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“Man stands face to face with the irrational. He feels within
him his longing for happiness and for reason. The absurd is
born of this confrontation between the human need and the
unreasonable silence of the world.”

-Albert Camus
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Abstract

In this thesis we explored different algorithms to precisely measure the interface free energy of
the Ising model in three dimensions and understand its deviations from the prediction provided
by an effective, capilary wave (CW) description. To this effect, we developed and tested a
plethora of algorithms that can be categorized into either the non-equilibrium transformations
(NET) class or into the multicanonical category. We found that the method with the best
precision / computation time ratio was the Wang-Landau algorithm. Along that finding, we
computed the first deviation from the free energy expansion predicted by the CW model for
transversal square interfaces. We found that our results obey the expected constraints, but
are not consistent between them.
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Resumo

Nesta tese exploramos diferentes algoritmos para medir com precisão a energia livre de uma
interface do modelo de Ising em três dimensões e compreender os seus desvios da previsão
dada or uma descrição efetiva em termos de ondas capilares. Para este efeito, desenvolvemos
e testamos uma pletora de algoritmos, que podem ser categorizados quer numa classe de
transformações de não-equilíbrio ou na categoria de algoritmos multicanónicos. Descobrimos
que o método com a melhor precisão em termos do tempo de computação é o Wang-Landau.
Também calculamos o primeiro termo de expansão não universal para uma série de diferentes
tamanhos de rede. Concluimos que os resultados obedecem a condições conhecidas, mas não
são auto-consistentes.
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Introduction

The confinement of quark-antiquark pairs in quantum chromodynamics (QCD) is seen to
arise from the existence of color flux tubes in the confined phase of the gauge theory which
can be modeled as thin vibrating strings[2, 3, 4, 5, 6]. Since such strings break translational
invariance, the Goldstone theorem guarantees that massless Nambu-Goldstone bosons will
emerge from the theory[7, 8]. It is possible[9] to integrate out the massive fields and reach an
action valid for strings that fluctuate at long wavelengths: an effective string theory (EST)
description (see refs. [10, 11, 12, 13] for a detailed review on this topic). Direct simulations on
lattice QCD showed good results for this approximation[14, 15]. Later, people have come to
realize that ESTs enjoy what is described as low-energy universality, arising from the symmetry
constraints imposed by Poincaré invariance of the target space. Therefore, the Nambu-Goto[3,
4] (NG) action, fully determined by the area of the string’s worldsheet, proves to be the most
important contribution in the regime of long and thin flux tubes, with all the other terms
appearing as sub-leading corrections1.

In order to indirectly study the properties of this EST, a lot of attention was devoted to
understanding the properties of interfaces in three-dimensional systems dominated by massless
excitations[18]. Such objects, known as fluid interfaces, can be described by field theoretical
methods, which yield universal results, that are independent of microscopic detail. One of the
simplest realizations of a two-dimensional interface is the domain wall in the 3D Ising model.

The Ising model, proposed to explain the ferromagnetic properties of materials, was first
studied by Ernst Ising at the 1920’s [19]. In the one-dimensional model, Ising found the
absence of a phase transition, and quickly rushed to the conclusion that the model lacked a
phase transition at higher dimensions. Later on, the two-dimensional case was demonstrated
to have a phase transition[20], which was then completely characterized by Onsager’s analytic
solution[21]. For higher dimensions, the model also exhibits a critical point, that is well
described by mean field theory above three dimensions. Unfortunately, an exact description
of the 3D critical point still evades physicists to this day. The Ising model is the absolute
poster child of Statistical Physics, and more than one hundred years after its inception, it is
still widely studied, with a copious amount of computational work already published[22, 23].

Regarding 2D interfaces, we can study the domain wall that separates regions of up and
down magnetization at low temperature (β < βC) in the ferromagnetic phase. Such interfaces

1It must be noted, however, that this approximation breaks down for some few select cases[16, 17].
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appear when we impose anti-periodic boundary conditions along one of the directions. In the
90s, an impressive amount of work was devoted to understand the behavior of such an object
[24, 25, 26, 27, 28, 29, 30], and the domain wall was shown to undergo a Kosterlitz-Thouless
phase transition at βR ∼ 2βC . The specifics of this transition goes beyond the scope of this
thesis, but suffices to say that the behavior at βC < β < βR is described precisely by the fluid
interpretation.

The effective description of a rough interface is the one provided by the capillary wave
model [31] (CW), a model that assumes an effective Hamiltonian proportional to the variation
in the surface area. This is precisely the rationale behind NG and, in fact the two models are
shown to be equivalent[31]. This means that we can perform measurements of the interfaces’
free energy in the Ising model and, by studying its deviation from the prediction of the CW
model, obtain insights about the EST behavior.

Objectives

For 30 years now, physicists have been struggling to measure the non-universal deviations to
the Nambu-Goto action[15, 14, 32]. In this thesis, with the help of continuous improvements
of CPU technology and the use of previously unchecked multicanonical approaches, we aim
to break this paradigm for the 3D Ising model, through high-precision measurements of the
interfaces’ free energy and of the first non-universal correction to the Nambu-Goto / CW
model. The free energy of the interface can be probed by comparing the free energy of a
system with periodic boundary conditions with one having anti-periodic boundary conditions
in one direction.

Thesis outline

We start, chapter 1, by deriving the universal contributions that arise from the Nambu-Goto
expansion. We follow the approach presented in ref. [33]. It is also presented the perturbative
expansion to which we will stake our data against.

In chapter 2, we outline the general principles behind Monte Carlo equilibrium simulations,
that will be prevalent throughout the rest of the work.

In chapter 3 we will study the phenomenology of the domain walls in the Ising 3D model
when we promote the wall coupling to a continuous value.

Then, in chapter 4, we describe the first class of algorithms we employ to compute the in-
terfaces’ free energy, consisting of the Jarzynski method[1] and the normalizing flow approach.
We cast them together since both of them rely on the properties of non-equilibrium transfor-
mations between the periodic and anti-periodic Ising models. Moreover, it was recently shown
that they belong to a more general class of algorithms: Stochastic Normalizing Flows[34]. The



Jarzynski approach is similar to [14], but with a distinct Monte Carlo update. The free energy
computation with the Normalizing Flow is a novel approach.

We proceed by outlining three original multicanonical algorithms, that configure the second
class of employed techniques.

We finish by presenting and comparing the results of the different algorithms, chapter 6,
and by, employing the best of them, computing the first non-universal coefficient, chapter 7,
contrasting it with previous results from the literature[35, 36, 37].
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1. Interface free energy - from strings to
Ising 3D

Before we can understand the non-universal corrections of the EST picture, we need first to
compute the Nambu-Goto contributions, in order to be able to recognize deviations.

In this chapter we will start by studying the Nambu-Goto action, calculating its energy
spectrum (Sec. 1.2, which follows the analysis present at [33]), that leads naturally to the
partition function (Sec. 1.4). We finish by computing the expansion for long strings (Sec.
1.5). This is by no means a thorough analysis, and it is presented in this thesis for the sake of
completion; a more detailed account can be found at [33].

1.1. Nambu-Goto action / capillary wave model

Nambu-Goto is the simplest operator compatible with the constrains of the effective string
theory of a long string[9]. Although widely used to study quantum gravity (string theory) we
are more interested in its role as a generalization of the point particle action to a string. Then,
let us review the action of a point particle, which we can write as

S = −m
∫
ds, (1.1)

with m as the rest mass. The integral corresponds to the length of the particle path in the
space-time, an one dimensional object.

We now need to generalize this notion of length of space-time to two dimensions, so it is
to be expected that we are going to promote the length (volume of a 1D object) to the area
(volume of a 2D object). It is natural then to write, if we consider h as the metric induced on
the worldsheet,

SNG = σ

∫
d2ξ

√
deth, (1.2)

with σ as the string tension and
∫
d2ξ

√
deth as the worldsheet’s area.

The worldsheet, a 2-dimensional manifold Σ, can be parametrized by {ξ0, ξ1}, and is em-
bedded in a d-dimensional target space, with a metric gij and parametrized by coordinates
{X0, ..., Xd}.

1



1 Interface free energy - from strings to Ising 3D 2

Figure 1.1.: Example of the promotion of the particle’s worldline to a string’s worldsheet.
Even further generalizations to higher dimensions are possible if we introduce the
concept of a brane. Image from[38].

The induced metric onto the worldsheet is

hab =
∂Xi

∂ξa
∂Xj

∂ξb
gij , (1.3)

and is its determinant that appears in eq. (1.2). These quantities are diffeomorphism invariant,
i.e., are invariant under arbitrary differentiable coordinate transformations on the worldsheet.
This induces a gauge-like freedom in the parametrization of our target space, that can be
circumvented by choosing the so-called static gauge,

X0 = ξ0

X1 = ξ1
, (1.4)

such that the target space is parametrized by

Xµ = (ξ0, ξ1, X⃗(ξ0, ξ1)), (1.5)

with X⃗ being a d − 2 dimensional vector. With this, we can explicitly obtain the induced
metric h for an euclidean background. The computation for h00 yields

2



1 Interface free energy - from strings to Ising 3D 3

h00 =
∂Xi

∂ξ0
∂Xj

∂ξ0
gij =

∂X0

∂ξ0
∂X0

∂ξ0
g00 +

∂X⃗i(ξ0, ξ1)

∂ξ0
∂X⃗i(ξ0, ξ1)

∂ξ0
gii = 1 + (∂0X⃗(ξ0, ξ1))2. (1.6)

The computation for h11 is very similar, and

h11 = 1 + (∂1X⃗(ξ0, ξ1))2. (1.7)

Finally, the off-diagonal terms are

h10 = h01 =
∂Xi

∂ξ0
∂Xj

∂ξ1
gij =

∂X⃗i(ξ0, ξ1)

∂ξ0
∂X⃗i(ξ0, ξ1)

∂ξ1
gii = ∂0X⃗(ξ0, ξ1)∂1X⃗(ξ0, ξ1), (1.8)

which allows us to compute the determinant

deth =
(
1 + (∂0X⃗(ξ0, ξ1))2

)(
1 + (∂1X⃗(ξ0, ξ1))2

)
−
(
∂0X⃗(ξ0, ξ1)∂1X⃗(ξ0, ξ1)

)2
, (1.9)

and re-express the action in its most usual form,

SNG = σ

∫
Σ
dξ0dξ1

(
1 +

(
∂0X⃗

)2
+
(
∂1X⃗

)2
+ ∂0X⃗ · ∂0X⃗∂1X⃗ · ∂1X⃗ −

(
∂0X⃗ · ∂1X⃗

)2)1/2

.

(1.10)
We remark that this action has the following symmetries:

1. Isometry of flat spacetime (d-dimensional Poincaré group)

X
′µ(ξ0, ξ1) = Λµ

ν︸︷︷︸
Lorentz transformation

Xν(ξ0, ξ1) + aµ︸︷︷︸
translations

; (1.11)

2. Diffeomorphism invariance on the worldsheet, that is, performing a coordinate transfor-
mation ξ0, ξ1 → ξ′0(ξ0, ξ1), ξ′1(ξ0, ξ1) , we have

X
′µ(ξ′0, ξ′1) = Xµ(ξ0, ξ1). (1.12)

1.2. Polyakov Lagrangian

Computations with the explicit NG-action are quite cumbersome, which suggests the intro-
duction of a new action. This is done by putting forward a new world-sheet metric γab that
will act as a background field. This is the Polyakov action[41], expressed by

3



1 Interface free energy - from strings to Ising 3D 4

SP [X, γ] =
σ

2

∫
Σ
dξ0dξ1

√
−det γγab∂aX

µ∂bXµ. (1.13)

This action is equivalent to the Nambu-Goto action. That can be seen by computing γ’s
equation of motion and plugging them back into eq. (1.13). The detailed computations are
present at Appendix C.

This action has the following symmetries:

1. Isometry of flat spacetime (d-dimensional Poincaré group)

X
′µ(ξ0, ξ1) = Λµ

ν︸︷︷︸
Lorentz transformation

Xν(ξ0, ξ1) + aµ︸︷︷︸
translations

; (1.14)

2. Diffeomorphism invariance on the worldsheet. Performing a coordinate transformation
ξ0, ξ1 → ξ′0(ξ0, ξ1), ξ′1(ξ0, ξ1) , we have

X
′µ(ξ′0, ξ′1) = Xµ(ξ0, ξ1); (1.15)

3. Weyl invariance, i.e., invariance under a local rescaling of the world-sheet metric

X
′µ(ξ0, ξ1) → Xµ(ξ0, ξ1)

γ′ab(ξ
0, ξ1) → exp(2ω(ξ0, ξ1))γab(ξ

0, ξ1)
, (1.16)

for any arbitrary ω(ξ0, ξ1).
Actions 1.2 and 1.13 define 2D conformal field theories on the string world-sheet Σ. The

Polyakov action, for example, describes a massless scalar field Xµ coupled to the metric γab,
since its motion equation is √

−det γ∂a∂
aXµ = 0. (1.17)

The considerations stated above presupose any generic Σ , but since we are interested in
a finite interface, we will have to take into account the behavior induced by the presence of
boundary terms. Let’s start by taking the coordinate region of our submanifold to be

0 < ξ1 < l, (1.18)

with this choice arising by considering ξ1 as a “spacial” coordinate and ξ0 as a “time” one.
This describes a string propagating in time without external sources. If one is to variate again
the action with respect to Xµ:

δSP = 2σ

∫ ∞

−∞
dξ0

∫ l

0
dξ1
√

−det γγab∂aδX
µ∂bX

µ,

and, integrating by parts,

4



1 Interface free energy - from strings to Ising 3D 5

Figure 1.2.: Example of an open (A) and closed (B) string world-sheet

δSP = −2σ

∫ ∞

−∞
dξ0

∫ l

0
dξ1
√

−det γ∂a∂
aXµδXµ

+2σ

∫ ∞

−∞
dξ0
√
−det γδXµ∂aXµ

∣∣∣∣ξ1=l

ξ1=0

, (1.19)

we may have boundary terms, that are zero if

∂aXµ(ξ0, 0) = ∂aXµ(ξ1, l) = 0, (1.20)

corresponding to vanishing derivatives of the scalar field at the boundary. The reader may
recognize them as von Neumann boundary conditions that describe an open-ended string. We
also have a vanishing boundary term if the string is closed, i.e., if

Xµ(τ, 0) = Xµ(τ, l)

γab(τ, 0) = γab(τ, l)
. (1.21)

Let’s consider this last choice and compute its energy spectrum, since, as we will see, those
will be the realizations we will realize on the lattice. Firstly, however, we need to deal with
the gauge invariance of the Polyakov action.

The Polyakov action has a diffeomorphism and a Weyl symmetry. In order to compute the
spectrum, we will employ an approach that starts by fixing the gauge to the so-called light cone
gauge[42]. Although successful, it must be said that there are more generic, symmetry-driven
ways [33] to obtain this result. Such methods will not be discussed in this thesis.

We start once again by considering the d-dimensional target space, parametrized by the
coordinates {X0, ..., Xd}. The light-cone coordinates are

X± =
X0 ±X1

√
2

, Xi, (1.22)

5



1 Interface free energy - from strings to Ising 3D 6

which allows the gauge to be fixed by imposing

ξ0 = X+

∂ξ1γξ1ξ1 = 0

det γ = −1

(1.23)

with the first two conditions fixing a coordinate and a parametrization, respectively, in order
to deal with the diffeomorphism invariance, and the latter fixing a scale to our string to deal
with the Weyl symmetry.

