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Abstract

Over the years, the number of earth observation satellites has been increasing leading to

the production of data capable of being used to model detection algorithms. These are of

extremely importance for tracking maritime activity for safety and economical reasons.

In order to contribute to this matter, three segmentation algorithms were built and tested

using the band Red. The first one is Region Growing that consisted in threshold technique

and arithmetic operations. The second one, Edges Growing used edge detection with

threshold, morphological operations techniques and arithmetic operations. The third one,

K-means Clustering uses 6 cluster per image with arithmetic operations.

AIS data was used to build labels for the observations as well as to validate the correct

object detected based on its coordinates.

For each segmentation algorithm, six classifiers were used: Support Vector Classifier, K-

nearest Neighbours, Decision Trees, Bagging, Random Forest and Gradient Boosting. Two

evaluating scores, F1 score and Jaccard index were used to compare these combinations.

The Edges growing was the best segmentation algorithm while Bagging was the best clas-

sifier.

In the future, it would be not only interesting to use other band combinations but also to

experiment the YOLO algorithm capable of detection and classification.

Keywords: Vessel, Detection, Segmentation, Classification, Images, Phi-Sat, Satellites





Resumo

Ao longo dos ano, o número de satélites de observação da terra tem estado a aumen-

tar contribuindo para a produção de dados capazes de serem utilizados para modelar

algorı́tmos de deteção. Este são de extrema importância para acompanhar a atividade

marı́tima por motivos económicos e de segurança.

De modo a contribuir para esta temática, foram criados e testados três algorı́tmos de

segmentação utilizando a banda vermelha. A primeira é Region Growing que consiste na

técnica binarização com operações aritméticas. O segundo, Edges Growing, consiste na

deteção de contornos com binarização, operações morfológicas e operações aritméticas.

O terceiro, K-means Clustering utiliza 6 clusters por imagem e operações aritmticas.

Os dados do AIS são utilizados não sõ para construir classes para as observações mas

também para validar os objected corretamente detetados com base nas suas coordenadas.

Para cada algorı́tmo de segmentação, seis classificadores foram utilizados: Máquinas

de Suporte Vetorial, K-vizinhos mais próximos, Ãrvores de Decisão, Bagging, Florestas

Aleatórias e Gradient Boosting. Foram utilizadas duas métricas de avaliação para com-

parar estas combinações - F1 e o ı́ndice de Jaccard.

O algorı́tmo Edges Growing foi o melhor algorı́tmo de segmentação enquanto que o Bag-

ging foi o melhor classificador.

No futuro, seria não apenas interessante utilizar outras combinações de bandas como

também de experimentar o algorı́tmo de deteção e classificação YOLO.

Palavras-chave: Vessel, Deteção, Segmentação, Classificação, Imagens, Phi-Sat, Satélites
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Chapter 1

Introduction

A topic of significant and growing interest is measuring and tracking marine human ac-

tivity. Governmental and private players make attempts to stay informed about what is

happening in a variety of industries, including fishing, drilling, exploration, or freight

transit as well as carrying passengers or tourism.

The number of EO satellites has increased in a considerable way over the last few years

which have been generating enormous amount of data, the majority of it yet to be anal-

ysed [1].

For security, economic and health reasons, it is important to generate efficient algorithms

capable of becoming part of detecting and tracking devices that will provide information

in real time to the stakeholders.

Having said that, this study intents to build an algorithm capable of detecting and classi-

fying vessels on the sea. This is the result of an internship program done in CEiiA - Centre

of Engineering and Product Development, in the scope of the Master’s in Computational

Statistics and Data Analytics.

1.1 Contextualization

Prior to 1982, there was no aggregated areas of sea that would be equivalent to the Free-

dom of Movement (on land) later to be established by the European Union (EU) in 1992.

This means, each country would only need to worry about their national area of jurisdic-

tion, which could be controlled by people on shore, and investigated by coastal guards or

1



2 DETECTION AND CLASSIFICATION OF OBJECTS IN THE OCEAN

the navy, if necessary [2].

In 1982, the UN Convention on the Law of the Sea (UNCLOS) has built the constitution of

the oceans. The extensive of EEZ increased the average area of 12 nm national jurisdiction

to 200 nm, making it impossible to monitor with naked eye, leading to the investment on

marine and aerial patrols. These high monitoring costs could only be maintained by the

richest countries enabling criminal actors to take advantage of this situation on less con-

trolled areas.This fact triggered numerous countries in seeking for ways of monitor and

survey the vast maritime area, which would a few years later be known as the maritime

surveillance system [2].

The maritime surveillance is done with the combination of multiple sensor systems. Some

of these systems are cooperative and mostly being global, such as AIS, VMS and LRIT,

with the help of satellite or satcom. On the other hand, coastal radars, satellite and

airborne EO systems (optical and SAR systems), as well as ground-based cameras and

vessel-based cameras are part of the Non-cooperative systems [3].

The automatic identification system (AIS) is an automatic tracking system that uses transceivers

on ships and is used by harbour and port authorities [4]. It was build by IMO with the

intent of avoiding vessels collisions (similar to ADS-B for aircraft).

Despite the fact that AIS’s original purpose was to avoid vessel collisions, many other

application have since been developed. Nowadays, it is capable of:

• Collision avoidance

• Fishing fleet monitoring and control

• Maritime security

• Aids to navigation

• Search and rescue

• Accident investigation

• Ocean currents estimates
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• Infrastructure protection

• Fleet and cargo tracking

• Statistics and economics

The AIS may be terrestrial-based (T-AIS) [5] or satellite-based (SAT-AIS) [6], and transmits

information every 2 to 180 seconds, depending on a vessel’s activity [7].

This information is presented in the table 1.1.

MMSI Maritime Mobile Service Identity NAME Vessel’s name

TIME Data timestamp CALLSIGN vessels’s callsign

LONGITUDE Geographical latitude in degrees TYPE Vessels’s type

LATITUDE Geographical longitude in degrees DEVICE Positioning devide type

COG Courser over ground A DImension to bow, in meters

SOG Speed over ground B DImension to stern, in meters

HEADING Heading of the AIS vessel C DImension to port, in meters

PAC Position accuracy D DImension to starboard, in meters

ROT Rate of turn DRAUGTH Draugth multiplied by 10

NAVSTAT Navigational status DEST Vessel’s destination

IMO IMO ship identification number ETA Estimated time of arrival

TABLE 1.1: AIS data.

ESA stands for European Space Agency which, as the name suggests, aims to explore the

space. It is an intergovernmental organisation composed by 22 states and headquartered

in Paris. ESA was a key partner in the collaboration wtih NASA and CSA in the building

of James Webb Space Telescope, the world’s premier infrared space observatory [8].

