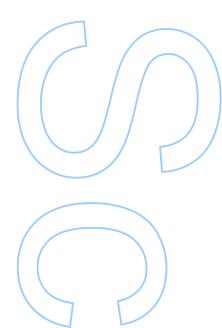

Sound Characterization of Urban Environments by Computational Methods

Ana Filipa Rodrigues Nogueira

Mestrado em Engenharia Física Departamento de Física e Astronomia 2022

Orientador Professor Doutor João Manuel R. S. Tavares, Faculdade de Engenharia

Coorientador Mestre Hugo Oliveira, Faculdade de Engenharia


✓ FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO

Todas as correções determinadas pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

H

Porto, ____/____

UNIVERSIDADE DO PORTO

MASTERS THESIS

Sound Characterization of Urban Environments by Computational Methods

Author:

Ana Filipa R. NOGUEIRA

Supervisor: João Manuel R. S. TAVARES

> Co-supervisor: Hugo OLIVEIRA

A thesis submitted in fulfilment of the requirements for the degree of MSc. Engineering Physics

at the

Faculdade de Ciências da Universidade do Porto Departamento de Física e Astronomia

September 30, 2022

" Never say never because limits, like fears, are often just an illusion. "

Michael Jordan

Sworn Statement

I, Ana Filipa Rodrigues Nogueira, enrolled in the Master Degree of Engineering Physics at the Faculty of Sciences of the University of Porto hereby declare, in accordance with the provisions of paragraph a) of Article 14 of the Code of Ethical Conduct of the University of Porto, that the content of this dissertation reflects perspectives, research work and my own interpretations at the time of its submission.

By submitting this dissertation, I also declare that it contains the results of my own research work and contributions that have not been previously submitted to this or any other institution.

I further declare that all references to other authors fully comply with the rules of attribution and are referenced in the text by citation and identified in the bibliographic references section. This dissertation does not include any content whose reproduction is protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of academic offense.

Ana Filipa Rodrigues Nogueira September 30, 2022.

Acknowledgements

I would like to thank Ph.D. João Manuel R. S. Tavares, for the opportunity to work on this project, for the recommendations and orientation during the development of this dissertation.

To M.Sc. Hugo Oliveira, for all the shared knowledge, support, availability and help throughout the project.

To Ph.D. José Machado, for the careful review of the dissertation and tips to improve.

Also, to my parents and brother for all the support to successfully complete this stage.

To all my friends who accompanied me throughout the years with whom I shared very good times.

Finally, this Thesis is related to the project Safe Cities - "Inovação para Construir Cidades Seguras", with reference POCI-01-0247-FEDER-041435, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement; which I am also thankful.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto Departamento de Física e Astronomia

MSc. Engineering Physics

Sound Characterization of Urban Environments by Computational Methods

by Ana Filipa R. NOGUEIRA

Smart Cities are emerging to improve their citizens' lives, in which Environmental Sound Classification (ESC) has a crucial role due to the different areas in which it can be applied, such as security, surveillance, manufacturing, autonomous vehicles, and noise mitigation, among others. Since Urban Sounds, for the significant part, are composed of audio events occurring daily, which presents unstructured characteristics containing a lot of noise and some sounds unrelated to the sound event making ESC a very challenging problem; thus, several computational algorithms have been proposed to solve this problem.

In this thesis, various model architectures were implemented to overcome this problem, being its efficiency assessed, and several datasets were used: the UrbanSound8K, the ESC-50 and the ESC-10 dataset.

Therefore, firstly, a baseline model that consists of several dense and dropout layers using handcrafted features as input and different dropout rates were employed, and the influence of increasing the models' depth was tested. Several experiments showed that a combination of features provides more information to the model due to higher representation capabilities; the dropout rate should be used to avoid models' overfitting but not a value too high to allow the model to have enough information to learn, lastly, the increase in depth did not show significant benefits being detrimental in most cases.

Some end-to-end models were explored in the following step: DenseNet, ResNet and Inception. For these models, it was considered image domain pre-training that gave a considerable performance boost allowing better results and faster convergences; furthermore, it was tested the influence of data augmentation, which only shown to be beneficial in some situations.

Finally, a Transformer model was used, trained with image domain pre-training once again, which gave a huge performance boost compared to the no pre-trained version. Nonetheless, pre-training from the image and audio domain was also used, showing even better results, and highlighting the benefits of having an in-task domain pre-training. Moreover, using data augmentation techniques such as SpecAugment, noise and mixup were employed; however, the best results were obtained when only SpecAugment was considered.

All models were tested with different optimization functions making it possible to conclude that SGD, Adagrad and Adadelta present a poor performance regardless of the model or dataset, showing their inability to produce robust models. On the other hand, for the best optimizer, there is no consensus between the models being the best for the baseline models, the Nadam optimizer, for the end-to-end models, the Adam optimizer, and for the Transformer, AdamW was the best for the ESC-50, Adam for the ESC-10 dataset and for the UrbanSound8K, Adamax was considered the best, however, for this last dataset, AdamW gave a pretty similar performance. Therefore, it can be concluded that the choice of the best optimization function depends on the model and the chosen dataset.

Therefore, out of all these models, the best performance was obtained for the Transformer model with an accuracy score of 89.8% for UrbanSound8K, 95.8% for ESC-50 and 99% for ESC-10.

Keywords - Convolutional Neural Networks, Transformers, Data augmentation, Feature extraction, Optimization function, Classification.

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto Departamento de Física e Astronomia

Mestrado em Engenharia Física

Caracterização Sonora de Ambientes Urbanos por Métodos Computacionais

por Ana Filipa R. NOGUEIRA

Com o intuito de melhorar a vida dos cidadãos estão a emergir cidades inteligentes nas quais a classificação de ambientes sonoros tem um papel crucial devido às diferentes áreas nas quais pode ser aplicada, tal como segurança, vigilância, fabricação, veículos autónomos, mitigação de ruídos, entre outros. Uma vez que os sons urbanos, na sua maioria, são compostos por eventos de áudio que ocorrem diariamente, os quais apresentam características não estruturadas, contendo muito ruído e alguns sons não relacionados com o evento sonoro tornando a classificação de ambientes sonoros um problema bastante desafiador. Assim, para resolver este problema têm sido propostos vários algoritmos computacionais.

Nesta tese, foram implementadas várias arquiteturas de modelos para ultrapassar este problema e para testar a sua eficiência foram usados diversos conjuntos de dados: Urban-Sound8K, ESC-50 e ESC-10.

Inicialmente foi criado um modelo de base que consiste em várias camadas densas e de abandono que utilizam recursos artesanais como entrada. Utilizaram-se diferentes taxas de abandono e testou-se também, a influência do aumento da profundidade dos modelos. As diversas experiências permitiram entender que uma combinação de recursos fornece mais informações ao modelo devido à maior capacidade de representação; a taxa de abandono deve ser usada para evitar o sobreajuste dos modelos, mas, não deve ser muito elevada para permitir que o modelo tenha informações suficientes para aprender; por fim, o aumento da profundidade não mostrou benefícios significativos sendo prejudicial na maioria dos casos.

De seguida, foram explorados alguns modelos ponta-a-ponta, nomeadamente, DenseNet, ResNet e Inception. Para estes modelos, foi considerado um pré-treinamento do domínio de imagem o que originou um grande aumento do desempenho, permitindo melhores resultados e convergências mais rápidas. Testou-se também a influência do aumento de dados e verificou-se que só em algumas situações era benéfico.

Por fim, foi utilizado um modelo Transformer treinado com pré-treinamento do domínio de imagem que, mais uma vez, permitiu obter um grande aumento do desempenho quando comparado com a versão não pré-treinada. Porém, os resultados foram ainda melhores quando foi utilizado o pré-treinamento do domínio de imagem e áudio, destacandose os benefícios de ter pré-treinamento do mesmo domínio da tarefa. Além disso, foram empregues técnicas de aumento de dados como SpecAugment, ruído e mistura, contudo, os melhores resultados foram obtidos quando apenas SpecAugment foi utilizado.

Todos os modelos foram testados com diferentes funções de otimização permitindo concluir que SGD, Adagrad e Adadelta apresentam um mau desempenho independente do modelo ou conjunto de dados, mostrando a sua incapacidade de produzir modelos robustos. Por outro lado, para o melhor otimizador não há consenso entre os modelos. Para os modelos de base o melhor é o otimizador Nadam; para os modelos ponta-a-ponta, o otimizador Adam; já para o Transformer, o AdamW foi o melhor para o conjunto de dados ESC-50, o Adam para o ESC-10 e para o UrbanSound8K o Adamax, porém, neste último conjunto de dados o AdamW teve um desempenho bastante semelhante. Por conseguinte, pode-se concluir que a escolha da melhor função de otimização depende do modelo e do conjunto de dados escolhido.

Assim, de todos estes modelos o melhor desempenho foi obtido para o modelo Transformer com um resultado de precisão de 89,8% para UrbanSound8K, 95,8% para ESC-50 e 99% para ESC-10.

Palavras-chave - Redes Neuronais Convolucionais, Transformers, Aumento de dados, Extração de caraterísticas, Função de optimização, Classificação.

Contents

Sv	vorn	Statem	ent	v
A	cknow	wledge	ments	vii
A	bstrad	ct		ix
Re	esum	0		xi
C	onten	ts		xiii
				A 111
Li	st of I	Figures	3	xvii
Li	st of '	Tables		xxi
1	Intr	oductio	on	1
	1.1	Urban	ι Sound	. 1
	1.2	Metho	odology to be employed	. 3
	1.3		tives	
	1.4	Outlin	ne of the Thesis	. 4
2	Lite	rature I	Review	7
	2.1	Metho	odology of Systematic Review	. 7
		2.1.1	Search Method	. 7
	2.2	Sound	l Classification Methods	. 8
		2.2.1	Neural Networks	. 9
		2.2.2	Transformers	. 13
	2.3	Sound	l Segmentation Methods	. 22
		2.3.1	Attention Mechanisms	. 25
		2.3.2	Autoencoders	. 28
		2.3.3	New Feature Extraction Techniques	. 31
	2.4	Conclu	usion	
3	Base	eline M	lodels	37
	3.1	Datase	ets	. 37
		3.1.1	UrbanSound8K	. 37
		3.1.2	ESC-50	. 38
		3.1.3	ESC-10	

Sound Characterization of Urban Environments by Computational Methods

	3.2	Feature	e Extraction Techniques	39
	3.3	Model'	's Architecture and Functions	44
		3.3.1	Loss Function	46
		3.3.2	Optimization Function	46
		3.3.3	Metrics	49
	3.4	Baselin	e Experiments - Using UrbanSound8K Dataset	50
			1 0	51
			0 1	52
				54
			Models with a Combination of Features as Input - Baseline Model	01
				58
				59
			1 2	60
			Models with a Combination of Features as Input - Extra Layer and	00
				62
			1	65
	3.5			67
	0.0		0	67
			Ŭ I	70
			Models with a Combination of Features as Input - Baseline Model	70
				73
				77
			1 1	78
	3.6			81
4				85
	4.1			85
	4.2			87
	4.3	-		89
	4.4			91
		4.4.1	USC Dataset - Pre-trained vs. No Pre-trained	91
		4.4.2	USC Dataset - Data Augmentation	93
		4.4.3	ESC Datasets - Pre-trained vs. No Pre-trained	95
		4.4.4	ESC Datasets - Data Augmentation	98
	4.5	Conclu	ision	04
5	Tran	nsformer	rs 1	05
	5.1	Transfo	ormer	05
	5.2	Experii	ments and Results	08
		5.2.1	ESC Datasets - No Pre-trained vs. Pre-trained	08
		5.2.2	ESC Datasets - Batch Size	09
		0.2.2		
		5.2.3	ESC Datasets - Data Augmentation Techniques	11
		5.2.3	ESC Datasets - Data Augmentation Techniques	11 12
		5.2.3	ESC Datasets - Data Augmentation Techniques	11 12 12

xiv

Ove	rall Dis	scussion and Conclusions	119
A Description of Autoencoder Model			
A.1	Autoe	ncoder	123
Com	plete T	Tables of the Baseline Models	125
B. 1	Urban	Sound8K - Single Feature Input	126
	B.1.1	Baseline Model Architecture	126
	B.1.2	Extra Layer	128
	B.1.3	Dropout Rate of 0.2	130
	B.1.4	Dropout Rate of 0.6	131
	B.1.5	Dropout Rate of 0.8 and 0 for Adam and Adamax	133
B.2	Urban	Sound8K - Combination of Features as Input	135
	B.2.1	Baseline Model Architecture	135
	B.2.2	Extra Layer	136
	B.2.3	Dropout Rate of 0.2	137
	B.2.4	Dropout Rate of 0.6	138
	B.2.5	Extra Layer and Dropout Rate	139
B.3	ESC D	atasets - Single Feature Input	140
	B.3.1	Baseline Model Architecture	140
	B.3.2	Extra Layer	143
	B.3.3	Dropout Rate of 0.2	145
	B.3.4	Dropout Rate of 0.6	147
	B.3.5	Dropout Rate of 0 and Adamax	149
B.4	ESC D	atasets - Combination of Features as Input	150
	B.4.1	Baseline Model Architecture	150
	B.4.2	Extra Layer	152
	B.4.3	Dropout Rate of 0.2	154
	B.4.4	Dropout Rate of 0.6	156
	Dese A.1 Com B.1 B.2 B.3	Description A.1 Autoe Complete T B B.1 Urban B.1.1 B B.1.2 B B.1.3 B B.1.4 B B.1.5 B B.2 Urban B.2.1 B B.2 Urban B.2.1 B B.2 B B.2 Urban B.2.1 B B.2 B B.2 B B.2 B B.2 B B.3 B B.3 ESC D B.3.3 B B.3 B A B.3 B B A B.4 ESC D B A B.4.1 B A A B.4.3 B A A	A.1 Autoencoder Complete Tables of the Baseline Models B.1 UrbanSound8K - Single Feature Input B.1.1 Baseline Model Architecture B.1.2 Extra Layer B.1.3 Dropout Rate of 0.2 B.1.4 Dropout Rate of 0.6 B.1.5 Dropout Rate of 0.8 and 0 for Adam and Adamax B.2.1 Baseline Model Architecture B.2.2 Extra Layer B.2.3 Dropout Rate of 0.2 B.2.4 Dropout Rate of 0.6 B.2.5 Extra Layer B.2.4 Dropout Rate of 0.6 B.2.5 Extra Layer and Dropout Rate B.3.1 Baseline Model Architecture B.3.2 Extra Layer and Dropout Rate B.3.3 Dropout Rate of 0.6 B.3.4 Dropout Rate of 0.2 B.3.3 Dropout Rate of 0.2 B.3.4 Dropout Rate of 0.2 B.3.5 Dropout Rate of 0.6 B.3.5 <t< td=""></t<>

Bibliography

List of Figures

2.1	Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISM diagram of the performed literature search process.	A) 8
3.1	Distribution of data per class of UrbanSound8K dataset.	38
3.2	Distribution of data per class of ESC-50 dataset.	39
3.3	Distribution of data per class of ESC-10 dataset.	39
3.4	Baseline model architecture.	45
3.5	Graphs of the evolution of area under the receiver operating characteristic (ROC) curve (AUC) (left) and loss function (right) with the epochs for the	
	six base models.	52
3.6	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models and their corresponding ones with an extra	50
27	layer.	53
3.7	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models and their corresponding ones with a dropout rate of 0.2 and 0.6	55
20	rate of 0.2 and 0.6.	55
3.8	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the two best base models and their corresponding ones with a dropout rate of 0.8 and 0.	57
3.9	Graphs of the evolution of AUC (left) and loss function (right) with the	57
0.7	epochs for the six base models with a group of features as input.	59
3.10	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models and their corresponding ones with an extra	
	layer with a group of features as input	61
3.11	Graphs of the evolution of AUC (left) and loss function (right) with epochs for the four base models and their corresponding ones with a dropout rate	
0.10	of 0.2 and 0.6 with a group of features as input.	63
3.12	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the two base models and their corresponding ones with an extra layer and dropout rate of 0.2 and 0 (zero) for Adamax and 0.6 and 0.8 for	
	Adam with a group of features as input	64
3.13	Confusion matrices for the best model using as input a single feature on the	
	left and the best model using a group of features as input, on the right	66
3.14	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the six base models for ESC-10.	68
3.15	Graphs of the evolution of AUC (left) and loss function (right) with the	
	epochs for the six base models for ESC-50	69
3.16	Graphs of the evolution of AUC (left) and loss function (right) with the	
	epochs for the Adamax optimizer model for ESC-50	70

Sound Characterization of Urban Environments by Computational Methods

3.17	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four best models with a dropout rate of 0.2 for ESC-10	. 72
3.18	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four best models with a dropout rate of 0.2 for ESC-50	. 72
3.19	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the models with Adamax as an optimizer and without dropout	
3.20	rate for ESC-10 and ESC-50	. 73
3.21	ESC-10	. 76
0.21	epochs for the four base models with a combination of features as input for ESC-50.	. 76
3.22	Graphs of the evolution of AUC (left) and loss function (right) with the epochs for model 4 with ESC-10 dataset and model 3 with ESC-50.	. 77
3.23	Graphs of the evolution of AUC (left) and loss function (right) with epochs for the four best base models and their corresponding ones with a dropout rate of 0.2 with a group of features as input for ESC-10.	. 79
3.24	Graphs of the evolution of AUC (left) and loss function (right) with epochs for the four best base models and their corresponding ones with a dropout	
3.25	rate of 0.2 with a group of features as input for ESC-50	
3.26	Confusion matrix for the best model using the ESC-50 dataset	. 81
4.1 4.2	Residual block (adapted from He et al. [12])	. 86
4.3	layers in each of the dense blocks, respectively	
4.4	Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for	
4.5	each model (no PT - no pre-trained)	. 93
	each model (no aug - no augmentation)	
4.6 4.7	Confusion matrix for the UrbanSound8K dataset	. 96
4.0	epochs for the models with the optimizer that allowed the best results for each model for the ESC-50 dataset. (no PT - no pre-trained).	. 98
4.8	Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for each model for the ESC-10 dataset. (no PT - no pre-trained).	. 98
4.9	Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for	. 70
4.10	each model for the ESC-50 dataset (no aug - no augmentation)	. 101
	epochs for the models with the optimizer that allowed the best results for	
	each model for the ESC-10 dataset (no aug - no augmentation)	. 101

xviii

4.12	Confusion matrix for the ESC-10 dataset.	103
5.1 5.2	Transformer architecture (Vaswani et al. [39])	
5.3	Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different pre-train configurations with the optimizer that allowed the best results for each model for the ESC-50 dataset.	110
5.4	Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different pre-train configurations with the optimizer that allowed the best results for each model for the ESC-10	
5.5	dataset	110
5.6	that allowed the best results for each model for the ESC-50 dataset Graphs of the evolution of accuracy (left) and loss function (right) with	111
5.7	epochs for the Transformer with the different batch sizes for the optimizer that allowed the best results for each model for the ESC-10 dataset Graphs of the evolution of accuracy (left) and loss function (right) with	112
5.7	epochs for the Transformer with the different augmentation techniques for the optimizer that allowed the best results for each model for the ESC-50	
5.8	dataset	114
	dataset.	114
5.9	Confusion matrix for ESC-50 dataset	115
5.10	Confusion matrix for ESC-10 dataset	115
5.11	Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer pre-trained with ImageNet and AudioSet for	
	the optimizers that allowed the best results for the UrbanSound8K dataset.	116
5.12	Confusion matrix for UrbanSound8K dataset	117
A.1	Autoencoder architecture.	123

List of Tables

2.1	Summary of the found works on audio classification using Neural Networks.	14
2.2	Summary of the found works on audio classification using Transformers.	21
2.3	Summary of the found works on audio processing with segmentation based	
	on models or/and handcrafted features	26
2.4	Summary of the found works on audio processing with attention mecha-	
	nisms	29
2.5	Summary of the found works on audio processing with autoencoder-like	
	architecture	31
2.6	Summary of the found works on audio processing that introduces new fea-	
	ture extraction techniques.	33
2.7	Results summary of all models considered for the literature review	34
3.1	Summary table of feature combinations	44
3.2	Results of the 6 models for different features	51
3.3	Results of the 4 best models with an extra layer for different features	53
3.4	Results of the 4 best models for different features and dropout of 0.2	54
3.5	Results of the 4 best models for different features and dropout of 0.6	54
3.6	Results of the 2 best models for different features and dropout rate of 0.8	
	and without dropout	56
3.7	Results of the 6 models for different feature combinations	58
3.8	Results of the 4 models with an extra dense and dropout layer for different	
	feature combinations	60
3.9	Results of the 4 models with a dropout rate of 0.2 for different feature com-	
	binations	61
3.10	Results of the 4 models with a dropout rate of 0.6 for different feature com-	
	binations	62
3.11	Results of the 3 models with an extra layer and dropout rate of 0.6 and 0.8	
	for Adam and Nadam optimizer and 0.2 and 0 for the Adamax optimizer	
0.10	with different feature combinations.	64
3.12		
0.10	and with a group of features as input.	66
	Results of the 6 models for different features - ESC-10	67
	Results of the 6 models for different features - ESC-50.	68
	Results of the model with Adamax optimizer for different features - ESC-50.	69 70
	Results of the 4 best models for single features and dropout of 0.2 - ESC-10.	70
	Results of the 4 best models for single features and dropout of 0.2 - ESC-50.	71
	Results for Adamax optimizer's models for single features and dropout of 0.	73
3.19	Results of the 6 models for different feature combinations - ESC-10.	74

Sound Characterization of Urban Environments by Computational Methods

3.21	Results of the 6 models for different feature combinations - ESC-50 Results for model 3 fully trained for different feature combinations - ESC-50. Becaulte of the 4 heat models for dramout of 0.2 and different feature combined.	75 76
	Results of the 4 best models for dropout of 0.2 and different feature combi- nations - ESC-10.	77
	Results of the 4 best models for dropout of 0.2 and different feature combi- nations - ESC-50.	78
3.24	Results for the 5 folds of the top performing model for ESC-10 and ESC-50 dataset.	80
4.1	Results for the average of 10 folds results for ResNet model for the various	00
4.2	optimizers	92
4.3	ous optimizers. Results for the average of 10 folds results for the Inception model for the	92
4.4	various optimizers	92
4.5	tation.Results for the 10 folds for DenseNet model with and without data aug-	94
4.6	mentation	94
4.7	mentation	94
4.8	ResNet model for the various optimizers	96
4.9	DenseNet model for the various optimizers	97
	the Inception model for the various optimizers	97
4.10	with and without data augmentation.	99
	Results for the 5 folds on ESC-50 and ESC-10 datasets for DenseNet model with and without data augmentation.	99
4.12	Results for the 5 folds on ESC-50 and ESC-10 datasets for Inception model with and without data augmentation.	100
5.1	Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for	
5.2	the no pre-trained model for the various optimizers	108
5.3	the pre-trained models for the various optimizers	109
	the pre-trained Transformer with a batch size of 24 and 64 for the various optimizers, respectively.	111
5.4	Results for the average of 5 folds results on the ESC-50 and ESC-10 datasets for the pre-trained models without using any data augmentation technique	
	for the various optimizers.	112
5.5	Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for the pre-trained models with noise addition for the various optimizers.	113
5.6	Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for the pre-trained models with a Mixup of 0.5 for the various optimizers.	113

5.7	Results for the average of 10 folds results on UrbanSound8K dataset for the pre-trained models and with the use of SpecAugment.	116
6.1 6.2	Summary and discussion of several of the proposed models	
	posed models.	122
B.1	Results of the 6 models for different features.	126
B.2	Results of the 4 best models with an extra layer for different features	128
B.3	Results of the 4 best models for different features and dropout of 0.2	130
B.4	Results of the 4 best models for different features and dropout of 0.6	131
B.5	Results of the 2 best models for different features and dropout rate of 0.8	
	and without dropout.	
B.6	Results of the 6 models for different feature combinations	135
B.7	Results of the 4 models with an extra dense and dropout layer for the dif-	4.9.4
D 0	ferent feature combinations.	136
B.8	Results of the 4 models with a dropout rate of 0.2 for different feature com-	107
PO	binations	137
B.9	binations.	138
B 10	Results of the 3 models with an extra layer and dropout rate of 0.6 and 0.8	100
D .10	for Adam and Nadam optimizer and 0.2 and 0 for Adamax optimizer with	
	different feature combinations.	139
B .11	Results of the 6 models for different features - ESC-10	
	Results of the 6 models for different features - ESC-50	
B.13	Results of the model with Adamax optimizer for different features - ESC-50.	142
B.14	Results of the 4 models with extra layer for different features - ESC-10	143
B.15	Results of the 4 models with extra layer for different features - ESC-50	144
B.16	Results of the 4 best models for single features and dropout of 0.2 - ESC-10.	145
B.17	Results of the 4 best models for single features and dropout of 0.2 - ESC-50.	146
B.18	Results of the 4 best models for single features and dropout of 0.6 - ESC-10.	147
	Results of the 4 best models for single features and dropout of 0.6 - ESC-50.	148
	Results of Adamax optimizer's models for single features and dropout of 0.	
	Results of the 6 models for different feature combinations - ESC-10	
	Results of the 6 models for different feature combinations - ESC-50	
	Results for model 3 fully trained with ESC-50 dataset.	152
B.24	Results of the 4 models with extra layer for different feature combinations - ESC-10.	152
B.25	Results of the 4 models with extra layer for different feature combinations - ESC-50.	153
B.26	Results of the 4 best models for dropout of 0.2 and different feature combi-	
	nations - ESC-10.	154
B.27	Results of the 4 best models for dropout of 0.2 and different feature combi-	
	nations - ESC-50.	155
B.28	Results of the 4 best models for dropout of 0.6 and different feature combi-	
_	nations - ESC-10.	156
B.29	Results of the 4 best models for dropout of 0.6 and different feature combi-	
	nations - ESC-50	157

Acronyms

- 1D one-dimensional. 23, 107
- 2D two-dimensional. 17
- 6D six-dimensional. 40

AAML Additive Angular Margin Loss. 9

- ANN Artificial Neural Networks. 22
- APNet Audio Prototype Network. 9, 11, 14
- AST Audio Spectrogram Transformer. xix, 13, 17, 18, 107, 108
- AUC area under the receiver operating characteristic (ROC) curve. xvii, xviii, 37, 49, 52, 53, 55, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 96
- B-GRU Bidirectional Gated Recurrent Unit. 25
- BERT Bidirectional Encoder Representations from Transformers. 13, 15, 16, 21
- BLSTM Bidirectional Long-Short Term Memory. 23, 24, 26
- CENS Chroma Energy Normalized Statistics. 10, 41, 42, 44, 51, 58, 60, 62, 65, 83, 126
- **CNN** Convolutional Neural Networks. 2, 9, 10, 11, 13, 14, 15, 16, 21, 22, 24, 25, 26, 27, 29, 30, 31, 35
- CNN-Transformer Convolutional Neural Network Transformer. 13, 14, 15, 21
- CQT Constant Q-transform. 10, 16, 41, 42, 44, 51, 58, 60, 62, 65, 74, 78, 83, 126
- CRNN Convolutional Recurrent Neural Networks. 25, 27, 29, 35

dB decibel. 20

- DCNN Deep Convolutional Neural Networks. 9, 14, 22, 26, 35, 87
- DeiT Data efficiency image Transformer. 18, 19
- **DenseNet** Dense Convolutional Network. xiv, xviii, xxii, 3, 32, 33, 35, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 104, 119, 122
- DL Deep Learning. 2, 4, 14, 30, 35
- DNN Deep Neural Network. 85, 89
- ESC Environmental Sound Classification. ix, 9, 15, 16, 21, 31, 35, 37
- FN False Negative. 49, 50
- **FP** False Positive. 49, 50
- GFCC Gammatone Frequency Cepstral Coefficient. 16
- GMM Guassian Mixture Model. 22
- HMM Hidden Markov Model. 22, 23, 26
- HPSS Harmonic Percussive Source Separation. 16, 31
- k-NN k-Nearest Neighbor. 22
- LSTM Long-Short Term Memory. 2, 9, 10, 14, 35
- M2M-AST Many-to-Many Audio Spectrogram Transformer. 13, 18, 19
- **MFCC** Mel Frequency Cepstral Coefficients. 9, 10, 11, 14, 16, 24, 41, 44, 51, 53, 55, 57, 58, 59, 60, 62, 65, 67, 71, 74, 78, 82, 83, 125
- ML Machine Learning. 3, 8
- MSE Mean Squared Error. 19
- NCE Noise Contrastive Estimation. 20
- pp percentage points. 65, 92, 96, 99, 100, 104, 109, 110, 112, 113, 118, 120

- **RBF** Radial Basis Function. 24
- **ResNet** Residual Neural Network. xiv, xxii, 3, 27, 32, 33, 35, 85, 86, 87, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 119, 122
- RGB Red-Green-Blue. 32
- RNN Recurrent Neural Networks. 2, 23, 26
- **SGD** Stochastic Gradient Descent. 46, 47, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 67, 68, 70, 71, 74, 75, 78, 81, 82, 91, 92, 96, 97, 120
- SIF Spectrogram Image Features. 32
- SOTA State-of-the-Art. 4, 7, 18, 20, 85, 120
- SSLS Sound Source Localization and Separation. 28, 30
- SSSC Sound Source Separation and Classification. 28, 30
- **STFT** Short-Term Fourier Transformation. 10, 11, 14, 24, 41, 42, 44, 51, 58, 59, 60, 62, 65, 74, 78, 83, 126
- SVM Support Vector Machine. 22, 24

TFCNN Temporal-frequency attention based Convolutional Neural Network. 9, 12, 14

- TP True Positive. 50
- VATT Video-Audio-Text Transformer. 13, 19
- ViT Vision Transformer. 17, 18, 21
- VQ-VAE Vector-quantized variational autoencoders. 16
- YOHO You Only Hear Once. 30, 31

Chapter 1

Introduction

This chapter presents a small overview of the dissertation. Starting with a brief contextualisation of the importance of distinguishing sounds in urban environments and the challenges this task presents, followed by some of the implemented classification algorithms developed to solve this problem. Afterwards, it is described the employed methodology, the research objectives and a summary of this thesis's structure with a short description of each chapter.

1.1 Urban Sound

As a result of the growth of the urban population worldwide (Syed et al. [32]), cities are consolidating their position as one of the central structures in human organisations. This concentration of resources around cities offers new opportunities to be exploited. Smart Cities are emerging as a paradigm to take advantage of these opportunities to improve their citizens' lives. Smart Cities use sensing architecture deployed in the city to provide new and disruptive city-wide services to the citizens and policy-makers. One of the main requirements concerns Urban Sound characterisation, which still poses different problems (Das et al. [3], Mushtaq and Su [22]). It is estimated that major cities must handle thousands of co-occurring events, with rapid, occurring events that require immediate action passing unnoticed by authorities (Das et al. [3], Mushtaq and Su [22]).

Urban Sound characterisation is a problem that has been subjected to studies by the scientific community. It consists of analysing and detecting relevant sound class events that can arise from various occurrences and locations to reason about abnormal occurrences and actions for a given location.

Efforts have been made to develop computational algorithms to automatically classify Urban Sounds acquired at different instants in the same location or different ones, extract sound features and classify a set of particular sounds. However, limitations are still present regarding the combination of multiple classes, abnormal noise conditions and a wide range of events co-occurring (Das et al. [2, 3], Mushtaq and Su [22]).

Earlier sound classification algorithms are traditionally based on handcrafted features (Giannakopoulos et al. [9], Gong et al. [11], Luz et al. [18], Mu et al. [21]). Recently, the proposed algorithms are based on Deep Learning (DL) approaches, with the most successful DL architecture being the Convolutional Neural Networks (CNN) (Luz et al. [18], Mu et al. [21]) and recent Transformers (Akbari et al. [1], Elliott et al. [8], Koutini et al. [16], Park et al. [23], Wyatt et al. [41]). In the CNN, the data is propagated through layers via convolutions and other operations, such as pooling, flattening and dropout, giving the network the ability to learn both local and high-level on the image space (Giannakopoulos et al. [9], Luz et al. [18]). Sound Classification based on CNNs has already been proposed, with most of the current approaches exploring the use of pre-trained CNNs, by redefining the last layers to address the Sound Classification problem (Mushtaq and Su [22], İlker Türker and Aksu [46]), and recently using attention models (Akbari et al. [1], Kong et al. [15]) and novel augmentation techniques (Mushtaq and Su [22], Salamon and Bello [29]).

As to Urban Sound classification, which has as the main objective the extraction of sound events of relevance from urban scenarios, most of the proposed solutions are based on CNNs, with some works being supported by Recurrent Neural Networks (RNN) (Gimeno et al. [10], Kong et al. [15]) particularly for sound events that occur in sequence, but should be understood as only one sound event, e.g. footsteps (Kong et al. [15]), also by exploring Long-Short Term Memory (LSTM) models (Das et al. [2], Gimeno et al. [10]), and recently attention mechanisms (Qiao et al. [25], Ristea et al. [26], Tripathi and Mishra [38], Zhang et al. [43, 44]). However, the optimal architecture for each application has not yet been established, and many opportunities are still possible. Urban Sound understanding has not been addressed properly to operate in real urban scenarios and distributed environments. There is a bright future for DL applied to Urban Sound systems, with its huge potential to complement other forms of sensing such as an image, and enable multimodal sound and image understanding, solutions still not fully explored (Das et al. [3]).

1.2 Methodology to be employed

For the development of this work, first, the representation capabilities of different features and their combinations using a model composed of several dense layers and dropout layers will be explored. Besides, the influence of the dropout rate and the increase of models' depth will be tested.

Afterwards, different end-to-end models will be employed, like Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet) and Inception. These models will be used with no pre-training and pre-training from the image domain to see the variations in terms of performance, and the difference data augmentation can cause.

Ultimately, a Transformer model will be implemented with no pre-training, with pretraining only from the image domain and pre-training from the image and audio domain. Furthermore, the influence of using distinct batch sizes and data augmentation techniques will be studied.

Moreover, for all of the mentioned models, it will be applied several optimization functions to discover which one is the most advantageous.

These procedures will be followed to find the best model for sound classification in urban environments that is robust in different scenarios.

1.3 Objectives

The principal objective of this project is to develop and apply Machine Learning (ML) algorithms to automatically detect and classify Urban Sound events in different urban environments and obtain the reasoning about abnormal sound occurrences, which are vital tasks in modern urban surveillance systems. Specifically, the idea consists of characterising and exploring a wide set of ML models to perform multi-class sound classification from urban scenarios, where the diversity of classes that can be automatically identified ranges from dog bark, traffic, horns and others, while simultaneously being capable of dealing with abnormal sound events such as gun fires, explosions or other unusual sound events. The input data will be sounds from publicly available datasets, allowing the extraction of useful information from the sound events and automatically identifying and classifying relevant sound events.

The underlying purpose is to decrease the response time of the authorities by providing relevant alerts to sound occurrences that require their prompt response while, at the same time, freeing them to mitigate other issues that concern the urban scenario operation.

The Urban Sound understanding underlies multiple variables that are hard to identify in useful time and require constant attention from a vast personnel group. The solutions to be developed will be useful to reduce the person's workload while providing information about city patterns that can be explored to improve the quality and safety of the citizens' life.

With this in mind, the objectives of this thesis rely on the accomplishment of the following steps:

- Deepening the knowledge in the field of sound features and models for Urban Sound Classification and their optimal combination to obtain the best performing model.
- Evaluation of the most promising State-of-the-Art (SOTA) techniques and formulation of model variations to address specific Urban Sound challenges to be applied to real-world scenarios, among auxiliary methods.
- Design and implementation of DL model to overcome some of the identified limitations in the main baselines and derived methods to better understand the limitations and potentialities of the end-to-end models.
- Publish the attained developments, starting with a survey that encompasses the relevant SOTA in the field and a specific application of Transformers in the Urban Sound scenarios, supported by extensive comparison with other SOTA approaches.

1.4 Outline of the Thesis

This thesis is structured as follows:

- Chapter 2 concisely presents a literature review regarding Urban Sound models and applications, focusing on strategies and architecture variations to enable multi-class classification.
- Chapter 3 presents a detailed analysis of baseline models, focusing on feature combinations, optimization and model depth to identify the most prominent set of models.

- Chapter 4 presents a detailed analysis of end-to-end models, focusing on the multisound classification tasks, to identify the ideal set of models and hyperparameters to be employed in real-world scenarios.
- Chapter 5 presents a detailed analysis of the end-to-end model based on the attention mechanism, with a focus on the multi-sound classification tasks, to identify the impact of model architecture, transfer learning approaches from image and sound domains, and data augmentation and corresponding hyperparameters to determine the optimal model.
- Chapter 6 discusses the overall findings in models for Urban Sound classification and points for new lines of research.

Chapter 2

Literature Review

In this chapter, the main methods employed in sound classification and segmentation are assessed by identifying and discussing State-of-the-Art (SOTA) works relevant to the development of this thesis.

2.1 Methodology of Systematic Review

This section addresses the methodology used to search and select the SOTA works under study. The main goal was to sort out the important recent works on Environmental/Urban Sound classification and processing. The following complementary questions were considered:

- Which dataset was used?
- Which architecture was utilized (developed or adapted)?
- What metrics were used for evaluation?

2.1.1 Search Method

A systematic literature search was conducted from June to September 2022 using Scopus, Science Direct, and Semantic Scholar with the following keywords in various combinations: "environmental sound", "urban sound", "classification", "processing", "segmentation", "machine learning", "deep learning" and "transformers". After removing duplicated results, 1215 unique results were produced. Based on an analysis of the title and abstract, 826 studies were excluded for being utterly unrelated to the subject of study. Of the remaining studies, 301 works were excluded by applying the following criteria: including only studies written in English, peer-reviewed studies (research articles, literature reviews, and book chapters), and finally, by carefully reviewing the body of text, only 26 studies were maintained. Figure 2.1 presents a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram of the systematic search process performed.

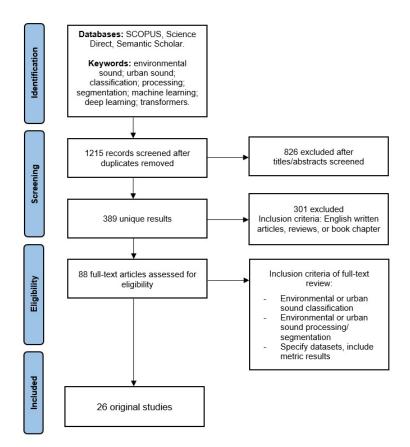


FIGURE 2.1: PRISMA diagram of the performed literature search process.

2.2 Sound Classification Methods

Sound classification methods can be applied in several areas, ranging from surveillance and noise mitigation, or context-aware computing. Therefore, to most accurately attribute a class to a specific sound, several Machine Learning (ML) models were developed capable of extracting nuclear characteristics of audio samples during training and then classifying unseen audios with a certain degree of confidence.

2.2.1 Neural Networks

Researchers have identified some limitations that prevented them from obtaining good results on the sound classification task. Therefore, Salamon and Bello [29] employed a Deep Convolutional Neural Networks (DCNN) in combination with data augmenting techniques (noise injection, shifting time, changing pitch and speed) among the training set to solve the scarcity of labelled data. Das et al. [2] used a Long-Short Term Memory (LSTM) in combination with spectral features obtained from the audio training segments. Das et al. [3] explored the use of a Convolutional Neural Networks (CNN) model with a specific Additive Angular Margin Loss (AAML) and more commonly explored the use of stacked features such as Mel Frequency Cepstral Coefficients (MFCC) and Chromagram in combination with a CNN. Zinemanas et al. [45] used an Audio Prototype Network (AP-Net) model which is composed of two components: an autoencoder and a classifier. Mu et al. [21] introduced a CNN-based model associated with attention mechanisms, called Temporal-frequency attention based Convolutional Neural Network (TFCNN).

The goal of the models is to provide a good generalization performance for unseen data, commonly requiring large quantities of data to effectively train the models. To address the scarcity of labelled data for Environmental Sound Classification (ESC), Salamon and Bello [29] proposed four different augmenting deformations to apply to the training set:

- **Time stretching**: slows down or speeds up the audio sample, but the pitch remains unchanged.
- **Pitch shifting**: the audio sample's pitch is raised or lowered while keeping the duration unchanged.
- Dynamic range compression: compress the dynamic range of the audio using parameterizations from the Dolby E standard* and the Icecast online radio streaming server[†].
- **Background noise addition**: mix background sounds' recordings from different scenes with the audio sample.

Furthermore, a detailed analysis of the different techniques is performed to determine the impact of the various data augmentation in the final accuracy, enabling quantification

^{*}Standards and Practices for Authoring Dolby Digital and Dolby E Bitstreams. Dolby E Bitstreams [5] *https://icecast.org/ (accessed 29 August 2022)

of the contributions of each of the data transformations employed on the training data, suggesting that a class-conditional augmentation during training would be beneficial.

Moreover, it is necessary to understand which features and models can achieve better accuracy. Das et al. [2] presented a comparative study between a CNN and a LSTM model using different combinations of spectral features. First, a pre-processing of the audio signal is performed to reduce the amount of redundant information; the Nyquist-Shannon theorem states that the sample rates should be at least twice the value of the frequency of a continuous waveform. However, to reduce the training time, the downsampling was achieved using the librosa library (McFee et al. [20]) default sampling rate. The next step corresponded to the extraction of spectral features such as MFCC, Melspectrogram, Chroma Short-Term Fourier Transformation (STFT), Chroma Constant Qtransform (CQT), Chroma Energy Normalized Statistics (CENS), Spectral Contrast, and Tonnetz, combined with augmentation of the training data (pitch shift, time stretch and pitch shift with time stretch), with the final models employed in the classification of the sound event and with a detailed evaluation of the respective accuracy, made it possible to reach the following conclusions:

- An increase in the number of epochs lead to an exponential decrease in the validation error for training and testing data. Still, after a certain number of epochs, the improvement in the validation error is negligible.
- LSTM model has better performance, in most cases than the CNN, which becomes more pronounced with the data augmentation since the LSTM memory cell includes constant error backpropagation, which allows dealing better with data noise.
- Focusing on the influence of the different features, the one which gives the best accuracy result is the MFCC. However, it is possible to outperform that by using a stack of different features such as MFCC and Chroma STFT.

Hence, the best accuracy performance was achieved by the LSTM model with the stacked features of MFCC and Chroma STFT.

Besides the concerns with the type of model and the features that are the best performing ones, it is also necessary to consider the loss function, limiting the model's classification accuracy potential. Das et al. [3] evaluated different loss functions like Softmax loss, angular Softmax loss, large margin cosine loss, and additive angular margin loss among the model's final accuracy; as input, the MFCC features used alone, and the stacked features version that combines MFCC and Chromagram are compared in terms of final model accuracy results. Detailed analysis of the results showed a significant improvement in the performance of the models when the features were stacked together. Besides, it was possible to conclude that there is a boost in the accuracy when a modified Softmax loss function is used in comparison with the Softmax loss function, resulting in the best model to be the CNN-based model with additive angular margin loss, with the input data to be the stacked features of MFCC and Chroma STFT.

In addition, it is essential to make the model predictable to identify which input parameter drives the model's decisions and reduce future malfunctions. To achieve this, Zinemanas et al. [45] proposed an APNet composed of two main components: an autoencoder and a classifier. The autoencoder is composed of the encoder, which is constituted by three convolutional layers, where after the first two convolutional layers, a maxpooling layer is applied to capture features at different time-frequency resolutions, and the decoder, formed by three transpose convolutional layers that allow obtaining good audio quality in the reconstruction by minimizing the reconstruction error given by the Euclidean mean square loss function over its inputs and output. Then, the classifier consists of three layers: a prototype layer, a weighted sum layer and a fully connected layer. The prototype layer is responsible for storing a set of prototypes, which are learned in the latent space, that are representatives of each class. In order to learn the prototypes in the latent space, it is necessary to minimize the loss function, which happens when there is at least one similar training example for each learned prototype. Therefore, the training examples will cluster around prototypes in the latent space. The output of this layer is a similarity measure based on the distance from each encoded data instance to each prototype. The similarity measure has two steps: calculating a frequency-dependent similarity and integrating the frequency dimension using a learnable weighted sum. The frequencydependent similarity assigns a different weight to each frequency bin in the latent space, allowing the prototypes to be based on the most relevant frequency bins, calculated using the square Euclidean distance, followed by a Gaussian function. Subsequently, the frequency dimension is integrated to obtain Ŝ while using the following weighted sum:

$$\hat{S}_{ij} = \sum_{f=1}^{F} H_j[f] S_{ij}[f]$$
(2.1)

where H is the trainable kernel and F the length of the vector for each prototype.

This allows the network to learn the best way to weigh each frequency bin for each prototype. The kernel is important in discriminating between overlapping sound classes by focusing on each prototype's most relevant frequency bins. Finally, the fully connected layer learns the decisions to transform the similarity measure into the predictions; to be able to perform classification, the activation function of this layer is a Softmax. Due to the expectation that the network gives more weight to the prototypes related to the class and obtains more interpretable kernel weights, the bias term is not used. It is also important to refer that since the prototypes can be converted from the latent space to the time-frequency input representation by applying the decoder function, it is possible to illustrate the prediction process while using the Melspectograms of data instances and prototypes, even though this is performed in the latent space. Therefore, the network has as input a time-frequency representation of the audio signal, from where the autoencoder transforms into its representation in the latent space of valuable features. Then, the classifier reuses the encoded input to make a prediction based on the similarity between the encoded input and a set of prototype representatives of each class. Accordingly to the previous description is possible to understand that this model provides an insight into the decision-making process, eliminating redundant prototypes and channels and determining the prototypes that are more representative of each class. This enables an understanding of which operation is more beneficial for identifying a specific sound, leading to an immediate improvement in the results. However, even though the model provides a good baseline, the accuracy of a non-interpretative model is much higher, despite not being as transparent about what drives its decisions.

As different mechanisms can identify sounds, Mu et al. [21] proposed a TFCNN that, due to the frequency and temporal attention mechanisms, can reduce the influence of background noise and irrelevant frequency bands. The authors also concluded that transient sounds enhance their classification performance when using temporal attention mechanisms. In contrast, continuous sounds benefit more from a frequency attention mechanism. So, the weight combination of both attention mechanisms gives more attention to the useful information and makes the feature distribution of sound events clearer and distinguishable. The model's architecture consists of two parts, the generation attention and the backbone network. The generation attention part aims that the calculations used to represent learning to be concentrated in specific areas by giving different degrees of attention to the frequency band and time frame parts of the extracted Log-Melspectrogram from the original data. Accordingly, the temporal attention mechanism focuses on the semantically related time frame part and suppresses noise or silent frames. The frequency attention mechanism assigns more weight to the active frequency bands with distinguishable information. Then, the backbone network part of the model consists of a convolutional layer, a pooling layer and a fully connected layer, making it possible to extract time-frequency features from the spectrogram processed by the attention mechanism and predict sound events. The results obtained for this implementation were inferior to some CNN-based models. Nevertheless, the authors find their model still advantageous because it can ensure high accuracy with low network structure complexity and simple feature processing.

Table 2.1 summarizes the works found on audio classification using Neural Networks and their focus, limitations, and performances.

2.2.2 Transformers

Other researchers also based their models on attention mechanisms, particularly in a transduction model called Transformer, due to its several advantages, such as the total computational complexity per layer, the amount of computation that can be parallelized and the path length between long-range dependencies in the network. This section presents some models based on the Transformer's architecture.

Some researchers created models with a hybrid architecture combining Transformers with CNN like Kong et al. [15], which presents a Convolutional Neural Network Transformer (CNN-Transformer) and an automatic threshold optimization method. Others focus on models based only on Transformers, such as the ones developed by Elliott et al. [8] and Wyatt et al. [41] which present Bidirectional Encoder Representations from Transformers (BERT) based models capable of performing sound classification at the edge. In the case of Gong et al. [11], the authors developed an Audio Spectrogram Transformer (AST), which is a convolutional-free, purely attention-based model able to provide one output for a single channel audio input. Park et al. [23] introduced Many-to-Many Audio Spectrogram Transformer (M2M-AST), a model based on AST, but that allows different resolution outputs sequences for multi-channel audio inputs. Akbari et al. [1] presented a Video-Audio-Text Transformer (VATT) and a technique to reduce the training complexity

Authors/Yea	r Model features	Contributions/Benefits	Limitation(s)	Dataset/Metrics
Salamon and Bello (2017) [29]	DCNN combined with data augmen- tation techniques (Time stretching, pitch shifting, dynamic range compression, background noise).	Overcomes the problem of data scarcity; Shows that Deep Learning (DL) models produce better results due to their repre- sentational power and capacity combined with data augmenta- tion.	Some augmentation techniques have a negative impact on some classes' accuracy results.	UrbanSound8K; Accuracy (73% without data augmentation and 79% with data augmenta- tion).
Das et al. (2020) [2]	CNN and LSTM mod- els with a stack of mul- tiple features as input and data augmenta- tion techniques (pitch shift, time stretch and pitch shift along with time stretch).	Increasing the number of epochs leads to a decrease in the valida- tion error until reaching conver- gence; LSTM deals better with data noise; The single feature in- put that allows the best result is MFCC; however, the stack of features of MFCC and Chroma STFT gave the best results out of all input features.	Needs large datasets; Execution time of 37.14 min with a GeForce RTX200 GPU with 6 Giga- bytes of VRAM and boost clock of 1.68 GHz and consumes around 8 Gigabytes of RAM to train both models.	UrbanSound8K; Accuracy (98.81% for LSTM model using data aug- mentation and stack of MFCC and Chroma STFT as input).
Das et al. (2021) [3]	CNN model with a single feature input (MFCC) and with a stack of features using as loss function a modified Softmax loss function.	The stack of MFCC and Chroma STFT as input provided the best results; A modified Softmax loss function shows to be more bene- ficial than the Softmax loss func- tion; Additive angular margin loss is the loss function that gave the best results.	The sophisticated loss functions cre- ate an intelligible space to separate the different classes due to a compact- ness increase within classes.	UrbanSound8K; Accuracy (99.60% of CNN model with an additive angular margin loss function without data augmentation).
Zinemanas et al. (2021) [45]	APNet with a time- frequency representa- tion of the audio sig- nal as input; predic- tion based on the sim- ilarity between the en- coded input and a set of prototypes.	Provides insights into the decision-making process, help- ing the design of better models; Model more explicit, giving the possibility to understand which prototypes are more represen- tative of each class and which operation is more beneficial for identifying a specific sound.	The obtained results aren't competi- tive with a non- interpretative DL model.	Medley-Solos- DB, Google Speech Com- mands, Ur- banSound8K; Accuracy (65.8% Medley-Solos- DB; 89% Google Speech Com- mands; 76.2% for UrbanSound8K).
Mu et al. (2021) [21]	TFCNN model which is a CNN model with temporal and frequency attention mechanisms.	Attention mechanisms reduce the background noise and ir- relevant frequency bands influ- ence; Low network structure complexity and simple feature processing.	Doesn't show a simi- lar improvement for all classes, even neg- atively impacting the classification for some classes.	UrbanSound8K, ESC-50; Accuracy (84.4% for ESC-50; 93.1% for Urban- Sound8K).

TABLE 2.1: Summary of the found works on audio classification using Neural Networks.

with a minor reduction of the end Transformer's performance, DropToken. Also, to reduce the computational and memory complexity, Koutini et al. [16] introduced a method designated as Patchout.

Motivated by the fact that CNN does not capture the long-time dependencies in an audio clip well, audio recordings are usually weakly labelled and need the right thresholds to detect sound events, Kong et al. [15] developed a CNN-Transformer and an automatic threshold optimization method.

Hence, the proposed model has as input a time-frequency representation such as Log-Melspectrogram to which a CNN is applied to extract high-level features used to obtain embedding vectors along the time axis. Then, these embedding vectors serve as input to the encoder part of the Transformer, which allows the modelling of dependencies without regard to their distance in the input sequence and more parallel computing. Finally, a fully connected layer followed by a sigmoid non-linearity is applied to the output of the encoder part of the Transformer to predict the presence probabilities of sound classes over time steps.

Consequently, to solve the scarcity of strongly labelled data, the use of weakly labelled datasets to train the model was proposed, which can be categorized into two types of training: segment-wise training and clip-wise training. The difference between them is that the audio clip is divided into several segments for segment-wise training. Each segment inherits the tags of the audio clip, which can lead to incorrect tags of the segments because they may not contain the sound event. Clip-wise training addresses the previous issue by learning the tags from the hidden layer of a Neural Network. The prediction on the clip can be obtained by aggregating the segment-wise predictions, so it can be trained in an end-to-end way with weakly labelled data and outputs directly from the clip-level prediction, in contrast with segment-wise whose outputs are latent representations learnt by the Neural Network.

Lastly, applying thresholds to the system's output is necessary to obtain the presence or absence and the onset and offset times of sound events. The researchers have proposed an automatic threshold optimization method to select the optimal thresholds. This method consists primarily of optimizing and evaluating the systems based on the metrics that do not depend on the thresholds, such as mean average precision. Then, for a trained system, an optimization of the thresholds was made over a specific metric such as F1score or error rate. This optimization method was tested in several CNN-based models, including the CNN-Transformer, and proved to be effective and beneficial by improving the results of the models.

However, effective CNN-based models require many parameters, which poses difficulties in operating in small edge devices, being unsuitable for real-life situations. To carry out a sound application in real-life situations, Elliott et al. [8] have evaluated various audio features extraction techniques on BERT-based Transformers, then Wyatt et al. [41] have employed a trained BERT-based tiny Transformer on a resource-constrained device and deployed it in noisy environments to perform ESC. Both works are based on BERT architecture introduced by Devlin et al. [4] and consist of a multi-layer bidirectional Transformer encoder based on the original implementation described by Vaswani et al. [39] having as input a given token summed with the position embeddings.

In the research work of Elliott et al. [8], the main contribution is evaluating Transformers' performance using several feature extraction methods and their convenience when applied at the edge. So, besides introducing several feature extraction techniques: amplitude reshaping, curve tokenization, Vector-quantized varitional autoencoders (VQ-VAE), MFCC, Melspectrogram and the combination of MFCC, Gammatone Frequency Cepstral Coefficient (GFCC), CQT and Chromagram, the authors also used eleven different augmentation techniques: amplitude clipping, volume amplification, echo, lowpass filter, pitch, partial erase, speed adjust, noise, Harmonic Percussive Source Separation (HPSS), bitwise downsample and sampling rate downsample, on the raw audio files. By analysing the results obtained, it was possible to understand that, in general, the various data augmentations techniques lead to better accuracy results and that the best feature extraction method was the Melspectrogram, which outperformed all the others. This method is advantageous because it's a reasonable inexpensive computational operation. Regarding MFCC, they performed slightly better than raw amplitudes, and adding additional feature extraction methods improved the accuracy. However, the cost of computing features using all four feature extraction methods becomes prohibitive, leading to a prolonged training and inference time, which would unlikely be helpful at the edge. The authors also found that models trained in traditional frameworks have relatively little support for models that can be run at edge devices. The accuracy results obtained with the Transformer based model to datasets with a small number of examples per class leads to an inferior performance compared to a CNN-based model.

For the work presented by Wyatt et al. [41], the objective was to develop a robust ESC model capable of working in operational resource-constrained settings. The model's architecture is based on the design implemented by Elliott et al. [8], which is divided into three parts:

- an input transformation base which allows choosing the embedding dimension and is composed of a batch normalization layer, followed by a linear layer. This linear layer allows one to scale up or down one of the dimensions of audio features to a chosen dimension. After passing through the linear layer, a positional embedding to the feature vector is added to incorporate positional information.
- a classic Transformer body which is a scaled-down version of BERT.

 a prediction head, after which three layers: a mean, a linear and a Softmax are used. The mean layer does a global average pooling of the output. The other two layers enable the mapping of the features to output classes before training using crossentropy loss.

The methodology implemented to train the model was to use a data loader that takes a random slice of audio from each audio file and then augments it with a random amount of noise between a chosen noise threshold. The amount of noise added varies to make the model robust to high and low signal-to-noise ratios, reducing overfitting. Therefore, the training with noise can generalize to audio without noise, leading to better results when compared to its non-noisy counterpart. Integrating noise resiliency directly into the model prevents having to construct specific environmental/device noise acoustic filters to handle noise. It can be scaled to be used in cases where thousands of low-power devices are deployed in various environments.

Due to the need to have a Transformer model that is capable of having competitive results with datasets that have few examples per class, that can support variable-length inputs and can be applied to different tasks without change of architecture, Gong et al. [11] proposed the AST model. The model is a convolutional-free, purely attention-based model directly applied to an audio spectrogram and can capture long-range global context even in the lowest layers. Its architecture consists only of the encoder part of the standard Transformer's architecture which is simple to implement and reproduce and makes it easier to perform transfer learning. Since images and audio have similar formats, it is possible to apply cross-modality transfer learning. To do that, it was used an off-the-shelf pre-trained Vision Transformer (ViT) since it has an architecture similar to AST. However, some modifications were still needed because ViT input is a 3-channel image. In contrast, the AST's input is a single-channel spectrogram; so to solve this, it is necessary for ViT patch embedding layer's weights for each of its three input channels to be averaged. Then, they serve as the weights of the AST patch embedding layer. The input audio spectrogram is normalized so that the datasets mean and standard deviation are 0 and 0.5, respectively. Another concern to have is with the positional embeddings because it learns to encode the spatial information during the training of the ViT, so to adapt the positional embeddings, it's proposed a cut and bi-linear interpolate method that enables the transference of the two-dimensional (2D) spatial knowledge from a pre-trained ViT to the AST even when the input shapes are different. Finally, the last classification layer of the ViT is abandoned and reinitializes a new one for AST.

These modifications make it possible for AST to use various pre-trained ViT weights for initialization, which leads to better results than a randomly initialized AST, becoming more significant when the training volume is smaller, demonstrating the reduction in the demand for in-domain audio data. The authors also found that Data efficiency image Transformer (DeiT), because it uses data augmentation and a knowledge distillation token, improves data efficiency and generates better results. Then, regarding the impact of positional embedding adaptation, it demonstrated the importance of transferring spatial knowledge. As for the impact of patch split overlap, it was noticeable that enlarging the overlap length increases the model's performance and the computational overhead, which grows quadratically. Lastly, regarding patch shape and size, splitting the audio spectrogram into rectangular patches in temporal order achieves better results than splitting it into square patches, which cannot be in the temporal order. However, researchers have used squares patches because no pre-trained model was available that used the same dataset as ViT and rectangular patches.

Ultimately, the AST model was tested for various datasets achieving SOTA results while maintaining the same architecture regardless of the input audio length.

Although the previous model has achieved good results, it can only give one audio classification output for single channel input. Thus, to handle a multichannel audio input and have different resolution output sequences, Park et al. [23] proposed the M2M-AST, which is capable of doing sound event localization and detection that consists of two tasks: sound event detection and direction of arrival estimation.

The proposed model has a similar architecture to AST. The only differences are the input feature and the classification token configuration. M2M-AST uses as input features multichannel feature images extracted from 4-channel audio recordings, which will be segmented into a patch sequence. Afterwards, patch tokens will be extracted through a linear projection for each patch. Since the goal is to do sound event localization and detection, the model should output a series of outputs. Therefore, patch embedding consists of appending a classification token sequence with a length equal to the length of the output sequence at the beginning of the patch token sequence. Then, a learnable positional embedding was added to the patch embedding to take advantage of the patch tokens' position information. The output of the classification token sequence learns the

audio spectrogram representation by computing self-attention between each patch token. Finally, it used a denser layer with an activation layer for each task.

Regarding transfer learning, M2M-AST transfers the weights learned by DeiT. However, some changes were necessary because of the layer learning patch embeddings, which vary in size. Therefore, since DeiT uses 3-channel input images, for M2M-AST, the weight corresponding to each channel in the linear projection layer uses the average weight of the three channels in DeiT. Another change is in the positional embeddings for the patch tokens, which are transferred as scale values through cut and bi-linear interpolation to map relative positions of the positional embeddings in DeiT to the input feature.

Lastly, some experiments were performed, and the results showed that longer inputs improved both precision and recall, configuring dense patch segmentation with significant overlap helped improve performance, and a smaller resolution resulted in slight performance gains due to median filtering for sound event detection. However, for the other task, the results did not vary significantly with changes in output resolution, finally, for sound event detection, Soft F-loss performed slightly better than binary cross-entropy, and for the direction of arrival estimation, masked Mean Squared Error (MSE) improved performance over binary cross-entropy.

Another concern is reducing the training time while maintaining competitive results. To address that, Akbari et al. [1] introduced VATT and a technique to reduce the training complexity with a minor reduction of the end Transformer's performance, DropToken.

The VATT model is suitable for different downstream tasks in audio, text and video fields. Its architecture is the same as the encoder part of the standard Transformer's architecture, except for the layer of tokenization and linear projection reserved for each modality separately. Therefore, for each modality, the raw input is projected into an embedding vector in the tokenization layer and fed into a Transformer. However, for the video or audio modality, before feeding the token sequence into the Transformer, the DropToken technique has been applied, which randomly samples a portion of the tokens and then only feeds the sampled sequence to the Transformer. This approach reduces the computational costs, consequently reducing the training time and enabling hosts of large models on hardware with limited memory. The model also presents two major settings: the backbone Transformer separated and with specific weights for each modality, and the single backbone Transformer applied to any modality with shared weights. In both, the

spaces, by multi-level projections to be compared with each other by contrastive losses, so the model is optimized based on the back-propagation of the average loss calculated over a batch of samples, the loss objective used to align video-audio pairs was Noise Contrastive Estimation (NCE) and to align video-text pairs, Multiple Instance Learning NCE.

Regarding the results of several experiments with this model, researchers concluded that Transformers are effective for learning semantic video, audio and text representations, even with a model that shares across modalities. Also, multi-modal self-supervised pre-training is promising for reducing the dependency on large-scaled labelled data. Drop-Token proved to significantly reduce the pre-training complexity and to have accuracy and training costs comparable to or better than low-resolution inputs for audio and video modalities with little impact on the model's generalization.

