standard is not implemented.
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• The implementation of the Snapshot metadata does not contain the Root filename

or version.

3.1.5.5 Usage

Instead of using key management and image generation described in the standard, the

implementation handles online keys for all roles for demonstration purpose.

3.1.5.6 Data

In the table 3.2 it is described the list of keys that are involved on each ECU, and the

respective accesses to certain data according to the implementation.

Location Data

Primary ECU
ECU private key * Timeserver public key * Currently installed
version * Secondary’s Vehicle Version Manifests * The most recent
Root, Timestamp, Targets, and Snapshot metadata

Full verification Sec-
ondary ECU

ECU private key * Timeserver public key * Currently installed
version * The most recent Root, Timestamp, Targets, and Snap-
shot metadata (for a new installation, just the known Root meta-
data) from both the Image and Director repositories

Partial verification
Secondary ECU

ECU private key * Timeserver public key * Currently installed
version * Director’s Targets metadata public key

Director Repository
ECU public keys * Metadata about images * Inventory database
* Online metadata private Director metadata keys * Metadata
signed by offline Director metadata key

Image Repository
ECU public keys * Metadata about images * Images * Online
metadata private image metadata keys * Metadata signed by of-
fline image metadata keys

Timeserver Timeserver private key * Current time

TABLE 3.2: Data table representing the required devices that are expected to have at least
the following data [74].

3.2 Extending Uptane security model using TEE

The power and information contained in ECUs creates interest for hackers to attack and to

steal information or even control a particular ECU. The attacker may want to read updates
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to learn the contents of software updates in order to reverse-engineer ECU firmware, deny

updates to prevent vehicles from updating and fixing current software problems or deny

functionality to disturb the functioning of the internal system. Finally and perhaps the

most dangerous, is when the attackers gains control of the ECU and modify the vehicle’s

performance and correct behaviour.

The security mechanisms put in place by Uptane are processed in different ways de-

pending on the type of ECU, its resources, and how security critical it may be [16]. The

Primary ECU is typically the one that is more capable in terms of computation and stor-

age capacity, and is the only one with connectivity to the outside of the vehicle. While

the Secondaries ECUs some have more capacity than others and they must not estab-

lish communication outside the car, it depends on the Primary ECU for receiving and

installing software updates. The Primary ECU was designed to download the metadata

and firmware images from Director and Image repositories, verify the package by per-

forming a full verification process 3.1.4.2. On the other hand, not all Secondaries ECUs

have the same capabilities, some performs full or partial 3.1.4.3 verification of the image

against the metadata.

Despite Uptane being a sophisticated security framework with the ability to protect

against critical security attacks (listed in figure 3.3), it does not cover all possible security

flaws.

FIGURE 3.3: Types of security attacks [16].

Some attacks have different effects and some are more alarming than others. If the at-

tacker wants the information of software updates, an eavesdrop attack may be performed.

With this action, the attacker can read unencrypted updates sent from the repository to
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the vehicle. Other attacks can deny updates, preventing the vehicle from fixing software

issues. Drop-request attack, Freeze attack and Partial bundle installation attack can be

some of these kind of attacks. Not only the attacker can deny updates, but also deny

functionality. If the attacker would prefer to cause fail function of the vehicle, they can

perform Rollback attack, Endless data attack, Mixed-bundles attack and Mix-and-match

attack. Finally, and most severe of all, it is possible for the attacker install malware on the

ECU making possible to arbitrarily modify the vehicle’s performance.

Particularly relevant for this thesis, there is a possibility that a Primary can be compro-

mised. In Figure 3.4, we can see a list of possible scenarios that affect the Primary ECU,

depending on an attacker’s capabilities.

FIGURE 3.4: Security attacks 3.3 that affect the primary, organized by attacker capabili-
ties. DR, TS, RS, SP, TR, and RT denote the director, timestamp, release, supplier, targets,
and root keys respectively. Red keys are easier to compromise than blue keys. The *
symbol denotes that an attack is limited to ECUs signed by the given roles. The # symbol
denotes than an attack is limited till the earliest expiration timestamp. The @ symbol

denotes that an attack can be detected, if not prevented [16]
.

In the scenario shown in Figure 3.5, we assume that the Primary ECU has been cor-

rupted. The Primary will broadcast the malicious package to Secondary ECUs, and the

ones that perform Partial Verification are the most vulnerable and exposed to more types

of attacks because, unlike the Full verification, it uses less roles (verifies and caches only

the director metadata) that are necessary to distribute responsibilities and increase com-

promise resilience.