Copernicus is the EU’s Earth observation programme, implemented by the EC with the

support of ESA [9]. This programme aims to monitor and forecast the state of the en-

vironment on sea, land and in the atmosphere. This is possible through the Copernicus

Sentinel missions (Sentinel 1, 2, 3, 4, 5P, 5, 6) developed by ESA, which carry different

technologies such as RADAR and multi-spectral imaging instruments. The first mission,

Sentinel-1, launched the Sentinel-1A satellite in 3 April of 2014 and the Sentinel-1B on

25 April 2016 (ended in 2022). The latest mission, Sentinel-6, launched the Sentinel-6A

in November 2020. Each mission has its own Sentinel Satellite which may or may not
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have specific technology according to the mission’s objective. For this study, images from

Sentinel-2 satellites were used. These twin satellites provide new images from the same

location every 5 days [10]

The Sentinel-2 satellites come with 12 high-resolution multispectral bands. Table 1.2,

presents these band’s main characteristics.

Spectral Band Centre Wavelength (nm) Band Width (nm) Spatial Resolution (m)

B1 Coastal,aerosol 443 20 60

B2 Blue,(B) 490 65 10

B3 Green,(G) 560 35 10

B4 Red,(R) 665 30 10

B5 Red-edge,1,(Re1) 705 15 20

B6 Red-edge,2,(Re2) 740 15 20

B7 Red-edge,3,(Re3) 783 20 20

B8 Near,infrared,(NIR) 842 115 10

B8a Near,infrared,narrow,(NIRn) 865 20 20

B9 Water,vapor 945 20 60

B10 Shortwave,infrared/Cirrus 1380 30 60

B11 Shortwave,infrared,1,(SWIR1) 1910 90 20

B12 Shortwave,infrared,2,(SWIR2) 2190 180 20

TABLE 1.2: The spectral bands and spatial resolutions of Sentinel-2 MSI sensor. [11]

ESA has been developing and deploying different technologies and programmes one of

which is called Phi-Sat.

ESA’s Phi-sat programmes aim to implement Artifitial Intelligence technologies to nano

and mini satellites [12]. This last programme in execution, ϕ-sat-2 consists in EO Cube-

Sat plataform capable of running AI Applications than can be developed, deployed on

the spacecraft and added/updated also during the satellite flight and operated from the

ground using a simple user interface (NMF- Nanosat MO Framework), supporting on-

board App uploading.

This mission aims to implement on the CubeSat [13][14] several sophisticated AI-based

applications on of which is AVA - Autonomous Vessel Awareness App, which became
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responsibility of CEiiA as a direct subcontractor of ESA.

AVA consists in detecting and classifying vessels in optical imagery, determining which

images or subsets should be downlinked. It will feature autonomous tasking, providing

relevant geographic coordinates and time slots of areas where significant features are de-

tected.

One major issue of maritime domain surveillance is the vast extension of the sea on the

Earth’s surface which makes observation of ship traffic difficult [2]. Normally, one effec-

tive method to obtain information about a ship’s current position in near-real-time is the

use of satellite-based AIS (automatic identification system). However, when performing

illegal activities, the AIS is usually shut down, thus these ships become undetected.

Main oceanic activities requires observation: maritime safeguard is not only essential for

carriage goods but also for the integrity of human lives. Piracy, illegal dumping (e.g.,

tanks cleaning), smuggling and refugee transportation.

Earth observation satellite systems has several advantages to tackle these issues; however,

images are processed long after the data is acquired (normally several hours). Hence, the

antenna acquisition time is expensive.

By processing and analyzing them on-board and transmitting the product data directly as

ship position, heading, and velocity, the delay can be shortened to some minutes.

Figure 1.1 presents the workflow diagram for AVA.

FIGURE 1.1: Workflow, Source: CEiiA.
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1.2 Objectives

The main goal of the work presented is to implement different algorithms capable of iden-

tifying and classifying vessels on images provided by Sentinel-2, through image segmen-

tation and classification techniques, using Sentinel-2 and AIS data combined.

1.3 Document Structure

This work is divided in seven main Chapters. Chapter 1 contains the introduction and

contextualization of the work. Chapter 2 presents the mathematical and statistical con-

cepts. Chapter 3 consists of a literature review about vessel detection techniques. The

exploratory data analysis of AIS data is in Chapter 4. Chapter 5 holds the methodology

followed by this work’s results on Chapter 6. Last but not least, some conclusions along

with future work suggestions appear on Chapter 7.



Chapter 2

Mathematical Fundamentals

2.1 Image Processing

Digital Image processing is a subfield of computer vision and consists in the manipula-

tion of images using computers. These manipulations can be image enhancement, image

restoration, image analysis and image compression [15].

Digital Image corresponds to a grid of squares called pixels, which possess a value from

0 (black) to 255 (white), each one. A band on a digital image corresponds to a range of

wavelengths measured by a sensor. In the case of human eye, it can only detect 3 wave-

lengths, that combined, create what it is called a ”colour image” [16].

Image segmentation is one field of study that concentrates into representing the images

in different regions [17]. These regions may be differentiated due to their shape, pixel in-

tensity, colour among others. The following section mentions some common techniques

used in image detection and segmentation. The next two sections, talk about some classi-

fication algorithms and evaluating metrics, respectively.

2.2 Detection Methods

2.2.1 Threshold-based methods

Otsu Algorithm

The algorithm proposed by Otsu consists in minimizing the weighted variance between

7
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foreground and background pixels. This is done through iteration over the possible

threshold values, leading to the formation of binary images [18].

Multi-level threshold segmentation

On the other hand, it may be interesting to apply different threshold values to at the same

time, creating several distinct regions. It a very used method for objects with coloured or

complex backgrounds [19].

2.2.2 Salient-based methods

Fourier Transform

Fourier transform decomposes the image into its sine and cosine components. The input

is an image (spatial domain) and the output is the image’s frequency domain. For a NxN

size image, the two dimensional Discrete Fourier Transform are given by:

F(k, l) =
N−1

∑
i=0

N−1

∑
j=0

f (i, j)e−ı2π
(

ki
N + l j

N

)

where f(i,j) is the image in the spatial domain and the exponential term is the basis

function corresponding to each point F(k,l) in the Fourier space. The value of each point

F(k,l) is obtained by multiplying the spatial image with the corresponding base function

and summing the result [20].

2.2.3 Methods based on shape and texture

Mathematical morphology

Morphological operations (MO) use basically logical operations even though these are

part of the set theory [21]. Four common MO are, dilation, erosion, opening and closing.

This is done through a structure element. The dilatation amplifies the size of the 0-valued

region, in the binary image. The shrink decreases the size of the 0-values regions. The

third, opening, consists in applying firstly the erosion operation and then the dilatation,

while for closing, it is first applied the dilatation operation and finally the erosion opera-

tion.
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Hir-Or-Miss Transformations

This transformation is based on the erosion MO. With two different structural elements,

each will be applied on solely on the image, resulting in two images. Then, the final object

will be considered as an intersection of these two images [21].