Koutini et al. [16] introduced Patchout, which is a method to reduce the computational and memory complexity for the Transformers' training and, in addition, improves the generalization of the trained Transformers by acting as a regularizer. Therefore, its function is to drop parts of the Transformer's input sequence during training. First, small overlapping patches are extracted from the input spectrograms to form the Transformer input sequence and projected linearly to vectors. Then, the patches are augmented with both frequency and time encoding. Lastly, to reduce the sequence length and regularize the training process, parts of the sequence are randomly dropped during training. However, the whole input sequence is given to the Transformer during inference.

Two types of Patchout methods were introduced the unstructured Patchout, which chooses the patches randomly regardless of their position and the structured Patchout, which randomly picks some frequency bins or time frames and removes a whole column or row of extracted patches.

The researchers also enhance the models' performance and prevent overfitting by making use of ImageNet pre-training and some data augmentation techniques such as two-level mix-up: mix the final spectrograms with random raw waveforms from the dataset; SpecAugment: masks up to a certain number of frequency bins and time frames; rolling: rolls the waveforms randomly over time; random gain: multiplies the audio waveform to change the gain by \pm 7decibel (dB). Thus, with the development of Patchout was possible to effectively train Transformers on audio spectrograms and achieve SOTA results.

Table 2.2 summarizes the found works on audio classification using Transformers and their focus, limitations, and performances.

Authors/Yea	r Model features	Contributions/Benefits	Limitation(s)	Dataset/Metrics
Kong et al. (2020) [15]	CNN-Transformer model and an automatic thresh- old optimization method.	Computations are done in parallel; Use weakly la- belled datasets to train the model and outputs directly clip-level predic- tions; Automatic thresh-	CNN-based models need a lot of parameters.	DCASE2017 Task4; F1-score (AT - 64.6%; SED - 57.3%); Precision (AT - 69.1%); Recall (AT - 60.7%); Error rate (SED - 68%).
		old optimization.		AT - audio tagging; SED - sound event detection.
Elliott et al. (2021) [8]	BERT-based Trans- former for ESC at the edge.	Evaluation of Transform- ers' performance using several feature extraction techniques and data aug- mentation; Enables ESC on edge devices.	Models trained in tra- ditional frameworks have little support to be converted to models that run at the edge; Cannot have competitive results when trained with small datasets.	ESC-50, Office Sounds; Accuracy (67.71% for ESC-50, 95.31% for Office Sounds).
Wyatt et al. (2021) [41]	BERT-based Trans- former for ESC on a resource- constrained device applied in noisy environments.	The model trained with noise augmented data can generalize to audio with- out noise and prevents having to construct cus- tom acoustic filters to be able to apply the model in real-life environments.	Needs large datasets; Only employed on small form factor edge devices.	Office Sounds; Accuracy (non-noisy dataset: 75.4%, noisy dataset: 81.2%), Pre- cision (non-noisy dataset: 76.5%, noisy dataset: 79.7%), Recall (non-noisy dataset: 75.6%, noisy dataset: 80.6%), F1-score (non-noisy dataset: 75%, noisy dataset: 80%).
Gong et al. (2021) [11]	Audio Spectogram Transformer, a purely attention- based audio classi- fication model.	Capture long-range global context even in the lowest layers; Able to handle different input audio lengths without changing the architecture; Few parameters and fast convergence.	Can't use rectangular patches due to the inexistence of a pre- trained model that used the same dataset as ViT; Unable to use only an AudioSet pre-trained model.	AudioSet, ESC-50, Speech Commands V2; mAP (AudioSet: 0.485), Accu- racy (ESC-50: 95.6% and Speech Commands V2: 98.11%).
Park et al. (2021) [23]	Audio Spectro- gram Transformer that can handle various output resolutions.	Shows that Soft F-loss performs better than bi- nary cross-entropy; De- sign to have a variety of output resolutions.	Large model size; Evaluates sound event localization and detection using only one dataset.	TAU-NIGENS Spatial Sound Events 2021; Er- ror rate (0.50), F1-score (65.7%), Recall dominant score (74.7%).
Akbari et al. (2021) [1]	Transformers for multimodal self-supervised learning from raw video, audio and text.	Learns effectively se- mantic video, audio and text representations; DropToken technique reduces the pre-training complexity and training time, making it possible to host large models in limited hardware.	Needs large datasets due to the large size of the network.	Only 2 out of 10 datasets were from the audio do- main: ESC-50, AudioSet. mAP (AudioSet: 39.4%), AUC (AudioSet: 97.1%), d-prime (AudioSet: 2.895), Accuracy (ESC-50: 84.9%).
Koutini et al. (2021) [16]	Audio Transformer with Patchout which optimizes and regularizes Transformers on audio spectro- grams.	Patchout improves the generalization and re- duces the computation and memory complexity.	Increases the training time.	AudioSet, OpenMIC, ESC- 50, DCASE20; mAP (Au- dioSet: 0.496, OpenMIC: 0.843), Accuracy (ESC-50: 96.8%, DCASE20: 76.3%).
mAl' - mean	average precision, AU	C - area under the receiver op	perating characteristic cur	ve.

TABLE 2.2: Summary of the found works on audio classification using Transformers.

2.3 Sound Segmentation Methods

Proper audio segmentation is a pre-processing step in audio analysis. Its purpose is to separate the digital audio signal into segments containing audio information from a specific acoustic type. To be able to perform audio segmentation, some steps should be followed:

- **Feature extraction:** The audio input is cut into overlapping frames to allow extraction of the parametric feature vector from each frame.
- **Initial detection:** It is an optional step in which the objective is to remove the silent parts and discard the parts of the signal that are out of interest.
- Segmentation: The vector sequence of features is segmented into sub-sequences with common acoustic characteristics. Two main approaches can be employed: distance-based and model-based techniques.
- **Post-processing or smoothing:** It is also an optional step in which the goal is to correct the errors related to detecting segments with a duration shorter than the defined threshold.

Several metrics and algorithms can be used for the two mentioned main techniques in the segmentation step. Some examples of distance metrics are the Euclidean distance, the Bayesian Information Criterion, Kullback Leibler KL2 distance, the generalized likelihood ratio, and the Hotelling T2 statistic; in terms of models, they can range from Guassian Mixture Model (GMM), Hidden Markov Model (HMM), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Boosting Technology, k-Nearest Neighbor (k-NN), Decision Trees and Fuzzy Logic (Theodorou et al. [37]).

Next, some examples of segmentation based on models are introduced; Tax et al. [36] presented a DCNN model that is capable of learning the log-scaled Melspectrogram transformation from raw waveform, providing a spectrum visually similar but slightly smoothed, showing that upon initializing the first layers of an end-to-end Neural Network classifier with the learned transformation can give comparable results to a model trained on the highly processed Melspectrograms. Besides, due to the capacity of CNNs to approximate complex mappings, it is possible to force the network to learn such transformation implicitly and limit the need for ad-hoc architectural choices. Therefore, these

findings showed that the performance of Neural Network-based models could be improved by incorporating knowledge from established audio signal processing methods.

Martín-Morató et al. [19] discussed two problems arising from the temporal uncertainty of audio events: the generation of errors at the decision level for models trained with carefully annotated strong labels or perfectly segmented audio events when implemented in a realistic scenario, where weakly segmented audio events and different levels of background noise exists; and systems trained with weakly labelled datasets that face the temporal uncertainty problem directly during training. Therefore, to solve these problems, the authors have proposed a pooling layer aimed at compensating for non-relevant information of audio events by applying a non-linear transformation of the learned convolutional feature maps on the temporal axis, which follows a uniform distance subsampling criterion in the learned feature space that allows propagating better the information of the actual event through the network. The proposed pooling layer shows to be an advantageous method to learn from weakly labelled data without adding more parameters and to increase the robustness under adverse scenarios with severe training and test mismatches.

As for Gimeno et al. [10], the authors introduced a Bidirectional Long-Short Term Memory (BLSTM) network with a new block incorporated onto the Neural Network, named Combination and Pooling block, that aims to reduce the redundant temporal information through a time pooling mechanism while learning an appropriate representation through an one-dimensional (1D) convolution layer. Then, the system consists of a Recurrent Neural Networks (RNN) based classifier and an HMM re-segmentation module with the combination of Mel log filter bank, chroma features, and also, 1st and 2nd derivatives, as input. Adding the chroma features improved the accuracy in the ground truth boundary experiments. On the other hand, the 1st and 2nd derivatives incorporate the audio signal's dynamic information, which is more relevant to generate the class boundaries than for the classification task. The HMM re-segmentation significantly reduces the system error by forcing a minimum segment length for the class labels and also proved that is beneficial for the segmentation system when the output's temporal resolution is reduced. The introduction of the Combination and Pooling block allows the downsampling to be implemented inside of the Neural Network. Then, to configure the temporal pooling layers, a pooling factor regulates the length of the output sequences in relation to the input length. The pooling layers separate an input sequence into different sub-sequences with the same length and no overlapping. After some experiences with multiple configurations changing the layers and the position of the Combination and Pooling block compared to the BLSTM, allowed the authors to conclude that having only a pooling layer between the two BLSTM layers makes it possible to achieve better results without adding more parameters while decreasing computational complexity. Then, to improve the model's results, it was used a data-agnostic data augmentation routine, Mixup, that generates new virtual training examples (\tilde{x} , \tilde{y}) according to the following equations:

$$\begin{cases} \tilde{x} = \lambda x_i + (1 - \lambda) x_j \\ \tilde{y} = \lambda y_i + (1 - \lambda) y_j \end{cases}$$
(2.2)

where (x_i, x_j) are two feature vectors randomly drawn from the training dataset, (y_i, y_j) are their corresponding one hot encoding labels and $\lambda \in [0, 1]$.

Other methods like the one introduced by Giannakopoulos et al. [9] focus on the feature extraction step. The objective of Giannakopoulos et al. [9] was to use CNNs as a method to extract context-aware deep audio features that can offer additional feature representations to any soundscape analysis classification, which proved, when combined with handcrafted audio features, to give a boost in the classification accuracy without the need for CNN training. The two feature representation steps are combined in an earlyfusion scheme and classified using SVM with a Radial Basis Function (RBF) kernel. The handcrafted audio features aim to represent the audio signal in a space able to discriminate an unknown sample between the involved audio classes. In order to do that, each signal is represented by a series of statistics computed over short-term audio features processed on a mid-term basis, which consists of first dividing the audio signal into midterm overlapping or non-overlapping windows, then, each one of those is processed by short-term processing, and the feature sequence from each mid-term segment is used for computing feature statistics, resulting in each mid-term segment being represented by a set of statistics, either from the time or frequency domain. The examples of such features used in this work were the zero crossing rate, energy, entropy of energy, spectral centroid, spectral spread, spectral entropy, spectral flux, spectral roll-off, MFCC, chroma vector and chroma deviation. The context-aware deep features were extracted using a supervised CNN trained to discriminate between different audio urban context classes based on spectrograms using STFT of short-term segments. The output of the last fully connected layer is used as a feature extractor in the initial soundscape classification task.

By evaluating the model's performance on the datasets was possible to show that the combination of handcrafted features with the context-aware deep features culminates in a boost of the model's results.

Luz et al. [18] proposed a small parameter space CNN model to extract deep features combined with handcrafted features. In addition, a feature selection step was performed to reduce feature dimensionality, making the training process faster and less computationally expensive by identifying redundant and inconsistent features, attaining it suitable for mobile sound recognition applications or embedded systems. Also, identifying which group of handcrafted features can enrich deep features to better discriminate between Urban Sounds. The feature selection experiment results indicate that associating perceptual, static, and physical features from frequency and time domains with deep features significantly improves the classification performance.

Table 2.3 summarizes the found works on audio processing with segmentation based on models or/and handcrafted features and their focus, limitations, and performances.

Researchers have shown that deep features contain more relevant information than handcrafted features, which translates into better results. To further improve the models' performance, researchers have implemented attention mechanisms that allow focusing on the semantically relevant characteristics. Therefore, the following section focus on studies that implement different attention mechanisms.

2.3.1 Attention Mechanisms

Some studies focus on incorporating attention mechanisms to improve Convolutional Recurrent Neural Networks (CRNN) models' performance, such as the research works of Qiao et al. [25], Zhang et al. [43, 44]. The study presented by Zhang et al. [43] incorporates temporal attention and channel attention mechanisms, later, Zhang et al. [44] used a frame-level attention mechanism. Both proposals used a CRNN model constituted of eight convolution layers to learn high-level representations from the input log-gammatone spectrogram and the channel temporal attention mechanism enhanced the representational power of CNN. Therefore, to learn the temporal correlation information, it's used two layers of Bidirectional Gated Recurrent Unit (B-GRU) to which the CNN-learned features were given as input. Finally, the features are fed into a fully connected layer with Softmax as an activation function for the classification task. Also, some data augmentation techniques were used to avoid overfittings, such as time and frequency

Authors/Year	Model features	Contributions/Benefits	Limitation(s)	Dataset/Metrics
Tax et al. (2017) [36]	End-to-end CNN model classifier with the first layers initialized.	Training the first layers of a DCNN model using unlabelled data allows us to learn high-level audio representations; Incorporat- ing knowledge from audio processing methods can improve the performance of Neural Network-based models.	Not able to outperform the models trained on processed features.	ESC50; Accuracy (around 50%).
Martín- Morató et al. (2020) [19]	CNN-based models with an adaptive pooling layer based on a non-linear transformation of the learned con- volutional feature maps on the tempo- ral axis.	Distance-based pooling layer to improve CNN- based models for audio classification in adverse sce- narios; Systems generalize better to mismatching test conditions; Learn more ro- bustly from weakly labelled data; Allows to propagate better the information of the actual event through the network.	Only uses iso- lated events with a clear beginning and end.	UrbanSound8K, ESC- 30, DCASE2017 T4; Macro-averaging ac- curacy (ESC-30: 77%, UrbanSound8K:73.96%), F1-score (DCASE2017 T4: 48.3%), Precision (DCASE2017 T4: 68.2%), Recall (DCASE2017 T4: 46.7%).
Gimeno et al. (2020) [10]	BLSTM with a Com- bination and Pool- ing block.	A combination of BLSTM modelling capabilities with HMM backend smooths the results and significantly re- duces system error; Com- bination and Pooling block reduce redundant temporal information.	Needs large datasets; The proposed block wasn't capable of outperform- ing the model with HMM re- segmentation.	3/24 TV, CARTV; Seg- mentation error rate (3/24 TV: 11.80%; CARTV: 24.93%), Aver- age class error (3/24 TV: 19.25%), Accuracy (3/24 TV: 16.05%).
Giannakopoulos et al. (2019) [9]	CNN to extract context-aware deep audio features and combine them in an early-fusion scheme with handcrafted audio features.	Using CNN as a feature extractor can improve the performance of the audio classifier by the transference of audio contextual knowl- edge without the need for CNN training.	Low accuracy re- sults.	TUT Acoustic Scene (used to train), Ur- banSound8K, ESC-50; Accuracy (ESC50: 52.2%; UrbanSound8K: 73.1%).
Luz et al. (2021) [18]	CNN model to ex- tract deep features that are combined with handcrafted features. As clas- sifiers, it was used Support Vector Ma- chine and Random Forest.	Feature selection steps to reduce feature dimensional- ity and understand which handcrafted features could enrich deep features to better discriminate between Urban Sounds; Deep fea- tures contain more relevant information than hand- crafted features.	No applica- tion of data augmentation techniques; Only adopted one CNN model not too deep to extract features from Melspec- trograms.	ESC-10, UrbanSound8K; Accuracy (ESC-10: 86.2%; UrbanSound8K: 96.8%).

TABLE 2.3: Summary of the found works on audio processing with segmentation based on models or/and handcrafted features.

masking and Mixup. These data augmentations allowed the models to focus on the semantically relevant frames, producing discriminative features, and arrive at the conclusion that applying the attention mechanism to lower layers since the attention mechanism can help preserve the lower-level features which normally carry basic and useful information, yields better results in comparison to applying to higher-level layers, and employing attention for RNN layers allows achieving the highest accuracy result and using sigmoid as scaling function generates better attention weights than Softmax when applying attention at CNN layers. Furthermore, it was possible to understand that temporal attention

26

reduces the impact of background noise since channel attention puts more attention on the filters, which can detect the essential characteristics of the sounds. Frame-level attention can focus on critical temporal events while reducing the impact of background noise.

Regarding the research of Qiao et al. [25], besides developing a CRNN model with a temporal-frequency attention mechanism, it has also developed a CRNN model using sub-spectrogram segmentation-based feature extraction and score level fusion to highlight the advantages of an attention mechanism. Therefore, the authors, on the one hand, show that the sub-spectrogram segmentation mechanism truncates the whole spectrogram into a certain number of parts instead of generating the log Gammatone spectrogram based on the entire frequency band. It uses a score level fusion to combine different classification results from different sub-spectrograms, considering the frequency domain characteristics but ignoring the temporal domain ones. The score level fusion improves the model accuracy compared to the uniform weights assignment, and that low-frequency bands contain a large proportion of the characteristics of Environmental Sounds. However, high-frequency bands contain a few characteristics that are still indispensable for the classification task. On the other hand, concerning the temporal-frequency attention mechanism, the following advantages were highlighted: the use of the CNN layers to extract temporal-frequency representations from the input log Gammatone spectrogram shows low complexity despite the ability to learn more valuable information from the input and gives higher accuracy results by focusing on the most critical frames and frequency bands. To conclude, SpecAugmented and Mixup data augmentation techniques were used in order to increase the diversity of the training.

Tripathi and Mishra [38] introduced an attention-based Residual Neural Network (ResNet) model that efficiently learns Spatio-temporal relationships in the spectrogram, skipping the irrelevant regions. Regarding the augmentation techniques, the authors utilized time shift, adding noise and SpecAugment. The proposed attention module allows capturing long-range contextual information between the spectrogram's local features, improving compactness and addressing intra-class inconsistency, which is the variations between spectrogram features extracted from the different signals belonging to the same class that can cause performance degradation. In addition, the study revealed that the attention module provided the best accuracy results when affixed after the last residual layer, so higher layers provided more valuable features to define the characteristics of a

sound, and the attention module conserves them.

Ristea et al. [26] developed an architecture that employs two Transformer blocks in sequence, the first block attends to tokens within the same frequency bin (vertical axis), and the second attends to tokens within the same time interval (horizontal axis) of the spectrogram. The model used noise perturbation, time shifting, speed perturbation, Mixup and SpecAugment as data augmentation techniques. This implementation linearly scales the number of trainable parameters with the input size, which reduces the memory footprint. It can handle high-resolution spectrograms and shows that performing attention only on one axis is insufficient. Thus, combining both attentions gives a considerable performance boost regardless of the chosen order for the vertical and horizontal block. The order only has a marginal influence on the results.

Table 2.4 summarizes the found works on audio processing with attention mechanisms and their focus, limitations, and performances.

The following subsection presents some autoencoder implementations.

2.3.2 Autoencoders

Different types of autoencoders allow a multiplicity of applications, such as the one described by Sudo et al. [31], which implements a multichannel Environmental Sound segmentation method which consists of four blocks: Feature Extraction, Sound Source Localization and Separation (SSLS), Sound Source Separation and Classification (SSSC) and reconstruction. In this approach, the feature extraction is constructed using the shorttime Fourier transform of the initial input signal, the magnitude spectrograms as spectral features, and the sine and cosine interchannel phase difference as spatial features. The SSLS block uses Deeplav3+, which has an encoder-decoder structure, enabling it to improve the segmentation performance for Environmental Sounds with different durations. The Deeplav3+ allows the extraction of high-level features to predict a spectrogram for each azimuth angle regardless of the class. It creates a feature map much smaller than the original spectrogram, allowing it to extract an extensive range of contexts without increasing the number of parameters. The SSSC block also uses Deeplav3+, but here, the input corresponds to each spectrogram of the output of the SSLS block, inserted one by one. This block surpasses the influence of the spatial features, preventing the network from overfitting to the relationship between the direction of arrival and the given class. In

TABLE 2.4:	Summary	of the	found	works	on	audio	processing	with	attention	mecha-
				nis	ms.					

Authors/Yea	r Model features	Contributions/Benefits	Limitation(s)	Dataset/Metrics
Zhang et al. (2019) [43]	CRNN model with temporal and chan- nel attention mecha- nisms.	The two attention mech- anisms enhance the rep- resentation capabilities of CNN and lead it to focus on the semantically relevant parts of the sounds; Ap- plying the attention mecha- nism to lower-layers yields better results than applying it to higher-level layers.	Doesn't quantify the robustness to noise.	ESC10, ESC50, DCASE2016; Accuracy (ESC10: 94.2%, ESC50: 86.5%, DCASE2016: 88.9%).
Zhang et al. (2020) [44]	Frame-level atten- tion mechanism based on CRNN.	The attention model auto- matically focuses on the se- mantically relevant frames and produces discrimina- tive features; Low compu- tational complexity.	Doesn't quantify the robustness to noise.	ESC-50, ESC-10; Accuracy (ESC-10: 93.7%, ESC-50: 86.1%).
Qiao et al. (2021) [25]	CRNN model using sub-spectrogram segmentation based feature extraction and score level fu- sion; CRNN model using temporal- frequency attention.	Score level fusion improves the accuracy in comparison with the uniform weights assignment; Low complex- ity when generating the temporal-frequency atten- tion map when using the attention mechanism; High accuracy results when using temporal-frequency mechanisms.	Sub-spectrogram segmentation mech- anism only considers frequency domain characteristics; Multi-dimensional search spaces are needed to opti- mize segmentation boundaries and the number of seg- ments which are, in general, computa- tionally prohibitive.	ESC-50; Accuracy (ESC- 50: sub-spectrogram segmentation: 82.1%, temporal-frequency attention: 86.4%).
Tripathi and Mishra (2021) [38]	Attention-guided residual network that efficiently learns Spatio-temporal relationships of a signal's spectro- gram.	The attention module re- solves the intra-class incon- sistency; Identifies more se- mantically relevant parts of the spectrogram, and correctly highlights them while providing a visual description.	Doesn't quantify the robustness to noise.	ESC-10, DCASE 2019 Task-1(A); Accuracy (ESC-10: 92.16% (augmented), 92%, DCASE 2019: 82.21% (augmented), 82%), Precision (ESC-10: 88.70%, DCASE 2019: 83.47%), Recall (ESC-10: 89.80%, DCASE 2019: 82.28%), F1-score (ESC- 10: 87.93%, DCASE 2019: 82.39%).
Ristea et al. (2022) [26]	Separable Trans- former: separates the attention for the horizontal axis (time) from the ver- tical axis (frequency) of spectrograms.	Reduces the number of learnable parameters, which reduces the memory footprint; Able to handle high-resolution spectro- grams.	Doesn't quantify the robustness to noise.	ESC-50, Speech Com- mands V2, CREMA-D; Accuracy (CREMA-D: 70.47%, Speech Com- mands V2: 98.51%, ESC-50: 91.13%).

conclusion, this approach allows performing a multichannel Environmental Sound segmentation without the need to set beforehand the number of sound sources, preventing the overfit between the direction of arrival and the class by explicitly separating the SSLS block and the SSSC block and, finally, the SSSC block can separate sound sources arriving from a close direction that the SSLS block was not able to separate.

Other approaches do not rely totally on autoencoders. Still, just a part of it, for example, only the encoder part, like the model presented by Venkatesh et al. [40] which illustrates a system called You Only Hear Once (YOHO) that predicts the boundaries of acoustic classes through regression. This model is a CNN whose architecture is constituted by the MobileNet architecture that allows the reduction of the time and frequency dimension by presenting a decoder-like architecture with some extra layers to flatten the last two dimensions and a final layer to perform a binary classification that detects the presence, the start, and endpoints of an acoustic class segment. The model's input feature is the Log-Melspectrograms, and the dimension of the input depends not only on the duration of the audio example but also on the specifications of the Log-Melspectrogram. For the post-processing, to smooth the output and eliminate spurious audio events, thresholddependent smoothing is used that allows the removal of audio events whose duration was too short and the silence segments between consecutive events of the same acoustic class if they are also too short. In conclusion, this model leads to a fast post-processing and smoothing process due to YOHO's ability to directly predict the acoustic class boundaries, resulting in a more end-to-end setup. However, it is limited by the time resolution of the input; nevertheless, if the input were raw audio instead of Log-Melspectrogram, the model would be entirely an end-to-end DL approach.

Table 2.5 summarizes the found works on autoencoder-like architecture for Environmental Sound processing and their focus, limitations, and performances.

Some techniques and steps of audio segmentation had already been mentioned in the previous section, such as feature extraction widely used by all the earlier models to predict the class. Das et al. [2] used the librosa library due to the default sampling rate that allows a reduction in training time. Zinemanas et al. [45] mentioned the use of an autoencoder scheme which allows the extraction of features and the prediction of the class by

Authors/Yea	r Model features	Contributions/Benefits	Limitation(s)	Dataset/Metrics
Sudo et al. (2021) [31]	Multichannel En- vironmental Sound segmentation method constituted by a sound source localiza- tion block and a sound source separation and classification block.	Not necessary to set the number of sound sources; No overfitting between the direction of arrival and the class relationship; Sine and cosine of inter- channel phase difference are optimum for sound source localization and separation.	Lack of suffi- ciently large datasets with separated sound source signals and direction of arrival labels.	The dataset is a combination of 10 datasets resulting in a dataset with 75 classes; Root Mean Square Error (18.59).
Venkatesh et al. (2021) [40]	YOHO: end-to-end model with a CNN architecture adapted from the MobileNet architecture.	Converts the detection of acoustic boundaries into a regression problem; Due to fast inference, YOHO is suitable for real-time ap- plications; Directly out- puts the time boundaries.	Limited by the time resolution of the input.	BBC Radio Devon and MuSpeak, MIREX music-speech detection, TUT Sound Event Detection, Urban-SED; F1- score (BBC Radio Devon and MuSpeak: 97.22%, MIREX: 90.20%, TUT Sound Event Detection: 44%, Urban-SED: \approx 60%); Error rate (TUT Sound Event Detection: 0.7517).

 TABLE 2.5: Summary of the found works on audio processing with autoencoder-like architecture.

constructing a latent space more capable of expressing the audio features. Mu et al. [21] introduced self-attention mechanisms combining a temporal and frequency attention mechanism which allows reducing the influence of background noise and irrelevant frequencies and focusing on the most important parts of the signal; besides that, the researchers used HPSS to separated between harmonic and percussive components. For the models based on Transformers, all of them also took advantage of feature extraction. However, this step is especially explored by Elliott et al. [8], which introduces several techniques, as mentioned in the previous chapter. Kong et al. [15] presented a post-processing method capable of automatically optimizing the values for the thresholds. Other researchers such as Akbari et al. [1] and Koutini et al. [16] introduced DropToken and Patchout, respectively, which are techniques that randomly drop part of the input sequence before feeding it to the Transformer in order to reduce the training complexity.

To end, the chapter has presented some new feature extraction techniques developed envisioning the enhancement of the ESC task.

2.3.3 New Feature Extraction Techniques

In this section, both works have presented new feature extraction techniques and show their efficiency by employing them in transfer learning models using several data augmentation techniques. Therefore, the novel features presented by Mushtaq and Su [22] are based on the logarithmic scale of the Melspectrogram named L2M, corresponding to the Log(Log-Melspectrogram) and with L3M corresponding to Log(Log(Log-Melspectrogram)), which are particularly useful for two new data augmentation techniques, NA-1 and NA-2, based on Spectrogram Image Features (SIF). Both NA-1 and NA-2 use a single image as a feature at a time, but NA-1 consists of the enhancement of SIF data by combining various spectrogram-based audio features. At the same time, NA-2 is a vertical combination of various accumulated features in the form of spectral images in pairs. Besides, trim silence was used as a pre-processing technique due to the silent parts of the audio clips. Regarding the transfer learning model, Dense Convolutional Network (DenseNet)-161 with ImageNet weights was the chosen classifier which was further fine-tuned by using individual optimal learning rates in combination with discriminative learning.

İlker Türker and Aksu [46] proposed a novel time-convexity representation based on graph representations of consecutive frames after segmentation with constant window and hop-length parameters of the original sound signal. This representation, named Connectogram, is a colourful graph-generator approach that includes three layers, each derived with different undersampling rates in which the horizontal axis stands for time, and the vertical axis for signal fluctuations is a Red-Green-Blue (RGB) image that can serve as input for the models. This approach seems to carry frequency-related info pairs with amplitude information by having amplitude information of the original sound as vertical fluctuations. The intensity of these fluctuations corresponds to the colours. However, Connectogram is not a competitive representation but can significantly improve the representation capability of Melspectrograms if generated with the same segmentation parameters. The best accuracy result was obtained when a combination of two Melspectrogram with different parameters and a Connectogram was used as input for the ResNet50 model.

Concerning data augmentation, the input allows having two stages of augmentation, the first regarding deformation methods to the raw sounds and the second includes image distortion methods that are applied to the Connectogram such as rotation, horizontal and vertical shift, brightness, shear and zoom.

Table 2.6 summarizes the found works that employ new feature extraction techniques and their focus, limitations, and performances.

Table 2.7 summarizes the results of all of the articles considered in the literature review.

 TABLE 2.6: Summary of the found works on audio processing that introduces new feature extraction techniques.

Authors/Yea	r Model features	Contributions/Benefits	Limitation(s)	Dataset/Metrics
Mushtaq and Su (2020) [22]	DenseNet-161 fine-tuned with optimal learn- ing rates and discriminative learning.	Introduction of L2M and L3M features; New data augmen- tation techniques: NA-1 and NA-2; Can achieve high results with few training epochs and less amount of original data.	L2M and L3M are out- performed by other Mel filter-based features. Compu- tationally heavy.	ESC-10, ESC-50, UrbanSound8K (US8K); Accuracy (ESC-10: 99.22%, ESC-50: 98.52%, US8K: 97.98%), Error rate (ESC- 10: 0.777%, ESC-50: 1.476%, US8K: 2.018%), F1-score (ESC-10: 99.25%, ESC- 50: 98.53%, US8K: 98.13%), Recall (ESC- 10: 99.25%, ESC-50: 98.53%, US8K: 98.13%), Precision (ESC-10: 99.24%, ESC- 50: 98.57%, US8K: 98.14%), Kappa score, Matthews Correlation Coefficient, False Discovery rate, Fowlkes-Mallows index, Miss rate.
İlker Türker and Aksu (2022) [46]	ResNet50 with a combination of two Melspec- trogram with different pa- rameters and a Connectogram as input	Introduces a time- convexity graph- based representation for sounds, Connec- togram, capable of being fused with Melspectrograms to improve their repre- sentation capabilities.	Connectogram is not a pow- erful rep- resentation when used by itself.	ESC-10; Accuracy (ESC-10: 96.46%)

Authors	Dataset	Acc	Other metrics
Salamon and Bello [29]	UrbanSound8k	79%	-
Das et al. [2]	UrbanSound8k (unofficial split)	98.81%	
Das et al. [3]	UrbanSound8k (unofficial split)	99.60%	-
Zinemanas et al.	UrbanSound8k	76.2%	
[45]	Google Speech Commands	89%	-
[10]	Medley-Solos-DB	65.8%	
Mu et al. [21]	UrbanSound8k	93.1%	-
	ESC-50	84.4%	
Kong et al. [15]	DCASE2017 Task 4	-	AT - F1-score: 64.6%, Precision: 69.1%, Recall: 60.7% SED - F1-score: 57.3%, Error rate: 68%
Elliott et al. [8]	ESC-50 Office Sounds	67.71% 95.31%	-
Wyatt et al. [41]	Office Sounds	81.2%	Precision: 79.7%, Recall: 80.6%, F1-score: 80%
in fution and [11]	ESC-50	95.6%	-
Gong et al. [11]	Speech Commands V2	98.11%	-
0	AudioSet	-	mAP: 0.485
	TAU-NIGENS Spatial Sound		
Park et al. [23]	Events 2021	-	F1-score: 65.7%, Recall: 74.7%, Error rate: 0.50
Akbari et al. [1]	ESC-50	84.9%	-
	AudioSet	-	mAP: 39.4%, AUC: 97.1%, d-prime: 2.895
	ESC-50	96.8%	- m A D: 0.406
Koutini et al. [16]	AudioSet	-	mAP: 0.496
	OpenMIC DCASE20	- 76.3%	mAP: 0.843
Tax at al [26]	ESC-50		-
Tax et al. [36]	UrbanSound8K	$\frac{\sim 30\%}{73.96\%}$	
Martín-Morató	ESC-30	73.90%	-
et al. [<mark>19</mark>]	DCASE2017 T4	///0	- F1-score: 48.3%, Precision: 68.2%, Recall: 46.7%
	3/24 TV	16.05%	Segmentation error: 11.80%, ACE: 19.25%
Gimeno et al. [10]	CARTV	-	Segmentation error: 24.93%
Giannakopoulos	UrbanSound8K	73.1%	0
et al. [9]	ESC-50	52.2%	-
	UrbanSound8K	96.8%	
Luz et al. [<mark>18</mark>]	ESC-10	86.2%	-
	ESC-50	86.5%	
Zhang et al. [43]	ESC-10	94.2%	-
U	DCASE2016	88.9%	
Zhang at al [44]	ESC-50	86.1%	
Zhang et al. [44]	ESC-10	93.7%	-
Qiao et al. [25]	ESC-50	86.4%	-
Tripathi and	ESC-10	92.16%	
Mishra [38]	DCASE 2019 Task-1(A)	82.21%	-
	ESC-50	91.13%	
Ristea et al. [26]	Speech Commands V2	98.51%	-
	CREMA-D	70.47%	
Sudo et al. [31]	75-classes dataset combining 10 datasets	-	Root Mean Square Error: 18.59
	Urban-SED		F1-score: $\approx 60\%$
Venkatesh et al.	TUT Sound Event Detection		F1-score: 44%, Error rate: 0.7517
[40]	BBC Radio Devon and MuSpeak	-	F1-score: 97.22%
	MIREX		F1-score: 90.20%
	UrbanSound8K	97.98%	Error rate: 2.018%, F1-score: 98.13%, Recall: 98.13%, Precision: 98.14%, Kappa score: 97.09%, MCC: 97.73%, FDR: 1.854%, FM: 98.14%, Miss rate: 1.863%
Mushtaq and Su [22]	ESC-50	98.52%	Error rate: 1.476%, F1-score: 98.53%, Recall: 98.53%, Precision: 98.57%, Kappa score: 98.95%, MCC 98.49%, FDR: 1.469%, FM: 98.55%, Miss rate: 1.469%
	700.10	00.000/	Error rate: 0.777%, F1-score: 99.25%, Recall: 99.25%, Precision: 99.24%, Kappa score: 98.93%, MCC:
İlker Türker and	ESC-10	99.22%	99.13%, FDR: 0.758%, FM: 99.24%, Miss rate: 0.744%

TABLE 2.7: Results summary of all models considered for the literature review.

Acc - Accuracy, AT - Audio Tagging, SED - Sound Event Detection, mAP - mean average precision, ACE - Average Class Error, AUC - area under the receiver operating characteristic curve, MCC - Matthews Correlation Coefficient, FDR - False Discovery rate, FM - Fowlkes-Mallows index.

2.4 Conclusion

There are three stages to performing the sound classification: pre-processing the audio signal, the acoustic feature extraction and the audio signal classification (Das et al. [2]).

Therefore, researchers have proposed several models to address this challenge, focusing on different stages of the task. Some try to develop or improve the model's architecture by using modified versions of the loss functions, methods to drop parts of the input sequence or by exploring various types of architectures such as DCNN, CRNN, LSTM, ResNet, DenseNet and more recently, Transformers. Most of the approaches were based on DL methods because even if it's more challenging to identify which parameters drive the model's decision, non-interpretative DL models show superior results (Salamon and Bello [29], Zinemanas et al. [45]). Others have concentrated more on the sound segmentation part of the task with approaches ranging from implementations of different features extraction techniques, however, the combination of handcrafted features allows typically to achieve better results (Das et al. [2, 3]), particularly when handcrafted features are combined with deep features (Giannakopoulos et al. [9], Luz et al. [18]); also, the use of model-based techniques to segment the sound like CNNs or autoencoders are capable of learning transformations from the raw waveforms and able to give comparable results to models trained on highly processed features (Tax et al. [36]) or by the introduction of new blocks or layers that allow reducing the redundant information (Gimeno et al. [10], Martín-Morató et al. [19]) and the employ of different attention mechanisms to focus on the semantically relevant characteristics showing greater improvements those that combine time and frequency attention.

Furthermore, a problem that ESC's researchers discuss is the scarcity of data, to which they used several audio data augmentation techniques to solve the problem and avoid overfitting. On the other hand, some researchers used cross-modality transfer learning by relying on pre-trained models in the image domain. Such fact allowed them to apply the weights feature knowledge to facilitate and accelerate the training process and use data augmentation techniques commonly used in the vision domain.

The objective of this literature review was to summarize the most recent works on the subject to understand the current approaches in this area, the problems or limitations and finally, the state-of-art approach. Out of the articles considered in this review, the work of Mushtaq and Su [22] was the approach that gave the best results for the most popular ESC datasets (97.98% for UrbanSound8k, 98.52% for ESC-50 and 99.22% for ESC-10),

evaluated according to the official splits by doing the k-fold cross-validation evaluation of the results.

Chapter 3

Baseline Models

This chapter describes the process used to obtain the baseline model. Starting with the feature extraction techniques, the definition of the overall architecture of the model, different optimization functions, complemented by an exhaustive evaluation of the performance of the various models, supported by six distinct metrics: Accuracy, area under the receiver operating characteristic (ROC) curve (AUC), precision, recall, micro and macro *F*1-score.

3.1 Datasets

This section describes the characteristics of some of the most used datasets in Environmental Sound Classification (ESC). The chosen datasets UrbanSound8K, ESC-50 and ESC-10 will allow not only to have more models from different published articles with which is possible to compare results, but also to see the behaviour of the models when the number of classes is maintained but the composition and name of the classes changes, and when there is an increase in the number of classes.

3.1.1 UrbanSound8K

The dataset consists of 8732 labelled audio slices with an audio length of 4 seconds or less, with the sampling rate varying from 16 to 44.1 kHz and is organized into 10 folds. All audio clips are taken from field recordings uploaded to the Freesound project. Figure 3.1 presents the data distribution per class (Salamon et al. [28]).

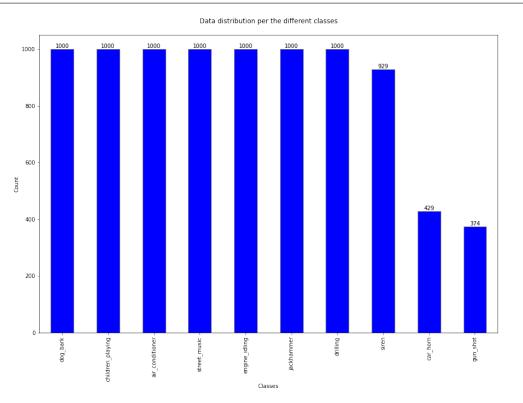


FIGURE 3.1: Distribution of data per class of UrbanSound8K dataset.

3.1.2 ESC-50

The dataset consists of 2000 labelled clips with a length of 5 seconds organized into 50 classes with 40 examples per class extracted from public field recordings available through the Freesound project. The extracted samples were converted to a unified format with a rate of 44.1 kHz, single-channel, and Ogg Vorbis* compressed at 192 kbit/s. The dataset has also been rearranged into 5 uniformly sized folds for comparable cross-validation, ensuring that clips from the same initial source file are always part of a single fold. The distribution of examples per class is shown in Figure 3.2 (Piczak [24]).

3.1.3 ESC-10

This dataset is a subset of 10 classes from the ESC-50 dataset, making it a more constrained set with the differences between classes much more pronounced. The distribution of examples per class is shown in Figure 3.3 (Piczak [24]).

^{*}https://xiph.org/vorbis/ (accessed 29 August 2022)

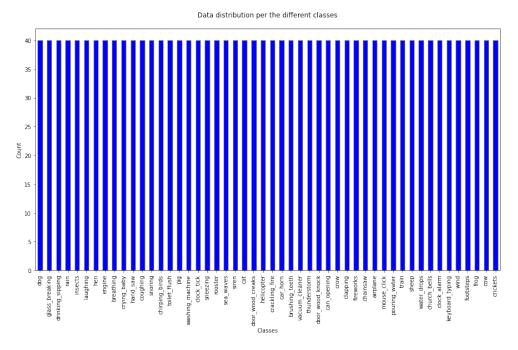


FIGURE 3.2: Distribution of data per class of ESC-50 dataset.

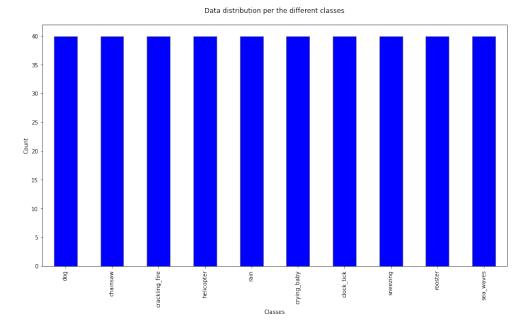


FIGURE 3.3: Distribution of data per class of ESC-10 dataset.

3.2 Feature Extraction Techniques

Different feature extraction techniques were implemented and evaluated to provide the classifier with more distinguishable characteristics and complementary representations

that correctly classify the given audio clips. Next, a description of the implemented spectral audio features is presented, supported by the librosa library (McFee et al. [20]).

- Zero crossing rate: is a time-domain feature that considers the sign changing rate of the signal during an audio frame, corresponding to the number of times the signal crosses the zero level.
- **RMS**: measures the energy of a signal by dividing the signal into several windows by applying the following equation to each window:

$$RMS_w = \sqrt{\frac{1}{T}\sum_{t=1}^T x_t^2}$$
(3.1)

where *T* is the window size, and x_t is the amplitude of the t^{th} sample in the window, *w*.

- **Poly features:** generates a new feature matrix with all polynomial combinations of features raised to a degree less or equal to the specified degree. Therefore, the new matrix consists of bias terms, the features raised to power for each degree until reaching the desired degree and the interactions between all pairs of features.
- Tonnetz: computes the tonal centroid features, corresponding to a planar representation of pitch relations that projects chroma features onto a six-dimensional (6D) basis. The 6D tonal centroid vector, *ζ*, for time frame *n* is given by the following equation:

$$\zeta_n(d) = \frac{1}{\|c_n\|_1} \sum_{l=0}^{11} \Phi(d, l) c_n(l)$$
(3.2)

where *c* is the chroma vector, $||c_n||_1$ the L_1 norm of c_n , Φ the transformation matrix representing the basis of the 6D space, *l* the chroma vector pitch class index, and $d \in [0, 5]$ denotes which of the six dimensions of ζ_n is being evaluated.

• **Melspectrogram:** is a spectrogram that corresponds to a visual representation of the spectrum of frequencies of a given signal as it varies with time. The signal amplitude is represented by the colour of each point in the image. The frequencies are converted to the mel scale, a scale of pitches (property of sounds that allows their ordering on a frequency-related scale) judged by listeners to be equal in distance from one another.

- Mel Frequency Cepstral Coefficients (MFCC): are coefficients that collectively represent a sound's short-term power spectrum. So, the process to develop MFCC is the following:
 - 1. Apply the discrete Fourier transform to a window of the signal.
 - 2. Map the magnitudes of the spectrum obtained above into the mel scale.
 - 3. Take the logarithm of the magnitudes at each mel frequency.
 - 4. Apply the discrete cosine transform to the logarithmic mel frequency coefficients.

Since the first few MFCCs coefficients are capable of representing the majority of the signal information, higher-order discrete cosine transform components can be truncated.

5. Creation of a spectrum over mel frequencies. The amplitudes of the spectrum are the MFCCs.

Therefore, MFCC can be calculated using the next equation:

$$c(n) = \sum_{m=0}^{M-1} \log(s(m)) \cos\left(\frac{\pi n(m-0.5)}{M}\right)$$
(3.3)

where n = 0, 1, 2, ..., C - 1 and *C* is the number of MFCCs, c(n) the cepstral coefficients, *M* the total number of Mel weighting filters, $s(m) = \sum_{k=0}^{N-1} \left[|X(k)|^2 H_m(k) \right]$, with X(k) being the magnitude spectrum, *N* the number of points used to compute the discrete Fourier transform, and $H_m(k)$ the Mel weighting filter that corresponds to the weight given to the k^{th} energy spectrum bin that contributes to the m^{th} output band.

• **Chroma features:** is the distribution of the signal's energy across a predefined set of pitch classes, allowing to capture harmonic and melodic characteristics of sound while being robust to changes in timbre.

Its purpose is to represent the harmonic content of a short-time window of audio, which results in the magnitude spectrum from where it is possible to extract a feature vector using Short-Term Fourier Transformation (STFT), Constant Q-transform (CQT), Chroma Energy Normalized Statistics (CENS), among others. - Chroma STFT: is a chroma feature that extracts the feature vector using the STFT, which is a successive evaluation of Fourier transform over short segments of the signal. The values obtained using STFT tell which frequencies are present on the signal and the corresponding time interval they appear. So, STFT is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time and can be calculated using the following equation:

$$STFT\{x[n]\}(m,w) = \sum_{n=-\infty}^{+\infty} x[n]w[n-m]e^{-jwn}$$
(3.4)

where $STFT{x[n]}$ represents the STFT of the signal x[n], w the window function and m the time index.

- Chroma CQT: is a chroma feature that transforms the audio data to the frequency domain. The transformation is applied to a series of filters logarithmically spaced in frequency. The equation to calculate CQT is the following:

$$X[k] = \frac{1}{N[k]} \sum_{n=0}^{N[k]-1} W[k,n] x[n] \exp\left(\frac{-j2\pi Qn}{N[k]}\right)$$
(3.5)

where x[n] is the n^{th} sample of the temporal signal, W[k, n] the window function, N[k] the length of the window in samples at the frequency of the k^{th} spectral component, and Q the ratio of frequency to bandwidth.

- Chroma CENS: adds a degree of abstraction by considering short-time statistics over energy distributions within the chroma bands. The CENS features correlate to the short-time harmonic content of the audio signal and learn the variations of properties such as dynamics, timbre, and articulations, among others.

Therefore, to produce CENS features, the following steps need to be followed:

- 1. Obtain chroma vectors using chroma CQT;
- 2. Normalize the chroma vectors concerning the L_1 norm;
- 3. Quantization of amplitude based on log-like amplitude thresholds that introduce a logarithmic compression;
- 4. Smoothing using a sliding window;
- 5. Downsampling.

- **Spectral features:** extract frequency and power characteristics of a signal, is an excellent tool for analysing repetitive patterns in a given signal, such as vibrations.
 - Spectral centroid: indicates where the centre of mass of the spectrum is located and provides a noise-robust estimate of how the dominant frequency of signal changes over time. The higher the centroid, the higher the sound's frequency. The central frequency, *f_c*, at time frame *t* is calculated using the following equation:

$$f_c(t) = \frac{\sum_k S(k,t)f(k)}{\sum_k S(k,t)}$$
(3.6)

where S(k, t) is the spectral magnitude at frequency bin k and time frame t, and f(k) the frequency at bin k.

– Spectral bandwidth: is the difference between the upper and lower frequencies in a continuous band of frequencies. To calculate the bandwidth of a signal at a particular time frame is necessary to sum up the maximum deviation of the signal on both sides of the centroid point of the signal, an operation that corresponds to the following equation that computes the *p*th order spectral bandwidth.

Spectral bandwidth =
$$\left(\sum_{k} S(k,t) \left(f(k,t) - f_{c}(t)\right)^{p}\right)^{1/p}$$
 (3.7)

where S(k, t) is the spectral magnitude at frequency bin k and time frame t, f(k, t) the frequency at bin k and time frame t, and f_c is the spectral centroid or central frequency of the signal at time frame t.

- Spectral contrast: divides each frame of a spectrogram into sub-bands and estimates the energy contrast by comparing the mean energy of spectral peaks to spectral valleys in each sub-band separately, with high contrast values corresponding to clear, narrow-band signals and low contrast values to non-harmonic components or broad-band noise.
- Spectral flatness: quantifies how much a sound resembles a pure tone, as opposed to being noise-like. High spectral flatness indicates that the spectrum is similar to white noise and has equivalent power in all spectral bands. On the other hand, low spectral flatness suggests that the power spectrum is concentrated in a relatively small number of bands.

Therefore, spectral flatness can be defined as the ratio of the geometric mean regarding the arithmetic mean of a power spectrum, being expressed as:

Spectral flatness =
$$\frac{\exp\left(\frac{1}{N}\sum_{n=0}^{N-1}\ln\left(x(n)\right)\right)}{\frac{1}{N}\sum_{n=0}^{N-1}x(n)}$$
(3.8)

where x(n) represents the magnitude at the frequency bin n and N the length of the samples to consider for the spectral band.

- Spectral rolloff: computes the roll-off frequency, defined as the cutoff frequency where a certain defined percentage of the total energy of the spectrum is contained. It is helpful to determine the maximum or minimum frequency of the signal by setting the ratio to a value close to 1 (one) or 0 (zero), respectively.

Besides evaluating the performance with the features input alone, it was also studied the model's behaviour with different combinations of the above features. The combinations performed are presented in Table 3.1.

TABLE 3.1: Summary table of feature combinations.

mfccstft	MFCC, Chroma STFT (n° bins = 40)
mfccstft80	MFCC, Chroma STFT (n° bins = 80)
mfccmel	MFCC, Melspectrogram (n° bins = 80)
mmq	MFCC, Melspectrogram, Chroma CQT (n° bins = 80)
mmcens	MFCC, Melspectrogram, Chroma CENS (n° bins = 80)
mms40	MFCC, Melspectrogram, Chroma STFT (n° bins = 40)
mms60	MFCC, Melspectrogram, Chroma STFT (n° bins = 60)
mms80	MFCC, Melspectrogram, Chroma STFT (n° bins = 80)
mmstftq	MFCC, Melspectrogram, Chroma STFT, Chroma CQT (n° bins = 80)
mmsaa	MFCC, Melspectrogram, Chroma STFT, Chroma CQT, Chroma CENS (n° bins =
mmsqc	40)
mmsqc80	MFCC, Melspectrogram, Chroma STFT, Chroma CQT, Chroma CENS (n° bins =
minsqcou	80)
scontpoly	Spectral Contrast, Poly features (polynomial order = 6)
tsp	Spectral Contrast, Poly features, Tonnetz (n° bands = 5, polynomial order = 5)
zrsp	Zero crossing rate, RMS, Spectral Flatness, Poly features (polynomial order = 0)
76*661	Zero crossing rate, Spectral Centroid, Spectral Rolloff, RMS, Spectral Bandwith,
zsrssp	Spectral Flatness, Poly features (polynomial order = 0)

3.3 Model's Architecture and Functions

Initially, an architecture consisting of three dense layers with 256 units with ReLu was used as the activation function, which returns 0 (zero) if the input is negative or the value if is positive; one dense layer of 10 units with Softmax function, that is a generalization of

the logistic regression function to multiclass problems by assigning a probability to each class whose probability summation over all classes must be equal to 1 (one), and can be defined by the following equation:

$$\sigma_i(z) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$
(3.9)

where *z* is the input vector and *K* is the number of classes. Furthermore, there is a dropout layer between the dense layers with a rate value of 0.4. The scheme of the model's architecture is shown in Figure 3.4.

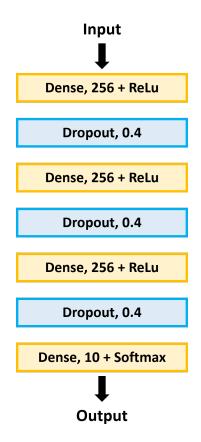


FIGURE 3.4: Baseline model architecture.

The dense layer has the neurons connected to every neuron of the preceding layer, making it deeply connected with its previous layer. Then, the dense layer performs the following operation to deliver the output:

$$output = activation(dot(input, kernel) + bias)$$
(3.10)

where activation corresponds to the element-wise activation function, in this case, was used for the first 3 layers, the ReLu function and the last one, the Softmax function; the kernel corresponds to a weighted matrix created by the layer, with the bias being a bias vector.

The dropout layer prevents overfitting by randomly setting a percentage of the activations to zero with a frequency of rate at each step during training time and scales up the other input values by 1/(1-rate) to the total sum remains unchanged.

To study the influence of the rate on the dropout layer, some experiences were conducted by employing different rate values such as [0, 0.2, 0.4, 0.6 and 0.8]. Also, model modifications were created to improve the models' performance by adding two extra layers: one dense layer and one dropout layer.

Furthermore, it is important to note that depending on the dataset used, it may be necessary to change the number of units in the last dense layer, as this must be equal to the number of classes in the dataset. Thus, for the ESC-50 dataset, this layer must have 50 units.

After creating the model, it is necessary to configure it for training, requiring the models to be compiled and the loss function, optimization function and metrics defined.

3.3.1 Loss Function

For the loss function, due to the objective of sound classification, it only matters if the output prediction is right or wrong, and the use of datasets has several classes that are as an one-hot encoded, so categorical cross-entropy was the chosen loss function.

Categorical cross-entropy measures the entropy difference between two probability distributions which can be calculated using the following equation:

$$Loss = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$
(3.11)

where *N* is the output size which is the number of classes, \hat{y}_i the *i*^{the} scalar value in the model output, which is the Softmax probability for *i*^{the} class, and y_i is the corresponding truth value.

3.3.2 Optimization Function

Several optimization functions, such as Stochastic Gradient Descent (SGD), Adagrad, Adadelta, Adam, Adamax and Nadam, all minimize the loss function by changing the models' weights.

Next is a description of the characteristics of the different optimization functions employed.

SGD is a stochastic approximation of gradient descent optimization since it is calculated from a randomly selected subset of data (Ruder [27]). The values are calculated following the next algorithm, which should be repeated until the model converges to the desired minimum.

- 1. Training examples are randomly shuffle
- 2. For i = 1, ..., M:

$$\theta_i^{(j)} = \theta_{i-1}^{(j)} - \eta \nabla L(\theta_{i-1}^{(j)})$$
(3.12)

for every j = 0, ..., n where n is the total number of weights to be optimized, M the number of training examples, $\theta^{(j)}$ the weight that is being optimized, η the learning rate, and $\nabla L(\theta_{i-1}^{(j)}) = \frac{\partial L}{\partial \theta_{i-1}^{(j)}}$ the partial derivative of the loss function with respect to the weight $\theta_{i-1}^{(j)}$.

Adagrad means adaptive gradient descent and is an optimizer similar to SGD but uses different learning rates for each iteration. This learning rate change is based on how frequently weight updates during training. The more the weights change, the minor changes in the learning rate (Duchi et al. [7]), allowing for the sparse parameter to get more significant updates, improving convergence.

The rule to change the learning rate is given by:

$$\eta_i = \frac{\eta}{\sqrt{\alpha_i} + \epsilon} \tag{3.13}$$

where $\alpha_i = \sum_{t=1}^{i} \left(\frac{\partial L}{\partial \theta_{i-t}^{(j)}}\right)^2$ is the summation of gradient square, being *L* the loss function, $\theta_{i-t}^{(j)}$ the t-the iteration before the i-the iteration of the $\theta^{(j)}$ weight, ϵ is just a small constant to avoid divisions by zero, η is the initial learning rate manually defined and η_i the updated value of the learning rate i-the iteration, which will be the one used to compute the values of the weights in equation 3.12.

Adadelta is an extension of Adagrad. Instead of summing up all the past squared gradients, it uses a moving window of a fixed size of gradient updates that allows Adadelta to continue learning even after many updates (Zeiler [42]). So, in this case, the learning rate is defined by:

$$\eta_i = \frac{\sqrt{D_{i-1} + \epsilon}}{\sqrt{v_i + \epsilon}} \tag{3.14}$$

where $D_i = \beta \dot{D}_{i-1} + (1-\beta) \left(\theta_i^{(j)} - \theta_{i-1}^{(j)}\right)^2$ and v_i is i-the iteration of the exponential weighted average of squared gradients defined by $v_i = \beta v_{i-1} + (1-\beta) \left(\frac{\partial L}{\partial \theta_{i-1}^{(j)}}\right)^2$, $\beta \in [0, 1[$ is a constant that controls the decay rate, usually set around 0.9 to give more importance to the previous weighted average, allowing to change the v_i slowly with the new values of the squared gradient, L is the loss function, $\theta_{i-1}^{(j)}$ is the iteration previous to the i-the iteration of $\theta^{(j)}$ weight.

Adam is an adaptive moment estimation, a stochastic gradient descent method based on adaptive estimation of the first and second-order moments. This method combines the gradient descent with the momentum algorithm, allowing the gradient descent algorithm to converge much faster by considering the exponentially weighted average of gradients with the root mean square propagation algorithm, similar to Adagrad. However, instead of taking the cumulative sum of squared gradients, it takes the exponential moving average that corresponds in equation 3.13 to replace α_i by v_i (Kingma and Ba [14]).

Therefore, the Adam optimizer algorithm can be defined by:

$$\theta_i^{(j)} = \theta_{i-1}^{(j)} - \hat{m}_i \left(\frac{\eta}{\sqrt{\hat{v}_i} + \epsilon}\right)$$
(3.15)

where $\theta^{(j)}$ is the weight that is being optimized, η is the learning rate, ϵ is a small constant to avoid divisions by zero, $\hat{m}_i = m_i/(1-\beta_{1_i})$ is the bias-corrected estimate of momentum, $m_i = \beta_1 m_{i-1} + (1-\beta_1) \left(\frac{\partial L}{\partial \theta_{i-1}^{(j)}}\right), \beta_1 \in [0,1[$ is a constant that controls the rate of decay of $m_i, \hat{v}_i = v_i/(1-\beta_{2_i})$ is the bias-corrected estimate of exponential weighted average of squared gradients, and $\beta_2 \in [0,1[$ is a constant that controls the rate of decay of v_i .

The moving averages require bias correction to prevent the moment estimates from being biased towards zero, a situation that occurs during the initial iterations because the moving averages are initialized as zero and when the decay rates are low (β_1 and β_2 close to 1 (one)).

Adamax is an adaptation of the Adam optimizer that generalizes the approach to the infinite norm of maximum |(max)| (Kingma and Ba [14]) and is defined by:

$$\theta_{i}^{(j)} = \theta_{i-1}^{(j)} - \left(\frac{\hat{m}_{i}}{u_{i}}\frac{\eta}{1 - \beta_{1_{i}}}\right)$$
(3.16)

where $\theta^{(j)}$ is the weight that is being optimized, η is the learning rate, \hat{m}_i is the biascorrected momentum estimate, $u_i = max \left(\beta_2 u_{i-1}, \left|\frac{\partial L}{\partial \theta_i^{(j)}}\right|\right)$ is the exponential weighted infinity norm, and $\beta_2 \in [0, 1[$ is a constant that controls the rate of decay of u_i and L the loss function.

Nadam is the Nesterov-accelerated adaptive moment estimation similar to the Adam optimizer but with a Nesterov moment that applies momentum to the parameters before computing the gradient (Dozat [6]). So, the next equation allows to calculate Nadam optimization:

$$\theta_i^{(j)} = \theta_{i-1}^{(j)} - \bar{m}_i \frac{\eta}{\sqrt{\hat{\sigma}_i} + \epsilon}$$
(3.17)

where $\theta^{(j)}$ is the weight that is being optimized, η the learning rate, \bar{m}_i the Nesterov's moment which is defined by $\frac{1-\beta_{1_i}}{1-\prod_{i=1}^i\beta_{1_i}}\left(\frac{\partial L}{\partial\theta_{i-1}^{(j)}}\right) + \beta_{1_{i+1}}\hat{m}_i$ and $\hat{m}_i = \frac{m_i}{1-\prod_{i=1}^{i+1}\beta_{1_i}}$, and \hat{v}_i is the bias-corrected estimate of an exponentially weighted average of squared gradients.

3.3.3 Metrics

Metrics are essential to access the model's performance, compare it with other models, and select the best-performing model.

This work used six metrics: Accuracy, AUC, precision, recall, micro and macro *F*1-score.

Accuracy measures how often the algorithm classifies a data point correctly, so it is the number of correctly classified data points out of all data points. Mathematically, it can be defined as:

$$Accuracy = \frac{n^{\circ} \text{ of correct predictions}}{\text{Total } n^{\circ} \text{ of predictions}}$$
(3.18)

AUC measures the ability of a classifier to distinguish between classes. It integrates the ROC curve graph that evaluates the model performance in all classification thresholds.

This metric is preferable because it is scale-invariant. Instead of measuring the absolute values, it measures how well predictions are ranked invariant to classification thresholds, measuring the quality of the model's prediction independent of the chosen classification threshold. However, this is not robust when it is necessary to have well-calibrated probability outputs or when there is a wide disparity in the cost of False Negative (FN) vs False Positive (FP), requiring the need to minimize one type of classification error. **Precision** gives the number of correctly classified data points out of all points identified as being of a certain class. In binary, problems can be defined mathematically as:

$$Precision = \frac{TP}{TP + FP}$$
(3.19)

True Positive (TP) are the examples that are correctly identified as positive.

Recall gives the number of correctly classified data points out of all points belonging to the class on the dataset. In binary, problems can be defined as:

$$Recall = \frac{TP}{TP + FN}$$
(3.20)

*F*1**-score** corresponds to the harmonic mean of precision and recall, which allows assessing model performance based on the values of two metrics:

$$F1\text{-score} = \frac{2(Precision * Recall)}{Precision + Recall} = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$
(3.21)

In multiclass problems, it is possible to define different averaging types to calculate the n F1-score metric. One is the micro average F1-score, which computes the global average score by summing all values across all classes for TP, FN and FP and then plugs it in the F1-score equation 3.21. Also, there is a F1-score calculated using an average macro scheme corresponding to the computation of the arithmetic mean of all instances per class F1-scores.