Figure 3.6 depicts a list of attacks that affect a Secondary ECU if the Primary is compro-

mised. As we can see, there is a considerable difference in terms of vulnerability between

Partial and Full Verification. For example, if the attacker controls only the Director Key,

the ECUs with Partial Verification will be the target of more deny functionality security

attacks (Rollback attack, Arbitrary software attack) compared to the Full Verification ones.
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FIGURE 3.5: Problem under discussion, Secondaries with PV (Partial Verification) does
not provide FV (Full Verification) guarantees, especially if the Primary is corrupted. We

assume that the Sever is trusted.

FIGURE 3.6: Security attacks that affect Secondaries if attackers have compromised the
Primary. [16]

To avert that kind of vulnerabilities, we propose a customized Uptane framework that

leverage a TEE in order to strengthen the security of Secondary ECUs that perform Partial

Verification by giving them the same guarantees of Full Verification provided by Primary

ECU. The concrete steps will be the following:

1. Customize the Client-side, focusing the Primary ECU, by refactoring the Uptane

implementation in order to isolate the critical components constituted in the Full

verification process.

2. Design an API for communication between the created enclave and non-trusted

components.

3. After the refactoring, the critical Primary components that perform Full Verification

are going to be isolated within the enclave.
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4. Finally, we provide remote attestation of the Primary Full Verification so that it can

be verified during Secondary Partial Verification.

3.3 Extending Uptane client using TEE

In this section, we discuss the process of extending an Uptane client using a TEE. Along

the way, we compare the differences between the standard and our proposed approach.

3.3.1 Refactoring Uptane

In our proposed approach, we will not run all the client code of the Primary ECU inside

a TEE, unlike the approach followed in [63]. Assuming that the client’s code is portable

to the TEE, such an approach can be generally more convenient in terms of enhancing

security for the Primary ECU. However, it has natural issues such as having the TEE

itself becoming responsible for handling communication with the outer servers and the

Secondary ECUs.

Instead, we will separate the Full Verification process of a Primary ECU into two parts:

a standard, non-trusted one that interacts with the other actors in system and orches-

trates the general client-side steps expected of a client, just as per the standard; and a

new trusted one, which we will call the Verification Service (VS) that performs the core

verification functions, inside the TEE. The intuition is that the VS will run all the criti-

cal functions and pieces of code that are part of verification of metadata, and the regular

client will perform the downloading of the metadata and retain control of the control flow

of the client process.

After the client downloads the packages from the repositories, the information that

was received is serialized to the VS where it is going to be verified. If the verification suc-

ceeds, the VS will send a positive message to client and the communication between these

two agents goes on until all metadata has been verified. Nonetheless, if the verification

fails, the client will receive an error message from the VS and the update cycle will be

terminated. The steps presented in diagram 3.7 explain how the Full verification of the

Primary ECU is realized with the assistance of the Verification Service:
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FIGURE 3.7: Modified Full verification process and the communication between client
and the VS. The client SD (Serialize Data) to the VS and the service responds with an OK

if the verification succeeded. Otherwise, the update cycle stops
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3.3.2 Isolate the VS within TEE

With the Verification service built and connected to Client-side ECU via API, the following

step is to isolate the verification components within the enclave.

In the Primary ECU, when the Full verification process starts executing, the enclave is

created and the Uptane client will send the information yet to be checked to the trusted

verification function located in the enclave. Inside the enclave, the metadata is going to

be analyzed by the implemented verification methods. If the verification fails, the enclave

will send a error message to the Uptane client and the update process will be aborted.

Otherwise, the process continues until full verification is finished, after verification is

complete, the enclave is automatically destroyed. The following diagram 3.8 shows an

overview of how client behaves with SGX.

It is important to remark that, if the client is compromised, it may control the steps

performed by the VS and the inputs passed on to the VS. In all cases, the additional guar-

antee that the VS will provide over the standard Full Verification process, as we will see

in Section 4.1. is that the concrete verification trace that took place inside the VS will be

attestable by other parties installing the updates.