2.2.4 Statistical methods

Principal Component Analysis

PCA is a statistical method that aims to find the main features on a dataset focusing on

the total variance. Having a dataset in the shape of a matrix, its rows are the observations

and its columns the features. The groups of pixels arranged are in floating point values if

the OI is RGB and discrete values if it is a gray scaled image.

First the data is normalized (subtracting the image by its mean value) then, the covariance

Matrix is calculated using (X), where m is the number of element.

Cov(X, Y) =
Fnormalized (x, y) ∗ Fnormalized (x, y)T

m − 1

, where m is the number of element.

The eigenvector represent the principal features of the image are typical ordered accord-

ing to the corresponding eigenvalues, in decreasing way until a quantity that corresponds

to a summation of 90% is met. In other words, these chosen features are capable of ex-

plaining 90% of the variance of the image. This is useful since it makes data lighter, con-

suming less computational time [22].

Bayesian Decision Theory

The Bayesian Decision Theory is a statistical approach regarding classification problems

which has the characteristic of minimizing a loss function classifier:

λ(αi|ωj) ∗ P(ωj|x)

where, λ is the loss of incorrectly assigning a class, α a set of possible actions, ω a set of

categories and, and P stands for probability of the predicted class to be ω for a given entry
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feature x. A detailed explanation can be found in [23].

2.2.5 Computer vision methods

Haar-like detector

The rotated haar-like feature detector is based on haar-like detector proposed by Du et all

for face detection in 2006 [24]. It consists in selecting a spot on a given image and then

proceeds to consider different rectangular regions with the same centroid. After that, the

summation of the pixel intensities per region is performed and the difference between

these sums is calculated. This will enable a categorization of the subsections generated.

2.3 Classification Algorithms

2.3.1 Decision Trees

The decision trees algorithm was introduced by Hausla and Swain in 1975 [25]. It func-

tions as a regressor or a classifier through multi-stage decision logic. This tree consists

in a root node, followed by non-terminal nodes and finally and terminal nodes. The size

of the tree will have impact in the algorithm accuracy scoring and computational effort.

Some advantages are its easy interpretation and little data preparation.

2.3.2 Support Vector Machines

Support vector machines is the final evolution of the supervised algorithm proposed by

Vapnik et all in 1992 [26]. The goal of the SVM method is to construct a ”hyperplane”

which do separate the data instances into k classes. The basic technique finds the smallest

”hypersphere” in the kernel space that contains all training instances, and then deter-

mines on which side of ”hypersphere” a test instance lies. The maximum margin hyper

plane is the one that gives the greatest separation between the classes. The instances that

are nearest to the maximum margin hyper plane are called support vectors. This classifier

finds the maximum margin hyper plane, and it classifies all training instances correctly

by separating them into correct classes through a hyper plane. One of the strengths of
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SVMs is enabling different function to be chosen for kernel.

2.3.3 K-nearest neighbours

The concept of the instance-based nearest-neighbour algorithm was first introduced by

Aha, Kibler, and Albert (1991) [27]. The KNN algorithm is an example of an instance

based learner. In other word, all of the learning models are “instance based,” as well, be-

cause they start with a set of instances as the initial training information. Sometimes more

than one nearest neighbour is used, and the majority class of the closest k neighbours is

assigned to the new instance. In this algorithm, distance between two data instances can

be calculated in different ways. For continuous attributes, the euclidean distance is very

popular while for categorical values matching coefficient is usually used.

2.3.4 Bagging

Bagging ensemble classifier is fast and ti can efficiently handle unbalanced and large

databases with thousands of features. It has attracted much attentions due to its simple

implementation and improving accuracy. This technique was proposed by Leo Breiman

in 1994 [28]. Basically multiple version of the dataset are generated through boostrap

method, and each replicate becomes a learning dataset. At last, it is taken the agregate

value of the evaluating metric used. The bagging classifier can have different predictor as

its estimator being the decision trees one of the most popular ones.

2.3.5 Random Forests

The random forests algorithm is the bagging algorithm with the base estimator as deci-

sion trees, this way calculating multiple decision trees results and taking into account the

best one.

2.3.6 Gradient Boosting

Gradient boosting is a machine learning technique used in regression and classification

tasks, among others. When the response variable is continuous, the Gradient Boosting
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Regressor is used, whereas when it is a classification problem, the Gradient Boosting Clas-

sifier is chosen. In Gradient Boosting, each predictor tries to improve on its predecessor

by reducing the errors. The goal is to minimize the loss function by adding weak learners

using gradient descent. Oposite to the bagging algorithm which gives equal weigths to

each model generated, the gradient boosting gives a weigth based on the model’s scoring

[29].

2.4 Evaluation Metrics

For this study only overlap based metrics were considered which are based on the values

extracted from the confusion matrix - True Positive (TP), False Positive (FP), True Nega-

tive (TN) and False Negative (FN). The positive values are respect to the Ground Truth

(GT), while the negative values concern the Complementary of the Ground Truth (CGT).

True or False it means if the pixel is correctly placed within its space (GT or CGT).

THe metrics used are presented next.

Recall or True Positive Rate - relative frequency of positive voxels in GT.

Recall =
TP

TP + FN

Precision or Positive Predicted Value - relative frequency of voxels classified as positive.

Precision =
TP

TP + FP

Jaccard Index is the proportion of TP on the group of False or Positive Values.

Jaccard =
TP

TP + FP + FN

F1 Score is the harmonic mean of the precision and recall for a given class.
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f1 = 2 ∗ Precision ∗ Recall
Precision + Recall





Chapter 3

Vessel Detection

This chapters presents a literature review regarding vessel detection, consisting in the

brief explanation of the methodology used by the authors and their results.

In 1978, McDonnel and Lewis worked with bands 4, 5, 6 and 7 of Landsat-2 MSS to detect

some physical attributes of ships above 100 meters in length, using a linear threshold tech-

nique, considered the the highest pixel value of band 7 as the vessels’s centers together

with among other similar transformations regarding the others bands. They were capable

of identifying the ships, and depending on the solar elevation angle and the sea state, to

be capable of distinguish both the ship and the ship’s wake [30].

In 1993, Burgess used the Green and NIR bands from SPOT-5 and Red and NIR bands

from Landsat TM to build an automatic ship detector. The author start to masking out

the land for each image, generating binary images - 0’s for land and 1’s for sea, using two

different operations regarding the data source, followed by a low pass filter (41x41) to

increase the mask’s homogeneity and a threshold to regain binary images. Then, a high

pass filter (41x41) is applied to both masked images in order to smooth the background

due to current flows and sediments. To finally combine the two images, it was used image

1 where it is not non-zero and accept image 2 elsewhere. Once the preprocessing is done,

there are 4 stages for object analysis, in order to properly select the ships. First, refinement

by area, where objects above 150 square pixels are not considered. Secondly, refinement

by shape analysis with the help of moment analysis. Thirdly, refinement by maximum

intensity and lastly by spectral signature to separate small pieces of land with ships. The

15
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author concluded that is was possible do detect the ships with some level of accuracy [31].