3.4 Baseline Experiments - Using UrbanSound8K Dataset

Firstly, six different optimizers were evaluated with the architecture presented in Figure 3.4, with each model variation corresponding to a different optimization function. (model 1: Adam; model 2: Adamax; model 3: SGD; model 4: Nadam; model 5: Adagrad and model 6: Adadelta). Also, to quantify which of the features gives better results, a study was carried out using the different spectral features described in Section 3.2. The dataset used to evaluate the baseline model's performance was the UrbanSound8K.

For easy assessment of the results, all tables are arranged in descending order according to the values of the macro *F*1-score, with the best result for each column in the following tables being highlighted. Also, for tables referring to a single input feature, on the name of each feature, a number is added in front to represent the number of chroma bins, bins in mel scale, or the number of MFCC used respectively, depending on the type of feature and the acronym that is commonly represented. As example, mfcc for MFCC, mel for Melspectrogram, stft for Chroma STFT, cens for Chroma CENS, cqt for Chroma CQT and tonz for Tonnetz. Regarding all figures with graphical representations, the curves represented for the different models correspond to referred feature or combination of features that provided the top result according to the macro *F*1-score for each model presented on the respective table. The legend of each graph shows which model it refers to and the individual input or group of features used.

3.4.1 Models with a Single Feature Input - Baseline Model Architecture

Table 3.2 shows the top 5 best performing features, according to the macro *F*1-score metric, of the six basic models with the architecture presented on Figure 3.4.

	Mo	del 1: (o	ptimizer	: Adam)				Mo	del 2: (optimize	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mel80	0.591	0.873	0.591	0.593	0.643	0.483	mfcc60	0.522	0.886	0.522	0.551	0.774	0.278
mfcc60	0.572	0.885	0.572	0.578	0.682	0.527	mfcc80	0.516	0.878	0.516	0.528	0.765	0.314
mfcc40	0.575	0.894	0.575	0.575	0.646	0.527	mel80	0.465	0.838	0.465	0.459	0.761	0.228
mfcc80	0.559	0.881	0.559	0.563	0.648	0.520	mfcc40	0.441	0.797	0.441	0.440	0.519	0.226
mel60	0.486	0.850	0.486	0.497	0.550	0.381	mel60	0.423	0.832	0.423	0.436	0.683	0.170
	Mod	el 3: (op	otimizer:	Adamax))		mel80 0.465 0.838 0.465 0.459 0.761 mfcc40 0.441 0.797 0.441 0.440 0.519 mel60 0.423 0.832 0.423 0.436 0.683 Model Hittigen Model Hittigen Matrix Matrix Features acc AUC micro flscore macro flscore prec mfcc80* 0.637 0.908 0.637 0.628 0.747 mfcc40 0.576 0.873 0.576 0.573 0.654 mel80 0.535 0.857 0.535 0.539 0.583 mel60 0.487 0.836 0.487 0.487 0.487 0.487						
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC			prec	recall
mfcc80	0.611	0.904	0.611	0.622	0.722	0.550	mfcc80*	0.637	0.908	0.637	0.628	0.747	0.572
mfcc60	0.616	0.898	0.616	0.618	0.682	0.564	mfcc40	0.576	0.873	0.576	0.583	0.651	0.535
mfcc40	0.593	0.893	0.593	0.607	0.693	0.519	mfcc60	0.573	0.864	0.573	0.571	0.654	0.529
mel80	0.491	0.859	0.491	0.501	0.703	0.294	mel80	0.535	0.857	0.535	0.539	0.583	0.419
mel40	0.466	0.862	0.466	0.477	0.688	0.260	mel60	0.487	0.836	0.487	0.490	0.569	0.415
	Mode	el 5: (op	timizer:	Adadelta)			Mod	el 6: (op	timizer:	Adagrad)	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc60	0.209	0.595	0.209	0.179	0.317	0.118	mfcc60	0.368	0.753	0.368	0.361	1.000	0.033
mel60	0.213	0.637	0.213	0.164	0.556	0.066	mel80	0.323	0.793	0.323	0.329	0.538	0.060
tonz20	0.208	0.538	0.208	0.163	0.000	0.000	mel40	0.329	0.779	0.329	0.329	0.766	0.059
cens20	0.167	0.597	0.167	0.140	0.000	0.000	mel60	0.283	0.786	0.283	0.287	0.803	0.068
cens40	0.145	0.554	0.145	0.130	0.000	0.000	mel20	0.295	0.762	0.295	0.257	0.723	0.041

TABLE 3.2: Results of the 6 models for different features.

acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.

All metrics range from [0, 1] (the higher, the better).

Looking at the results, variations of MFCC and Melspectogram features are, in almost all cases, the top 5 features for all models and MFCC with a number of MFCC equal to 60 and 80 are the features which gives best results, in general. When comparing the results returned by the models according to the different metrics was possible to conclude that the first four models' results are above 0.5 in almost all metrics for most features. The model with Nadam optimizer and MFCC feature input with 80 MFCC, followed by the model with Adamax optimizer and with input one of the top three features for this model were the cases that allowed to produce better results in almost all metrics when compared to other models configuration.

On Figure 3.5 is represented the curves of AUC and loss function for the different models according to the top feature shown in Table 3.2. By analysis of the loss curves, it is possible to conclude that, except for model 5, all the other models have converged around the 70th epoch. Regarding model 5, looking at the loss function, it is possible to see that the model has not yet converged at the 100th epoch, so it should have been trained for more epochs to see if it can reach convergence. Nevertheless, looking at the tendency of the AUC curve, it does not seem likely that this particular model, after convergence, will give better results than any of the other models.

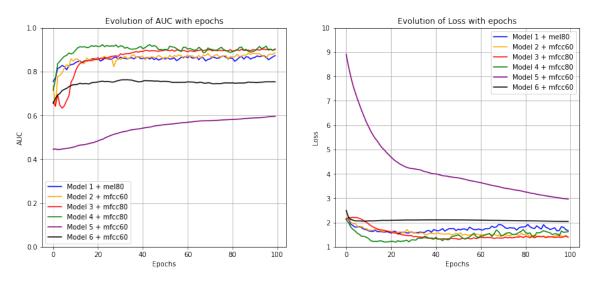


FIGURE 3.5: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the six base models.

Therefore, considering that Adagrad and Adadelta gave inferior results in comparison to the other models, only the top four performing remainder models were considered for the subsequent studies. As result, the following tables show the results for the models' variations based on these four models, with Table 3.3 representing models with an extra layer added, and Table 3.4 and 3.5 the results of the models with a different dropout rate of 0.2 and 0.6, respectively.

3.4.2 Models with a Single Feature Input - Extra Layer

Comparing the results for the models with an extra layer with the base models is possible to conclude that the only model that has benefited from this change was the model with

	Mo	del 7: (o	ptimizer	: Adam)				Mo	del 8: (optimize	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.573	0.879	0.573	0.584	0.627	0.524	mfcc80*	0.539	0.873	0.539	0.561	0.856	0.263
mfcc40	0.584	0.879	0.584	0.579	0.652	0.550	mfcc60	0.514	0.857	0.514	0.539	0.777	0.146
mfcc60	0.522	0.865	0.522	0.539	0.638	0.471	mfcc40	0.490	0.838	0.490	0.505	0.725	0.227
mel80	0.526	0.852	0.526	0.534	0.556	0.441	mel80	0.430	0.844	0.430	0.440	0.708	0.203
mel20	0.487	0.845	0.487	0.486	0.532	0.373	mel60	0.415	0.839	0.415	0.420	0.714	0.194
	Mod	el 9: (op	otimizer:	Adamax))			Mod	el 10: (c	ptimizer	: Nadam)	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.596	0.902	0.596	0.610	0.656	0.529	mfcc60	0.577	0.875	0.577	0.587	0.694	0.532
mfcc60	0.558	0.883	0.558	0.565	0.624	0.511	mfcc40	0.585	0.880	0.585	0.574	0.667	0.534
mfcc40	0.557	0.892	0.557	0.561	0.681	0.458	mfcc80	0.556	0.865	0.556	0.566	0.640	0.526
mel40	0.486	0.857	0.486	0.487	0.680	0.297	mel40	0.493	0.845	0.493	0.495	0.540	0.384
mel60	0.462	0.857	0.462	0.467	0.681	0.294	mel80	0.485	0.849	0.485	0.488	0.548	0.419
acc - accur							aracteristic o	urve; p	rec - pre	ecision.			

TABLE 3.3: Results of the 4 best models with an extra layer for different features.

All metrics range from [0, 1] (the higher, the better).

SGD as an optimizer, with the max benefit being 0.082 for precision. For accuracy and micro *F*1-score with a gain of 0.017 and macro *F*1-score of 0.010. In terms of features, MFCC and Melspectrogram are the preferable features, but in this case, in general, the feature that gave better results was MFCC with 80 MFCC.

Figure 3.6 shows the evolution of the AUC and loss function for the selected four base models and the corresponding models with an extra layer. It is possible to observe that the models have converged in all cases. In general, there are no significant differences between the base models or the models with an extra layer for the AUC metric at the 100^{th} epoch.

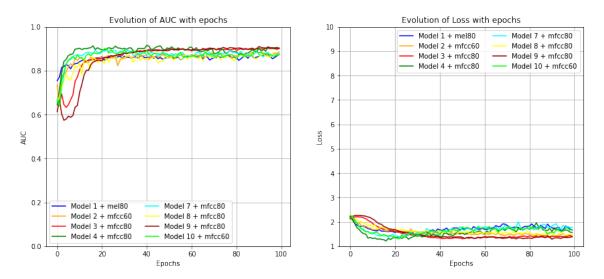


FIGURE 3.6: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models and their corresponding ones with an extra layer.

Therefore, since there were no evident benefits for most of the models in changing the depth of the given architecture for the following studies, the base architecture was maintained. Next, it was studied the influence of the dropout rate.

3.4.3 Models with a Single Feature Input - Dropout Rate

The conducted experiments are summarize in Table 3.4 and Table 3.5, showing the results for models with a dropout rate of 0.2 and 0.6, respectively.

	Mod	lel 11: (optimize	r: Adam)				Mo	del 12: (optimize	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.620	0.862	0.620	0.616	0.639	0.606	mfcc80	0.582	0.897	0.582	0.583	0.707	0.472
mfcc60	0.582	0.857	0.582	0.587	0.613	0.572	mfcc40	0.570	0.876	0.570	0.570	0.708	0.478
mfcc40	0.589	0.855	0.589	0.582	0.618	0.581	mfcc60	0.575	0.894	0.575	0.568	0.729	0.492
mel80	0.503	0.816	0.503	0.505	0.539	0.481	mel80	0.498	0.849	0.498	0.505	0.658	0.324
stft60	0.514	0.856	0.514	0.504	0.562	0.425	mel60	0.460	0.831	0.460	0.472	0.686	0.258
	Mode	el 13: (o	ptimizer:	Adamax)			Mod	el 14: (o	ptimizer	: Nadam))	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.613	0.886	0.613	0.616	0.638	0.587	mfcc80	0.605	0.849	0.605	0.607	0.622	0.596
mfcc40	0.597	0.868	0.597	0.608	0.636	0.579	mfcc60	0.587	0.862	0.587	0.603	0.616	0.560
mfcc60	0.602	0.875	0.602	0.604	0.643	0.583	mfcc40	0.539	0.823	0.539	0.524	0.558	0.527
stft40	0.539	0.885	0.539	0.523	0.629	0.429	stft80	0.496	0.829	0.496	0.487	0.518	0.386
mel80	0.490	0.849	0.490	0.496	0.609	0.357	stft40	0.493	0.846	0.493	0.485	0.563	0.428
	acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.												

TABLE 3.4: Results of the 4 best models for different features and dropout of 0.2.

All metrics range from [0, 1] (the higher, the better).

TABLE 3.5: Results of the 4 best models for different features and dropout of 0.6.

Mod	lel 15: (optimize	r: Adam)				Mo	del 16: ((optimize	r: SGD)		
acc	AUC	micro	macro f1scoro	prec	recall	Features	acc	AUC	micro f1ccoro	macro f1scoro	prec	recall
0.501	0.804			0 700	0.449		0.207	0.906			0.765	0.074
0.608	0.902	0.608	0.610	0.823	0.493	mel20	0.386	0.798	0.386	0.350	0.676	0.055
0.601	0.894	0.601	0.609	0.803	0.424	cqt80	0.341	0.764	0.341	0.344	0.787	0.044
0.487	0.862	0.487	0.489	0.643	0.297	mel60	0.342	0.788	0.342	0.332	0.775	0.074
0.478	0.847	0.478	0.478	0.629	0.247	mfcc80	0.352	0.778	0.352	0.325	0.934	0.068
Mode	el 17: (o	ptimizer:	Adamax	:)			Mod	el 18: (c	ptimizer	: Nadam))	
	AUC	micro	macro		ma aa 11	Destures		AUC	micro	macro		ma aa 11
acc	AUC	f1score	f1score	prec	recan	reatures	acc	AUC	f1score	f1score	prec	recall
0.569	0.887	0.569	0.596	0.768	0.384	mfcc60	0.599	0.898	0.599	0.612	0.848	0.448
0.530	0.883	0.530	0.551	0.787	0.349	mfcc80	0.578	0.882	0.578	0.592	0.810	0.449
0.490	0.879	0.490	0.517	0.830	0.320	mfcc40	0.562	0.887	0.562	0.557	0.827	0.399
0.460	0.876	0.460	0.456	0.637	0.228	mel80	0.495	0.856	0.495	0.503	0.710	0.317
0.434	0.864	0.434	0.431	0.630	0.220	mel20	0.485	0.845	0.485	0.483	0.645	0.269
	acc 0.591 0.608 0.601 0.487 0.478 Mode acc 0.530 0.530 0.490 0.460	acc AUC 0.591 0.894 0.608 0.902 0.601 0.894 0.487 0.862 0.478 0.847 Model 17: (o acc AUC 0.569 0.887 0.530 0.883 0.490 0.879 0.460 0.876	acc AUC micro f1score 0.591 0.894 0.591 0.608 0.902 0.608 0.601 0.894 0.601 0.487 0.862 0.487 0.478 0.847 0.478 Model 17: (optimizer micro f1score 0.569 0.887 0.569 0.530 0.883 0.530 0.490 0.879 0.490 0.460 0.876 0.460	ACC f1score f1score 0.591 0.894 0.591 0.611 0.608 0.902 0.608 0.610 0.601 0.894 0.601 0.609 0.487 0.862 0.487 0.489 0.478 0.847 0.478 0.478 0.478 0.478 0.478 0.478 AUC micro f1score acc AUC micro f1score 0.569 0.887 0.569 0.589 0.530 0.883 0.530 0.551 0.490 0.879 0.490 0.517 0.460 0.876 0.460 0.456	$\begin{array}{c c c c c c c c c c } \mbox{ncro} & macro \\ f1score & f1score \\ f1score & f1score \\ f1score $	acc AUC micro f1score f1score macro f1score f1score prec prec recall 0.591 0.894 0.591 0.611 0.788 0.448 0.608 0.902 0.608 0.610 0.823 0.493 0.601 0.894 0.601 0.609 0.803 0.424 0.487 0.862 0.487 0.489 0.643 0.297 0.478 0.847 0.478 0.478 0.629 0.247 Model 17: (optimizer: Adamax) micro f1score prec f1score recall 0.569 0.887 0.569 0.596 0.768 0.384 0.530 0.883 0.530 0.551 0.787 0.349 0.490 0.879 0.490 0.517 0.830 0.320 0.460 0.876 0.460 0.456 0.637 0.228	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore macro flscore prec prec recall Features acc AUC micro flscore macro flscore prec prec 0.591 0.894 0.591 0.611 0.788 0.448 mel40 0.387 0.806 0.387 0.371 0.765 0.608 0.902 0.608 0.610 0.823 0.493 mel20 0.386 0.798 0.386 0.350 0.676 0.601 0.699 0.803 0.424 cqt80 0.341 0.764 0.341 0.344 0.787 0.487 0.847 0.478 0.629 0.247 mfcc80 0.352 0.778 0.352 0.325 0.325 0.934 Model 17: (ptimizer: Adamax) prec recall Features acc AUC micro flscore flscore prec 0.569 0.887 0.569 0.5

acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

By varying the dropout rate, it can be concluded that having a dropout rate of 0.2 gives better results in most metrics than the dropout rate of 0.6. Compared with the dropout rate of 0.4 selected for the base models, the most beneficial dropout rate depends on the chosen optimization function. For the models with Adam or SGD optimizer, the 0.2 dropout rate was more beneficial. Still, for the models with Adamax or Nadam, the

dropout rate of 0.4 produced better results in most metrics. Comparing the results for the dropout rate of 0.6 and the base models is possible to conclude that, in general, the base models have produced better results except for the model with the Adam optimizer.

In terms of features, MFCC and Melspectrogram continue to be the preferable features for the models with a dropout rate of 0.6 and for the models where the dropout rate was set to 0.2, MFCC with 80 MFCC is the feature that provided better results in most metrics, being the top feature for all the models.

In Figure 3.7, observing the AUC curves, it is evident that the models with SGD as optimizers, when using a lower dropout rate, exhibit better performance. Regarding the loss function, it is possible to observe that all models have converged and that models 11 and 14 have started to overfit.

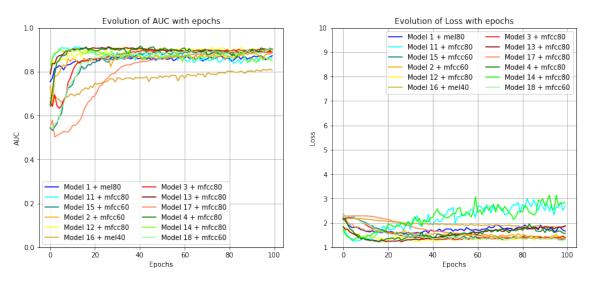


FIGURE 3.7: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models and their corresponding ones with a dropout rate of 0.2 and 0.6.

So, these results culminate in the following conclusions; models with Adam, Adamax or Nadam as optimizers are the ones that allowed for achieving better results, in most cases, for all metrics. The dropout rate of 0.2 was the most beneficial for the Adam optimizer models. However, the model has begun to overfit. When comparing the results obtained for the models with the Adamax optimizer for the top 2 input features, the base model gives better results in most metrics than the models with the other selected dropout rates. Finally, for Nadam optimizer models, the dropout rate of 0.4 was the one that allowed the best results out of all models in most metrics, and the change of the dropout rate up or down was inefficient.

To further understand the influence of changing the dropout rate, a study was made for the models with Adam and Adamax as optimizers because models with Adam optimizers have improved their performance with both rate changes. For Adamax optimizer models, the top feature for the dropout rate of 0.2 had similar results to the top feature for the base model; regarding the use of Nadam optimizer in the models, the change in dropout rate was only detrimental. So, the following study uses Adam and Adamax as optimizers and a dropout rate of 0.8 and 0 to evaluate the impact, with results shown in Table 3.6.

TABLE 3.6: Results of the 2 best models for different features and dropout rate of 0.8 and without dropout.

iel 19: (optimi	zer: Adaı	n; dropoi	ut: 0.8)		M	odel 20:	(optim	izer: Ada	m; dropo	out: 0)	
acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
0.349	0.789	0.349	0.291	0.764	0.050	mfcc60	0.566	0.820	0.566	0.565	0.577	0.564
0.308	0.754	0.308	0.275	0.788	0.062	mfcc40	0.514	0.799	0.514	0.508	0.525	0.508
0.265	0.750	0.265	0.264	0.683	0.033	mfcc80	0.523	0.785	0.523	0.505	0.536	0.519
0.260	0.762	0.260	0.260	0.852	0.055	mel80	0.479	0.768	0.479	0.489	0.487	0.464
0.283	0.717	0.283	0.256	0.872	0.041	stft60	0.483	0.807	0.483	0.483	0.497	0.453
el 21: (o	ptimiz	er: Adam	ax; dropo	out: 0.8)		Mo	del 22: (optimiz	zer: Adan	nax; drop	out: 0)	
acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
0.266	0.807	0.266	0.260	0.521	0.030	mfcc40	0.569	0.825	0.569	0.570	0.580	0.564
0.266	0.672	0.266	0.255	0.806	0.035	mfcc80	0.493	0.790	0.493	0.509	0.503	0.490
0.253	0.778	0.253	0.255	0.537	0.026	stft60	0.487	0.845	0.487	0.489	0.538	0.429
0.275	0.699	0.275	0.255	0.917	0.026	mel60	0.491	0.801	0.491	0.488	0.549	0.425
0.259	0.764	0.259	0.251	0.514	0.023	mel80	0.480	0.808	0.480	0.485	0.552	0.437
2	acc 0.349 0.308 0.265 0.260 0.283 1 21: (c acc 0.266 0.266 0.266 0.253 0.275 0.259	acc AUC 0.349 0.789 0.308 0.754 0.265 0.750 0.260 0.762 0.283 0.717 1 21: (⊽timiz) acc AUC 0.266 0.807 0.266 0.672 0.253 0.778 0.275 0.699 0.259 0.764	AUC micro f1score 0.349 0.789 0.349 0.308 0.754 0.308 0.265 0.750 0.265 0.260 0.762 0.260 0.283 0.717 0.283 121: (optimizer: Adam acc AUC micro f1score 0.266 0.807 0.266 0.266 0.672 0.266 0.253 0.778 0.253 0.275 0.699 0.275 0.259 0.764 0.259	acc AUC micro f1score f1score macro f1score 0.349 0.789 0.349 0.291 0.308 0.754 0.308 0.275 0.265 0.750 0.265 0.264 0.260 0.762 0.260 0.260 0.283 0.717 0.283 0.256 121: (optimizer: Adamax; drope f1score f1score f1score 0.266 0.807 0.266 0.260 0.266 0.672 0.266 0.255 0.253 0.778 0.253 0.255 0.253 0.778 0.253 0.255 0.275 0.699 0.275 0.255 0.259 0.764 0.259 0.251	acc AUC micro f1score macro f1score prec 0.349 0.789 0.349 0.291 0.764 0.308 0.754 0.308 0.275 0.788 0.265 0.750 0.265 0.264 0.683 0.260 0.762 0.260 0.260 0.852 0.283 0.717 0.283 0.256 0.872 121: (optimizer: Adamax; dropout: 0.8) acc AUC micro f1score prec 0.266 0.807 0.266 0.260 0.521 0.266 0.672 0.266 0.255 0.806 0.253 0.778 0.253 0.255 0.537 0.275 0.699 0.275 0.255 0.917 0.259 0.764 0.259 0.251 0.514	acc AUC micro f1score macro f1score prec recall 0.349 0.789 0.349 0.291 0.764 0.050 0.308 0.754 0.308 0.275 0.788 0.062 0.265 0.750 0.265 0.264 0.683 0.033 0.260 0.762 0.260 0.260 0.852 0.055 0.283 0.717 0.283 0.256 0.872 0.041 121: (optimiz=r: Adamax; dropout: 0.8) 0.266 0.872 0.041 121: (optimiz=r: Adamax; dropout: 0.8) 0.266 0.620 0.521 0.030 0.266 0.807 0.266 0.260 0.521 0.030 0.266 0.672 0.266 0.255 0.806 0.035 0.253 0.778 0.253 0.255 0.537 0.026 0.275 0.699 0.275 0.255 0.917 0.026 0.259 0.764 0.259 0.251 0.514 0.023	acc AUC micro f1score macro f1score prec recall Features 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.265 0.750 0.265 0.264 0.683 0.033 mfcc80 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.283 0.717 0.283 0.256 0.872 0.041 stft60 121: (optimiz=r: Adamax; dropout: 0.8) Mor f1score prec recall Features 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.266 0.807 0.266 0.255 0.806 0.035 mfcc80 0.253 0.778 0.253 0.255 0.537 0.026 stft60 0.253 0.778 0.253 0.255 0.917 0.026 mel80 0.259 <td>acc AUC micro f1score macro f1score prec recall Features acc 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.523 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.479 0.283 0.717 0.283 0.256 0.872 0.041 stff60 0.483 121: (optimiz=r: Adamax; dropout: 0.8) Model 22: 0 0.030 mfcc40 0.569 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.569 0.266 0.672 0.266 0.255 0.806 0.035 mfcc80 0.493 0.253 0.778 0.253 0.255 0.537 0.026 stff60 0.493 0</td> <td>acc AUC micro flscore macro flscore prec flscore recall Features acc AUC 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.265 0.750 0.265 0.264 0.683 0.033 mfcc80 0.523 0.785 0.260 0.762 0.260 0.265 0.872 0.041 stft60 0.483 0.807 121: (optimizer: Adamax; dropout: 0.8) Model 22: (optimiz acc AUC micro flscore prec flscore recall Features acc AUC 0.266 0.672 0.266 0.260 0.521 0.030 mfcc40 0.569 0.825 0.266 0.807 0.266 0.255 0.806 0.035 mfcc80 0.493 0.790 0.253 0.778 0.253 0.255 <t< td=""><td>acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.514 0.799 0.514 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 121: (optimizer: Adamax; dropout: 0.8) Model 22: (optimizer: Adama micro flscore prec recall Features acc AUC micro flscore 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.569 0.825 0.</td><td>acc Micro macro prec recall Features acc AUC micro macro flscore flscore prec recall Features acc AUC micro macro flscore flscore</td></t<><td>acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore macro flscore prec prec 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.555 0.577 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.508 0.525 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.514 0.799 0.514 0.508 0.525 0.260 0.762 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.489 0.487 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 0.483 0.497 121: (optimiz=r: Adamax; dropout: 0.8</td></td>	acc AUC micro f1score macro f1score prec recall Features acc 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.523 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.479 0.283 0.717 0.283 0.256 0.872 0.041 stff60 0.483 121: (optimiz=r: Adamax; dropout: 0.8) Model 22: 0 0.030 mfcc40 0.569 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.569 0.266 0.672 0.266 0.255 0.806 0.035 mfcc80 0.493 0.253 0.778 0.253 0.255 0.537 0.026 stff60 0.493 0	acc AUC micro flscore macro flscore prec flscore recall Features acc AUC 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.265 0.750 0.265 0.264 0.683 0.033 mfcc80 0.523 0.785 0.260 0.762 0.260 0.265 0.872 0.041 stft60 0.483 0.807 121: (optimizer: Adamax; dropout: 0.8) Model 22: (optimiz acc AUC micro flscore prec flscore recall Features acc AUC 0.266 0.672 0.266 0.260 0.521 0.030 mfcc40 0.569 0.825 0.266 0.807 0.266 0.255 0.806 0.035 mfcc80 0.493 0.790 0.253 0.778 0.253 0.255 <t< td=""><td>acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.514 0.799 0.514 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 121: (optimizer: Adamax; dropout: 0.8) Model 22: (optimizer: Adama micro flscore prec recall Features acc AUC micro flscore 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.569 0.825 0.</td><td>acc Micro macro prec recall Features acc AUC micro macro flscore flscore prec recall Features acc AUC micro macro flscore flscore</td></t<> <td>acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore macro flscore prec prec 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.555 0.577 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.508 0.525 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.514 0.799 0.514 0.508 0.525 0.260 0.762 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.489 0.487 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 0.483 0.497 121: (optimiz=r: Adamax; dropout: 0.8</td>	acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.514 0.799 0.514 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 121: (optimizer: Adamax; dropout: 0.8) Model 22: (optimizer: Adama micro flscore prec recall Features acc AUC micro flscore 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.569 0.825 0.	acc Micro macro prec recall Features acc AUC micro macro flscore flscore prec recall Features acc AUC micro macro flscore flscore	acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore macro flscore prec recall Features acc AUC micro flscore macro flscore prec prec 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.555 0.577 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.508 0.525 0.265 0.750 0.265 0.264 0.683 0.033 mfcc40 0.514 0.799 0.514 0.508 0.525 0.260 0.762 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.489 0.487 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 0.483 0.497 121: (optimiz=r: Adamax; dropout: 0.8

acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

Based on the results presented in Table 3.6, it is possible to see that in both cases, the models without dropout gave better results than the models with a dropout rate equal to 0.8, which confirms what was previously observed. Nevertheless, comparing these results with the previous ones, the models that provided better results are still the previously identified baselines. However, the models that provided the worst results have changed to those with a dropout of 0.8.

In Figure 3.8, a graphic plot of the AUC and loss is presented, showing the results of the models with Adam and Adamax as an optimizer and a dropout rate of 0.4, 0.8 and 0. Analysing the graph, both models without a dropout rate suffer from overfitting, and the models with a dropout rate of 0.8 give the worst results.

Therefore, these results show evidence that the value used for the dropout rate greatly influences the final results, and if the dropout rate is too low, the model will suffer from overfitting. Still, if it is too high, the model will not have enough information to distinguish properly between classes due to a large number of activation being set to zero, a fact

that does not allow the network to learn, culminating in low values for the different metrics. These inferences are corroborated by Srivastava et al. [30] which has also explored the effect of varying the dropout rate while maintaining the same architecture using different datasets from several domains, reaching the following conclusions: a high value for the dropout rate leads to underfitting since very few units will turn on during training and the decrease in the dropout rate makes the error go down until the interval where the dropout rate is situated between 0.2 and 0.6 inclusive, in which the error becomes flat, then, after this interval further decreasing the dropout rate will increase the error.

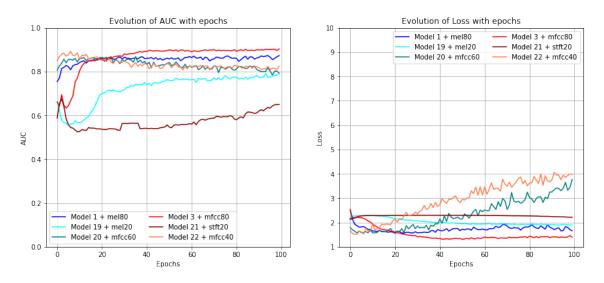


FIGURE 3.8: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the two best base models and their corresponding ones with a dropout rate of 0.8 and 0.

In conclusion, looking at all of the results, the model configuration that gave the best result in most metrics was model 4, which used Nadam optimizer, the base architecture and as input MFCC with 80 MFCC. Also, model 11 has the base architecture with a dropout rate of 0.2, which gave the best results out of all the models with Adam optimizer when evaluated using MFCC with 80 MFCC; however, the model started to suffer from overfitting, indicating that the ideal dropout rate for the model with Adam optimizer should be superior to 0.2 and inferior to 0.4 because the dropout rate of 0.2 has given better results than the dropout rate of 0.4. For the models with Adamax optimizers, having a dropout rate superior to 0.4 shows some degradation in the performance. On the other hand, the dropout rate of 0.2 and 0.4 for the top feature give similar results, but when comparing the top 2 features, the results are better for the dropout rate of 0.4. Finally, for the model with SGD optimizer, the decrease in the dropout rate shows to be

beneficial. Considering that the model did not show overfitting, further decreasing the dropout rate would have given better results before overfitting.

3.4.4 Models with a Combination of Features as Input - Baseline Model Architecture

To determine the best set of features, a study was conducted to determine the best combination of features for this baseline model. All features were combined in many ways as possible to perform this study. Due to the different output shapes of features, some features could not be combined; therefore it was only tried 15 different combinations. Table 3.7 summarizes the performance of the base models.

	Mod	el 1: (o	ptimizer:	Adam)				Moo	del 2: (o	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.669	0.925	0.669	0.682	0.736	0.638	mms80	0.630	0.898	0.630	0.662	0.845	0.312
mmstftq	0.659	0.910	0.659	0.681	0.719	0.634	mms60	0.602	0.909	0.602	0.624	0.830	0.367
mmsqc	0.627	0.912	0.627	0.658	0.696	0.605	mfccmel	0.603	0.894	0.603	0.624	0.855	0.366
mms40	0.634	0.909	0.634	0.652	0.717	0.600	mfccstft80	0.591	0.897	0.591	0.611	0.802	0.305
mmcens	0.627	0.894	0.627	0.652	0.678	0.602	mmstftq	0.601	0.898	0.601	0.610	0.820	0.348
· · · · ·	Mode	1 3: (op	timizer:	Adamax)				Mode	el 4: (op	timizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mms60	0.655	0.926	0.655	0.680	0.756	0.625	mmsqc80	0.676	0.926	0.676	0.693	0.719	0.652
mmq	0.640	0.912	0.640	0.668	0.697	0.601	mmstftq	0.663	0.914	0.663	0.687	0.712	0.639
mmsqc80	0.634	0.900	0.634	0.656	0.677	0.585	mms80	0.650	0.901	0.650	0.676	0.687	0.634
mfccstft80	0.628	0.915	0.628	0.654	0.695	0.585	mmsqc	0.658	0.919	0.658	0.676	0.709	0.620
mms40	0.637	0.921	0.637	0.651	0.752	0.585	mmq	0.645	0.916	0.645	0.669	0.723	0.608
	Mode	l 5: (opt	imizer: A	Adadelta)				Mode	16: (op	timizer: /	Adagrad)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfccstft80	0.247	0.665	0.247	0.217	0.245	0.029	mmstftq	0.409	0.828	0.409	0.419	0.933	0.067
mfccmel	0.249	0.636	0.249	0.186	0.295	0.121	mmsqc80	0.423	0.827	0.423	0.407	0.786	0.053
mms40	0.251	0.610	0.251	0.180	0.235	0.127	mmsqc	0.384	0.780	0.384	0.383	0.830	0.047
mmsqc80	0.208	0.638	0.208	0.175	0.269	0.116	mms60	0.338	0.776	0.338	0.348	0.907	0.047
mmq	0.201	0.688	0.201	0.169	0.261	0.145	mfccstft	0.370	0.789	0.370	0.345	0.914	0.038
acc - accura All metrics	<u> </u>				1	ting cha	racteristic cui	rve; pre	c - prec	ision.			

TABLE 3.7: Results of the 6 models for different feature combinations.

All metrics range from [0, 1] (the higher, the better).

Looking at the performance of the six base models is possible to verify that giving as input a combination of features instead of a single feature provides much better results for all models, which would be expected since many of them are very discriminating features. Nevertheless, the models that performed better with individual features are the same with a better performance with a combination of features. In terms of a group of features, the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT and Chroma CENS with 80 bins is the group of features that ranks in the highest positions for the top 5 of most models.

Figure 3.9 shows a graphic representation of the AUC curves and loss function evolution over the defined epochs for the six models, having each one as input the best performing combination of features. These graphics conclude that model 5 is the only one that still has not entirely converged. Still, it seems to be on the verge of convergence, so considering the tendency of both curves is unlikely that this model will outperform any other, so no further training was performed. Observing the performance of the other models is clear that model 5 has an inferior performance compared to the others, evidencing the weak capability of MFCC and Chroma STFT only.

Therefore, the two worst-performing models were not considered for the following studies.

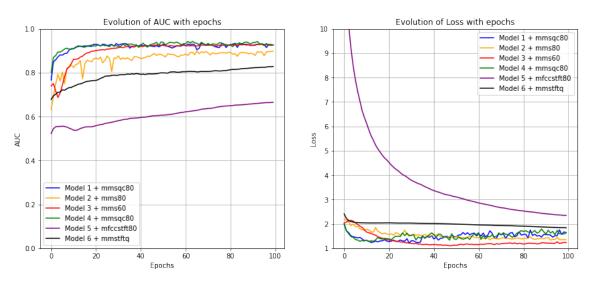


FIGURE 3.9: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the six base models with a group of features as input.

3.4.5 Models with a Combination of Features as Input - Extra Layer

Next, the performance of the models was studied when an extra layer was added, with results presented in Table 3.8.

Comparing the results obtained with the base models and the models with an extra layer can be observed that the top result of the model with Adam optimizer had slightly improved when the extra layer was added in three of the six metrics considered, having a positive influence on accuracy and micro *F*1-score of 0.002, macro *F*1-score of 0.004, recall of 0.010. For precision, the value was the same. The model with Adamax optimizer has also got three metrics with a slight improvement: accuracy and micro *F*1-score of 0.003,

	Mod	el 7: (oj	ptimizer:	Adam)				Moc	lel 8: (o	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.671	0.916	0.671	0.686	0.736	0.648	mmsqc	0.582	0.889	0.582	0.616	0.804	0.300
mmq	0.658	0.905	0.658	0.685	0.713	0.631	mmq	0.602	0.893	0.602	0.612	0.812	0.274
mms40	0.663	0.912	0.663	0.683	0.750	0.644	mmsqc80	0.595	0.890	0.595	0.610	0.822	0.299
mfccstft	0.664	0.918	0.664	0.683	0.735	0.636	mfccmel	0.566	0.900	0.566	0.593	0.832	0.302
mmstftq	0.634	0.914	0.634	0.656	0.700	0.599	mfccstft80	0.570	0.876	0.570	0.585	0.829	0.208
	Mode	1 9: (op	timizer:	Adamax)				Mode	1 10: (o	ptimizer:	Nadam)		
Features	acc	AUC	micro	macro	proc	recall	Features	acc	AUC	micro	macro	proc	recall
reatures	acc	AUC	f1score	f1score	prec	recan	reatures	acc	AUC	f1score	f1score	prec	recan
mmsqc80	0.658	0.919	0.658	0.680	0.710	0.633	mmstftq*	0.699	0.911	0.699	0.720	0.756	0.664
mms40	0.628	0.913	0.628	0.655	0.690	0.568	mmsqc	0.687	0.922	0.687	0.703	0.777	0.645
mfccstft	0.626	0.914	0.626	0.650	0.703	0.576	mmsqc80	0.676	0.910	0.676	0.689	0.713	0.650
mms60	0.626	0.901	0.626	0.648	0.687	0.591	mms80	0.654	0.906	0.654	0.670	0.706	0.599
mmsqc	0.606	0.907	0.606	0.628	0.694	0.578	mms40	0.648	0.918	0.648	0.668	0.703	0.625
acc - accura	cy; AU	C - area	under th	e receive	r opera	ting cha	racteristic cui	rve; pre	c - prec	ision.			
All metrics	range fi	rom [0, 1	1] (the hig	gher, the l	oetter).								

TABLE 3.8: Results of the 4 models with an extra dense and dropout layer for different feature combinations.

recall of 0.008, and for macro *F*1-score, the result was the same. The model with Nadam optimizer was the model that showed more improvements by having 5 out of 6 metrics improved, with an increase of 0.023 for accuracy and micro *F*1-score, 0.027 for macro *F*1-score, 0.037 for precision and 0.012 for recall. In contrast, the model with SGD optimizer was the only one that didn't improve the results for most metrics with the addition of the extra layer, showing some of the limitations of the SGD for larger sets.

Considering the group of features, the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT, Chroma CENS with a number of bins equal to 80 was the most beneficial combination for the models with Adam or Adamax as an optimizer and is the only combination of features that appears in the top 5 of all models.

In Figure 3.10, as can be concluded, all models have converged, and the model with SGD as the optimizer is the one that shows a slightly worst behaviour.

Since the benefits are relatively small for two models, being significant only for one, the base architecture was maintained in the subsequent studies.

3.4.6 Models with a Combination of Features as Input - Dropout Rate

So, for the next study, only the dropout rate of the model was changed to 0.2 and 0.6 concerning the base model. The results are presented on Table 3.9 for the dropout rate of 0.2 and Table 3.10 for the dropout rate of 0.6.

Analysing the tables of results is possible to conclude that the model with Adam or Nadam as optimizer has shown better performance for a dropout rate of 0.6 and worst for 0.2. The model with the Adamax optimizer obtained better results for 0.2 and worst

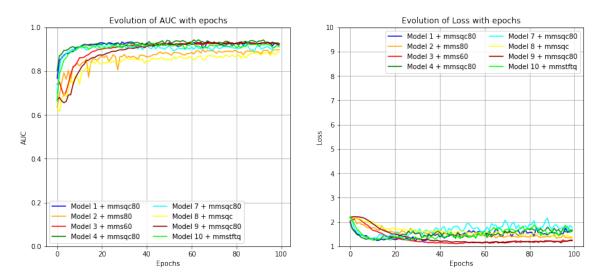


FIGURE 3.10: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models and their corresponding ones with an extra layer with a group of features as input.

	Mode	el 11: (o	ptimizer	: Adam)				Mod	el 12: (optimizer	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mms60	0.668	0.895	0.668	0.693	0.691	0.658	mms80	0.627	0.904	0.627	0.641	0.731	0.550
mmq	0.646	0.889	0.646	0.670	0.675	0.633	mfccstft80	0.594	0.892	0.594	0.593	0.718	0.477
mmstftq	0.642	0.881	0.642	0.667	0.664	0.637	mmsqc	0.591	0.890	0.591	0.589	0.706	0.454
mms40	0.637	0.889	0.637	0.655	0.677	0.624	mfccstft	0.591	0.869	0.591	0.587	0.697	0.425
mmsqc80	0.622	0.866	0.622	0.641	0.639	0.618	mms60	0.588	0.894	0.588	0.586	0.663	0.522
	Model 13: (optimizer: Adamax)							Mode	l 14: (o	ptimizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc	0.685	0.907	0.685	0.697	0.708	0.664	mms80	0.675	0.898	0.675	0.695	0.697	0.668
mmstftq	0.670	0.914	0.670	0.691	0.691	0.657	mmsqc80	0.639	0.882	0.639	0.668	0.657	0.624
mmsqc80	0.651	0.894	0.651	0.673	0.670	0.636	mmsqc	0.644	0.877	0.644	0.665	0.665	0.636
mmcens	0.632	0.889	0.632	0.655	0.671	0.614	mms60	0.650	0.899	0.650	0.664	0.665	0.639
mmg	0.645	0.903	0.645	0.647	0.678	0.621	mmstftq	0.631	0.882	0.631	0.654	0.652	0.625

TABLE 3.9: Results of the 4 models with a dropout rate of 0.2 for different feature combinations.

All metrics range from [0, 1] (the higher, the better).

for 0.6. Finally, the model with SGD optimizer has the worst results for both dropout rates compared with the base models. The improvements for the Adam optimizer model were accuracy and micro *F*1-score of 0.007, macro *F*1-score of 0.014 and precision of 0.045. For Nadam optimizer model, accuracy, micro *F*1-score and macro *F*1-score has improved 0.028, then, 0.003 for AUC and 0.070 for precision, respectively. For the Adamax optimizer using this model, the improvements were 0.030 for accuracy and micro *F*1-score, 0.017 for macro *F*1-score and 0.039 for recall. So, once again, the model that showed more significant improvements in metrics was the model with Nadam optimizer.

Focusing on the most beneficial group of features, for the dropout rate of 0.2 was the

	Mode	el 15: (o	ptimizer	: Adam)				Mod	el 16: (optimize	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc	0.676	0.923	0.676	0.696	0.781	0.551	mfccmel	0.271	0.764	0.271	0.288	0.877	0.085
mmsqc80	0.650	0.927	0.650	0.684	0.807	0.550	mfccstft80	0.292	0.779	0.292	0.267	0.804	0.049
mms60	0.662	0.916	0.662	0.679	0.828	0.568	mms40	0.257	0.794	0.257	0.247	0.865	0.054
mms80	0.651	0.910	0.651	0.674	0.786	0.522	mfccstft	0.201	0.756	0.201	0.205	0.769	0.048
mmstftq	0.634	0.905	0.634	0.662	0.757	0.556	mmstftq	0.201	0.710	0.201	0.162	0.667	0.017
•	Model	17: (op	timizer:	Adamax)			Mode	1 18: (o	ptimizer:	Nadam)		
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
			f1score		1					f1score	f1score	1	
mmstftq	0.636	0.911	0.636	0.657	0.767	0.489	mmsqc*	0.704	0.929	0.704	0.721	0.789	0.594
mfccstft80	0.621	0.913	0.621	0.640	0.787	0.478	mms80	0.675	0.918	0.675	0.696	0.827	0.558
mmq	0.575	0.870	0.575	0.595	0.787	0.296	mms40	0.654	0.921	0.654	0.680	0.788	0.536
mfccstft	0.557	0.881	0.557	0.585	0.732	0.373	mmsqc80	0.640	0.925	0.640	0.677	0.744	0.554
											0.669	0.741	0.541
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).													

TABLE 3.10: Results of the 4 models with a dropout rate of 0.6 for different feature combinations.

combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT and Chroma CENS with 40 bins because is one of the groups of features that appears in three out of four models and also, is the one that appears in higher positions of the top 5 combinations of features, meaning that are very discriminating features among many parameter variations. For the dropout rate of 0.6, the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT with a number of bins equal to 80 is the one that appears in the top 5 of all models. However, the top combination of features that allowed the models with Adam and Nadam optimizers to achieve the best results was the combination of MFCC, Melspectrogram, Chroma STFT, C

In Figure 3.11, the graphics plots show that all models have converged, and models 11 and 14, as previously observed when individual features were used as input, started to suffer from overfitting. Analysing the AUC curves, the model with SGD optimizer had the worst performance of all models when the dropout rate was 0.6. For the other models, the performance differences are not evident. Still, it is possible to see that for the models with Adam and Nadam optimizers, the dropout rate of 0.2 provided the worst result. For the Adamax model, the dropout rate of 0.4 was the most beneficial.

3.4.7 Models with a Combination of Features as Input - Extra Layer and Dropout Rate

Using Adam and Adamax optimizers, there were minor improvements when an extra layer was added to the model and when the dropout rate was changed to 0.6 for the

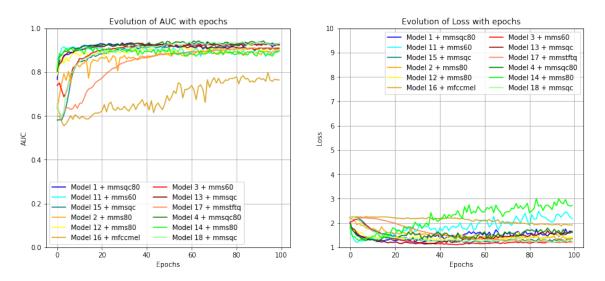


FIGURE 3.11: Graphs of the evolution of AUC (left) and loss function (right) with epochs for the four base models and their corresponding ones with a dropout rate of 0.2 and 0.6 with a group of features as input.

Adam optimizer and 0.2 for the Adamax optimizer. So, the following study considers these improvements to see if combined could produce even better results and evaluate if the dropout rate of 0.8 and an extra layer would work better for the Adamax optimizer model or no dropout rate with an extra layer for the Adam optimizer model. Also, a combination of Nadam optimizer is studied, an extra layer and a dropout rate of 0.6 and the same combination but with a dropout rate of 0.8.

Table 3.11 shows the results for the models with the mentioned modifications.

Analysing the results shown in Table 3.11, it can be concluded that the Adam and Nadam optimizer model with a dropout rate of 0.6 has a much higher performance than the model with 0.8. Then, regarding the models with Adamax as an optimizer, the dropout rate of 0.2 was also more beneficial. Comparing the three best models in this table with the base models is possible to conclude that the results for Adam and Nadam optimizer models were worse than the base model. However, for Adamax optimizer models, in most metrics, the model with an extra layer and a dropout rate of 0.2 has a higher performance when compared to the base model. Also, the three best-performing combinations of features for this model are better than the best-performing group of features for the base model. The difference between the best performing group of features for the base model and the combination of features with more top values of model 25 for the different metrics are for accuracy and micro F1-score of 0.016, for macro F1-score of 0.004 and 0.032 for recall.

TABLE 3.11: Results of the 3 models with an extra layer and dropout rate of 0.6 and 0.8 for Adam and Nadam optimizer and 0.2 and 0 for the Adamax optimizer with different feature combinations.

Model 23	3: (optii	mizer: /	Adam an	d dropou	t rate: ().6)	Model 2	4: (opti	mizer: /	Adam and	d dropou	t rate: ().8)
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mms60	0.626	0.898	0.626	0.653	0.775	0.466	mms40	0.214	0.639	0.214	0.188	0.875	0.042
mmsqc	0.613	0.902	0.613	0.651	0.763	0.430	mfccstft	0.189	0.680	0.189	0.165	0.854	0.042
mmstftq	0.613	0.895	0.613	0.643	0.799	0.474	mms60	0.166	0.571	0.166	0.143	0.957	0.026
mfccstft80	0.605	0.907	0.605	0.615	0.802	0.441	mms80	0.168	0.611	0.168	0.130	0.952	0.024
mms40	0.588	0.881	0.588	0.614	0.743	0.421	mmsqc80	0.154	0.574	0.154	0.123	1.000	0.023
Model 25:	(optim	izer: A	damax ai	nd dropo	ut rate:	0.2)	Model 20	5: (optir	nizer: Å	Adamax a	nd dropo	out rate	: 0)
Features		AUC	micro	macro		#0.0011	Features		AUC	micro	macro		#0.0011
reatures	acc	AUC	f1score	f1score	prec	recall	reatures	acc	AUC	f1score	f1score	prec	recall
mmsqc80*	0.662	0.906	0.662	0.690	0.689	0.650	mmstftq	0.618	0.850	0.618	0.636	0.624	0.608
mms80	0.664	0.894	0.664	0.685	0.692	0.652	mms80	0.609	0.855	0.609	0.626	0.619	0.602
mms40	0.671	0.900	0.671	0.684	0.718	0.657	mmsqc80	0.575	0.823	0.575	0.601	0.583	0.572
mmstftq	0.649	0.893	0.649	0.670	0.668	0.638	mmcens	0.599	0.849	0.599	0.599	0.612	0.593
mfccmel	0.650	0.890	0.650	0.654	0.687	0.638	mms40	0.582	0.825	0.582	0.595	0.594	0.577
Model 27	: (optin	nizer: N	ladam ar	d dropou	ıt rate:	0.6)	Model 28	: (optin	nizer: N	Jadam an	d dropou	it rate:	0.8)
Fastures		AUC	micro	macro		#0.00 ¹¹	Feetures		AUC	micro	macro		#0.00 ¹¹
Features	acc	AUC	f1score	f1score	prec	recall	Features	acc	AUC	f1score	f1score	prec	recall
mmstftq	0.639	0.897	0.639	0.668	0.826	0.465	mmsqc	0.182	0.638	0.182	0.168	0.879	0.035
mmsqc	0.615	0.898	0.615	0.638	0.807	0.440	mms80	0.204	0.651	0.204	0.167	1.000	0.026
mmsqc80	0.615	0.893	0.615	0.637	0.780	0.436	mms40	0.179	0.632	0.179	0.154	0.857	0.036
mms60	0.611	0.907	0.611	0.635	0.771	0.458	mms60	0.111	0.596	0.111	0.142	1.000	0.026
mms40	0.605	0.901	0.605	0.627	0.765	0.464	mmcens	0.160	0.615	0.160	0.125	1.000	0.026
acc - accura	cy; AU	C - area	under th	e receive	r opera	ting cha	racteristic cu	rve; pre	c - prec	ision.			

All metrics range from [0, 1] (the higher, the better).

Figure 3.12 shows the various AUC and loss curves for Adam, Adamax and Nadam optimizer models with the dropout rates of 0.4, 0 and 0.8.

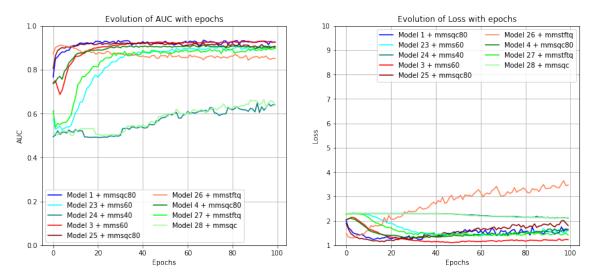


FIGURE 3.12: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the two base models and their corresponding ones with an extra layer and dropout rate of 0.2 and 0 (zero) for Adamax and 0.6 and 0.8 for Adam with a group of features as input.

So, according to Figure 3.12 all models have converged, model 26 has suffered from overfitting and model 24 and 28 had inferior performance. Analysing the AUC curves per

64

set of models with the same optimizer is possible to conclude that for Adam and Adamax at the end of the 100th epoch, the best performance is given by the base models and the worst by the models with a drop rate of 0.8 or without any dropout rate, respectively. For Nadam optimizer models, the worst performance was clearly of the model with a dropout rate of 0.8, while several models performed equally well based on the AUC curve analysis.

According to the obtained results, it can be concluded that Adam, Adamax and Nadam are the optimizers that proportionate better results, confirming the previous analysis. The results showed that for Adam and Nadam, the best model was when the base architecture was maintained and when the dropout rate was changed to 0.6. On the other hand, for Adamax, when the dropout rate was changed to 0.2 or added an extra layer with a dropout rate changed to 0.2, the models improved 4 out of 6 metrics. However, the one that provided the more significant improvement on most metrics was the model with the base architecture and a dropout rate of 0.2. In terms of the group of features, the one that allowed to produce the best results for these Adam, Nadam and Adamax optimizers was the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT, Chroma CENS with 40 bins. To summarise, out of the three best models, the one that provided the best results was the model with the Nadam optimizer.

3.4.8 Best Models Analysis and Discussion Using UrbanSound8K

In order to be able to compare the results in an unbiased way according to Salamon et al. [28], it is necessary to do 10 folds cross-validation and average out the values to obtain the final results. Table 3.12 shows the results for each folder as the test folder and the average metric values for the best model with a single feature input and the best model with a combination of features as input.

Figure 3.13 presents the confusion matrices for the two performing models previously mentioned to see how well they perform per class to understand which classes generate a higher error as well as the ones that are better identified by the models. Analysing the confusion matrices, it can be seen that even though model 4 with "mfcc80" has an inferior performance compared to model 18 with "mmsqc" for all metrics, model 4 was capable of outperforming model 18 for four classes which were car horns with an improvement of 4 percentage points (pp), 5 pp for a dog bark, 2 pp for drilling and 4 pp for street music. However, model 18, in general, can better predict the class, especially for children playing and gunshot classes for which the percentage error is equal to or less than 23%. Thus,

Model 4	: (optin	nizer: Na	adam; dr	: 0.4; feat	ure: mf	cc80)	Model 18: (optimizer: Nadam; dr: 0.6; feature: mmsqc)						
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall
1	0.512	0.829	0.512	0.535	0.628	0.301	1	0.584	0.867	0.584	0.608	0.713	0.475
2	0.515	0.858	0.515	0.514	0.619	0.447	2	0.557	0.872	0.557	0.570	0.675	0.417
3	0.524	0.871	0.524	0.523	0.621	0.467	3	0.525	0.837	0.525	0.561	0.630	0.392
4	0.543	0.890	0.543	0.517	0.725	0.337	4	0.606	0.900	0.606	0.603	0.731	0.492
5	0.627	0.919	0.627	0.617	0.778	0.568	5	0.632	0.912	0.632	0.652	0.745	0.534
6	0.542	0.878	0.542	0.551	0.656	0.439	6	0.548	0.869	0.548	0.580	0.662	0.447
7	0.585	0.895	0.585	0.593	0.768	0.372	7	0.641	0.910	0.641	0.652	0.833	0.459
8	0.609	0.896	0.609	0.635	0.851	0.333	8	0.660	0.907	0.660	0.694	0.795	0.553
9	0.680	0.923	0.680	0.688	0.756	0.651	9	0.647	0.891	0.647	0.675	0.738	0.559
10	0.637	0.908	0.637	0.628	0.747	0.572	10	0.704	0.929	0.704	0.721	0.789	0.594
Average	0.577	0.887	0.577	0.580	0.715	0.449	Average	0.611	0.889	0.611	0.632	0.731	0.492
	dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).												

TABLE 3.12: Results for the 10 folds of the top performing model with a single feature and with a group of features as input.

both models show more difficulties identifying sounds belonging to the air conditioner, drilling, engine idling and jackhammer classes. On the other hand, car horns, children playing and gunshots were the classes with the highest accuracy for both models.

Mu et al. [21] found that the benefits of the attention mechanisms depend on the sound characteristics, being more profitable for transient sounds, temporal attention mechanisms, and for continuous sounds, frequency attention mechanisms. With these findings in mind, the obtained results can indicate a higher facility for the models to identify sounds with pronounced temporal characteristics. Therefore, the models are more capable of identifying transient rather than continuous sounds.

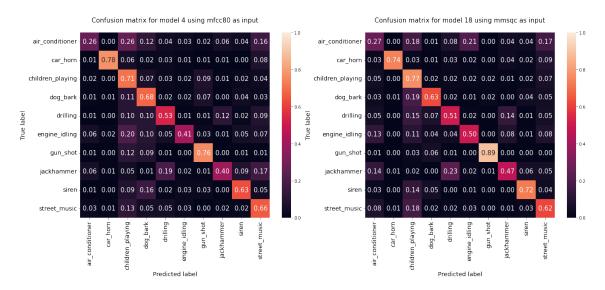


FIGURE 3.13: Confusion matrices for the best model using as input a single feature on the left and the best model using a group of features as input, on the right.

3.5 Baseline Models - Using ESC Dataset

After analysing the results of all the previous models, a similar study was performed for the datasets ESC-10 and ESC-50 to see the models' performance changes for balanced datasets with the same number of classes as UrbanSound8K and with a higher number of classes.

3.5.1 Models with a Single Feature Input - Baseline Model Architecture

Next, Table 3.13 and 3.14 the results for the base models with a single feature input for ESC-10 and ESC-50, respectively, are presented according to the same methodology used in models for UrbanSound8K.

	Mo	del 1: (o	ptimizer	: Adam)			Model 2: (optimizer: SGD)						
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc60	0.613	0.880	0.613	0.601	0.642	0.425	mel60	0.463	0.852	0.463	0.442	0.526	0.125
mfcc80	0.588	0.879	0.588	0.574	0.667	0.425	mel80	0.450	0.858	0.450	0.433	0.714	0.188
mel40	0.563	0.891	0.563	0.567	0.603	0.438	mel40	0.450	0.875	0.450	0.427	0.500	0.113
mel20	0.575	0.897	0.575	0.558	0.617	0.463	mel20	0.438	0.886	0.438	0.413	0.455	0.063
mel60	0.538	0.843	0.538	0.528	0.548	0.425	mfcc80	0.425	0.852	0.425	0.364	0.455	0.125
	Mod	el 3: (op	otimizer:	Adamax)				Mod	lel 4: (o	ptimizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mel40	0.488	0.878	0.488	0.465	0.765	0.163	mfcc40	0.650	0.894	0.650	0.644	0.723	0.425
mfcc60	0.475	0.890	0.475	0.410	0.462	0.075	mel40	0.588	0.900	0.588	0.597	0.603	0.438
stft80	0.425	0.859	0.425	0.409	0.667	0.025	mfcc60	0.600	0.877	0.600	0.594	0.630	0.363
mel80	0.425	0.831	0.425	0.405	0.579	0.138	mel20	0.600	0.899	0.600	0.587	0.545	0.375
stft40	0.400	0.859	0.400	0.385	0.500	0.013	mfcc80	0.575	0.874	0.575	0.558	0.630	0.363
	Mode	el 5: (op	timizer:	Adadelta)			Mod	el 6: (op	otimizer:	Adagrad)	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
cens40	0.175	0.532	0.175	0.116	0.000	0.000	mel60	0.400	0.838	0.400	0.383	0.647	0.138
cens80	0.225	0.498	0.225	0.115	0.000	0.000	mel40	0.413	0.828	0.413	0.367	0.667	0.125
mfcc40						0.075	mel80	0.400	0.813	0.400	0.365	0.565	0.163
mel80								0.413	0.830	0.413	0.361	0.571	0.200
mel40	0.088	0.479	0.088	0.078	0.000	0.000	mel20	0.375	0.843	0.375	0.320	0.778	0.088
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.													

TABLE 3.13: Results of the 6 models for different features - ESC-10.

All matrice new so from [0, 1] (the bish on the batter)

All metrics range from [0, 1] (the higher, the better).

Similar to what was previously observed for UrbanSound8K, for the ESC datasets, the best model was still the one that used Nadam as an optimizer, and the two worst were the ones that used Adadelta and Adagrad optimizers. So, these two worst optimizers were not considered for the following studies. In terms of features, Melspectrogram and MFCC are the preferable features, however, for ESC-10 the feature which produced the best results was MFCC with 40 MFCC and for ESC-50, MFCC with 80 MFCC.

In Figure 3.14 and 3.15 is shown the AUC and loss curves of the base models for the ESC-10 and ESC-50 datasets, respectively.

	Mo	del 1: (o	ptimizer	: Adam)			Model 2: (optimizer: SGD)						
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.313	0.854	0.313	0.293	0.504	0.170	mel80	0.173	0.780	0.173	0.139	0.394	0.033
mfcc60	0.305	0.856	0.305	0.290	0.503	0.188	mel60	0.158	0.781	0.158	0.131	0.480	0.030
mfcc40	0.288	0.850	0.288	0.271	0.456	0.130	mel40	0.153	0.796	0.153	0.126	0.429	0.030
mel20	0.263	0.858	0.263	0.249	0.519	0.105	mfcc80	0.143	0.782	0.143	0.123	0.375	0.015
mel40	40 0.240 0.855 0.240 0.228 0.540 0.118						mel20	0.148	0.800	0.148	0.118	0.450	0.023
	Mod	el 3: (op	otimizer:	Adamax)				Mod	lel 4: (o	ptimizer:	Nadam)		
Features	eatures acc AUC micro macro prec reca							acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.188	0.845	0.188	0.146	0.214	0.008	mfcc80	0.313	0.850	0.313	0.297	0.511	0.168
stft40	0.148	0.794	0.148	0.119	0.533	0.020	mfcc60	0.310	0.848	0.310	0.290	0.515	0.173
mel40	0.128	0.773	0.128	0.118	0.421	0.020	mfcc40	0.300	0.866	0.300	0.275	0.496	0.145
stft60	0.153	0.797	0.153	0.118	0.538	0.018	mel20	0.258	0.854	0.258	0.242	0.556	0.113
stft20	0.153	0.795	0.153	0.117	0.636	0.018	8 mel40 0.238 0.850 0.238 0.218						0.110
	Mode	el 5: (op	timizer:	Adadelta)			Mod	el 6: (op	otimizer:	Adagrad)	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
cens80	0.045	0.507	0.045	0.020	0.000	0.000	mel40	0.113	0.712	0.113	0.078	0.333	0.013
mel80	0.023	0.535	0.023	0.014	0.033	0.005	mel20	0.108	0.713	0.108	0.074	0.545	0.015
mel60	0.020	0.533	0.020	0.013	0.019	0.003	mel60	0.103	0.690	0.103	0.064	0.450	0.023
mel40	nel40 0.018 0.508 0.018 0.008 0.026 0.00						mel80	0.095	0.671	0.095	0.063	0.308	0.020
mfcc40								0.043	0.583	0.043	0.018	0.000	0.000
acc - accur	a under t		ating cha	aracteristic c	urve; p	rec - pre	ecision.						