So what we need to do now is to construct a set of coordinates and a γ that satisfies
the required conditions. Since the metric is symmetric, we have three degrees of freedom
(γξ0ξ0 , γξ0ξ1and γξ1ξ1). The determinant condition fixes one of those. By the second condi-
tion at 1.23, γξ1ξ1 only depend of ξ0. There are only two degrees of freedom γξ1ξ1(ξ

0) and
γξ0ξ1(ξ

0, ξ1), and will be in our interest to write the Polyakov action with respect to these
quantities. Let’s start by obtaining the inverse metric γab with respect to the metric γab,(

−γξ1ξ1(ξ0) γξ0ξ1(ξ
0, ξ1)

γξ0ξ1(ξ
0, ξ1) γ−1

ξ1ξ1
(ξ0)(1− γ2ξ0ξ1(ξ

0, ξ1))

)
, (1.24)

which can be readily seen to obey to the condition

det γ = −γξ1ξ1(ξ0)γ−1
ξ1ξ1

(ξ0)(1− γ2ξ0ξ1(ξ
0, ξ1))− γ2ξ0ξ1(ξ

0, ξ1) = −1. (1.25)

We will now manipulate the Polyakov Lagrangian until arriving at a simpler expression. Let’s
start by considering

S =

∫
dξ0

σ

2

∫
dξ1
√
−det γγab∂aX

µ∂bXµ︸ ︷︷ ︸
L

L =
σ

2

∫ l

0
dκ

1︷ ︸︸ ︷√
−det γ

(
A+B

)
,

recalling that

∂ξ0X
µ = (1, ∂ξ0X

−, ∂ξ0X
i)

∂ξ1X
µ = (0, ∂ξ1X

−, ∂ξ1X
i)
, (1.26)

and
∂ξ0X

µ∂ξ0X
µ = −2∂ξ0X

− + ∂ξ0X
i∂ξ0X

i

∂ξ1X
µ∂ξ1X

µ = ∂ξ1X
i∂ξ1X

i

∂ξ0X
µ∂ξ1X

µ = −∂ξ1X− + ∂ξ1X
i∂ξ0X

i

(1.27)

6



1 Interface free energy - from strings to Ising 3D 7

This allows us to obtain

A = −γξ1ξ1∂ξ1Xi∂ξ1X
i + 2γξ0ξ1∂ξ1X

i∂ξ0X
i + γ−1

ξ1ξ1
(1− γ2ξ0ξ1)∂ξ0X

i∂ξ0X
i

B = 2γξ1ξ1∂ξ0X
− − 2γξ0ξ1∂ξ1X

− . (1.28)

X−(ξ0, ξ1) can be further broken into

X−(ξ0, ξ1) = x−(ξ0)︸ ︷︷ ︸
mean value of X−

+Y −(ξ0, ξ1), (1.29)

which promotes

2γξ0ξ1∂ξ1X
i → 2γξ0ξ1∂ξ1Y

i

γξ1ξ1∂ξ0X
−(ξ0, ξ1) → γξ1ξ1∂ξ0x

−(ξ0) + γξ1ξ1∂ξ0Y
−(ξ0, ξ1)

. (1.30)

Since we know that γξ1ξ1 is independent of ξ0, by the condition that fixed the gauge, eq.
(1.23), ∫ l

0
dξ1γξ1ξ1∂ξ0Y

−(ξ0, ξ1) = γξ1ξ1∂ξ0

∫ l

0
dξ1Y − = 0, (1.31)

and we finaly arrive at the Lagrangian

L = σlγξ1ξ1∂ξ0x
−+ σ

2

∫ l
0 dξ

1

(
− γξ1ξ1∂ξ1X

i∂ξ1X
i + 2γξ0ξ1∂ξ1X

i∂ξ0X
i

+γ−1
ξ1ξ1

(1− γ2ξ0ξ1)∂ξ0X
i∂ξ0X

i − 2γξ0ξ1∂ξ1Y
i

) . (1.32)

In the closed string, we have yet an extra freedom, since the ξ1 = 0 point is not uniquely
determined. Most of the remaining freedom can be fixed by imposing

γξ0ξ1(ξ
1, 0) = 0, (1.33)

and by taking Eq.1.33 into account, the Polyakov Lagrangian for a closed string simplifies to

L = σlγξ1ξ1∂ξ0x
− +

σ

2

∫ l

0
dξ1
(
− γξ1ξ1∂ξ1X

i∂ξ1X
i + γ−1

ξ1ξ1
∂ξ0X

i∂ξ0X
i

)
. (1.34)

This simplified Lagrangian finaly allows us to easily obtain an equation of motion for the
field Xi(ξ0, ξ1), which reads

∂2ξ0X
i =

( σl

p+︸︷︷︸
c

)2
∂2ξ1X

i, (1.35)

7



1 Interface free energy - from strings to Ising 3D 8

and may be recognized as the wave equation. For a closed string, the solution is

Xi(ξ0, ξ1) = = xi +
pi

p+
ξ0︸ ︷︷ ︸

center of mass dynamics

+
i√
4πσ

∞∑
n=−∞

{
αi
n

n
exp

[
−2πin(ξ1 − cξ0)

l

]
︸ ︷︷ ︸

≡left moving excitations

(1.36)

+

≡right moving excitations︷ ︸︸ ︷
α̃i
n

n
exp

[
2πin(ξ1 + cξ0)

l

]}
. (1.37)

1.3. Energy spectrum of a closed string

To compute the energy spectrum, we need to quantize the Lagrangian, in a similar vein
to what is done usually in Quantum Field Theories. We quantize the independent degrees of
freedom (transverse oscillators (αn and α̃n) and transverse (xi, pi) and longitudinal (x−, p+)
centre of mass variables):

[x−, p+] = −i

[xi, pj ] = iδij

[αi
m, α

j
n] = mδijδm,−n

[α̃i
m, α̃

j
n] = mδijδm,−n

This is very similar to the algebra of the harmonic oscillator if we define operators α̃i
m =

√
main, and by choosing the quantum numbers k as the center of mass momentum and N(Ñ)

as the level of the right(left) excitation, we can build a vacuum state |0, 0, k⟩ and a general
state |N, Ñ, k⟩. This analogy leads us to the mass formula,

m2 = 4πσ

(
N + Ñ − D − 2

12

)
, (1.38)

and the momentum

p =
2π

l
(N − Ñ), (1.39)

and by taking into account the centre of mass momentum k, we arrive at the energy spectrum
for the Nambu-Goto action,

E2(N, Ñ, k) =

m2︷ ︸︸ ︷
4πσ

(
N + Ñ − D − 2

12

)
+

p2︷ ︸︸ ︷[
2π

l
(N − Ñ)

]2
+k2. (1.40)

8



1 Interface free energy - from strings to Ising 3D 9

1.4. Partition function

Now that we have the energy spectrum of the Nambu-Goto action for the closed string, we
will realize the physical system in some lattice model. String theory is, in its essence, a theory
of one spatial dimensional objects that respect the symmetries presented in section 1.2, and
such symmetries are broken when we discretize the theory, but can be restored if our lattice
system is undergoing a second order phase transition.

The simplest choice for studying the dynamics of a 2D object on a lattice model at a critical
point is the 3D Ising. This model has a well-known second order phase transition and it is easy
to simulate. In this model there is a clear analogue to the worldsheet - a domain wall/interface.
These appear in the broken symmetry phase, splitting domains of up and down aligned spins.
A detailed study of these objects will be presented in chapter 3, but suffices here to say that we
can generate domain walls by imposing anti-periodic boundary conditions along the z-direction
of the simulated lattice.

The behavior of the domain wall can be properly modeled by the capillary wave model, that
postulates that the energy of this object is proportional to its area. Given the similarities
with NG, the working hypothesis is that the dynamics of the domain wall near the critical
point will be governed by the Nambu-Goto action, up to higher order corrections[14]. There
is, however, an additional term we need to add to eq. (1.40) : the minimal area of the surface.
Due to the periodic boundary conditions alongside x and y-directions, the domain wall cannot
be contracted into a point, and has a minimum area, that corresponds to the size of the
transversal section, i.e., Lx × Ly. By making the identification of the x-direction with the
space dimension and the y-direction with the time dimension, this is equivalent of having a
string that has a minimal length Lx, and such contribution must be added to the mass term,
leading to the expression

E(N, Ñ, k) = σLx

√
1 +

4πσ

σ2L2
x

(N + Ñ − D − 2

12
) +

1

σ2L2
x

[
2π

Lx
(N − Ñ)

]2
+

(
k

σLx

)2

. (1.41)

We are now able to compute, by summing over all the possible N, Ñ and k,

Z = TrN,Ñ,k

[
exp(− T︸︷︷︸

=Ly

E(N, Ñ, k))
]
, (1.42)

having identified y as the time direction.
Let’s recall that, by the construction of the states on the closed string, we need to sum over

the degrees of freedom of the left and right excitations (N and Ñ) and the center of mass
longitudinal momentum (k), so

9



1 Interface free energy - from strings to Ising 3D 10

Z =
∑

N,Ñ,k

cNcÑ

〈
N, Ñ, k

∣∣e−LyE
∣∣N, Ñ, k〉 , (1.43)

with cN and cÑ as the degeneracies of each energy level. The longitudinal direction is finite
(≡ Lz) and has periodic boundary conditions. This imposes a discretization for the center of
mass momentum

k =
2π

Lz
n n ∈ Z. (1.44)

We will compute the partition function in the large Lz limit, so
∑

k → Lz
2π

∫
dk,

Z =
Lz

2π

∑
N,Ñ

cNcÑ

∫ +∞

−∞
dk
〈
N, Ñ, k

∣∣e−LyE
∣∣N, Ñ, k〉 . (1.45)

To integrate over k, we perform two successive changes of variable. First, by defining z =

k
σLxMN,Ñ

, M2
N,Ñ

= 1 + 4π
σL2

x

(
N + Ñ − D−2

12

)
+

[
2π(N−Ñ)

σL2
x

]2
and A = LxLy,

Z =
Lz

2π

∑
N,Ñ

cNcÑσLxMN,Ñ

∫ ∞

−∞
dze−σAMN,Ñ

√
1+z2 , (1.46)

and then, stipulating cosh (β) =
√
1 + z2, we arrive at

σLxMN,Ñ

∫ ∞

−∞
dze−σAMk,k′

√
1+z2 = 2σLxMN,Ñ

∫ ∞

0
dβe−σAMN,Ñ cosh(β) cosh (β)

and this integral corresponds to the Bessel function of the second kind,

= 2σLxMN,ÑK1

(
σAMN,Ñ

)
. (1.47)

This gives rise to a partition function

Z =
σLz

π

∑
N,Ñ

LxMN,ÑK1

(
σAMN,Ñ

)
(1.48)

1.5. 1/A expansion for finite strings

For big transversal areas A = LxLy, the fact that the energy is proportional to the area will
mean that E should go proportionally with A, with a proportionality constant σ that is given
by the particular details of the theory. However, there are corrections that can appear, since
the wall is not a perfectly flat slab. This corrections should grow slower than the leading σA
term, given that in the limit A→ ∞ the wall is perfectly flat, meaning that they appear as an
expansion parameter with 1

σA ≡ 1
A as the expansion parameter. The partition function, eq.

10



1 Interface free energy - from strings to Ising 3D 11

(1.48) can be expanded with respect to this parameter. Performing the computations[43, 15]
it is obtained, for a generic ratio u ≡ Ly

Lx
,

Z =

(
σL2

z

2πu

) 1
2 e−A

η̃2

(
1 +

∞∑
n=1

fn (u)

An

)
, (1.49)

with

η̃ =

∣∣∣∣η(iu)η(u)

∣∣∣∣, (1.50)

if we consider η as the usual Dedekind’s function

η(τ) = e
πiτ
12

∞∏
n=1

(
1− e2nπiτ

)
. (1.51)

Expanding 1.49 up to 1
A4 for a square interface (u = 1), we arrive at the expression

F = 0.3914− 1

2
log
(σ
u
L2
z

)
+A− 0.2500

A
+

0.0141

A2
+

0.1314

A3
− 2.0303

A4
, (1.52)

which will be the function we will test our data against. Any deviations from this behavior
will constitute deviations from the pure NG behavior. Such deviations are expected to only
appear at order 1

A3 or greater[10]. The main goal throughout this work will be measuring this
deviations, because the first detour from the universal series, that appear at order 1

A3 , has
interesting physical properties[35] and, despite previous numerical studies[36, 37], its precise
value still evades physicists to this day.
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2. Monte Carlo

The Monte Carlo methods[44] in statistical physics are used to accurately predict the ther-
modynamic properties of complex models. Starting from a microscopic description of the
desired physical systems, Hamiltonian and lattice structure, one can in principle compute any
average.

This method is necessary because, for any reasonably sized system, it is simply impossible to
sum over the configuration space exactly. As an example, take a system with a d-dimensional
cubic lattice as an example. Recall that the partition function can be written as a sum over
microstates:

Z =
∑
µ

exp(−βH(µ)), (2.1)

with β = 1
kBT and H as the model Hamiltonian. In the Ising, each lattice site corresponds to a

degree of freedom with 2 distinct possible values and, if our cubic lattice has linear dimension
L, the number of possible configurations is 2L

d . For our typical lattice size (L ∼ 96), we
are dealing with 296

3 ∼ 10266332configurations. This is an absolutely gigantic number, and
constitutes a significant impediment in the computation of the partition function.

In this chapter we will explain the general features required to build a generic Markov Chain
Monte Carlo (MCMC) algorithm, Sec.2.1. Then, we will discuss two prominent approaches
to the sampling of Ising models - the local, Sec.2.2, and cluster algorithms, Sec.2.3. We will
delve a little bit in the most used algorithms in our work.

2.1. General properties

Monte Carlo encompass a large subset of algorithms, some of which seem as distinct as day
and night. However, all of them need to fulfil some core features, which we outline in this
section.

2.1.1. Importance sampling

The underlying principle behind the Monte Carlo approach is the importance sampling. The
concept can be illustrated with a simple example. Let’s consider the integral:

12



2 Monte Carlo 13

I =

∫ b

a
f(x)dx, (2.2)

which can be expressed as a mean value of f(x),

⟨f(x)⟩ = (b− a)

∫ +∞

−∞
f(x)w(x)dx (2.3)

if we consider w(x) to be the uniform distribution defined between a and b. Since Eq. 2.3
holds, one can produce a sample of values xi from the uniform distribution and compute the
mean estimator as an approximation for the mean value of f(x):

1

M

M∑
i=1

f(xi) → ⟨f(x)⟩ = I. (2.4)

Notwithstanding, let’s consider that the integral we want to compute is

I =

∫ L

0
exp(−x4)dx,

with L as an arbitrary cut-off.
We can implement the same procedure as detailed above. However, the convergence rate will

be rather small, since the function decays rather sharply near the origin, and we are sampling
numbers that do not have a significant contribution to the integral. Still, it is important to
note that:

I =

∫ L

0
exp(−x4)w(x)

w(x)
dx = ⟨exp(−x

4)

w(x)
⟩w(x), (2.5)

so we can utilize different probability distributions to rate the integral. In particular, the
closer that probability distribution is to function whose integral we want to compute, the
more success we can expect to get in estimation.

2.1.2. Markov process

Usually, to perform physical observable computations, that in Ising model are quantities
like mean magnetization, heat capacity, we need to produce a random set of configurations.
Such configurations, or microstates ϕ, need to follow the distribution

P (ϕ) α exp(−βH(ϕ)). (2.6)

This requirement gives rise to the inadequacy of producing uniformly random states, i.e., we
can’t go to each lattice site and flip a coin and assign spin up or down given the coin result,
since that begets the same kind of problems that we saw in subsection 2.1.1 - most of the

13



2 Monte Carlo 14

configurations sampled with this rule will have a very small P , and will be irrelevant to the
observables calculations.

Instead, we rely on the Markov process to generate configurations. This process consists in
assigning a transition probability P (ϕµ → ϕν) of generating a new state ϕν , given a previous
state ϕµ. We choose the Markov process that has the desired 2.6 asymptotic distribution.

With the previous definition, it is possible to build a Markov Matrix M, that acts in the
configuration space of our system, with the matrix element being transition probabilities, i.e.,

Mµν = P (ϕµ → ϕν). (2.7)

This matrix contains all the information related to each specific Markov process: Metropolis,
Wolff, Swedenson-Wang, etc. Each distinct process has its specific rules to build the matrix,
but all of them must obey the conditions that we will expose at 2.1.3 and 2.1.4.

Since we are dealing with probabilities,

Mµν = P (ϕµ → ϕν) ∈ [0, 1] (2.8)

and

∑
ν

Mµν = 1. (2.9)

This last condition is required, both as a simple property of conditional probabilities, and
as a general statement of probability conservation.

2.1.3. Ergodicity

The ergodicity condition forces our Markov process to allow any given configuration ϕµ to
reach any other configuration ϕv(i.e., to have a finite transition probability), within a finite
number of Markov steps. This affirmation can be summed up as:

∀µ, ν,∃n : [Mn]µν > 0. (2.10)

Since we want to produce a series of microstates that follow the Boltzmann distribution,
equation 2.6, each configuration has a non-zero probability. Hence, we can’t have two states
that are inaccessible through a Markov process, because if we start our Markov chain at one
of them, the probability associated with the inaccessible one would be null. This argument
also holds for any probability distribution with non-zero probability for any microstate.

14



2 Monte Carlo 15

2.1.4. Detailed balance

We want our Markov process to produce, in the asymptotic limit, a set of configurations
that follow the Boltzmann (or any other) probability distribution1.

If the system is in the equilibrium distribution, then the probability flow in and out of a
given configuration µ must be the same, since Pµ(stationary probability of the configuration
ϕµ) must not change. That can be expressed as

∑
ν

PµMµν︸ ︷︷ ︸
outwards flow

=
∑
ν

PνMνµ︸ ︷︷ ︸
inwards flow

, (2.11)

which simplifies, through equation 2.9, to

Pµ =
∑
ν

PνMνµ. (2.12)

This condition is enough to ensure that there is one stationary probability distribution P ,
that obeys to

MP = P, (2.13)

i.e., a eigenstate of the Markov Matrix with eigenvalue 1. This eigenvalue analysis allows us to
further understand the behavior of the Markov process. If we consider the right2 eigenvalues
r of M,

Mijr
(α)
j = λαr

(α)
i , (2.14)

we build a basis {r(α)} that can be used to decompose any initial probability distribution q,

qi =
∑
α

aαr
(α)
i (2.15)

so that the application of M n times is

(Mnq)i =
∑
α

aαλ
n
αr

(α)
i . (2.16)

It can be proven (see Appendix A) that |λα| ≤ 1, so the only significative contribution for n→
∞ corresponds to the asymptotic distribution, since it corresponds to the λ = 1 eigenvalue.

However, there are other solutions that obey to |λα| = 1 - complex eigenvalues

λα = exp (iθα) ,

1We can denominate this distribution as asymptotic, stationary, equilibrium or canonical
2There are right and left eigenvectors, since the Markov Matrix is not symmetric

15
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that survive in the n→ ∞ limit. The corresponding eigenvectors exhibit dynamic equilibrium,
characterized by probability distributions that obey

MnW =W,n ̸= 1. (2.17)

We now present a simple example of a process that exhibits dynamic equilibrium and show
how to deal with this issue.

N state Markov process with dynamical equilibrium

Let’s consider a system with n possible configuration ϕi, with a Markov process characterized
by: P (ϕi → ϕi+1) = 1

P (ϕi → ϕj) = 0 otherwise
, (2.18)

which can be represented through the Markov matrix:

Mij = δi,j−1. (2.19)

This Markov matrix satisfies 2.11, and the stationary configuration is a uniform distribution
U over the configurations, since

(MU)i =
∑
j

MijUj =
1

n

∑
j

δi,j−1 =
1

n
= Ui. (2.20)

However, we can see that if we have a state with p(i) = δi,n, the state will cycle through the
states and come back to i after niteration, i.e.,

Mnp = p. (2.21)

In order to get rid of the cycles, we need to ensure that each line of the Markov matrix in the
large n limit, Mn, corresponds to Π, with Π as the asymptotic distribution, which is equivalent
to have |λα| < 1 for all but one eigenvalue. In order to respect this limitations, we need to
promote 2.11 to the detailed balance condition

PµMµν = PνMνµ, (2.22)

which is a statement of microscopic reversibility. This condition destroys the cyclical behavior
since we are forcing that, in a single step, the probability transfered from µ → ν to be the
same as the one transfered from ν → µ.