FIGURE 3.8: Communication between Client-side and Enclave in a Primary ECU per-
forming Full Verification, according to our proposed approach.
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3.3.3 Integrate remote attestation into Secondaries ECUs

To complete our proposed solution, during the Full verification process, the Uptane client

submits an attestation request to the Verification service with a nonce. Then, the Verifi-

cation Service prepares quote that will be used as evidence to prove its authenticity and

send it to the client-side. After that, in the Primary ECU, the quote received by the en-

clave is sent to the Secondary ECUs that will be updated. Finally, the Secondary needs to

validate the process occurred in the enclave by using Quote Verifier Service which returns

back whether that the quote received from the Primary ECU can be trusted.

The figure 3.9 shows the complete process of our modified Uptane architecture relying

on an SGX enclave with support for remote attestation.

FIGURE 3.9: The remote attestation flow of Intel SGX in our proposed uptane.



Chapter 4

Implementation

In this chapter, we explain the implementation details of the proposed approach. During

our implementation, we used specific technical tools like Intel SGX, Gramine and GRPC

to achieve our objective. We will also explain the rationale for their use.

4.1 Why SGX?

To implement our proposed approach, we leveraged Intel SGX as our TEE support. Before

we explain the reason why we chose this tecnology, consider the framework of Mukherjee

et al. [63], where they implemented the Uptane framework entirely inside a TEE using

ARM Trustzone. The following diagram 4.1 is an overview of their proposed update

architecture. This proposal proved to be more effective in terms of security, compared to

the traditional Uptane, by running the whole Uptane client inside the TEE/Trusted OS.

Nonetheless, their framework only considered the case of a single ECU performing

Full Verification. Their scenario did not consider remote attestation of the Full Verification

process to another entity, such as a Secondary ECU, and therefore security for Secondary

ECUs would impose that they run TEE-enabled Full Verification, as for Primary ECUs.

On the other hand, since Intel SGX provides remote attestation services, it will be

possible to transmit the result of a TEE-enabled Full verification process to the targets

ECUs, preserving the trustworthiness of the verification process.

33
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FIGURE 4.1: Modified update model proposed by Mukherjee et al. [63] which is divided
into a secure Uptane server and a modified Uptane client-side implementation where it

can run trusted applications within the trusted OS inside TEE.

4.2 Why we used Gramine?

The main technical challenge that we faced during this journey was to decide how to

isolate the VS (Verification service) inside an enclave. The standard SGX API is written

in C/C++, and the Uptane client that we adapted is written in Python. Translating all VS

function code to C/C++ would require non-trivial effort, and could also introduce errors

in the implementation. To avoid the limitations of rewriting we used a security isolation

LibOS with purpose of code-reuse approach.

Gramine [75, 76] (formerly Graphene [77]) is a Library OS that facilitates the execu-

tion of existing unmodified applications in SGX enclaves. Gramine also performs cryp-

tographic verification at the untrusted host interface in order to increase security. A

Gramine application is accompanied with a manifest file that describes the its security

configuration and isolation policies while running inside Gramine.
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FIGURE 4.2: Regular integration of Intel SGX [75]

FIGURE 4.3: Integration of Intel SGX with Gramine [75]

Before using Gramine, it is necessary to generate an RSA 3072 key suitable for signing

SGX enclaves and stores in a special pseudo-filesystem (HOME/.config/gramine/enclave-

key.pem), in order to guarantee the integrity of the outputs produced by the application

inside the enclave.

To invoke Gramine with a Python application, it is necessary to configure the mani-

fest file which is a simple configuration file written in the standard TOML format [78] that
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specifies all the additional dependencies that need to be trusted and the file access permis-

sions assigned to the Gramine executable. We provide an example in 4.5 . Once provided

all this information, to make sure the interactions between the enclave and the unstrusted

application are safe, Gramine intercepts requests (system calls) by calling Platform Adap-

tion Layer (PAL), which in turn calls SGX drivers to initialize the enclave. These requests

that involves talking to the host OS, uses read and write operations for extra security pre-

cautions. These operations apply real-time encryption, so that the data stored on the host

cannot be read without an encryption key [79].

To execute Gramine application we have two alternative modes: gramine-direct

(without SGX) just for ease of debugging and gramine-sgx (with SGX) that loads the

program onto SGX and runs Gramine inside the enclave.

FIGURE 4.4: Example of running application with Gramine [80]

FIGURE 4.5: Security policies in manifest file of Gramine [80]
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4.3 Remote Attestation

Gramine provides all functionality required for ensuring end-to-end protection of work-

loads, including attestation. As explained before, attestation is a security mechanism that

allows verifying if the outputs produced by the enclave are trustworthy. In addition to

this assurance, a Secure Channel needs to be created for trusted communication between

the Primary ECU and the remote TEE. In many cases, the Primary ECU also wants Secret

Provisioning to deliver safely the secret keys and other sensitive data to the remote TEE.