TABLE 3.14: Results of the 6 models for different features - ESC-50.

All metrics range from [0, 1] (the higher, the better).

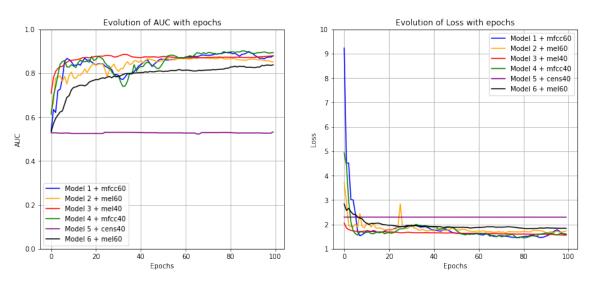


FIGURE 3.14: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the six base models for ESC-10.

Observing the curves is possible to conclude that with the ESC-10 dataset, all models have converged; however, for the ESC-50 dataset, model 3, which used Adamax optimizer, was the only one that has not converged which is an unexpected situation according to the previous results, but can be justified by the more challenging dataset that may require a few more epochs with this configuration.

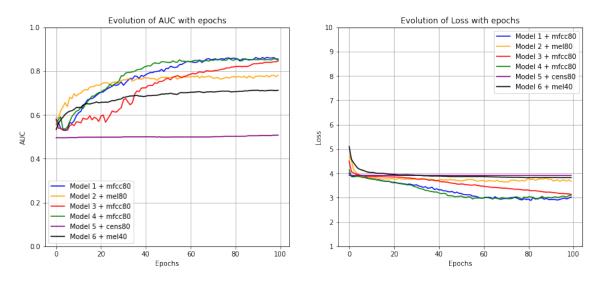


FIGURE 3.15: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the six base models for ESC-50.

Focusing on the AUC curves, model 5 is the worst one, followed by model 6. Nonetheless, models 1 and 4 show identical behaviours corresponding to the best performances. However, model 3 presents a final result slightly worse than the best ones. Considering that this model at the end of the 100th epoch had not fully converged, perhaps with further training, a better convergence and corresponding results could be obtained. So, to confirm that, model 3 was trained until convergence, culminating in the results presented in Table 3.15 and Figure 3.16.

TABLE 3.15: Results of the model with Adamax optimizer for different features - ESC-50.

		M	odel 3: (optimiz	er: Adamax)		
Features	acc	AUC	micro f1score	macro f1score	precision	recall
mfcc60	0.318	0.871	0.318	0.312	0.465	0.133
mfcc80	0.323	0.869	0.323	0.304	0.477	0.158
mfcc40	0.290	0.866	0.290	0.275	0.568	0.125
mel20	0.233	0.858	0.233	0.209	0.525	0.053
mel80	0.185	0.826	0.185	0.172	0.488	0.053

acc - accuracy; AUC - area under the receiver operating characteristic curve. All metrics range from [0, 1] (the higher, the better).

Therefore, Figure 3.16 shows that the model has only converged around the 170th epoch, and the difference in the results after convergence is quite considerable, as can be seen graphically by the differences in the loss and AUC value. Table 3.15 further confirms the improvements by comparing either with the same model or the others. In particular, the top 2 features have produced better results than any of the previous models in most metrics.

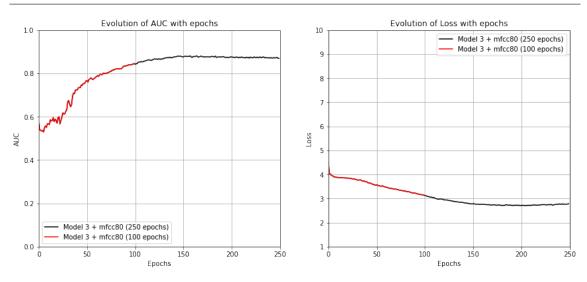


FIGURE 3.16: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the Adamax optimizer model for ESC-50.

For the subsequent studies, only the four best optimizers were used to explore the potential benefits of changing the architecture by adding a new layer and changing the dropout rate could produce. After looking at the results, it was clear that adding an extra layer and the dropout rate of 0.6 did not improve the model's performance, so these results are only shown in Appendix B just for reference.

3.5.2 Models with a Single Feature Input - Dropout Rate of 0.2

Tables 3.16 and 3.17 displays the results for the models when the dropout rate was changed to 0.2.

	Mod	lel 11: (optimize	r: Adam)			Model 12: (optimizer: SGD)							
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
mfcc60	0.650	0.878	0.650	0.647	0.676	0.625	mel40	0.525	0.881	0.525	0.517	0.600	0.225	
mfcc40	0.625	0.893	0.625	0.618	0.644	0.588	mfcc80	0.513	0.891	0.513	0.497	0.647	0.413	
mfcc80	0.600	0.873	0.600	0.586	0.613	0.575	mel80	0.500	0.860	0.500	0.482	0.600	0.263	
mel80	0.525	0.862	0.525	0.533	0.547	0.513	mfcc60	0.500	0.888	0.500	0.476	0.583	0.438	
mel60	0.538	0.851	0.538	0.531	0.557	0.488	mel60 0.488 0.865 0.488 0.469 0.583							
	Mode	el 13: (o	ptimizer:	Adamax)		Model 14: (optimizer: Nadam)							
Features		AUC	micro	macro		recall	Features		AUC	micro	macro		ma aa 11	
reatures	acc	AUC	f1score	f1score	prec	recan	reatures	acc	AUC	f1score	f1score	prec	recall	
mfcc40	0.588	0.909	0.588	0.575	0.659	0.363	mfcc60	0.625	0.874	0.625	0.621	0.657	0.575	
mfcc60	0.575	0.910	0.575	0.570	0.640	0.400	mfcc40	0.600	0.894	0.600	0.603	0.608	0.563	
mfcc80	0.550	0.870	0.550	0.535	0.595	0.313	mfcc80	0.613	0.878	0.613	0.594	0.639	0.575	
mel40	0.525	0.886	0.525	0.533	0.617	0.363	mel80	0.550	0.873	0.550	0.552	0.574	0.488	
mel20	0.513	0.865	0.513	0.515	0.526	0.250	mel40	0.550	0.878	0.550	0.551	0.581	0.538	
acc - accui	acy; AU	JC - are	a under t	he receive	er opera	ating cha	aracteristic c	urve; p	rec - pre	ecision.				
All metric	s range	from [0,	. 1] (the h	igher, the	better).									

TABLE 3.16: Results of the 4 best models for single features and dropout of 0.2 - ESC-10.

	Mod	lel 11: (optimize	r: Adam)				Mo	del 12: (optimize	r: SGD)			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
mfcc60	0.353	0.811	0.353	0.344	0.419	0.303	mfcc80	0.275	0.860	0.275	0.258	0.505	0.125	
mfcc40	0.335	0.806	0.335	0.328	0.394	0.283	mfcc60	0.255	0.859	0.255	0.236	0.448	0.108	
mfcc80	0.303	0.790	0.303	0.293	0.359	0.253	mfcc40	0.245	0.856	0.245	0.219	0.495	0.113	
mel20	0.255	0.824	0.255	0.237	0.379	0.138	mel20	0.178	0.808	0.178	0.163	0.400	0.040	
mel40	0.240	0.817	0.240	0.229	0.406	0.178	mel40	0.173	0.799	0.173	0.159	0.387	0.060	
	Mode	el 13: (o	ptimizer:	Adamax)		Model 14: (optimizer: Nadam)							
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
mfcc80	0.328	0.874	0.328	0.314	0.521	0.190	mfcc80	0.350	0.802	0.350	0.330	0.413	0.315	
mfcc60	0.295	0.845	0.295	0.283	0.484	0.153	mfcc60	0.335	0.788	0.335	0.316	0.401	0.288	
mfcc40	0.283	0.854	0.283	0.263	0.479	0.145	mfcc40	0.305	0.814	0.305	0.295	0.366	0.253	
mel20	mel20 0.198 0.844 0.198 0.175 0.455 0.05							0.270	0.825	0.270	0.259	0.424	0.160	
mel40 0.185 0.821 0.185 0.169 0.389 0.053 mel20 0.250 0.823 0.250 0.234 0.369 0.138													0.138	
acc - accur	acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.													

TABLE 3.17: Results of the 4 best models for single features and dropout of 0.2 - ESC-50.

All metrics range from [0, 1] (the higher, the better).

Analysing the results, all models have improved their performance except for the model with Nadam optimizer for the ESC-10 dataset.

For the ESC-10 dataset, model 11, which has Adam as the optimizer, got results analogous to what was obtained by the Nadam optimizer in the initial model. Then, regarding the results for the ESC-50 dataset, the models with Adam and Nadam optimizers showed identical results for the base models. However, when the dropout rate was decreased to 0.2, the model with Adam optimizer showed an improved capacity to produce the best results by a small margin compared to the results produced by the model with Nadam optimizer. Regarding the features, it is evident that MFCC and Melspectrogram are the preferable features. Nonetheless, MFCC with 60 MFCC stands out because it gives the best results for both datasets when the model uses Adam as an optimizer, corresponding to the presented models with the best results with a dropout rate of 0.2.

In Figure 3.17 and 3.18 is represented the curves for the base models and the correspondent ones with a dropout rate of 0.2.

These figures show that models 11 and 14 have overfitted, being more pronounced for the ESC-50 dataset and unlike in the base models that the model with Adamax optimizer for the ESC-50 dataset has not converged, when the dropout rate is changed to 0.2, the model converges. This model offered the best result when considering the AUC curve metric.

Since models 11 and 14 have been overfitted, further reduction of the dropout rate will not improve the results. Regarding the models with Adamax optimizer, when the dropout rate was changed to 0.2, it showed considerable improvements, allowing convergence in both datasets without overfitting. Due to previous experiments with UrbanSound8K,

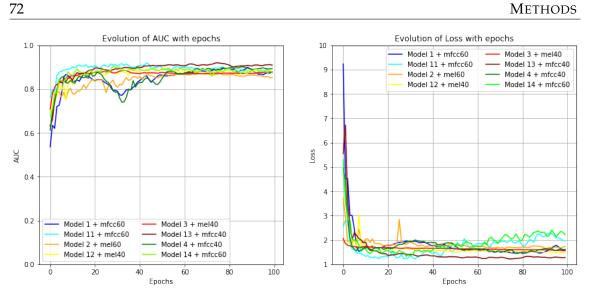


FIGURE 3.17: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four best models with a dropout rate of 0.2 for ESC-10.

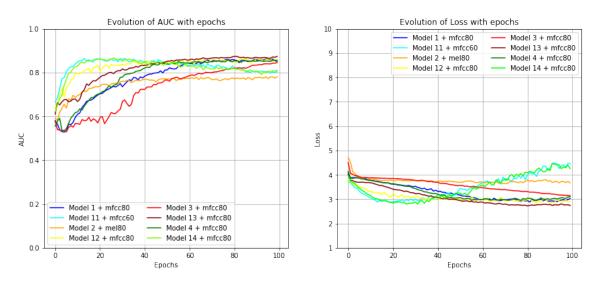


FIGURE 3.18: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four best models with a dropout rate of 0.2 for ESC-50.

the dropout rate change seems to be the next logical step to take to improve the model's performance. However, it would be improbable that a lower dropout rate would improve the results. However, this study was made to rule out this hypothesis properly, as shown in Table 3.18 and Figure 3.19.

Analysing the results, it can be confirmed that the results did not improve when the dropout rate was set to 0 (zero), which is consistent since dropout act as a regularization to avoid model overfitting. Focusing on the loss curves, it is possible to see that model 19 has suffered from overfitting for ESC-50. However, for ESC-10, the same model did not

Model 19): (optin	nizer: A	damax; d	lr: 0; data	set: ES	C-10)	Model 19): (optin	nizer: A	damax; d	r: 0; data	set: ES	C-50)
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.575	0.918	0.575	0.580	0.592	0.563	mfcc80	0.323	0.771	0.323	0.317	0.373	0.295
mfcc60	0.550	0.909	0.550	0.566	0.609	0.525	mfcc40	0.308	0.779	0.308	0.298	0.343	0.260
mfcc40	0.575	0.893	0.575	0.565	0.584	0.563	mfcc60	0.293	0.783	0.293	0.283	0.336	0.253
mel80	0.525	0.835	0.525	0.524	0.557	0.488	mel20	0.238	0.827	0.238	0.224	0.325	0.095
mel20													
dr - dropo	dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.												

TABLE 3.18: Results for Adamax optimizer's models for single features and dropout of 0.

All metrics range from [0, 1] (the higher, the better).

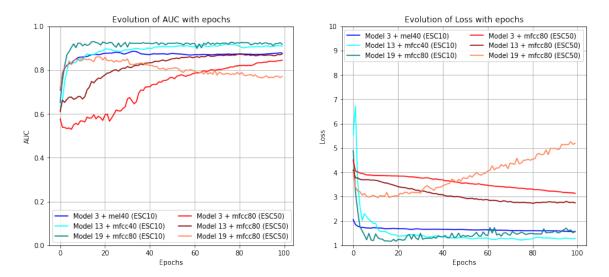


FIGURE 3.19: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the models with Adamax as an optimizer and without dropout rate for ESC-10 and ESC-50.

show the same behaviour, but even though the model has not overfitted, the results were worst than the model trained with a dropout rate of 0.2.

Therefore, out of all these models, the one that allowed the best results was the model with Adam optimizer and a dropout rate of 0.2 for both datasets. For ESC-10, model 11 and model 4 produce similar results. Nonetheless, there is a big difference in the recall value which makes model 11 slightly better than model 4.

3.5.3 Models with a Combination of Features as Input - Baseline Model Architecture

In the study made for UrbanSound8K, the change of models' input to a combination of features significantly boosted the models' performance, so the same approach was employed in the ESC datasets.

Table 3.19 and Table 3.20 show the results of the ESC datasets for the base architecture models with a combination of features as input.

It is necessary to note that in addition to the combination of features already mentioned in Table 3.1, four new features groups were used, which were "mmq40", "mmstftq40", "mmcens40" and "mfccmel40" which correspond to the same combination of features presented on Table 3.1 with the same group of letters. However, the number of bins was set to 40.

	Mod	el 1: (o	ptimizer:	Adam)			Model 2: (optimizer: SGD)						
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.713	0.938	0.713	0.701	0.740	0.675	mms40	0.538	0.908	0.538	0.499	0.656	0.263
mmq	0.688	0.941	0.688	0.673	0.729	0.538	mmstftq40	0.475	0.858	0.475	0.433	0.640	0.200
mms40	0.675	0.942	0.675	0.663	0.707	0.513	mmcens40	0.438	0.864	0.438	0.396	0.586	0.213
mmstftq	0.675	0.938	0.675	0.661	0.758	0.625	mmstftq	0.413	0.793	0.413	0.383	0.519	0.175
mmq40	0.675	0.660	0.488	mfccstft	0.425	0.858	0.425	0.375	0.433	0.163			
	Mode	1 3: (op	timizer:	Adamax)			'	Mode	el 4: (op	timizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmcens	0.613	0.894	0.613	0.587	0.708	0.213	mmsqc	0.738	0.910	0.738	0.727	0.773	0.725
mmsqc80	0.538	0.907	0.538	0.525	0.718	0.350	mmstftq40	0.725	0.916	0.725	0.719	0.737	0.700
mms60	0.538	0.912	0.538	0.521	0.684	0.163	mmq40	0.688	0.902	0.688	0.677	0.692	0.675
mmstftq	0.513	0.903	0.513	0.497	0.826	0.238	mmq	0.663	0.884	0.663	0.657	0.675	0.650
mms80	0.500	0.893	0.500	0.493	0.667	0.175	mms80	0.663	0.894	0.663	0.647	0.688	0.663
	Model	5: (opt	imizer: Å	Adadelta)				Model	6: (op	timizer: Å	Adagrad)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmq40	0.213	0.533	0.213	0.103	0.205	0.188	mmsqc	0.563	0.908	0.563	0.554	0.750	0.150
mms60	0.113	0.504	0.113	0.102	0.083	0.063	mmstftq40	0.450	0.883	0.450	0.426	0.543	0.238
mfccstft	0.150	0.541	0.150	0.090	0.145	0.113	mmsqc80	0.450	0.884	0.450	0.426	0.568	0.263
mmsqc	nmsqc 0.150 0.565 0.150 0.085 0.154 0.12						mmstftq	0.388	0.848	0.388	0.359	0.600	0.150
mmcens40	0.163	0.541	0.163	0.056	0.163	0.163	mms80	0.388	0.856	0.388	0.344	0.600	0.188
acc - accura	acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.												

TABLE 3.19: Results of the 6 models for different feature combinations - ESC-10.

All metrics range from [0, 1] (the higher, the better).

Once again, for ESC-50, the two models that presented the worst results was model 5 and 6 with Adadelta and Adagrad optimizers, respectively. The best results were given by model 1 with Adam optimizer for ESC-50 and model 4 with Nadam for ESC-10 dataset. Unlike the other experiments, for ESC-10, the two worst models were Adadelta and SGD, conforming to the non-robustness of both optimizers on large datasets. Thus, following the previous methodology, the two worst models for each dataset were not considered in the subsequent analyses.

In terms of the group of features, for ESC-10, the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT with 80 bins correspond to the group of features that appears in most models, and MFCC, Melspectrogram and Chroma CQT with 80 bins

	Mod	el 1: (oj	ptimizer:	Adam)			Model 2: (optimizer: SGD)						
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
mmq	0.393	0.873	0.393	0.379	0.575	0.250	mmq	0.178	0.789	0.178	0.153	0.591	0.033
mmstftq	0.383	0.875	0.383	0.361	0.584	0.243	mms60	0.173	0.770	0.173	0.151	0.529	0.023
mmsqc80	0.365	0.869	0.365	0.352	0.511	0.243	mms40	0.155	0.808	0.155	0.149	0.667	0.030
mmcens40	0.365	0.895	0.365	0.345	0.635	0.200	mmcens40	0.175	0.795	0.175	0.145	0.722	0.033
mms40	0.358	0.879	0.358	0.343	0.550	0.193	mmcens	0.158	0.776	0.158	0.140	0.650	0.033
	Mode	l 3: (op	timizer: 🛛	Adamax)				Mode	l 4: (op	timizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
mmsqc80	0.230	0.844	0.230	0.194	0.565	0.033	mmstftg	0.375	0.878	0.375	0.354	0.571	0.223
mmq	0.200	0.827	0.200	0.168	0.647	0.028	mmstftq40	0.360	0.882	0.360	0.346	0.497	0.180
mmstftg	0.183	0.787	0.183	0.168	0.462	0.015	mmsqc	0.355	0.884	0.355	0.345	0.524	0.215
mmsqc	0.180	0.836	0.180	0.156	0.571	0.020	mms80	0.345	0.872	0.345	0.339	0.605	0.188
mfccstft80	0.163	0.821	0.163	0.155	0.440	0.028	mms60	0.355	0.874	0.355	0.337	0.536	0.203
	Model	5: (opt	imizer: Å	dadelta)				Mode	6: (op	timizer: /	Adagrad)	1	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
	0.025	0 502			0.051	0.022		0.055	0 590			0.000	0.005
mmstftq40	0.035	0.503	0.035	0.011	0.051	0.033	mms60	0.055	0.589	0.055	0.057	0.286	0.005
mmstftq	0.023	0.523	0.023	0.009	0.032	0.015	mmq	0.060	0.614	0.060	0.054	0.429	0.008
mmsqc	0.030	0.518	0.030	0.009	0.030	0.020	mms80	0.060	0.609	0.060	0.050	0.250	0.005
mmq	0.015	0.506	0.015	0.009	0.028	0.013 0.008	mfccstft	0.048	0.620	0.048	0.043	0.000	0.000
mmsqc80	0.013	0.503	0.013	0.008	0.014	mmcens	0.055	0.572	0.055	0.042	0.167	0.003	
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.													

TABLE 3.20: Results of the 6 models for different feature combinations - ESC-50.

All metrics range from [0, 1] (the higher, the better).

appear in the top 5 of almost every model for ESC-50. Furthermore, the mentioned combination of features is also the one that permit obtaining the top result out of all models for the ESC-50 dataset.

Figures 3.20 and 3.21 show the evolution of AUC and loss curves with epochs. It is possible to verify that for ESC-50, model 3 did not reach convergence within the 100 training epochs, so it should be trained until convergence to see the best results it can give, which may overcome the results obtained by model 1.

Because the models that presented the best performance were fully trained, the results are shown next in Figure 3.22 and Table 3.21 for model 3 with ESC-50 fully trained to fairly compare this model results with the others.

Therefore, looking at the Figure mentioned above, it is possible to conclude that model 3 converged around the 170th epoch. The graph presents two curves corresponding to two different combinations of feature inputs; one corresponds to the group of features that gave the best performance for the base architecture model, and the other is the group that gives the best results for the fully trained model.

Focusing on Table 3.21, model 3 shows a considerable performance improvement but could not outperform model 1, so model 1 is still the best for the ESC-50 dataset.

After getting the results for the base architecture models thoroughly trained, other experiments were performed for the four best models for each dataset by adding an extra

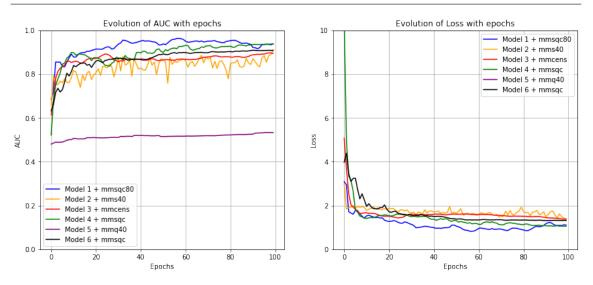


FIGURE 3.20: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models with a combination of features as input for ESC-10.

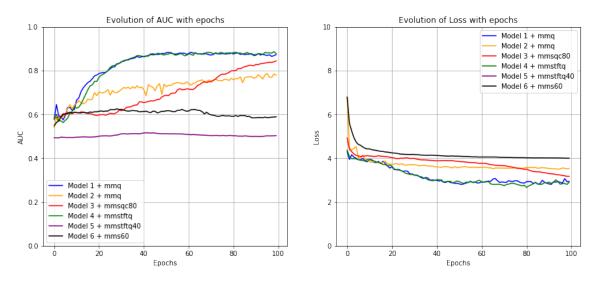


FIGURE 3.21: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for the four base models with a combination of features as input for ESC-50.

TABLE 3.21: Results for model 3 fully trained for different feature combinations - ESC-50.

	Model 3: (optimizer: Adamax; dataset: ESC-50)											
Features	acc	AUC	micro f1score	macro f1score	precision	recall						
mmstftq	0.360	0.885	0.360	0.348	0.602	0.178						
mms80	0.348	0.890	0.348	0.341	0.625	0.188						
mfccstft	0.348	0.886	0.348	0.337	0.512	0.158						
mmsqc	0.353	0.902	0.353	0.335	0.579	0.193						
mfccstft80												
dr - dropout ra	te; acc - ac	curacy; Al	JC - area under the r	eceiver operating cha	racteristic curv	e.						

All metrics range from [0,1] (the higher, the better).

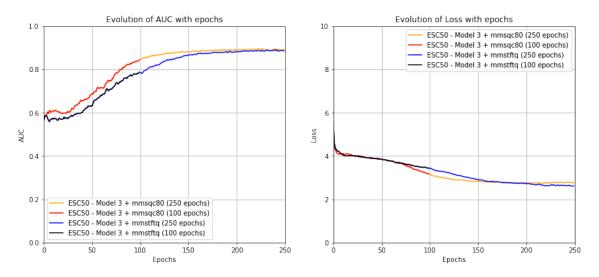


FIGURE 3.22: Graphs of the evolution of AUC (left) and loss function (right) with the epochs for model 4 with ESC-10 dataset and model 3 with ESC-50.

layer and changing the dropout rate to 0.2 and 0.6 to assess the impact of those changes. As previously noted for experiments with a single feature input, the only change that provided better results than the base architecture models has the dropout rate change to 0.2.

So next, the results for the dropout rate of 0.2 for both datasets are presented.

3.5.4 Models with a Combination of Features as Input - Dropout Rate of 0.2

Table 3.22 and Table 3.23 show the results for the models with a dropout rate of 0.2.

	Mode	el 11: (o	ptimizer	: Adam)				Model	12: (op	timizer:	Adagrad)	
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
			f1score	f1score	-					f1score	f1score	1	
mmstftq	0.725	0.936	0.725	0.724	0.750	0.713	mmstftq	0.638	0.907	0.638	0.639	0.707	0.513
mmcens40	0.713	0.952	0.713	0.708	0.727	0.700	mmq40	0.600	0.928	0.600	0.569	0.724	0.525
mmstftq40	0.713	0.929	0.713	0.699	0.733	0.688	mmcens	0.550	0.912	0.550	0.528	0.696	0.400
mmq40	0.700	0.952	0.700	0.694	0.724	0.688	mmcens40	0.550	0.921	0.550	0.525	0.620	0.388
mmq	0.688	0.932	0.688	0.687	0.705	0.688	mms40	0.563	0.919	0.563	0.520	0.773	0.425
	Model	13: (op	timizer:	Adamax))			Mode	l 14: (oj	ptimizer:	Nadam)		
Features	acc	AUC	micro	macro	proc	recall	Features	acc	AUC	micro	macro	proc	recall
reatures	acc	AUC	f1score	f1score	prec	recan	reatures	acc	AUC	f1score	f1score	prec	iecan
mmstftq40	0.700	0.939	0.700	0.694	0.758	0.625	mms60	0.775	0.956	0.775	0.774	0.787	0.738
mmstftq	0.700	0.958	0.700	0.691	0.782	0.538	mmq40	0.725	0.942	0.725	0.719	0.753	0.725
mmsqc80	0.700	0.942	0.700	0.689	0.735	0.625	mmcens40	0.700	0.926	0.700	0.691	0.757	0.700
mmq	0.675	0.934	0.675	0.665	0.699	0.638	mmstftq40	0.688	0.925	0.688	0.682	0.714	0.688
mmcens40	0.663	0.950	0.663	0.654	0.750	0.563	mmsqc	0.675	0.921	0.675	0.677	0.761	0.638
acc - accura	cy; AU	C - area	under th	ne receive	r opera	ting cha	racteristic cu	rve; pre	c - prec	rision.			
All metrics	range fr	om [0,	1] (the hi	gher, the l	better).								

TABLE 3.22: Results of the 4 best models for dropout of 0.2 and different feature combinations - ESC-10.

	Mode	el 11: (o	ptimizer	: Adam)				Mod	el 12: (o	optimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmq40	0.398	0.829	0.398	0.386	0.472	0.358	mms40	0.313	0.863	0.313	0.289	0.519	0.140
mmstftq	0.390	0.810	0.390	0.386	0.452	0.340	mmcens40	0.303	0.868	0.303	0.279	0.495	0.130
mmstftq40	0.393	0.839	0.393	0.385	0.476	0.350	mms80	0.275	0.852	0.275	0.263	0.500	0.138
mmsqc80	0.393	0.811	0.393	0.382	0.449	0.360	mmsqc80	0.275	0.844	0.275	0.262	0.510	0.130
mmsqc	0.390	0.817	0.390	0.376	0.445	0.333	mmstftq	0.255	0.852	0.255	0.245	0.405	0.113
	Model	13: (op	timizer:	Adamax)) .			Mode	l 14: (oj	otimizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.383	0.875	0.383	0.373	0.583	0.228	mfccstft80	0.403	0.816	0.403	0.388	0.459	0.353
mmstftq	0.365	0.889	0.365	0.349	0.556	0.223	mmsqc	0.385	0.840	0.385	0.371	0.472	0.358
mms80	0.348	0.878	0.348	0.334	0.555	0.215	mmstftq	0.378	0.825	0.378	0.371	0.452	0.350
mfccstft80	0.345	0.874	0.345	0.329	0.544	0.218	mmstftq40	0.370	0.827	0.370	0.364	0.457	0.323
mmsqc	0.350	0.874	0.350	0.328	0.545	0.198	mms40	0.368	0.818	0.368	0.354	0.435	0.310
acc - accurac All metrics i						ting cha	racteristic cu	rve; pre	c - prec	ision.			

TABLE 3.23: Results of the 4 best models for dropout of 0.2 and different feature combinations - ESC-50.

Analysing the values for the various metrics can verify that this change improved all models' performance. The model with the Nadam optimizer provided the best results for both datasets.

Regarding the group of features, the combination of MFCC, Melspectrogram, Chroma STFT and Chroma CQT with 80 bins appear to be the preferable group since it appears in almost all models' top 5 and also, produces the top results of two models for ESC-10.

Looking to Figures 3.23 and 3.24, it is possible to verify that all models with a dropout rate of 0.2 have converged. For the ESC-50, models 11 and 14 were overfitted and focused on the results of the AUC curves, these are the only two models showing more bad behaviour than the corresponding base models.

3.5.5 Cross-validating Results

Since the UrbanSound dataset, significant differences in the results were observed depending on the folder considered as the test folder. The same study was done for the ESC datasets. However, it was not expected significant discrepancies in the results depending on the test folder because the datasets are balanced, so the model should have approximately the same difficulty attributing the suitable class to the unseen data regardless of the considered training and test folders.

Table 3.24 shows the results for the 5-fold cross-validation in which each folder is taken as the test folder for the ESC-10 and ESC-50 datasets.

Deep analysis of the results, it is possible to see that using a particular folder as the test folder can give better results with considerable differences in some metrics values

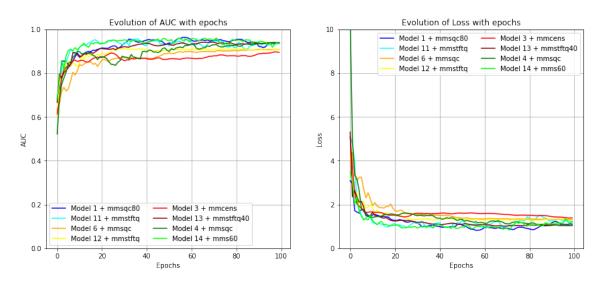


FIGURE 3.23: Graphs of the evolution of AUC (left) and loss function (right) with epochs for the four best base models and their corresponding ones with a dropout rate of 0.2 with a group of features as input for ESC-10.

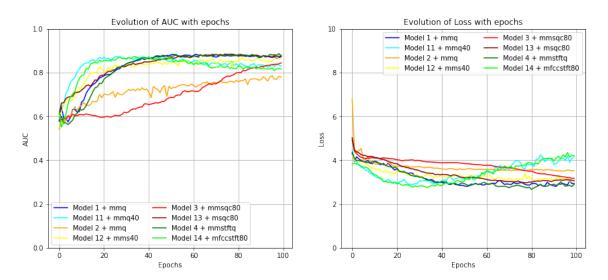


FIGURE 3.24: Graphs of the evolution of AUC (left) and loss function (right) with epochs for the four best base models and their corresponding ones with a dropout rate of 0.2 with a group of features as input for ESC-50.

between the best and the worst performance. Therefore, even though these are balanced datasets, performing cross-validation and averaging out the results seems to be the more fair way to compare the results due to the different difficulties the model has depending on the considered test folder.

Regarding the models' efficiency in distinguish between classes, Figure 3.25 and Figure 3.26 show the confusion matrices of the 5-fold cross-validation model's average used for the ESC-10 dataset and ESC-50 dataset, respectively.

TABLE 3.24:	Results for the 5	folds of the top	performing	model for	ESC-10 and	ESC-50
		datas	et.			

		ESC	C-10 datas	et					ESC	-50 datas	et		
Mod	el 14: (o	pt: Nad	am; dr: 0.	2; feature	e: mms6	0)	Model	14: (ор	t: Nadar	n; dr: 0.2;	feature:	mfccstf	t80)
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall
1	0.775	0.956	0.775	0.774	0.787	0.738	1	0.403	0.816	0.403	0.388	0.459	0.353
2	0.675	0.936	0.675	0.663	0.707	0.663	2	0.360	0.805	0.360	0.339	0.411	0.310
3	0.800	0.962	0.800	0.797	0.842	0.800	3	0.375	0.832	0.375	0.352	0.438	0.338
4	0.775	0.968	0.775	0.774	0.827	0.775	4	0.380	0.848	0.380	0.361	0.443	0.348
5	0.713	0.921	0.713	0.709	0.724	0.688	5	0.388	0.821	0.388	0.369	0.447	0.345
Average	0.748	0.948	0.748	0.743	0.777	0.733	Average	0.381	0.824	0.381	0.362	0.439	0.339

opt - optimizer; dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve;

prec - precision. All metrics range from [0, 1] (the higher, the better).

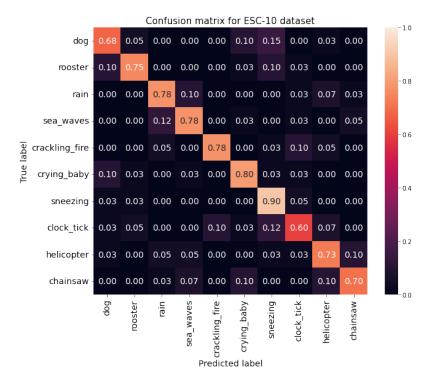


FIGURE 3.25: Confusion matrix for the best model using the ESC-10 dataset.

Analysing the confusion matrices can be concluded that for the ESC-10 dataset, dog and clock tick classes are the most challenging classes with an accuracy inferior to 70%, and the most straightforward class is sneezing, which has 90% of accuracy. Regarding the ESC-50 dataset, the classes with the highest accuracy are sea waves, clapping, and toilet flush, with a value of 70% or superior. However, there are 36 classes with an accuracy inferior to 50%, with the lowest value being 2% for hand saw, water drops, and clock tick classes.

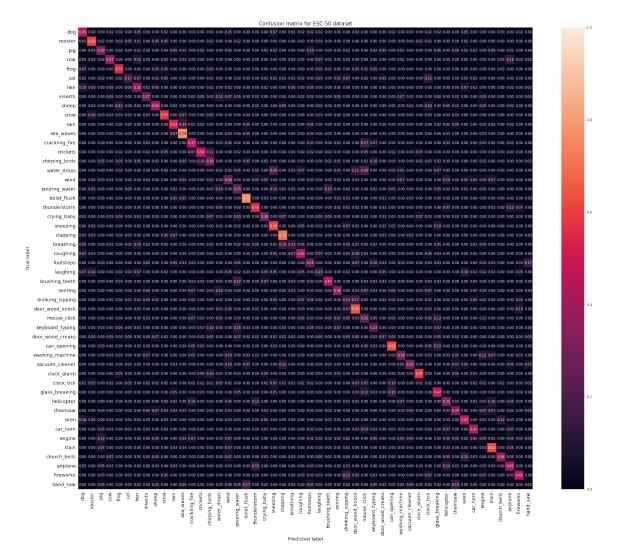


FIGURE 3.26: Confusion matrix for the best model using the ESC-50 dataset.

3.6 Overall Baseline Conclusions

This chapter explored the different optimization functions, feature extraction techniques, the loss function used, and the different used metrics and defined the architecture of the baseline model. To conclude the chapter, several experiences were performed to obtain the best baseline model.

Therefore, models were implemented with different inputs of single and group features, dropout rates and a higher number of layers. The various experiences allow to reach the following conclusions:

• Analysing the base models, Adagrad and Adadelta are the optimizers that produce the worst results regardless if the input is a single feature or a group feature, except in one case with the ESC-10 dataset where SGD performed worst than Adagrad.

- Regarding the UrbanSound8K dataset, adding an extra layer for a single feature input, the only model that benefited from the change was the one that used SGD* as an optimizer. For a combination of features, the models with Adam and Adamax as optimization functions showed a slight improvement in the results. The model with Nadam* as optimizer attained 5 out 6 best metrics. However, unlike in a single feature input, the model with SGD optimizer did not show any performance improvement. For the ESC datasets, adding an extra layer did not improve the models' performances, regardless of model input or optimization function.
- Changing the dropout rate for the single feature input was beneficial for Adam, either by changing the rate to 0.2 or 0.6. For SGD, only the change for 0.2 was better than the base model. For Adamax, the base model and the model with a dropout rate of 0.2 had similar results for the top result. However, when analysing the top 2 features, the base model was better, and for Nadam, neither change was beneficial. Adam and Adamax used dropout rates of 0.8 and 0 to explore the advantages of changing the dropout rate further. These changes revealed that the dropout rate increase started to be too high for the model to have enough information to distinguish correctly between classes. A low rate leads the model to overfit. Regarding the group of features, for Adam and Nadam*, changing to 0.6 improved the results. For Adamax, the change to 0.2 provided better results than the base model, and no change was profitable for SGD. For the ESC datasets, only the change for a dropout rate of 0.2 produced improvements in models' results either for a single or a combination of features as input.
- For the models with a group of features as input trained for UrbanSound8K, it was observed that some results had improved when an extra layer was added and when the dropout rate was changed. However, the combination of these alterations was only profitable for Adamax* when an extra layer was added, and the dropout rate was 0.2.

Out of all these experiences, the optimization function that allowed the best result was Nadam, whether for a single* or a group of features* for UrbanSound8K and the ESC datasets with a combination of features as input, however, for a single feature input, Adam show to be more beneficial. Regarding the input features, MFCC was the single feature that produce better results, particularly, MFCC with 80 MFCCs for UrbanSound8K

and with 60 MFCCs to ESC datasets. For a group of features, the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT and Chroma CENS with 40 bins was the combination that gave the best results for UrbanSound8K and the second best result out of all experiences for ESC-10.

Chapter 4

End-to-End Models

This chapter employed the acquired knowledge in implementing the baselines and developing State-of-the-Art (SOTA) end-to-end models to classify Urban Sound events effectively. Extensive experiments and model evaluation with hyper-parameter tuning and different architectures are extensively evaluated and discussed to identify the limitations and potentialities of the different models and improvements regarding the established baselines.

4.1 Residual Neural Network (ResNet)

This architecture was introduced by He et al. [12] to solve the vanishing gradients problem and mitigate the degradation of Deep Neural Network (DNN)s with several layers. The vanishing gradient problem complicates convergence since the gradient is backpropagated to earlier layers. The repeated multiplications may make the gradient go infinitely small, making it challenging for model convergence. This model degradation is noticeable as network depth increases, leading to a degradation of the accuracy, and adding more layers to a suitably deep model leads to higher training error.

To solve the degradation problem is introduced a deep residual learning framework which lets the layers fit a residual mapping, F(x) where $F(x) := H(x) - x \Leftrightarrow H(x) :=$ F(x) + x where H(x) is the desired underlying mapping and x is the input of the layer. This approach can be accomplished by a feedforward neural network with shortcut connections. Shortcut connections prevent the vanishing gradients as they are used to skip one or more layers to perform identity mapping, and their outputs are added to the outputs of the stacked layers.

So, ResNet are constituted by a stack of residual blocks, which are an ensemble of convolutional layers followed by a batch normalization layer and a ReLU activation function with shortcut connections that skips a stack of layers and adds the input directly before the last ReLU activation function of the stack, Figure 4.1 represents a residual block.

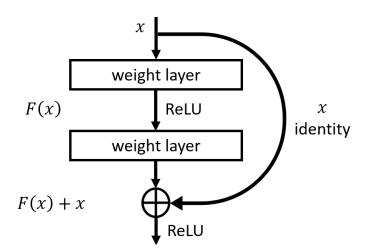


FIGURE 4.1: Residual block (adapted from He et al. [12]).

The model architecture used in this work was ResNet 50, constituted by the following 50 layers:

- convolutional layer with 64 different kernels with a stride of 2 and a kernel size of 7x7.
- max pooling layer with a size of 3x3 and a stride of 2;
- stack of a convolutional layer with 64 different kernels of size 1x1, a convolution layer with 64 different kernels of size 3x3 and a convolution layer with 256 different kernels of size 1x1. There are 3 stacks with this combination, and there is a skip connection between each stack;
- stack of a convolutional layer with 128 different kernels of size 1x1, a convolution layer with 128 different kernels of size 3x3 and a convolution layer with 512 different kernels of size 1x1. There are 4 stacks with this combination, and there is a skip connection between each stack;

- stack of a convolutional layer with 256 different kernels of size 1x1, a convolution layer with 256 different kernels of size 3x3 and a convolution layer with 1024 different kernels of size 1x1. There are 6 stacks with this combination, and there is a skip connection between each stack;
- stack of a convolutional layer with 512 different kernels of size 1x1, a convolution layer with 512 different kernels of size 3x3 and a convolution layer with 2048 different kernels of size 1x1. There are 3 stacks with this combination, and there is a skip connection between each stack;
- then, it has done an average pool, and at the end, there is a fully connected layer with Softmax as the activation function.

A skip connection is performed between the stacks of different layers with a stride of 2.

4.2 Dense Convolutional Network (DenseNet)

Previous Deep Convolutional Neural Networks (DCNN) architectures like ResNet create short paths from early layers to the last layers to solve the vanishing gradient problem. DenseNet, introduced by Huang et al. [13], instead uses a dense connectivity pattern which directly connects all layers, with matching feature-map sizes, with each other. So, each layer obtains additional input from all preceding layers and passes on its feature maps to all subsequent layers. Unlike, in ResNet where features are combined by summation before they serve as input to a layer, DenseNet concatenates the features; thereby, the *l*th layer has *l* inputs consisting of the feature maps of all preceding convolutional blocks, so, an L-layer network has $\frac{L(L+1)}{2}$ connections. This allows the final classifier to make decisions based on all feature maps in the network.

Therefore, the advantages of DenseNets are the flow of information and gradients throughout the network, the direct access that each layer has to the gradients from the loss function and the original input signal facilitates the training of DCNN.

The network architecture used in this work was DenseNet201, see Figure 4.2, which is constituted by the following 201 layers:

- Convolutional layer with a kernel size of 7x7 and a stride of 2;
- Max pooling layer with a kernel size of 3x3 and a stride of 2;

- Dense block: a stack of a convolutional layer with a kernel size of 1x1 and a convolutional layer with a kernel size of 3x3. There are 6 stacks formed by the same layers;
- Transition Layer: convolutional layer with a kernel size of 1x1, and it is done an average pool with a kernel size of 2x2 and stride of 2;
- Dense block is composed of the same layers as the first dense block, but there are 12 stacks in a row;
- Transition Layer composed of the same layers as the first transition layer;
- Dense block is composed of the same layers as the first dense block, but there are 48 stacks in a row;
- Transition Layer composed of the same layers as the first transition layer;
- Dense block is composed of the same layers as the first dense block, but there are 32 stacks in a row;
- To finalize, it has done a global average pool with a kernel size of 7x7, and then it is passed to a fully connected layer with Softmax as the activation function.

Before each convolution, it performed the following operations: batch normalization and ReLU.

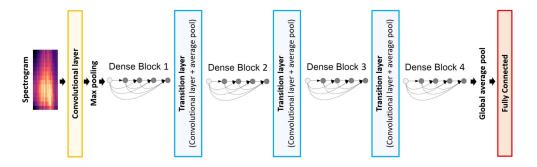


FIGURE 4.2: DenseNet architecture. DenseNet201 has 6, 12, 48 and 32 convolutional layers in each of the dense blocks, respectively.

4.3 Inception

The creation of this architecture was motivated by the fact that the most straightforward way to improve the performance of DNNs is by increasing their depth and width (number of units per level of depth). However, this will usually mean more parameters which make the network more prone to overfit and increase the use of computational resources. Therefore, a network that uses extra sparsity and exploits the current hardware by utilizing dense matrices should be used to solve the mentioned problems.

Inception is introduced by Szegedy et al. [33] to fulfil those requirements and is based on two ideas: find how an optimal local sparse structure in a convolutional network can be approximated and covered by readily available dense components; and judiciously apply dimension reduction and projection whenever the computational requirements would otherwise increase too much. Therefore, an Inception network consists of several Inception layers, which are a combination of a 1x1 convolutional layer, a 3x3 convolutional layer and a 5x5 convolutional layer with their output filter banks concatenated into a single output vector that will serve as input of the next layer, stacked upon each other with occasional max-pooling layers with a stride of 2. For the model to be memory efficient during training, it seems beneficial to start using Inception layers only at higher layers, keeping the others as convolutional layers.

The main benefit of this architecture is that it allows increasing the width of the network without uncontrollably increasing computational complexity. However, suppose the architecture is scaled up. In that case, most computational gains can be immediately lost. Due to the lack of clear reasons why some design decisions were taken, Szegedy et al. [34] introduced Inception-v2 and later, the same group of researchers also developed Inception-v3, Szegedy et al. [35], which was the architecture used in this work.

Therefore, the researchers have proposed the following upgrades: avoid representational bottlenecks, particularly early in the network, because they can cause the loss of too much information, so the input dimension should not be drastically changed; increase the activations per tile as they allow for more disentangled features. As a result, the model will train faster; spatial aggregation is done over lower dimensional embeddings, which won't cause much or any loss in representational power, and it will facilitate the dimension reduction, which will make the learning faster; lastly, balance the width and depth of the network that should be increased in parallel to get higher quality networks. This led to the following changes the 5x5 convolution is replaced by two 3x3 convolutions, the nxn convolutions are substituted by a 1xn followed by an nx1 convolution, and to solve the bottleneck problem, the filter bank outputs are made wider instead of deeper to prevent excessive dimension reductions which were implemented in Inception-v2. For Inception-v3, besides the changes mentioned for Inception-v2, it was also factorized 7x7 convolutions into three 3x3 convolutions; use auxiliary classifiers along with batch normalization to improve the convergence and avoid the vanishing gradient problem; and ultimately, label smoothing, which is a regularization technique that introduces noise for the labels to account for mistakes that datasets might have in them, to regularize the classifier layer by estimating the effect of label-dropout during training. Thus, the architecture of Inception-v3, Figure 4.3, is 42 layers deep, consisting of the following layers:

- Convolutional layer with a patch size of 3x3 and stride of 2;
- Convolutional layer with a patch size of 3x3;
- Convolutional layer with a patch size of 3x3 and padding;
- Pool layer with a patch size of 3x3 and stride of 2;
- Convolutional layer with a patch size of 3x3;
- Convolutional layer with a patch size of 3x3 and stride of 2;
- Convolutional layer with a patch size of 3x3;
- 3 standard inception modules with 288 filters, each with a grid size of 35x35;
- 5 factorized inception modules;
- 2 inception modules with a concatenated output filter bank size of 2048 for each tile;
- Pool layer with a patch size of 8x8;
- Linear layer to convert the input into logits;
- Softmax layer.

Between the change to different inception, the module always performs grid size reduction, which decreases the feature maps' grid size by expanding the network filters' activation dimension before applying maximum or average pooling to avoid a representational bottleneck.

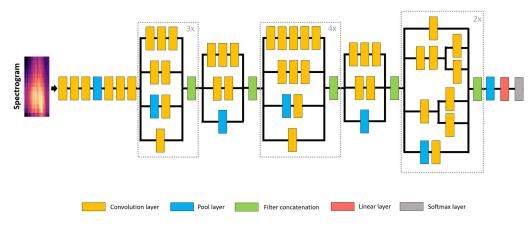


FIGURE 4.3: Inception-v3 architecture.

4.4 Results

In this section, the results for the ResNet, DenseNet and Inception models with different optimization functions are presented, as was done in 3.4 section. However, instead of using Nadam as optimization function, was used AdamW which is a stochastic optimization method that decouples Adam's weight decay from the gradient update, allowing only the gradients of the loss function to be adapted. So, the decouple weight decay regularizes all weights with the same rate (Loshchilov and Hutter [17]).

Then, a detailed analysis of data augmentation's influence on the models' performance is presented, more specifically, the influence of the combination of time stretch with a pitch shift.

4.4.1 USC Dataset - Pre-trained vs. No Pre-trained

This section shows the average results of the 10 folds obtained for the UrbanSound8K dataset for the different model architectures with the following optimization functions: Adam, Adadelta, Adagrad, Adamax, Stochastic Gradient Descent (SGD) and AdamW. Table 4.1, Table 4.2 and Table 4.3 present the results for the ResNet, DenseNet and Inception model with the use of pre-trained model weights and models trained from scratch, respectively and the number of the epoch that gave the best results.

Analysing the results for the pre-trained models, it can be concluded that for ResNet, Adamax provides the best results. On the other hand, Adam is the most beneficial optimization function for DenseNet and Inception models. It is also evident that DenseNet

TABLE 4.1: Results for the average of 10 folds results for ResNet model for the various optimizers.

N	Aodel R	ResNet	(Pre-tra	ined)			Ma	odel Res	sNet (N	lo pre-t	rained)		
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
SGD (63)	0.723	0.960	0.723	0.723	0.736	0.723	SGD (65)	0.309	0.761	0.309	0.284	0.321	0.309
Adam (57)	0.816	0.975	0.816	0.827	0.823	0.816	Adam (67)	0.708	0.945	0.708	0.723	0.712	0.708
Adamax (62)	0.828	0.976	0.828	0.837	0.836	0.828	Adamax (63)	0.695	0.937	0.695	0.711	0.705	0.695
AdamW (65)	0.821	0.976	0.821	0.830	0.829	0.821	AdamW (67)	0.704	0.945	0.704	0.715	0.714	0.704
Adadelta (64)	0.643	0.937	0.643	0.616	0.677	0.643	Adadelta (63)	0.258	0.724	0.258	0.229	0.273	0.258
Adagrad (58)	0.806	0.973	0.806	0.814	0.812	0.806	Adagrad (64)	0.583	0.904	0.583	0.602	0.600	0.583
opt. function -	• optimi	ization	functio	n; AUC	2 - area	under	the receiver ope	rating c	haracte	eristic c	urve; n	nf1 - m	icro
f1score; Mf1 - n	nacro f1	score; p	rec - pr	ecision.	. All me	etrics ra	nge from [0, 1] (th	e highe	r, the be	etter).			

TABLE 4.2: Results for the average of 10 folds results for DenseNet model for the various optimizers.

M	odel De	enseNe	t (Pre-t	rained)			Moc	lel Den	seNet (No pre	-traine	1)	
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
SGD (65)	0.731	0.963	0.731	0.735	0.742	0.731	SGD (66)	0.417	0.832	0.417	0.404	0.453	0.417
Adam (58)	0.833	0.977	0.833	0.844	0.841	0.833	Adam (68)	0.738	0.950	0.738	0.749	0.742	0.738
Adamax (58)	0.818	0.973	0.818	0.828	0.821	0.818	Adamax (62)	0.722	0.952	0.722	0.732	0.729	0.722
AdamW (66)	0.831	0.978	0.831	0.837	0.837	0.831	AdamW (67)	0.742	0.954	0.742	0.756	0.752	0.742
Adadelta (64)	0.625	0.930	0.625	0.612	0.652	0.625	Adadelta (64)	0.361	0.806	0.361	0.310	0.395	0.361
Adagrad (59)	0.811	0.975	0.811	0.818	0.815	0.811	Adagrad (65)	0.709	0.950	0.709	0.719	0.719	0.709
opt. function -	optimi	zation	functio	n; AUC	2 - area	under	the receiver ope	rating o	haracte	eristic c	urve; n	nf1 - m	icro
f1score; Mf1 - n	nacro f1	score; p	rec - pr	recision	. All me	etrics ra	nge from [0, 1] (th	ie highe	r, the b	etter).			

TABLE 4.3: Results for the average of 10 folds results for the Inception model for the various optimizers.

acc	1 7 7 0					Moo	tel Ince	ption (I	No pre∙	trained	l)	
acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
0.593	0.923	0.593	0.541	0.620	0.593	SGD (63)	0.294	0.758	0.294	0.248	0.293	0.294
0.827	0.973	0.827	0.840	0.833	0.827	Adam (68)	0.713	0.944	0.713	0.725	0.717	0.713
0.797	0.968	0.797	0.806	0.803	0.797	Adamax (64)	0.693	0.943	0.693	0.706	0.698	0.693
0.812	0.973	0.812	0.824	0.816	0.812	AdamW (66)	0.726	0.955	0.726	0.738	0.730	0.726
0.412	0.824	0.412	0.341	0.411	0.412	Adadelta (60)	0.204	0.663	0.204	0.152	0.193	0.204
0.775	0.971	0.775	0.787	0.783	0.775	Adagrad (62)	0.513	0.884	0.513	0.523	0.538	0.513
optimiz	zation	function	n; AUC	2 - area	under	the receiver ope	rating c	haracte	ristic c	urve; n	nf1 - m	icro
	0.827).797).812).412).775 ptimiz	0.8270.9730.7970.9680.8120.9730.4120.8240.7750.971ptimization	0.827 0.973 0.827 0.797 0.968 0.797 0.812 0.973 0.812 0.412 0.824 0.412 0.775 0.971 0.775 ptimization function	0.827 0.973 0.827 0.840 0.797 0.968 0.797 0.806 0.812 0.973 0.812 0.824 0.412 0.824 0.412 0.341 0.775 0.971 0.775 0.775 ptimization function; AUC	0.827 0.973 0.827 0.840 0.833 0.797 0.968 0.797 0.806 0.803 0.812 0.973 0.812 0.824 0.816 0.412 0.824 0.412 0.341 0.411 0.775 0.971 0.775 0.787 0.783 ptimization function; AUC - area	0.827 0.973 0.827 0.840 0.833 0.827 0.797 0.968 0.797 0.806 0.803 0.797 0.812 0.973 0.812 0.824 0.816 0.812 0.412 0.824 0.411 0.412 0.411 0.412 0.775 0.971 0.775 0.787 0.783 0.775 ptimization function; AUC - area under	0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.797 0.968 0.797 0.806 0.803 0.797 Adamax (64) 0.812 0.973 0.812 0.824 0.816 0.812 Adamax (64) 0.812 0.973 0.812 0.824 0.816 0.812 AdamW (66) 0.412 0.824 0.412 0.341 0.411 0.412 Adadelta (60) 0.775 0.971 0.775 0.787 0.783 0.775 Adagrad (62) ptimization function; AUC - area under the receiver oper 0.812	0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.713 0.797 0.968 0.797 0.806 0.803 0.797 Adamax (64) 0.693 0.812 0.973 0.812 0.824 0.816 0.812 Adamax (64) 0.693 0.412 0.824 0.811 0.412 AdamW (66) 0.726 0.775 0.971 0.775 0.787 0.783 0.775 Adagrad (62) 0.513 ptimization function; AUC - area under the receiver operating comparison - - - -	0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.713 0.944 0.797 0.968 0.797 0.806 0.803 0.797 Adama (64) 0.693 0.943 0.812 0.973 0.812 0.824 0.816 0.812 Adama (64) 0.693 0.943 0.812 0.973 0.812 0.824 0.816 0.812 AdamW (66) 0.726 0.955 0.412 0.824 0.411 0.412 Adadelta (60) 0.204 0.663 0.775 0.971 0.775 0.787 0.783 0.775 Adagrad (62) 0.513 0.844 ptimization function; AUC - area under the receiver operating character 0.412 0.412 0.412 0.412 0.412 0.413 0.414	0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.713 0.944 0.713 0.797 0.968 0.797 0.806 0.803 0.797 Adamax (64) 0.693 0.943 0.693 0.812 0.973 0.812 0.824 0.816 0.812 Adamax (64) 0.693 0.943 0.693 0.412 0.824 0.412 0.811 0.412 Adaelta (60) 0.204 0.663 0.204 0.775 0.971 0.775 0.787 0.783 0.775 Adagrad (62) 0.513 0.884 0.513 ptimization function; AUC - area under the receiver operating characteristic c 0.884 0.513	0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.713 0.944 0.713 0.725 0.797 0.968 0.797 0.806 0.803 0.797 Adam (68) 0.693 0.943 0.693 0.706 0.812 0.973 0.812 0.824 0.816 0.812 AdamX (64) 0.693 0.943 0.693 0.706 0.812 0.973 0.812 0.824 0.816 0.812 AdamW (66) 0.726 0.955 0.726 0.738 0.412 0.824 0.411 0.411 0.412 Adadelta (60) 0.204 0.663 0.204 0.152 0.775 0.971 0.775 0.787 0.783 0.775 Adagrad (62) 0.513 0.884 0.513 0.523 ptimization function; AUC - area under the receiver operating characteristic curve; m 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.412 0.413 0.523 <td>0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.713 0.944 0.713 0.725 0.717 0.797 0.968 0.797 0.806 0.803 0.797 Adamax (64) 0.693 0.943 0.693 0.706 0.698 0.812 0.973 0.812 0.824 0.816 0.812 AdamW (66) 0.726 0.955 0.726 0.738 0.730 0.412 0.824 0.412 0.411 0.412 Adadelta (60) 0.204 0.663 0.204 0.152 0.152</td>	0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.713 0.944 0.713 0.725 0.717 0.797 0.968 0.797 0.806 0.803 0.797 Adamax (64) 0.693 0.943 0.693 0.706 0.698 0.812 0.973 0.812 0.824 0.816 0.812 AdamW (66) 0.726 0.955 0.726 0.738 0.730 0.412 0.824 0.412 0.411 0.412 Adadelta (60) 0.204 0.663 0.204 0.152 0.152

f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

with Adam optimizer is the model that achieves the best results in all metrics. Regarding the best randomly initialized models, it is possible to conclude that in all metrics, the pre-trained models provided better results with a difference of around 10 percentage points (pp) in most metrics. In terms, of optimizers for ResNet, Adam was the preferable optimization function, nonetheless, for the DenseNet and Inception models, AdamW optimization function gave the best results. However, DenseNet gave the best results for the randomly initialized or the model that used pre-trained model weights.

Figure 4.4 shows the graphical representation of the accuracy and loss curves for the different models with the most advantageous optimizer for each model.

The graphics of Figure 4.4 show that all models have converged, ResNet with pretrained weights around the 10^{th} epoch and all the other models around the 30^{th} epoch.

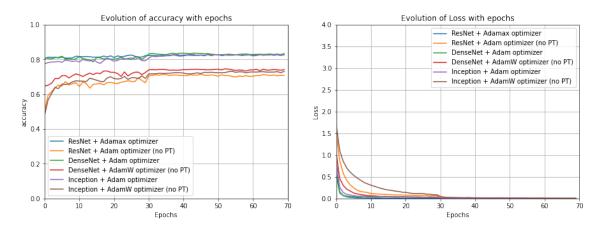


FIGURE 4.4: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for each model (no PT - no pre-trained).

Focusing on the accuracy's evolution with the epochs is possible to verify that the evolution curve of ResNet is almost straight. For all the other models, the same behaviour is obtained after approximately the 30th epoch, which means that the accuracy value stops improving after the models' convergence significantly; however, all pre-trained models have achieved high accuracy. Nonetheless, DenseNet model shows to be slightly better than the other models. Also, the no pre-trained models because they are trained from scratch the starting accuracy is lower than pre-trained models, which highlights the need to train the models for more epochs to reach convergence.

4.4.2 USC Dataset - Data Augmentation

This section explores the influence that data augmentation has on the models' performance, so, taking into account the results obtained in the previous section, this study was made for the pre-trained models using the optimizer that provided the best results for each model. Table 4.4, Table 4.5 and Table 4.6 show the results for the different models with and without data augmentation for all the folds, respectively.

Comparing the results obtained for data with and without augmentation can be concluded that, on average, the results without data augmentation were better than those obtained with data augmentation. These results are unexpected since data augmentation is one of the most used methods to improve models' performance.

ResNet:	(data au	g: no; o	ptimizer	Adamax	(62 epc	ochs))	ResNet: (data au	g: yes; c	ptimizer	: Adama:	x (64 ep	ochs))
Folds	acc	AUC	micro	macro	prec	recall	Folds	acc	AUC	micro	macro	prec	recall
			f1score	f1score	1					f1score	f1score	1	
1 (54)	0.787	0.958	0.787	0.810	0.814	0.787	1 (65)	0.785	0.955	0.785	0.806	0.806	0.785
2 (67)	0.832	0.973	0.832	0.836	0.835	0.832	2 (64)	0.857	0.977	0.857	0.867	0.858	0.857
3 (60)	0.752	0.972	0.752	0.768	0.750	0.752	3 (69)	0.765	0.969	0.765	0.794	0.776	0.765
4 (63)	0.861	0.984	0.861	0.860	0.863	0.861	4 (67)	0.819	0.977	0.819	0.815	0.822	0.819
5 (62)	0.868	0.991	0.868	0.875	0.873	0.868	5 (58)	0.864	0.990	0.864	0.873	0.876	0.864
6 (58)	0.820	0.971	0.820	0.836	0.832	0.820	6 (58)	0.801	0.973	0.801	0.815	0.808	0.801
7 (67)	0.865	0.972	0.865	0.866	0.869	0.865	7 (62)	0.842	0.970	0.842	0.841	0.846	0.842
8 (68)	0.766	0.969	0.766	0.773	0.773	0.766	8 (64)	0.734	0.962	0.734	0.723	0.679	0.734
9 (64)	0.862	0.983	0.862	0.873	0.867	0.862	9 (68)	0.881	0.983	0.881	0.889	0.890	0.881
10 (53)	0.871	0.990	0.871	0.878	0.882	0.871	10 (61)	0.870	0.986	0.870	0.880	0.886	0.870
Average	0.828	0.976	0.828	0.837	0.836	0.828	Average	0.822	0.974	0.822	0.830	0.825	0.822
data aug -	· data au	igmenta	tion; acc -	· accuracy	r; AUC -	area un	der the rece	iver ope	erating c	haracteris	stic curve	;	
		A 11		(man [0 1	1 /11 1-	: - 1	- 1						

TABLE 4.4: Results for the 10 folds for ResNet model with and without data augmentation.

prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.5: Results for the 10 folds for DenseNet model with and without data augmentation.