16



2 Monte Carlo 17

2.2. Metropolis-Hastings algorithm

The Metropolis algorithm was first introduced by Nicolas Metropolis[45], to simulate hard
sphere gas dynamics. The mathematical properties were later formalized by Hastings[46].
Nowadays, the Metropolis algorithm (MA) is the mest common algorithm used to sample
Ising configurations.

The main idea behind this algorithm is the choice of writing the transition probability
T (µ→ ν) as a product of probabilities

A(µ→ ν)S(µ→ ν), (2.23)

with S as the suggestion probability and A as the acceptance probability. As these names
suggest, we firstly propose a new configuration and then accept or reject it with a different
probability distribution. The probabilities must be chosen to obey the detailed balance,

P (µ)A(µ→ ν)S(µ→ ν) = P (ν)A(µ→ ν)S(µ→ ν). (2.24)

The particular choice of the Metropolis algorithm is to define S(µ → ν) as choosing and
proposing the flip of a random spin in the lattice. The choice is uniform, for a lattice with
linear size L, S(µ→ ν) = 1

Ld .
This choice then fixes

e−βEµA(µ→ ν) = e−βEνA(µ→ ν)

A(µ→ ν)

A(ν → µ)
= e−β(Eν−Eµ). (2.25)

The optimal choice for the acceptance probability

A(µ→ ν) = min
(
1, e−β∆E

)
. (2.26)

We can easily see that this gives

A(µ→ ν)

A(ν → µ)
=

min
(
1, e−β∆E

)
min

(
1, eβ∆E

) ,
and since ∆E is either positive or negative, the acceptance will be 1 in the step that minimizes
the energy and e−β∆E in the opposite one, which satisfies the detailed balance. Also, the
algorithm is ergodic, since we can transit between any two configurations µ and ν with a finite
number steps, flipping the spins that yield different values between µ and ν.

Usually, the time scale between two sampled configurations corresponds to LdMetropolis
steps (≡a sweep), which is chosen since it corresponds to the descorrelation time when β = 0.

17
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2.3. Cluster algorithms

Near the critical temperature, the correlation length ξ diverges, which gives rise to large do-
mains of clusters with the same spin orientation. For those configurations, the local algorithms
demonstrate their shortcomings, falling victims of critical slowing down [47], i.e., the number
of Monte Carlo steps we need to perform from a configuration ϕ to obtain a new uncorrelated
configuration ψ is much bigger near the critical temperature than in any other point. Since
we want to simulate three dimensional Ising with a temperature near TC we will introduce
cluster dynamics[48, 49], with particular focus on the Wolff algorithm[50].

2.3.1. Wolff algorithm

The Wolff algorithm for a generic system S[51, 52] invariant under a global symmetry
transformation r (as an example we can think in the Ising model, that is invariant under
global transformations si → −si) builds a connected cluster (collection of lattice sites) and
apply the symmetry transformation to the cluster. This means that the local energy between
two sites that belong to the cluster remains the same, changing only at the boundary of the
cluster. The algorithm goes as follows:

1. Pick a random site xijwith value si and add it to a cluster;

2. Check all the neighbors of the site xij , and add each of them individually to the cluster
with probability

p = max
(
0, 1− exp (−β∆E)); (2.27)

where ∆E ≡ Ef −Ei is the energy difference between the current energy among the pair
of neighbors Ei and the energy if only the one that already belongs to the cluster gets
the symmetry transformation applied onto him;

3. Repeat the step 2 for all the elements of the cluster until all the neighbor states of the
cluster boundary were either all rejected or are part of the cluster;

4. Take all the elements of the cluster and apply to them the symmetry transformation r.

An example of an application of a Wolff step can be seen at Fig. 2.1. For the usual Ising
model, the cluster only admits spins that share the orientation with the spin that was chosen
at the first place. This comes since

Ei(↑↑) = −J Ef (↑↑) = J (2.28)

Ei(↓↑) = J Ef (↓↑) = −J (2.29)

which implies that
p(↑↑) = 1− exp−2βJ p(↓↑) = 0 (2.30)

18
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Figure 2.1.: A Wolff step for a finite temperature β builds a cluster (shaded region) and flips
it. Image from [39].

since ∆E in the anti-aligned case is smaller than zero, so exp (−β∆E) > 1 and equation 2.27
yields 0. However, this assumes a ferromagnetic bond. If the bond is anti-ferromagentic, i.e.,
J < 0, that corresponds to flipping the values of the probabilities at equation 2.30. If we have
both ferro and anti-ferromagnetic bonds throughout our model, the choice of p changes with
the particular pair of spins we are dealing with.

Its intuitive to see that for inspection of equation 2.27 that for the Ising model the Wolff
algorithm has two definite temperature limits. At high temperatures, β → 0 and p goes to
zero. This means that the cluster is a single spin that is flipped - which corresponds to the
Metropolis behavior at high temperature as well. This allows us to extend the argument of
the Metropolis ergodicity to the Wolff algorithm. However, at low temperatures β → ∞ and
the proposed lattice elements for the (anti-)ferromagnetic case are always accepted if they are
(anti-)aligned, so we will perform flips of the full domains of aligned spins for the ferro case
and checkerboard-like domains for the antiferro.

As stated before, the change in the energy of the system only occurs due to the boundary
rejected spins, since inside the cluster the energy remains equal. As can be seen in the example
of Fig. 2.1, the change of energy is ∆E = −2J(#D −#R) where #D is the number of anti-
parallel bonds pre-cluster flip and #R is the number of parallel bonds. The probability of
building a specific cluster is equal to the probability of accepting all the #I inside bonds and
inspecting and rejecting the parallel bonds at the boundary, i.e.,

T (µ→ ν) = p#I (1− p)#R . (2.31)

Now take into account that for the reverse step, the once parallel spins become anti-parallel
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and vice-versa, so that the reverse cluster is build with probability

T (ν → µ) = p#I (1− p)#D . (2.32)

We can now check how the chosen probability obeys to the detailed balance condition, since

P (µ)T (µ→ ν) = P (ν)T (µ→ ν)

p#I (1− p)#R

p#I (1− p)#D
= e−β∆E

e−β2J(#R−#D) = e−β2J(#R−#D).

20



3. 3D Ising model with continuous wall
coupling

Since we are now equipped with the powerful apparatus of Monte Carlo dynamics, we can
start to explore the phenomenological aspects of the domain wall on the three-dimensional
Ising model. This model lives in a lattice and the energy of a configuration ϕ is given by the
Hamiltonian

H(ϕ) = −J
∑
⟨ij⟩

sisj , (3.1)

whose summation runs over all the neighbors ij. The spin degrees of freedom take the value
1 or -1. The defect arises because we impose anti-periodic boundary conditions alongside a
chosen direction (equivalent to a wall of antiferromagnetic J ’s) and periodic alongside the
others. At low temperatures, the spins will tend to be aligned in the bulk, but will favor
anti-alignment alongside the wall. This leads to frustration; a generic domain of aligned spins
will invert its signal when it goes through the anti-periodic boundary, which may lead different
sections of the same domain to be at odds with each other. An illuminating example for the
two-dimensional case can be seen at Fig. 3.1. Note that when the entire lattice is fully aligned,
we consider that there is a domain wall at z = 0, since the energetically favorable configuration
is the anti-alignement of the sx,y,z=0 and sx,y,z=Lzspins. Also, since the transverse area is finite,
the possibility of the existence of an odd number of domain walls must be considered.

The realization of the domain wall is usually achieved, for systems with bulk J = 1, with
Jwall = −1, but the same arguments presented above hold true for a generic negative Jwall.
Having said that, the behavior for intermediate, Jwall ∈ [0,−1] is not so clear, and, in partic-
ular, near Jwall = −1, some energetic arguments suggest the occurrence of a delocalization of
the domain wall. Such delocalization alongside the z direction is reminiscent of a Kosterlitz-
Thouless (KT) transition[53]. The suggestion for a KT transition also comes from the fact that
it is known that the system undergoes a transition like that for fixed Jwall = −1 by decreasing
the temperature.

In this chapter, we will explore some ideas that arise from this interesting behavior. First
we will expose some phenomenological facts about the domain wall in our system, sec. 3.1,
and then we will figure out the existence of a KT transition at Jwall = −1, sec. 3.2.
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3 3D Ising model with continuous wall coupling 22

Figure 3.1.: Possible 2D Ising model configuration with periodic conditions alongside the y-
direction and anti-periodic ones alongside the x-direction and system size 512 ×
512. An interface forms between domains of up (white region) and down (black
region) spins. The two possible metrics to determine the wall position are when
mz, defined at equation 3.3 equals zero; or when γz, defined at equation 3.2, yields
its maximum.

22
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3.1. Phenomenology of the domain wall

There are two main ideas on how to detect the localization of the domain wall.

• Measure the mean local energy γz alongside a layer of fixed z. First, we define the
quantity

γz′ =
1

LxLy

∑
xy

sx,y,z=z′sx,y,z=z′+1, (3.2)

that takes values near +1 when the spins are aligned with its forward neighbors and -1
when the opposite is true. So, we can define the position of the wall as the layer z where
γztakes its minimal value;

• Measure the mean magnetization alongside a layer of fixed z. First, we define

mz =
1

LxLy

∑
xy

sx,y,z=z′ , (3.3)

that takes its absolute value near 1 when the layer has a clear preferential spin direction.
We define the position of the layer by solving mz = 0.

We will follow the scientific consensus[30, 54, 55], and go with the latter approach.

3.1.1. Bubble removal procedure

Usually, before the determination of the position of the domain wall, the first order bubbles
are removed[29]. Such structures are clusters of same orientation that do not have an island
of opposite orientation within them.

In order to remove them from our configuration, we identify, label and save the size of
all the clusters of our spin configuration. This can be done through a simple Swedenson-
Wang algorithm[48, 56] at T = 0. Then, we flip the largest cluster. We perform this bubble
removal again until there is only one cluster left. An example of this procedure for a simplified
configuration can be seen at figure 3.2. The results we obtained were not substantially different
with our without the bubble removal.

3.1.2. Number of walls

Now that we know how to find the walls, it’s instructive to study the distribution of their
number for a system with a given set of parameters, Fig. 3.3. The distribution suggests

P (N walls) α exp (−µN) , (3.4)

with µ with as the chemical potential associated with one wall. This correspondence suggests
a interpretation of our domain walls as defects of our system, that can be thought as particles,
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Figure 3.2.: Example of three steps of the bubble removal procedure for a simple configuration
of two-dimensional Ising model. The SW algorithm identifies the largest cluster
and flips it.

whose number is governed by the assigned chemical potential.
One could study, Fig. 3.4, how µ scales with the coupling Jwall.

3.1.3. Position of the wall

The study of µ(J) did not yield any clear conclusion about the different behaviors of our
system. However, with a purely energetic argument, we do suspect that something may change
as we tune Jwall. The reasoning is as follows (we will consider Jwall < 0 at all times) :

1. When Jwall > −1,the energy cost (≡ ∆) of a pair of anti - aligned spins, with one of
them at z = 0 and the other at z = Lz, is ∆wall = −2Jwall and in the bulk is ∆bulk = 2.
Since ∆bulk > ∆wall and there needs to be at least a domain wall, it is energetically
favorable for the system to “place” the wall at z = 0;

2. When Jwall = −1, ∆wall = ∆bulk = 2 . This means that it equivalent to the the system
to place the wall at the boundary of at any of the Lzslices of the system;

3. When Jwall < −1, ∆wall = −2Jwall > ∆ = 2. Occurs the inverse that happened at
situation 1) - the wall is prone to live in the bulk.

Since we are dealing with a system at a finite β ∼ βC , it is important to check, Fig. 3.5, if the
above reasoning still applies.

We can see that there are clearly three different stages for our domain wall to be in. Starting
at 3.5a), the histograms’ peaks flatten as the coupling constant Jwall decreases, until it becomes
a uniform distribution. Then, the walls near z = 0 become suppressed.

One can define a quantitative measure, inspired by the Inverse Participation Ratio, of this
behavior, if we consider ρ(z, Jwall) as the normalized histogram of the distributions of the z
positions of the domain wall for a given Jwall,

Γ(Jwall) =
∑
z

ρ(z, Jwall)
2. (3.5)
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3 3D Ising model with continuous wall coupling 25

Figure 3.3.: Distribution for the number of walls for a system with Jwall = 0.80, Lz = 96 and
Lx = Ly = 30 at β = 0.223102. There are, as expected, only configurations with
an odd number of walls. The yellow curve corresponds to an exponential fit to
the data.

Since the distribution is normalized, Γ takes extremal values atρ(z, Jwall) = δz,z0 → Γ = 1

ρ(z, Jwall) =
1
Lz

→ Γ = 1
Lz

,

which correspond to the situation in which the wall is localized at z0 and completely delocal-
ized, respectively. The dependence of this metric with the coupling wall constant can be seen
in figure 3.6.

We can check the Γ dependence for different transverse areas in figure 3.7. For bigger
transverse areas, the energy cost to build a domain wall is higher (∼ σL2), so the thermal
fluctuations have a reduced effect and the wall position distributions have a better defined
behavior. For example, when Jwall > −1, ρ(z) decays quickly for greater L. Such behavior is
laid down at fig. 3.7.

All the results that we have presented in this subsection hint to a major question: Is there
a phase transition at Jwall = −1? This idea is raised because at that point the distribution of
the wall position is scale invariant

ρ(bz) =
ρ(z)

b
, (3.6)
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Figure 3.4.: Chemical potential µ with respect to the coupling wall constant for a system with
parameters: Lz = 96 and Lx = Ly = 32. Despite the high error associated with
each decay coefficient, one can distinguish a nearly constant behavior of µ up to
Jwall ∼ 0.6 and a monotonic increase afterwards.

Figure 3.5.: Wall position histogram for a system with β = 0.223102,Lz = 96,Lx = Ly = 40
for three different values of Jwall. It is important to note that the y-axis does not
have the same scale on the three figures. In the middle figure, we compare our
data with the uniform distribution. There are clearly three distinct behaviors -
the wall is either more probable to be near z = 0 for Jwall > −1; to be uniformly
distributed within the system or to be suppressed at the edges.
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Figure 3.6.: Γ for a system with β = 0.223102,Lz = 96,Lx = Ly = 40 in function of Jwall. Γ
decreases until Jwall = −1, that corresponds to the uniform distribution. After
that, there is a slight increase, because the distribution is not quite uniform (walls
are suppressed at z0), but it never reaches the same values as before, due to the
distribution still being uniform at the bulk.

Figure 3.7.: Γ for a system with β = 0.223102,Lz = 96, in function of Jwall for different
Lx = Ly = L. Γ takes greater values for greater L, except at the fixed point for
Jwall = −1, since Γ = 1

Lz
,regardless of the transversal area.
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3 3D Ising model with continuous wall coupling 28

since it corresponds to the uniform distribution, and because we have a delocalization of the
domain wall, reminiscing of the vortex - antivortex unbinding in the XY model[53] and the
entropy due to the possible localization of the wall goes with log(Lz).

3.2. JWall = −1 scenario

It is possible to define the probability of the occurrence of a wall at a position z as

P (1 Wall; z) = e−βµ(J)ρ(z), (3.7)

and the z- dependence can be computed by analysis of the data from the histograms present
at figure 3.5. The numerical data for Jwall > −1 yields a dependence

ρ(z) ∝ z−γ(Jwall+1), (3.8)

so, if we consider an effective potential ṼJwall(z1, z2), that gives the strength of the interaction
between a domain wall at z1 and a defect (wall coupling equal to Jwall) at z2, we have

ṼJwall(z1, z2) =
γ

β
(Jwall + 1) log(|z1 − z2|), (3.9)

which correspond to the only relevant interaction term, since there are no defect-defect inter-
play due to only existing one defect in our system and there are no wall-wall interaction by
definition.

We can further decompose the z-independent part as

e−βµ(J) = e−βµ︸︷︷︸
y

e−βFwall(J)e−βFdefect(J) (3.10)

with µ as the chemical potential of a domain wall in a periodic Ising model. This is the
dominant term at the bulk, since the defect doesn’t spread its influence to lattice spacing
greater than the correlation length ξ. Also, the Fwall(J) takes into account the possible logLz

positions at which the wall can be.
Our goal is to check if the considerations we have about the domain wall behavior are enough

to, through a renormalization group analysis, conclude if the system undergoes a KT-transition
at Jwall = −1. It is illuminating to briefly check a similar analysis that can be done in the
XY-model.
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3.2.1. Renormalization group analysis for the KT transition of the
two-dimensional XY model

The XY-model[53] is defined in a square lattice with linear size L and the energy of a
configuration ϕ is given by the Hamiltonian

H(ϕ) = −J
∑
⟨ij⟩

cos (θi − θj) , (3.11)

whose summation runs over all the neighbours ij. The spin degrees of freedom θ take the
values [0, 2π[. If we impose periodic boundary conditions, at low temperatures, the stable
configuration will correspond to all the spins being aligned. However, the low temperature
case also admits non-uniform singular solution - vortices and anti-vortices. These topological
defects have an associated integer winding number ni, positive for a vortex and negative for
an anti-vortex, that allow to express the interaction energy of a pair of defects with its center
at ri and rj as

Eint(ri, rj) = −2πJninj log |ri − rj |+ EC , (3.12)

with EC as the energy of the defects cores. The entropy of a defect pair is 2 logL2, since each
vortex has L2 accessible sites. The energy between a vortex - anti-vortex pair is minimized
when they are close to each other, i.e., are binded, which means that at low temperatures we
have a “gas” of vortex - anti-vortex pairs. However, at the KT temperature TKT = πJ

2 , the
defects unbind and roam independently through the lattice. We will show that through a RG
analysis, following the arguments present at [?].