In 2003, Pegler et. al., used images provided by the satellite IKONOS to develop a marine

recreation surveillance system to identify vessels. The author used an algorithms built

by Subramanina and Gata [1998], directly on the images without knowing the Ground

Truth placement/identification of the vessels, with the intent to understand if it possible

identify the vessels on a spatio-spectral template, as the first step of their research. From

11 identified patches, 9 were targeted incorrectly and another 11 were false targets [32].

In 2008, Corbane et. al., built a three-step algorithm for object detection on SPOT-5 optical

images of 5 m resolution. First, segmentation (predetection of ship patterns), considering

potential ships as bright pixels and the contrast, the sea, as noir-like background, using

morphological opening operation together with region growing to connect possible single

pixel or very small regions, that alone, are not vessels. Second, using feature extraction,

such as large length to width ratio, regular and compact shape, amongst others, to identify

the objects that can most likely be a vessels. Third, using neural-network, it was possible

to identify which objects were ships. From 28 extracted features, only 8 were considered

for the NN. The detection rate was around 60% and 5700% was the corresponding false

alarm rate. Reducing the false alarm rate would also reduce the detection rate [33].

In 2009, Wu et. al. used SWIR-1 and 2 from Landsat-5 TM to build a ship detection algo-

rithm for turbid waters. Only one Landsat TM image was used, and only the bands with

30 meter resolution (1-5, 7). Some transformations and projections were applied in order

to correct and clean the image. Through visits to Poyang Lake, the authors had a percep-

tion where the ships used to stay. When applying a PCA, the first 3 components revealed

180 similar shape objects which matched the size and linear arrangements of the vessels

previously observed, which of these 81 were randomly chosen for further analysis. With

the reflectance contrast, the authors choose the brightest pixel (highest contrast ratio) to

represent the ship object. Finally, ANOVA, normalization and ANCOVA statistical anal-

ysis were applyed to the six TM bands in study. While water turbidity was noticeable in

the first four bands, the vessels were better identified in bands 5 and 7. Measuring the

significance of the relation between the reflectance of ships and that of their adjacent wa-

ter, at α < 0.001, the first 3 bands presented coefficient of determination (R2) around 0.90,
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while the other three bands below 0.60. This way, the author concluded that the ships did

not occupied a whole pixel, being the objects mixtures of ships and surrounding waters

[34].

In 2011, Huang et. al., have built a ship detection algorithm based on the images from

SPOT-5. The authors have divided their method into 3 main groups - Detection of sta-

tistical textures, Candidate extraction and Ship verification. In the first one, it is used a

texture descriptor to extract features based on local multiple patterns (derived from LMP

operator [35]) to build histograms, considering large values of bins as the quantitized tex-

ture features of sea and small values for ship candidates. The descriptor has been quantified

into 100 parts and the histograms were normalized. As for the ship candidates extraction,

a confidence map with values from the LMP operator was built, and if the pixel confi-

dence value was above 0.9985, then it would be consider a ship candidate, otherwise, sea,

building a binary image. Finally, in order to remove the False Negatives, it was consid-

ered ship shape properties such as length width ratio (above 1.35) and ship area (75 m2).

Their method has scored 0.586 of Precision and 0.953 of Recall [36].

In 2012, Fukun et. al., built a detection algorithm based on images also provided by

SPOT-5. Attention of Candidate Regions (ACR) is the first stage, to identify the patches

with more potential to be ships. This was done using Yu’s pulsed cosine transform (PCT)

method due to its good performance and fast computational speed. The drawback of

Yu’s is that it cannot discriminate the ships from other selected salient objects. The Lo-

cal Context Facilitation (LCF) is the second step. Here, the authors use a neighborhood

similarity-based method together with threshold method, to analyse the ships surround-

ing area, which it has taken as an assumption of having similar texture and intensity. The

final stage is called Appearance Identification (AI) which results in the application of SVM

radial basis function kernel to the 128 features calculated with the usage of the SIFT de-

scriptor on the patches. The authors, in order to compared results, apply 4 combinations

of the algorithm (ACR, ACR+AI, ACR+LCF, their model), for two diferent testing sets

(an ”easy” one and a ”difficult” one), for 2 scoring metrics (Recall and Precision). Their

model, had the lowest scores for both measures, regardless of the testing set. The Recall

was always higher on the easy testing set, whilst the Precision was always higher in the

difficult testing set. [37]
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In 2013, satellite images of WorldView-1 and WorldView-2 were used by Máttyus to gen-

erate a ship detector (base on a face detector built by Viola and Jones in 2004). This method

consists four stages of classification. Watermask with a binary mask. The sliding window

will take into account 16 considered directions by the author, which enable the separa-

tions of potential ships with land areas on sea. The third stage is the detection grouping

which will group vessels with the same position, size and heading, the group with most

members reach the final stage. This last stage consists in applying contours for a better

measurements extraction, based on the Otsu’s method. It was concluded that this method

can detect vessels with quality if the watermask is accurate [38].

in 2014, Panagiotis and George, developed an detection algorithm working with images

from ASTER VNIR, using the band Green, Red and NIR. Firstly, destriping and reflectance

value estimation. Then, separate the sea from its targets using quad tree decomposition.

Third, bounding box on the patches to extract ship region, shape and reflectance as well as

other ship measures. Lastly, integrate other relative geographical information to predict.

Due to 15 meter pixel, the shape of the ships was not well identified. The band Red pro-

vided the highest reflectance for the smallest objects. On othe other hand, the maximum

size object presented the highest reflectance in band NIR [39].

Also 2014, Yang et. al. used images from Google Earth and Spot-5 to build a ship de-

tection algorithm. The first step consists in the removal of no-candidate regions based

on histogram value frequencies and threshold values based on training data. Then ship

candidate selection with intensity and texture analysis, based on a self create function.

Thirdly, false alarm elimination using the objects shape characteristics such as compact-

ness and length-width ratio. The author made a comparative analysis between quiet sea,

texture sea and clutter sea which presented high to low scoring values for precision and

recall, respectively. Without step 3, the algorithm ends up detecting lots of false negative

objects [40].

in 2015, Tang et. al. used deep neural networks together with extreme learning machine

(ELM) to create a ship detection algorithm with images from SPOT-5. It starts with image

enchancement for ship extraction and background suppression. Then Sea-land segmenta-

tion using otsu’s method together with gaussian model, median filter and morphological
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dilations and erosion operator. As for the ship location criteria uses object’s are, major-

minor-axis ratio and compactness to distinguish ships for other objects. In the final stage,

deep neural networks are used for object feature extraction on low and high frequencies

which serve as an input for the extreme learning machine algorithm fro classification and

decision making. For comparison purposes support vector machine algorithm was also

used (replacing deep neural networks step). ELM has shown to be crucial for faster fea-

ture extraction and higher learning efficiency, presenting the lowest error or missing ratio,

and the best accuracy score [40].