DenseNe	et: (data	aug: no	; optimiz	er: Adam	1 (58 ep	ochs))	DenseNe	t: (data	aug: ye	s; optimi	zer: Adar	n (67 ep	ochs))
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall
1 (63)	0.809	0.963	0.809	0.833	0.829	0.809	1 (68)	0.771	0.952	0.771	0.795	0.806	0.771
2 (61)	0.827	0.978	0.827	0.827	0.825	0.827	2 (67)	0.850	0.977	0.850	0.868	0.859	0.850
3 (67)	0.720	0.963	0.720	0.742	0.721	0.720	3 (68)	0.735	0.961	0.735	0.761	0.734	0.735
4 (48)	0.834	0.980	0.834	0.833	0.846	0.834	4 (67)	0.791	0.963	0.791	0.785	0.799	0.791
5 (55)	0.902	0.995	0.902	0.904	0.907	0.902	5 (67)	0.841	0.986	0.841	0.846	0.852	0.841
6 (69)	0.813	0.971	0.813	0.832	0.822	0.813	6 (67)	0.786	0.965	0.786	0.799	0.791	0.786
7 (44)	0.876	0.978	0.876	0.880	0.884	0.876	7 (68)	0.841	0.970	0.841	0.843	0.850	0.841
8 (69)	0.803	0.964	0.803	0.815	0.815	0.803	8 (62)	0.764	0.958	0.764	0.783	0.776	0.764
9 (51)	0.871	0.986	0.871	0.883	0.876	0.871	9 (69)	0.844	0.977	0.844	0.856	0.846	0.844
10 (55)	0.878	0.989	0.878	0.889	0.888	0.878	10 (69)	0.886	0.983	0.886	0.894	0.896	0.886
Average	0.833	0.977	0.833	0.844	0.841	0.833	Average	0.811	0.969	0.811	0.823	0.821	0.811
data aug-	- data au	igmenta	tion; acc -	accuracy	; AUC -	area un	der the rece	iver ope	erating c	haracteri	stic curve	;	

prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.6: Results for the 10 folds for Inception model with and without data augmentation.

: (data	aug: no	; optimiz	er: Adam	i (62 epo	ochs))	Inception	n: (data	aug: yes	s; optimiz	zer: Adan	n (67 ep	ochs))
acc	AUC	micro	macro	prec	recall	Folds	acc	AUC	micro	macro	prec	recall
	0.0/1			-							-	
0.833	0.961	0.833	0.858	0.855	0.833	1 (67)	0.804	0.955	0.804	0.822	0.818	0.804
0.828	0.975	0.828	0.839	0.828	0.828	2 (68)	0.841	0.975	0.841	0.849	0.844	0.841
0.711	0.958	0.711	0.735	0.705	0.711	3 (67)	0.734	0.966	0.734	0.756	0.724	0.734
0.819	0.976	0.819	0.816	0.828	0.819	4 (67)	0.806	0.964	0.806	0.806	0.811	0.806
0.897	0.987	0.897	0.906	0.905	0.897	5 (64)	0.803	0.972	0.803	0.816	0.817	0.803
0.815	0.973	0.815	0.838	0.828	0.815	6 (68)	0.783	0.974	0.783	0.801	0.780	0.783
0.850	0.972	0.850	0.853	0.859	0.850	7 (67)	0.833	0.964	0.833	0.837	0.832	0.833
0.777	0.967	0.777	0.793	0.774	0.777	8 (64)	0.726	0.952	0.726	0.719	0.679	0.726
0.864	0.979	0.864	0.876	0.874	0.864	9 (69)	0.836	0.974	0.836	0.849	0.838	0.836
0.873	0.984	0.873	0.882	0.879	0.873	10 (68)	0.878	0.987	0.878	0.888	0.889	0.878
0.827	0.973	0.827	0.840	0.833	0.827	Average	0.804	0.968	0.804	0.814	0.803	0.804
	acc 0.833 0.828 0.711 0.819 0.897 0.815 0.850 0.777 0.864 0.873 0.827	acc AUC 0.833 0.961 0.828 0.975 0.711 0.958 0.819 0.976 0.897 0.987 0.815 0.973 0.850 0.972 0.777 0.967 0.864 0.979 0.873 0.984 0.827 0.973	acc AUC micro f1score 0.833 0.961 0.833 0.828 0.975 0.828 0.711 0.958 0.711 0.819 0.976 0.819 0.897 0.987 0.897 0.815 0.973 0.815 0.850 0.972 0.850 0.777 0.967 0.777 0.864 0.979 0.864 0.873 0.984 0.873 0.827 0.973 0.827	acc AUC micro f1score macro f1score 0.833 0.961 0.833 0.858 0.828 0.975 0.828 0.839 0.711 0.958 0.711 0.735 0.819 0.976 0.819 0.816 0.897 0.987 0.897 0.906 0.815 0.973 0.815 0.838 0.850 0.972 0.850 0.853 0.777 0.967 0.777 0.793 0.864 0.979 0.864 0.876 0.873 0.984 0.873 0.882 0.827 0.973 0.827 0.840	acc AUC micro f1score macro f1score prec 0.833 0.961 0.833 0.858 0.855 0.828 0.975 0.828 0.839 0.828 0.711 0.958 0.711 0.735 0.705 0.819 0.976 0.819 0.816 0.828 0.897 0.987 0.897 0.906 0.905 0.815 0.973 0.815 0.838 0.828 0.850 0.972 0.850 0.853 0.859 0.777 0.967 0.777 0.793 0.774 0.864 0.979 0.864 0.876 0.874 0.873 0.984 0.873 0.882 0.879	acc AUC micro flscore macro flscore prec recall 0.833 0.961 0.833 0.858 0.855 0.833 0.828 0.975 0.828 0.839 0.828 0.828 0.711 0.958 0.711 0.735 0.705 0.711 0.819 0.816 0.828 0.819 0.816 0.828 0.819 0.897 0.987 0.897 0.906 0.905 0.897 0.815 0.973 0.815 0.838 0.828 0.815 0.850 0.972 0.850 0.853 0.859 0.850 0.777 0.967 0.777 0.793 0.774 0.777 0.864 0.876 0.874 0.864 0.873 0.827 0.873 0.827 0.973 0.827 0.840 0.833 0.827	acc AUC micro f1score macro f1score prec recall Folds 0.833 0.961 0.833 0.858 0.855 0.833 1 (67) 0.828 0.975 0.828 0.839 0.828 0.828 2 (68) 0.711 0.958 0.711 0.735 0.705 0.711 3 (67) 0.819 0.976 0.819 0.816 0.828 0.819 4 (67) 0.897 0.987 0.906 0.905 0.897 5 (64) 0.815 0.973 0.815 0.833 0.859 0.850 7 (67) 0.777 0.967 0.777 0.793 0.774 0.777 8 (64) 0.864 0.979 0.864 0.876 0.874 0.864 9 (69) 0.873 0.984 0.873 0.882 0.873 10 (68) 0.827 0.973 0.827 0.840 0.833 0.827 Average	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	accMicro flscoremacro flscoreprecrecallFoldsaccAUCmicro flscoremacro flscoreprec0.8330.9610.8330.8580.8550.8331 (67)0.8040.9550.8040.8220.8180.8280.9750.8280.8390.8280.8282 (68)0.8410.9750.8410.8490.8440.7110.9580.7110.7350.7050.7113 (67)0.7340.9660.7340.7560.7240.8190.9760.8190.8160.8280.8975 (64)0.8030.9720.8030.8160.8110.8970.9870.8970.9060.9050.8975 (64)0.8030.9720.8030.8160.8170.8150.9730.8150.8530.8590.8507 (67)0.8330.9640.8330.8370.8320.7770.9670.7770.7930.7740.7778 (64)0.7260.9520.7260.7190.6790.8640.9790.8640.8760.8740.8649 (69)0.8360.9740.8360.8490.8380.8270.9730.8270.8400.8330.8270.87310 (68)0.8780.9870.8640.8030.8440.8030.8270.9730.8270.8400.8330.8270.8070.8060.8040.8140.803

data aug - data augmentation; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

Regarding the easiest fold, there is no consensus between all the models. Nonetheless, DenseNet and Inception agreed by giving their best performance for the same folders in both situations.

In Figure 4.5, the behaviour of the models is pretty similar, being even challenging to distinguish between them; however, it is possible to see a slight worst behaviour for the models that were trained with data augmentation techniques.

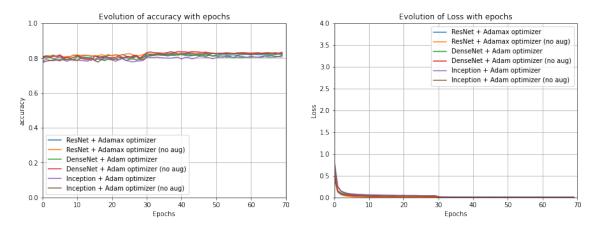


FIGURE 4.5: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for each model (no aug - no augmentation).

Lastly, analysing the confusion matrix presented in Figure 4.6 for the best model on this dataset which was the DenseNet model with no data augmentation and Adam as the optimization function is possible to understand that the most difficult class is air conditioner that is most misclassified as drilling or engine idling. On the other hand, the model can easily identify sounds from the car horn, children playing, dog bark, gunshot and street music classes giving an accuracy superior to 90%.

4.4.3 ESC Datasets - Pre-trained vs. No Pre-trained

This section presents a similar study to what was done for the UrbanSound8K but now for the ESC datasets. Therefore, Table 4.7, Table 4.8 and Table 4.9 show the results for the ResNet, DenseNet and Inception model, respectively, with the use of pre-trained model weights and models trained from scratch and the number of the epoch that gave the best results for the ESC-10 and ESC-50 dataset.

Unlike what was observed for the UrbanSound8K dataset, in the ESC-50 dataset, for ResNet, the optimizer that provided the best results was Adam, for DenseNet was AdamaW and for Inception, Adam continued to be the most beneficial optimization function. Regarding the best performing model for ESC-50, it is not as evident but ResNet got 4 out of 6 metrics better than the DenseNet model with a maximum difference being

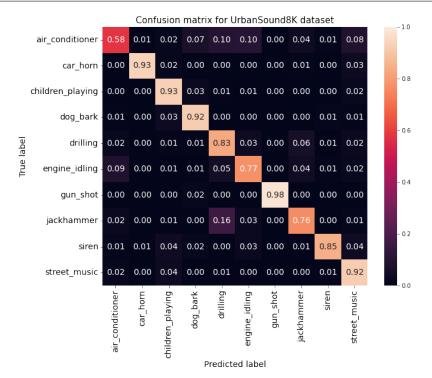


FIGURE 4.6: Confusion matrix for the UrbanSound8K dataset.

TABLE 4.7: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for ResNet model for the various optimizers.

						ESC-50	dataset						
N	Aodel R	esNet	(Pre-tra	ined)			Mo	odel Res	sNet (N	lo pre-t	rained)		
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recal
SGD (66)	0.159	0.788	0.159	0.140	0.176	0.159	SGD (64)	0.039	0.630	0.039	0.025	0.024	0.039
Adam (66)	0.882	0.996	0.882	0.877	0.896	0.882	Adam (62)	0.683	0.978	0.683	0.673	0.702	0.683
Adamax (64)	0.860	0.995	0.860	0.855	0.874	0.860	Adamax (65)	0.599	0.969	0.599	0.587	0.617	0.599
AdamW (60)	0.881	0.996	0.881	0.878	0.893	0.881	AdamW (64)	0.669	0.979	0.669	0.658	0.681	0.669
Adadelta (65)	0.048	0.644	0.048	0.028	0.031	0.048	Adadelta (63)	0.034	0.614	0.034	0.015	0.014	0.034
Adagrad (63)	0.790	0.992	0.790	0.785	0.812	0.790	Adagrad (64)	0.243	0.865	0.243	0.205	0.211	0.243
						ESC-10	dataset						
N	Aodel R	esNet	(Pre-tra	ined)			Mo	odel Res	sNet (N	lo pre-t	rained)		
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
SGD (65)	0.410	0.826	0.410	0.392	0.431	0.410	SGD (61)	0.205	0.715	0.205	0.186	0.207	0.205
Adam (58)	0.930	0.997	0.930	0.928	0.939	0.930	Adam (62)	0.838	0.974	0.838	0.836	0.858	0.838
Adamax (61)	0.935	0.996	0.935	0.934	0.946	0.935	Adamax (58)	0.785	0.973	0.785	0.779	0.822	0.785
AdamW (60)	0.940	0.998	0.940	0.938	0.948	0.940	AdamW (64)	0.833	0.971	0.833	0.832	0.855	0.833
Adadelta (67)	0.150	0.677	0.150	0.095	0.091	0.150	Adadelta (57)	0.113	0.610	0.113	0.035	0.043	0.113
Adagrad (59)	0.918	0.993	0.918	0.916	0.927	0.918	Adagrad (56)	0.653	0.938	0.653	0.626	0.645	0.653
opt. function -	· optimi	zation	functio	n; AUC	2 - area	under	the receiver ope	rating c	haracte	eristic c	urve; n	nf1 - m	icro
(1) 1/(1					A 11	- I	nao from [0, 1] (th	- 1- : - 1	(1 1				

f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

of 0.2 pp, then, for the macro F1-score and area under the receiver operating characteristic (ROC) curve (AUC) metric, ResNet got 0.1 pp worst result than DenseNet, so overall, ResNet was superior. Inception got the worst results for all metrics compared to the other models. For the ESC-10 dataset, regarding the optimization function that provided the

]	ESC-50	dataset						
Μ	odel De	nseNe	t (Pre-tı	ained)			Mod	lel Den	seNet (No pre	-trained	1)	
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
SGD (63)	0.130	0.766	0.130	0.115	0.131	0.130	SGD (63)	0.078	0.715	0.078	0.043	0.052	0.078
Adam (66)	0.874	0.996	0.874	0.872	0.890	0.874	Adam (66)	0.761	0.987	0.761	0.754	0.780	0.761
Adamax (67)	0.847	0.994	0.847	0.844	0.861	0.847	Adamax (64)	0.713	0.984	0.713	0.705	0.734	0.713
AdamW (57)	0.880	0.997	0.880	0.878	0.895	0.880	AdamW (67)	0.749	0.987	0.749	0.741	0.764	0.749
Adadelta (68)	0.035	0.600	0.035	0.022	0.028	0.035	Adadelta (66)	0.043	0.651	0.043	0.019	0.022	0.043
Adagrad (67)	0.758	0.988	0.758	0.747	0.773	0.758	Adagrad (62)	0.400	0.923	0.400	0.367	0.401	0.400
]	ESC-10	dataset						
M	odel De	nseNe	t (Pre-tı	ained)			Moc	lel Den	seNet (No pre	-trained	d)	
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
Opt. function SGD (65)	acc 0.395	AUC 0.806	mf1 0.395	Mf1 0.374	prec 0.413	recall 0.395	Opt. function SGD (59)	acc 0.300	AUC 0.816	mf1 0.300	Mf1 0.258	prec 0.307	recall 0.300
1					1		1					1	
SGD (65)	0.395	0.806	0.395	0.374	0.413	0.395	SGD (59)	0.300	0.816	0.300	0.258	0.307	0.300
SGD (65) Adam (58)	0.395 0.938	0.806 0.997	0.395 0.938	0.374 0.936	0.413 0.945	0.395 0.938	SGD (59) Adam (63)	0.300 0.888	0.816 0.986	0.300 0.888	0.258 0.883	0.307 0.905	0.300 0.888
SGD (65) Adam (58) Adamax (59)	0.395 0.938 0.918	0.806 0.997 0.995	0.395 0.938 0.918	0.374 0.936 0.917	0.413 0.945 0.930	0.395 0.938 0.918	SGD (59) Adam (63) Adamax (63)	0.300 0.888 0.868	0.816 0.986 0.985	0.300 0.888 0.868	0.258 0.883 0.863	0.307 0.905 0.887	0.300 0.888 0.868
SGD (65) Adam (58) Adamax (59) AdamW (57) Adadelta (61) Adagrad (62)	0.395 0.938 0.918 0.930 0.170 0.903	0.806 0.997 0.995 0.997 0.606 0.994	0.395 0.938 0.918 0.930 0.170 0.903	0.374 0.936 0.917 0.930 0.141 0.902	0.413 0.945 0.930 0.938 0.218 0.912	0.395 0.938 0.918 0.930 0.170 0.903	SGD (59) Adam (63) Adamax (63) AdamW (64) Adadelta (62) Adagrad (64)	0.300 0.888 0.868 0.898 0.175 0.818	0.816 0.986 0.985 0.989 0.678 0.979	0.300 0.888 0.868 0.898 0.175 0.818	0.258 0.883 0.863 0.893 0.108 0.810	0.307 0.905 0.887 0.915 0.131 0.845	0.300 0.888 0.868 0.898 0.175 0.818
SGD (65) Adam (58) Adamax (59) AdamW (57) Adadelta (61) Adagrad (62) opt. function -	0.395 0.938 0.918 0.930 0.170 0.903	0.806 0.997 0.995 0.997 0.606 0.994 zation	0.395 0.938 0.918 0.930 0.170 0.903 functio	0.374 0.936 0.917 0.930 0.141 0.902 n; AUC	0.413 0.945 0.930 0.938 0.218 0.912	0.395 0.938 0.918 0.930 0.170 0.903 under	SGD (59) Adam (63) Adamax (63) AdamW (64) Adadelta (62)	0.300 0.888 0.868 0.898 0.175 0.818 rating c	0.816 0.986 0.985 0.989 0.678 0.979	0.300 0.888 0.868 0.898 0.175 0.818 eristic c	0.258 0.883 0.863 0.893 0.108 0.810	0.307 0.905 0.887 0.915 0.131 0.845	0.300 0.888 0.868 0.898 0.175 0.818

TABLE 4.8: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
DenseNet model for the various optimizers.

TABLE 4.9: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for the Inception model for the various optimizers.

ESC-50 dataset														
М	odel In	ception	(Pre-tr	ained)			Model Inception (No pre-trained)							
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
SGD (62)	0.047	0.651	0.047	0.031	0.042	0.047	SGD (57)	0.037	0.602	0.037	0.017	0.019	0.037	
Adam (65)	0.821	0.990	0.821	0.816	0.841	0.821	Adam (66)	0.630	0.973	0.630	0.620	0.651	0.630	
Adamax (65)	0.778	0.986	0.778	0.772	0.798	0.778	Adamax (63)	0.479	0.951	0.479	0.458	0.476	0.479	
AdamW (66)	0.820	0.989	0.820	0.817	0.833	0.820	AdamW (68)	0.619	0.973	0.619	0.608	0.639	0.619	
Adadelta (58)	0.032	0.559	0.032	0.018	0.024	0.032	Adadelta (56)	0.023	0.528	0.023	0.008	0.007	0.023	
Adagrad (64)	0.501	0.952	0.501	0.472	0.525	0.501	Adagrad (60)	0.187	0.820	0.187	0.144	0.162	0.187	
	ESC-10 dataset													
М	odel In	ception	(Pre-tr	ained)			Model Inception (No pre-trained)							
		AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
Opt. function	acc	AUC												
Opt. function SGD (58)	acc 0.193	0.676	0.193	0.159	0.225	0.193	SGD (58)	0.133	0.631	0.133	0.090	0.110	0.133	
1			0.193 0.938	0.159 0.937	0.225 0.944	0.193 0.938	SGD (58) Adam (61)	0.133 0.830	0.631 0.981	0.133 0.830	0.090 0.824	0.110 0.849	0.133 0.830	
SGD (58)	0.193	0.676					()					-		
SGD (58) Adam (55)	0.193 0.938	0.676 0.993	0.938	0.937	0.944	0.938	Adam (61)	0.830	0.981	0.830	0.824	0.849	0.830	
SGD (58) Adam (55) Adamax (62)	0.193 0.938 0.905	0.676 0.993 0.994	0.938 0.905	0.937 0.905	0.944 0.920	0.938 0.905	Adam (61) Adamax (65)	0.830 0.760	0.981 0.971	0.830 0.760	0.824 0.754	0.849 0.779	0.830 0.760	
SGD (58) Adam (55) Adamax (62) AdamW (58) Adadelta (56) Adagrad (56)	0.193 0.938 0.905 0.905 0.123 0.830	0.676 0.993 0.994 0.992 0.549 0.984	0.938 0.905 0.905 0.123 0.830	0.937 0.905 0.904 0.107 0.831	0.944 0.920 0.918 0.155 0.854	0.938 0.905 0.905 0.123 0.830	Adam (61) Adamax (65) AdamW (56) Adadelta (42) Adagrad (65)	0.830 0.760 0.825 0.135 0.573	0.981 0.971 0.978 0.566 0.915	0.830 0.760 0.825 0.135 0.573	0.824 0.754 0.821 0.086 0.555	0.849 0.779 0.843 0.090 0.618	0.830 0.760 0.825 0.135 0.573	
SGD (58) Adam (55) Adamax (62) AdamW (58) Adadelta (56) Adagrad (56)	0.193 0.938 0.905 0.905 0.123 0.830	0.676 0.993 0.994 0.992 0.549 0.984	0.938 0.905 0.905 0.123 0.830	0.937 0.905 0.904 0.107 0.831	0.944 0.920 0.918 0.155 0.854	0.938 0.905 0.905 0.123 0.830	Adam (61) Adamax (65) AdamW (56) Adadelta (42)	0.830 0.760 0.825 0.135 0.573	0.981 0.971 0.978 0.566 0.915	0.830 0.760 0.825 0.135 0.573	0.824 0.754 0.821 0.086 0.555	0.849 0.779 0.843 0.090 0.618	0.830 0.760 0.825 0.135 0.573	

best results for each model, the results lead to the conclusion that for DenseNet and Inception, Adam is the preferable optimization function like what was observed for the UrbanSound8K dataset, however, for the ResNet model, AdamW showed to be the best optimization function and also, gave the best results out of all models for this dataset. Inception was again the model that considering all metrics' values, gave the worst results.

Figures 4.7 and 4.8 show the graphical representation of the accuracy and loss curves for the different models with the most advantageous optimizer for each model trained for the ESC-50 and ESC-10 dataset, respectively.

In this case, all models converged after the 30th epoch. Regarding the accuracy curves,

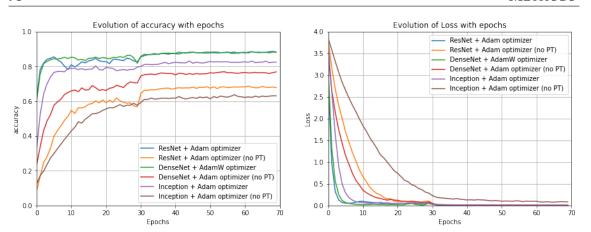


FIGURE 4.7: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for each model for the ESC-50 dataset. (no PT - no pre-trained).

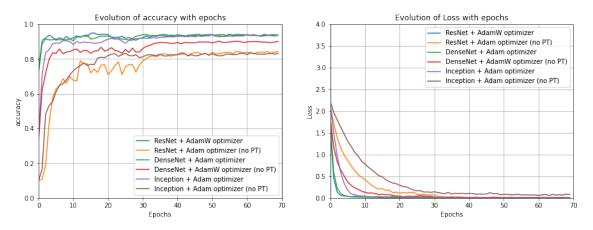


FIGURE 4.8: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for each model for the ESC-10 dataset. (no PT - no pre-trained).

all models showed similar behaviour. Still, no pre-trained models showed lower accuracy because they were trained from scratch; the initial accuracy is inferior. They cannot get as high results as pre-trained models due to the lack of learned filters to extract meaningful features. Also, the superiority of the DenseNet models is evident for the no pre-trained models and the inferiority of the Inception model for the no pre-trained models with the ESC-50 dataset.

4.4.4 ESC Datasets - Data Augmentation

This section also explored the influence of data augmentation using the ESC datasets. The results are presented in the following tables, Table 4.10, Table 4.11, Table 4.12 for the

different models with and without data augmentation for all the folds.

TABLE 4.10: Results for the 5 folds on ESC-50 and ESC-10 datasets for ResNet model with and without data augmentation.

	ESC-50 dataset														
ResNet:	(data a	ug: no;	optimize	r: Adam	(66 epo	chs))	ResNet: (data aug: yes; optimizer: Adam (62 epochs))								
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall		
1 (69)	0.893	0.996	0.893	0.891	0.905	0.893	1 (68)	0.895	0.997	0.895	0.893	0.910	0.895		
2 (59)	0.888	0.996	0.888	0.878	0.900	0.888	2 (63)	0.885	0.997	0.885	0.880	0.896	0.885		
3 (69)	0.875	0.996	0.875	0.872	0.894	0.875	3 (56)	0.893	0.995	0.893	0.892	0.902	0.893		
4 (66)	0.898	0.997	0.898	0.895	0.907	0.898	4 (69)	0.933	0.999	0.933	0.932	0.939	0.933		
5 (66)	0.855	0.994	0.855	0.850	0.873	0.855	5 (56)	0.900	0.992	0.900	0.901	0.913	0.900		
Average	0.882	0.996	0.882	0.877	0.896	0.882	Average	0.901	0.996	0.901	0.899	0.912	0.901		
						ESC-10	dataset								
ResNet:	(data au	g: no; o	ptimizer	AdamW	′ (60 epo	ochs))	ResNet:	data au	g: yes; o	optimizer	: AdamV	V (65 ep	ochs))		
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall		
1 (59)	0.963	0.999	0.963	0.962	0.966	0.963	1 (63)	0.963	0.999	0.963	0.962	0.966	0.963		
2 (65)	0.925	0.999	0.925	0.925	0.935	0.925	2 (64)	0.938	0.999	0.938	0.937	0.941	0.938		
3 (62)	0.888	0.993	0.888	0.880	0.905	0.888	3 (68)	0.888	0.996	0.888	0.871	0.883	0.888		
4 (56)	0.988	1.000	0.988	0.987	0.989	0.988	4 (62)	0.950	0.996	0.950	0.950	0.954	0.950		
5 (60)	0.938	0.999	0.938	0.937	0.946	0.938	5 (67)	0.950	0.997	0.950	0.950	0.952	0.950		
Average	0.940	0.998	0.940	0.938	0.948	0.940	Average	0.938	0.997	0.938	0.934	0.939	0.938		
data aug	- data au	igmenta		accuracy			der the rece	iver ope	erating c	haracteri	stic curve	;			

prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.11: Results for the 5 folds on ESC-50 and ESC-10 datasets for DenseNet model with and without data augmentation.

	ESC-50 dataset														
Densel	Net: (da	ta aug: 1	no; opt: A	damW (57 epoc	hs))	DenseNet: (data aug: yes; opt: AdamW (66 epochs))								
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall		
1 (69)	0.895	0.998	0.895	0.894	0.905	0.895	1 (68)	0.918	0.999	0.918	0.915	0.927	0.918		
2 (27)	0.843	0.995	0.843	0.839	0.865	0.843	2 (65)	0.895	0.997	0.895	0.892	0.906	0.895		
3 (69)	0.875	0.997	0.875	0.874	0.888	0.875	3 (66)	0.893	0.997	0.893	0.890	0.897	0.893		
4 (66)	0.915	0.999	0.915	0.913	0.930	0.915	4 (68)	0.915	0.998	0.915	0.912	0.924	0.915		
5 (56)	0.870	0.996	0.870	0.869	0.885	0.870	5 (63)	0.885	0.998	0.885	0.881	0.900	0.885		
Average	0.880	0.997	0.880	0.878	0.895	0.880	Average	0.901	0.998	0.901	0.898	0.911	0.901		
						ESC-10	dataset								
Dense	eNet: (d	ata aug:	no; opt:	Adam (58	8 epoch	s))	DenseNet: (data aug: yes; opt: Adam (60 epochs))								
Folds	acc	AUC	micro	macro	proc	recall	Folds	acc	AUC	micro	macro	proc	recall		
Folds	acc	AUC	f1score	f1score	prec	recan	rolus	acc	AUC	f1score	f1score	prec	recan		
1 (69)	0.950	0.998	0.950	0.950	0.960	0.950	1 (67)	0.975	0.999	0.975	0.975	0.980	0.975		
2 (45)	0.938	0.996	0.938	0.938	0.946	0.938	2 (59)	0.913	0.994	0.913	0.911	0.929	0.913		
3 (60)	0.888	0.997	0.888	0.882	0.902	0.888	3 (65)	0.963	0.999	0.963	0.962	0.967	0.963		
4 (64)	0.963	1.000	0.963	0.962	0.965	0.963	4 (54)	0.975	0.999	0.975	0.975	0.978	0.975		
5 (54)	0.950	0.996	0.950	0.949	0.954	0.950	5 (56)	0.925	0.998	0.925	0.922	0.934	0.925		
Average	0.938	0.997	0.938	0.936	0.945	0.938	Average	0.950	0.998	0.950	0.949	0.958	0.950		

data aug - data augmentation; opt - optimizer; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

Analysing the results tables, unlike observed for the UrbanSound8K dataset experiments, for the ESC datasets, the employment of data augmentation was beneficial in all cases except for the ResNet model trained with the ESC-10 dataset. Thus, for ESC-50, ResNet and DenseNet models got around a 2 pp increase and around 4 pp for the Inception model, in most metrics. For the ESC-10 dataset's results, ResNet got very similar results for both versions. However, the no augmentation data training allowed slightly

	ESC-50 dataset														
Inceptior	n: (data	aug: no	; optimiz	er: Adam	(65 ep	ochs))	Inception: (data aug: yes; optimizer: Adam (65 epochs))								
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall		
1 (62)	0.835	0.989	0.835	0.833	0.849	0.835	1 (68)	0.878	0.992	0.878	0.877	0.893	0.878		
2 (65)	0.798	0.987	0.798	0.789	0.829	0.798	2 (58)	0.863	0.993	0.863	0.858	0.875	0.863		
3 (67)	0.818	0.989	0.818	0.812	0.835	0.818	3 (69)	0.855	0.991	0.855	0.852	0.867	0.855		
4 (69)	0.875	0.994	0.875	0.873	0.890	0.875	4 (63)	0.903	0.996	0.903	0.902	0.913	0.903		
5 (63)	0.778	0.988	0.778	0.773	0.804	0.778	5 (65)	0.820	0.989	0.820	0.809	0.840	0.820		
Average	0.821	0.990	0.821	0.816	0.841	0.821	Average	0.864	0.992	0.864	0.860	0.877	0.864		
							dataset								
Inception	n: (data	aug: no	; optimiz	er: Adam	(55 ep	ochs))	Inception	n: (data	aug: yes	s; optimiz	zer: Adan	n (62 ep	ochs))		
Folds	acc	AUC	micro f1score	macro f1score	prec	recall	Folds	acc	AUC	micro f1score	macro f1score	prec	recall		
1 (64)	0.925	0.997	0.925	0.925	0.933	0.925	1 (54)	0.950	0.999	0.950	0.950	0.955	0.950		
2 (46)	0.925	0.991	0.925	0.924	0.933	0.925	2 (63)	0.925	0.998	0.925	0.924	0.940	0.925		
3 (54)	0.938	0.987	0.938	0.937	0.943	0.938	3 (65)	0.938	0.998	0.938	0.933	0.944	0.938		
4 (49)	0.950	0.997	0.950	0.950	0.954	0.950	4 (68)	0.975	0.999	0.975	0.975	0.978	0.975		
5 (62)	0.950	0.991	0.950	0.949	0.956	0.950	5 (59)	0.913	0.995	0.913	0.914	0.923	0.913		
Average	0.938	0.993	0.938	0.937	0.944	0.938	Average	0.940	0.998	0.940	0.939	0.948	0.940		
data aug -	· data au	igmenta	tion; acc -	- accuracy	; AUC -	- area un	der the rece	iver ope	erating c	haracteri	stic curve	;			

TABLE 4.12: Results for the 5 folds on ESC-50 and ESC-10 datasets for Inception model with and without data augmentation.

data aug - data augmentation; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

better results, with the maximum difference being 0.9 pp, for DenseNet and Inception, data augmentation was beneficial, giving an improvement of around 1 pp and 0.2 pp, in most metrics, respectively. This can be due to strong data transformation that approximated one class to another among the feature distribution or dispersed the data representation among different class boundaries.

Concerning the easiest folder, the models trained with no augmented data have all given better results for the 4th fold. However, the same was not observed for all the models trained with augmented data. Even though 3 models still had the best performance using fold 4, others identified fold 1 as the easiest.

Figures 4.9 and Figure 4.10 show that all models have converged around the 30th epoch and for ESC-50 dataset, all models trained with data augmentation gave better results and the Inception models show the worst behaviours. For ESC-10, even though it is difficult to distinguish between the curves, DenseNet with data augmentation shows a slightly better result than the others.

Finally, Figure 4.11 and Figure 4.12 show the confusion matrices using the best model for each dataset. So, for the ESC-50 dataset, it was used the ResNet model and for the ESC-10 dataset, the DenseNet model, both using Adam as optimizer and data augmentation.

Analysing the confusion matrices is possible to conclude that for the ESC-50 dataset, there are five classes with an accuracy inferior to 80% which are water drops, laughing, drinking sipping, helicopter and fireworks, being the worst value for drinking sipping,

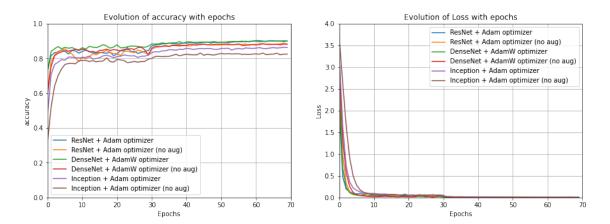


FIGURE 4.9: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for each model for the ESC-50 dataset (no aug - no augmentation).

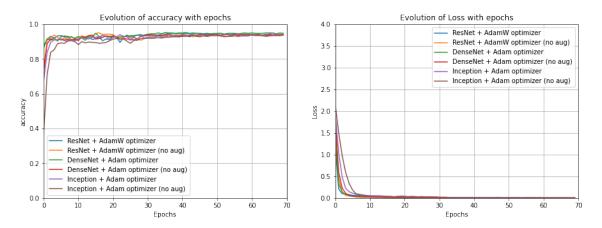


FIGURE 4.10: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the models with the optimizer that allowed the best results for each model for the ESC-10 dataset (no aug - no augmentation).

which is mainly misclassified as keyboard typing and pig. Nonetheless, there are 33 classes with an accuracy equal to or superior to 90%, and three of them got an accuracy score of 100%, which were the class of toilet flush, clock alarm and church bells. Regarding the confusion matrix for the ESC-10 dataset, the dog class is the class with the lowest accuracy score of 82%, which was mostly misclassified as sneezing. On the other hand, all the other classes had an accuracy superior to 90%, with the best results being for rooster, clock tick and chainsaw classes with an accuracy of 100%.

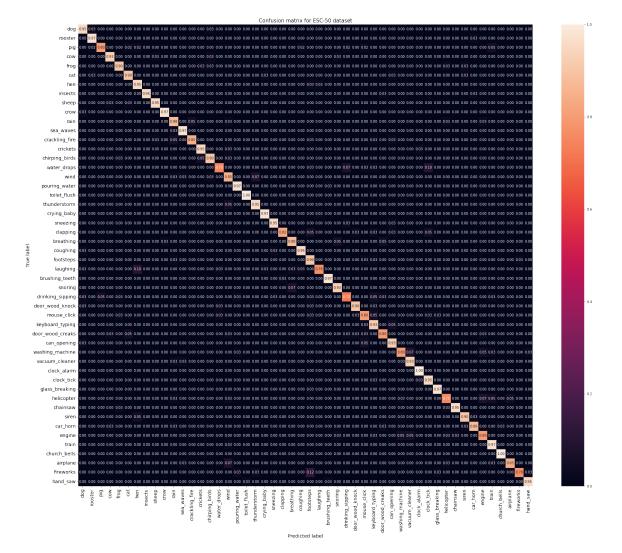


FIGURE 4.11: Confusion matrix for the ESC-50 dataset.

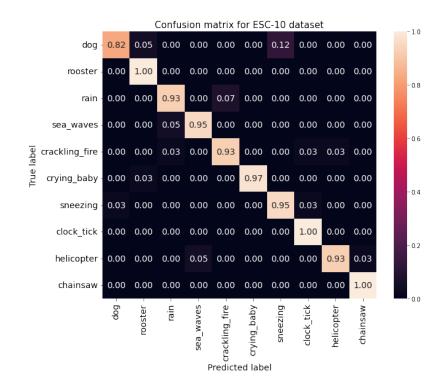


FIGURE 4.12: Confusion matrix for the ESC-10 dataset.

4.5 Conclusion

In conclusion, Inception is the model that exhibits the worst results in most situations, and DenseNet is more capable of giving better results without pre-training by demonstrating that behaviour for all datasets.

Regarding the experiences, the no pre-trained models show the worst behaviour regardless of the dataset, giving around 10 pp for UrbanSound8K, 17 pp for ESC-50 and 8 pp for ESC-10 worst results than the corresponding pre-trained models. Then, considering the results obtained for the models trained with data augmentation, UrbanSound8K got unexpected results by giving worse performances than the no data augmented models with differences between 0.2 pp and 3 pp. On the other hand, the ESC datasets gave the expected results by having their performance improved except for the ResNet model for the ESC-10 dataset, which got around 0.3 pp worst; however, for the others, the benefits range between 1 and 4 pp. Thus, it can be concluded that pre-training has a huge influence on all models' performance regardless of the dataset. The data augmentation techniques depend on the dataset and the model's architecture. However, they can enhance the performance in some situations, even if the impact isn't so pronounced.

Observing the cross-validation results, there is no consensus about the most accessible folder depending on the model, if it is pre-trained and if data augmentation techniques were employed, showing the different capacities of the models to represent the sounds depending on the input.

Concerning the optimizers, Adam was the optimization function capable of giving the best performance for all datasets and, in most situations, for the different models. For ESC-50, the DenseNet model with AdamW optimizer gave very similar results to the ResNet model with Adam optimizer making it challenging to affirm which one is the best.

Compared with the baseline models, there was a huge performance boost of 19.9 pp for UrbanSound8K, 46.4 pp for ESC-50 and 17.6 pp for ESC-10, on average, showing the superiority of the end-to-end pre-trained models.

Chapter 5

Transformers

This chapter explores the model architecture Transformer. Several experiences were done using different optimization functions, data augmentation techniques, batch sizes, and temporal and frequency strides and explored the use of no pre-training, pre-training with ImageNet and pre-training with ImageNet and AudioSet. These were evaluated using different metrics for the UrbanSound8K and ESC datasets.

5.1 Transformer

It is a transduction model that relies entirely on an attention mechanism to compute representations of its input and output, proposed by Vaswani et al. [39].

The model architecture is constituted of an **encoder** which maps an input sequence of symbol representations to a sequence of continuous representations and a **decoder** that generates an output sequence of symbols one at a time. At each step, the model is autoregressive, so it uses the previously generated symbols as additional input when generating the next one.

In Figure 5.1, on the left side is represented the encoder architecture and on the right is the decoder architecture described below.

The encoder is composed of a stack of identical layers, each one of them has two sub-layers: a **multi-head self-attention mechanism** and a **position-wise fully connected feed-forward network**, and around each of the two sub-layers, there is a residual connection followed by a normalization layer.

The decoder is composed of a stack of identical layers with three sub-layers which are the two mentioned previously in the encoder architecture, and a third one which is a **multi-head attention over the output of the encoder stack**. Furthermore, there is a modification in the self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions, ensuring, in combination with the fact that the output embeddings are offset by one position, that the predictions only depend on the known outputs of previous positions. Finally, similarly to the encoder, it also employs residual connections around each sub-layers, followed by layer normalization.

A brief description of each layer in the model is then presented:

- Embeddings: are used to convert the input tokens and output tokens to vectors of a certain dimension;
- **Positional Encoding**: it is the relative or absolute position of the tokens in the sequence that allows the model to use the order of the sequence;
- **Multi-head attention**: performs an attention function parallel to the projected versions of queries, keys and values, allowing the model to jointly attend to information from different representation subspaces at different positions;

The Transformer uses this layer in three different ways:

- Self-attention layer in encoder: all keys, values and queries come from the output of the previous layer in the encoder, which allows each position in the encoder to attend to all positions in the previous layer of the encoder;
- Self-attention layer in decoder: allows each position in the decoder to attend to all positions in the decoder up to and including that position. Then, to preserve the auto-regressive property, this is implemented inside of scaled dot-product attention by masking out all values in the input of the Softmax corresponding to illegal connections;
- Layer in the decoder over the output of the encoder stack layer: queries come from the previous decoder layer and the memory keys and values from the output of the encoder, which allows the decoder in every position to attend over all positions in the input sequence;
- **Position-wise Feed-Forward Networks**: consists of two linear transformations with a ReLU activation in between, applied to each position separately and identically;
- Linear and Softmax: the learned linear transformation and the Softmax function are used to convert the decoder output to predicted next-token probabilities.

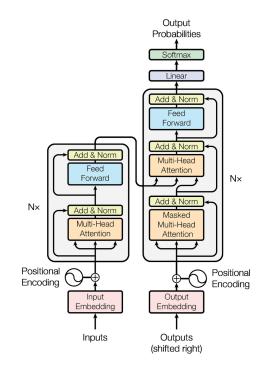


FIGURE 5.1: Transformer architecture (Vaswani et al. [39]).

The employed architecture is based on the Audio Spectrogram Transformer (AST) model introduced by Gong et al. [11]. Its architecture consists of a patch embedding layer which converts the input spectrogram into a sequence of patches and flattens it into a onedimensional (1D) patch. Then, a trainable positional embedding is added to each patch embedding to capture the input order information and the temporal order of the patch sequence. Also, a classification token is appended at the beginning of the sequence. The resulting sequence serves as input for the standard Transformer's encoder part explained in this section's beginning. Finally, the Transformer encoder's output of the classification token serves as the audio spectrogram representation, which a linear layer will map with sigmoid activation to labels for classification. Figure 5.2 illustrates the models' architecture.

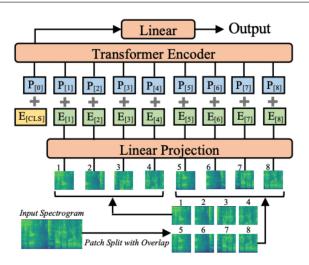


FIGURE 5.2: AST architecture (Gong et al. [11]).

5.2 Experiments and Results

This section presents the results of the different experiences using the Transformer architecture. Starting with the analyses of the effect of pre-training, in particular, the difference between just distilling knowledge from an image domain model or two models: one from the image domain and the other from the audio domain, next, the influence of changing the batch size is explored and finally, the differences that the various data augmentation techniques can provoke.

5.2.1 ESC Datasets - No Pre-trained vs. Pre-trained

As concluded in Section 4, the employment of pre-training gives a faster model convergence resulting in a quicker training process and a huge boost to the models' performance. Therefore, this section presents the results for the ESC datasets with the different optimization functions and with no pre-training, pre-training with ImageNet and pre-training with ImageNet and AudioSet. Tables 5.1 and 5.2 summarize the obtained results.

TABLE 5.1: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for the no pre-trained model for the various optimizers.

ES	C-50 da	taset - I	No pre-	trained			ESC-10 dataset - No pre-trained							
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
Adadelta (23)	0.058	0.710	0.058	0.026	0.083	0.058	Adadelta (24)	0.293	0.808	0.293	0.202	0.380	0.293	
Adagrad (19)	0.252	0.879	0.252	0.220	0.277	0.252	Adagrad (24)	0.483	0.916	0.483	0.458	0.620	0.483	
Adam (24)	0.387	0.924	0.387	0.362	0.418	0.387	Adam (24)	0.458	0.898	0.458	0.428	0.528	0.458	
Adamax (23)	0.342	0.911	0.342	0.315	0.374	0.342	Adamax (22)	0.468	0.901	0.468	0.433	0.570	0.468	
AdamW (23)	0.439	0.936	0.439	0.424	0.468	0.439	AdamW (23)	0.528	0.918	0.528	0.507	0.617	0.528	
SGD (23)	0.073	0.734	0.073	0.034	0.091	0.073	SGD (23)	0.363	0.847	0.363	0.300	0.448	0.363	
opt. function -	opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro													
flscore; Mf1 - macro flscore; prec - precision. All metrics range from [0, 1] (the higher, the better).														

ESC-50 dataset														
	Image	eNet pi	e-train	ed			ImageNet and AudioSet pre-trained							
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
Adadelta (22)	0.033	0.569	0.033	0.022	0.053	0.033	Adadelta (15)	0.025	0.505	0.025	0.012	0.043	0.025	
Adagrad (19)	0.843	0.993	0.843	0.838	0.880	0.843	Adagrad (23)	0.814	0.991	0.814	0.806	0.859	0.814	
Adam (16)	0.884	0.995	0.884	0.881	0.922	0.884	Adam (18)	0.950	0.999	0.950	0.948	0.977	0.950	
Adamax (19)	0.885	0.996	0.885	0.882	0.926	0.885	Adamax (18)	0.947	0.998	0.947	0.946	0.965	0.947	
AdamW (18)	0.886	0.996	0.886	0.884	0.927	0.886	AdamW (18)	0.958	0.999	0.958	0.956	0.978	0.958	
SGD (23)	0.055	0.633	0.055	0.036	0.072	0.055	SGD (18)	0.020	0.517	0.020	0.013	0.044	0.020	
	ESC-10 dataset													
	Image	eNet pi	e-train	ed			ImageNet and AudioSet pre-trained							
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
Adadelta (21)	0.138	0.574	0.138	0.092	0.198	0.138	Adadelta (16)	0.105	0.528	0.105	0.089	0.181	0.105	
Adagrad (23)	0.923	0.996	0.923	0.920	0.975	0.923	Adagrad (24)	0.988	0.999	0.988	0.987	0.995	0.988	
Adam (21)	0.930	0.997	0.930	0.927	0.983	0.930	Adam (20)	0.990	1.000	0.990	0.990	0.999	0.990	
Adamax (22)	0.933	0.996	0.933	0.932	0.974	0.933	Adamax (23)	0.988	1.000	0.988	0.987	0.998	0.988	
AdamW (21)	0.938	0.998	0.938	0.935	0.982	0.938	AdamW (23)	0.985	1.000	0.985	0.985	0.998	0.985	
1 main (21)		0 (72)	0.210	0.171	0.276	0.210	SGD (19)	0.130	0.543	0.130	0.098	0.214	0.130	
SGD (21)	0.210	0.673	0.210	0.171	0.270	0.210	000 (17)	0.100	0.010	0.100	0.070	0.211	0.100	
SGD (21) opt. function -	optimi	zation	functio	n; AUC	2 - area	under	the receiver ope nge from [0, 1] (th	rating c	haracte	eristic c		-		

TABLE 5.2: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
the pre-trained models for the various optimizers.

Analysing the results, it can be verified that the pre-training has a big impact on the results showing an improvement of around 43 percentage points (pp), in most metrics, between the no pre-trained and the pre-trained using ImageNet, culminating in a more significant difference than what was observed for the models discussed in Section 4. These results confirm the need for Transformer to have large datasets for competitive results.

Focusing on Table 5.2 can be noticed, for both datasets, a performance improvement when the ImageNet and AudioSet pre-training are used with a difference of 7.2 pp for ESC-50 and approximately 5.3 pp for ESC-10 in 4 out of 6 metrics, which demonstrates the importance of having pre-training models of the same domain has the datasets.

Regarding the optimization function, the one that allowed the best performance was for ESC-50, AdamW and ESC-10, Adam.

Figure 5.3 and Figure 5.4 show the different accuracy and loss curves for the best result of each pre-trained configuration for both datasets. Observing the curves for both datasets is possible to reach the same conclusions that the no pre-trained model cannot give competitive results. Pre-training with both ImageNet and AudioSet shows to be the most beneficial configuration.

5.2.2 ESC Datasets - Batch Size

In this section, the results obtained with the change of the batch size to 24 and 64 for the ESC-50 and ESC-10 datasets are presented in Table 5.3.

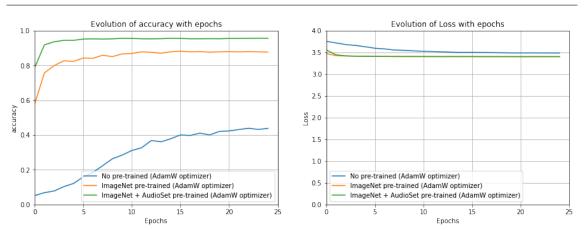


FIGURE 5.3: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different pre-train configurations with the optimizer that allowed the best results for each model for the ESC-50 dataset.

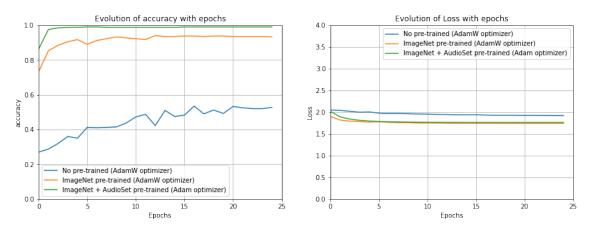


FIGURE 5.4: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different pre-train configurations with the optimizer that allowed the best results for each model for the ESC-10 dataset.

Comparing the results shown in Table 5.3 can be inferred that a batch size of 24 gives a small benefit for the ESC-50 dataset with a maximum difference of 0.2 pp when compared to the batch size of 64. However, the batch size of 48 gives better results by having a difference of 0.1 pp in 3 out of the 6 metrics compared to the batch size of 24. For the ESC-10 dataset, no differences are observed in most metrics except precision, which gives a value 0.1 pp lower than the others for the batch size of 24. Then, for the other batch sizes, there is no difference in the results between them, so it is equally good to use either batch size , but considering the memory capacity depending on the size, a smaller batch size results in a smaller GPU memory occupancy in training. Therefore, for the subsequent studies, pre-training using both models, the batch size of 48 was kept unchanged.

1	ize of 24 and 64 for the various optimizers, ctively.
ESC-50	dataset
Batch size: 24	Batch size: 64

TABLE 5.3: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for

	Batch size: 64													
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
Adadelta (18)	0.024	0.541	0.024	0.016	0.051	0.024	Adadelta (25)	0.024	0.543	0.024	0.016	0.051	0.024	
Adagrad (23)	0.828	0.991	0.828	0.819	0.871	0.828	Adagrad (25)	0.828	0.991	0.828	0.819	0.871	0.828	
Adam (18)	0.957	0.999	0.957	0.956	0.979	0.957	Adam (16)	0.955	0.999	0.955	0.954	0.980	0.955	
Adamax (18)	0.947	0.998	0.947	0.945	0.971	0.947	Adamax (22)	0.945	0.998	0.945	0.943	0.972	0.945	
AdamW (15)	0.955	0.999	0.955	0.954	0.979	0.955	AdamW (25)	0.954	0.999	0.954	0.952	0.979	0.954	
SGD (22)	0.037	0.556	0.037	0.029	0.068	0.037	SGD (23)	0.037	0.557	0.037	0.029	0.068	0.037	
						ESC-10	dataset							
	В	atch siz	ze: 24				Batch size: 64							
Out from ation	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
Opt. function	ucc													
Adadelta (19)	0.115	0.526	0.115	0.088	0.176	0.115	Adadelta (10)	0.083	0.502	0.083	0.069	0.168	0.083	
1		0.526 0.998	0.115 0.985	0.088 0.985	0.176 0.992	0.115 0.985	Adadelta (10) Adagrad (24)	0.083 0.975	0.502 0.998	0.083 0.975	0.069 0.975	0.168 0.990	0.083 0.975	
Adadelta (19)	0.115					-	· · ·							
Adadelta (19) Adagrad (22)	0.115 0.985	0.998	0.985	0.985	0.992	0.985	Adagrad (24)	0.975	0.998	0.975	0.975	0.990	0.975	
Adadelta (19) Adagrad (22) Adam (18)	0.115 0.985 0.990	0.998 1.000	0.985 0.990	0.985 0.990	0.992 0.998	0.985 0.990	Adagrad (24) Adam (21)	0.975 0.985	0.998 1.000	0.975 0.985	0.975 0.985	0.990 1.000	0.975 0.985	
Adadelta (19) Adagrad (22) Adam (18) Adamax (23)	0.115 0.985 0.990 0.990	0.998 1.000 1.000	0.985 0.990 0.990	0.985 0.990 0.990	0.992 0.998 0.998	0.985 0.990 0.990	Adagrad (24) Adam (21) Adamax (23)	0.975 0.985 0.990	0.998 1.000 1.000	0.975 0.985 0.990	0.975 0.985 0.990	0.990 1.000 0.998	0.975 0.985 0.990	
Adadelta (19) Adagrad (22) Adam (18) Adamax (23) AdamW (21) SGD (19)	0.115 0.985 0.990 0.990 0.985 0.125	0.998 1.000 1.000 1.000 0.541	0.985 0.990 0.990 0.985 0.125	0.985 0.990 0.990 0.985 0.094	0.992 0.998 0.998 0.999 0.181	0.985 0.990 0.990 0.985 0.125	Adagrad (24) Adam (21) Adamax (23) AdamW (23)	0.975 0.985 0.990 0.990 0.118	0.998 1.000 1.000 1.000 0.484	0.975 0.985 0.990 0.990 0.118	0.975 0.985 0.990 0.990 0.082	0.990 1.000 0.998 0.999 0.153	0.975 0.985 0.990 0.990 0.118	

flscore; Mf1 - macro flscore; prec - precision. All metrics range from [0, 1] (the higher, the better).

Figures 5.5 and 5.6 show the accuracy and loss curves for both datasets, and it is possible to verify that in both cases, changing the batch size was not significative do to the difficulty there is in distinguishing between the curves. However, it shows that the smaller the batch size, the faster it reaches convergence.

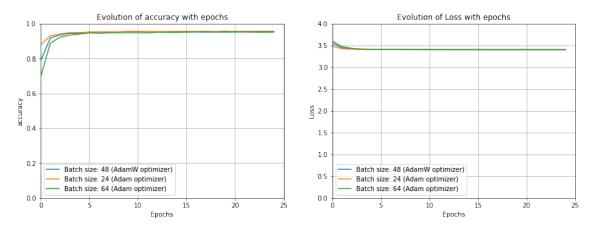


FIGURE 5.5: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different batch sizes for the optimizer that allowed the best results for each model for the ESC-50 dataset.

5.2.3 ESC Datasets - Data Augmentation Techniques

This section explored the influence of different data augmentation techniques such as SpecAugment, noise addition and Mixup. The corresponding results are shown on Table 5.4, Table 5.5 and Table 5.6.

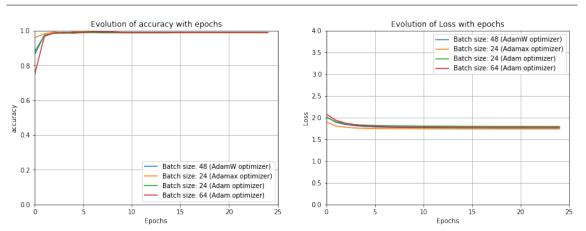


FIGURE 5.6: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different batch sizes for the optimizer that allowed the best results for each model for the ESC-10 dataset.

5.2.3.1 No Data Augmentation

This section presents the results if no data augmentation technique was applied to the model because, in the above situations, it was always used the SpecAugment technique to mask up to 48 frequency bins and 96-time frames.

TABLE 5.4: Results for the average of 5 folds results on the ESC-50 and ESC-10 datasets for the pre-trained models without using any data augmentation technique for the various optimizers.

ESC-50	ESC-10 dataset (data augmentation: no)												
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
Adadelta (15)	0.022	0.530	0.022	0.016	0.045	0.022	Adadelta (17)	0.073	0.470	0.073	0.049	0.142	0.073
Adagrad (23)	0.830	0.991	0.830	0.817	0.872	0.830	Adagrad (23)	0.975	0.998	0.975	0.975	0.989	0.975
Adam (15)	0.948	0.999	0.948	0.946	0.975	0.948	Adam (22)	0.985	1.000	0.985	0.985	0.998	0.985
Adamax (22)	0.947	0.999	0.947	0.945	0.964	0.947	Adamax (22)	0.985	0.999	0.985	0.985	0.996	0.985
AdamW (19)	0.954	0.999	0.954	0.953	0.976	0.954	AdamW (22)	0.988	1.000	0.988	0.987	0.997	0.988
SGD (17)	0.032	0.550	0.032	0.025	0.055	0.032	SGD (18)	0.128	0.563	0.128	0.106	0.213	0.128
opt. function -	opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro												

f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

As can be observed in Table 5.4, the SpecAugment provides a improvement of around 0.3 pp for ESC-50 and of 0.2 pp for ESC-10, in most metrics.

SpecAugment proved to be a beneficial data augmentation technique for both datasets. Thus, this technique was used in subsequent studies, and to improve the results further, random noise and Mixup augmentations were added.

5.2.3.2 Noise

This section considers the addition of random noise to the input waveform. Table 5.5 presents the results obtained for the ESC-50 and ESC-10 datasets.

ESC-50	dataset	(data aı	ugment	ation:	noise)		ESC-10 dataset (data augmentation: noise)							
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall	
Adadelta (12)	0.023	0.538	0.023	0.017	0.051	0.023	Adadelta (13)	0.078	0.445	0.078	0.058	0.135	0.078	
Adagrad (24)	0.824	0.987	0.824	0.813	0.856	0.824	Adagrad (23)	0.980	0.998	0.980	0.979	0.990	0.980	
Adam (18)	0.958	0.999	0.958	0.956	0.978	0.958	Adam (23)	0.988	1.000	0.988	0.987	0.999	0.988	
Adamax (19)	0.946	0.999	0.946	0.944	0.971	0.946	Adamax (22)	0.988	0.999	0.988	0.988	0.995	0.988	
AdamW (17)	0.954	0.999	0.954	0.952	0.979	0.954	AdamW (21)	0.988	1.000	0.988	0.987	0.998	0.988	
SGD (19)	0.037	0.512	0.037	0.027	0.053	0.037	SGD (16)	0.098	0.541	0.098	0.067	0.182	0.098	
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro														
flscore; Mf1 - macro flscore; prec - precision. All metrics range from [0, 1] (the higher, the better).														

TABLE 5.5: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for the pre-trained models with noise addition for the various optimizers.

Observing Table 5.5, the addition of noise showed no performance improvements, matching the best model obtained previously for ESC-50 and giving a slightly poorer execution for the ESC-10 dataset. Concerning the optimization functions, Adam gave the best results for both datasets.

5.2.3.3 Mixup

The following section explores the use of the Mixup rate by mixing the raw waveforms randomly from the dataset and the final spectrograms. The used Mixup rate was 0.5, Table 5.6 summarizes the results for the ESC datasets.

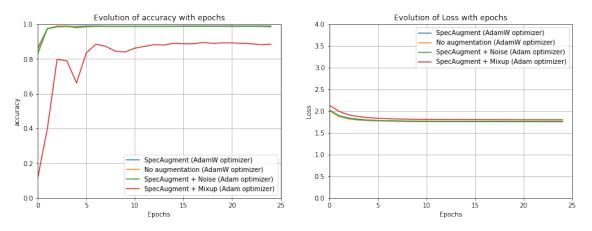
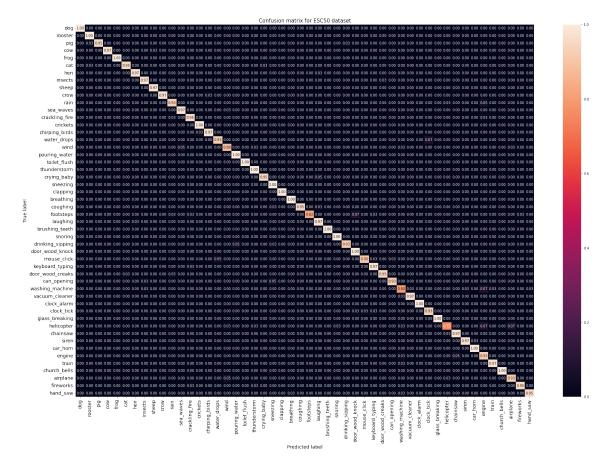
TABLE 5.6: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for the pre-trained models with a Mixup of 0.5 for the various optimizers.

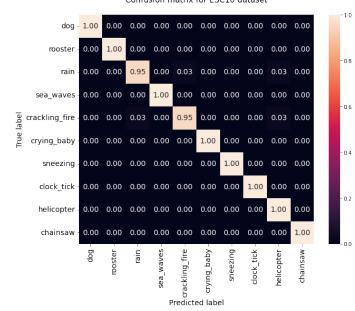
ESC-50 dat	aset (da	ita augi	nentati	on: Mi	xup: 0.5	5)	ESC-10 dat	aset (da	ita augr	nentati	on: Mi	xup: 0.5	5)
Opt. function	acc	AUC	mf1	Mf1	prec	recall	Opt. function	acc	AUC	mf1	Mf1	prec	recall
Adadelta (9)	0.026	0.520	0.026	0.019	0.045	0.026	Adadelta (12)	0.093	0.463	0.093	0.068	0.151	0.093
Adagrad (22)	0.034	0.943	0.034	0.024	0.596	0.034	Adagrad (24)	0.470	0.988	0.470	0.496	0.953	0.470
Adam (21)	0.719	0.997	0.719	0.786	0.952	0.719	Adam (21)	0.890	0.998	0.890	0.900	0.992	0.890
Adamax (24)	0.628	0.995	0.628	0.702	0.926	0.628	Adamax (24)	0.810	0.998	0.810	0.833	0.989	0.810
AdamW (20)	0.725	0.997	0.725	0.788	0.952	0.725	AdamW (23)	0.860	0.998	0.860	0.875	0.988	0.860
SGD (15)	0.024	0.525	0.024	0.015	0.044	0.024	SGD (15)	0.113	0.495	0.113	0.084	0.153	0.113
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro													
f1score: Mf1 - n	nacro f1	score: p	rec - pr	ecision	. All me	etrics ra	nge from [0,1] (th	ne highe	r, the be	etter).			