Let’s start by defining the scalar quantities

x ≡ 2− βπJ y0 = exp (−βµ) , (3.13)

with µ as the chemical potential of any vortex or anti-vortex. By virtue of 3.12, the probability
of a configuration with a pair of vortices with n1 = 1 and n2 = −1 is

P (r1, r2) = y20e
−βEC |r1 − r2|−2πβJ . (3.14)

Given that the distance independent part is y20e−βEC , we can redefine the y quantity as y ≡
y0e

−βEC/2. For a global rescaling of the system, r → br, the probability P (r1, r2) remains
invariant. Taking into acount the change in entropy, since the available sites for a vortex goes
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from L2 to b−2L2, we arrive at the scaling relation for the y-quantity,

P̃ (r1, r2) =P (br1, br2) (3.15)

ỹ2|ri − rj |−2πβJ =y2e

≡entropy change︷ ︸︸ ︷
2 log b2 |br1 − br2|−2πβJ (3.16)

ỹ2 =b4−2πβJy2 (3.17)

=⇒ ỹ =b2−πβJy, (3.18)

and if we consider an infinitesimal reescaling, b = 1+ dl, we arrive at the first differential RG
equation

dy

dl
= (2− πβJ) y = xy. (3.19)

The differential equation for x is derived near the KT transition (|x| << 1). Since the presence
of vortices disorders the system, x should increase with y2. Stability arguments [57] specific
to the XY-model can be employed to show that this is the only relevant term, which leads us
to the other RG equation

dx

dl
= ε2y2, (3.20)

with ε as a constant.
Eq. 3.19 and 3.20 are the Kosterlitz equations, and if we can arrive to this RG equations

from our model we can conclude that the system undergoes a KT transition at Jwall = −1.
Anyhow, that appears to not be possible with the problem configuration as it stands. Firstly,
our analogue of the defects, the domain wall and the wall of Jwall couplings do not have a
similar standing. As we seen in the XY, the vortices and anti-vortices have similar chemical
potential µ. In our case, however, the wall of Jwall couplings appears only once, while the
domain wall have a specific µ associated. Also, the entropy of our defects goes with logLz,
since the model is effectively one-dimensional. This considerations hinder our ability to reach
the KT equations for the domain wall Ising.
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4. Non-equilibrium methods

The first set of techniques we will employ to calculate the free energy difference between
periodic and anti-periodic Ising 3D models will be covered in this chapter. Both the methods
here present will share the common characteristic of connecting both models through a non-
equilibrium transformation.

We will first discuss the Jarzynski algorithm [1, 58] and then derive the eponymous equality.
Then, it will be shown how the algorithm has a close analogue to a seemingly very disparate
class of algorithms - normalizing flows[34, 59].

In parallel, we will discuss how both the Jarzynski algorithm and a normalizing flows ap-
proach can be used to deal with our problem.

4.1. Jarzynski Equality

Jarzysnki equality, first derived in the late nineties[1], established a relation between the
average dissipated work during a non-equilibrium transformation and the difference in free
energy between the endpoints of the aforementioned transformation.

This equality is most intriguing, since it connects an irreversible quantity, highly dependent
of details of the change imposed on the system, with the free energy difference, a quantity only
worth discussing at equilibrium. To be convinced of the effectiveness and usefulness of this
physical fact, it’s illuminating to behold its ubiquity in various fields of the natural sciences.
It is used in topics so disparate as Lattice Gauge Theory[14] , molecular chemistry [60, 61] and
biophysics[62]. Numerous experimental tests were devised to test its validity, with positive
results [62, 63].

Before proceeding to the proof of the Jarzynski equality, it’s important to clarify what we
mean by the “endpoints” of a system. When we make such claim, we consider a system with
dependence on an external (and tunable) parameter λ. Without loss of generality, we can say
that the non-equilibrium evolution of the system goes from λin = 0 to λfin = 1.

Let’s take, as an illustrative example, a one dimensional single particle system with

H(λ) =
p2

2m
+
λ

2
mω2x2, (4.1)

the application of the Jarzynski equality will allow us to obtain the free energy difference
between the free particle case (λ = 0) and the harmonic potential one (λ = 1).
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Let’s sketch a proof that follows closely the argument presented by Jarzynski itself [1], for
a isolated system evolving at a fixed temperature T . If we let the external parameter evolve
from λ = 0 to λ = 1 adiabatically, we have the expression for the canonical work,

W∞ = F1 − F0 ≡ ∆F, (4.2)

but what happens if we change λ at a finite rate? The system will lag behind quasi static
equilibrium with the reservoir, and the total work W will depend on its initial condition[58].
What Jarzynski equality (JE) tells us is that if we have an ensemble of trajectories whose
initial configurations are drawn from the equilibrium distribution at λ = 0, the work function
obeys, if we average e−βW over the trajectories’ ensemble,

⟨e−βW ⟩ = Zλ=1

Zλ=0
. (4.3)

4.1.1. Proof for deterministic evolution[1]

Let’s say that we have a system governed by an Hamiltonian Hλ that depends on an external
parameter λ, that is switched from λ = 0 to λ = 1 during a time ts. The evolution of the system
for an initial configuration z0 is given by a deterministic trajectory z(t). This determinism
means that if we know the configuration at time t we know from which initial configuration it
came from. This informs our choice of notation: z(z0, t), that corresponds to the configuration
z, the result of the evolution that started at z0.

The initial equilibrium distribution for λ = 0 is the canonical, f(z0, 0) = exp(−βH0(z0))
Z0

distribution. For t > 0, f (z(z0, t)) will be a non-equilibrium distribution, with its evolution
given by the Liouville equation,

∂f

∂t
+ {f,Hλ} = 0. (4.4)

Without loss of generality, let’s consider λ = t
ts
. At ts the function f (z(z0, t)) is obtained from

solving equation 4.4. Each final configuration z(z0, ts) has a function W (z) associated, that
corresponds to the accumulated work performed on the trajectory that ends at z(z0, ts), i.e.,

W (z) =

∫ ts

0
λ̇
∂Hλ (z(z0, t))

∂λ
dt =

∫ z

z0

dHλ = H1(z(z0, ts))−H0(z0). (4.5)

This allows us to obtain the average of exp (−βW ) in terms of the final distribution and the
work function,

⟨exp (−βW )⟩ =
∫
dzf (z(z0, ts)) exp (−βW (z, ts)) ; (4.6)

this equation simplifies if we consider, by the Liouville theorem, that the phase space density
is conserved along any trajectory
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f (z(z0, t)) = f(z0), (4.7)

which leads to

⟨exp (−βW )⟩ =
∫
dz

exp (−βH0(z0))

Z0
exp (−β (H1(z)−H0(z0))) (4.8)

=

∫
dz

exp (−βH1(z))

Z0
=
Z1

Z0
. (4.9)

Equation 4.9 corresponds to the Jarzynski equality.

4.1.2. Proof for Monte Carlo evolution

In this subsection, we will take the kernel ideas of the Jarzynski equality and apply them to
a system that evolves under a generic Monte Carlo algorithm, with an original proof for the
Jarzynski equality for this particular case.

We start by discretizing the work in N evenly spaced steps. For each time step ti = i/N the
external parameter λ takes the value i/N . Let’s say that the evolution at time ti is governed by
a Monte Carlo algorithm controlled by the Hamiltonian Hλ, which means that the trajectory
z(t) for an initial z0 is no longer deterministic. Define the probability of a given trajectory
{z0, z1, ..., zN} as P (z0, z1, ..., zN ). The work accumulated in the time step i is

δWi = Hi+1(zi)−Hi(zi), (4.10)

then

⟨exp−βW ⟩ =
∫ N∏

i=0

dziP (z0, z1, ..., zN ) exp

(
−β

N−1∑
i=0

δWi

)
. (4.11)

Let’s start by rewriting the probability of the trajectory as

P (z0, z1, ..., zN ) = A0(z0)T (z1|z0)T (z2|z1) . . . T (zN |zN−1), (4.12)

where Ai is the equilibrium distribution for λ = i and T (zi+1|zi) the transition probability
from the configuration zi to the configuration zi+1 given by the MC algorithm ruled by Hi+1.

We can reorganize the integrand of the equation 4.11,

∫ N∏
i=0

dziP (z0, z1, ..., zN ) exp

(
−β

N−1∑
i=0

δWi

)

=

∫ N∏
i=0

dziA0(z0)

N−1∏
i

T (zi+1|zi) exp (−β (Hi+1(zi)−Hi(zi))) ;

however, recall that our Monte Carlo algorithm must obey the detailed balance condition.
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This means that

T (zi+1|zi) exp (−βHi+1 (zi)) = T (zi|zi+1) exp (−βHi+1 (zi+1)) (4.13)

so

⟨exp−βW ⟩ =
∫ N∏

i=0

dziA0(z0)
N−1∏
i=0

T (zi|zi+1) exp (−βHi+1 (zi+1)) exp (βHi(zi)) . (4.14)

Paying closer attention to the first term, we can see that

⟨exp−βW ⟩ =
∫ N∏

i=0

dzi
exp (−βH0(z0))

Z0
exp (βH0(z0))T (z0|z1) exp (−βH1 (z1)) (. . . ) (4.15)

=
1

Z0

∫ N∏
i=0

dziT (z0|z1) exp (−βH1 (z1)) (. . . ) (4.16)

so that the only dependence on z0 is on T (z0|z1). Since∫
dz0T (z0|z1) = 1, (4.17)

we have

⟨exp (−βW )⟩ = 1

Z0

∫ N∏
i=1

dzi exp (−βH1 (z1))

N−1∏
i=1

T (zi|zi+1) exp (−βHi+1 (zi+1)) exp (βHi(zi))

(4.18)
we can iterate the above steps, succesively eliminating the dependences on zi; we finnaly arrive
at

⟨exp (−βW )⟩ = 1

Z0

∫
dzN exp (−βHN (zN )) =

ZN

Z0
, (4.19)

which is again the Jarzynski equality.
Nowhere in this proof we took consideration about the speed at which λ changes, so JE

holds regardless of that quantity. In order to illustrate this fact, let’s study two limiting cases
of this theorem, one at which the λ goes from 0 to 1 in a single iteration (≡ snap case) and
one at which the λ changes adiabatically (≡adiabatic case).

4.1.3. Snap case (N=1)

If we perform the non-equilibrium transformation in a single step,
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W = H1(ϕ)−H0(ϕ), (4.20)

and

⟨e−βW ⟩0 =
∫
e−β(H1(ϕ)−H0(ϕ)) e

−βH0(ϕ)

Z0
dϕ (4.21)

=

∫
e−βH1(ϕ)

Z0
dϕ (4.22)

=
Z1

Z2
= e−β∆F , (4.23)

and Jarzynski equality holds.
Well, this is nothing more but the reweighting technique, i.e., the trick that allows us

to compute the properties of a system through the equilibrium probability distribution a of
different one.

4.1.4. Adiabatic case (N→ ∞)

If we let the number of updates of λ tend to ∞, the system is updated in a slow, adiabatic
fashion, and by virtue of equation 4.2,

e−βW = e−β∆F , (4.24)

which implies that the mean

⟨e−βW ⟩ = e−β∆F (4.25)

follows the Jarzynski equality. Note that for this limit we only need one measurement to
obtain the free energy difference, which raises a question about the dependence between the
rate at which λ evolves and the variance of the distribution e−βW . As we will prove latter,
chapter 6, this is an integral feature of this method.

4.2. Application to Ising 3D

To apply the Jarzynski formulation to our specific problem, one need to particularize the, so
far, generic transformations, and, since we want to “connect” the Ising 3D model with periodic
and antiperiodic boundary conditions alongside the z direction, the external parameter that
we will tune will be the coupling constant of the wall at z = 0, i.e.,
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Hλ(ϕ) = −
∑
⟨xy⟩

Jxysxsy, (4.26)

with

Jxy =

1 for bulk interactions

1− 2λ for wall interactions
,

given that we recover the usual Ising model at λ = 0 and the anti-periodic one at λ = 1. This
definition of the Hamiltonian, allows us to naturally arrive at the work done to the system for
a change of the wall couplings, that consists in, for a fixed spin configuration ϕ,

δWi+1 = Hλ+ 1
N
(ϕ)−Hλ(ϕ)

= 2
N

∑
wall sxsy,

(4.27)

in which the
∑

wall corresponds to a summation over the spins connected through a wall bond.
Finally, it only remains to be specified which Monte Carlo dynamic will be employed to

evolve our system. We will study the Ising 3D model near the critical point, so it is only
logical to employ an algorithm that do not suffer greatly of critical slowing down. With that
in mind, we will resort to the generic Wolff algorithm, in contrast with previous applications
of this algorithm to the same system, that used the multispin coding approach[14]. Between
each update we perform a Wolff sweep, that consists in the successive application of N

Ncluster

Wolff steps, with Ncluster as the average cluster size for β.

4.3. Normalizing flows

Jarzynski equality was a novel approach to this free energy computation problem. Its
core tenet, the possibility of measuring an equilibrium property through a non-equilibrium
transformation, was recently identified to be very similar to the philosophy behind Normalizing
Flows[34].

Normalizing flows (NF)[59] are deep generative models, designed to sample from hard to
deal with probability distributions.

In the past few years, there has been a series of papers[64, 65, 66, 67, 68, 69, 70, 71] that
illustrate the potential of this approach to effectively sample lattice configurations. The main
attraction of this method for the field of lattice gauge theory (LGT) is its good behavior
near the critical point of theories[71], i.e., the ability to sample configurations near criticality
without suffering from critical slowing down.

Despite the promise that this approaches may entail, the reason we are interested in this
models lies with the aforementioned possibility of performing free energy difference computa-

36



4 Non-equilibrium methods 37

Figure 4.1.: Normalizing flows between a prior distribution q0(z) and a target distribution
qN (ϕ).

tions between two models[34].
In this subsection we will start by explaining with detail the inner workings of the normal-

izing flows, making clear why they are so coveted by the LGT field, and show how to compute
∆F with them.

4.3.1. Definition and inner working

Normalizing flows can be thought as a discrete composition of N bijective and differentiable
functions (commonly called layers), i.e. a map, between two probability distributions - a base,
prior, distribution to a target distribution.

This flow acts in the space of a D-dimensional configuration (RD → RD), and the change
in the configurations (z → g(z) ≡ ϕ) gives rise to the associated change in the probability
distribution,

qN (ϕ) = q0(g
−1(ϕ))

∣∣det J(ϕ)∣∣, (4.28)

with J as the Jacobian of the function g−1. As 4.1 suggests, our function g will be thought as
a composition,

g(z) = (gN # gN−1...# g1 # g0)(z), (4.29)

with the according probability distribution change induced by the application of gn being

qn+1(zn+1) = qn(zn)|det Jn(zn)|−1, (4.30)

for Jn as the Jacobian of g−1
n and zn+1 = gn(zn).
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The layers g′is need to be highly expressible1 if we want to correctly sample from an in-
tractable distribution, so one of the common choices is to build each layer as a composition
of trainable neural networks[59] (NN). NNs allow our model to, after a training procedure,
arrive at the optimal behavior for the NF. This training requires a loss function and a protocol
for the update of the NNs, whose job is to arrive at a setup of layers that minimize the loss
function L.

Given that we want qN (zN ) to resemble a distribution p, one can choose the Kullback-Liebler
divergence as the loss function,

DKL(qN
∣∣∣∣p) = ∫ dϕqN (ϕ)

[
ln qN (ϕ)− ln p(ϕ)

]
, (4.31)

and, if we particularize by choosing the Boltzmann distribution, eq. (2.6), it simplifies

DKL(qN
∣∣∣∣p) =

∫
dϕqN (ϕ) [ln qN (ϕ) + βH(ϕ) + lnZ]

=
∫
dϕqN (ϕ) [ln qN (ϕ) + βH(ϕ)] + lnZ

∫
dϕqN (ϕ)︸ ︷︷ ︸

1

, (4.32)

and since lnZ is a constant, the loss can be defined up to a constant

L(qN ) ≡ DKL(qN
∣∣∣∣p)− lnZ. (4.33)

Equation 4.33 is uniquely defined by β and the hamiltonian function of the target distri-
bution, so there is no need to sample p to compute the Kullback-Liebler divergence. This
allows the NF approach to be self-consistent, and, in opposition to most of the deep learning
methods, do not require a training set to compute the loss. In order to train the model, we
start by drawing N samples from the prior distribution, that are subsequently sent through
the NF, yielding a final distribution that can be used to compute the loss function. If we
have a generic trainable parameter ω inside a NN, it can be updated through gradient descent
ω → ω − η ∂L

∂ω , for a given learning rate η. The useful property of NN is that, by virtue of the
the backpropagation algorithm[72], the term ∂L

∂ω can be efficiently computed by exploiting the
NN structure. An example for a very simple NN architecture can be found at Appendix D.

We update the parameters of the NN until arriving at a minima of the loss function.

4.3.2. Affine layers

To apply normalizing flows to the Ising model, we need to specify how a layer transforms
a lattice configuration. There is a lot of liberty in this choice. The layer configuration has
only three requirements: must be invertible, have an easily computed Jacobian and a high

1Expressible here means that the composition of layers need to be flexible enough so that the final probability
distribution can be as complex as we want it to be.
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expressive power[59]. Following the architecture present in [73], if we have a configuration ϕ

with D lattice sites, we split it into two checkerboard-like sub-lattices, ϕ1 and ϕ2, each with
D/2 lattice sites, with the layer i acting as

gi(ϕ) =

z1 = ϕ1

z2 = ϕ2 ⊗ esi(ϕ1) ⊕ ti(ϕ1)
, (4.34)

and the output thought as the recombination of the two sub-lattices z1 and z2. The objects si
and ti are the functions that correspond to the neural networks, i.e., the trainable parameters of
our flow. The output of the NNs is still D/2-dimensional. We take the si(ϕ1) and exponentiate
it elementwisely. The rest of the operations are understood if we consider that ⊗ here denotes
elementwise multiplication and ⊕ elementwise addition.

We can see how this choice of layer fulfils our criteria. First, check how this kind of layers
are easily inverted, with

g−1
i (z) =

ϕ1 = z1

ϕ2 =
(
z2 ⊖ ti(z1)

)
⊗ e−si(z1)

. (4.35)

The Jacobian matrix corresponds to

Ji(ϕ) =

[
ID/2 . . .