The following three levels of attestation flows are provided by Gramine:

1. Local Attestation and Remote Attestation are exposed to the application via a spe-

cial pseudo-filesystem (/dev/attestation). SGX local attestation in Gramine gen-

erates a SGX Report as an attestation evidence. Gramine remote attestation uses

the Intel SGX PSW’s AESM service and EPID service (uses Intel Attestation Service

(IAS)) or ECDSA/DCAP service (provided by special DCAP libaries).

2. Secure Channel are communication channels for trusted transmission of arbitrary

data between a TEE and a remote trusted party.

3. Secret Provisioning is a mechanism to deliver secrets contents (such as encryption

keys, passwords, etc.) from a remote trusted party inside a TEE.

The diagram 4.6 shows how the EPID attestation cycle runs under Gramine. Addi-

tionally, the descriptions of each stages are as follows:

1. The cycle starts with the enclavized user application opening the special file in order

to write the report (/dev/attestation/user_report_data).

2. Gramine, running under SGX, uses the EREPORT hardware instruction to generate a

SGX Report.

3. After the SGX report is generated, the application opens a special file

/dev/attestation/quote.

4. Under the SGX, Gramine request for the SGX quote to Quoting Enclave.

5. Only on the first deployment, the Quoting Enclave request fo EPID key from the

Provisioning Enclave.
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FIGURE 4.6: Gramine EPID remote attestation. [81]

6. The Provisioning Enclave requests the EPID key related with this SGX machine from

the IAS (Intel Provisioning Service).

7. The Quoting Enclave generates the SGX quote and transmits to the enclavized user

application.

8. The application stores this SGX quote in its enclave memory to be verified later.

9. The remote user consults the IAS to verify if the quote is trustworthy.

10. Finally, if this verification procedure was successful, the remote user can trust the

SGX enclave on the untrusted environment.

The diagram 4.7 represents DCAP based remote attestation under Gramine. DCAP

flows are very similar to EPID flows, but the big difference is that DCAP uses the clas-

sic PKI with X.509 certificate chains to verify the Quote instead of consulting the Intel

Attestation Service. The steps 1-4 are the same as the EPID flows. However, the Quot-

ing Enclave communicates with the Provisioning Certification Enclave (PCE) rather than

the Provisioning Enclave (step 5), and in step 6, instead of consulting IAS, the PCE uses

another Intel service called Intel Provisioning Certification Service (PCS) to obtain the

attestation certificates. The Primary ECU periodically fetches and caches the DCAP at-

testation certificates on a local machine (step 0) rather than consulting a web service from

Intel each time a new SGX quote arrives. Finally in step 9, when the Primary ECU receives
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the SGX quote, it compares the certificates embedded in the quote against these cached

DCAP attestation certificates.

We could not implement DCAP remote attestation due to execution issues with Gramine.

EPID attestation could not be an option either since the relying party verifies the Quote

at runtime by contacting Intel Attestation Service (IAS) and according to the Uptane stan-

dard, the Secondaries should not communicate outside the vehicle. Unlike DCAP where

internet-based services are not required at runtime, is the only option that favours our

proposed solution.

FIGURE 4.7: Gramine DCAP based remote attestation. [81]

4.4 Why we used GRPC?

Traditionally, the code to be run in a SGX enclave must be statically compiled to guarantee

code integrity. However, looking back to our proposed Uptane 3.7, the Verification service

(VS) is designed to interactively exchange information with Primary ECU.

For that purpose, our enclave runs a statically-defined interactive server application

that listens to requests from the Uptane client, executes the respective verification, and

replies with the outputs of verification.

In order to design such an interactive server application, we employ gRPC as our com-

munication service. In gRPC, a client application can directly call a method on a server

application on a different machine by using the protocol buffer (i.e., Proto Request/Re-

sponse), creating then distributed applications and services without much effort.
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The Protocol buffer is a binary format that efficiently serializes structured data with

minimal overhead. The service interface definition is specified in a proto file (file.proto).

The proto file defines which method parameters and message formats are going to be

used when the method is invoked.

The following code 4.1 and 4.2 shows the service’s interface used in Uptane from a

file.proto. The first figure represents two types of messages: the Request which contains

a collection of data structures called fields that the Primary ECU will serialize and the

Response that has two fields, an ID and a result message (response data) of the service

done in the Verification service.