Table 5.6 shows that in both cases, the results get a lot worst with huge differences in the accuracy, micro F1-score and recall by approximately 23 pp and 10 pp and on macro F1-score around 17 pp and 9 pp for ESC-50 and ESC-10, respectively. In this study, Adam for the ESC-10 was also the optimization function that provided the best results. On the other hand, for ESC-50, AdamW has the preferable optimization function.

Lastly, Figure 5.7 and Figure 5.8 show the accuracy and loss curves concerning the different used combinations of augmentation techniques. Observing the curves for both datasets, it is difficult to distinguish between them, except for the model trained with the Mixup, which performed much worse than all the others.

FIGURE 5.7: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different augmentation techniques for the optimizer that allowed the best results for each model for the ESC-50 dataset.


FIGURE 5.8: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer with the different augmentation techniques for the optimizer that allowed the best results for each model for the ESC-10 dataset.

The best results for both datasets were obtained when the optimization function AdamW for ESC-50 and Adam for ESC-10 were used and a Transformer model with the following configuration: pre-trained using ImageNet and AudioSet, a batch size of 48, and SpecAugment as data augmentation technique which allowed to reach an accuracy result of 95.8% for ESC-50 and 99% for ESC-10 evaluated by doing 5-cross-validation and considering the best epoch for each fold. These accuracy results indicate that some classes were misclassified to try to understand which classes the model could not distinguish. In Figure 5.9 and Figure 5.10 the confusion matrices for both datasets are presented.

Analysing the confusion matrices, it is possible to understand that for the ESC-50 dataset, there were 17 classes with an accuracy of 100%, 29 with an accuracy equal or

Confusion matrix for ESC10 dataset

FIGURE 5.10: Confusion matrix for ESC-10 dataset.

superior to 90% and only 4 classes with an accuracy inferior to 90% with the lowest result being for the helicopter class with an accuracy of 75%. The other three most challenging classes to identify were washing machine, footsteps and wind.

Then, for the ESC-10 dataset, the only classes that did not achieve 100% were rain which was misclassified as crackling fire and helicopter, and crackling fire, which was misclassified as rain and helicopter. However, both classes achieved an accuracy of 95%.

To conclude, the model performance for the UrbanSound8K dataset was tested, giving an accuracy, micro F1-score and recall result of 89.8% with Adamax or AdamW optimization functions, as seen in Table 5.7. In Figure 5.11 is represented the accuracy and loss curves for the model using Adamax and AdamW as the optimization function due to the similar results they provide, making it difficult to infer which one is the best. Analysing the accuracy curves is possible to verify that the model trained with Adamax presented a more linear behaviour throughout the epochs than AdamW.

TABLE 5.7: Results for the average of 10 folds results on UrbanSound8K dataset for the pre-trained models and with the use of SpecAugment.

UrbanSound8K													
Opt. function	acc	AUC	micro f1score	macro f1score	prec	recall							
Adadelta (24)	0.236	0.669	0.236	0.197	0.226	0.236							
Adagrad (15)	0.875	0.984	0.875	0.884	0.928	0.875							
Adam (7)	0.897	0.988	0.897	0.905	0.939	0.897							
Adamax (9)	0.898	0.986	0.898	0.904	0.938	0.898							
AdamW (8)	0.898	0.985	0.898	0.906	0.937	0.898							
SGD (25)	0.460	0.821	0.460	0.407	0.436	0.460							

opt. function - optimization function; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

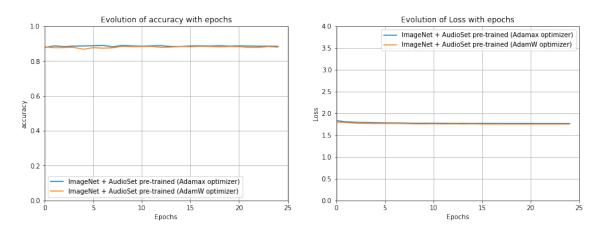


FIGURE 5.11: Graphs of the evolution of accuracy (left) and loss function (right) with epochs for the Transformer pre-trained with ImageNet and AudioSet for the optimizers that allowed the best results for the UrbanSound8K dataset.

Due to the more linear behaviour, Adamax was considered the preferable optimization function, so Figure 5.12 shows the confusion matrix for the Transformer using Adamax as an optimization function trained with the UrbanSound8K dataset, which makes it possible to identify that air conditioner, drilling, engine idling and jackhammer are the most challenging classes to distinguish having an accuracy result inferior to 90% with the worst result being for an air conditioner with 76%. However, the model can perfectly identify gunshot sounds, which was the only class not mistaken for another class, and no class was confused as being of the gunshot class.

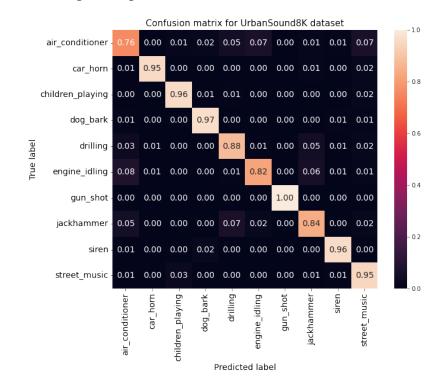


FIGURE 5.12: Confusion matrix for UrbanSound8K dataset.

5.3 Conclusion

This chapter evaluated the Transformer architecture and the influence that pre-training only from the image domain, pre-training from the image and audio domain, changing the batch size, and using different data augmentation techniques can cause depending on the optimizer and dataset.

From these experiments, it was possible to conclude that using pre-trained models can improve the models' results. Nonetheless, when using as optimization function SGD or Adadelta the results were worst, proving the non-robustness to large datasets. However, the other optimizers' pre-training with both ImageNet and AudioSet produced better results.

Regarding the batch size, by changing the batch size, the model showed no improvements. For the ESC-10 dataset, the increase in batch size produced the same best result, so the smaller value was kept to occupy less memory.

Concerning the data augmentation techniques, using SpecAugment improved the results compared to the no augment results. However, adding more data augmentation techniques produced no benefits, especially disadvantageous with Mixup.

Compared with baseline models, the improvement was, on average, 51.4 pp for ESC-50, 21.0 pp for ESC-10 and 25.9 pp for UrbanSound8K. Also, compared with the models presented in the previous section can be observed that for all datasets, Transformer was the model that provided the best results with differences of 4.95 pp for ESC-50, 3.40 pp for ESC-10 and 6.02 pp for UrbanSound8K.

Chapter 6

Overall Discussion and Conclusions

This work presented different model architectures: the baseline models were based on a simple set of dense layers and explored the use of dropout rate, which significantly influences the model's ability to learn. If the rate is too high, the model hasn't enough information to be able to learn, and if it is too low, the model is more prone to overfit; changes in the architecture, in most cases, the addition of the extra layers was injurious; and different input features being possible to conclude that the combination of features is more advantageous. Then, the end-to-end models were evaluated, particularly the Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet) and Inception, which revealed to be the least capable model out of these three models that can learn the features from an input spectrogram.

The use of pre-training based on ImageNet greatly increased the models' performance regardless of the chosen architecture. Using data augmentation techniques depending on the dataset or chosen architecture might not always be advantageous, sometimes leading to poorer results due to the dramatic modification in sound characteristics that approximates one class to another. Finally, a more recent architecture called Transformer was used, relying entirely on attention mechanisms to compute its input and output representations. This architecture showed the importance of having large datasets by showing the different model performances depending on the pre-training configuration, ranging from no pre-training to pre-training using ImageNet and pre-training using ImageNet and AudioSet.

Besides, the batch size was changed, and some combinations of different data augmentation techniques were used. The experiments done with the Transformer model confirm the benefits of having pre-training and allowed to understand that a more significant improvement can be obtained when it is used in-task domain pre-training models, in this case, from the audio domain. The batch size is not a significant parameter for the other experiments. Once again, using data augmentation techniques depending on the combination might not be beneficial, concluding that SpecAugment alone was the best option.

Concerning the various optimization functions, these parameters dramatically depend on the model architecture, dataset, input, pre-training, and data augmentation. However, three optimization functions consistently gave the worst performances: Stochastic Gradient Descent (SGD), Adagrad and Adadelta. For the baseline model, it was shown a preference for the Nadam optimizer. For the end-to-end models, the highlight is to Adam optimizer. For the Transformer, the preferable optimization function was AdamW for the ESC-50, Adam for the ESC-10 and Adamax for the UrbanSound8K.

However, there is a common difficulty between all the models concerning the accuracy per class for the UrbanSound8K dataset. All models exhibit lower accuracy values to the same classes. The most challenging class was the air conditioner, followed by engine idling, jackhammer and drilling, which must be pretty similar classes because the referred classes are mostly misclassified as being of each other's classes. In addition, the gunshot class was also the most straightforward class for all models. Regarding the ESC datasets, there is no consensus; however, helicopter seems to be the most challenging class by appearing with a low score in most situations, and the most straightforward class is sneezing for ESC-10 and toilet flush for ESC-50.

Table 6.1 presents a discussion between the most relevant models aggregated by each dataset under study.

After reviewing the results, Transformer is shown to be the most capable of providing better results by showing significant improvements compared with the best baseline and end-to-end model for each dataset with an average difference of 32.8 percentage points (pp) and 4.79 pp, respectively. Thus, the best accuracy results obtained for each dataset were for ESC-10, 99%, for ESC-50, 95.8% and for UrbanSound8K, 89.8%. Although it was not capable of achieving State-of-the-Art (SOTA) results, it gave very competitive results by being the second best result on the ESC-10 dataset with only a difference of 0.22 pp to the top result, the third best score for the ESC-50 dataset and the fourth best for UrbanSound8K considering the official splits, as can be confirmed in Table 6.2.

Model	DA	PI	PA	Metrics	Discussion
					et: ESC-10
Baseline model + mms60				acc: 74.8%, AUC: 94.8%,	Combination of features gives more discriminating information to the baselin
+ Nadam + dr: 0.2	-	-	-	mf1: 74.8%, Mf1: 74.3%,	model.
Fivedulit Full: 0.2				prec: 77.7%, rec: 73.3%.	model.
				acc: 89.8%, AUC: 98.9%,	
DenseNet + AdamW	-	-	-	mf1: 89.8%, Mf1: 89.3%,	Improves the baseline performance by 13.23 pp, on average.
				prec: 91.5%, rec: 89.8%.	,
				acc: 94.0%, AUC: 99.8%,	The use of much maining from Integer Not improved on average the and to an
ResNet + AdamW	-	\checkmark	-	mf1: 94.0%, Mf1: 93.8%,	The use of pre-training from ImageNet improves, on average, the end-to-en
				prec: 94.8%, rec: 94.0%.	model performance by 3.55 pp.
				acc: 95.0%, AUC: 99.8%,	
DenseNet + Adam	1	\checkmark	-	mf1: 95.0%, Mf1: 94.9%,	The addition of data augmentation techniques provides a slight improvement
				prec: 95.8%, rec: 95.0%.	of 0.85 pp, on average.
				acc: 52.8%, AUC: 91.8%,	
Transformer + AdamW	./		_	mf1: 52.8%, Mf1: 50.7%,	The use of a Transformer model without pre-training cannot give competitiv
industoriner + maantiv	•			prec: 61.7%, rec: 52.8%.	results.
Turne (/	/		acc: 93.8%, AUC: 99.8%,	The use of pre-training from ImageNet gives the Transformer model an ave
Transformer + AdamW	~	\checkmark	-	mf1: 93.8%, Mf1: 93.5%,	age boost of 35.05 pp. Showing the need for large datasets to train.
				prec: 98.2%, rec: 93.8%.	
				acc: 98.8%, AUC: 100%,	Using pre-training from ImageNet and AudioSet gives a better performance
Transformer + AdamW	-	\checkmark	\checkmark	mf1: 98.8%, Mf1: 98.7%,	than just an ImageNet pre-trained Transformer with an average increase of
				prec: 99.7%, rec: 98.8%.	3.65 pp.
				acc: 99.0%, AUC: 100%,	The addition of data augmentation to the pre-train from both domains give
Transformer + Adam	\checkmark	\checkmark	\checkmark	mf1: 99.0%, Mf1: 99.0%,	on average, a slight improvement of 0.18 pp. The average boost for the base
				prec: 99.9%, rec: 99.0%.	line model is 21.03 pp and for the best end-to-end model of 3.40 pp.
				Datase	et: ESC-50
				acc: 38.1%, AUC: 82.4%,	Combination of features down and discrimination for mostly a to the baseli
Baseline model + mfcc-	-	-	-	mf1: 38.1%, Mf1: 36.2%,	Combination of features gives more discriminating information to the baselin
stft80 + Nadam + dr: 0.2				prec: 43.9%, rec: 33.9%.	model.
				acc: 76.1%, AUC: 98.7%,	
DenseNet + Adam	-		-	mf1: 76.1%, Mf1: 75.4%,	Improves the baseline performance by 34.63 pp, on average.
Denberter Fridalit				prec: 78.0%, rec: 76.1%.	improves die susenite performance by 5 nos pp; on average.
				acc: 88.2%, AUC: 99.6%,	
ResNet + Adam		1			The use of pre-training from ImageNet improves, on average, the end-to-en
Resiver + Adam	-	v	-	mf1: 88.2%, Mf1: 87.7%,	model performance by 10.18 pp.
				prec: 89.6%, rec: 88.2%.	A 7 AA
D N C C C	,	,		acc: 90.1%, AUC: 99.6%,	The addition of data augmentation techniques gives a small increase of 1.5
ResNet + Adam	\checkmark	\checkmark	-	mf1: 90.1%, Mf1: 89.9%,	pp, on average.
				prec: 91.2%, rec: 90.1%.	11,
				acc: 43.9%, AUC: 93.6%,	The use of a Transformer model without pre-training cannot provide goo
Transformer + AdamW	\checkmark	-	-	mf1: 43.9%, Mf1: 42.4%,	results; however, better than the baseline model.
				prec: 46.8%, rec: 43.9%.	results, nowever, benef that the busefile model.
				acc: 88.6%, AUC: 99.6%,	The use of pre-training from ImageNet gives a huge performance boost
Transformer + AdamW	\checkmark	\checkmark	-	mf1: 88.6%, Mf1: 88.4%,	of 38.67 pp, on average, compared to the Transformer model without pre-
				prec: 92.7%, rec: 88.6%.	training.
				acc: 95.4%, AUC: 99.9%,	Hoing any training from IncoolNot and Artificer days
Transformer + AdamW	-	\checkmark	\checkmark	mf1: 95.4%, Mf1: 95.3%,	Using pre-training from ImageNet and AudioSet gives an average improve
				prec: 97.6%, rec: 95.4%.	ment of 5.42 pp compared to the ImageNet pre-trained Transformer.
				acc: 95.8%, AUC: 99.9%,	The addition of data augmentation gives a small improvement of 0.28 pp, o
Transformer + AdamW	1	\checkmark	\checkmark	mf1: 95.8%, Mf1: 95.6%,	average. The average boost is to the baseline model of 51.35 pp and 4.95 p
Hundronner + Audinv	v	v	v	prec: 97.8%, rec: 95.8%.	for the best end-to-end model.
					rbanSound8K
					Ivanovunuon
Baseline model + mmsqc				acc: 61.1%, AUC: 88.9%,	Combination of features gives more discriminating information to the baselin
+ Nadam + dr: 0.6	-	-	-	mf1: 61.1%, Mf1: 63.2%,	model.
				prec: 73.1%, rec: 49.2%.	
				acc: 74.2%, AUC: 95.4%,	
DenseNet + AdamW	-	-	-	mf1: 74.2%, Mf1: 75.6%,	Improves the baseline performance by 12.03 pp, on average.
				prec: 75.2%, rec: 74.2%.	
				acc: 83.3%, AUC: 97.7%,	The use of pre-training from ImageNet improves the end to and model as
DenseNet + Adam	-	\checkmark	-	mf1: 83.3%, Mf1: 84.4%,	The use of pre-training from ImageNet improves the end-to-end model pe
				prec: 84.1%, rec: 83.3%.	formance by 7.88 pp, on average.
				acc: 82.2%, AUC: 97.4%,	
ResNet + Adamax	\checkmark	\checkmark	-	mf1: 82.2%, Mf1: 83.0%,	The use of data augmentation techniques was detrimental.
	•	•		prec: 82.5%, rec: 82.2%.	
				acc: 89.8%, AUC: 98.6%,	The Transformer model pre-trained with datasets from both domains and us
	./	\checkmark	\checkmark	mf1: 89.8%, Mf1: 90.4%,	
Transformer + Adamay		v	v		ing data augmentation gives an average boost of 25.93 pp regarding the base
Transformer + Adamax	•			prec: 93.8%, rec: 89.8%.	line model and of 6.02 pp compared to the best end-to-end model.

TABLE 6.1: Summary and discussion of several of the proposed models.

characteristic curve; mf1: micro f1score; Mf1: macro f1score; prec: precision; rec: recall; pp: percentage points.

TABLE 6.2: Accuracy results of all models considered for the literature review and pro-
posed models.

Authors/Year	UrbanSound8k	ESC-50	ESC-10
J. K. Das, A. Ghosh, A. K. Pal, S. Dutta and A. Chakrabarty (2020) [2]	98.81% (unofficial split)	-	-
J.K. Das, A. Chakrabarty and M.J. Piran (2021) [3]	99.60% (unofficial split)	-	-
T. Giannakopoulos, E. Spyrou and S. J. Perantonis (2019) [9]	73.1%	52.2%	-
I. Martin-Morato, M. Cobos and F. J. Ferri (2020) [19]	73.96%	-	-
P. Zinemanas, M. Rocamora, M. Miron, F. Font and X. Serra (2021) [45]	76.2%	-	-
J. Salamon and J. P. Bello (2017) [29]	79%	-	-
W. Mu, B. Yin, X. Huang, J. Xu and Z. Du (2021) [21]	93.1%	84.4%	-
J.S. Luz, M.C. Oliveira, F.H.D. Araújo and D.M.V. Magalhães (2021) [18]	96.8%	-	86.2%
T. M. S. Tax, J. L. D. Antich, H. Purwins and L. Maaløe (2017) [36]	-	$\approx 50\%$	-
David Elliott, Carlos E. Otero, Steven Wyatt and Evan Martino (2021) [8]	-	67.71%	-
H. Akbari, L. Yuan, R. Qian, W. Chuang, S. Chang, Y. Cui and B. Gong (2021) [1]	-	84.9%	-
Z. Zhang, S. Xu, S. Zhang, T. Qiao and S. Cao (2020) [44]	-	86.1%	93.7%
T. Qiao, S. Zhang, S. Cao and S. Xu (2021) [25]	-	86.4%	-
Z. Zhang, S. Xu, S. Zhang, T. Qiao and S. Cao (2019) [43]	-	86.5%	94.2%
NC. Ristea, R. T. Ionescu and F. S. Khan (2022) [26]	-	91.13%	-
Y. Gong, Yu-An Chung and J. Glass (2021) [11]	-	95.6%	-
K. Koutini, J. Schlüter, H. Eghbal-zadeh and G. Widmer (2021) [16]	-	96.8%	-
A. M. Tripathi and A. Mishra (2021) [38]	-	-	92.16%
İ. Türker and S. Aksu (2022) [46]	-	-	96.46%
Z. Mushtaq and SF. Su (2020) [22]	97.98%	98.52%	99.22%
Proposed models			
Baseline model	61.1%	38.1%	74.8%
Inception	82.7%	86.4%	94.0%
ResNet	82.8%	90.1%	94.0%
DenseNet	83.3%	90.1%	95.0%
Transformer	89.8%	95.8%	99.0%

Future research will explore the inclusion of a dropout method like Patchout introduced by Koutini et al. [16] to obligate the model to perform classification using incomplete sequences, which improves the Transformer's performance. Furthermore, for the end-to-end models, instead of introducing a simple Melspectrogram, it might be beneficial the introduction of a logarithmic spectrogram such as Log(Log-Melspectrogram) or Log(Log(Log-Melspectrogram)) as proved by Mushtaq and Su [22].

122

Appendix A

Description of Autoencoder Model

The following section presents a brief description of the basic architecture of the autoencoder model.

A.1 Autoencoder

An autoencoder is a feed-forward neural network that is trained to attempt to copy approximately its input to its output in an unsupervised manner. The architecture of an autoencoder, as it is possible to see in Figure A.1^{*}, consists of 3 components:

- Encoder: compresses the input data into an encoded representation in a latent space which is typically several orders of magnitude smaller than the input data;
- Code: contains the compressed knowledge representations;
- Decoder: reconstructs the data back from its encoded form using the latent space attributes. The output and the input must be of the same dimension.

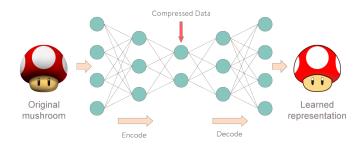


FIGURE A.1: Autoencoder architecture.

^{*}https://www.metamaven.com/beyond-backpropagation-can-go-deeper-deep-learning/ autoencoder_800px_web/ (accessed September 2022).

Appendix **B**

Complete Tables of the Baseline Models

In the following appendix, it's presented the complete tables of the features and combinations of features used to achieve the best baseline models for the UrbanSound8K, the ESC-10 and the ESC-50 datasets.

The used abbreviations and the meaning of the number that appears in front of each feature:

- zcr zero-crossing rate;
- rms root mean square;
- rol spectral rolloff; roll-off percentage;
- poly poly features; order of the polynomial to fit;
- sflat spectral flatness;
- scontrast spectral contrast; number of frequency bands;
- scent spectral centroid; FFT window size;
- sband spectral bandwidth; FFT window size;
- mel melspectrogram, mfcc Mel Frequency Cepstral Coefficients (MFCC); number of Mel bands;

 stft - chroma Short-Term Fourier Transformation (STFT), cqt - chroma Constant Qtransform (CQT), cens - chroma Chroma Energy Normalized Statistics (CENS), tonz
 tonnetz; number of chroma bins.

If a feature has no number in front means that the default parameters were used. The abbreviations for the combinations of features are summarized in Table 3.1.

B.1 UrbanSound8K - Single Feature Input

B.1.1 Baseline Model Architecture

	Mod	el 1: (o	ptimizer:	Adam)			Model 2: (optimizer: SGD)							
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
mel80	0.591	0.873	0.591	0.593	0.643	0.483	mfcc60	0.522	0.886	0.522	0.551	0.774	0.278	
mfcc60	0.572	0.885	0.572	0.578	0.682	0.527	mfcc80	0.516	0.878	0.516	0.528	0.765	0.314	
mfcc40	0.575	0.894	0.575	0.575	0.646	0.527	mel80	0.465	0.838	0.465	0.459	0.761	0.228	
mfcc80	0.559	0.881	0.559	0.563	0.648	0.520	mfcc40	0.441	0.797	0.441	0.440	0.519	0.226	
mel60	0.486	0.850	0.486	0.497	0.550	0.381	mel60	0.423	0.832	0.423	0.436	0.683	0.170	
stft60	0.507	0.862	0.507	0.492	0.582	0.305	mel40	0.412	0.830	0.412	0.411	0.767	0.177	
mel40	0.481	0.821	0.481	0.478	0.517	0.367	mel20	0.400	0.826	0.400	0.386	0.696	0.140	
stft80	0.483	0.859	0.483	0.472	0.591	0.330	stft60	0.374	0.835	0.374	0.367	0.589	0.118	
mel20	0.468	0.839	0.468	0.472	0.510	0.338	stft20	0.348	0.833	0.348	0.349	0.381	0.067	
stft20	0.452	0.865	0.452	0.451	0.598	0.348	stft40	0.345	0.842	0.345	0.336	0.636	0.100	
stft40	0.459	0.865	0.459	0.449	0.606	0.345	cqt40	0.344	0.782	0.344	0.332	0.607	0.078	
cqt20	0.435	0.817	0.435	0.430	0.640	0.219	cqt80	0.331	0.773	0.331	0.331	0.603	0.109	
cqt80	0.397	0.811	0.397	0.396	0.607	0.210	cens20	0.341	0.764	0.341	0.329	0.745	0.042	
cqt40	0.391	0.782	0.391	0.387	0.547	0.179	stft80	0.325	0.822	0.325	0.319	0.636	0.134	
cens20	0.362	0.788	0.362	0.343	0.512	0.246	cqt20	0.300	0.774	0.300	0.290	0.339	0.044	
cens40	0.342	0.792	0.342	0.334	0.451	0.249	scontrast	0.305	0.754	0.305	0.269	0.467	0.025	
scontrast	0.324	0.764	0.324	0.291	0.465	0.157	cens40	0.264	0.763	0.264	0.243	0.609	0.084	
poly10	0.281	0.777	0.281	0.243	0.432	0.023	scontrast4	0.204	0.695	0.204	0.185	0.368	0.008	
scontrast4	0.253	0.732	0.253	0.242	0.266	0.025	tonz20	0.201	0.647	0.201	0.168	0.333	0.002	
tonz20	0.232	0.694	0.232	0.231	0.622	0.082	tonz40	0.171	0.655	0.171	0.167	0.357	0.006	
poly5	0.274	0.752	0.274	0.227	0.000	0.000	tonz80	0.147	0.654	0.147	0.150	0.455	0.006	
cens80	0.211	0.687	0.211	0.219	0.405	0.140	poly10	0.258	0.735	0.258	0.145	1.000	0.005	
tonz80	0.205	0.685	0.205	0.200	0.409	0.043	sflat	0.173	0.685	0.173	0.130	0.359	0.017	
tonz40	0.198	0.671	0.198	0.198	0.419	0.062	zcr	0.190	0.716	0.190	0.121	0.636	0.042	
zcr	0.223	0.667	0.223	0.164	0.660	0.042	cens80	0.128	0.673	0.128	0.118	0.320	0.010	
sflat	0.192	0.652	0.192	0.150	0.650	0.016	poly5	0.214	0.722	0.214	0.108	0.000	0.000	
poly	0.225	0.650	0.225	0.149	1.000	0.022	poly3	0.222	0.676	0.222	0.106	0.000	0.000	
poly3	0.188	0.645	0.188	0.143	0.900	0.022	poly	0.209	0.640	0.209	0.094	0.000	0.000	
poly2	0.165	0.625	0.165	0.125	1.000	0.024	poly2	0.205	0.648	0.205	0.091	0.000	0.000	
rms	0.227	0.653	0.227	0.112	1.000	0.017	rms	0.190	0.625	0.190	0.081	0.000	0.000	
rol0.25	0.119	0.500	0.119	0.021	0.000	0.000	rol0.25	0.119	0.500	0.119	0.021	0.000	0.000	
rol0.45	0.119	0.500	0.119	0.021	0.000	0.000	rol0.45	0.119	0.500	0.119	0.021	0.000	0.000	
ro10.65	0.119	0.500	0.119	0.021	0.000	0.000	rol0.65	0.119	0.500	0.119	0.021	0.000	0.000	
scent2048	0.119	0.500	0.119	0.021	0.000	0.000	scent2048	0.119	0.500	0.119	0.021	0.000	0.000	
rol0.85	0.119	0.500	0.119	0.021	0.000	0.000	ro10.85	0.119	0.500	0.119	0.021	0.000	0.000	
ro10.99	0.119	0.511	0.119	0.021	0.000	0.000	ro10.99	0.119	0.500	0.119	0.021	0.000	0.000	
sband	0.119	0.500	0.119	0.021	0.000	0.000	scent8000	0.119	0.500	0.119	0.021	0.000	0.000	
scent8000	0.111	0.500	0.111	0.020	0.000	0.000	sband8000	0.115	0.500	0.115	0.021	0.000	0.000	
sband8000	0.039	0.500	0.039	0.008	0.000	0.000	sband	0.099	0.500	0.099	0.018	0.000	0.000	

TABLE B.1: Results of the 6 models for different features.

	Mode	1 3: (op	timizer:	Adamax)				Mod	el 4: (op	otimizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
mfcc80	0.611	0.904	0.611	0.622	0.722	0.550	mfcc80	0.637	0.908	0.637	0.628	0.747	0.572
mfcc60	0.616	0.898	0.616	0.618	0.682	0.564	mfcc40	0.576	0.873	0.576	0.583	0.651	0.535
mfcc40	0.593	0.893	0.593	0.607	0.693	0.519	mfcc60	0.573	0.864	0.573	0.571	0.654	0.529
mel80	0.491	0.859	0.491	0.501	0.703	0.294	mel80	0.535	0.857	0.535	0.539	0.583	0.419
mel40	0.466	0.862	0.466	0.477	0.688	0.260	mel60	0.487	0.836	0.487	0.490	0.569	0.415
stft80	0.478	0.870	0.478	0.471	0.631	0.341	stft40	0.478	0.865	0.478	0.474	0.569	0.319
stft40	0.477	0.886	0.477	0.456	0.613	0.344	stft60	0.492	0.864	0.492	0.471	0.609	0.341
stft20	0.455	0.877	0.455	0.447	0.591	0.297	mel40	0.448	0.836	0.448	0.458	0.503	0.368
stft60	0.456	0.874	0.456	0.439	0.590	0.323	stft20	0.458	0.870	0.458	0.455	0.591	0.323
mel60	0.411	0.846	0.411	0.434	0.602	0.235	mel20	0.446	0.832	0.446	0.448	0.499	0.313
mel20	0.431 0.423	$0.840 \\ 0.815$	0.431	0.423 0.416	0.648	0.204	stft80	0.430	0.851	0.430	0.421	0.560	0.300
cqt20 cqt80	0.423	0.815	0.423 0.401	0.418	0.560 0.592	0.161 0.216	cqt20 cqt40	0.411 0.389	0.817 0.799	0.411 0.389	0.398 0.380	0.556 0.579	0.214
cqt40	0.401	0.809	0.401	0.399	0.592	0.210	cqt40 cqt80	0.376	0.799	0.376	0.371	0.579	0.219
cens20	0.393	0.791	0.393	0.375	0.528	0.158	cens20	0.370	0.790	0.370	0.361	0.513	0.214
cens40	0.369	0.799	0.369	0.358	0.549	0.130	scontrast	0.367	0.771	0.367	0.348	0.472	0.230
scontrast	0.362	0.785	0.362	0.337	0.486	0.102	cens40	0.344	0.785	0.344	0.339	0.472	0.252
poly10	0.337	0.789	0.337	0.263	0.769	0.036	scontrast4	0.280	0.747	0.280	0.258	0.389	0.033
scontrast4	0.271	0.732	0.337	0.265	0.298	0.030	tonz20	0.237	0.694	0.237	0.236	0.640	0.087
zcr	0.270	0.682	0.271	0.239	0.610	0.030	poly10	0.277	0.777	0.277	0.223	0.625	0.007
tonz20	0.229	0.687	0.229	0.220	0.676	0.030	poly10	0.233	0.733	0.233	0.216	0.833	0.012
tonz40	0.232	0.709	0.232	0.216	0.520	0.031	tonz80	0.223	0.685	0.223	0.213	0.371	0.051
tonz80	0.214	0.704	0.214	0.210	0.558	0.035	tonz40	0.211	0.679	0.211	0.207	0.492	0.072
cens80	0.178	0.712	0.178	0.169	0.353	0.078	cens80	0.186	0.690	0.186	0.192	0.348	0.116
poly5	0.191	0.710	0.191	0.162	0.778	0.017	zcr	0.229	0.677	0.229	0.177	0.654	0.041
poly	0.205	0.648	0.205	0.140	1.000	0.017	sflat	0.229	0.656	0.229	0.169	0.838	0.037
sflat	0.179	0.660	0.179	0.138	0.650	0.016	poly3	0.210	0.661	0.210	0.152	0.333	0.001
poly3	0.198	0.671	0.198	0.133	0.222	0.005	poly	0.186	0.643	0.186	0.132	0.909	0.024
poly2	0.168	0.649	0.168	0.119	0.000	0.000	poly2	0.191	0.640	0.191	0.129	1.000	0.024
rms	0.219	0.654	0.219	0.105	0.000	0.000	rms	0.216	0.654	0.216	0.107	1.000	0.017
rol0.25	0.119	0.500	0.119	0.021	0.000	0.000	ro10.99	0.119	0.485	0.119	0.021	0.000	0.000
rol0.85	0.119	0.500	0.119	0.021	0.000	0.000	sband	0.119	0.500	0.119	0.021	0.000	0.000
sband	0.111	0.500	0.111	0.020	0.000	0.000	scent8000	0.119	0.500	0.119	0.021	0.000	0.000
scent2048	0.111	0.500	0.111	0.020	0.000	0.000	rol2	0.119	0.500	0.119	0.021	0.000	0.000
rol0.65	0.099	0.500	0.099	0.018	0.000	0.000	sband8000	0.119	0.500	0.119	0.021	0.000	0.000
scent8000	0.039	0.500	0.039	0.008	0.000	0.000	rol0.45	0.099	0.500	0.099	0.018	0.000	0.000
ro10.99	0.039	0.500	0.039	0.008	0.000	0.000	scent2048	0.039	0.500	0.039	0.008	0.000	0.000
rol0.45	0.038	0.500	0.038	0.007	0.000	0.000	rol0.25	0.038	0.500	0.038	0.007	0.000	0.000
sband8000	0.038	0.500	0.038	0.007	0.000	0.000	rol0.65	0.038	0.500	0.038	0.007	0.000	0.000
	Mode	l 5: (op		Adadelta)				Mode	l 6: (op	timizer: 4			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
mfcc60	0.209	0.595	0.209	0.179	0.317	0.118	mfcc60	0.368	0.753	0.368	0.361	1.000	0.033
mel60	0.213	0.637	0.213	0.164	0.556	0.066	mel80	0.323	0.793	0.323	0.329	0.538	0.060
tonz20	0.208	0.538	0.208	0.163	0.000	0.000	mel40	0.329	0.779	0.329	0.329	0.766	0.059
cens20	0.167	0.597	0.167	0.140	0.000	0.000	mel60	0.283	0.786	0.283	0.287	0.803	0.068
cens40	0.145	0.554	0.145	0.130	0.000	0.000	mel20	0.295	0.762	0.295	0.257	0.723	0.041
mel80	0.123	0.564	0.123	0.128	0.136	0.018	mfcc40	0.220	0.676	0.220	0.227	0.818	0.032
tonz80	0.131	0.555	0.131	0.117	0.000	0.000	stft80	0.223	0.731	0.223	0.204	0.545	0.014
	0.134	0.661	0.134	0.108	0.553	0.025	scontrast4	0.214	0.666	0.214	0.189	0.000	0.000
mel20					0.534	0.056	stft60	0.198	0.724	0.198	0.185	0.917	0.013
mel40	0.160	0.589	0.160	0.104									0.017
mel40 mfcc40	0.160 0.153	0.589 0.645	0.153	0.100	0.227	0.098	stft40	0.213	0.754	0.213	0.183	0.875	
mel40 mfcc40 mfcc80	0.160 0.153 0.146	0.589 0.645 0.572	0.153 0.146	0.100 0.096	0.227 0.197	0.075	cens40	0.201	0.698	0.201	0.177	0.000	0.000
mel40 mfcc40 mfcc80 cens80	0.160 0.153 0.146 0.104	0.589 0.645 0.572 0.558	0.153 0.146 0.104	0.100 0.096 0.082	0.227 0.197 0.000	0.075 0.000	cens40 mfcc80	0.201 0.200	0.698 0.638	0.201 0.200	0.177 0.176	0.000 1.000	0.000 0.030
mel40 mfcc40 mfcc80 cens80 poly10	$0.160 \\ 0.153 \\ 0.146 \\ 0.104 \\ 0.184$	0.589 0.645 0.572 0.558 0.632	0.153 0.146 0.104 0.184	0.100 0.096 0.082 0.082	0.227 0.197 0.000 0.000	0.075 0.000 0.000	cens40 mfcc80 stft20	0.201 0.200 0.177	0.698 0.638 0.732	0.201 0.200 0.177	0.177 0.176 0.168	0.000 1.000 1.000	0.000 0.030 0.002
mel40 mfcc40 mfcc80 cens80 poly10 rms	0.160 0.153 0.146 0.104 0.184 0.174	0.589 0.645 0.572 0.558 0.632 0.541	0.153 0.146 0.104 0.184 0.174	0.100 0.096 0.082 0.082 0.081	0.227 0.197 0.000 0.000 0.000	0.075 0.000 0.000 0.000	cens40 mfcc80 stft20 scontrast	0.201 0.200 0.177 0.226	0.698 0.638 0.732 0.689	0.201 0.200 0.177 0.226	0.177 0.176 0.168 0.159	0.000 1.000 1.000 0.500	0.000 0.030 0.001 0.001
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\end{array}$	0.589 0.645 0.572 0.558 0.632 0.541 0.605	$\begin{array}{c} 0.153 \\ 0.146 \\ 0.104 \\ 0.184 \\ 0.174 \\ 0.158 \end{array}$	0.100 0.096 0.082 0.082 0.081 0.081	0.227 0.197 0.000 0.000 0.000 0.000	0.075 0.000 0.000 0.000 0.000	cens40 mfcc80 stft20 scontrast cqt80	0.201 0.200 0.177 0.226 0.146	0.698 0.638 0.732 0.689 0.658	0.201 0.200 0.177 0.226 0.146	0.177 0.176 0.168 0.159 0.133	0.000 1.000 1.000 0.500 1.000	0.000 0.030 0.001 0.001
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat stft40	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ \end{array}$	0.589 0.645 0.572 0.558 0.632 0.541 0.605 0.576	$\begin{array}{c} 0.153 \\ 0.146 \\ 0.104 \\ 0.184 \\ 0.174 \\ 0.158 \\ 0.104 \end{array}$	0.100 0.096 0.082 0.082 0.081 0.081 0.073	0.227 0.197 0.000 0.000 0.000 0.000 0.000	0.075 0.000 0.000 0.000 0.000 0.000	cens40 mfcc80 stft20 scontrast cqt80 tonz40	0.201 0.200 0.177 0.226 0.146 0.195	0.698 0.638 0.732 0.689 0.658 0.600	0.201 0.200 0.177 0.226 0.146 0.195	0.177 0.176 0.168 0.159 0.133 0.126	0.000 1.000 1.000 0.500 1.000 0.000	0.000 0.030 0.001 0.001 0.001
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat stft40 zcr	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ 0.148\\ \end{array}$	$\begin{array}{c} 0.589\\ 0.645\\ 0.572\\ 0.558\\ 0.632\\ 0.541\\ 0.605\\ 0.576\\ 0.545 \end{array}$	$\begin{array}{c} 0.153 \\ 0.146 \\ 0.104 \\ 0.184 \\ 0.174 \\ 0.158 \\ 0.104 \\ 0.148 \end{array}$	0.100 0.096 0.082 0.082 0.081 0.081 0.073 0.063	$\begin{array}{c} 0.227\\ 0.197\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.075\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	cens40 mfcc80 stft20 scontrast cqt80 tonz40 cqt40	0.201 0.200 0.177 0.226 0.146 0.195 0.143	$\begin{array}{c} 0.698 \\ 0.638 \\ 0.732 \\ 0.689 \\ 0.658 \\ 0.600 \\ 0.656 \end{array}$	0.201 0.200 0.177 0.226 0.146 0.195 0.143	$\begin{array}{c} 0.177\\ 0.176\\ 0.168\\ 0.159\\ 0.133\\ 0.126\\ 0.124\\ \end{array}$	0.000 1.000 1.000 0.500 1.000 0.000 0.000	0.000 0.030 0.001 0.001 0.001 0.000
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat stft40 zcr poly5	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ 0.148\\ 0.145\\ \end{array}$	$\begin{array}{c} 0.589 \\ 0.645 \\ 0.572 \\ 0.558 \\ 0.632 \\ 0.541 \\ 0.605 \\ 0.576 \\ 0.545 \\ 0.594 \end{array}$	$\begin{array}{c} 0.153 \\ 0.146 \\ 0.104 \\ 0.184 \\ 0.174 \\ 0.158 \\ 0.104 \\ 0.148 \\ 0.145 \end{array}$	0.100 0.096 0.082 0.082 0.081 0.081 0.073 0.063 0.057	0.227 0.197 0.000 0.000 0.000 0.000 0.000 0.000 1.000	0.075 0.000 0.000 0.000 0.000 0.000 0.000 0.017	cens40 mfcc80 stft20 scontrast cqt80 tonz40 cqt40 poly10	$\begin{array}{c} 0.201 \\ 0.200 \\ 0.177 \\ 0.226 \\ 0.146 \\ 0.195 \\ 0.143 \\ 0.214 \end{array}$	0.698 0.638 0.732 0.689 0.658 0.600 0.656 0.728	0.201 0.200 0.177 0.226 0.146 0.195 0.143 0.214	0.177 0.176 0.168 0.159 0.133 0.126 0.124 0.112	0.000 1.000 0.500 1.000 0.000 0.000 1.000	0.000 0.030 0.001 0.001 0.001 0.000 0.000 0.000
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat stft40 zcr poly5 tonz40	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ 0.148\\ 0.145\\ 0.109\\ \end{array}$	$\begin{array}{c} 0.589\\ 0.645\\ 0.572\\ 0.558\\ 0.632\\ 0.541\\ 0.605\\ 0.576\\ 0.545\\ 0.594\\ 0.554\end{array}$	$\begin{array}{c} 0.153 \\ 0.146 \\ 0.104 \\ 0.184 \\ 0.174 \\ 0.158 \\ 0.104 \\ 0.148 \\ 0.145 \\ 0.109 \end{array}$	0.100 0.096 0.082 0.082 0.081 0.081 0.073 0.063 0.057 0.055	0.227 0.197 0.000 0.000 0.000 0.000 0.000 1.000 0.000	0.075 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000	cens40 mfcc80 stft20 scontrast cqt80 tonz40 cqt40 poly10 poly3	$\begin{array}{c} 0.201 \\ 0.200 \\ 0.177 \\ 0.226 \\ 0.146 \\ 0.195 \\ 0.143 \\ 0.214 \\ 0.209 \end{array}$	0.698 0.638 0.732 0.689 0.658 0.600 0.656 0.728 0.642	0.201 0.200 0.177 0.226 0.146 0.195 0.143 0.214 0.209	0.177 0.176 0.168 0.159 0.133 0.126 0.124 0.112 0.104	0.000 1.000 0.500 1.000 0.000 0.000 1.000 0.000	0.000 0.030 0.001 0.001 0.000 0.000 0.000 0.010 0.000
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat stft40 zcr poly5 tonz40 scontrast4	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ 0.148\\ 0.145\\ 0.109\\ 0.116\\ \end{array}$	$\begin{array}{c} 0.589\\ 0.645\\ 0.572\\ 0.558\\ 0.632\\ 0.541\\ 0.605\\ 0.576\\ 0.545\\ 0.594\\ 0.554\\ 0.536\end{array}$	$\begin{array}{c} 0.153 \\ 0.146 \\ 0.104 \\ 0.184 \\ 0.174 \\ 0.158 \\ 0.104 \\ 0.148 \\ 0.145 \\ 0.109 \\ 0.116 \end{array}$	0.100 0.096 0.082 0.081 0.081 0.073 0.063 0.057 0.055 0.050	0.227 0.197 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000	0.075 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000	cens40 mfcc80 stft20 scontrast cqt80 tonz40 cqt40 poly10 poly3 cqt20	$\begin{array}{c} 0.201 \\ 0.200 \\ 0.177 \\ 0.226 \\ 0.146 \\ 0.195 \\ 0.143 \\ 0.214 \\ 0.209 \\ 0.121 \end{array}$	$\begin{array}{c} 0.698\\ 0.638\\ 0.732\\ 0.689\\ 0.658\\ 0.600\\ 0.656\\ 0.728\\ 0.642\\ 0.641\\ \end{array}$	$\begin{array}{c} 0.201 \\ 0.200 \\ 0.177 \\ 0.226 \\ 0.146 \\ 0.195 \\ 0.143 \\ 0.214 \\ 0.209 \\ 0.121 \end{array}$	$\begin{array}{c} 0.177\\ 0.176\\ 0.168\\ 0.159\\ 0.133\\ 0.126\\ 0.124\\ 0.112\\ 0.104\\ 0.100\\ \end{array}$	0.000 1.000 0.500 1.000 0.000 0.000 1.000 0.000 0.000	0.000 0.030 0.001 0.001 0.001 0.000 0.000 0.010 0.000 0.000
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat stft40 zcr poly5 tonz40 scontrast4 stft20	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ 0.148\\ 0.145\\ 0.109\\ 0.116\\ 0.074 \end{array}$	$\begin{array}{c} 0.589\\ 0.645\\ 0.572\\ 0.558\\ 0.632\\ 0.541\\ 0.605\\ 0.576\\ 0.545\\ 0.594\\ 0.554\\ 0.536\\ 0.572\\ \end{array}$	$\begin{array}{c} 0.153 \\ 0.146 \\ 0.104 \\ 0.184 \\ 0.174 \\ 0.158 \\ 0.104 \\ 0.148 \\ 0.145 \\ 0.109 \\ 0.116 \\ 0.074 \end{array}$	0.100 0.096 0.082 0.081 0.081 0.073 0.063 0.057 0.055 0.050 0.045	0.227 0.197 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000	0.075 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000	cens40 mfcc80 stft20 scontrast cqt80 tonz40 cqt40 poly10 poly3 cqt20 poly5	0.201 0.200 0.177 0.226 0.146 0.195 0.143 0.214 0.209 0.121 0.134	$\begin{array}{c} 0.698\\ 0.638\\ 0.732\\ 0.689\\ 0.658\\ 0.600\\ 0.656\\ 0.728\\ 0.642\\ 0.641\\ 0.686\end{array}$	0.201 0.200 0.177 0.226 0.146 0.195 0.143 0.214 0.209 0.121 0.134	$\begin{array}{c} 0.177\\ 0.176\\ 0.168\\ 0.159\\ 0.133\\ 0.126\\ 0.124\\ 0.112\\ 0.104\\ 0.100\\ 0.095 \end{array}$	0.000 1.000 0.500 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000	0.000 0.030 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
mel40 mfcc40 mfcc80 cens80 poly10 rms sflat stft40 zcr poly5 tonz40 scontrast4	$\begin{array}{c} 0.160\\ 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ 0.148\\ 0.145\\ 0.109\\ 0.116\\ \end{array}$	$\begin{array}{c} 0.589\\ 0.645\\ 0.572\\ 0.558\\ 0.632\\ 0.541\\ 0.605\\ 0.576\\ 0.545\\ 0.594\\ 0.554\\ 0.536\end{array}$	$\begin{array}{c} 0.153\\ 0.146\\ 0.104\\ 0.184\\ 0.174\\ 0.158\\ 0.104\\ 0.148\\ 0.145\\ 0.109\\ 0.116\\ \end{array}$	0.100 0.096 0.082 0.081 0.081 0.073 0.063 0.057 0.055 0.050	0.227 0.197 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000	0.075 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000	cens40 mfcc80 stft20 scontrast cqt80 tonz40 cqt40 poly10 poly3 cqt20	$\begin{array}{c} 0.201 \\ 0.200 \\ 0.177 \\ 0.226 \\ 0.146 \\ 0.195 \\ 0.143 \\ 0.214 \\ 0.209 \\ 0.121 \end{array}$	$\begin{array}{c} 0.698\\ 0.638\\ 0.732\\ 0.689\\ 0.658\\ 0.600\\ 0.656\\ 0.728\\ 0.642\\ 0.641\\ \end{array}$	$\begin{array}{c} 0.201 \\ 0.200 \\ 0.177 \\ 0.226 \\ 0.146 \\ 0.195 \\ 0.143 \\ 0.214 \\ 0.209 \\ 0.121 \end{array}$	$\begin{array}{c} 0.177\\ 0.176\\ 0.168\\ 0.159\\ 0.133\\ 0.126\\ 0.124\\ 0.112\\ 0.104\\ 0.100\\ \end{array}$	0.000 1.000 0.500 1.000 0.000 0.000 1.000 0.000 0.000	0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.0000 0.00000 0.0000 0.0000 0.0000000 0.00000 0.00000000

Sound Characterization of Urban Environments by Computational Methods

Model	5: (opt	imizer:	Adadelt	a) - conti	nuatior	Model 6: (optimizer: Adagrad) - continuation							
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
stft80	0.075	0.573	0.075	0.037	0.000	0.000	zcr	0.195	0.662	0.195	0.085	0.000	0.000
cqt40	0.053	0.523	0.053	0.034	0.000	0.000	poly2	0.183	0.587	0.183	0.079	0.000	0.000
scontrast	0.060	0.509	0.060	0.031	0.000	0.000	tonz20	0.084	0.597	0.084	0.079	0.000	0.000
poly	0.054	0.502	0.054	0.031	0.000	0.000	rms	0.192	0.580	0.192	0.075	0.000	0.000
poly3	0.042	0.548	0.042	0.028	0.000	0.000	sflat	0.153	0.627	0.153	0.071	0.000	0.000
cqt20	0.045	0.530	0.045	0.022	0.000	0.000	poly	0.146	0.598	0.146	0.065	0.000	0.000
rol0.25	0.119	0.514	0.119	0.021	0.125	0.119	cens80	0.075	0.590	0.075	0.049	0.000	0.000
rol0.65	0.119	0.507	0.119	0.021	0.119	0.119	rol0.85	0.119	0.515	0.119	0.021	0.000	0.000
rol0.85	0.119	0.508	0.119	0.021	0.119	0.119	rol0.45	0.119	0.502	0.119	0.021	0.000	0.000
sband8000	0.111	0.508	0.111	0.020	0.111	0.111	scent8000	0.119	0.532	0.119	0.021	0.000	0.000
scent2048	0.099	0.468	0.099	0.018	0.099	0.099	ro10.99	0.119	0.488	0.119	0.021	0.000	0.000
cqt80	0.042	0.547	0.042	0.013	0.000	0.000	rol0.25	0.111	0.528	0.111	0.020	0.000	0.000
rol0.45	0.039	0.397	0.039	0.008	0.036	0.036	rol0.65	0.111	0.525	0.111	0.020	0.000	0.000
scent8000	0.039	0.466	0.039	0.008	0.039	0.039	sband8000	0.099	0.493	0.099	0.018	0.000	0.000
sband	0.039	0.456	0.039	0.008	0.040	0.039	scent2048	0.099	0.482	0.099	0.018	0.000	0.000
ro10.99	0.038	0.474	0.038	0.007	0.038	0.038	sband	0.039	0.489	0.039	0.008	0.000	0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).													

B.1.2 Extra Layer

TABLE B.2: Results of the 4 best models with an extra layer for different features.

	Mod	ptimizer:	Adam)		Model 8: (optimizer: SGD)								
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.573	0.879	0.573	0.584	0.627	0.524	mfcc80	0.539	0.873	0.539	0.561	0.856	0.263
mfcc40	0.584	0.879	0.584	0.579	0.652	0.550	mfcc60	0.514	0.857	0.514	0.539	0.777	0.146
mfcc60	0.522	0.865	0.522	0.539	0.638	0.471	mfcc40	0.490	0.838	0.490	0.505	0.725	0.227
mel80	0.526	0.852	0.526	0.534	0.556	0.441	mel80	0.430	0.844	0.430	0.440	0.708	0.203
mel20	0.487	0.845	0.487	0.486	0.532	0.373	mel60	0.415	0.839	0.415	0.420	0.714	0.194
mel40	0.479	0.829	0.479	0.478	0.499	0.360	mel20	0.409	0.823	0.409	0.393	0.675	0.168
stft40	0.468	0.874	0.468	0.465	0.611	0.306	mel40	0.375	0.816	0.375	0.371	0.692	0.161
stft60	0.476	0.859	0.476	0.464	0.613	0.307	cqt40	0.336	0.778	0.336	0.339	0.604	0.080
mel60	0.449	0.837	0.449	0.454	0.548	0.405	cqt80	0.346	0.786	0.346	0.333	0.673	0.081
stft80	0.434	0.843	0.434	0.436	0.601	0.278	stft60	0.331	0.821	0.331	0.331	0.615	0.099
stft20	0.431	0.864	0.431	0.428	0.555	0.303	cens20	0.332	0.761	0.332	0.323	0.612	0.036
cqt20	0.407	0.804	0.407	0.396	0.599	0.192	stft80	0.331	0.821	0.331	0.321	0.496	0.134
cqt40	0.389	0.797	0.389	0.387	0.615	0.162	cqt20	0.309	0.775	0.309	0.307	0.471	0.029
cqt80	0.385	0.792	0.385	0.387	0.605	0.155	stft40	0.305	0.819	0.305	0.298	0.347	0.073
scontrast	0.356	0.777	0.356	0.334	0.511	0.115	stft20	0.308	0.822	0.308	0.284	0.440	0.061
cens20	0.337	0.756	0.337	0.317	0.458	0.171	scontrast	0.295	0.756	0.295	0.235	0.423	0.013
cens40	0.323	0.790	0.323	0.316	0.439	0.244	cens40	0.256	0.761	0.256	0.234	0.527	0.082
tonz80	0.245	0.697	0.245	0.233	0.456	0.062	tonz80	0.182	0.666	0.182	0.172	1.000	0.002
poly10	0.266	0.778	0.266	0.228	0.644	0.035	tonz40	0.201	0.661	0.201	0.160	1.000	0.002
tonz20	0.228	0.695	0.228	0.224	0.636	0.092	poly10	0.260	0.736	0.260	0.145	1.000	0.005
tonz40	0.216	0.689	0.216	0.214	0.435	0.060	scontrast4	0.134	0.655	0.134	0.142	0.444	0.005
scontrast4	0.215	0.718	0.215	0.204	0.204	0.013	poly5	0.221	0.713	0.221	0.133	0.000	0.000
cens80	0.180	0.681	0.180	0.183	0.369	0.129	zcr	0.197	0.712	0.197	0.131	0.621	0.043
poly5	0.221	0.743	0.221	0.182	0.000	0.000	sflat	0.166	0.685	0.166	0.126	0.684	0.016
sflat	0.214	0.647	0.214	0.175	0.923	0.014	rms	0.217	0.637	0.217	0.111	0.000	0.000
zcr	0.225	0.678	0.225	0.170	0.615	0.029	tonz20	0.125	0.602	0.125	0.103	0.222	0.002
poly	0.227	0.647	0.227	0.143	1.000	0.022	cens80	0.122	0.673	0.122	0.101	0.259	0.008
poly2	0.170	0.631	0.170	0.125	1.000	0.018	poly	0.210	0.642	0.210	0.094	0.000	0.000
poly3	0.192	0.629	0.192	0.124	0.889	0.010	poly3	0.213	0.671	0.213	0.088	0.000	0.000
rol0.25	0.184	0.615	0.184	0.123	0.000	0.000	poly2	0.204	0.650	0.204	0.080	0.000	0.000
rms	0.214	0.650	0.214	0.104	0.000	0.000	sband	0.119	0.500	0.119	0.021	0.000	0.000
sband	0.119	0.500	0.119	0.021	0.000	0.000	rol2	0.119	0.500	0.119	0.021	0.000	0.000
rol0.45	0.119	0.500	0.119	0.021	0.000	0.000	sband8000	0.119	0.500	0.119	0.021	0.000	0.000
rol2	0.119	0.500	0.119	0.021	0.000	0.000	ro10.65	0.115	0.500	0.115	0.021	0.000	0.000
sband8000	0.111	0.500	0.111	0.020	0.000	0.000	scent8000	0.115	0.500	0.115	0.021	0.000	0.000
rol0.65	0.039	0.500	0.039	0.008	0.000	0.000	ro10.25	0.039	0.500	0.039	0.008	0.000	0.000
scent8000	0.039	0.451	0.039	0.008	0.000	0.000	rol0.45	0.039	0.500	0.039	0.008	0.000	0.000
scent2048	0.038	0.500	0.038	0.007	0.000	0.000	ro10.99	0.039	0.500	0.039	0.008	0.000	0.000
rol0.99	0.038	0.466	0.038	0.007	0.000	0.000	scent2048	0.038	0.500	0.038	0.007	0.000	0.000

128

	Mode	el 9: (op	timizer:	Adamax)		Model 10: (optimizer: Nadam)							
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
mfcc80	0.596	0.902	0.596	0.610	0.656	0.529	mfcc60	0.577	0.875	0.577	0.587	0.694	0.532
mfcc60	0.558	0.883	0.558	0.565	0.624	0.511	mfcc40	0.585	0.880	0.585	0.574	0.667	0.534
mfcc40	0.557	0.892	0.557	0.561	0.681	0.458	mfcc80	0.556	0.865	0.556	0.566	0.640	0.526
mel40	0.486	0.857	0.486	0.487	0.680	0.297	mel40	0.493	0.845	0.493	0.495	0.540	0.384
mel60	0.462	0.857	0.462	0.467	0.681	0.294	mel80	0.485	0.849	0.485	0.488	0.548	0.419
stft60	0.472	0.868	0.472	0.464	0.617	0.337	mel20	0.472	0.831	0.472	0.473	0.504	0.348
mel80	0.458	0.859	0.458	0.457	0.657	0.300	stft20	0.460	0.869	0.460	0.457	0.612	0.355
stft20	0.466	0.874	0.466	0.456	0.596	0.326	stft60	0.456	0.855	0.456	0.453	0.551	0.27
stft40	0.460	0.877	0.460	0.450	0.592	0.330	stft40	0.455	0.859	0.455	0.445	0.592	0.330
stft80	0.446	0.857	0.446	0.441	0.577	0.308	mel60	0.441	0.835	0.441	0.441	0.543	0.392
cqt20	0.449	0.822	0.449	0.438	0.626	0.184	stft80	0.436	0.855	0.436	0.427	0.581	0.282
mel20	0.430	0.837	0.430	0.425	0.608	0.262	cqt40	0.406	0.806	0.406	0.407	0.582	0.203
cqt40	0.419	0.814	0.419	0.424	0.640	0.213	cqt20	0.409	0.807	0.409	0.400	0.617	0.22
cqt80	0.404	0.814	0.404	0.401	0.639	0.190	cqt80	0.398	0.800	0.398	0.397	0.638	0.19
cens20	0.372	0.781	0.372	0.355	0.539	0.155	cens40	0.351	0.783	0.351	0.351	0.460	0.23
cens40	0.344	0.805	0.344	0.340	0.527	0.176	cens20	0.355	0.779	0.355	0.341	0.507	0.20
scontrast	0.317	0.763	0.317	0.301	0.470	0.122	scontrast	0.317	0.775	0.317	0.308	0.475	0.11
poly10	0.315	0.789	0.315	0.260	0.714	0.024	poly10	0.270	0.778	0.270	0.232	0.605	0.03
scontrast4	0.263	0.732	0.263	0.239	0.281	0.019	cens80	0.208	0.682	0.208	0.217	0.411	0.14
tonz20	0.229	0.687	0.229	0.221	0.523	0.027	tonz20	0.228	0.690	0.228	0.217	0.673	0.08
tonz80	0.239	0.707	0.239	0.221	0.476	0.036	tonz80	0.217	0.687	0.217	0.212	0.431	0.05
tonz40	0.223	0.695	0.223	0.211	0.544	0.037	tonz40	0.217	0.683	0.217	0.199	0.426	0.05
cens80	0.192	0.711	0.192	0.194	0.417	0.099	scontrast4	0.190	0.710	0.190	0.190	0.182	0.01
zcr	0.211	0.675	0.211	0.173	0.660	0.042	zcr	0.217	0.676	0.217	0.171	0.654	0.04
sflat	0.203	0.657	0.203	0.160	0.722	0.016	sflat	0.202	0.650	0.202	0.157	0.909	0.01
poly	0.245	0.656	0.245	0.152	1.000	0.016	poly5	0.198	0.730	0.198	0.157	0.000	0.00
poly2	0.189	0.647	0.189	0.145	0.000	0.000	poly	0.235	0.652	0.235	0.151	0.000	0.00
poly5	0.172	0.699	0.172	0.135	0.000	0.000	poly3	0.168	0.637	0.168	0.121	0.563	0.01
poly3	0.177	0.659	0.177	0.111	1.000	0.002	rol0.25	0.172	0.625	0.172	0.115	0.000	0.00
rms	0.210	0.651	0.210	0.100	0.000	0.000	poly2	0.139	0.630	0.139	0.112	1.000	0.02
rol0.25	0.151	0.622	0.151	0.093	0.000	0.000	rms	0.217	0.651	0.217	0.106	1.000	0.01
sband	0.119	0.500	0.119	0.021	0.000	0.000	sband	0.119	0.511	0.119	0.021	0.000	0.00
rol0.65	0.119	0.500	0.119	0.021	0.000	0.000	rol0.45	0.119	0.511	0.119	0.021	0.000	0.00
rol0.45	0.111	0.517	0.111	0.020	0.000	0.000	sband8000	0.119	0.500	0.119	0.021	0.000	0.00
sband8000	0.099	0.500	0.099	0.018	0.000	0.000	scent2048	0.119	0.500	0.119	0.021	0.000	0.00
rol2	0.039	0.500	0.039	0.008	0.000	0.000	ro10.65	0.111	0.506	0.111	0.020	0.000	0.00
ro10.99	0.039	0.500	0.039	0.008	0.000	0.000	rol2	0.111	0.500	0.111	0.020	0.000	0.00
scent8000	0.038	0.500	0.038	0.007	0.000	0.000	scent8000	0.099	0.500	0.099	0.018	0.000	0.00
scent2048	0.038	0.500	0.038	0.007	0.000	0.000	ro10.99	0.039	0.477	0.039	0.008	0.000	0.00
acc - accura All metrics						ting cha	racteristic cui	ve; pre	c - prec	ision.			