0 eSi(ϕ1)

]
, (4.36)

with Si(ϕ1) as a diagonal matrix with entries

(Si(ϕ1))jk = (si(ϕ1))j δjk, (4.37)

that allows us to easily compute the determinant

det Ji(ϕ) =

D/2∏
j=1

(
esi(ϕ1)

)
j
. (4.38)

Note that an application of a layer leaves ϕ1 invariant. Then, since a Normalizing Flow is
composed of many layers, each successive pair of layers needs to transform alternate sublayers,
if we want to convey changes on the entire configuration.

4.3.3. Normalizing flows as a Probability Flow Monte Carlo

So, if we have an already trained Normalizing Flow, if we sample configurations {ϕ0, ..., ϕM}
from the initial distribution q0, then g(ϕi) will constitute a sample of configurations that follow
the target distribution p.

However, it is important to state that the NF may not be perfect, and qN can be different
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from p. In order to correct minor disagreements, we can build a Metropolis algorithm[66], that
accepts and rejects a new configuration given a previous one with probability min(1, e−β∆E),
with the string of suggested configurations {g(ϕ0), ..., g(ϕM )}.

Since two consecutive configurations are completely independent, the only thing that governs
the autocorrelation is the rejection probability of the Metropolis, and it can be shown [74] that
NF’s that train for longer have lower rejection rates. We can then construct a Markov chain
with small autocorrelation, even at the critical point. Nonetheless, the training process can
be computationally expensive.

4.3.4. NF for Free energy measurement

The idea present in this subsection was firstly presented in [34], after the idea of combining
deterministic transformations between two systems and the Jarzynski equality being flirted
with at [75].

Let’s introduce a weight function w̃ for a configuration ϕ

w̃(ϕ) =
exp(−βH(ϕ))

Z0qN (ϕ)
, (4.39)

with Has the Hamiltonian of the desired canonical distribution, Z0 as the partition function
of the prior distribution and qN as the target probability distribution.

This definition allows us to rewrite Z as:

Z =
∑
ϕ

exp(−βH(ϕ)) =
∑
ϕ

Z0qN (ϕ)w̃(ϕ) = Z0⟨w̃(ϕ)⟩qN

Z

Z0
= ⟨w̃(ϕ)⟩qN (4.40)

Since

ln w̃(z) = −
(
βH (gN (z)) + lnZ0 + ln qN (gN (z))

)
(4.41)

= −

βH (gN (z)) + lnZ0 + ln q0(z)︸ ︷︷ ︸
e−βH0(z)

Z0

−
N∑

n=0

ln | det Jn(zn)|︸ ︷︷ ︸
≡βQ

 (4.42)

w̃(z) = e−β(H(gN (z))−H0(z)−Q), (4.43)

we can rewrite 4.40 as
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Z

Z0
= ⟨exp

(
− β{H(gN (z))−H0(z)−Q}

)
⟩q0 , (4.44)

which clearly resembles the Jarzynski equality. This allows us to sample z from an initial
system governed by an Hamiltonian H0, send such sample through a previously trained NF
and, by computing the successive values of Jn and the final set of configurations on which z

ends, we can arrive at ⟨w (g(z))⟩q0 . The main difference between the Jarzynski procedure and
this one is that the NF is a fixed, deterministic transformation. A configuration drawn from
the initial probability distribution will always yield the same result after going through the
NF.

The Jarzynski algorithm can be seen as an analogue of the NFs, but the layers, rather than
deterministic, are probabilistic[34]. NFs become then the deterministic limit of this so called
stochastic normalizing flows, with P (ϕj+1|ϕj) = δ(ϕj+1 − gj(ϕj)), and the pure Jarzynski
equality corresponds to the case when the probability is determined by the Monte Carlo
evolution.

4.3.5. Two particle case

In order to exemplify the power of this approach, we will apply it to a very simple two
particle system, which can be analytically treated, two non-interacting particles A and B in
one dimension, each of them in a quadratic potential, such that the hamiltonian corresponds
to:

H(xA, xB) = H1(xA) +H2(xB) = V1(xA − µ1)
2 + V2(xB − µ2)

2, (4.45)

and to keep this example simple, let’s consider µ1 = −1, µ2 = 1 and V1 = V2 =
1
β .

Let’s assume now that there is an elastic interaction between the particles,

Vint(xA, xB) = V (xA − xB)
2, (4.46)

and our goal is to discover the free energy difference between the two cases (interacting and
non-interacting one). Since this is a simple case, we can compute the partition function of
each case. Let’s start with the non-interacting one:

Z0 =

∫
dxA

∫
dxB exp

(
− (xA − 1)2 − (xB + 1)2

)
(4.47)

=

(∫
dx exp

(
− (xA − 1)2

))2

= π, (4.48)

in view that we are dealing with a simple Gaussian integral.
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(a) Measured free energy for all the epochs (b) Measured free energy from epoch 20 up to epoch 40

Figure 4.2.: Measured free energy of the first 40 NF eras for the two particle system for a
batch of 1000 independent measurements. The horizontal line corresponds to the
analytical result. Each era consists of 100 epochs, and each epoch corresponds to
a backpropagation update of the NF weights due to the forward pass of a batch
of 640 configurations sampled from the λ = 0 case. As we can see, the results
converge quickly to the true value. Further training of the Normalizing Flow don’t
allow the precision to exceed the fifth decimal place.

The computation of Z1 is a little bit trickier, since we need to first diagonalize and find the
eigenvectors of the covariance matrix . The final result is:

Z1 =

∫
dxA

∫
dxB exp

(
− (xA − 1)2 − (xB + 1)2 − (xA − xB)

2
)
=

π
√
3e

4
3

, (4.49)

which means that

Z

Z0
=

1
√
3e

4
3

. (4.50)

We can now build our normalizing flow according to the guidelines that were previously
stated, with a detailed survey of the architecture of the NF employed in this calculation found
in the Appendix E. The results can be seen at figure 4.2, and we can see that the NF approach
yields a very good result for this simple case.

4.3.6. Hubbard-Stratonovitch transformation

If we want to generalize this formulation to compute the free energy difference of the periodic
and anti-periodic Ising model, we need, effectively, to circumvent the glaring issue that the
degrees of freedom of the Ising model are discrete, which comes into conflict with the fact that
the NF returns continuous outputs.
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In order to remedy that, we construct a (probabilistic) map between the usual Ising con-
figurations and lattice realizations with continuous values at the lattice sites. This map was
previously used to sample spin glass configurations with NFs at [76], and configures a Hubbard-
Stratonovitch transformation of the Ising configurations.

The map goes from a regular configuration s to x, a lattice configuration with the same
geometry but with continuously valued degrees of freedom, is

p(x|s) α e−
1
2
(x−s)2βJ̃ , (4.51)

with J as the coupling matrix for the Ising model, i.e.,

Jij =

−J if i and j are neighbours

0 otherwise
,

and J̃ as the diagonally shifted matrix

J̃ij = Jij +∆δij , (4.52)

where ∆ = max (0, ϵ− λ1(J)). This shift is made to ensure that the probability distribution
4.51 is integrable.

With the above prescription, p(x, s) becomes:

p(x, s) = p(x|s)p(s)

α exp
(
− 1

2
(x− s)TβJ̃(x− s)

)
exp

(1
2
sTβJs

)
= exp

(
− 1

2
xTβJ̃x+ sTβJ̃x+

1

2
sTβJ̃s− 1

2
sTβJs

)
= exp

(
− 1

2
xTβJ̃x+ sTβJ̃x+

1

2
β∆ sT s︸︷︷︸

N

+
1

2
sTβJs− 1

2
sTβJs

)
= exp

(
− 1

2
xTβJ̃x+ sTβJ̃x+

1

2
β∆N

)
α exp

(
− 1

2
xTβJ̃x+ sTβJ̃x

)
This expression for p(x, s) decouples the interactions between different spins. This gives us

p(x) by summing over the two possible values for sat a single site:
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p(x) =
∑
{s}

exp
(
− 1

2
xTβJ̃x+ sTβJ̃x

)
= exp

(
− 1

2
xTβJ̃x

)∑
{s}

exp
(
sTβJ̃x

)
= exp

(
− 1

2
xTβJ̃x

)∑
{s}

∏
ij

exp
(
βJ̃ijsixj

)
= exp

(
− 1

2
xTβJ̃x

)∏
ij

∑
{−1,1}

exp
(
βJ̃ijsixj

)
= exp

(
− 1

2
xTβJ̃x

)∏
ij

(
exp

(
βJ̃ijxj

)
+ exp

(
− βJ̃ijxj

))
= exp

(
− 1

2
xTβJ̃x

)∏
ij

(
2 cosh

(
βJ̃ijxj

))
= exp

(
− β

(1
2
xT J̃x− 1

β

∑
ij

ln 2 cosh
(
βJ̃ijxj

))
︸ ︷︷ ︸

H(x)

)
.

The induced change onto the partition function is

Zx = (2π)−N/2(det(βJ̄))−1/2eNβ∆/2Zs (4.53)

We arrived at a complete description of a model with a slightly different Hamiltonian and
probability distribution. We can perform our normalizing flow computations in the continuous
picture, and then perform the inverse map to go back to the physical Ising model. Such map
is

p(s|x) =
N∏
i=1

exp
(
βsiJ̃x

)
2 cosh

(
βsiJ̃x

) . (4.54)

The map is the analogous for the periodic and anti-periodic Ising models. The only difference
is the coefficients of the J̃ matrix, since in the anti-periodic case there are some J̃ij = 1, that
come from the wall couplings.

We can then start with the periodic Ising model, sample configurations that obey to 5.3,
perform the HS map and then train a NF that will try to connect the output of the NF to the
probability distribution of the anti-periodic Ising model. Following the procedure outlined at
4.3.4 will give us the ratio ZA

x

ZP
x

, that can be connected to the desired quantity,
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ZA
x

ZP
x

= eNβ∆A−∆P

2
det(βJ̄A)−1/2

det(βJ̄P )−1/2

ZA

ZP
. (4.55)
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5. Multicanonical algorithm

As stated previously, the two main routes to the problem at hand - computation of the free
energy difference between two distinct Ising 3D models - are the non-equilibrium transforma-
tions and Multicanonical approaches.

In this chapter, we will discuss in detail three Multicanonical algorithms that can be used
to compute ∆F . Since all three algorithms presuppose the extension of the wall coupling
constant to continuous values between -1 and 1 (the reason for that will become clearer later),
it begs to be explained first how we will make such prolongation.

Our model will be governed by the Hamiltonian

HJwall
({s}) = −

∑
⟨ij⟩

Jijsisj , (5.1)

with

Jij =

1 for bulk interactions

Jw
ij for wall interactions

.

We can define a new quantity

Jwall =
1

L2

∑
wall

Jw
ij , (5.2)

that takes value 1(-1) for the (anti-)periodic case. Since we want to perform an extension of
the coupling constant, we will have Jwall ∈ [−1, 1]. If, for example, we want Jwall = J , this
can be achieved either by having all the Jwall = J (global picture) or by having L2(12 − J

2L2 )

wall couplings with value 1 and (12 + J
2L2 )L

2 with value -1 (local picture).
There are both merits and disadvantages with each approach. The main problem with the

local picture ends up being the fact that there is a limited number of available J ’s. That and
the greater similarity with our Jarzynski algorithm render our choice the global picture. In
the rest of this document, we will use global updates. Nonetheless, most of the arguments
presented in this chapter conform to either adoption.
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5.1. General idea

Since we extended the phase space to add a degree of liberty Jwall, in order to specify
a microstate we need both the lattice spin configuration and the value of the wall coupling
constant. We can then link to each microstate the probability

p(µ = ({s},Jwall)) = Z−1 exp
(
− βHJwall

({s})− f(Jwall)
)
, (5.3)

with f as an arbitrary function that takes only as argument the coupling constant in the wall.
We retrieve the canonical case when f(x) = 0.

With this probability associated to a microstate, one can define the probability of measuring
energy E and a coupling constant J ,

P (E, J) =
∑
µ

p(µ)δ(E −H(µ))δ(J − J(µ)) (5.4)

= Z−1 exp
(
S(E, J)− βE − f(J)

)
. (5.5)

We can even sum over the energies, to be left only with the probability of measuring J

P (J) =
∑
E

P (E, J) = Z−1 exp
(
− f(J)

)∑
E

exp
(
S(E, J)− βE

)
(5.6)

= Z−1 exp
(
− f(J)

)
Z(β, J), (5.7)

and let’s enforce Equation 5.7 to be a uniform distribution in the domain J ∈ [−1, 1], i.e.

P (J) = K (5.8)

exp
(
− f(J)

)
Z(β, J) = K (5.9)

=⇒ exp
(
− f(−1)

)
Z(β,−1) = exp

(
− f(1)

)
Z(β, 1) (5.10)

Z(β,−1)

Z(β, 1)
= exp (− (f(1)− f(−1))) . (5.11)

Z(β, 1) corresponds to the partition function of the periodic Ising model and that Z(β,−1)

corresponds to the anti-periodic one. Hence,

ZA(β)

ZB(β)
= exp (− (f(1)− f(−1)))

exp(−β(FA(β)−FB(β))
)
= exp (− (f(1)− f(−1)))
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FA(β)−FB(β) =
f(1)− f(−1)

β
, (5.12)

so we can conclude that if we force the J histogram to be flat, we can arrive at a function f ,
whose values at -1 and 1 allow us to compute the free energy difference. In fact, the function
itself is even more powerful, since it allows us to compute the free energy difference between
two Ising models with different Jwall.

In the following subsections, we will discuss different ways to obtain the function f(Jwall).
Given that the measurements will be made at fixed β, in the rest of the text we employ the
notation

Z(β, J) = exp (S(J)) , (5.13)

and will call S(J) an entropy. This denomination is chosen because we can write a extended
partition function as

Z(β) =
∑
J

Z(β, J) =
∑
J

eS(J). (5.14)

5.1.1. Generic Wang Landau

Given that the problem at hand requires the attainment of a function that will render our
histogram flat, the Wang-Landau (WL) algorithm [77] is a natural way to approach this issue.

Foremost, one must state that Wang Landau, despite appearing in any standard Monte-
Carlo application in physics textbook, is not a Markovian algorithm, so we will not check if
the algorithm follows the conditions detailed in chapter 2.

Our WL algorithm consists of the following. We start at a random spin configuration ϕ,
with a correspondent Jwall, considering an initial guess χ(J) = 0, ∀J ∈ [−1, 1] and ϵ = 1.
The configuration evolves (ϕ → T (ϕ)) through a Wolff step with fixed Jwall. After n such
evolutions, ϕ̃ = Tn(ϕ) is subject to a change in the Jwall.

The dynamics of the random walk in the Jwall are:

1. We sample δJ from a uniform distribution (−a, a). We then propose Ji+1 = Ji + δJ ;

2. We accept the new J with probability

A(Jf |Ji) = min

(
1, exp

(
− β∆JEwall − (χ(Jf )− χ(Ji))

))
, (5.15)

with ∆JEwall as the energy change induced on the wall by changing J .

Afterwards, we add ϵ to χ(Jf ). It’s in here that lies the power and the non-Markovianity of the
algorithm[78]. If we visit a lot of microscopic configurations with the same J ′ (configurations
with high S(E, J)) we will add ϵ to χ(J ′) many times. Eventually, χ(J ′) will be so great that,
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by virtue of 5.15, the algorithm will be forced to leave J ′ and visit other possible wall coupling
values.

Also, this step breaks detailed balance, since the microscopy reversibility is lost. The f -
function changes from one step to the other, which means that if

A(Jf |Ji) = exp
(
− β∆JE + α

)
(5.16)

then, if we perform the reverse step in the next update,

A(Ji|Jf ) = exp
(
β∆JE − (α− ϵ)

)
, (5.17)

because ϵ was added to χ(Jf ).
In the end, since we will have a histogram of J’s, that follows

H(J) = exp
(
S(J)− χ(J)

)
, (5.18)

and if the histogram is flat, we can identify χ(J) with the desired f(J) of equation 5.7; so
we need to let J walk around the domain space following the rules explained above until the
histogram is flat. However, since ϵ = 1, there is a limit to the precision of the f−function. Due
to that, we perform the above procedure until we have an acceptably flat histogram. Then,
we update ϵ→ ϵ/2 and reiterate this process until we have an infinitesimal ϵ, small enough to
do not change the f−function. In this asymptotic limit, the algorithm is in fact Markovian,
since 5.16 and 5.17 are rendered equivalent and the usual MCMC properties hold.

After performing this algorithm, we have a histogram distribution H(J) that follows 5.18.
Ideally, this histogram will be flat. Notwithstanding, if that is not the case, we can correct
the f -function

H(J) = exp (S(J)− f(J))

=⇒ fcorr(J) = f(J) + ln(H(J)), (5.19)

which allows us to associate an error to our f -function, by replacing H(J) by H(J) + δH(J)

and linearizing,

δf(J) =
δH(J)

H(J)
+O

(
(δH(J))2

)
. (5.20)

49



5 Multicanonical algorithm 50

5.2. Entropy competition approach

The Wang Landau philosophy is to force the histogram to be flat by changing the f(J)
function. However, the converse approach is also possible, i.e., to assign a fixed shape to f(J)
and infer the entropy properties[52].

Let’s first define the microcanonical β-function

β(J) =
dS(J)

dJ
, (5.21)

and assign to the f -function the shape

f(J) =
m

2
J2 + bJ. (5.22)

If we sample from the 5.18 distribution with this 5.22, we will have a generic histogram
H(J). The maximum of the distribution function is given by

dH(J)

dJ

∣∣∣∣
µ

= 0, (5.23)

that can be obtained in terms of the S and f functions,

d

dJ

(
S(J)− f(J)

)
exp

(
S(J)− f(J)

)
= 0

dS(J)

dJ

∣∣∣∣
µ

=
df(J)

dJ

∣∣∣∣
µ

. (5.24)

Expanding around the maximum,

H(J) = exp

S(µ)− f(µ) +

0 by 5.24︷ ︸︸ ︷
d

dJ

(
S(J)− f(J)

) (
J − µ

)
+

1

2

d2

dJ2

(
S(J)− f(J)

)(
J − µ

)2


H(J) α exp

(
−1

2

(
m− d2

dJ2
S(J)

∣∣∣∣
µ

)
(J − µ) 2

)
, (5.25)

we obtain a gaussian distribution, with mean value µ and variance

σ2 =
1

m− d2

dJ2S(J)

∣∣∣∣
J∗

. (5.26)
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This behavior is clearly illustrated at figure 5.1.