Chapter 4

Exploratory Data Analysis

4.1 Data Wrangling

This chapter focuses on analysing the data provided by the Automatic Information Sys-

tem (AIS), extracted from CEiiA’s API Ingestor. The main goal is to understand the vessel

features and how they can be used to classify the vessels.

The AIS data contains 22 features (presented in 1.1). The graphical representation in figure

4.1 contains 2 barplots for the qualitative variables (navstat and type and a figure (4.2)

containing pairplots with histograms for the quantitative variables.

FIGURE 4.1: Barplot for AIS qualilative variables navstat and type

21



22 DETECTION AND CLASSIFICATION OF OBJECTS IN THE OCEAN

FIGURE 4.2: Pairplot for AIS quantitative variables

Length and Width

The data does not come with a length or width variable, but these can be easily obtained

through the variables A, B, C, D. The length is equal to the sum of A and B and the width

is equal to the sum of C and D. The product of these two new variables generated a third

variable - the raw area. Moreover, the length of the vessel cannot exceed 500 meters nor

the width can exceed 100 meters. Also, the length is always higher than the width. Taking

into account these criteria, two scatter plots of the data before and after these restrictions

are imposed, are presented in Figure 4.3.
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(A) Before - without restrictions (B) After - with restrictions

FIGURE 4.3: Scatter plot

Type

The type of vessel is the target feature. However, this feature comes in various ”subtypes”,

which makes the data a lot less grouped. That being said, it was necessary to group all

subtypes into their respective main type. The new variable generated is called real type.

From now on, the variable type will be referred to as the subtypes of the variable real type.

The figure 4.4 contains a barplot for vessels per real type.

FIGURE 4.4: Barplot - Vessels per real type
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(A) Length (B) Width (C) Raw Area

FIGURE 4.5: Boxplots for main features on real type

Among the real type, the data is very unbalanced, with more than two thirds correspond-

ing to only two types - 3 and 7. The length has a better data division than the width, while

the raw area it is not capable of distinguishing the data so well.

The subtypes

The table 4.1 contains the real type, number of vessels and number of subtypes per each

type.

Type Def No of vessels No of subtypes

All - 298439 215

0 Undefined 7333 0

1 Reserved for future 711 87

2 WIG - wings-in-ground 2448 50

3 Vessel - different variables 142856 11

4 HSC - high-speed-craft 1510 11

5 USCG - vessels in US waters 18970 11

6 Passengers ships 9363 11

7 Cargo ships 87802 11

8 Tanker(s) 18067 11

9 Other types of ships 9379 11

TABLE 4.1: Number of vessels and subtypes per type feature

More than half of the total of subtypes (137) are concentrated in little more than 1% (3159)

of the total number of vessels. Almost half of the total number of vessels (142856) is con-

centrated in a single type
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FIGURE 4.6: Barplot of subtypes per real type

Observing Figure 4.6, it is possible to notice how unbalanced the data is withing each

real type, being the majority of data located at a maximum of three subtypes. Also, sev-

eral of these subtypes are classified as undefined within its class.

It was considered important to visually understand, by the help of a scatter plot, how

these subtypes would position themselves in a two dimensional space, through the com-

bination of pairs of the main features, i.e. Length VS Width, Length VS Raw Area and

Width VS Raw Area.

These scatterplots are presente in Figures 4.7, 4.8, 4.9, 4.10 and 4.11.

FIGURE 4.7: Scatterplot subtypes per real type - 0.
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FIGURE 4.8: Scatterplot subtypes per real type - 1.
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FIGURE 4.9: Scatterplot subtypes per real type - 2.
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FIGURE 4.10: Scatterplot subtypes per real type - 3, 4, 5.
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FIGURE 4.11: Scatterplot subtypes per real type - 6, 7, 8, 9.
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The subtypes do not seem to group themselves among the three pairs of dimensions, for

any of the real types.

Since the data is very unbalanced within each variable real type, a visual analysis for the

main subtypes was done (referred as chosen subtypes) through the help of a barplot (Figure

4.12) and boxplots (Figure 4.13) for the pair of vessels measure.

These chosen subtypes were selected through their high relative frequency within each

real type.

FIGURE 4.12: Barplot - Vessels per chosen subtype.

(A) Length (B) Width (C) Raw Area

FIGURE 4.13: Boxplots for chosen subtypes.

Similarly to the real type classes, the length enables a much better differentiation of the

data than the width, and the raw area is almost incapable of that.

4.2 Cluster Creation

The purpose of choosing the main subtypes was to generate a set of clusters than could be

compared with the sets of clusters directly from real type classes. These, were generated

based on the real type and chosen types boxplots (Figures 4.5 and 4.13). The real type

gave birth to three sets (169, 7, 8, 2345), (169, 78, 2345) and (1679, 8, 2345) while the chosen
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types gave birth to two (30,36,37,40,52 — 60,69,99 — 70,90 — 80) and (30,36,47,40,52 —

60,69,90,99 — 70 — 80). Scatterplots (Figures 4.14 and 4.16) and Boxplots (Figures 4.15

and 4.17) for these sets of clusters are presented in the following pages.

Since class 7 contains a large percentage of vessels, the cluster this class is associate to will

have a different behabiour on the scatterplots (Figure 4.14. Among the real type classes,

the set (1679, 8, 2345) presents a better differentiation than the other two sets (Figure 4.15).
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FIGURE 4.14: Sactterplot: cluster of real types.
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FIGURE 4.15: Boxplot: cluster of real types.
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Once again, the class 7 will affect how visually the clusters will be displayed on the plot

(Figure 4.16. As for the boxplots on Figure 4.17, these seem very similar, but less capable

of differentiate the date when compared to the three later mentioned.

FIGURE 4.16: Scatterplot: cluster of chosen subtytpes.
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FIGURE 4.17: Boxplot: cluster of chosen subtypes.

4.3 Cluster Validation

Now that there are five sets of cluster, one must be chosen to become the response vari-

able for classification purposes. That being said, a monte carlo simulation [41] with linear

discriminant analysis (LDA) [42] was used to understand how the observations would be

correctly put into their respective clusters. The accuracy scoring was chosen as the evalu-

ating metric.

Three sets of simulations were done. Two of them performed in balanced data through

undersampling, one of which uses LDA with one component and the other LDA with
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two components. As for the last set, which is highly unbalanced data, some simulations

among the lower sample size would only capture observation from two or even one clus-

ter in extreme cases. For this reason, only LDA with one component was used.