B.1.3 Dropout Rate of 0.2

	Mod	el 11: (o	ptimizer	: Adam)				Mod	el 12: (o	optimize	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.620	0.862	0.620	0.616	0.639	0.606	mfcc80	0.582	0.897	0.582	0.583	0.707	0.472
mfcc60	0.582	0.857	0.582	0.587	0.613	0.572	mfcc40	0.570	0.876	0.570	0.570	0.708	0.478
mfcc40	0.589	0.855	0.589	0.582	0.618	0.581	mfcc60	0.575	0.894	0.575	0.568	0.729	0.492
mel80	0.503	0.816	0.503	0.505	0.539	0.481	mel80	0.498	0.849	0.498	0.505	0.658	0.324
stft60	0.514 0.507	$0.856 \\ 0.854$	0.514 0.507	0.504 0.504	0.562 0.560	0.425	mel60	0.460	0.831 0.862	0.460	0.472 0.453	0.686 0.623	0.258 0.176
stft80	0.507	0.854	0.507	0.304 0.492	0.565	0.415	stft40 stft60	0.456 0.453	0.862	0.456 0.453	0.433	0.623	0.176
stft20 stft40	0.303	0.854	0.303	0.492	0.565	0.436	mel40	0.433	0.865	0.433	0.449	0.678	0.161
mel60	0.467	0.783	0.467	0.461	0.331	0.404	mel20	0.438	0.828	0.438	0.441	0.626	0.249
mel40	0.407	0.766	0.407	0.400	0.400	0.364	cqt80	0.388	0.792	0.388	0.390	0.656	0.100
mel20	0.417	0.790	0.417	0.420	0.459	0.373	stft80	0.379	0.834	0.379	0.367	0.479	0.186
cqt40	0.400	0.789	0.400	0.401	0.482	0.296	cqt20	0.363	0.784	0.363	0.355	0.495	0.066
cqt80	0.387	0.783	0.387	0.387	0.468	0.305	stft20	0.351	0.846	0.351	0.354	0.514	0.114
cens20	0.364	0.751	0.364	0.362	0.405	0.307	cens20	0.337	0.758	0.337	0.332	0.750	0.068
cqt20	0.368	0.774	0.368	0.358	0.485	0.287	cqt40	0.333	0.786	0.333	0.319	0.610	0.103
scontrast	0.374	0.755	0.374	0.349	0.449	0.237	scontrast	0.306	0.746	0.306	0.277	0.457	0.108
scontrast4	0.329	0.764	0.329	0.321	0.459	0.154	cens40	0.290	0.769	0.290	0.270	0.600	0.104
cens40	0.331	0.747	0.331	0.321	0.371	0.296	scontrast4	0.249	0.695	0.249	0.231	0.287	0.035
poly10	0.275	0.760	0.275	0.238	0.493	0.043	tonz40	0.192	0.678	0.192	0.182	0.278	0.006
cens80	0.214	0.670	0.214	0.223	0.397	0.173	tonz80	0.189	0.670	0.189	0.167	0.292	0.008
poly5	0.229	0.734	0.229	0.199	0.533	0.029	poly10	0.251	0.735	0.251	0.145	1.000	0.002
tonz20	0.205	0.674	0.205	0.197	0.443	0.092	cens80	0.147	0.684	0.147	0.136	0.263	0.012
tonz40	0.178	0.676	0.178	0.178	0.322	0.081	sflat	0.166	0.699	0.166	0.125	0.326	0.017
zcr	0.215	0.667	0.215	0.177	0.660	0.042	zcr	0.191	0.713	0.191	0.124	0.597	0.044
tonz80	0.179	0.677	0.179	0.174	0.266	0.059	poly5	0.217	0.717	0.217	0.118	0.000	0.000
sflat	0.195	0.657	0.195	0.152	0.896	0.072	tonz20	0.111	0.625	0.111	0.110	0.400	0.002
rol0.65	0.191	0.655	0.191	0.148	1.000	0.010	rms	0.204	0.635	0.204	0.107	0.000	0.000
poly	0.186	0.641	0.186	0.130	1.000	0.024	poly3	0.221	0.686	0.221	0.103	0.000	0.000
poly3	0.178	0.669	0.178	0.127	0.880	0.026	poly	0.204	0.642	0.204	0.096	0.000	0.000
poly2	0.162	0.625	0.162	0.115	1.000	0.023	poly2	0.204	0.655	0.204	0.090	0.000	0.000
rms	$0.214 \\ 0.119$	$0.656 \\ 0.500$	0.214 0.119	0.108 0.021	1.000	0.017 0.000	rol0.25	0.119 0.119	0.500 0.500	0.119 0.119	0.021 0.021	$0.000 \\ 0.000$	$0.000 \\ 0.000$
rol0.25 rol0.45	0.119	0.500	0.119	0.021	$0.000 \\ 0.000$	0.000	scent8000 sband8000	0.119	0.500	0.119	0.021	0.000	0.000
scent2048	0.119	0.500	0.119	0.021	0.000	0.000	sband	0.113	0.500	0.113	0.021	0.000	0.000
sband	0.119	0.500	0.119	0.021	0.000	0.000	rol2	0.111	0.500	0.111	0.020	0.000	0.000
rol2	0.111	0.506	0.111	0.021	0.000	0.000	rol0.65	0.099	0.500	0.099	0.018	0.000	0.000
rol0.99	0.111	0.500	0.111	0.020	0.000	0.000	rol0.99	0.039	0.500	0.039	0.008	0.000	0.000
scent8000	0.099	0.500	0.099	0.018	0.000	0.000	rol0.45	0.038	0.500	0.038	0.007	0.000	0.000
sband8000	0.038	0.500	0.038	0.007	0.000	0.000	scent2048	0.038	0.500	0.038	0.007	0.000	0.000
		13: (or	otimizer:	Adamax))		1	Mode	l 14: (o	ptimizer:	Nadam)		
Easternes		AUC	micro	macro			Easternes		AUC	micro	macro		
Features	acc	AUC	f1score	f1score	prec	recall	Features	acc	AUC	f1score	f1score	prec	recall
mfcc80	0.613	0.886	0.613	0.616	0.638	0.587	mfcc80	0.605	0.849	0.605	0.607	0.622	0.596
mfcc40	0.597		0.597	0.608	0.636			0.587	0.862	0.587	0.603	0.616	
mfcc60	0.602	0.875	0.602	0.604	0.643	0.583	mfcc40	0.539	0.823	0.539	0.524	0.558	0.527
stft40	0.539	0.885	0.539	0.523	0.629	0.429	stft80	0.496	0.829	0.496	0.487	0.518	0.386
mel80	0.490	0.849	0.490	0.496	0.609	0.357	stft40	0.493	0.846	0.493	0.485	0.563	0.428
stft60	0.505	0.878	0.505	0.492	0.594	0.399	stft20	0.491	0.854	0.491	0.480	0.563	0.437
mel60	0.471	0.839	0.471	0.484	0.604	0.329	mel80	0.479	0.787	0.479	0.480	0.503	0.458
stft80	0.471	0.857	0.471	0.458	0.570	0.362	stft60	0.472	0.845	0.472	0.466	0.512	0.398
stft20	0.456	0.872	0.456	0.451	0.581	0.349	mel60	0.461	0.804	0.461	0.462	0.467	0.401
mel40	0.428	0.834	0.428	0.437	0.562	0.297	mel40	0.434	0.789	0.434	0.447	0.446	0.384
cqt40 mal20	0.447	0.819	0.447	0.437	0.574	0.307	cqt40	0.405	0.790	0.405	0.410	0.476	0.320
mel20	0.419	0.829 0.800	0.419 0.404	0.422 0.401	0.537	0.249	cqt20 mel20	0.409 0.376	0.791 0.771	0.409	0.402	0.500	0.335
cqt20 cqt80	0.404 0.398	0.800 0.808	0.404 0.398	0.401 0.397	0.549 0.523	0.221 0.288	cqt80	0.376	0.771	0.376 0.362	0.375 0.362	0.403 0.426	0.332 0.284
cens20	0.398	0.808 0.784	0.398	0.397 0.367	0.523	0.288	cens20	0.362	0.776	0.362	0.362	0.426	0.284 0.317
cens20 cens40	0.369	0.784	0.369	0.365	0.303	0.234	cens20 cens40	0.341	0.732	0.338	0.341	0.432	0.293
scontrast	0.346	0.788	0.346	0.330	0.491	0.240	scontrast	0.341	0.745	0.341	0.333	0.371	0.293
scontrast4	0.303	0.750	0.303	0.291	0.381	0.088	scontrast4	0.341	0.754	0.341	0.318	0.432	0.153
tonz40	0.244	0.705	0.244	0.240	0.494	0.047	poly10	0.274	0.763	0.274	0.235	0.388	0.039
tonz80	0.219	0.696	0.219	0.220	0.446	0.039	tonz20	0.207	0.684	0.207	0.212	0.462	0.103
													0.100

TABLE B.3: Results of the 4 best models for different features and dropout of 0.2.

Model	13: (op	otimizer	r: Adama	x) - conti	nuatior	ı	Mode	l 14: (oj	otimize	r: Nadan	1) - contii	nuation	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
poly10	0.256	0.780	0.256	0.217	0.443	0.047	poly5	0.235	0.728	0.235	0.209	0.586	0.020
tonz20	0.222	0.685	0.222	0.212	0.556	0.060	cens80	0.201	0.680	0.201	0.207	0.361	0.170
cens80	0.198	0.699	0.198	0.199	0.410	0.125	tonz80	0.198	0.676	0.198	0.191	0.416	0.104
zcr	0.221	0.677	0.221	0.192	0.595	0.030	tonz40	0.197	0.666	0.197	0.191	0.381	0.090
poly5	0.195	0.722	0.195	0.175	0.600	0.018	zcr	0.209	0.667	0.209	0.176	0.660	0.042
sflat	0.196	0.656	0.196	0.156	0.591	0.016	rol0.25	0.208	0.696	0.208	0.162	0.526	0.012
poly3	0.200	0.659	0.200	0.155	0.955	0.025	poly3	0.186	0.666	0.186	0.140	0.800	0.029
poly2	0.183	0.637	0.183	0.147	1.000	0.024	poly	0.178	0.643	0.178	0.140	0.742	0.027
rol0.25	0.191	0.676	0.191	0.143	0.435	0.012	sflat	0.177	0.649	0.177	0.139	0.483	0.017
poly	0.177	0.640	0.177	0.132	0.808	0.025	poly2	0.173	0.631	0.173	0.128	1.000	0.024
rms	0.214	0.646	0.214	0.110	0.000	0.000	rms	0.217	0.654	0.217	0.114	0.778	0.017
sband8000	0.119	0.500	0.119	0.021	0.000	0.000	sband8000	0.115	0.500	0.115	0.021	0.000	0.000
ro10.99	0.119	0.500	0.119	0.021	0.000	0.000	rol0.45	0.115	0.500	0.115	0.021	0.000	0.000
rol0.45	0.119	0.500	0.119	0.021	0.000	0.000	rol0.65	0.115	0.500	0.115	0.021	0.000	0.000
scent2048	0.119	0.500	0.119	0.021	0.000	0.000	scent2048	0.099	0.510	0.099	0.018	0.000	0.000
scent8000	0.099	0.500	0.099	0.018	0.000	0.000	sband	0.099	0.500	0.099	0.018	0.000	0.000
sband	0.099	0.500	0.099	0.018	0.000	0.000	rol2	0.099	0.500	0.099	0.018	0.000	0.000
rol0.65	0.099	0.500	0.099	0.018	0.000	0.000	ro10.99	0.039	0.500	0.039	0.008	0.000	0.000
rol2	0.039	0.500	0.039	0.008	0.000	0.000	scent8000	0.038	0.500	0.038	0.007	0.000	0.000
acc - accura All metrics						ting cha	racteristic cui	rve; pre	c - prec	ision.			

B.1.4 Dropout Rate of 0.6

TABLE B.4: Results of the 4 best models for different features and dropout of 0.6.

	Mod	el 15: (o	ptimizer	: Adam)				Mod	el 16: (optimize	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc60	0.591	0.894	0.591	0.611	0.788	0.448	mel40	0.387	0.806	0.387	0.371	0.765	0.074
mfcc80	0.608	0.902	0.608	0.610	0.823	0.493	mel20	0.386	0.798	0.386	0.350	0.676	0.055
mfcc40	0.601	0.894	0.601	0.609	0.803	0.424	cqt80	0.341	0.764	0.341	0.344	0.787	0.044
mel80	0.487	0.862	0.487	0.489	0.643	0.297	mel60	0.342	0.788	0.342	0.332	0.775	0.074
mel20	0.478	0.847	0.478	0.478	0.629	0.247	mfcc80	0.352	0.778	0.352	0.325	0.934	0.068
stft20	0.458	0.869	0.458	0.459	0.655	0.258	mel80	0.301	0.781	0.301	0.325	0.795	0.074
stft60	0.446	0.860	0.446	0.458	0.671	0.222	mfcc60	0.305	0.786	0.305	0.297	0.898	0.053
mel60	0.444	0.851	0.444	0.458	0.687	0.275	stft60	0.272	0.800	0.272	0.271	0.536	0.036
mel40	0.437	0.846	0.437	0.441	0.636	0.265	cqt20	0.263	0.750	0.263	0.260	0.345	0.023
stft40	0.436	0.868	0.436	0.437	0.645	0.232	cqt40	0.270	0.759	0.270	0.258	0.619	0.047
stft80	0.409	0.851	0.409	0.416	0.706	0.172	stft40	0.264	0.809	0.264	0.252	0.538	0.033
cqt40	0.363	0.783	0.363	0.354	0.596	0.111	stft20	0.249	0.810	0.249	0.243	0.596	0.037
cqt20	0.349	0.792	0.349	0.348	0.538	0.085	stft80	0.249	0.776	0.249	0.241	0.417	0.048
cqt80	0.331	0.780	0.331	0.333	0.655	0.093	cens20	0.252	0.722	0.252	0.229	0.750	0.011
cens40	0.335	0.801	0.335	0.331	0.491	0.158	cens40	0.244	0.731	0.244	0.214	0.424	0.017
cens20	0.343	0.769	0.343	0.327	0.632	0.103	mfcc40	0.201	0.740	0.201	0.203	0.875	0.050
poly10	0.337	0.785	0.337	0.265	0.800	0.033	tonz80	0.208	0.654	0.208	0.184	0.625	0.006
tonz80	0.235	0.698	0.235	0.235	0.545	0.029	tonz40	0.214	0.660	0.214	0.179	0.400	0.002
tonz20	0.235	0.687	0.235	0.231	0.630	0.020	tonz20	0.177	0.644	0.177	0.163	0.286	0.002
scontrast	0.292	0.746	0.292	0.230	0.452	0.017	poly10	0.269	0.736	0.269	0.162	1.000	0.002
tonz40	0.250	0.694	0.250	0.229	0.574	0.032	poly5	0.222	0.706	0.222	0.142	0.000	0.000
zcr	0.246	0.676	0.246	0.199	0.600	0.029	sflat	0.151	0.687	0.151	0.112	0.467	0.017
cens80	0.188	0.716	0.188	0.190	0.397	0.092	cens80	0.136	0.646	0.136	0.110	0.800	0.005
scontrast4	0.166	0.677	0.166	0.163	0.333	0.005	zcr	0.188	0.709	0.188	0.109	0.660	0.042
sflat	0.203	0.641	0.203	0.157	0.909	0.012	scontrast	0.168	0.673	0.168	0.103	0.000	0.000
poly5	0.213	0.731	0.213	0.157	0.000	0.000	rms	0.200	0.624	0.200	0.095	0.000	0.000
poly	0.251	0.654	0.251	0.152	1.000	0.017	poly2	0.216	0.639	0.216	0.089	0.000	0.000
poly2	0.214	0.646	0.214	0.139	0.000	0.000	poly3	0.204	0.659	0.204	0.088	0.000	0.000
poly3	0.158	0.651	0.158	0.091	0.889	0.010	poly	0.205	0.636	0.205	0.081	0.000	0.000
rms	0.194	0.646	0.194	0.075	0.000	0.000	scontrast4	0.063	0.608	0.063	0.050	0.000	0.000
ro10.25	0.119	0.500	0.119	0.021	0.000	0.000	rol0.25	0.119	0.500	0.119	0.021	0.000	0.000
ro10.65	0.119	0.500	0.119	0.021	0.000	0.000	sband	0.119	0.500	0.119	0.021	0.000	0.000
rol2	0.119	0.500	0.119	0.021	0.000	0.000	scent2048	0.119	0.500	0.119	0.021	0.000	0.000
sband8000	0.119	0.500	0.119	0.021	0.000	0.000	rol2	0.115	0.500	0.115	0.021	0.000	0.000

Sound Characterization of Urban Environments by Computational Methods

Mode	el 15: (o	ptimize	er: Adam) - contin	uation		Mod	el 16: (c	optimiz	er: SGD)	- continu	uation	
Features		AUC	micro	macro		rocall	Features		AUC	micro	macro		recall
reatures	acc		f1score	f1score	prec	recall	reatures	acc		f1score	f1score	prec	
sband	0.119	0.500	0.119	0.021	0.000	0.000	rol0.65	0.111	0.500	0.111	0.020	0.000	0.000
scent2048	0.119	0.500	0.119	0.021	0.000	0.000	scent8000	0.039	0.500	0.039	0.008	0.000	0.000
ro10.99	0.119	0.500	0.119	0.021	0.000	0.000	sband8000	0.038	0.500	0.038	0.007	0.000	0.000
rol0.45	0.099	0.500	0.099	0.018	0.000	0.000	ro10.99	0.038	0.500	0.038	0.007	0.000	0.000
scent8000	0.039	0.500	0.039	0.008	0.000	0.000	rol0.45	0.038	0.500	0.038	0.007	0.000	0.000
	Mode	17: (op		Adamax))			Mode	1 18: (o	ptimizer:			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.569	0.887	0.569	0.596	0.768	0.384	mfcc60	0.599	0.898	0.599	0.612	0.848	0.448
mfcc60	0.530	0.883	0.530	0.551	0.787	0.349	mfcc80	0.578	0.882	0.578	0.592	0.810	0.449
mfcc40	0.490	0.879	0.490	0.517	0.830	0.320	mfcc40	0.562	0.887	0.562	0.557	0.827	0.399
stft40	0.460	0.876	0.460	0.456	0.637	0.228	mel80	0.495	0.856	0.495	0.503	0.710	0.317
stft60	0.434	0.864	0.434	0.431	0.630	0.220	mel20	0.485	0.845	0.485	0.483	0.645	0.269
stft80	0.430	0.862	0.430	0.429	0.628	0.222	mel40	0.467	0.853	0.467	0.470	0.632	0.283
mel60	0.440	0.827	0.440	0.424	0.777	0.146	mel60	0.460	0.827	0.460	0.469	0.614	0.276
stft20	0.428	0.865	0.428	0.412	0.549	0.188	stft20	0.454	0.870	0.454	0.463	0.662	0.271
mel40	0.415	0.828	0.415	0.396	0.753	0.153	stft40	0.458	0.871	0.458	0.448	0.616	0.266
mel80	0.404	0.834	0.404	0.384	0.837	0.153	stft80	0.432	0.858	0.432	0.441	0.636	0.223
cqt80	0.363	0.803	0.363	0.366	0.701	0.137	stft60	0.427	0.843	0.427	0.428	0.609	0.231
cqt20	0.358	0.801	0.358	0.358	0.553	0.106	cqt80	0.364	0.790	0.364	0.377	0.608	0.104
cqt40	0.351	0.803	0.351	0.345	0.671	0.119	cqt40	0.356	0.786	0.356	0.364	0.628	0.103
cens20	0.354	0.788	0.354	0.340	0.600	0.108	cens40	0.344	0.805	0.344	0.345	0.519	0.146
mel20	0.357	0.815	0.357	0.318	0.731	0.127	cens20	0.342	0.766	0.342	0.324	0.543	0.106
cens40	0.294	0.785	0.294	0.284	0.519	0.128	cqt20	0.319	0.787	0.319	0.308	0.565	0.084
scontrast	0.286	0.768	0.286	0.258	0.714	0.018	poly10	0.332	0.792	0.332	0.272	0.741	0.024
scontrast4	0.249	0.704	0.249	0.216	0.357	0.006	scontrast	0.309	0.764	0.309	0.262	0.632	0.014
poly10	0.271	0.754	0.271	0.194	1.000	0.001	tonz40	0.258	0.704	0.258	0.232	0.527	0.035
tonz80	0.207	0.705	0.207	0.170	0.400	0.017	tonz80	0.234	0.702	0.234	0.227	0.615	0.029
poly5	0.234	0.715	0.234	0.165	0.000	0.000	scontrast4	0.225	0.708	0.225	0.211	0.429	0.004
cens80	0.172	0.718	0.172	0.162	0.432	0.049	zcr	0.260	0.672	0.260	0.211	0.610	0.030
tonz20	0.182	0.681	0.182	0.158	0.346	0.011	tonz20	0.213	0.690	0.213	0.201	0.593	0.019
tonz40	0.191	0.698	0.191	0.158	0.486	0.020	cens80	0.178	0.711	0.178	0.179	0.388	0.087
zcr	0.219	0.690	0.219	0.150	0.636	0.042	sflat	0.183	0.636	0.183	0.154	1.000	0.011
poly	0.243	0.660	0.243	0.131	0.000	0.000	poly	0.251	0.657	0.251	0.152	1.000	0.016
poly3	0.226	0.683	0.226	0.126	0.000	0.000	poly2	0.191	0.648	0.191	0.144	1.000	0.007
poly2	0.219	0.657	0.219	0.114	0.000	0.000	poly5	0.205	0.730	0.205	0.120	0.000	0.000
sflat	0.140	0.662	0.140	0.108	0.467	0.017	rms	0.222	0.649	0.222	0.106	0.000	0.000
rms	0.215	0.660	0.215	0.104	0.000	0.000	poly3	0.171	0.665	0.171	0.101	0.154	0.002
sband	0.119	0.500	0.119	0.021	0.000	0.000	rol0.25	0.119	0.511	0.119	0.021	0.000	0.000
rol0.99	0.119	0.500	0.119	0.021	0.000	0.000	rol2	0.119	0.500	0.119	0.021	0.000	0.000
rol0.25	0.111	0.500	0.111	0.020	0.000	0.000	sband8000	0.119	0.500	0.119	0.021	0.000	0.000
rol2	0.099	0.500	0.099	0.018	0.000	0.000	rol0.65	0.119	0.511	0.119	0.021	0.000	0.000
sband8000	0.099	0.500	0.099	0.018	0.000	0.000	rol0.45	0.119	0.500	0.119	0.021	0.000	0.000
scent2048	0.039	0.500	0.039	0.008	0.000	0.000	sband	0.111	0.500	0.111	0.020	0.000	0.000
rol0.65	0.039	0.500	0.039	0.008	0.000	0.000	scent2048	0.039	0.500	0.039	0.008	0.000	0.000
scent8000	0.039	0.500	0.039	0.008	0.000	0.000	scent8000	0.039	0.500	0.039	0.008	0.000	0.000
rol0.45	0.038	0.500	0.038	0.007	0.000	0.000	rol0.99	0.038	0.500	0.038	0.007	0.000	0.000
						ting cha	racteristic cui	ve; pre	c - prec	ision.			
All metrics	range f	rom [0,	1] (the hi	gner, the	better).								

132

B.1.5 Dropout Rate of 0.8 and 0 for Adam and Adamax

Mod	el 19: (e	optimiz	er: Adan	n; dropou	ıt: 0.8)		Mo	del 20: ((optimi	zer: Ada	m; dropo	ut: 0)	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mel20	0.349	0.789	0.349	0.291	0.764	0.050	mfcc60	0.566	0.820	0.566	0.565	0.577	0.564
mel40	0.308	0.754	0.308	0.275	0.788	0.062	mfcc40	0.514	0.799	0.514	0.508	0.525	0.508
stft40	0.265	0.750	0.265	0.264	0.683	0.033	mfcc80	0.523	0.785	0.523	0.505	0.536	0.519
mfcc80	0.260	0.762	0.260	0.260	0.852	0.055	mel80	0.479	0.768	0.479	0.489	0.487	0.464
cens20	0.283	0.717	0.283	0.256	0.872	0.041	stft60	0.483	0.807	0.483	0.483	0.497	0.453
cens40	0.270	0.774	0.270	0.245	0.624	0.081	stft20	0.460	0.792	0.460	0.459	0.483	0.431
mfcc40	0.257	0.739	0.257	0.242	0.544	0.044	mel60	0.455	0.772	0.455	0.454	0.471	0.447
stft60	0.251	0.739	0.251	0.238	0.529	0.022	stft40	0.444	0.798	0.444	0.442	0.464	0.419
mfcc60	0.262	0.783	0.262	0.237	0.577	0.054	stft80	0.435	0.776	0.435	0.424	0.453	0.418
mel80	0.276	0.745	0.276	0.235	0.745	0.049	cqt80	0.388	0.743	0.388	0.386	0.400	0.372
stft20	0.245	0.791	0.245	0.234	0.741	0.024	mel40	0.392	0.732	0.392	0.379	0.403	0.380
mel60	0.272	0.723	0.272	0.222	0.786	0.039	cqt20	0.362	0.742	0.362	0.361	0.375	0.333
cqt40	0.174	0.648	0.174	0.197	0.700	0.008	cqt40	0.355	0.730	0.355	0.357	0.368	0.348
cqt20	0.208	0.699	0.208	0.185	0.889	0.010	mel20	0.358	0.720	0.358	0.353	0.368	0.344
stft80	0.197	0.713	0.197	0.175	0.548	0.020	scontrast	0.354	0.730	0.354	0.332	0.395	0.314
cqt80	0.143	0.620	0.143	0.160	0.444	0.005	cens20	0.337	0.694	0.337	0.328	0.341	0.327
cens80	0.142	0.680	0.142	0.134	0.229	0.013	cens40	0.309	0.685	0.309	0.310	0.317	0.300
poly10	0.235	0.732	0.235	0.133	0.125	0.001	scontrast4	0.290	0.726	0.290	0.279	0.344	0.198
zcr	0.191	0.652	0.191	0.122	1.000	0.004	poly10	0.234	0.721	0.234	0.206	0.293	0.043
tonz80	0.143	0.647	0.143	0.118	0.333	0.004	cens80	0.201	0.651	0.201	0.205	0.329	0.170
tonz40	0.142	0.651	0.142	0.114	0.250	0.002	zcr	0.220	0.666	0.220	0.199	0.595	0.030
tonz20	0.127	0.630	0.127	0.112	0.500	0.005	tonz20	0.201	0.656	0.201	0.192	0.341	0.112
poly5	0.177	0.692	0.177	0.079	0.000	0.000	tonz40	0.185	0.650	0.185	0.181	0.212	0.082
sflat	0.099	0.616	0.099	0.078	0.000	0.000	poly5	0.198	0.707	0.198	0.176	0.690	0.024
poly2	0.195	0.633	0.195	0.071	0.000	0.000	tonz80	0.176	0.631	0.176	0.169	0.237	0.091
rms	0.198	0.642	0.198	0.066	0.000	0.000	rol0.25	0.225	0.688	0.225	0.165	0.388	0.023
poly	0.203	0.599	0.203	0.065	0.000	0.000	sflat	0.186	0.648	0.186	0.147	0.816	0.037
scontrast	0.116	0.546	0.116	0.029	0.000	0.000	poly3	0.162	0.664	0.162	0.132	0.686	0.029
scontrast4	0.053	0.524	0.053	0.026	0.000	0.000	poly2	0.179	0.630	0.179	0.132	0.913	0.025
poly3	0.119	0.575	0.119	0.022	0.000	0.000	poly	0.147	0.615	0.147	0.130	1.000	0.024
ro10.65	0.119	0.500	0.119	0.021	0.000	0.000	rms	0.172	0.631	0.172	0.124	0.538	0.008
scent8000	0.119	0.500	0.119	0.021	0.000	0.000	rol0.65	0.153	0.659	0.153	0.107	1.000	0.008
ro10.99	0.119	0.500	0.119	0.021	0.000	0.000	scent8000	0.160	0.650	0.160	0.105	0.900	0.022
rol0.45	0.115	0.500	0.115	0.021	0.000	0.000	rol0.45	0.160	0.650	0.160	0.102	0.560	0.033
rol2	0.115	0.500	0.115	0.021	0.000	0.000	sband	0.194	0.660	0.194	0.090	0.000	0.000
sband	0.111	0.500	0.111	0.020	0.000	0.000	scent2048	0.141	0.646	0.141	0.090	0.619	0.031
scent2048	0.099	0.500	0.099	0.018	0.000	0.000	sband8000	0.122	0.653	0.122	0.061	0.000	0.000
sband8000	0.099	0.500	0.099	0.018	0.000	0.000	ro10.99	0.119	0.500	0.119	0.021	0.000	0.000
rol0.25	0.038	0.500	0.038	0.007	0.000	0.000	rol2	0.119	0.526	0.119	0.021	0.000	0.000
Mode	1 21: (o	ptimize	er: Adam	ax; dropo	ut: 0.8)		Mod	el 22: (o	optimiz	er: Adam	ax; drop	out: 0)	
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
stft20	0.266	0.807	0.266	0.260	0.521	0.030	mfcc40	0.569	0.825	0.569	0.570	0.580	0.564
cqt80	0.266	0.672		0.255	0.806		mfcc80	0.493	0.790	0.493	0.509	0.503	0.490
stft40	0.253	0.778	0.253	0.255	0.537	0.026	stft60	0.487	0.845	0.487	0.489	0.538	0.429
cens20	0.275	0.699	0.275	0.255	0.917	0.026	mel60	0.491	0.801	0.491	0.488	0.549	0.425
stft80	0.259	0.764	0.259	0.251	0.514	0.023	mel80	0.480	0.808	0.480	0.485	0.552	0.437
cqt40	0.258	0.688	0.258	0.246	0.926	0.030	stft40	0.476	0.844	0.476	0.476	0.525	0.406
				0.233	0.514	0.023	stft20	0.489	0.854	0.489	0.475	0.559	0.399
stft60	0.239	0.784	0.239									0.450	0.450
stft60 cqt20	0.245	0.784 0.666	0.239 0.245	0.233	0.889	0.010	mfcc60	0.462	0.780	0.462	0.455	0.470	
	0.245 0.235		0.245 0.235	0.209 0.187	0.889 1.000	0.020	mfcc60 stft80	0.462 0.428	0.780 0.816	0.428	0.426	0.470 0.469	
cqt20 cens40 mfcc60	0.245 0.235 0.221	0.666 0.692 0.650	0.245 0.235 0.221	0.209	0.889 1.000 0.000	0.020 0.000	stft80 mel40	0.428 0.412	0.816 0.785	0.428 0.412	0.426 0.403	0.469 0.486	0.385 0.344
cqt20 cens40	0.245 0.235 0.221 0.161	0.666 0.692	0.245 0.235	0.209 0.187 0.165 0.151	0.889 1.000 0.000 0.500	0.020 0.000 0.004	stft80 mel40 cqt20	0.428	0.816	0.428	0.426 0.403 0.382	0.469	0.385 0.344
cqt20 cens40 mfcc60	0.245 0.235 0.221	0.666 0.692 0.650	0.245 0.235 0.221	0.209 0.187 0.165	0.889 1.000 0.000	0.020 0.000	stft80 mel40	0.428 0.412	0.816 0.785	0.428 0.412	0.426 0.403	0.469 0.486	0.385 0.344 0.288
cqt20 cens40 mfcc60 tonz80	0.245 0.235 0.221 0.161 0.221 0.161	0.666 0.692 0.650 0.671	0.245 0.235 0.221 0.161	0.209 0.187 0.165 0.151	0.889 1.000 0.000 0.500	0.020 0.000 0.004	stft80 mel40 cqt20	0.428 0.412 0.391	0.816 0.785 0.772	0.428 0.412 0.391	0.426 0.403 0.382	$0.469 \\ 0.486 \\ 0.486$	0.385 0.344 0.288 0.317
cqt20 cens40 mfcc60 tonz80 zcr	0.245 0.235 0.221 0.161 0.221	0.666 0.692 0.650 0.671 0.719	0.245 0.235 0.221 0.161 0.221	$\begin{array}{c} 0.209 \\ 0.187 \\ 0.165 \\ 0.151 \\ 0.148 \\ 0.136 \\ 0.134 \end{array}$	0.889 1.000 0.000 0.500 0.654	0.020 0.000 0.004 0.041	stft80 mel40 cqt20 cqt40	0.428 0.412 0.391 0.386	0.816 0.785 0.772 0.784	0.428 0.412 0.391 0.386	0.426 0.403 0.382 0.380	$0.469 \\ 0.486 \\ 0.486 \\ 0.469$	0.385 0.344 0.288 0.317 0.290
cqt20 cens40 mfcc60 tonz80 zcr tonz40	0.245 0.235 0.221 0.161 0.221 0.161	0.666 0.692 0.650 0.671 0.719 0.675	0.245 0.235 0.221 0.161 0.221 0.161	0.209 0.187 0.165 0.151 0.148 0.136	0.889 1.000 0.000 0.500 0.654 0.375	0.020 0.000 0.004 0.041 0.004	stft80 mel40 cqt20 cqt40 mel20	0.428 0.412 0.391 0.386 0.378	0.816 0.785 0.772 0.784 0.788	0.428 0.412 0.391 0.386 0.378	0.426 0.403 0.382 0.380 0.373	$0.469 \\ 0.486 \\ 0.486 \\ 0.469 \\ 0.453$	0.385 0.344 0.288 0.317 0.290 0.307
cqt20 cens40 mfcc60 tonz80 zcr tonz40 mel20	0.245 0.235 0.221 0.161 0.221 0.161 0.229	0.666 0.692 0.650 0.671 0.719 0.675 0.612	0.245 0.235 0.221 0.161 0.221 0.161 0.229	$\begin{array}{c} 0.209 \\ 0.187 \\ 0.165 \\ 0.151 \\ 0.148 \\ 0.136 \\ 0.134 \end{array}$	0.889 1.000 0.000 0.500 0.654 0.375 0.714	0.020 0.000 0.004 0.041 0.004 0.012	stft80 mel40 cqt20 cqt40 mel20 cens40	0.428 0.412 0.391 0.386 0.378 0.352	0.816 0.785 0.772 0.784 0.788 0.750	0.428 0.412 0.391 0.386 0.378 0.352	0.426 0.403 0.382 0.380 0.373 0.365	0.469 0.486 0.486 0.469 0.453 0.388	0.385 0.344 0.288 0.317 0.290 0.307 0.313
cqt20 cens40 mfcc60 tonz80 zcr tonz40 mel20 tonz20	0.245 0.235 0.221 0.161 0.221 0.161 0.229 0.128	0.666 0.692 0.650 0.671 0.719 0.675 0.612 0.649	0.245 0.235 0.221 0.161 0.221 0.161 0.229 0.128	0.209 0.187 0.165 0.151 0.148 0.136 0.134 0.117	0.889 1.000 0.000 0.500 0.654 0.375 0.714 0.421	0.020 0.000 0.004 0.041 0.004 0.012 0.010 0.002 0.004	stft80 mel40 cqt20 cqt40 mel20 cens40 cqt80	0.428 0.412 0.391 0.386 0.378 0.352 0.350	0.816 0.785 0.772 0.784 0.788 0.750 0.771	0.428 0.412 0.391 0.386 0.378 0.352 0.350	0.426 0.403 0.382 0.380 0.373 0.365 0.361	$\begin{array}{c} 0.469 \\ 0.486 \\ 0.486 \\ 0.469 \\ 0.453 \\ 0.388 \\ 0.408 \end{array}$	0.458 0.385 0.344 0.288 0.317 0.290 0.307 0.313 0.277 0.265
cqt20 cens40 mfcc60 tonz80 zcr tonz40 mel20 tonz20 poly10	0.245 0.235 0.221 0.161 0.221 0.161 0.229 0.128 0.222	$\begin{array}{c} 0.666\\ 0.692\\ 0.650\\ 0.671\\ 0.719\\ 0.675\\ 0.612\\ 0.649\\ 0.709 \end{array}$	0.245 0.235 0.221 0.161 0.221 0.161 0.229 0.128 0.222	0.209 0.187 0.165 0.151 0.148 0.136 0.134 0.117 0.115	0.889 1.000 0.000 0.500 0.654 0.375 0.714 0.421 1.000	0.020 0.000 0.004 0.041 0.004 0.012 0.010 0.002	stft80 mel40 cqt20 cqt40 mel20 cens40 cqt80 cens20	0.428 0.412 0.391 0.386 0.378 0.352 0.350 0.355	0.816 0.785 0.772 0.784 0.788 0.750 0.771 0.750	0.428 0.412 0.391 0.386 0.378 0.352 0.350 0.355	0.426 0.403 0.382 0.380 0.373 0.365 0.361 0.340	$\begin{array}{c} 0.469 \\ 0.486 \\ 0.486 \\ 0.469 \\ 0.453 \\ 0.388 \\ 0.408 \\ 0.405 \end{array}$	0.385 0.344 0.288 0.317 0.290 0.307 0.313 0.277

 TABLE B.5: Results of the 2 best models for different features and dropout rate of 0.8 and without dropout.

SOUND CHARACTERIZATION OF URBAN ENVIRONMENTS BY COMPUTATIONAL Methods

Model 21	: (optir	nizer: A	Adamax;	dropout:	0.8) - co	ont.	Model 2	22: (opt	imizer:	Nadam;	dropout:	0) - cor	nt.
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc40	0.155	0.599	0.155	0.084	0.000	0.000	poly10	0.263	0.764	0.263	0.222	0.700	0.050
poly2	0.179	0.603	0.179	0.082	0.000	0.000	tonz80	0.227	0.693	0.227	0.221	0.405	0.063
rms	0.198	0.650	0.198	0.071	0.000	0.000	tonz40	0.217	0.690	0.217	0.217	0.452	0.067
mel40	0.134	0.542	0.134	0.068	0.000	0.000	tonz20	0.214	0.660	0.214	0.206	0.477	0.073
mel60	0.128	0.551	0.128	0.060	0.000	0.000	poly5	0.244	0.734	0.244	0.195	0.789	0.018
poly5	0.140	0.649	0.140	0.046	0.000	0.000	zcr	0.228	0.673	0.228	0.190	0.654	0.041
poly	0.135	0.586	0.135	0.046	0.000	0.000	sflat	0.192	0.650	0.192	0.154	0.843	0.051
mel80	0.122	0.572	0.122	0.041	0.000	0.000	poly3	0.183	0.650	0.183	0.153	0.957	0.026
scontrast4	0.124	0.552	0.124	0.035	0.000	0.000	rol0.25	0.201	0.697	0.201	0.137	0.382	0.016
poly3	0.127	0.582	0.127	0.032	0.000	0.000	poly2	0.172	0.626	0.172	0.137	1.000	0.024
scontrast	0.116	0.556	0.116	0.029	0.000	0.000	rms	0.219	0.640	0.219	0.133	0.000	0.000
rol0.25	0.119	0.500	0.119	0.021	0.000	0.000	poly	0.168	0.631	0.168	0.130	0.710	0.026
scent8000	0.119	0.500	0.119	0.021	0.000	0.000	scent2048	0.174	0.628	0.174	0.126	0.929	0.016
sband	0.119	0.500	0.119	0.021	0.000	0.000	rol0.45	0.190	0.669	0.190	0.112	0.512	0.025
sband8000	0.119	0.500	0.119	0.021	0.000	0.000	rol2	0.178	0.649	0.178	0.096	0.000	0.000
ro10.99	0.119	0.500	0.119	0.021	0.000	0.000	scent8000	0.143	0.632	0.143	0.095	0.673	0.044
rol2	0.119	0.500	0.119	0.021	0.000	0.000	sband8000	0.135	0.617	0.135	0.083	0.000	0.000
rol0.45	0.115	0.500	0.115	0.021	0.000	0.000	rol0.65	0.141	0.645	0.141	0.071	0.506	0.051
rol0.65	0.039	0.500	0.039	0.008	0.000	0.000	sband	0.141	0.631	0.141	0.052	0.000	0.000
scent2048	0.038	0.500	0.038	0.007	0.000	0.000	ro10.99	0.111	0.500	0.111	0.020	0.000	0.000
cont conti All metrics			J .				eceiver operat	ting cha	racteris	stic curve	; prec - pi	recision	•

134

B.2 UrbanSound8K - Combination of Features as Input

Baseline Model Architecture B.2.1

	Mod	el 1: (o	ptimizer	Adam)				Мос	del 2: (o	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.669	0.925	0.669	0.682	0.736	0.638	mms80	0.630	0.898	0.630	0.662	0.845	0.312
mmstftq	0.659	0.910	0.659	0.681	0.719	0.634	mms60	0.602	0.909	0.602	0.624	0.830	0.367
mmsqc	0.627	0.912	0.627	0.658	0.696	0.605	mfccmel	0.603	0.894	0.603	0.624	0.855	0.366
mms40	0.634	0.909	0.634	0.652	0.717	0.600	mfccstft80	0.591	0.897	0.591	0.611	0.802	0.305
mmcens	0.627	0.894	0.627	0.652	0.678	0.602	mmstftg	0.601	0.898	0.601	0.610	0.820	0.348
mmq	0.626	0.916	0.626	0.650	0.688	0.607	mmcens	0.597	0.893	0.597	0.610	0.860	0.315
mfccstft80	0.652	0.894	0.652	0.646	0.701	0.618	mmsqc80	0.608	0.894	0.608	0.598	0.862	0.351
mms80	0.614	0.902	0.614	0.632	0.659	0.585	mms40	0.566	0.886	0.566	0.591	0.815	0.305
mms60	0.603	0.893	0.603	0.613	0.671	0.571	mmg	0.563	0.890	0.563	0.575	0.832	0.349
mfccstft	0.601	0.899	0.601	0.606	0.679	0.575	mmsqc	0.538	0.873	0.538	0.574	0.726	0.275
mfccmel	0.579	0.888	0.579	0.598	0.640	0.559	mfccstft	0.485	0.858	0.485	0.501	0.706	0.195
zrsp	0.258	0.675	0.258	0.238	0.647	0.039	zsrssp	0.197	0.715	0.197	0.128	0.607	0.044
zsrssp	0.216	0.666	0.216	0.173	0.654	0.041	zrsp	0.196	0.718	0.196	0.128	0.607	0.044
scontpoly	0.119	0.511	0.119	0.021	0.000	0.000	tsp	0.119	0.500	0.119	0.021	0.000	0.000
tsp	0.039	0.466	0.039	0.008	0.000	0.000	scontpoly	0.038	0.500	0.038	0.007	0.000	0.000
1				Adamax)			I			timizer:			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mms60	0.655	0.926	0.655	0.680	0.756	0.625	mmsqc80	0.676	0.926	0.676	0.693	0.719	0.652
mmq	0.640	0.912	0.640	0.668	0.697	0.601	mmstftq	0.663	0.914	0.663	0.687	0.712	0.639
mmsqc80	0.634	0.900	0.634	0.656	0.677	0.585	mms80	0.650	0.901	0.650	0.676	0.687	0.634
mfccstft80	0.628	0.915	0.628	0.654	0.695	0.585	mmsqc	0.658	0.919	0.658	0.676	0.709	0.620
mms40	0.637	0.921	0.637	0.651	0.752	0.585	mmq	0.645	0.916	0.645	0.669	0.723	0.608
mmstftq	0.611	0.912	0.611	0.639	0.694	0.579	mms40	0.638	0.913	0.638	0.650	0.695	0.620
mmsqc	0.621	0.927	0.621	0.636	0.714	0.588	mms60	0.618	0.902	0.618	0.647	0.674	0.590
mms80	0.614	0.909	0.614	0.629	0.683	0.571	mmcens	0.602	0.884	0.602	0.618	0.635	0.595
mfccstft	0.612	0.915	0.612	0.629	0.712	0.575	mfccmel	0.599	0.878	0.599	0.617	0.650	0.569
mmcens	0.609	0.904	0.609	0.626	0.671	0.577	mfccstft	0.597	0.897	0.597	0.605	0.673	0.545
mfccmel	0.596	0.903	0.596	0.623	0.666	0.559	mfccstft80	0.590	0.886	0.590	0.604	0.637	0.569
zrsp	0.243	0.678	0.243	0.205	0.600	0.032	zrsp	0.225	0.678	0.225	0.200	0.583	0.025
zsrssp	0.222	0.684	0.222	0.172	0.647	0.039	zsrssp	0.221	0.659	0.221	0.194	0.605	0.027
tsp	0.119	0.500	0.119	0.021	0.000	0.000	scontpoly	0.119	0.500	0.119	0.021	0.000	0.000
scontpoly	0.038	0.500	0.038	0.007	0.000	0.000	tsp	0.119	0.500	0.119	0.021	0.000	0.000
1 5			timizer: A	Adadelta))			Mode	1 6: (op	timizer: /	Adagrad)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfccstft80	0.247	0.665	0.247	0.217	0.245	0.029	mmstftg	0.409	0.828	0.409	0.419	0.933	0.067
mfccmel	0.249	0.636	0.249	0.186	0.295	0.121	mmsqc80	0.423	0.827	0.423	0.407	0.786	0.053
mms40	0.251	0.610	0.251	0.180	0.235	0.127	mmsqc	0.384	0.780	0.384	0.383	0.830	0.047
mmsqc80	0.208	0.638	0.208	0.175	0.269	0.116	mms60	0.338	0.776	0.338	0.348	0.907	0.047
mmq	0.201	0.688	0.201	0.169	0.261	0.145	mfccstft	0.370	0.789	0.370	0.345	0.914	0.038
mmstftq	0.221	0.647	0.221	0.163	0.403	0.104	mfccmel	0.343	0.783	0.343	0.314	0.929	0.047
mms80	0.191	0.609	0.191	0.146	0.235	0.092	mmq	0.294	0.765	0.294	0.300	0.935	0.051
mmsqc	0.191	0.618	0.191	0.146	0.318	0.092	mms40	0.288	0.730	0.288	0.285	0.921	0.042
mms60	0.177	0.601	0.177	0.124	0.202	0.087	mfccstft80	0.277	0.723	0.277	0.282	0.892	0.039
mmcens	0.173	0.643	0.173	0.122	0.236	0.100	mmcens	0.258	0.730	0.258	0.257	0.907	0.047
mfccstft	0.152	0.597	0.152	0.072	0.195	0.124	mms80	0.243	0.706	0.243	0.235	0.923	0.043
zsrssp	0.159	0.562	0.152	0.064	0.000	0.000	zsrssp	0.179	0.688	0.179	0.080	0.000	0.000
zrsp	0.131	0.549	0.131	0.047	0.000	0.000	zrsp	0.168	0.668	0.168	0.064	0.000	0.000
scontpoly	0.119	0.511	0.119	0.021	0.000	0.000	scontpoly	0.119	0.522	0.119	0.021	0.000	0.000
tsp	0.099	0.465	0.099	0.018	0.000	0.000	tsp	0.039	0.500	0.039	0.008	0.000	0.000
•							racteristic cui					2.500	2.300
All metrics								, pie	- rice				

TABLE B.6: Results of the 6 models for different feature combinations.

All metrics range from [0, 1] (the higher, the better).

B.2.2 Extra Layer

TABLE B.7: Results of the 4 models with an extra dense and dropout layer for the different
feature combinations.

	Mod	el 7: (o	ptimizer	Adam)				Moc	lel 8: (o	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.671	0.916	0.671	0.686	0.736	0.648	mmsqc	0.582	0.889	0.582	0.616	0.804	0.300
mmq	0.658	0.905	0.658	0.685	0.713	0.631	mmq	0.602	0.893	0.602	0.612	0.812	0.274
mms40	0.663	0.912	0.663	0.683	0.750	0.644	mmsqc80	0.595	0.890	0.595	0.610	0.822	0.299
mfccstft	0.664	0.918	0.664	0.683	0.735	0.636	mfccmel	0.566	0.900	0.566	0.593	0.832	0.302
mmstftq	0.634	0.914	0.634	0.656	0.700	0.599	mfccstft80	0.570	0.876	0.570	0.585	0.829	0.208
mms60	0.625	0.906	0.625	0.653	0.697	0.594	mmcens	0.572	0.884	0.572	0.583	0.811	0.257
mfccstft80	0.625	0.895	0.625	0.651	0.699	0.593	mmstftq	0.527	0.875	0.527	0.567	0.807	0.286
mfccmel	0.626	0.896	0.626	0.646	0.690	0.571	mms80	0.548	0.878	0.548	0.565	0.805	0.276
mmsqc	0.609	0.896	0.609	0.643	0.682	0.571	mms40	0.532	0.872	0.532	0.545	0.833	0.286
mmcens	0.624	0.899	0.624	0.642	0.683	0.590	mms60	0.502	0.871	0.502	0.523	0.824	0.240
mms80	0.596	0.887	0.596	0.618	0.664	0.573	mfccstft	0.502	0.864	0.502	0.520	0.744	0.177
zrsp	0.246	0.668	0.246	0.222	0.615	0.029	zsrssp	0.190	0.709	0.190	0.125	0.607	0.044
zsrssp	0.213	0.674	0.213	0.174	0.614	0.032	zrsp	0.182	0.706	0.182	0.119	0.585	0.045
scontpoly	0.119	0.500	0.119	0.021	0.000	0.000	scontpoly	0.119	0.500	0.119	0.021	0.000	0.000
tsp	0.038	0.500	0.038	0.007	0.000	0.000	tsp	0.039	0.500	0.039	0.008	0.000	0.000
	Mode	el 9: (op	timizer:	Adamax)				Mode	l 10: (oj	ptimizer:	Nadam)		
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
reatures	acc	AUC	f1score	f1score	piec	iecan	reatures	acc	AUC	f1score	f1score	piec	iecan
mmsqc80	0.658	0.919	0.658	0.680	0.710	0.633	mmstftq	0.699	0.911	0.699	0.720	0.756	0.664
mms40	0.628	0.913	0.628	0.655	0.690	0.568	mmsqc	0.687	0.922	0.687	0.703	0.777	0.645
mfccstft	0.626	0.914	0.626	0.650	0.703	0.576	mmsqc80	0.676	0.910	0.676	0.689	0.713	0.650
mms60	0.626	0.901	0.626	0.648	0.687	0.591	mms80	0.654	0.906	0.654	0.670	0.706	0.599
mmsqc	0.606	0.907	0.606	0.628	0.694	0.578	mms40	0.648	0.918	0.648	0.668	0.703	0.625
mmcens	0.596	0.897	0.596	0.615	0.655	0.552	mfccstft	0.649	0.899	0.649	0.659	0.707	0.583
mms80	0.594	0.905	0.594	0.608	0.669	0.575	mmq	0.632	0.900	0.632	0.650	0.670	0.605
mmstftq	0.582	0.898	0.582	0.602	0.636	0.559	mfccstft80	0.622	0.912	0.622	0.649	0.691	0.581
mfccmel	0.578	0.901	0.578	0.593	0.657	0.529	mms60	0.602	0.894	0.602	0.629	0.659	0.559
mfccstft80	0.571	0.890	0.571	0.580	0.655	0.545	mfccmel	0.602	0.878	0.602	0.616	0.628	0.551
mmq	0.575	0.892	0.575	0.575	0.624	0.550	mmcens	0.581	0.886	0.581	0.590	0.624	0.540
zrsp	0.250	0.670	0.250	0.214	0.605	0.027	zsrssp	0.249	0.671	0.249	0.224	0.583	0.025
zsrssp	0.217	0.676	0.217	0.168	0.647	0.039	zrsp	0.210	0.667	0.210	0.171	0.617	0.035
	0.119	0.500	0.119	0.021	0.000	0.000	scontpoly	0.119	0.500	0.119	0.021	0.000	0.000
scontpoly	0.227							0 4 4 0	0 - 0 0				0.000
tsp	0.039	0.500	0.039	0.008	0.000	0.000	tsp	0.119	0.500	0.119	0.021	0.000	0.000
tsp	0.039 cy; AU	C - area	under th	e receive	r opera		tsp racteristic cui				0.021	0.000	0.000

B.2.3 Dropout Rate of 0.2

	Mod	el 11: (o	ptimizer	: Adam)				Mod	el 12: (optimize	r: SGD)		
Features	acc	AUC	micro	macro	121 000	recall	Features	200	AUC	micro	macro	proc	recal
reatures	acc	AUC	f1score	f1score	prec	recan	Teatures	acc	AUC	f1score	f1score	prec	recan
mms60	0.668	0.895	0.668	0.693	0.691	0.658	mms80	0.627	0.904	0.627	0.641	0.731	0.550
mmq	0.646	0.889	0.646	0.670	0.675	0.633	mfccstft80	0.594	0.892	0.594	0.593	0.718	0.477
mmstftq	0.642	0.881	0.642	0.667	0.664	0.637	mmsqc	0.591	0.890	0.591	0.589	0.706	0.454
mms40	0.637	0.889	0.637	0.655	0.677	0.624	mfccstft	0.591	0.869	0.591	0.587	0.697	0.425
mmsqc80	0.622	0.866	0.622	0.641	0.639	0.618	mms60	0.588	0.894	0.588	0.586	0.663	0.522
mfccstft80	0.627	0.879	0.627	0.636	0.657	0.619	mmcens	0.579	0.897	0.579	0.579	0.689	0.476
mmcens	0.619	0.856	0.619	0.630	0.649	0.608	mmq	0.581	0.886	0.581	0.577	0.704	0.498
mmsqc	0.618	0.869	0.618	0.628	0.644	0.603	mfccmel	0.587	0.900	0.587	0.570	0.696	0.497
mms80	0.602	0.866	0.602	0.619	0.624	0.575	mms40	0.558	0.905	0.558	0.563	0.671	0.470
mfccmel	0.584	0.841	0.584	0.593	0.604	0.563	mmsqc80	0.535	0.884	0.535	0.562	0.658	0.450
mfccstft	0.589	0.863	0.589	0.592	0.610	0.579	mmstftq	0.554	0.885	0.554	0.561	0.638	0.459
zsrssp	0.240	0.674	0.240	0.221	0.583	0.025	zsrssp	0.195	0.720	0.195	0.124	0.607	0.044
zrsp	0.216	0.667	0.216	0.199	0.422	0.023	zrsp	0.189	0.711	0.189	0.121	0.585	0.045
scontpoly	0.119	0.500	0.119	0.021	0.000	0.000	tsp	0.119	0.500	0.119	0.021	0.000	0.000
tsp	0.119	0.500	0.119	0.021	0.000	0.000	scontpoly	0.038	0.500	0.038	0.007	0.000	0.000
	Mode	13: (op	otimizer:	Adamax)			Mode	l 14: (o	ptimizer:	Nadam)		
Features	200	AUC	micro	macro	121 00	recall	Features	200	AUC	micro	macro	proc	rocall
reatures	acc	AUC	f1score	f1score	prec	recan	Teatures	acc	AUC	f1score	f1score	prec	recall
mmsqc	0.685	0.907	0.685	0.697	0.708	0.664	mms80	0.675	0.898	0.675	0.695	0.697	0.668
mmstftq	0.670	0.914	0.670	0.691	0.691	0.657	mmsqc80	0.639	0.882	0.639	0.668	0.657	0.624
mmsqc80	0.651	0.894	0.651	0.673	0.670	0.636	mmsqc	0.644	0.877	0.644	0.665	0.665	0.636
mmcens	0.632	0.889	0.632	0.655	0.671	0.614	mms60	0.650	0.899	0.650	0.664	0.665	0.639
mmq	0.645	0.903	0.645	0.647	0.678	0.621	mmstftq	0.631	0.882	0.631	0.654	0.652	0.625
mfccmel	0.631	0.901	0.631	0.646	0.679	0.620	mms40	0.636	0.870	0.636	0.653	0.663	0.625
mms80	0.618	0.887	0.618	0.644	0.647	0.601	mfccmel	0.639	0.870	0.639	0.642	0.664	0.632
mms40	0.625	0.885	0.625	0.639	0.671	0.599	mfccstft80	0.624	0.865	0.624	0.640	0.646	0.609
mms60	0.612	0.877	0.612	0.633	0.634	0.588	mmq	0.603	0.854	0.603	0.634	0.617	0.591
	0 (00	0.873	0.602	0.609	0.638	0.577	mmcens	0.611	0.866	0.611	0.626	0.625	0.601
mfccstft	0.602	0.873	0.602	0.007			1 a .a.	0 110					0.600
mfccstft mfccstft80	0.602 0.597	0.873	0.602	0.604	0.623	0.583	mfccstft	0.612	0.872	0.612	0.605	0.627	0.000
					0.623 0.615	0.583 0.029	mtccstft zsrssp	0.612 0.235	0.872 0.672	0.612 0.235	0.605 0.208	0.627 0.615	
mfccstft80	0.597	0.858	0.597	0.604									0.029
mfccstft80 zrsp	0.597 0.240	0.858 0.674	0.597 0.240	0.604 0.225	0.615	0.029	zsrssp	0.235	0.672	0.235	0.208	0.615	0.029 0.026
mfccstft80 zrsp zsrssp	0.597 0.240 0.211	0.858 0.674 0.668	0.597 0.240 0.211	0.604 0.225 0.172	0.615 0.647	0.029 0.039	zsrssp zrsp	0.235 0.208	0.672 0.661	0.235 0.208	0.208 0.184	0.615 0.595	0.029 0.026 0.000
mfccstft80 zrsp zsrssp scontpoly tsp	0.597 0.240 0.211 0.115 0.111	0.858 0.674 0.668 0.500 0.500	0.597 0.240 0.211 0.115 0.111	0.604 0.225 0.172 0.021 0.020	0.615 0.647 0.000 0.000	0.029 0.039 0.000 0.000	zsrssp zrsp scontpoly	0.235 0.208 0.119 0.119	0.672 0.661 0.500 0.500	0.235 0.208 0.119 0.119	0.208 0.184 0.021	0.615 0.595 0.000	0.000 0.029 0.026 0.000 0.000

TABLE B.8: Results of the 4 models with a dropout rate of 0.2 for different feature combi-nations.

All metrics range from [0, 1] (the higher, the better).

Dropout Rate of 0.6 B.2.4

TABLE B.9: Results of the 4 models with a dropout rate of 0.6 for different feature combi-nations.