Figure 5.1.: Rough estimation for β(J) for the system with Lx = Ly = 16, Lz = 96 and two
realizations of f(J), with the corresponding generated histograms. The intersec-
tion between β(J) and fi(J) governs the localization of the histogram. Both f1
and f2 have the same slope m but different b’s.

Since we have a rough idea of the shape of the β-function, we can design a methodical way
to find the entropy derivative at any J∗, since we can set any arbitrary array of parameters
(m, b) to the f -function. For a pair (m, b), we perform a random walk in the configuration
space, changing both the spins and the wall couplings. Such random walk is governed by the
acceptance probability 5.15, and will yield a histogram H(J) that will follow 5.18.

With the histogram, we can compute its mean µ, and arrive, by virtue of eq. 5.24, to

β(µ) =
d

dJ
S(J)

∣∣∣∣
µ

= mµ+ b, (5.27)

which yield the derivative at J = µ.
In order to obtain the derivatives for the entirety of the domain [−1, 1], we need only to

tweak the parameter b in order for the intersection between β(J) and mJ+ b to be at different
J ’s, see fig.5.1. In that sense, both µ and β(µ) are functions of b. Our method has an inherent
error in of µ, governed by the variance of the probability distribution, that propagates for the
β(µ) computation.

Since σ decreases with m, an histogram sampling with a f -function with a very large m will
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yield a very precise measurement of µ. Also, this error propagates to our value for β(µ), i.e.,
for a µ measurement with error ξµ we arrive at a error ξβ ,

β = β(µ) + ξβ = m (µ+ ξµ) + b

ξβ = mξµ
. (5.28)

The mean value and standard deviation of ξβ are

⟨ξβ⟩ = 0

⟨ξ2β⟩ = m2σ2µ = m2

m− dβ(µ)
dJ

, (5.29)

clearly showing that ⟨ξ2β⟩ doesn’t tend to zero as m increases, but instead to ∞. The optimum
value for ⟨ξ2β⟩ is obtained by minimizing this value with respect to m,

d⟨ξ2β⟩
dm

=
d

dm

m2

m− dβ(µ)
dJ

= 0 (5.30)

2m

(
m− dβ(µ)

dJ

)
= m2 ∧m ̸= dβ(µ)

dJ
(5.31)

m = 0 ∨m = 2
dβ(µ)

dJ
(5.32)

so, if we have an estimative for the second derivative of the entropy, we can choose the m that
yields the best possible estimation for the entropy derivative. Then, after performing such
algorithm for an enough number of J ’s it is simply a matter of integrating∫ 1

−1

dS

dJ
dJ = S(1)− S(−1) (5.33)

to obtain the free energy difference.

5.3. Independent bins statistical moments

An important feature of our Wang Landau approach is that it is dependent of the discretiza-
tion imposed onto the Jwall-domain, since the function χ(J) is constant within a bin. This
means that the data we obtain by sampling with χ(J) corresponds not to exp (S(J)− χ(J))

but in fact to the average over a bin,

H(Ji) =

∫ Ji+
∆
2

Ji−∆
2

exp (S(J)− χ(Ji)) dJ, (5.34)
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and the further corrections to S(Ji) with this result will take into account the density proba-
bility of the entire bin. This is usually not an issue, since ∆ << 1. However, in the extremes
of the domain (near |J | = 1), where the function changes more sharply, and the discrepancy
can be noticeable.

To circumvent this issue it is useful to measure the statistical moments of the J- distribution
in each bin. Starting by expanding S(J) at a single bin,

S(Ji + j) = S(Ji) +
dS

dJ

∣∣∣∣
Ji

j +
1

2

d2S

dJ2

∣∣∣∣
Ji

j2 +O
(
j3
)
, (5.35)

taking into account up to the quadratic term, we express,

H(Ji) =

∫ ∆/2

−∆/2
djeS(Ji)+aj+ b

2
j2−χ(Ji)

a = β(Ji)

b =
dβ

dJ

∣∣∣∣
Ji

Knowing a and b parameters leads to a continuum description in each bin. To extract that
information, we measure ⟨j⟩ and ⟨j2⟩ inside a bin, defined as

⟨jn⟩ ≡

∫ ∆
2

−∆
2

jn exp

(
S(Ji) + aj + b

2j
2 − χ(Ji)

)
dj

∫ ∆
2

−∆
2

exp

(
S(Ji) + aj + b

2j
2 − χ(Ji)

)
dj

, (5.36)

which are enough to uniquely determine a and b.
Also, it is possible to revise the value for S(Ji), addressing the issue stated previously, since

we have the integrated value S̃

exp
(
S̃(Ji)

)
=

∫ ∆
2

−∆
2

exp

(
S(Ji) + aj +

b

2
j2
)
dj, (5.37)

and by inverting eq. (5.37) we obtain S(Ji).
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6. Algorithms’ efficiency study

In this chapter, we will present the results for the various algorithms we developed through
this thesis, in order to figure out which of them yields more efficiently the desired ∆F values.

We start by presenting the results for the non-equilibrium approaches, starting with the
Jarzynski algorithm, section 6.1, presenting the results for a three dimensional lattice size and
checking the dependence of the algorithm performance with the various free parameters of our
method. It is also shown how the Jarzynski algorithm yields a poor performance for smaller
transition rates. Then, we show the results for the Normalizing Flows approach, section 6.2.
Critically, we do not use a three dimensional lattice size. In fact, a small, two dimensional
lattice is used, but the results fail to properly converge to the expected value. The problem is
shown to be very similar to one that also plagues the Jarzynski approach.

Subsquently, we present the results of the various multicanonical approaches, section 6.3.
The main takeaways are that the Wang-Landau, subsection 6.3.1, and entropy competition,
subsection 6.3.2, approaches produce good results for the free energy computation. However,
the independent bins method yields results that do not agree with the reference values, present
at [14].

6.1. Jarzynski

The results presented in this section are for a system of size 18×18×96, which is the smallest
system in [14]. We use the same method as in [14], replacing the multi-spin coding[79] by the
Wolff algorithm, see subsec. 4.2. All measurements were performed for β = 0.223102.

There are three main external parameters that we need to prescribe to the algorithm:

1. the number of samples, Nsamples, corresponding to the amount of initial configurations
that we sample from the equilibrium distribution with the initial parameters;

2. the number of steps, Nsteps, that takes the external parameter to go from λ = 0 to λ = 1;

3. the number of Wolff sweeps, Nsweeps, that takes to evolve a configuration from λi to λi+1.

In the fig. 6.1, we analyse the dependence of the free energy difference with Nsteps introduced
to discretize the external parameter change.

As we can see in fig. 6.1, the ∆F measurements for smaller Nsteps have a stark discrepance
with the expected results; with such difference decreasing as we increase Nsteps. This is
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Figure 6.1.: On the left plots we have the measurement of ∆F for a sample of 50000 initial
configurations and one Wolff sweep between time steps for different values of
Nsteps for the direct (periodic → anti-periodic Ising model) and inverse update.
The results tend to the value presented at [14]. The right plots represent the
distribution ρ (−βW ) (blue) and e−βWρ (−βW ) (orange), for the distinct Nsteps
for the direct update.

surprising, since the Jarzynski algorithm is independent of the speed at which we are changing
the wall coupling. To understand this problem we must analyse the probability distibution of
the work measurements.

Indeed, if we take a set of measurements for independent Jarzynski realizations for a fixed
Nsteps , we can have an associated distribution of −βWi, ρ(−βW ), which allows us to compute
the relevant quantity for the Jarzynski equality,

⟨e−βW ⟩ =
∫
dWe−βWρ(−βW ). (6.1)

We can see in fig. 6.1 the distribution ρ(−βW ) for different Nsteps. We can see that rare
measurements with a high value for −βW will be disproportionally relevant to the free energy
measurement. For the smaller Nsteps’s, values of −βW at the tail of the gaussian contribute
greatly to the mean value of e−βW . As we increase Nsteps, the functions e−βWρ(−βW ) and
ρ(−βW ) begin to overlap, which indicates a more harmonious contribution of each Jarzynski
realization, i.e., the tail values don’t skew the data. This rare event contamination is a non-
trivial source of error, and is the reason for the poor performance of low Nsteps measurements.
The method will converge (the Jarzynski equality assures us), but needs exponentially large
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Figure 6.2.: Uncertainty and deviation from the expected result for three different approaches
to the Jarzynski algorithm. The blue line corresponds to one Wolff sweep between
two consecutive updates; the orange line corresponds to ten Wolff sweeps. Both
of them have a low sample of initial configurations (Nsamples = 96). The green
line is similar to the blue approach but has greater Nsamples.

number of samples as Nsteps decreases.
Now that we are aware of this issue, we need to figure out the right balance between the

number of transition steps, sample size and Wolff updates between each time step. The three
approaches that we employ can be compared simultaneously, since the time that each method
takes is governed by Wolff sweeps =Nsamples ×Nsteps ×Nsweeps.

The results present at fig. 6.2 show that the increase in the sample size does not yield a
worthwhile increase in the precision of our measurement. The deciding factor seems to be
the number of transition steps. The closer the non equilibrium transformation resembles an
adiabatic process, the better results we obtain, regardless of the number of samples or the
number of Wolff updates between steps.

6.2. Normalizing Flows

We implemented a Normalizing Flows architecture for a two-dimensional Ising model with
size 16×16. This is not the desired dimensionality of the system (we do not have domain walls
at two dimensions), but is a toy model that can illuminate if the Normalizing Flow measure-
ment coupled to the HS transformation can yield sensible results. The detailed architecture
used in this sextion can be found at Appendix E.
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Figure 6.3.: Distribution (blue histogram) of logΞ ≡ −β{H(gN (z))−H0(z)−Q} with z sam-
pled for the periodic Ising model for different epochs of the Normalizing Flow
training. The red line corresponds to the results predicted by the Jarzynski algo-
rithm. The blue line corresponds to log⟨Ξ⟩. There is a clear dissonance between
the expected result and the obtained one, and such discrepancy is clearly induced
by the presence of some Ξ with manifestly high values.

Since there are not results for the difference of free energy for the two dimensional lattice,
we contrast our results with a run of Jarzynski algorithm. The data can be found at figure
6.3. It’s clear to see that we have a significative (several orders of magnitude) difference
between the results outputted by the Jarzynski and NF approach. The justification for that
seems to be the problem of the previous section - there are a few configurations whose weight
exp

(
−β{H(gN (z))−H0(z)−Q}

)
far exceeds in many orders of magnitude the average value,

skewing the data to erroneous values.
However, there is not a clear way to circumvent this issue. Recall that for the JA, an

increase of the number of transition steps solves this issue; for the NF a naive increase of the
layers is not an assurance that the transformation the configuration sufferes within the flow is
adiabatic.
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6.3. Multicanonical

The findings for the difference of free energy acquired by the multicanonical algorithms
discussed in chapter 5 will be presented in this subsection. The results show, unequivocally,
that, among the multicanonical algorithms, the Wang-Landau has the most success, and will
be the chosen algorithm for the computation of the γ3 coefficient.

This section will begin by summarizing the results for the Wang-Landau algorithm, subsec-
tion 6.3.1, for a system of size 32× 32× 96 , exemplifying the high degree of precision that we
can achieve with this method.

Then, we present the Entropy competition, subsection 6.3.2, and independent moments’
strategy findings, subsection 6.3.3, and highlighting its flaws. Indeed, entropy competition
has a poor computational performance, much worse than Wang-Landau, and the independent
moments’ strategy yields values at the extremes of the function f(J) that contradict the rest
of the methods. The cause of this lack of agreement is still unclear to us.

6.3.1. Wang-Landau

Recall that the Wang Landau algorithm has two successive steps: first we obtain a rough
approximation for the χ(J)-function with a standard WL procedure. As discussed before, this
result is not enough, since the sampling with this χ(J) doesn’t produce a flat histogram in
the J ’s. Then, this function is used to sample a histogram H(J) that follows

∑
E exp

(
χ(J)−

βH(E, J)
)

, further correcting our data,

χcorr(J) = χ(J) + ln (H(J)) . (6.2)

For a system with size 32× 32× 96, the rough entropy and the correction can be seen in Fig.
6.4. The correction doesn’t seem relevant in a quick glance, but a zoom on a subset of Jwall

shows that it allows for a diminuition of the noise of dχ(J)
dJ .

Must be said that our approach was not to correct χ(J) with a single histogram. For the
same values of the WL rough estimate, we sample N independent histograms. We can take
their average, which allows us to define a mean histogram Hmean(J), in which each bin follows

Hmean(Ji) =
N∑
n

Hn(Ji). (6.3)

This allows us to define an error associated with each bin: the standard deviation of the
distribution H(Ji), that goes as as σ√

N
, with σ as the error for H(J ′). An example for mean

histogram that produced the data present at fig.6.4 can be found at fig. 6.5. The uncertainty
is ∼ 103 times smaller than the obtained value, and it increases near |J | ∼ 1. Such behavior
is consistent across different system sizes.
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Figure 6.4.: Rough χ(J) (blue) and the corrected χcorr(J) for a system with Lx = Ly = 32
and Lz = 96. This graph is obtained with a standard Wang-Landau algorithm for
ϵfinal = 2−12. Both the value χ(1) and χcorr(1) are fixed at zero, since the WG
function is defined up to a constant.

After the correction due to 5.19, we fit the resulting function, defined at the central points
of the bins, in order to extend it to the entire bin. We perform the fit with Chebyshev
polynomials, since they are well defined in the interval we are interested in, J ∈ [−1, 1]. We
then have an entropy, whose difference at the extremes χ(1)−χ(−1) is the desired free energy
difference (∆F ).

What is the associated uncertainty? Since

δχ(J ′) =
δH(J ′)

H(J ′)
,

the change between χ(1) and χ(−1) has the compounded effect of the uncertainty of each
individual bin. Which implies

δ∆F =

√
1

ς

√∑
J ′

δχ(J ′)2, (6.4)

with ς as the interval of a bin.
We then have a free energy difference for this system size of

∆F = 5.97718(18). (6.5)

This result is in good agreement with the one present at [14], and has a greater precision.
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Figure 6.5.: Mean histogram H(J), left plot, and the associated error for each bin, δH(J),
right-down plot, for a system with Lx = Ly = 32 and Lz = 96 with the χ(J) of
Fig. 6.4.

This results were obtained with ∼9k CPU hours, which is smaller than the time we required
for a bigger system with the Jarzynski algorithm. With this in mind, we will utilize this
methodology to obtain the ∆F ’s for various system sizes and compare the data with the
theoretical prediction. We were able to perform the computation for higher values of transverse
area than Cassele et al, and we have better accuracy across the board. The complete ledger
of the values we obtained can be found at the Appendix F.

6.3.2. Entropy competition

Let’s consider a smaller model, with Lx = Ly = 8 and Lz = 16. In order to uniquely
determine a entropy competition algorithm run, we need to specify the two parameters m
and b of the f -function. We have seen, equation 5.24, that the optimal parameter for m is

2 d2

dJ2S(J)

∣∣∣∣
J∗

, so we perform a loose run of the Wang-Landau algorithm in order to work out

an approximate value for the second derivative of the entropy and to estimate the range of
b-values we will need to utilize in order for β(J) to intersect mJ + b at the range J ∈ [−1, 1].

Our algorithm returns d2

dJ2S(J) ∼ 5 for all values of J , since the function S(J) is approxi-
mately quadratic. The parameter b must lie (approximately) in the interval (−5, 5) for each
instance of the algorithm. The results can be seen in figure 6.6a), with each point correspond-
ing to a distinct value of b. The result is a fairly linear function.

Recall that for each instance of (m, b), the algorithm generates a normal distribution. Each
point (J∗, β(J∗)) gets the β(J∗) by performing the mean of 106 uncorrelated measurements.
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Figure 6.6.: β(J) and corresponding error for a system with size 8 × 8 × 16. The error bars
are too small to be visible in the first subfigure.

The uncertainty can be seen in Fig. 6.6b) and it corresponds to the standard deviation of the
corresponding gaussian distribution. The error is not constant across the measured domain.
Such disparity may be caused for a change in d2

dJ2S(J), since the function is not a perfect
quadratic function.

We can now decompose β(J) in Legendre polynomials[80],

β(J) =
N∑

n=0

anLn(J). (6.6)

This choice is made because this polynomials are orthogonal

an =

∫ 1

−1
β(J)Ln(J)dJ, (6.7)

and L0(J) = 1, so we can write1

∫ 1

−1
β(J)dJ =

a0
2
, (6.8)

1One could have chosen Chebyshev polynomials and the analysis would be similar.
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which means that we can obtain the integral of dS
dJ within the domain [−1, 1] thorugh a least

squares fit for Legendre polynomials, without the need of performing a numerical integration.
This analysis allows us to predict

∆F (Lz)− log(Lz) = 2a0 (6.9)

and for our system size we have

∆F (Lx = Ly = 8, Lz = 16) = 3.013± 0.004. (6.10)

Now it’s only a matter of applying this rationale to the larger systems we are interested in
studying. Also, note that the computation of each of the points at fig. 6.6 is independent,
and follows the same algorithm, only with a different b. This, allied with the fact that the
standard deviation of the gaussian distribution produced by the algorithm (an example can be
seen at Fig. 5.1) goes with ∼ 1√

N
, allows us to measure the time that our algorithm will take

to measure ∆F (Lx, Ly, Lz). We estimate that, for 18×18×96, we would need 17k CPU hours
to reach the level of precision present at [14], which ranks this algorithm as slightly worse than
the Jarzynski one.