For the two unbalanced simulation, sample sized from 10 to 10.000 observation in steps

of 100 were used, resulting in 100 iterations. For the unbalanced data, it were used sam-

ple sizes from 10 to 100.000 in steps of 1000. The Figure 4.18 contains each of the three

simulation described, where the x-axis corresponds to the number of iteration and y-axis

to the accuracy scoring. Table 4.2 presents the scoring values on the last iteration for each

simulation.

FIGURE 4.18: Simulation: Balanced LDA 1 — Balanced LDA 2 — Unbalanced LDA 1

Set of clusters Balanced - LDA 1 Balanced - LDA 2 Unbalanced - LDA 1
8 — 7 — 169 — 2345 0.537088 0.568432 0.786739
87 — 169 — 2345 0.616883 0.656177 0.848298
8 — 1679 — 2345 0.696978 0.676823 0.819665
80 — 70,90 — 60,69,99 — 30,36,37,40,52 0.547328 0.53996 0.824159
80 — 70— 60,69,90,99 — 30,36,37,40,52 0.557942 0.590035 0.810928

TABLE 4.2: Simulation - Results.

Regarding the unbalanced data, the values are very close throughout the simulation and

most sets keep the same positioning. As for the balanced data, the second and third set

stand out reaching the 60% accuracy mark. Since the data is typically balanced and scaled,

for classification purposes, the third set formed by three clusters (8), (1679) and (2345) per-

formed better, thus being the chosen one.



Chapter 5

Methodology

The CEiiA’s API ingestor contains, at present (Set. 2022), around 18.000 images. These im-

ages are a result of a pre-processing method that consisted in the cropping on a sentinel

image, based on the coordinates of a vessel provide by the AIS. This results in 1000x1000

pixel images, with each pixel corresponding to 10x10 meters. Also, at the point, the im-

ages only contain 3 bands R, G e B).

It is important to mention that several programs were created to make it possible to work

with the data. One to extract the data from the CEiiA’s API ingestor. A second one to

allocate the images that came in JP2000 format to a single directory. A third to convert a

set of JP2000 images from a given directory to JPEG. A fourth to cut the images based on

its center with a given length and directory. A fifth to generate a CSV file based on a set

of images in a given directory with selected features. It was also developed a program

that can misalign the bands of each image from a given directory. The later was one of

the ESA’s requests to apply on the training images in order to build a model with a better

prediction, based on the misalignment error that may occur on the satellite. However, this

has not been applied in this work due to computational issues.

5.1 Algorithms

The current section describes the steps and assumptions that lead to the creation of the

segmentation algorithms.
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5.1.1 Image Analysis

As previously mentioned, the original images have a size of 1000 pixels in height and

width, with a pixel measurement of 10x10 meters. This makes it very difficult to iden-

tify vessels because this relative area on the images is very small (only a few pixels). The

images were cropped based on its center to 512 pixels in height and width, making the

vessels relative area higher, enabling a potentially better detection and segmentation.

In order to build the segmentation algorithms, a sample of 12 very different images were

chosen, as shown in Figure 5.1. This way, it extends the potential of the model making it

more general.

FIGURE 5.1: The 12 Selected Original Images.

Then, single band and multiple band displays were done in order to help finding the best

band combination in which the model will be based on. By visual analysis, the single

band RED was selected.

Each column meaning:

• oi - original image

• oi gray - original image grayscaled (average)

• r - RED band

• g - GREEN band

• b - BLUE band

• rg gray - RED and GREEN band combination grayscaled
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• rb gray - RED and BLUE band combination grayscaled

• gb gray - GREEN and BLUE band combination grayscaled

For a much better visualization, the 12 images were divided into sets of 4 and displayed

per page, on landscape mode, in Figures 5.2, 5.3 and 5.4 . It is also important to mention

that due to unknown reasons, some random images are displayed with a colour filter,

instead of appearing as gray-scaled images.
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FIGURE 5.2: Centered 512x512 px images - 1 to 4
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FIGURE 5.3: Centered 512x512 px images - 5 to 8
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FIGURE 5.4: Centered 512x512 px images - 9 to 12
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5.1.2 Region Growing

Region growing consists in marking, manually or automatically, a certain number of seeds

on the image, and based on a similarity criteria, the adjacent pixels join the pixel-seed, un-

til no more pixels fulfil the criteria, resulting on a object segmented image.

However, it is not feasible to manually select the seeds for big sample sizes, in other

words, it takes a lot of time to check, register and compute these seeds on the correct po-

sition of the target object if the sample size is big. With the usage of six different threshold

values - 80, 100, 120, 140 and 160 - five binary images were generated, visually enabling

how each image would react regarding each threshold value, as shown in the two exam-

ples presented in Figure 5.5. The visual representation of the rest of the images can be

seen in the Appendix - A.1.

On one hand, it is noticeable that the binary objects resembled a more accurate shape

(compared to its respectively RGB) with a lowest threshold (BILTV). On the other hand,

on the binary image with the highest threshold value (BIHTV) it is possible to detect the

positing of the vessels, minimizing the number of wrongly detected objects.

In order to attain the best ROI, bounding boxes over all the objects presented in both

binary (BILTV and BIHTV) were generated, and their object features - such as object cen-

troid coordinates, length and width of the object, area of the bounding box amongst others

were extracted to a csv file (one csv file for each binary image).

Then, the objects on BILTV were filtered by the equivalent objects on the BIHTV. This

was done through a similarity criteria using some of the object features, choosing the

object that minimizes the sum of the absolute value of the difference per each feature. In

some cases, small objects distinguished on BIHTV may belong to the same vessel, thus

leading to the same object chosen on BILTV. Due to this particular situation, the removal

of duplicated objects was implemented on the algorithm.
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(A) Example 1

(B) Example 2

FIGURE 5.5: Region Growing seed images for 2 images (RGB, left), obtained by global
thresholding with different threshold values (80, 100, 120, 140, 160) binary images from

left to right

(A) Lowest Threshold as

Seed

(B) Highest Threshold as

Seed

FIGURE 5.6: Region Growing - Bounding Box - Example 1
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(A) Lowest Threshold as

Seed

(B) Highest Threshold as

Seed

FIGURE 5.7: Region Growing - Bounding Box - Example 2

5.1.3 Edges Growing

This Edges Growing algorithm utilizes edge detection together with a linear thresholding

and the morphological operation closing in order to segment the objects.

Once the edge detection is applied, instead of using absolute threshold values in order to

generate the binary images, it was used 4 relative values - 3
8 , 4

8 , 5
8 and 6

8 based on the range

of values (maximum pixel value - minimum pixel value) of each image. Just like with the

region growing, values close to the extreme values were not taken into consideration.

After generating four binary images for each original image, they are intersected in a

unique image (equivalent to BIHTV in region growing), and those objects are considered

the vessels. From this point forward, the procedure is analogous to the one described on

5.1.2.