1 service GRPCDemo {

2

3 message Request {

4 int64 client_id = 1;

5 string role_name = 2;

6 map <string , string > mymap = 3;

7 bytes file_object = 4;

8 int64 length = 5;

9 string metadata_dict1 = 6;

10 string metadata_dict2 = 7;

11 string metadata_dict3 = 8;

12 string metadata_dict4 = 9;

13 string repository_name = 10;

14 bool check = 11;

15 string metadata_directory_c = 12;

16 string metadata_directory_p = 13;

17 string metadata_file = 14;

18 string remote_filename =15;

19 int64 version = 16;

20 string filepath = 17;

21 string filename = 18;

22 string version_cur = 19;

23 string version_new = 20;

24 string current_repository_metadata = 21;

25 string previous_repository_metadata = 21;

26 }

LISTING 4.1: Definition of the message format/type of client and server.
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The second figure represents a service (GRPCDemo) which consists a collection of

services with RPC method parameters. These services takes an input of type Request and

returns a Response.

1 service GRPCDemo {

2

3 rpc server_check_hashes (stream Request) returns (Response);

4

5 rpc server_check_file_length (Request) returns (stream Response);

6

7 rpc _server_ensure_not_expired (stream Request) returns (Response);

8

9 rpc _server_verify_metadata_file (stream Request) returns (Response);

LISTING 4.2: Example of some remote methods for verification the data transmitted by

the client (Request) to the Verification service and the verification service returns with a

result (Response).

As previously analyzed in 3.7, we implemented a bi-directional streaming method

where the client (Primary ECU) and the Verification service use a read-write stream to

send a message sequence. In 4.3 shows an example method where the Primary ECU

builds the the message format which contains the information that needs to by analysed

in the Verification service. In the end of the method, the client ECU will wait for the result

from the Verification Service.

1 def client_streaming_method(self , stub , byte , file_hashes):

2 print("--------------Call check_hashs Begin --------------")

3 # create a generator

4 def request_messages ():

5 request = demo_pb2.Request(

6 client_id=CLIENT_ID ,

7 file_object=byte ,

8 mymap=file_hashes

9 )

10 yield request

11 #response from the server

12 response = stub.ClientStreamingMethod(request_messages ())

13 print("resp from server (%d), the message =%s" %

14 (response.server_id , response.response_data))

15 print("--------------Call check_hashes Over ---------------")

LISTING 4.3: Example of a gRPC method from client (Primary ECU)
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The Verification Service, whose interface is demonstrated in 4.4, will receive input data

from the client and is responsible for executing an specific verification method according

to the client ECU needs. If no errors occurred, the Verification service transmits a positive

result to the Primary ECU.

1 # In a single call , the client can transfer data to the server

2 def server_check_hashes(self , request_iterator , context):

3 print("Verification Service called by client ...")

4 #print data from client Primary ECU

5 for request in request_iterator:

6 print("recv from client (%d), FILE_OBJECT --> %s ____ TRUSTED_HASHES=

%s" %

7 (request.client_id , request.file_object , request.mymap))

8

9 bytess = io.BufferedRandom(io.BytesIO ())

10 bytess.write(request.file_object)

11

12 flag_check_hash = self.check_hashes(bytess , request.mymap)

13 #send the result to the Client

14 response = demo_pb2.Response(

15 server_id=SERVER_ID ,

16 response_data="VERIFICATION RESULT= %s" % (flag_check_hash))

17 return response

LISTING 4.4: Example of a gRPC method from server (Verification service)



Chapter 5

Evaluation

The current chapter provides a preliminary evaluation of our proposed Uptane frame-

work. In the first section, we compare the performance of our solution with the original

Uptane client implementation. In the second section, we discuss and compare the security

aspects of our proposal.

5.1 Performance Evaluation

To evaluate the performance of our proposal, we will measure the time that it takes for

the Primary ECU to fully verify a sample update with a size of 15 bytes. We will evaluate

our Uptane proposal under four different scenarios:

• Running the original Uptane client with no separation between client and Verifica-

tion Service;

• Running the Verification Service as a native Python application;

• Running the Verification Service without SGX support, using gramine-direct;

• Running the Verification Service with SGX support, using gramine-sgx.