6.3.3. Independent bins momentum

Let’s now analyse the results from the independent bins momentum approach. Recall from
Eq. 5.37 that we have a relation between the moments of J within each bin and the true
entropy function S(J). Since we expanded S(J) around the mean point (J∗) of the bin up to
(J −J∗)2, we have two unknowns, which means that we measure ⟨j⟩ and ⟨j2⟩ in order to fully

determine dS
dJ

∣∣∣∣
J∗

and d2S
dJ2

∣∣∣∣
J∗

, with ⟨jn⟩ given by Eq. 5.36.

Since we are considering small bins within the interval between −1 and 1, we can assume that

the distribution exp

(
aj + 1

2bj
2

)
in the bin is a perturbation around an uniform distribution,

so one would expect that the ⟨j2⟩ would be close to −∆3

12 . We can see an example of values
for Lx = Ly = 32 and Lz = 96 in figure 6.7.

So now remains only to solve the two equations for a and b. The approach used was
the inversion of a perturbative series, i.e., we promote a → αδ and b → βδ2, with δ as a
perturbative parameter. We assign to b a smaller value, informed by the fact that the second
derivative must have a much smaller contribution than the linear component of the distribution
within the bin. We will expand the equations for µ1 and µ2 with respect to δ up to order δ6.

This expansion organizes the series in order of the most relevant parameters, i.e.,

⟨jn⟩ =
5∑

i=1

cni
(
α, β

)
δi +O(δ6). (6.11)
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Figure 6.7.: µ1 ≡ ⟨j⟩ and µ2 ≡ ⟨j2⟩ − ∆3

12 for Lx = Ly = 32 and Lz = 96

which allows us to recognize the most relevant contributions for the moments calculation, and,
more importantly, the series 6.11 can be inverted to obtain a series for α and β

α =
∑5

i=1 di(µ1, µ2)δ
i +O(δ6)

β =
∑5

i=1 ei(µ1, µ2)δ
i +O(δ6)

. (6.12)

The error can be upper-bounded by the last coefficient of the 6.12 series,

δα = d5

δβ = e5
. (6.13)

These coefficients can be calculated numerically, which allows us to obtain

d1 = 12µ1 (6.14)

d2 = 0 (6.15)

d3 =
144

5
µ1
(
3µ21 − 5µ2

)
(6.16)

d4 = 0 (6.17)

d5 =
1728

175
µ1
(
33µ21 − 35µ2

)(
3µ21 − 5µ2

)
(6.18)

and
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Figure 6.8.: Results for dS
dJ and d2S

dJ2 for Lz = 96 and Lx = Ly = 32.

e1 = 0 (6.19)

e2 = 72
(
− 2µ21 + 5µ2

)
(6.20)

e3 = 0 (6.21)

e4 = −432

35

(
108µ41 − 280µ21µ2 + 125µ22

)
(6.22)

e5 = 0. (6.23)

With this perturbative series, we can map (µ1, µ2) to (dSdJ ,
d2S
dJ2 ), such that we can compute∫ 1

−1
dS
dJ (J)dJ and obtain the free energy difference.

Using the data previously presented in fig. 6.7 and the perturbative series 6.12, we obtain
the results present in fig. 6.8. We can see that the function for β(J) is very similar to µ1,
which is not unexpected since the leading order in δ for a is 12µ1. Also, dβ

dJ << β.
Furhter recall that we have a relation between the effective entropy at the center of the bin

S̃(Ji) and the “true” entropy S(Ji),

exp
(
S̃(Ji)− χ(Ji)

)
=

∫ ∆
2

−∆
2

exp

(
S(Ji)− χ(Ji) + aj +

b

2
j2
)
dj, (6.24)

which we can invert with a similar approach as the outlined above, that gives us a perturbative
series expansion for the corrected entropy,
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Figure 6.9.: Difference between the two different ways to compute dS
dJ (corrected Wang-Landau

and IBM).

S(Ji) = S̃(Ji)− 15µ2 −
18

7

(
12µ41 − 25µ22

)
. (6.25)

This result is not necessary to compute the free energy, since we already have β(J).However, we
can draw a comparation between the integration of the β(J) we obtain with the independent
bins (IBM) approach and the one obtained (and further corrected with eq. (6.25)) with the
Wang-Landau algorithm for the system with the same size. We check that the local derivatives
do not correspond to the same values (see fig 6.9). This error compounds through the domain,

∆(∆F ) =

∫ 1

−1

(
βWL(J)

∣∣− βIBM(J)
)
dJ, (6.26)

and skew the data obtained purely from the IBM.
The reason behind this errors may be linked to the fact that we are expanding the entropy

up to the second derivative. If we assigned the magnitude orders δ and δ2 to the first and
second derivative, the effects of the third derivative will be felt starting at δ3, which is much
sooner than the precision of δ5 that we claimed previously. Further study is required to check
if this is indeed the case or the source of error comes from another unidentified issue. Such
analysis will not be present in this document, since the data we collected to study the IB
approach was obtained concurrently with the Wang-Landau data, and, since that approach
yielded good results, we didn’t pursue this issue any further.
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7. Data vs NG expansion

Now that we have narrowed down the best method, the Wang Landau multicanonical algo-
rithm, for free energy computation, we can now compute the interface free energy for various
system sizes, since we are interested in the dependence of ∆F with respect to the transverse
area. In this chapter we will start by presenting the results for a system with fixed Lz = 96,
section 7.1; then we will check how can we distinguish between the universal Nambu-Goto
contributions and the particular contributions of this model, section 7.2, and will finish this
thesis by computing the c−3 expansion term and comparing it with previous results from the
literature.

7.1. From partition ratios to interface free energy

It is know, see subsec. 6.3.1, that our algorithm of choice will return the ratio ZA/ZP

between the periodic and anti-periodic Ising models. We need to bridge this quantity to the
interface free energy. Indeed, let’s assume that we have a finite Lz and the Lx, Ly → ∞ limit.
This, in the antiperiodic system, leads to the appearance of a single domain wall„ given that
the free energy scales with the area, and allows us to define the energy of the interface [81, 14]
as1

F (1) = − ln

(
ZA

ZP

)
+ lnLz, (7.1)

with the lnLz term arising from the fact that the interface may exist at any point alongside
the z-direction. We are not, unfortunately, in the Lx, Ly → ∞ limit, and, henceforth, need
to consider the possibility of an odd number of domain walls, see subsection 3.1.2. Since that
is a possibility, we can arrive at an expression for ZA[81] that assumes non-interacting and
indistinguishable interfaces,

ZA =
∑
n

1

n!
exp [−n (Fwall − lnLz)] , (7.2)

with the summation running over the odd integers. The expression above is easily generalized
to the periodic case. Recall that we allow the existence of multiple domain walls in the

1Free energy is usually defined as F = − lnZ
β

. However, we will not take into account the role of β - that
factor will be absorbed into F (1) and F (2)
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Figure 7.1.: F (1)(L) (up) and F (1)(L)−F (2)(L) (down) for a system with Lz = 96, β = βchosen
and Lx = Ly = L.

Jwall = −1 scenario, but they need to appear an odd number of times, due to the anti-periodic
boundary conditions. The rationale behind the appearance of domain walls in the periodic
Ising model is the same, but now we sum over the even integers, since we do not consider that
same spin orientation among the spins at z = Lz and z = 0 constitutes a domain wall. Then,

ZA

ZP
=

∑
m

1
2m+1! exp [− (2m+ 1) (Fwall − lnLz)]∑

m
1

2m! exp [−2m (Fwall − lnLz)]

and one can identify in the numerator and the denominator with the Taylor series of sinh and
cosh, respectively. By virtue of that, we can write

ZA

ZP
= tanh exp [− (Fwall − lnLz)] , (7.3)

and arrive to a new definition for the domain wall energy,

F (2) = − ln arctanh
(
ZA

ZP

)
+ lnLz. (7.4)

We can compare both quantities, F (1) and F (2) for a system with variable transverse area.
We can see at Fig. 7.1 that the distinction between both quantities is smaller than the error
bar in the studied system sizes, in particular for high transverse area systems.

The data for the various system size parameters we explored can be found at fig. 7.2.
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Figure 7.2.: F (2)(A = L2) for various Lz values. The transversal area has Lx = Ly = L2. Both
graphs represent the same data but the second one is in a log-log scale.

7.2. Universal and non-universal contributions

Let’s now figure out if the data we obtained, present at Fig. 7.2, is well described by Nambu-
Goto at leading order. Recall that the partition function ratio, if we consider only the NG
action, is, up to 1

(LxLy)4
,

FNG = 0.3915− 1

2
log
(
σL2

z

)
+A− 0.2500

A
+

0.0141

A2
+

0.1314

A3
− 2.0303

A4
, (7.5)

with A = σLxLy. Note that we remain yet to specify how we define the value of the interface
tension σ. Since the leading order at Eq. 7.5 is σLxLy, one would assume that if we measure
the free energy for large enough transverse areas we can perform a linear fit and arrive at σ.
However, such approach has to be taken with a grain of salt. In fact, when we increase LxLy,
if the value of Lx or Ly is much greater than Lz, the domain wall can be self-interacting, in the
sense that its fluctuations will have greater amplitude than Lz. That introduces non-trivial
contributions to the free energy, and the σLxLy behavior no longer holds.

Since it’s not clear to pinpoint for which transverse area we start to suffer from self-
interaction, we will measure σ for a fixed Lz in a different fashion. Let’s remove the uni-
versal NG contribution from Eq. 7.5, with σ as a free parameter. Since we know that the
non-universal terms only appear, at most, at order 1

A3 , we expect

∆F − FNG(σ) =
c−3

A3
+
c−4

A4
, (7.6)
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with σ once again as a free parameter. However, the theoretical terms are well defined and
fixed by our theory, so if we do not choose the appropriate σ, there will appear terms in Eq.
7.6 at lower orders than 1

A3 . If we have a good guess for σ, we can explore the neighborhood
of such guess and verify which value corresponds to the best fit for ∆F − FNG when we only
allow degrees of freedom for the c−3 and c−4 terms. The proposed range for σ is informed by
[14], and we choose as the fit metric the mean square error between the fit and our data.This
parameter has a natural minimum, that will be defined as our σ(Lz = 96), which allows us
to obtain, see figure 7.3, σ = 0.00260249(2) for Lz = 96, which is close to Caselle’s value of
σ = 0.0026083(6).

With this choice for σ, we are able to remove the NG contributions and to perform the fit
to F (2) − FNG. We present the data and the fit at Fig. 7.3. ∆F − FNG fails to obey to Eq.
7.6 when L > Lz

2 . One of the reasons may be the self-interaction of the domain wall. That
suggests that we may perform the σ-finding and fit for the non - universal data for the data
up to a certain cutoff square transversal area size, LC

z .

Figure 7.3.: MSE with respect to proposed σ’s (a)).F (2) data for various square transversal
areas with Lz = 96 and correspondent fit. b) and c) present the same data, but
with a regular and log-log plot, respectively

7.3. c−3 computation

Now that we have the data for a various Lz’s and a concrete way of obtaining the σ(Lz), we
can try to understand if the obtained values will be connected through some kind of finite size
scaling. Unfortunately, the data doesn’t support this idea. Nonetheless, we can still utilize
the σ-value to remove the universal part and fit the remaining functions to Eq. 7.6. Taking
into account the data for systems with L < Lz/2, we arrive at values for c−3 and c−4 for each
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Lz c−3 c−4

48 0.655(3) 1.339(7)
80 0.467(5) 2.05(1)
96 1.36(1) 1.13(1)
128 0.93(3) 2.23(9)
160 1.5(1) 2.1(3)

Table 7.1.: Expansion coefficients for the non-universal dependence of the interface free energy.

distinct Lz. The fits are represented at Fig. 7.4 and the data for the expansion coefficients is
present at Table 7.1.
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Figure 7.4.: Dots correspond to our non-universal data for the various system sizes. The
continuous lines are the fit obtained with Eq. 7.6.

Once again, we obtain a set of data that do not exhibit a clear finite size scaling that may
explain the disparity of the coefficient values. Nonetheless, there is a known bound [35] for
the value of c−3,

c−3 ≥ −0.377, (7.7)

and we can see that all the values we got obey to Eq. 7.7.
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8. Conclusions and Outlook

In this thesis we presented and studied the problem of the precise computation of the 3D
Ising interface free energy, through a myriad of different algorithms, allowing us to compute
new ∆F values for previously unchecked lattice sizes and to obtain the first non-universal
expansion parameter.

The road that led up to this was long and winding. We started with the analytical study of
the partition function of the NG model, chapter 1, which allowed us to work out the general
contributions for the free energy expansion in powers of 1

LxLy
.

After a review of generic Monte Carlo algorithms, chapter 2, we studied some phenomeno-
logical properties of the domain wall for Ising models with continuous wall coupling, chapter
3. We showed that the interface undergoes delocalization at Jwall = −1, but were unable to
conclusively demonstrate if such transition is in fact a KT one.

After exploring the Ising domain wall properties, we moved on to the main event: the
development of new algorithms able to compute the ratio between the partition function of
the periodic Ising model and the anti-periodic one. Such algorithms were classified in two major
classes. The first one, chapter 4, corresponds to the non-equilibrium methods. We modify the
Jarzynski algorithm presented at [14] by studying the underlying evolution of the system from
multispin coding to Wolff dynamics. Despite the hopes that a cluster update would improve
the simulations, we demonstrated, Fig. 6.1, that the non-equilibrium transformation from one
Ising model to the other is prone to rare event contamination of the average ⟨e−βW ⟩. From the
Jarzynski, we proceeded to the free energy computation with aid of Normalizing Flows, that
belong to the same universal, SNF class. We showed how this fairly recent[34] idea works in
a small system of two interacting particles, and combined NF ideas with a HS transformation
of the Ising model to develop a new algorithm. We showed, however, that the substantial
increase of the degrees of freedom and the need to perform a HS transformation in order to
circumvent the discrete degrees of freedom problem give rise to a rare event contamination of
the data. Further work is necessary to discern where, exactly, lies the problem and if new NF
architectures can be used to remedy the issue.

Subsequently, chapter 5, we approached the problem of the partition ratios through a Mul-
ticanonical outlook. We developed three distinct Multicanonical algorithms. One of them, the
independent bins approach, was shown to fail to accurately predict the f -function derivative
at the points near the frontiers of our domain. The reasons of that failure are yet not clear to
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us and further studies are necessary in order to understand where the error is coming from.
The remaining two, the entropy competition and the Wang-Landau, exhibited good results,
so we employed the most efficient one, WL, to make our precise measurements.

Finally, chapter 7, we analyze the free energy expansion for square transverse areas for
different Lz’s. We showed that the leading order coefficients have a good agreement with the
theoretical predictions. There is, however, a lack of agreement between the first non-universal
coefficient between distinct Lzs, which taints our results. New measurements are required for
systems with different ratios Lx

Ly
in order to infer any concrete conclusion.
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A. Markov Matrix properties

It can be proven that the right eigenvalues of a Matrix matrix have norm less or equal to 1.
First we need to recall that the matrix admits left and right eigenvalues

Mijr
(α)
j = λαr

(α)
i

l
(β)
i Mij = λβl

(β)
j

that can be show to obey to the orthogonality condition

l
(β)
i Mijr

(α)
j = l

(β)
i Mijr

(α)
j

λαl
(β)
i r

(α)
i = λβl

(β)
i r

(α)
i

0 = (λβ − λα)l
(β)
i r

(α)
i ,

so that
λα = λβ l

(β)
i r

(α)
i = δαβ.

We can now choose a vector L = {1, ..., 1}, that is a left eigenvector,

∑
i

LiMij =
∑
i

Mij = 1︸ ︷︷ ︸
by 2.9

= Lj ,

so that we can always have a eigenvalue equal to one. Now we just need to show that the
remaining eigenvalues obey to |λ| ≤ 1.

Consider a generic left eigenvector l(α), so that

∃k ∀i |l(α)k | ≥ |l(α)i |,

which entails for any i,
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|λαl(α)i | = |
∑
j

l
(α)
j Mji|

≤ |
∑
j

l
(α)
j |Mji

≤ |
∑
j

l
(α)
k |Mji ≤ |

∑
j

l
(α)
k |,

and in particular for i = k, we arrive at

|λα| ≤ 1.
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B. Statistical Iterators

There is an inherent numerical instability associated with the computation of statistical
moments of distributions with an entire dataset. When we are able to generate new statistic
from sampling algorithms, it’s advised to update the statistical moments as we go through the
dataset.

In this section I present and derive various statistical iterators that were used through this
work.

B.1. Average

We can define mean as:

X(N) =
1

N

N∑
i=0

xi (B.1)

Knowing that:

X(N + 1) =
1

N + 1

N+1∑
i=0

xi

=
1

N + 1

N∑
i=0

xi +
1

N + 1
xN+1

Muliplying by N
N :

X(N + 1) =
N

N + 1

( 1

N

N∑
i=0

xi

)
︸ ︷︷ ︸

X(N)

+
1

N + 1
xN+1

=⇒ X(N + 1) =
N + 1− 1

N + 1
X(N) +

1

N + 1
xN+1

= X(N) +
1

N + 1

(
xN+1 −X(N)

)
(B.2)
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B.2. Variance

We can express variance as:

var(N) = X2(N)−X1(N)2, (B.3)

in which

X2(N) =
1

N

N∑
i=0

xi
2 (B.4)

X1(N) =
1

N

N∑
i=0

xi. (B.5)

One can compute:

var(N + 1) = X2(N + 1)−X1(N + 1)2

=
1

N + 1

N+1∑
i=0

xi
2 −X1(N + 1)2

=
1

N + 1

N∑
i=0

xi
2 +

1

N + 1
x2N+1 −X1(N + 1)2

=
N

N + 1

(
X2(N)−X1(N)2 +X1(N)2

)
+

1

N + 1
x2N+1 −X1(N + 1)2

=
N

N + 1
var(N) +

N

N + 1
X1(N)2 +

1

N + 1
x2N+1 −X1(N + 1)2

= var(N)− 1

N + 1
var(N) +

N

N + 1
X1(N)2 +

1

N + 1
x2N+1 −X1(N + 1)2

= var(N) +
1

N + 1
(−var(N) + ξ),

with

ξ = NX1(N)2 + x2N+1 − (N + 1)X1(N + 1)2

= (N + 1)
(
X1(N)2 −X1(N + 1)2

)
+ x2N+1 −X1(N)2

= (N + 1)
(
X1(N)−X1(N + 1)

)(
X1(N) +X1(N + 1)

)
+
(
xN+1 −X1(N)

)(
xN+1 +X1(N)

)
.