The figure 5.8 presents 4 binary images for 2 example images. The same images have their

BIHTV and BILTV equivalents presented on Figures 5.9 and 5.10, respectively.
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(A) Example 1

(B) Example 2

FIGURE 5.8: Edges Growing seed images for 2 images (RGB, left), obtained by global
thresholding with different threshold values ( 3

8 , 4
8 , 5

8 and 6
8 ) binary images from left to

right

(A) Lowest Threshold (B) Intersection Binary

FIGURE 5.9: Edges Growing - Bounding Box - Example 1
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(A) Lowest Threshold (B) Intersection Binary

FIGURE 5.10: Edges Growing - Bounding Box - Example 2

5.1.4 Kmeans Clustering

The last algorithm used was kmeans clustering. The number of K was 6.

Through a visual analysis of these images, it seemed that the clusters whose proportion,

based on the quantity of image pixels (total of 262.144 = 512²), was less than 0.016%, were

placed right on top of the vessels position, in the majority of the cases.

For each image, two binary images were formed: one based on the intersection of indi-

vidual cluster whose proportion was inferior to 0.016%, and the other based on the union

of the same clusters.

The binary image from intersection is the region’s BILTV equivalent whilst the binary im-

age from union is the region’s BIHTV equivalent.

That being said, the further procedures are analogous to the ones on 5.1.2.

The figure 5.11 presents 6 binary images for 2 example images. The same images have

their BIHTV and BILTV equivalents presented on Figures 5.12 and 5.13, respectively.
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(A) Example 1

(B) Example 2

FIGURE 5.11: Kmeans Clustering for 2 images (RGB, left), with k=6, gener binary imating
6ages from left to right

(A) Union Binary (B) Intersection Binary

FIGURE 5.12: Kmeans Clustering - Bounding Box - Example 1

(A) Union Binary (B) Intersection Binary

FIGURE 5.13: Kmeans Clustering - Bounding Box - Example 2
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5.1.5 Sample Results

By visually comparing the objects detected on BILTV (and its equivalent for Edges Grow-

ing and Kmeans Clustering) with the original images, it was possible to find not only the

ground truth values, in other words, the real number of vessels per image but also the TP,

FP, TN and FN values as well. These values had enable the calculation of four overlap

evaluation metrics - Recall, Precision, F1 Score and Jaccard index.

Tables 5.1, 5.2 and 5.3 present all values and metrics described included the overall metric

value, for each of the three segmentation algorithms. The Edge Growing algorithm has

the best scores for all the metrics, with 90% precision. This suggests that it is the best

algorithm for segmentation amongst the 3 in analysis.

Ground Truth TP FP TN FN Recall (TPR) Precision (PPV) F1 score Jaccard
1 1 0 0 0 1 1 1 1
2 2 0 0 0 1 1 1 1
4 3 0 0 1 0.75 1 0.8571 0.75
1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 1 0.5 0.6667 0.5
2 0 0 0 2 0 0 0 0
5 0 0 0 5 0 0 0 0
2 1 8 0 1 0.5 0.1111 0.1818 0.1
2 2 0 0 0 1 1 1 1
5 1 0 0 4 0.2 1 0.3333 0.2

Overall score 0.6208 0.6343 0.5866 0.5458

TABLE 5.1: Region - Sample Evaluation Metrics
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Ground Truth TP FP TN FN Recall (TPR) Precision (PPV) F1 score Jaccard
1 1 0 0 0 1 1 1 1
2 2 0 0 0 1 1 1 1
4 1 0 0 3 0.25 1 0.4 0.25
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
2 2 1 0 0 1 0.6667 0.8 0.6667
5 1 0 0 4 0.2 1 0.3333 0.2
2 1 1 0 0 1 0.5 0.6667 0.5
2 2 0 0 0 1 1 1 1
5 1 0 0 4 0.2 1 0.3333 0.2

Overall score 0.804 0.9306 0.7944 0.7347

TABLE 5.2: Edges - Sample Evaluation Metrics

Ground Truth TP FP TN FN Recall (TPR) Precision (PPV) F1 score Jaccard
1 1 0 0 0 1 1 1 1
2 2 1 0 0 1 0.6667 0.8 0.6667
4 4 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 1 0.5 0.6667 0.5
2 1 1 0 1 0.5 0.5 0.5 0.3333
5 0 0 0 5 0 0 0 0
2 0 0 0 2 0 0 0 0
2 2 0 0 0 1 1 1 1
5 1 0 0 4 0.2 1 0.3333 0.2

Overall score 0.7250 0.7222 0.6917 0.6417

TABLE 5.3: Kmeans - Sample Evaluation Metrics

5.2 Multi-vessel Detection

In this section it is explains how to access the ground truth values for the potential seg-

mented vessels from the algorithms previously described.

First step

Each photo contains one metadata file with information about the image and information

about the vessel associated with that same image. That same vessel may be registered

on another photo. Together with the geographical referencing information gathered from

each photo, it is possible to highlight the following relevant features:
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• p ts - photo timestamp

• p min la - photo min latitude

• p max la - photo max latitude

• p min lo - photo min longitude

• p max lo - photo max longitude

• v ts - vessel timestamp

• v la - vessel latitude

• v lo - vessel longitude

The first step of this algorithm is to iterate the vessels information with the image infor-

mation. If the three following criteria are fulfilled, then that vessel’s metadata will also be

associated to that respective image. Otherwise, it will not be considered.

The criteria used is:

• p min la < v la < p max la

• p min lo < v lo < p max lo

• |p ts − v ts| < 1 minute

Figure 5.14 presents two examples of groups of vessels located in different images, with 2

images overlap in both cases.

(A) Example 1 (B) Example 2

FIGURE 5.14: Overlap images for the same group of vessels
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Second step

Now it is important to highlight other relevant information for the this next step where

information from segmented objects and vessel’s information are combined. This crucial

information is:

• v x - vessel’s x coordinate

• v y - vessel’s y coordinate

• so x - segmented object’s x coordinate

• so y - segmented object’s y coordinate

The second step of this algorithm is to iterate every object from the segmentation algo-

rithm against the vessels information. If the following criterion is fulfilled, that vessel’s

information is associated to that of the segmented object, otherwise, it is not.

The criteria is:

• v x − 15 pixels < so x < v x + 15 pixels

• v y − 15 pixels < so y < v y + 15 pixels
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Results

The region, edges and K-Means algorithms were capable of extracting 1068, 1057 and

937 different observations, respectively. The first stage of the multi-vessel algorithm gen-

erated 2918 different observations, which is more than 200% of the initial data (1273).

Matching the two previous sets of data, like the 2nd stage indicates, made it possible

to find the ground truth real type values for the objects, enabling the attribution of the

respective class. Table 6.1 presents the data for each algorithm.