These four scenarios seek to evaluate the gradual performance impact of using gRPC,

gramine, and of using SGX. Although preliminary, and far from an exhaustive perfor-

mance evaluation, this measure is important to provide a general intuition for the perfor-

mance impact of our design, since we must bear in mind that efficiency is always a critical

aspect for end-to-end solutions for OTA updates.

43
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5.1.1 Uptane with native client

In traditional Uptane, the implementation of the Full verification process executed in the

client-side performed by the Primary ECU, it consists of three main stages. Each stage is

composed by methods that are part of the Full Verification process. Below we provide a

description of each stage:

1. refresh toplevel metadata: Refreshes client’s metadata for the top-level roles:

root, targets, snapshot, and timestamp.

2. get validated target info: This method returns trustworthy target information

for the given target file (specified by its file path), from the Director and validated

against the Image Repository.

3. download target: After we possess the target information for all targets listed by

both the Director and the Image Repository, this call performs the actual download

and verification of the specified target and only keep each if it matches the verified

target information.

We measured three stages that perform retrieval and validation of metadata and data

provided by Director repository.

5.1.2 Uptane with Verification Service

Regarding the use of a remote service, this will affect directly the execution time, as the

Primary ECU does significant number of message exchanges with the Verification service,

the execution time may be longer, which can be noticed during the verification process.

That’s why we elected gRPC, it uses Http/2 [82], which is considered a faster binary se-

rialization protocol resulting a positive efficiency of message-passing, we expect that this

RPC framework is a suitable solution so that there is no significant performance decrease.

5.1.3 Uptane with Verification Service inside Gramine

We can conclude that the performance impact of the Verification service is not significantly

high compared to Native Uptane, and Verification service under gramine-direct mode

consumes almost the same time as Verification service without gramine.
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5.1.4 Uptane with Verification Service inside Gramine and SGX

Finally, the most significant performance test consists in executing the Uptane client plus

the Verification service inside the Enclave with gramine-sgx support. The results of this

experiment are crucial because SGX imposes a heavy performance penalty upon switch-

ing between the client application and the verification functions running under enclave,

ranging from 10,000 to 18,000 cycles per call [83] depending on the call mechanism used.

This penalty affects applications efficiency running under SGX [83].

In our case of study, we recommend that the Primary ECU should have a minimum

EPC (Enclave page Cache) size required (depending on the CPU type), in order to not

impair significantly the performance. Swapping EPC pages is expensive, costing hun-

dreds of thousands of cycles per swapping operation [83]. If the program consumes more

than the allowed EPC, the EPC will oversubscribing and Linux driver ends up paging

the EPC, causing an additional overhead, which increases depending on the number of

threads running inside the enclave taking more time to build an enclave and disrupt effi-

ciency [84].

Scenarios refresh toplevel metadata get validated target info download target

Native Uptane 0.02945 1.00098 0.00762

Uptane+VS 0.18728 1.09946 0.02071

Uptane+VS under gramine-direct 0.19471 1.10729 0.02214

Uptane+VS under gramine-sgx 0.51394 1.41043 0.06555

TABLE 5.1: Time performance results (in seconds) of traditional Uptane verification
stages compared to our final solution

5.1.5 Remote Attestation

As previously mentioned, our implemented does not support remote attestation attesta-

tion, hence, we cannot evaluate with valid results of our modified Uptane with remote

attestation. Remote attestation with EPID would not satisfy our proposed solution, be-

cause it is not recommended that the Secondaries ECUs communicate outside the vehicle,

and the verification of the Quote, in this type of attestation, requires a relying party to

have internet access. On the other hand, DCAP allows the ECU to build and deliver their
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own attestation service rather than using the remote attestation service provided by In-

tel. Furthermore, we expect an improvement of availability and performance compared to

EPID [53, 55, 85, 86]. In addiction, it improves privacy by making trust decisions in-house

[53, 55, 85].

5.1.6 Summary

In table 5.1 we are able to examine the performance impact of each scenario. When utiliz-

ing gRPC, we concluded that the performance compared to the Native Uptane dropped

around 26%. When running Uptane with Verification service under gramine-direct, the

performance was almost the same as the running without gramine, the execution time

drooped around 1.3%. Comparing the Uptane with Verification service running under

gramine-sgx we can conclude an increase of around 52% in execution time. Finally in

our proposed solution, there was an increase of around 91% compared to the the Native

Uptane Full verification process.