Replacing X1(N + 1) by the value of the iterator at B.2 yeilds
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= (N + 1)
(
X1(N)−X(N)− 1

N + 1

(
xN+1 −X(N)

))(
X1(N) +X1(N + 1)

)
+
(
xN+1 −X1(N)

)(
xN+1 +X1(N)

)
= −

(
xN+1 −X(N)

)(
X1(N) +X1(N + 1)

)
+
(
xN+1 −X1(N)

)(
xN+1 +X1(N)

)
=
(
xN+1 −X1(N)

)(
xN+1 +X1(N)−X1(N)−X1(N + 1)

)
=
(
xN+1 −X1(N)

)(
xN+1 −X1(N + 1)

)
,

allowing us to finally write

var(N +1) = var(N) +
1

N + 1

(
− var(N) +

(
xN+1 −X1(N)

)(
xN+1 −X1(N +1)

))
. (B.6)

B.3. Correlation

Let’s take as strating point the expression for covariance with lag τ :

covτ (n) =
1

n− τ

n−τ∑
i=0

xixi+τ −
( 1

n− τ

n−τ∑
i=0

xi

)( 1

n− τ

n−τ∑
i=0

xi+τ

)
(B.7)

In order to clean the notation, let’s define:

X2(n) =
1

n− τ

n−τ∑
i=0

xixi+τ (B.8)

Xτ
1 (n) =

1

n− τ

n−τ∑
i=0

xi+τ . (B.9)

In a way that the covariance expression is

covτ (n) = X2(n)−Xτ
1 (n)X

0
1 (n). (B.10)

Let’s now try to find the expression for covτ (n+ 1),

covτ (n+ 1) =
1

n+ 1− τ

n+1−τ∑
i=0

xixi+τ −
( 1

n+ 1− τ

n+1−τ∑
i=0

xi

)( 1

n+ 1− τ

n+1−τ∑
i=0

xi+τ

)
.

In order to simplify, let’s define m ≡ n− τ :
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covτ (n+ 1) =
1

m+ 1

m+1∑
i=0

xixi+τ −
( 1

m+ 1

m+1∑
i=0

xi

)( 1

m+ 1

m+1∑
i=0

xi+τ

)
=

m

m+ 1
X2(n) +

1

m+ 1
xm+1xm+1+τ −

( 1

m+ 1

m+1∑
i=0

xi

)( 1

m+ 1

m+1∑
i=0

xi+τ

)
= X2(n)−

1

m+ 1
X2(n) +

1

m+ 1
xm+1xm+1+τ −Xτ

1 (n+ 1)X0
1 (n+ 1)

= X2(n)−Xτ
1 (n)X

0
1 (n) +Xτ

1 (n)X
0
1 (n)−

1

m+ 1
X2(n)

+
1

m+ 1
xm+1xm+1+τ −Xτ

1 (n+ 1)X0
1 (n+ 1)

= covτ (n) +Xτ
1 (n)X

0
1 (n)−

1

m+ 1
X2(n) +

1

m+ 1
xm+1xm+1+τ −Xτ

1 (n+ 1)X0
1 (n+ 1)

= covτ (n) +
1

m+ 1

[
(m+ 1)Xτ

1 (n)X
0
1 (n)−X2(n)

+ xm+1xm+1+τ − (m+ 1)Xτ
1 (n+ 1)X0

1 (n+ 1)
]

= covτ (n)+
1

m+ 1

[
−covτ (n)+mXτ

1 (n)X
0
1 (n) + xm+1xm+1+τ − (m+ 1)Xτ

1 (n+ 1)X0
1 (n+ 1)︸ ︷︷ ︸

ξ

]
,

(B.11)
allowing us to simplify ξ,

ξ = mXτ
1 (n)X

0
1 (n) + xm+1xm+1+τ − (m+ 1)Xτ

1 (n+ 1)X0
1 (n+ 1)

= (m+ 1)
(
Xτ

1 (n)X
0
1 (n)−Xτ

1 (n+ 1)X0
1 (n+ 1)︸ ︷︷ ︸

γ

)
+
(
xm+1xm+1+τ −Xτ

1 (n)X
0
1 (n)

)
, (B.12)

and factorize γ,
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γ = Xτ
1 (n)X

0
1 (n)−Xτ

1 (n+ 1)X0
1 (n+ 1)

=
(
Xτ

1 (n)−Xτ
1 (n+ 1)

)(
X0

1 (n) +X0
1 (n+ 1)

)
−Xτ

1 (n)X
0
1 (n+ 1) +Xτ

1 (n+ 1)X0
1 (n)

= −
( 1

m+ 1

(
xm+1+τ −Xτ

1 (n)
))(

X0
1 (n) +X0

1 (n+ 1)
)
−Xτ

1 (n)
(
X0

1 (n)

+
1

m+ 1
(xm+1 −X0

1 (n))
)
+
(
Xτ

1 (n) +
1

m+ 1
(xm+1+τ −Xτ

1 (n))
)
X0

1 (n)

= −
( 1

m+ 1

(
xm+1+τ −Xτ

1 (n)
))(

X0
1 (n) +X0

1 (n+ 1)
)
−Xτ

1 (n)
( 1

m+ 1
(xm+1 −X0

1 (n))
)

+
( 1

m+ 1
(xm+1+τ −Xτ

1 (n))
)
X0

1 (n)

=
1

m+ 1

{
−
(
xm+1+τ −Xτ

1 (n)
)(
X0

1 (n) +X0
1 (n+ 1)

)
−Xτ

1 (n)xm+1 +Xτ
1 (n)X

0
1 (n)

+ xm+1+τX
0
1 (n)−Xτ

1 (n)X
0
1 (n)

}
=

1

m+ 1

{
− xm+1+τX

0
1 (n)− xm+1+τX

0
1 (n+ 1) +Xτ

1 (n)X
0
1 (n) +Xτ

1 (n)X
0
1 (n+ 1)

−Xτ
1 (n)xm+1 + xm+1+τX

0
1 (n)

}
Ising

=
1

m+ 1

{
− xm+1+τX

0
1 (n+ 1) +Xτ

1 (n)X
0
1 (n) +Xτ

1 (n)X
0
1 (n+ 1)−Xτ

1 (n)xm+1

}
. (B.13)

Replacing B.13 at B.12 we have

ξ = −xm+1+τX
0
1 (n+ 1) +Xτ

1 (n)X
0
1 (n) +Xτ

1 (n)X
0
1 (n+ 1)−Xτ

1 (n)xm+1 + xm+1xm+1+τ −Xτ
1 (n)X

0
1 (n)

= −xm+1+τX
0
1 (n+ 1) +Xτ

1 (n)X
0
1 (n+ 1)−Xτ

1 (n)xm+1 + xm+1xm+1+τ

=
(
xm+1+τ −Xτ

1 (n)
)(
xm+1 −X0

1 (n+ 1)
)
. (B.14)

And finnaly, by replacing at B.11:

covτ (n+1) = covτ (n)+
1

n− τ + 1

[
−covτ (n)+

(
xm+1+τ−Xτ

1 (n)
)(
xm+1−X0

1 (n+1)
)]

(B.15)
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C. Equations of motion for Polyakov
Lagrangian and its equivalence with NG

The Polyakov Action amounts to

SP [X, γ] =
σ

2

∫
Σ
dξ0dξ1

√
−det γγab∂aX

µ∂bXµ, (C.1)

and the associated equations of motion can be obtained by varying the action with respect
to the metric and to the field Xµ.

With respect to the field, we obtain

δXSP [X, γ] = σ

∫
Σ
dξ0dξ1

√
−det γγab∂aX

µ∂bδXµ (C.2)

= −σ
∫
Σ
dξ0dξ1

√
−det γγab (∂b∂aX

µ) δXµ (C.3)

= −σ
∫
Σ
dξ0dξ1

√
−det γ∂a∂aX

µδXµ, (C.4)

so by imposing δXSP [X, γ] = 0 we get

√
−det γ∂a∂aX

µ = 0, (C.5)

that corresponds to the KG equation coupled with the metric determinant.
Varying with respect to the metric yields

δγSP [X, γ] =
σ

2

∫
Σ
dξ0dξ1δ

(√
−det γγab

)
∂aX

µ∂bXµ, (C.6)

and, recalling that the variation of the determinat obeys to

δ det γ = −det γγabδγ
ab, (C.7)

we got

80



C Equations of motion for Polyakov Lagrangian and its equivalence with NG 81

δγSP [X, γ] =
σ

2

∫
Σ
dξ0dξ1δ

(√
−det γγab

)
∂aX

µ∂bXµ (C.8)

=
σ

2

∫
Σ
dξ0dξ1

((
δ
√
−det γ

)
γab +

√
−det γδγab

)
∂aX

µ∂bXµ (C.9)

=
σ

2

∫
Σ
dξ0dξ1

(
1

2
√
−det γ

det γcdδγ
cdγab +

√
−det γδγab

)
∂aX

µ∂bXµ︸ ︷︷ ︸
≡hab

(C.10)

= −σ
2

∫
Σ
dξ0dξ1

(
−1

2

√
det γγabγ

cdhcd +
√

−det γhab

)
δγab (C.11)

=
σ

2

∫
Σ
dξ0dξ1

√
−det γ

−1

2
γabγ

cdhcd + hab︸ ︷︷ ︸
α Tab

 δγab, (C.12)

so
hab −

1

2
γabγ

cdhcd = 0, (C.13)

which bot allows us to define the energy-momentum tensor and to verify the equivalence
between this action and the Nambu-Goto action. Note that equation C.13 implies

hab =
1

2
γabγ

cdhcd (C.14)

hab√
−deth

=
1

2

γabγ
cdhcd√

−det
(
1
2γh

c
c

) (C.15)

hab√
−deth

=
1

2

γabh
c
c√(

hc
c
2

)2√
−det γ

(C.16)

hab =
√
−deth

γab√
−det γ

, (C.17)

which is the key to understand the connection between Polyakov and Lagrangian actions, since
by direct application of this equality onto the Polyakov action we arrive at

SP [X, γ] =
σ

2

∫
Σ
dξ0dξ1

√
−det γγab

√
−deth

γab√
−det γ

(C.18)

=
σ

2

∫
Σ
dξ0dξ1

√
−deth γabγab︸ ︷︷ ︸

d=2

(C.19)

SP [X, γ] = σ

∫
Σ
dξ0dξ1

√
−deth = SN [X,h]. (C.20)
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D. Backpropagation for a simple network

In this appendix we detail the backpropagation algorithm for a very basic fully connected
neural network (FCNN). The architecture of the FCNN can be found at fig. (D.1). Each node
corresponds to a value x(l)i , where l denotes the layer where the node lies and i the position
within each layer. Our architecture, for example, has four layers, l = 0, . . . , 3(one input, two
hidden and one output). Each node can be obtained by

x
(l+1)
i = σ

∑
j

w
(l)
ij x

(l)
j

 , (D.1)

with wij as the weight that connect the j-th element of the layer l with the i-th element of the
layer l+1(in the pictorial representation, correspond to the lines that connect different nodes).
σ represents the application of a non-linear differentiable function to the linear combination
of x(l)’s. The weights are the degrees of freedom of the network, and will be updated through
the backpropagation procedure.

Figure D.1.: Architecture of the NN employed in the appendix.

If we feed to the network a given value x(0),we will obtain a final value x(L), that can be
used to compute the loss function L(x(L)). With this value, it is possible to update the weights

wij → wij + η
∂L
∂wij

, (D.2)

and the power of the NN resides in the efficient computation of ∂L
∂wij

. Note that the update
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for the weights that connect the last hidden layer with the output layer is

∂L
∂w

(L−1)
1j

=
∂L
∂x(L)

∂x(L)

∂ξ(L)
∂ξ(L)

∂w
(L−1)
1j

, (D.3)

if we identify x
(l)
i = σ

(
ξ
(l)
i

)
⇐⇒ ξ

(l)
i =

∑
j w

(l−1)
ij x

(l−1)
j . If the derivative of the loss

function and the predetermined activation functions are known a priori, then the weight is
easily updated. Similarly, the updates for w(L−2)

ij require the computation of

∂L
∂w

(L−2)
ij

=
∂L
∂x(L)

∂x(L)

∂ξ(L)︸ ︷︷ ︸
≡A

∂ξ(L)

∂x
(L−1)
i︸ ︷︷ ︸

w
(L−1)
i

∂x
(L−1)
i

∂ξ
(L−1)
i

∂ξ
(L−1)
i

∂w
(L−2)
ij

. (D.4)

Once again the derivatives can be computed to update the weight. However, note that A was
already previously obtained to update w(L−1)

1j . In fact, when we update the weights between
layers l− 1 and l, we use terms that were previously computed to update the weights between
the layers l and l + 1. This means that we can start at the output layer and propagate
backwards, updating iteratively the degrees of freedom of the NN according to eq. (D.2).
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E. Normalizing Flows Architecture

In this appendix we detail the architecture employed in the Normalizing Flows for both the
two particle case and the 2D Ising model.

Two particles

For either case, we need to start with a generator that allows us to sample from the equi-
librium distribution, and for this case we are dealing with two non-interacting particles in one
dimension. The probability of a microstate is

p(xA, xB) = exp
(
−(xA − 1)2 − (xB + 1)2

)
so we need to sample each position xi from a standard gaussian distribution, a fairly standard
procedure.

Now we need to design the Normalizing Flow. First, recall that a single affine layer is defined
as

gi(xA, xB) =

x′A = xA

x′B = xB ⊗ esi(xA) + ti(xA)
(E.1)

and we need to specify the structure of the neural network functions s and t. In this simple
case, we build such functions with a standard fully connected neural network (FCNN), as
can be seen in figure E.1. Then, we compose 16 of such layers, alternating the non-active
coordinate with each successive layer.

2D Ising Model

The extension of the Normalizing Flows approach to the Ising model is quite simple. The
only things we need to change are the generator procedure and the shape of the neural network.
The configurations drawn from the periodic Ising equilibrium distributions are obtained with
a Wolff algorithm, and after being sampled pass through the HS map, equation 4.51. The
generic layer, splits the lattice configuration ϕ into two checkerboard-like sub-lattices, ϕ1 and
ϕ2, which take the role of xA and xB in E.1. The neural network functions are convolutional
neural network (CNN), whose architecture can be seen in figure E.2.
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Figure E.1.: FCNN architecture employed in all the layers of the two particles Normalizing
Flow. The first layer has ReLU activation functions and the final layer has Tanh
activation functions. The first layer takes as input the non-active coordinate,
i.e., the coordinate that will not change by application of the layer. The values
for the s and t function can be computed at once, and correspond to the two
outputs of the NN. The expressivity of such functions is controlled by the number
of nodes present in the hidden layer - the more nodes the more expressive the
functions become. The weights associated with each node are updated through
the backpropagation algorithm, and aim to minimize the loss function 4.33.

Figure E.2.: CNN architecture employed in all the layers of the Ising model. The input is the
non-active sublattice. The shape of the sublattice is the same as the one of the
lattice, but half of the values are null. The output layer returns the values for
the s and t function. We utilize a CNN since we have a configuration with local
interactions. A detailed review of this kind of architectures can be found at [40].
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F. Free energy data

In this appendix we list the data we obtained for the various system sizes. Recall that all
the measurements were made for Lx = Ly.

Lx = Ly F (1) δF (1)

24 4.8873 0.0002
28 5.3649 0.0002
32 5.9721 0.0002
40 7.4813 0.0002
48 9.3324 0.0004
56 11.5107 0.0004
64 14.0225 0.0004
72 16.857 0.001
80 20.025 0.001
88 23.532 0.001
96 27.348 0.001
104 31.500 0.002
112 36.009 0.002

(a) Data for Lz = 80.

Lx = Ly F (1) δF (1)

24 5.0657 0.0003
28 5.4347 0.0002
32 5.9932 0.0002
40 7.4846 0.0004
48 9.3326 0.0005
56 11.5102 0.0005
64 14.012 0.001
72 16.834 0.003
80 19.950 0.003
88 23.436 0.004

(b) Data for Lz = 128

Lx = Ly F (1) δF (1)

24 5.1989 0.0003
28 5.4947 0.0003
32 6.0119 0.0003
40 7.4821 0.0004
48 9.3323 0.0005
56 11.5059 0.0006
64 14.009 0.006
72 16.796 0.007
80 19.896 0.007
88 23.343 0.008

(c) Data for Lz = 160

Table F.1.: Data for various Lz’s with square transverse areas.
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Lx = Ly F (1) δF (1)

18 4.6192 0.0002
22 4.7906 0.0003
24 4.9442 0.0001
26 5.1422 0.0004
28 5.3830 0.0005
30 5.6662 0.0006
32 5.9771 0.0001
34 6.31922 0.00087
36 6.683 0.001
40 7.4823 0.0003
48 9.3313 0.0004
56 11.5122 0.0005
64 14.0186 0.0004
72 16.857 0.001
80 20.002 0.001
88 23.511 0.002
96 27.349 0.002
104 31.499 0.002
112 35.963 0.007

(a) Data for Lz = 96.

Lx = Ly F (1) δF (1)

24 4.7973 0.0001
28 5.3316 0.0002
32 5.9575 0.0002
40 7.4633 0.0002
48 9.2934 0.0002
56 11.441 0.0003
64 13.9125 0.0003
72 16.699 0.001
80 19.809 0.001
88 23.245 0.002
96 27.007 0.002
104 31.084 0.002
112 35.496 0.002
120 40.225 0.003
128 45.239 0.002

(b) Data for Lz = 48.

Table F.2.: Data for various Lz’s with square transverse areas.
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