2345 8 1679 Total
Region 8 38 166 212
Edges 8 43 160 211
KMeans 13 37 112 162

TABLE 6.1: classes per segmentation algorithm

The first row indicates the clusters and the following rows indicate the absolute value of

objects classified as being part of those clusters regarding the segmentation algorithm.

The data is very unbalanced so, before applying the classification algorithms, new data

was also generated through oversampling and undersampling, giving a total of three dif-

ferent dataset per segmentation algorithm. Then, the data was scalled and used 5-fold

cross-validation [] which provides a better estimate. The cross-validation method was

part of the hiper-parameter tunning, where multiple combinations of the classifiers pa-

rameters are done in order to choose the combination which performs best, i.e. that has

the highest scoring metrics within the classifier. Tables - 6.2, 6.3 and 6.4 - present the f1

and jaccard scoring metrics for every classifier used, for the unbalanced, oversampling
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and undersampling datasets.

Region Growing

Unbalanced data shows to have better results, compared to the both type of balanced

data, and oversampling data as always better results than undersampling data this might

be due to the possibility of the test set containing only two or even one class. Support

vector machines had the best performance for each dataset and overall. KNN had the

lowest result of around 9% for precision and 4% for jaccard.

Scoring f1 score

Model SVC KNN DCT BAGG RFOR GRAD

Unbalanced 0.8372 0.8140 0.8140 0.8140 0.8134 0.7907

Oversampling 0.8140 0.6047 0.6977 0.8140 0.5814 0.6744

Undersampling 0.6512 0.0930 0.5349 0.6512 0.3721 0.5581

Overall 0.7674 0.5039 0.6822 0.7597 0.5891 0.6744

Scoring jaccard index

Model SVC KNN DCT BAGG RFOR GRAD

Unbalanced 0.7200 0.6863 0.6863 0.6863 0.6863 0.6538

Oversampling 0.6863 0.4333 0.5357 0.6863 0.4098 0.5088

Undersampling 0.4828 0.0487 0.3651 0.4828 0.2286 0.3870

Overall 0.6297 0.3895 0.5290 0.6184 0.4416 0.5166

TABLE 6.2: f1 and jaccard metrics for region growing

Edges Growing

For the edges algorithm, the unbalanced data obtained between scoring results as well,

followed by oversampling and then undersampling. In this case Bagging has the best

overall scoring for f1 and Gradient Descending for jaccard. The lowest scoring values are

both obtained by Random Forest on oversampling with 0.53 for f1 and 0.36 for jaccard.
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Scoring f1 score

Model SVC KNN DCT BAGG RFOR GRAD

Unbalanced 0.7907 0.7907 0.7442 0.8372 0.8140 0.8372

Oversampling 0.7209 0.7907 0.6744 0.7442 0.5349 0.8140

Undersampling 0.6279 0.6279 0.5814 0.6947 0.6928 0.6047

Overall 0.7132 0.7364 0.6667 0.7587 0.6406 0.7519

Scoring jaccard index

Model SVC KNN DCT BAGG RFOR GRAD

Unbalanced 0.6538 0.6538 0.5926 0.7200 0.6863 0.7200

Oversampling 0.5636 0.6538 0.5088 0.5926 0.3651 0.6863

Undersampling 0.4576 0.4576 0.4098 0.4333 0.4576 0.4333

Overall 0.5584 0.5884 0.5037 0.5820 0.5030 0.6132

TABLE 6.3: f1 and jaccard metrics for edges growing

K-Means Clustering

At last there is the K-Means algorithm. This one performed the worst. Its majority of

jaccard scores are below 30%. The unbalanced data gathers the best scoring metrics. F1’s

lowest scoring goes to KNN on undersampling which happens to be also the lowest for

jaccard. Random Forest had the best scores for each f1 and jaccard, regardless of the

dataset.
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Scoring f1 score

Model SVC KNN DCT BAGG RFOR GRAD

Unbalanced 0.5758 0.6667 0.6667 0.5152 0.6061 0.5758

Oversampling 0.3333 0.3333 0.3333 0.4545 0.4848 0.3939

Undersampling 0.4545 0.1515 0.3636 0.4545 0.5758 0.5152

Overall 0.4545 0.3838 0.4545 0.4747 0.5556 0.4949

Scoring jaccard index

Model SVC KNN DCT BAGG RFOR GRAD

Unbalanced 0.4043 0.5000 0.5000 0.3469 0.4348 0.404255

Oversampling 0.2000 0.2000 0.2000 0.2941 0.3200 0.245283

Undersampling 0.2941 0.0820 0.2222 0.2941 0.4043 0.3469

Overall 0.2995 0.2607 0.3074 0.3117 0.3863 0.3321

TABLE 6.4: f1 and jaccard metric for kmeans

Bagging and SVC performed better on Region and Edges while Random Forest performed

better on K-Means. Taking into account the sample scoring results on these segmentation

algorithms, it seems to exist a correlation between segmentation scoring and classifica-

tion scoring. In other words, the better the detection and segmentation of the vessels, the

more accurate the vessel’s shape attributes will be extracted resulting in a better data for

modeling and predicting.
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Conclusions

The work developed indicates that it is possible to detect vessels on images as well as to

classify the vessel in a number of abroad types.

The metadata from each image, which contained data regarding the image and the asso-

ciated vessel, enabled the cross between both data, resulting in multiple vessel’s informa-

tion for each image, which consisted in an increase over Z-fold in observations.

There had been used a combinations of three segmentation algorithms with six classifica-

tion algorithms. The Edges growing algorithm presented a more potential than the other

two, and in fact, the classifier had a better scoring for it, rather than for the others.

Region and Edges had an overall scoring among unbalanced data above 80% while K-

Means only reached 60%, for f1. For any dataset, kmeans performed worse than the other

two, having an average scoring of the overall dataset per classifier of 0.47 for f1 and 0.32

for jaccard. These values are very low compared to the 0.66 and 0.52 on Region and 0.72

and 0.56 on Edges. KNN and Decision Trees were among the worst classifiers while Bag-

ging was among the best.

For future work, it should be considered the manual identification, at least the number of

vessel for each image or even also their coordinates, building the ground truth data for

the 1273 images, in order to fully evaluate the segmentation algorithms.

It would be interest to study the results of these classifiers and these segmentation algo-

rithms in another bands or combinations of RGB bands. Once the NIR bands are available,

it will be possible to better segment and detect the vessels using, for instance, the NDVI

index.

Finally, the usage of on of the most recent detection algorithms such as YOL O might be
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of extremely relevance, due to its not only detection but also classification capabilities.



Appendix A

Appendix A - Algorithms

A.1 Region Growing
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FIGURE A.1: Region Growing - binary images for chosen 12
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A.2 Edges Growing

FIGURE A.2: Edges Growing - Binary images for chosen 12
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A.3 Kmeans Clustering

FIGURE A.3: Kmeans Clustering - Binary images for chosen 12
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