In terms of remote attestation, the runtime execution of Uptane with Verification ser-

vice running under gramine-sgx would grow if the remote attestation was performed. Ac-

cording to Gramine’s support team [87], the execution time of remote attestation does not

depend on the target size, in other words, the Quote generation and verification time is a

constant. The dissertation written by Reis [88] which implement a secure system based on

Intel-SGX using an unmodified application (REDIS), the remote attestation process was

analyzed with SCONE [89] mechanism using DCAP. The presented results, referenced

in the table 5.2, conclude that the attestation mechanism to a Proxy instance container

induces in ≈ 1, 05 extra seconds, while for the Redis ≈ 1, 23 seconds.

TABLE 5.2: Attestation Impact upon boot [88].

Another research made by Yulianti [90], the authors implemented a flexible and secure

environment using Intel-SGX where multiple users can collaborate in sharing their data.

In this project, they evaluate Occlum [91] as a memory-safe Library Operating System

(OS) that enables secure and efficient multitasking on Intel SGX. During the evaluation
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of the attestation process, three types of frameworks were measured: baseline Linux, Oc-

clum, and Graphene-SGX. The analyses done on baseline Linux, the generation of the

Quote is not performed (because it occurs outside the enclave), so it only checks the run-

time execution of Quote verification using X.509 extension fields. The results represented

in table 5.3, we can conclude that takes ≈ 0.01301 seconds to perform the verification of

the Quote.

TABLE 5.3: Execution Time of Attestation Process [90].

To summarize, despite our solution decrease significantly the performance of the Pri-

mary ECU, at least, we believe that it is possible save computational resources from the

Secondaries ECU by only verify the Quote instead of performing the traditional Full Ver-

ification. According to the results obtained in table 5.3 and assuming that the estimated

time of Quote verification (≈ 0.01301 seconds) is the same as our solution, we conclude

that it is faster than the execution time of the Full Verification process (≈ 1.03805) seconds.

Not forgetting that during our evaluation, the size of the analyzed target was basic, if it

were more complex, the execution time of the Full Verification would increase while the

Quote verification, as mentioned before, would be constant.

5.2 Security Evaluation

Remembering Chapter 3.2, we cited potential update attacks that traditional Uptane may

not be capable to protect in certain scenarios. We remarked that the Secondary ECUs that

perform Partial verification are the most vulnerable, being susceptible to more security

attacks in comparison to ECUs that perform Full Verification. Our objective, described

before, is to bring the guarantees of the Full verification method to all Secondary ECUs,
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thus being able to avoid update attacks that Partial verification cannot particularly defend

against.

5.2.1 Security flaws in traditional Uptane

In this subsection, we will focus on security flaws that can affect the security of software

updates in Secondaries ECUs that perform Partial verification. Some types of attacks like

physical attacks, compromise of the build system, remote exploits to compromise an ECU

and random failures are considered outside the scope.

Figure 3.6 has previously documented the security attacks to which secondaries are

vulnerable if attackers have compromised the Primary. The most notable difference be-

tween the Secondaries that perform the Full verification and the Secondaries that perform

Partial verification is that even if attackers have compromised the director keys, then at-

tackers are able to execute rollback and arbitrary software attacks on all partial verification

secondaries on all vehicles. This is because these secondaries depend upon the Primary

verification method (which is compromised) to prevent these attacks by comparing the

director to the targets metadata. In contrast, the Full verification Secondaries only are af-

fected by this attacks described above if the attacker compromises the root key which is

supposed to be the hardest to compromise.

5.2.2 Additional protection in our proposed Uptane

Finally, we state the security goals that we believe are achievable with our proposed so-

lution. Unlike our modified Uptane, the solution proposed by Mukherjee et al. [63] offers

better guarantees for the Primary ECU itself, since the entire Client-side runs inside the

TEE. In the case of our solution we also provide extra security to the Primary itself, we en-

hance the security of the Full verification process by isolating the core functions inside the

enclave. Although, any internal or external attack on the rest of the software or system

can affect the integrity of our modified framework, our Verification service receives in-

puts from (and returns outputs to) the untrusted environment, where the attacker always

has capabilities of performing Denial of Service attacks. This inconvenience may occur

in our solution, on contrary to the Uptane with ARM TrustZone proposal which despite

running networking within the TEE, thus losing security guarantees, still it is more effec-

tive against these flaws. However, the solution proposed by Mukherjee et al. [63] does
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not give additional guarantees to the secondaries that only perform partial verification

justifying the same initial problem that we sought to explore and mitigate.

As explained and described in Figure 3.9, the Primary ECU sends the downloaded

metadata to the verification service under SGX, and this service will perform the verifica-

tion methods pertaining to the Full verification process. In order to enhance confidence

that the intended software is securely running inside an enclave, Intel SGX provides an

attestation mechanism.

At the end of the verification process, the Primary ECU requests for attestation to the

verification service, and the verification service requests that its SGX enclave produces an

attestation. In SGX, this happens in a two-part process: the verification service sends a

local attestation from its enclave to a Quoting Enclave; the Quoting enclave then verifies

the local attestation and converts it into a Quote by signing the local attestation. The

Quote is returned to the verification service and, finally, forwarded to the Primary ECU.

The Primary ECU then transmits the Quote to the Secondaries ECUs where it will perform

a Quote verification.

With this Quote validated, we can guarantee that the verification process that took

place in the primary was successful. The final step is to send the Quote to the Secondaries

so that they can attest that the full verification was correctly performed, in which case

they can skip partial verification and start the installation of the software update.

5.2.3 Summary

Concluding this assessment, with our solution, all Secondaries ECUs will now have the

same Security attacks that affect the Primary ECU, regardless of whether the Primary is

compromised or not (figure 3.4). The notable advantage over the traditional Uptane is

that the rollback and arbitrary software attack are not going to affect any Secondary ECU

(in case the attacker just compromise the director key).

Not only our solution is effective in securing the Secondaries, it also improved the

security of the Primary (not as much as Mukherjee et al. [63] proposal). For example,

an arbitrary software attack can only attack in the untrusted world, since the code run-

ning inside the enclave is fixed, and with Verification service support, eavesdrop attack

is slightly more limited, the attacker can only see Input and Output of the Verification

service, but cannot inspect internal operations of the verification process.
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With our solution, we expect that it is possible to give all Secondary ECUs full verifi-

cation guarantees without having to execute the Full verification process, thus reducing

the number of security attacks.



Chapter 6

Conclusion

In this thesis, we explored the combined use of the Uptane framework with Trusted ex-

ecution environment technologies, in order to enhance security for the more vulnerable

secondaries ECUs. We showed that, despite the usage of Intel SGX in our modified Up-

tane requires a more significant amount of resources and induces a decrease in terms of

performance, it is feasible to mitigate some typical security attacks to the most vulnerable

Secondaries ECUs.

During the initial research phase of this thesis, we invested a lot of effort into fram-

ing the Intel SGX technology with the Uptane framework. As explained before in Sec-

tion 4.2, manually translating all critical verification methods to C/C++ would be a la-

borious and error-prone process. We found a compromise solution using the lightweight

library OS Gramine [75] which was the most effective solution to prototype our frame-

work [92]. Thanks to Gramine, we managed to get further in this investigation making

possible to develop a preliminary prototype that instantiates our idealized design. How-

ever, Gramine was used only for experimental purposes, it is not recommended executing

it in real world due to the negative impact in terms of performance. Our main objective

was to focus on proving that it is possible to give Full verification guarantees for all Sec-

ondary ECUs.

Although Gramine has facilitated the combination of these technologies, we faced new

challenges that brought some obstacles to the realization of this thesis. The main difficulty

was performing remote attestation with Gramine. Due to problems during the installation

of the DCAP infrastructure, we could not test the practical use of this type of remote

attestation, which would be the most suitable for Secondary ECU verification.
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6.1 Future Work

In terms of future work, it would be interesting to overcome some of the limitations iden-

tified before, like performing the DCAP remote attestation method with our solution.

Another possibility for a more realistic implementation would be to go through the

effort of implementing an Uptane client in C/C++. As mentioned in Background and

Related Work (chapter 2), Aktualizr [35, 36] could be a suitable solution in this case since

the implementation is written in C++. Using a lower-level language would likely bring

significant performance gains over an interpreted language such as Python. Moreover,

despite the convenience of Gramine, removing that layer of indirection would also likely

translate into significant performance gains. However, this project wasn’t as satisfactory

as the traditional Uptane, and for that reason we didn’t leverage Aktualizr.

To conclude this section, we believe that if we merge the benefits of our solution with

the contributions of Mukherjee et al. [63] modified Uptane, would be the best of two

worlds. In other words, a modified Uptane which the client-side of Primary ECU is iso-

lated entirely inside a TEE and uses remote attestation to provide Full verification guar-

antees for the Secondaries ECU, would significantly enhance the security of all ECUs.
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