	Mod	el 15: (o	ptimizer	: Adam)				Mod	el 16: (optimize	r: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc	0.676	0.923	0.676	0.696	0.781	0.551	mfccmel	0.271	0.764	0.271	0.288	0.877	0.085
mmsqc80	0.650	0.927	0.650	0.684	0.807	0.550	mfccstft80	0.292	0.779	0.292	0.267	0.804	0.049
mms60	0.662	0.916	0.662	0.679	0.828	0.568	mms40	0.257	0.794	0.257	0.247	0.865	0.054
mms80	0.651	0.910	0.651	0.674	0.786	0.522	mfccstft	0.201	0.756	0.201	0.205	0.769	0.048
mmstftq	0.634	0.905	0.634	0.662	0.757	0.556	mmstftq	0.201	0.710	0.201	0.162	0.667	0.017
mmq	0.632	0.912	0.632	0.647	0.782	0.536	mms80	0.198	0.717	0.198	0.160	0.727	0.029
mmcens	0.622	0.897	0.622	0.644	0.735	0.547	mmsqc80	0.190	0.625	0.190	0.143	0.833	0.042
mfccmel	0.628	0.912	0.628	0.644	0.821	0.511	mmsqc	0.246	0.720	0.246	0.140	0.684	0.047
mfccstft80	0.634	0.917	0.634	0.642	0.786	0.519	mmcens	0.222	0.667	0.222	0.132	0.483	0.035
mms40	0.603	0.912	0.603	0.628	0.733	0.472	zrsp	0.194	0.705	0.194	0.126	0.647	0.039
mfccstft	0.569	0.905	0.569	0.595	0.781	0.455	zsrssp	0.186	0.702	0.186	0.122	0.660	0.042
zsrssp	0.257	0.678	0.257	0.202	0.533	0.019	mms60	0.080	0.538	0.080	0.056	0.250	0.002
zrsp	0.249	0.675	0.249	0.198	0.563	0.022	mmq	0.116	0.496	0.116	0.029	0.250	0.002
tsp	0.119	0.500	0.119	0.021	0.000	0.000	scontpoly	0.119	0.500	0.119	0.021	0.000	0.000
scontpoly	0.099	0.500	0.099	0.018	0.000	0.000	tsp	0.111	0.506	0.111	0.020	0.000	0.000
	Mode	l 17: (op	otimizer:	Adamax))			Mode	l 18: (o	ptimizer:	Nadam)		
			micro	macro						micro	macro		
Features	acc	AUC	f1score	f1score	prec	recall	Features	acc	AUC	f1score	f1score	prec	recall
	acc 0.636	AUC 0.911			prec 0.767	recall 0.489	Features mmsqc	acc 0.704	AUC 0.929			prec 0.789	recall 0.594
Features mmstftq mfccstft80			f1score	f1score	-					f1score	f1score		
mmstftq	0.636	0.911	f1score 0.636	f1score 0.657	0.767	0.489	mmsqc	0.704	0.929	f1score 0.704	f1score 0.721	0.789	0.594
mmstftq mfccstft80	0.636 0.621	0.911 0.913	f1score 0.636 0.621	f1score 0.657 0.640	0.767 0.787	0.489 0.478	mmsqc mms80	0.704 0.675	0.929 0.918	f1score 0.704 0.675	f1score 0.721 0.696	0.789 0.827	0.594 0.558
mmstftq mfccstft80 mmq	0.636 0.621 0.575	0.911 0.913 0.870	f1score 0.636 0.621 0.575	f1score 0.657 0.640 0.595	0.767 0.787 0.787	0.489 0.478 0.296	mmsqc mms80 mms40	0.704 0.675 0.654	0.929 0.918 0.921	f1score 0.704 0.675 0.654	f1score 0.721 0.696 0.680	0.789 0.827 0.788	0.594 0.558 0.536
mmstftq mfccstft80 mmq mfccstft	0.636 0.621 0.575 0.557	0.911 0.913 0.870 0.881	f1score 0.636 0.621 0.575 0.557	f1score 0.657 0.640 0.595 0.585	0.767 0.787 0.787 0.732	0.489 0.478 0.296 0.373	mmsqc mms80 mms40 mmsqc80	0.704 0.675 0.654 0.640	0.929 0.918 0.921 0.925	f1score 0.704 0.675 0.654 0.640	f1score 0.721 0.696 0.680 0.677	0.789 0.827 0.788 0.744	0.594 0.558 0.536 0.554
mmstftq mfccstft80 mmq mfccstft mmcens	0.636 0.621 0.575 0.557 0.557	0.911 0.913 0.870 0.881 0.879	f1score 0.636 0.621 0.575 0.557 0.557	f1score 0.657 0.640 0.595 0.585 0.583	0.767 0.787 0.787 0.732 0.746	0.489 0.478 0.296 0.373 0.389	mmsqc mms80 mms40 mmsqc80 mmstftq	0.704 0.675 0.654 0.640 0.644	0.929 0.918 0.921 0.925 0.907	f1score 0.704 0.675 0.654 0.640 0.644	f1score 0.721 0.696 0.680 0.677 0.669	0.789 0.827 0.788 0.744 0.741	0.594 0.558 0.536 0.554 0.541
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc	0.636 0.621 0.575 0.557 0.571 0.557	0.911 0.913 0.870 0.881 0.879 0.896	f1score 0.636 0.621 0.575 0.557 0.571 0.557	f1score 0.657 0.640 0.595 0.585 0.583 0.578	0.767 0.787 0.787 0.732 0.746 0.695	0.489 0.478 0.296 0.373 0.389 0.427	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens	0.704 0.675 0.654 0.640 0.644 0.638	0.929 0.918 0.921 0.925 0.907 0.909	f1score 0.704 0.675 0.654 0.640 0.644 0.638	f1score 0.721 0.696 0.680 0.677 0.669 0.658	0.789 0.827 0.788 0.744 0.741 0.825	0.594 0.558 0.536 0.554 0.541 0.546
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80	0.636 0.621 0.575 0.557 0.571 0.557 0.563	0.911 0.913 0.870 0.881 0.879 0.896 0.891	f1score 0.636 0.621 0.575 0.557 0.557 0.557 0.557 0.563	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576	0.767 0.787 0.787 0.732 0.732 0.746 0.695 0.778	0.489 0.478 0.296 0.373 0.389 0.427 0.361	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60	0.704 0.675 0.654 0.640 0.644 0.638 0.625	0.929 0.918 0.921 0.925 0.907 0.909 0.910	f1score 0.704 0.675 0.654 0.640 0.644 0.638 0.625	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652	0.789 0.827 0.788 0.744 0.741 0.825 0.800	0.594 0.558 0.536 0.554 0.541 0.546 0.521
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80	0.636 0.621 0.575 0.557 0.571 0.557 0.563 0.545	0.911 0.913 0.870 0.881 0.879 0.896 0.891 0.888	f1score 0.636 0.621 0.575 0.557 0.571 0.557 0.563 0.545	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572	0.767 0.787 0.787 0.732 0.746 0.695 0.778 0.701	0.489 0.478 0.296 0.373 0.389 0.427 0.361 0.362	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mmq	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918	f1score 0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650	0.789 0.827 0.788 0.744 0.741 0.825 0.800 0.777	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.523
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80 mms60	0.636 0.621 0.575 0.557 0.571 0.557 0.563 0.545 0.557	0.911 0.913 0.870 0.881 0.879 0.896 0.891 0.888 0.900	f1score 0.636 0.621 0.575 0.557 0.557 0.557 0.563 0.545 0.557	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572 0.569	0.767 0.787 0.787 0.732 0.746 0.695 0.778 0.701 0.755	0.489 0.478 0.296 0.373 0.389 0.427 0.361 0.362 0.397	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mmq mfccstft80	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918 0.915	f1score 0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650 0.645	0.789 0.827 0.788 0.744 0.741 0.825 0.800 0.777 0.806	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.523 0.522
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80 mms60 mfccmel	0.636 0.621 0.575 0.557 0.571 0.557 0.563 0.545 0.557 0.558	0.911 0.913 0.870 0.881 0.879 0.896 0.891 0.888 0.900 0.889	f1score 0.636 0.621 0.575 0.557 0.557 0.557 0.563 0.545 0.557 0.558	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572 0.569 0.562	0.767 0.787 0.787 0.732 0.746 0.695 0.778 0.701 0.755 0.809	0.489 0.478 0.296 0.373 0.389 0.427 0.361 0.362 0.397 0.335	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mmq mfccstft80 mfccmel	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918 0.915 0.896	f1score 0.704 0.675 0.654 0.640 0.643 0.625 0.631 0.624 0.603	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650 0.645 0.628	$\begin{array}{c} 0.789\\ 0.827\\ 0.788\\ 0.744\\ 0.741\\ 0.825\\ 0.800\\ 0.777\\ 0.806\\ 0.746\end{array}$	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.523 0.522 0.503
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80 mms60 mfccmel mms40	0.636 0.621 0.575 0.557 0.557 0.557 0.563 0.545 0.557 0.558 0.542	0.911 0.913 0.870 0.881 0.879 0.896 0.891 0.888 0.900 0.889 0.892	f1score 0.636 0.621 0.575 0.557 0.557 0.563 0.545 0.557 0.558 0.542	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572 0.569 0.562 0.555	0.767 0.787 0.787 0.732 0.746 0.695 0.778 0.701 0.755 0.809 0.763	0.489 0.478 0.296 0.373 0.389 0.427 0.361 0.362 0.397 0.335 0.338	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mmq mfccstft80 mfccmel mfccstft	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603 0.600	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918 0.915 0.896 0.898	f1score 0.704 0.675 0.654 0.640 0.643 0.625 0.631 0.624 0.603	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650 0.645 0.628 0.616	0.789 0.827 0.788 0.744 0.741 0.825 0.800 0.777 0.806 0.746 0.845	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.523 0.522 0.503 0.458
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80 mms60 mfccmel mms40 zrsp	0.636 0.621 0.575 0.557 0.557 0.557 0.557 0.553 0.545 0.557 0.558 0.542 0.222	0.911 0.913 0.870 0.881 0.879 0.896 0.891 0.888 0.900 0.889 0.892 0.687	f1score 0.636 0.621 0.575 0.557 0.557 0.563 0.545 0.557 0.558 0.542 0.222	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572 0.569 0.562 0.555 0.154	0.767 0.787 0.787 0.732 0.746 0.695 0.778 0.701 0.755 0.809 0.763 0.647	0.489 0.478 0.296 0.373 0.389 0.427 0.361 0.362 0.397 0.335 0.338 0.039	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mmq mfccstft80 mfccmel mfccstft zsrssp	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603 0.600 0.211	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918 0.915 0.896 0.898 0.668	f1score 0.704 0.675 0.654 0.640 0.643 0.625 0.631 0.603 0.600 0.211	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650 0.645 0.628 0.616 0.160	0.789 0.827 0.788 0.744 0.741 0.825 0.800 0.777 0.806 0.746 0.845 0.633	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.523 0.522 0.503 0.458 0.037
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80 mms60 mfccmel mms40 zrsp zsrssp	0.636 0.621 0.575 0.557 0.557 0.557 0.557 0.553 0.545 0.557 0.558 0.542 0.222 0.221	0.911 0.913 0.870 0.881 0.879 0.896 0.891 0.888 0.900 0.889 0.892 0.687 0.687	f1score 0.636 0.621 0.575 0.557 0.557 0.557 0.563 0.557 0.558 0.545 0.542 0.222 0.221	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572 0.569 0.562 0.555 0.154 0.152	0.767 0.787 0.787 0.732 0.746 0.695 0.778 0.701 0.755 0.809 0.763 0.647 0.647	0.489 0.478 0.296 0.373 0.389 0.427 0.361 0.362 0.397 0.335 0.338 0.039 0.039	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mfccstft80 mfccmel mfccstft zsrssp zrsp	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603 0.600 0.211 0.220	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918 0.915 0.896 0.898 0.668 0.670	f1score 0.704 0.675 0.654 0.640 0.643 0.625 0.631 0.624 0.603 0.600 0.211 0.220	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650 0.645 0.628 0.616 0.160 0.153	0.789 0.827 0.788 0.744 0.741 0.825 0.800 0.777 0.806 0.746 0.845 0.633 0.600	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.523 0.522 0.503 0.458 0.037 0.032
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80 mms60 mfccmel mms40 zrsp zsrssp tsp scontpoly	0.636 0.621 0.575 0.557 0.557 0.557 0.553 0.545 0.558 0.545 0.558 0.542 0.222 0.221 0.119 0.111	0.911 0.913 0.870 0.881 0.899 0.896 0.891 0.888 0.900 0.889 0.889 0.892 0.687 0.687 0.687 0.500 0.500	f1score 0.636 0.621 0.575 0.557 0.557 0.563 0.545 0.545 0.557 0.558 0.542 0.222 0.221 0.119 0.111	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572 0.569 0.562 0.555 0.154 0.152 0.021 0.020	$\begin{array}{c} 0.767\\ 0.787\\ 0.787\\ 0.732\\ 0.746\\ 0.695\\ 0.778\\ 0.701\\ 0.755\\ \textbf{0.809}\\ 0.763\\ 0.647\\ 0.647\\ 0.647\\ 0.000\\ 0.000\\ \end{array}$	0.489 0.478 0.296 0.373 0.389 0.427 0.362 0.397 0.335 0.338 0.338 0.338 0.039 0.039 0.000 0.000	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mfccstft80 mfccmel mfccstft zsrssp zrsp scontpoly	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603 0.600 0.211 0.220 0.119 0.039	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918 0.915 0.896 0.898 0.668 0.670 0.500 0.500	f1score 0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603 0.600 0.211 0.220 0.119 0.039	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650 0.645 0.628 0.616 0.160 0.153 0.021	0.789 0.827 0.788 0.744 0.741 0.825 0.800 0.777 0.806 0.746 0.845 0.633 0.600 0.000	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.522 0.523 0.522 0.503 0.458 0.037 0.032 0.000
mmstftq mfccstft80 mmq mfccstft mmcens mmsqc mms80 mmsqc80 mms60 mfccmel mms40 zrsp zsrssp tsp scontpoly	0.636 0.621 0.575 0.557 0.557 0.557 0.563 0.545 0.558 0.545 0.558 0.542 0.222 0.221 0.119 0.111 cy; AU	0.911 0.913 0.870 0.881 0.899 0.896 0.891 0.888 0.900 0.889 0.892 0.687 0.687 0.687 0.500 0.500 C - area	f1score 0.636 0.621 0.575 0.557 0.557 0.563 0.545 0.557 0.558 0.542 0.222 0.221 0.119 0.111 under th	f1score 0.657 0.640 0.595 0.585 0.583 0.578 0.576 0.572 0.569 0.562 0.555 0.154 0.152 0.021 0.020 me receiver	0.767 0.787 0.787 0.732 0.746 0.695 0.778 0.701 0.755 0.809 0.763 0.647 0.647 0.647 0.600 0.000 r opera	0.489 0.478 0.296 0.373 0.389 0.427 0.362 0.397 0.335 0.338 0.338 0.338 0.039 0.039 0.000 0.000	mmsqc mms80 mms40 mmsqc80 mmstftq mmcens mms60 mfccstft80 mfccstft zsrssp zrsp scontpoly tsp	0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603 0.600 0.211 0.220 0.119 0.039	0.929 0.918 0.921 0.925 0.907 0.909 0.910 0.918 0.915 0.896 0.898 0.668 0.670 0.500 0.500	f1score 0.704 0.675 0.654 0.640 0.644 0.638 0.625 0.631 0.624 0.603 0.600 0.211 0.220 0.119 0.039	f1score 0.721 0.696 0.680 0.677 0.669 0.658 0.652 0.650 0.645 0.628 0.616 0.160 0.153 0.021	0.789 0.827 0.788 0.744 0.741 0.825 0.800 0.777 0.806 0.746 0.845 0.633 0.600 0.000	0.594 0.558 0.536 0.554 0.541 0.546 0.521 0.522 0.523 0.522 0.503 0.458 0.037 0.032 0.000

138

B.2.5 Extra Layer and Dropout Rate

TABLE B.10: Results of the 3 models with an extra layer and dropout rate of 0.6 and 0.8 for Adam and Nadam optimizer and 0.2 and 0 for Adamax optimizer with different feature combinations.

Model 23	3: (opti	mizer: /	Adam an	d dropou	t rate: ().6)	Model 24	4: (opti	mizer:	Adam an	d dropou	t rate: ().8)
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mms60	0.626	0.898	0.626	0.653	0.775	0.466	mms40	0.214	0.639	0.214	0.188	0.875	0.042
mmsqc	0.613	0.898	0.613	0.651	0.763	0.400	mfccstft	0.189	0.639	0.214	0.165	0.875	0.042
•	0.613	0.902	0.613	0.643	0.799	0.430		0.169	0.571	0.169	0.163	0.854	0.042
mmstftq mfccstft80		0.895 0.907				0.474	mms60		0.571			0.957	0.026
	0.605	0.881	0.605 0.588	0.615 0.614	0.802 0.743	0.441	mms80	0.168 0.154	0.574	0.168 0.154	0.130	0.952 1.000	0.024
mms40	$0.588 \\ 0.587$	0.891	0.588			0.421	mmsqc80	0.134	0.574		0.123		
mfccstft				0.612	0.817		mmsqc			0.189	0.113	0.867	0.047
mmsqc80	0.591	0.879	0.591	0.610	0.741	0.399	mfccstft80	0.125	0.614	0.125	0.108	0.958	0.027
mms80	0.572	0.891	0.572	0.588	0.725	0.416	mmcens	0.121	0.577	0.121	0.107	1.000	0.026
mfccmel	0.570	0.889	0.570	0.586	0.786	0.458	mmq	0.128	0.572	0.128	0.104	1.000	0.024
mmq	0.541	0.881	0.541	0.569	0.765	0.330	mmstftq	0.141	0.573	0.141	0.103	1.000	0.018
mmcens	0.551	0.882	0.551	0.565	0.715	0.368	mfccmel	0.124	0.560	0.124	0.097	1.000	0.017
zsrssp	0.215	0.649	0.215	0.149	0.714	0.006	zsrssp	0.165	0.622	0.165	0.070	0.000	0.000
zrsp	0.210	0.659	0.210	0.144	0.526	0.012	zrsp	0.162	0.608	0.162	0.060	0.000	0.000
tsp	0.038	0.466	0.038	0.007	0.000	0.000	tsp	0.119	0.500	0.119	0.021	0.000	0.000
scontpoly	0.038	0.500	0.038	0.007	0.000	0.000	scontpoly	0.115	0.500	0.115	0.021	0.000	0.000
Model 25:	(optin	izer: A		_	ut rate:	0.2)	Model 26	5: (optii	nizer: A			out rate	: 0)
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.662	0.906	0.662	0.690	0.689	0.650	mmstftq	0.618	0.850	0.618	0.636	0.624	0.608
mms80	0.664	0.894	0.664	0.685	0.692	0.652	mms80	0.609	0.855	0.609	0.626	0.619	0.602
mms40	0.671	0.900	0.671	0.684	0.718	0.657	mmsqc80	0.575	0.823	0.575	0.601	0.583	0.572
mmstftg	0.649	0.893	0.649	0.670	0.668	0.638	mmcens	0.599	0.849	0.599	0.599	0.612	0.593
mfccmel	0.650	0.890	0.650	0.654	0.687	0.638	mms40	0.582	0.825	0.582	0.595	0.594	0.577
mfccstft80	0.642	0.886	0.642	0.653	0.661	0.631	mmsqc	0.575	0.845	0.575	0.592	0.586	0.572
mmcens	0.636	0.887	0.636	0.642	0.662	0.607	mms60	0.564	0.819	0.564	0.583	0.573	0.556
mmsqc	0.621	0.876	0.621	0.637	0.646	0.599	mfccmel	0.570	0.837	0.570	0.581	0.575	0.560
mms60	0.608	0.886	0.608	0.622	0.642	0.572	mmg	0.539	0.831	0.539	0.561	0.549	0.526
mfccstft	0.614	0.875	0.614	0.618	0.639	0.591	mfccstft80	0.560	0.827	0.560	0.554	0.565	0.552
mmq	0.565	0.867	0.565	0.583	0.610	0.548	mfccstft	0.540	0.829	0.540	0.531	0.548	0.533
zrsp	0.249	0.664	0.249	0.230	0.633	0.037	zsrssp	0.211	0.666	0.211	0.184	0.647	0.039
zsrssp	0.220	0.680	0.220	0.185	0.647	0.039	zrsp	0.209	0.661	0.209	0.182	0.617	0.035
scontpoly	0.119	0.500	0.119	0.021	0.000	0.000	scontpoly	0.115	0.500	0.115	0.021	0.000	0.000
tsp	0.099	0.500	0.099	0.018	0.000	0.000	tsp	0.039	0.500	0.039	0.008	0.000	0.000
Model 27							Model 28						
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmstftg	0.639	0.897	0.639	0.668	0.826	0.465	mmsqc	0.182	0.638	0.182	0.168	0.879	0.035
mmsqc	0.615	0.898	0.615	0.638	0.807	0.440	mms80	0.204	0.651	0.204	0.167	1.000	0.026
mmsqc80	0.615	0.893	0.615	0.637	0.780	0.436	mms40	0.179	0.632	0.179	0.154	0.857	0.036
mms60	0.611	0.907	0.611	0.635	0.771	0.458	mms60	0.111	0.596	0.111	0.142	1.000	0.026
mms40	0.605	0.901	0.605	0.627	0.765	0.464	mmcens	0.160	0.615	0.160	0.125	1.000	0.026
mfccstft	0.603	0.904	0.603	0.625	0.843	0.404	mfccstft80	0.141	0.653	0.141	0.119	0.957	0.026
mms80	0.578	0.887	0.578	0.608	0.691	0.437	mmstftq	0.155	0.578	0.141	0.117	1.000	0.020
mfccmel	0.593	0.886	0.578	0.606	0.741	0.437	mfccstft	0.133	0.605	0.133	0.117	0.857	0.014
mfccstft80	0.593	0.891	0.595	0.600	0.741	0.404	mfccmel	0.124	0.570	0.124	0.111	1.000	0.022
	0.570	0.891	0.570	0.800	0.713	0.404		0.136	0.570	0.136	0.103	1.000	0.017
mmq		0.887	0.569	0.597	0.798	0.430	mmq mmcac80	0.145	0.550				0.022
mmcens	0.559						mmsqc80			0.065	0.087	1.000	
zsrssp	0.232	0.663	0.232	0.184	0.524	0.013	zsrssp	0.157	0.638	0.157	0.067	0.000	0.000
zrsp	0.214	0.654	0.214	0.150	0.522	0.014	zrsp	0.157	0.589	0.157	0.059	0.000	0.000
tsp	0.119	0.511	0.119	0.021	0.000	0.000	tsp	0.038	0.500	0.038	0.007	0.000	0.000
scontpoly	0.038	0.500	0.038	0.007	0.000	0.000	scontpoly	0.038	0.500	0.038	0.007	0.000	0.000

B.3 ESC Datasets - Single Feature Input

B.3.1 Baseline Model Architecture

	Mod	el 1: (oj	ptimizer:	Adam)				Мос	del 2: (c	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc60	0.613	0.880	0.613	0.601	0.642	0.425	mel60	0.463	0.852	0.463	0.442	0.526	0.125
mfcc80	0.588	0.879	0.588	0.574	0.667	0.425	mel80	0.450	0.858	0.450	0.433	0.714	0.188
mel40	0.563	0.891	0.563	0.567	0.603	0.438	mel40	0.450	0.875	0.450	0.427	0.500	0.113
mel20	0.575	0.897	0.575	0.558	0.617	0.463	mel20	0.438	0.886	0.438	0.413	0.455	0.063
mel60	0.538	0.843	0.538	0.528	0.548	0.425	mfcc80	0.425	0.852	0.425	0.364	0.455	0.125
mel80	0.525	0.895	0.525	0.520	0.611	0.423	mfcc60	0.388	0.863	0.388	0.314	0.517	0.120
mfcc40	0.538	0.881	0.538	0.516	0.667	0.350	mfcc40	0.350	0.795	0.350	0.294	0.375	0.113
stft80	0.513	0.888	0.513	0.490	0.643	0.225	stft80	0.325	0.754	0.325	0.258	0.000	0.000
stft40	0.488	0.885	0.488	0.482	0.571	0.150	stft60	0.263	0.737	0.263	0.197	0.000	0.000
stft60	0.500	0.883	0.500	0.480	0.615	0.200	cens40	0.275	0.754	0.275	0.176	0.000	0.000
stft20	0.413	0.868	0.413	0.406	0.588	0.125	cens80	0.225	0.706	0.225	0.154	0.000	0.000
cens20	0.350	0.704	0.350	0.335	0.405	0.188	cqt40	0.175	0.636	0.175	0.115	0.000	0.000
cqt80	0.350	0.784	0.350	0.320	0.385	0.125	stft40	0.188	0.721	0.188	0.110	0.000	0.000
cqt40	0.313	0.777	0.313	0.288	0.366	0.123	stft20	0.213	0.715	0.213	0.113	0.000	0.000
cqt20	0.288	0.799	0.288	0.269	0.333	0.100	cqt80	0.163	0.637	0.163	0.107	0.000	0.000
cens80	0.313	0.773	0.200	0.252	0.370	0.213	cens20	0.105	0.568	0.105	0.107	0.000	0.000
cens40	0.250	0.795	0.250	0.232	0.234	0.188	cqt20	0.123	0.609	0.123	0.007	0.000	0.000
			timizer:		0.201	0.100	- cq.=0			otimizer:		0.000	0.000
Easterna		. 1	micro	macro			Easternes		Î	micro	macro		
Features	acc	AUC	f1score	f1score	prec	recall	Features	acc	AUC	f1score	f1score	prec	recall
mel40	0.488	0.878	0.488	0.465	0.765	0.163	mfcc40	0.650	0.894	0.650	0.644	0.723	0.425
mfcc60	0.475	0.890	0.475	0.410	0.462	0.075	mel40	0.588	0.900	0.588	0.597	0.603	0.438
stft80	0.425	0.859	0.425	0.409	0.667	0.025	mfcc60	0.600	0.877	0.600	0.594	0.630	0.363
mel80	0.425	0.831	0.425	0.405	0.579	0.138	mel20	0.600	0.899	0.600	0.587	0.545	0.375
stft40	0.400	0.859	0.400	0.385	0.500	0.013	mfcc80	0.575	0.874	0.575	0.558	0.630	0.363
mel60	0.400	0.836	0.400	0.383	0.533	0.100	mel80	0.550	0.889	0.550	0.549	0.635	0.413
mel20	0.400	0.870	0.400	0.373	0.714	0.063	mel60	0.500	0.857	0.500	0.493	0.534	0.388
stft60	0.388	0.850	0.388	0.351	0.500	0.013	stft40	0.463	0.874	0.463	0.450	0.500	0.188
cqt40	0.350	0.754	0.350	0.317	0.167	0.013	stft80	0.488	0.857	0.488	0.436	0.613	0.238
cens80	0.363	0.820	0.363	0.312	0.444	0.150	stft20	0.413	0.868	0.413	0.383	0.524	0.138
cqt80	0.325	0.746	0.325	0.303	0.000	0.000	stft60	0.388	0.873	0.388	0.355	0.536	0.188
mfcc40	0.313	0.823	0.313	0.282	0.600	0.075	cqt20	0.338	0.807	0.338	0.330	0.452	0.175
stft20	0.313	0.839	0.313	0.262	1.000	0.013	cens80	0.363	0.774 0.789	0.363	0.317	0.422	0.238
cens40	0.275	0.847	0.275	0.250	0.478	0.138	cqt40	0.325		0.325	0.303	0.385	0.188
cqt20	0.263	0.767	0.263	0.245	0.000	0.000	cqt80	0.325	0.773	0.325	0.289	0.366	0.188
cens20	0.263	0.682	0.263	0.221	0.500	0.050	cens20	0.288	0.676	0.288	0.281	0.333	0.175
mfcc80	0.225	0.799	0.225	0.177	0.308	0.050	cens40	0.225	0.792	0.225	0.216	0.239	0.200
	Mode	i 5: (opi		Adadelta)	I			wiode	1 6: (op	timizer: A			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
cens40	0.175	0.532	0.175	0.116	0.000	0.000	mel60	0.400	0.838	0.400	0.383	0.647	0.138
cens80	0.225	0.498	0.225	0.115	0.000	0.000	mel40	0.413	0.828	0.413	0.367	0.667	0.125
mfcc40	0.125	0.482	0.125	0.093	0.094	0.075	mel80	0.400	0.813	0.400	0.365	0.565	0.163
mel80	0.163	0.543	0.163	0.082	0.417	0.125	mfcc60	0.413	0.830	0.413	0.361	0.571	0.200
mel40	0.088	0.479	0.088	0.078	0.000	0.000	mel20	0.375	0.843	0.375	0.320	0.778	0.088
stft40	0.150	0.576	0.150	0.075	0.000	0.000	mfcc80	0.388	0.847	0.388	0.305	0.464	0.163
cens20	0.100	0.453	0.100	0.049	0.000	0.000	mfcc40	0.350	0.842	0.350	0.300	0.450	0.113
mfcc60	0.075	0.425	0.075	0.037	0.017	0.013	cens80	0.288	0.704	0.288	0.197	0.000	0.000
mel60	0.050	0.463	0.050	0.037	0.083	0.013	cens40	0.200	0.620	0.200	0.118	0.000	0.000
cqt20	0.100	0.523	0.100	0.037	0.000	0.000	cens20	0.125	0.520	0.125	0.048	0.000	0.000
mel20	0.100	0.545	0.100	0.036	0.182	0.025	stft40	0.100	0.616	0.100	0.024	0.000	0.000
stft60	0.088	0.525	0.088	0.036	0.000	0.000	stft20	0.100	0.590	0.100	0.023	0.000	0.000
mfcc80	0.050	0.443	0.050	0.020	0.046	0.038	stft80	0.100	0.622	0.100	0.021	0.000	0.000
cqt40	0.100	0.491	0.100	0.018	0.000	0.000	stft60	0.100	0.596	0.100	0.020	0.000	0.000
stft20	0.088	0.537	0.088	0.017	0.000	0.000	cqt80	0.088	0.560	0.088	0.019	0.000	0.000
stft80	0.025	0.501	0.025	0.017	0.000	0.000	cqt40	0.100	0.538	0.100	0.019	0.000	0.000
cqt80	0.075	0.530	0.075	0.016	0.000	0.000	cqt20	0.100	0.550	0.100	0.018	0.000	0.000
•							racteristic cu				0.010	0.000	0.000

TABLE B.11: Results of the 6 models for different features - ESC-10.

acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.

All metrics range from [0, 1] (the higher, the better).

	Mod	el 1: (o	ptimizer	: Adam)			Model 2: (optimizer: SGD)							
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal	
mfcc80	0.313	0.854	0.313	0.293	0.504	0.170	mel80	0.173	0.780	0.173	0.139	0.394	0.033	
mfcc60	0.305	0.856	0.305	0.290	0.503	0.188	mel60	0.158	0.781	0.158	0.131	0.480	0.030	
mfcc40	0.288	0.850	0.288	0.271	0.456	0.130	mel40	0.153	0.796	0.153	0.126	0.429	0.030	
mel20	0.263	0.858	0.263	0.249	0.519	0.105	mfcc80	0.143	0.782	0.143	0.123	0.375	0.015	
mel40	0.240	0.855	0.240	0.228	0.540	0.118	mel20	0.148	0.800	0.148	0.118	0.450	0.023	
mel60	0.225	0.833	0.225	0.207	0.402	0.088	mfcc40	0.138	0.783	0.138	0.114	0.235	0.010	
mel80	0.220	0.835	0.220	0.202	0.388	0.095	mfcc60	0.133	0.782	0.133	0.104	0.333	0.015	
stft60	0.153	0.779	0.153	0.130	0.395	0.038	cens40	0.060	0.594	0.060	0.037	0.000	0.000	
stft20	0.138	0.789	0.138	0.119	0.444	0.040	cens20	0.048	0.550	0.048	0.036	0.000	0.000	
stft40	0.145	0.786	0.145	0.113	0.395	0.043	stft80	0.065	0.685	0.065	0.030	0.000	0.000	
stft80	0.130	0.775	0.130	0.109	0.289	0.033	cens80	0.050	0.599	0.050	0.027	0.000	0.000	
cqt80	0.123	0.758	0.123	0.099	0.257	0.023	cqt80	0.045	0.645	0.045	0.021	0.000	0.000	
cqt20	0.110	0.768	0.110	0.090	0.393	0.028	cqt20	0.035	0.571	0.035	0.018	0.000	0.000	
cqt40	0.110	0.743	0.110	0.084	0.324	0.028	stft60	0.055	0.682	0.055	0.015	0.000	0.000	
cens20	0.093	0.715	0.093	0.079	0.235	0.020	stft20	0.045	0.642	0.045	0.015	0.000	0.000	
cens40	0.078	0.719	0.078	0.070	0.141	0.028	stft40	0.045	0.675	0.045	0.013	0.000	0.000	
cens80	0.078	0.680	0.078	0.054	0.153	0.045	cqt40	0.028	0.612	0.028	0.004	0.000	0.000	
	Mode	el 3: (op		Adamax)				Mod	el 4: (op	otimizer:				
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal	
mfcc80	0.188	0.845	0.188	0.146	0.214	0.008	mfcc80	0.313	0.850	0.313	0.297	0.511	0.168	
stft40	0.148	0.794	0.148	0.119	0.533	0.020	mfcc60	0.310	0.848	0.310	0.290	0.515	0.173	
mel40	0.128	0.773	0.128	0.118	0.421	0.020	mfcc40	0.300	0.866	0.300	0.275	0.496	0.145	
stft60	0.153	0.797	0.153	0.118	0.538	0.018	mel20	0.258	0.854	0.258	0.242	0.556	0.113	
stft20	0.153	0.795	0.153	0.117	0.636	0.018	mel40	0.238	0.850	0.238	0.218	0.543	0.110	
stft80	0.153	0.793	0.153	0.117	0.563	0.023	mel80	0.228	0.845	0.228	0.215	0.488	0.103	
mel80	0.133	0.752	0.133	0.116	0.619	0.033	mel60	0.200	0.844	0.200	0.188	0.468	0.093	
mel20	0.125	0.795	0.125	0.106	0.333	0.018	stft60	0.168	0.780	0.168	0.136	0.381	0.040	
mfcc60	0.115	0.775	0.115	0.098	0.077	0.003	stft20	0.143	0.799	0.143	0.120	0.441	0.038	
mel60	0.113	0.745	0.113	0.097	0.550	0.028	stft80	0.150	0.767	0.150	0.118	0.366	0.038	
mfcc40	0.103	0.747	0.103	0.088	0.400	0.005	stft40	0.135	0.786	0.135	0.108	0.359	0.03	
cens40	0.100	0.765	0.100	0.086	0.533	0.020	cqt80	0.125	0.744	0.125	0.103	0.267	0.03	
cqt80	0.108	0.751	0.108	0.079	0.438	0.018	cqt40	0.123	0.748	0.123	0.102	0.297	0.028	
cqt40	0.108	0.756	0.108	0.077	0.429	0.015	cens40	0.093	0.720	0.093	0.086	0.194	0.033	
cqt20	0.105	0.752	0.105	0.072	0.429	0.008	cens20	0.100	0.708	0.100	0.083	0.324	0.030	
cens80	0.088	0.764	0.088	0.065	0.423	0.028	cqt20	0.095	0.762	0.095	0.076	0.333	0.025	
cens20	0.080	0.707	0.080	0.060	0.556	0.013	cens80	0.088	0.695	0.088	0.063	0.192	0.048	
	Mode	l 5: (opi		Adadelta)				Mode	l 6: (op	timizer: A				
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	reca	
cens80	0.045	0.507	0.045	0.020	0.000	0.000	mel40	0.113	0.712	0.113	0.078	0.333	0.01	
mel80	0.023	0.535	0.023	0.014	0.033	0.005	mel20	0.108	0.713	0.108	0.074	0.545	0.01	
mel60	0.020	0.533	0.020	0.013	0.019	0.003	mel60	0.103	0.690	0.103	0.064	0.450	0.02	
mel40	0.018	0.508	0.018	0.008	0.026	0.003	mel80	0.095	0.671	0.095	0.063	0.308	0.02	
mfcc40	0.025	0.517	0.025	0.007	0.036	0.013	cens80	0.043	0.583	0.043	0.018	0.000	0.00	
cens40	0.013	0.510	0.013	0.006	0.000	0.000	cens40	0.033	0.533	0.033	0.016	0.000	0.00	
mfcc80	0.028	0.530	0.028	0.005	0.046	0.023	mfcc80	0.023	0.524	0.023	0.012	0.000	0.00	
cens20	0.025	0.514	0.025	0.005	0.000	0.000	stft80	0.033	0.545	0.033	0.011	0.000	0.00	
mfcc60	0.020	0.507	0.020	0.005	0.026	0.013	mfcc40	0.023	0.519	0.023	0.009	0.000	0.00	
cqt80	0.025	0.499	0.025	0.005	0.000	0.000	mfcc60	0.023	0.515	0.023	0.008	0.000	0.00	
mel20	0.013	0.503	0.013	0.004	0.000	0.000	cqt80	0.033	0.518	0.033	0.003	0.000	0.00	
cqt40	0.025	0.491	0.025	0.003	0.000	0.000	cens20	0.023	0.505	0.023	0.002	0.000	0.00	
stft40	0.020	0.503	0.020	0.002	0.000	0.000	cqt40	0.020	0.509	0.020	0.001	0.000	0.00	
stft80	0.025	0.515	0.025	0.002	0.000	0.000	stft60	0.020	0.541	0.020	0.001	0.000	0.00	
cqt20	0.023	0.498	0.023	0.002	0.000	0.000	stft40	0.018	0.529	0.018	0.001	0.000	0.00	
stft60	0.020	0.505	0.020	0.001	0.000	0.000	stft20	0.020	0.524	0.020	0.001	0.000	0.00	
stft20	0.015	0.503	0.015	0.001	0.000	0.000	cqt20	0.020	0.513	0.020	0.001	0.000	0.00	
acc - accura	icy; AU	C - area	under th	ne receive	r opera	ting cha	racteristic cu	rve; pre	c - prec	ision.	I			
All metrics						0		· 1 ·	1					
	0	. ,			/									

TABLE B.12: Results of the 6 models for different features - ESC-50.

		M	odel 3: (optimiz	er: Adamax)		
Features	acc	AUC	micro f1score	macro f1score	precision	recall
mfcc60	0.318	0.871	0.318	0.312	0.465	0.133
mfcc80	0.323	0.869	0.323	0.304	0.477	0.158
mfcc40	0.290	0.866	0.290	0.275	0.568	0.125
mel20	0.233	0.858	0.233	0.209	0.525	0.053
mel80	0.185	0.826	0.185	0.172	0.488	0.053
mel40	0.190	0.834	0.190	0.170	0.462	0.045
mel60	0.175	0.832	0.175	0.160	0.450	0.045
stft20	0.158	0.810	0.158	0.138	0.560	0.035
stft60	0.165	0.792	0.165	0.135	0.367	0.028
stft40	0.150	0.802	0.150	0.124	0.414	0.030
stft80	0.148	0.793	0.148	0.119	0.289	0.028
cqt40	0.135	0.758	0.135	0.110	0.345	0.025
cens40	0.105	0.745	0.105	0.095	0.387	0.030
cqt80	0.115	0.757	0.115	0.094	0.281	0.023
cens20	0.108	0.725	0.108	0.092	0.412	0.018
cqt20	0.118	0.773	0.118	0.091	0.550	0.028
cens80	0.088	0.728	0.088	0.069	0.242	0.040

TABLE B.13: Results of the model with Adamax optimizer for different features - ESC-50.

B.3.2 Extra Layer

	Mod	el 7: (o	ptimizer	: Adam)			Model 8: (optimizer: SGD)								
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall		
reatures	acc	AUC	f1score	f1score	piec	lecan	reatures	acc	AUC	f1score	f1score	piec	lecan		
mfcc40	0.600	0.870	0.600	0.587	0.667	0.325	mel20	0.463	0.880	0.463	0.432	0.750	0.075		
mel40	0.550	0.865	0.550	0.560	0.604	0.400	mel40	0.413	0.865	0.413	0.381	0.667	0.100		
mfcc80	0.550	0.876	0.550	0.551	0.641	0.313	mel80	0.400	0.853	0.400	0.355	0.714	0.125		
mfcc60	0.575	0.890	0.575	0.550	0.700	0.350	mel60	0.375	0.842	0.375	0.334	0.615	0.100		
mel20	0.563	0.890	0.563	0.550	0.589	0.413	mfcc40	0.388	0.829	0.388	0.310	0.400	0.125		
stft80	0.513	0.884	0.513	0.499	0.640	0.200	stft80	0.325	0.773	0.325	0.273	0.000	0.000		
stft60	0.500	0.879	0.500	0.491	0.542	0.163	mfcc60	0.313	0.818	0.313	0.270	0.400	0.200		
mel60	0.488	0.853	0.488	0.485	0.510	0.325	mfcc80	0.238	0.806	0.238	0.167	0.308	0.050		
mel80	0.488	0.889	0.488	0.477	0.612	0.375	cens80	0.213	0.651	0.213	0.138	0.000	0.000		
stft40	0.488	0.870	0.488	0.469	0.655	0.238	stft60	0.200	0.735	0.200	0.138	0.000	0.000		
stft20	0.463	0.881	0.463	0.453	0.625	0.188	stft20	0.238	0.737	0.238	0.137	0.000	0.000		
cens20	0.313	0.686	0.313	0.303	0.317	0.163	cens40	0.188	0.682	0.188	0.128	0.000	0.000		
cqt20	0.313	0.820	0.313	0.287	0.323	0.125	cqt40	0.188	0.634	0.188	0.105	0.000	0.000		
cqt40	0.300	0.794	0.300	0.270	0.440	0.138	cqt80	0.150	0.665	0.150	0.082	0.000	0.000		
cqt80	0.275	0.782	0.275	0.239	0.355	0.138	cqt20	0.125	0.638	0.125	0.082	0.000	0.000		
cens80	0.288	0.746	0.288	0.224	0.326	0.175	stft40	0.163	0.742	0.163	0.072	0.000	0.000		
cens40	0.213	0.774	0.213	0.206	0.229	0.200	cens20	0.088	0.542	0.088	0.030	0.000	0.000		
	Mode	1 9: (op		Adamax)				Mode	1 10: (o	ptimizer:	Nadam)				
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall		
			f1score	f1score						f1score	f1score	-			
stft40	0.488	0.871	0.488	0.467	0.667	0.025	mfcc80	0.575	0.880	0.575	0.565	0.620	0.388		
stft80	0.463	0.864	0.463	0.437	0.500	0.025	mel40	0.538	0.873	0.538	0.530	0.547	0.363		
mel40	0.425	0.856	0.425	0.404	0.727	0.100	mfcc40	0.538	0.872	0.538	0.529	0.667	0.275		
mel60	0.388	0.831	0.388	0.371	0.750	0.113	mel20	0.525	0.883	0.525	0.524	0.564	0.388		
stft60	0.400	0.847	0.400	0.368	0.500	0.013	stft80	0.550	0.887	0.550	0.516	0.645	0.250		
mel20	0.413	0.875	0.413	0.363	0.857	0.075	mfcc60	0.525	0.881	0.525	0.495	0.622	0.288		
mel80	0.338	0.823	0.338	0.303	0.545	0.075	stft40	0.513	0.890	0.513	0.485	0.710	0.275		
cens40	0.338	0.837	0.338	0.298	0.355	0.138	mel60	0.463	0.860	0.463	0.461	0.490	0.300		
mfcc60	0.300	0.793	0.300	0.294	0.000	0.000	mel80	0.475	0.882	0.475	0.458	0.620	0.388		
cens80	0.338	0.805	0.338	0.290	0.382	0.163	stft60	0.475	0.873	0.475	0.449	0.563	0.225		
cqt80	0.325	0.754	0.325	0.289	0.000	0.000	stft20	0.413	0.858	0.413	0.394	0.500	0.250		
stft20	0.350	0.848	0.350	0.288	0.000	0.000	cens40	0.325	0.781	0.325	0.317	0.324	0.275		
cqt40	0.338	0.763	0.338	0.287	0.500	0.038	cqt40	0.338	0.769	0.338	0.300	0.289	0.138		
mfcc40	0.325	0.810	0.325	0.270	0.000	0.000	cqt20	0.313	0.803	0.313	0.293	0.364	0.150		
cens20	0.313	0.687	0.313	0.269	0.667	0.050	cens80	0.325	0.750	0.325	0.268	0.391	0.225		
			0.0/0	0.01/	0.000	0.000						0 0 1 - 1			
cqt20 mfcc80	0.263	0.758 0.774	0.263 0.250	0.216 0.212	$0.000 \\ 0.000$	0.000	cqt80 cens20	0.250	0.757 0.653	0.250 0.200	0.204 0.192	0.241 0.226	$0.088 \\ 0.150$		

TABLE B.14: Results of the 4 models with extra layer for different features - ESC-10.

	Mod	el 7: (o	ptimizer:	Adam)				Moc	lel 8: (o	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.300	0.856	0.300	0.281	0.505	0.130	mfcc80	0.133	0.775	0.133	0.114	0.667	0.010
mfcc60	0.288	0.849	0.288	0.272	0.474	0.113	mel20	0.140	0.783	0.140	0.112	0.389	0.018
mel20	0.270	0.865	0.270	0.261	0.533	0.100	mfcc40	0.135	0.782	0.135	0.108	0.500	0.008
mfcc40	0.288	0.853	0.288	0.260	0.549	0.125	mel40	0.133	0.778	0.133	0.099	0.722	0.033
mel40	0.238	0.857	0.238	0.213	0.574	0.088	mfcc60	0.120	0.780	0.120	0.095	0.500	0.008
mel60	0.220	0.850	0.220	0.199	0.538	0.070	mel80	0.113	0.775	0.113	0.086	0.412	0.018
mel80	0.213	0.833	0.213	0.182	0.397	0.058	mel60	0.115	0.775	0.115	0.070	0.550	0.028
stft40	0.145	0.780	0.145	0.117	0.406	0.033	cens20	0.053	0.518	0.053	0.028	0.000	0.000
stft20	0.138	0.801	0.138	0.116	0.382	0.033	cens40	0.055	0.588	0.055	0.020	0.000	0.000
stft80	0.143	0.773	0.143	0.109	0.433	0.033	cqt80	0.040	0.627	0.040	0.016	0.000	0.000
stft60	0.148	0.780	0.148	0.109	0.368	0.035	cqt40	0.038	0.625	0.038	0.012	0.000	0.000
cqt20	0.115	0.768	0.115	0.087	0.375	0.023	cens80	0.045	0.604	0.045	0.011	0.000	0.000
cens20	0.103	0.709	0.103	0.084	0.306	0.028	stft40	0.040	0.667	0.040	0.010	0.000	0.000
cens40	0.088	0.721	0.088	0.082	0.132	0.025	stft80	0.045	0.672	0.045	0.008	0.000	0.000
cqt40	0.103	0.751	0.103	0.080	0.296	0.020	stft20	0.045	0.651	0.045	0.007	0.000	0.000
cqt80	0.090	0.737	0.090	0.075	0.267	0.020	stft60	0.048	0.667	0.048	0.007	0.000	0.000
cens80	0.090	0.684	0.090	0.073	0.161	0.045	cqt20	0.025	0.595	0.025	0.005	0.000	0.000
	Mode	1 9: (op	timizer: .	Adamax)				Mode	1 10: (o	ptimizer:	Nadam)	1	
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
			f1score	f1score						f1score	f1score		
stft40	0.158	0.798	0.158	0.128	0.571	0.020	mfcc80	0.283	0.851	0.283	0.271	0.509	0.138
stft60	0.153	0.790	0.153	0.117	0.750	0.023	mfcc40	0.280	0.860	0.280	0.256	0.486	0.090
stft80	0.143	0.794	0.143	0.115	0.571	0.020	mel20	0.258	0.867	0.258	0.237	0.559	0.095
mfcc80	0.135	0.824	0.135	0.112	0.333	0.003	mel40	0.223	0.858	0.223	0.205	0.500	0.085
stft20	0.143	0.799	0.143	0.103	0.538	0.018	mfcc60	0.235	0.853	0.235	0.204	0.394	0.070
cens40	0.120	0.786	0.120	0.096	0.474	0.023	mel80	0.203	0.840	0.203	0.184	0.456	0.078
mfcc60	0.128	0.797	0.128	0.089	0.400	0.005	mel60	0.203	0.843	0.203	0.180	0.520	0.065
cens80	0.113	0.759	0.113	0.086	0.448	0.033	stft20	0.163	0.794	0.163	0.140	0.436	0.043
mel20	0.115	0.785	0.115	0.084	0.438	0.018	stft40	0.163	0.791	0.163	0.138	0.366	0.038
cqt80	0.105	0.769	0.105	0.078	0.333	0.010	stft60	0.160	0.781	0.160	0.133	0.405	0.038
cqt20	0.110	0.767	0.110	0.074	0.400	0.005	stft80	0.165	0.786	0.165	0.126	0.293	0.030
mfcc40	0.113	0.762	0.113	0.072	0.400	0.005	cqt80	0.135	0.746	0.135	0.108	0.310	0.023
mel60	0.080	0.704	0.080	0.069	0.250	0.005	cqt40	0.133	0.754	0.133	0.106	0.306	0.028
cqt40	0.105	0.761	0.105	0.069	0.444	0.020	cens20	0.120	0.701	0.120	0.098	0.385	0.038
mel80	0.080	0.682	0.080	0.067	0.636	0.018	cens40	0.098	0.728	0.098	0.088	0.195	0.040
mel40	0.085	0.734	0.085	0.062	0.700	0.018	cqt20	0.110	0.773	0.110	0.081	0.360	0.023

TABLE B.15: Results of the 4 models with extra layer for different features - ESC-50.

B.3.3 Dropout Rate of 0.2

	Mod	el 11: (o	ptimizer	: Adam)			Model 12: (optimizer: SGD)								
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall		
mfcc60	0.650	0.878	0.650	0.647	0.676	0.625	mel40	0.525	0.881	0.525	0.517	0.600	0.225		
mfcc40	0.625	0.893	0.625	0.618	0.644	0.588	mfcc80	0.513	0.891	0.513	0.497	0.647	0.413		
mfcc80	0.600	0.873	0.600	0.586	0.613	0.575	mel80	0.500	0.860	0.500	0.482	0.600	0.263		
mel80	0.525	0.862	0.525	0.533	0.547	0.513	mfcc60	0.500	0.888	0.500	0.476	0.583	0.438		
mel60	0.538	0.851	0.538	0.531	0.557	0.488	mel60	0.488	0.865	0.488	0.469	0.583	0.263		
mel40	0.538	0.861	0.538	0.530	0.557	0.488	mel20	0.450	0.872	0.450	0.435	0.364	0.100		
mel20	0.538	0.858	0.538	0.526	0.571	0.500	mfcc40	0.425	0.850	0.425	0.390	0.481	0.313		
stft80	0.525	0.877	0.525	0.515	0.649	0.300	stft40	0.250	0.745	0.250	0.181	0.000	0.000		
stft60	0.513	0.865	0.513	0.498	0.524	0.275	cens80	0.263	0.721	0.263	0.170	0.000	0.000		
stft40	0.475	0.874	0.475	0.471	0.605	0.325	stft20	0.238	0.739	0.238	0.143	0.000	0.000		
stft20	0.400	0.855	0.400	0.399	0.450	0.225	cens40	0.213	0.710	0.213	0.142	0.000	0.000		
cqt20	0.375	0.780	0.375	0.371	0.395	0.213	stft60	0.213	0.731	0.213	0.141	0.000	0.000		
cqt40	0.375	0.781	0.375	0.364	0.393	0.300	stft80	0.200	0.746	0.200	0.137	0.000	0.000		
cens20	0.300	0.693	0.300	0.288	0.353	0.225	cqt40	0.188	0.648	0.188	0.137	0.000	0.000		
cens80	0.325	0.763	0.325	0.281	0.370	0.213	cqt80	0.175	0.673	0.175	0.111	0.000	0.000		
cqt80	0.300	0.754	0.300	0.254	0.305	0.225	cens20	0.125	0.589	0.125	0.066	0.000	0.000		
cens40	0.225	0.747	0.225	0.219	0.221	0.188	cqt20	0.138	0.632	0.138	0.066	0.000	0.000		
cens40 0.225 0.747 0.225 0.219 0.221 0.188 Model 13: (optimizer: Adamax)							Model 14: (optimizer: Nadam)								
	Mode	13: (op	otimizer:	Adamax)				Mode	1 14: (0]	ptimizer:	Nadam)				
Features	acc	AUC	micro f1score	Adamax) macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall		
Features mfcc40		· · ·	micro	macro		recall 0.363	Features mfcc60			micro	macro	prec 0.657	recall 0.575		
	acc	AUC	micro f1score	macro f1score	prec			acc	AUC	micro f1score	macro f1score	-			
mfcc40	acc 0.588 0.575 0.550	AUC 0.909 0.910 0.870	micro f1score 0.588 0.575 0.550	macro f1score 0.575 0.570 0.535	prec 0.659	0.363 0.400 0.313	mfcc60	асс 0.625	AUC 0.874 0.894 0.878	micro f1score 0.625	macro f1score 0.621	0.657	0.575		
mfcc40 mfcc60	acc 0.588 0.575 0.550 0.525	AUC 0.909 0.910 0.870 0.886	micro f1score 0.588 0.575 0.550 0.525	macro f1score 0.575 0.570 0.535 0.533	prec 0.659 0.640 0.595 0.617	0.363 0.400 0.313 0.363	mfcc60 mfcc40	acc 0.625 0.600 0.613 0.550	AUC 0.874 0.894 0.878 0.873	micro f1score 0.625 0.600 0.613 0.550	macro f1score 0.621 0.603 0.594 0.552	0.657 0.608 0.639 0.574	0.575 0.563 0.575 0.488		
mfcc40 mfcc60 mfcc80	acc 0.588 0.575 0.550 0.525 0.513	AUC 0.909 0.910 0.870 0.886 0.865	micro f1score 0.588 0.575 0.550	macro f1score 0.575 0.570 0.535 0.533 0.515	prec 0.659 0.640 0.595 0.617 0.526	0.363 0.400 0.313 0.363 0.250	mfcc60 mfcc40 mfcc80	acc 0.625 0.600 0.613	AUC 0.874 0.894 0.878	micro f1score 0.625 0.600 0.613	macro f1score 0.621 0.603 0.594	0.657 0.608 0.639	0.575 0.563 0.575 0.488 0.538		
mfcc40 mfcc60 mfcc80 mel40	acc 0.588 0.575 0.550 0.525 0.513 0.538	AUC 0.909 0.910 0.870 0.886 0.865 0.884	micro f1score 0.588 0.575 0.550 0.525	macro f1score 0.575 0.570 0.535 0.533	prec 0.659 0.640 0.595 0.617	0.363 0.400 0.313 0.363 0.250 0.213	mfcc60 mfcc40 mfcc80 mel80	acc 0.625 0.600 0.613 0.550 0.550 0.550	AUC 0.874 0.894 0.878 0.873	micro f1score 0.625 0.600 0.613 0.550	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541	0.657 0.608 0.639 0.574 0.581 0.600	0.575 0.563 0.575 0.488 0.538 0.525		
mfcc40 mfcc60 mfcc80 mel40 mel20	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614	0.363 0.400 0.313 0.363 0.250 0.213 0.338	mfcc60 mfcc40 mfcc80 mel80 mel40	acc 0.625 0.600 0.613 0.550 0.550 0.550 0.525	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846	micro f1score 0.625 0.600 0.613 0.550 0.550 0.550 0.550 0.525	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541 0.522	0.657 0.608 0.639 0.574 0.581 0.600 0.562	0.575 0.563 0.575 0.488 0.538 0.525 0.513		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511	prec 0.659 0.640 0.595 0.617 0.526 0.739	0.363 0.400 0.313 0.363 0.250 0.213 0.338 0.125	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60	acc 0.625 0.600 0.613 0.550 0.550 0.550	AUC 0.874 0.894 0.878 0.873 0.878 0.878 0.851	micro f1score 0.625 0.600 0.613 0.550 0.550 0.550	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541	0.657 0.608 0.639 0.574 0.581 0.600 0.562 0.565	0.575 0.563 0.575 0.488 0.538 0.525 0.513 0.325		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.884 0.870	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.500 0.475	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.488 0.462	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605	0.363 0.400 0.313 0.363 0.250 0.213 0.338 0.125 0.288	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80	acc 0.625 0.600 0.613 0.550 0.550 0.550 0.525 0.463 0.475	AUC 0.874 0.894 0.878 0.873 0.878 0.878 0.851 0.846 0.879 0.859	micro f1score 0.625 0.600 0.613 0.550 0.550 0.550 0.525 0.463 0.475	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541 0.522 0.463 0.455	0.657 0.608 0.639 0.574 0.581 0.600 0.562 0.565 0.587	0.575 0.563 0.575 0.488 0.538 0.525 0.513 0.325 0.338		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80 stft60	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.844 0.885	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.488 0.462 0.423	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692	0.363 0.400 0.313 0.363 0.250 0.213 0.338 0.125 0.288 0.225	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80 stft60	acc 0.625 0.600 0.613 0.550 0.550 0.555 0.463 0.475 0.463	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846 0.879 0.859 0.859	micro f1score 0.625 0.600 0.550 0.550 0.550 0.525 0.463 0.475 0.463	macro f1score 0.621 0.594 0.552 0.551 0.541 0.522 0.463 0.455 0.430	0.657 0.608 0.639 0.574 0.581 0.600 0.562 0.565 0.587 0.585	0.575 0.563 0.575 0.488 0.538 0.525 0.513 0.325 0.338 0.300		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.844 0.885 0.844 0.885 0.866	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.488 0.462 0.423 0.349	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692 0.583	0.363 0.400 0.313 0.250 0.213 0.338 0.125 0.288 0.225 0.088	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80 stft60 cqt20	acc 0.625 0.600 0.613 0.550 0.550 0.555 0.463 0.475 0.463 0.400	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846 0.879 0.859 0.857 0.793	micro f1score 0.625 0.600 0.613 0.550 0.550 0.550 0.555 0.463 0.475 0.463 0.400	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541 0.522 0.463 0.455 0.430 0.439	0.657 0.608 0.639 0.574 0.581 0.600 0.562 0.565 0.587 0.585 0.326	0.575 0.563 0.575 0.488 0.525 0.513 0.325 0.338 0.300 0.188		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80 stft60 stft60 stft20 cqt80	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.844 0.885 0.866 0.762	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.491 0.488 0.462 0.423 0.349 0.302	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692 0.583 0.313	0.363 0.400 0.313 0.250 0.213 0.338 0.125 0.288 0.225 0.088 0.063	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80 stft60 cqt20 cqt40	acc 0.625 0.600 0.550 0.550 0.550 0.525 0.463 0.475 0.463 0.400 0.363	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846 0.879 0.859 0.859 0.857 0.793 0.774	micro f1score 0.625 0.600 0.550 0.550 0.550 0.550 0.555 0.463 0.475 0.463 0.400 0.363	macro f1score 0.621 0.603 0.594 0.552 0.551 0.522 0.463 0.455 0.430 0.435 0.430 0.391	0.657 0.608 0.639 0.574 0.581 0.562 0.565 0.587 0.585 0.326 0.326 0.375	0.575 0.563 0.575 0.488 0.525 0.513 0.325 0.338 0.300 0.188 0.225		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80 stft60 stft60 stft20	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313 0.313	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.844 0.885 0.866 0.762 0.773	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313 0.313	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.491 0.488 0.462 0.423 0.349 0.302 0.289	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692 0.583 0.313 0.400	0.363 0.400 0.313 0.250 0.213 0.338 0.125 0.288 0.225 0.088 0.225 0.088 0.063 0.050	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80 stft60 cqt20	acc 0.625 0.600 0.550 0.550 0.550 0.525 0.463 0.475 0.463 0.400 0.363 0.350	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846 0.879 0.859 0.859 0.857 0.793 0.774 0.851	micro f1score 0.625 0.600 0.550 0.550 0.550 0.555 0.463 0.475 0.463 0.400 0.363 0.350	macro f1score 0.621 0.603 0.594 0.552 0.451 0.521 0.463 0.455 0.430 0.430 0.391 0.339 0.325	0.657 0.608 0.639 0.574 0.581 0.600 0.562 0.565 0.587 0.585 0.326 0.375 0.326	0.575 0.563 0.575 0.488 0.525 0.513 0.325 0.338 0.300 0.188		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80 stft60 stft60 stft20 cqt80	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313 0.313 0.325	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.886 0.886 0.866 0.762 0.773 0.805	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313 0.313 0.325	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.491 0.488 0.462 0.423 0.349 0.302 0.289 0.283	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692 0.583 0.313 0.400 0.395	0.363 0.400 0.313 0.250 0.213 0.328 0.125 0.288 0.225 0.288 0.225 0.088 0.205 0.063 0.050 0.188	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80 stft60 cqt20 cqt40	acc 0.625 0.600 0.550 0.550 0.550 0.463 0.475 0.463 0.475 0.463 0.400 0.363 0.350 0.363	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846 0.879 0.859 0.857 0.793 0.774 0.851 0.774	micro f1score 0.625 0.600 0.550 0.550 0.550 0.463 0.475 0.463 0.400 0.363 0.350 0.363	macro f1score 0.621 0.603 0.594 0.552 0.455 0.455 0.463 0.455 0.430 0.391 0.339 0.325 0.306	0.657 0.608 0.639 0.574 0.581 0.581 0.565 0.587 0.585 0.587 0.585 0.326 0.375 0.436 0.435	0.575 0.563 0.575 0.488 0.525 0.513 0.325 0.338 0.300 0.188 0.225 0.213 0.250		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80 stft60 stft20 cqt80 cqt20	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.450 0.375 0.313 0.313 0.325 0.288	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.886 0.886 0.865 0.866 0.762 0.773 0.805 0.688	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313 0.313 0.325 0.288	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.488 0.462 0.423 0.349 0.302 0.289 0.283 0.270	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692 0.583 0.313 0.400 0.395 0.429	0.363 0.400 0.313 0.250 0.213 0.338 0.125 0.288 0.225 0.088 0.225 0.088 0.063 0.050	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80 stft60 cqt20 cqt40 stft20	acc 0.625 0.600 0.550 0.550 0.555 0.463 0.463 0.463 0.463 0.460 0.363 0.350 0.363 0.250	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846 0.879 0.859 0.859 0.857 0.793 0.774 0.851	micro f1score 0.625 0.600 0.550 0.550 0.550 0.525 0.463 0.475 0.463 0.400 0.363 0.350 0.363 0.250	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541 0.463 0.455 0.430 0.339 0.325 0.306 0.246	$\begin{array}{c} \textbf{0.657} \\ \textbf{0.608} \\ \textbf{0.639} \\ \textbf{0.574} \\ \textbf{0.581} \\ \textbf{0.581} \\ \textbf{0.562} \\ \textbf{0.565} \\ \textbf{0.587} \\ \textbf{0.585} \\ \textbf{0.326} \\ \textbf{0.375} \\ \textbf{0.436} \\ \textbf{0.435} \\ \textbf{0.235} \end{array}$	0.575 0.563 0.575 0.488 0.525 0.513 0.325 0.338 0.300 0.188 0.225 0.213		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80 stft60 stft20 cqt80 cqt20 cens80	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.475 0.475 0.313 0.325 0.288 0.275	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.886 0.886 0.885 0.866 0.762 0.773 0.805 0.688 0.756	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313 0.313 0.325 0.288 0.275	macro f1score 0.575 0.570 0.535 0.513 0.515 0.511 0.491 0.488 0.462 0.423 0.349 0.302 0.289 0.283 0.270 0.269	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692 0.583 0.313 0.400 0.395 0.429 0.286	0.363 0.400 0.313 0.250 0.213 0.328 0.125 0.288 0.225 0.088 0.025 0.088 0.050 0.188 0.075 0.050	mfcc60 mfcc40 mfcc80 mel80 mel40 mel20 stft40 stft80 stft60 cqt20 cqt40 stft20 cens80 cens40 cens20	acc 0.625 0.600 0.550 0.550 0.555 0.463 0.475 0.463 0.475 0.463 0.363 0.350 0.363 0.250 0.263	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.846 0.859 0.859 0.859 0.857 0.793 0.774 0.851 0.757 0.728 0.679	micro f1score 0.625 0.600 0.550 0.550 0.550 0.525 0.463 0.475 0.463 0.475 0.463 0.400 0.363 0.350 0.363 0.250 0.263	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541 0.522 0.463 0.455 0.430 0.391 0.325 0.306 0.246 0.246	$\begin{array}{c} \textbf{0.657} \\ \textbf{0.608} \\ \textbf{0.603} \\ \textbf{0.574} \\ \textbf{0.581} \\ \textbf{0.581} \\ \textbf{0.600} \\ \textbf{0.565} \\ \textbf{0.585} \\ \textbf{0.585} \\ \textbf{0.375} \\ \textbf{0.326} \\ \textbf{0.436} \\ \textbf{0.435} \\ \textbf{0.235} \\ \textbf{0.281} \end{array}$	0.575 0.563 0.575 0.488 0.525 0.513 0.325 0.338 0.300 0.188 0.225 0.213 0.250		
mfcc40 mfcc60 mfcc80 mel40 mel20 stft80 mel60 stft40 mel80 stft60 stft60 stft20 cqt80 cqt20 cens80 cens20	acc 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.450 0.375 0.313 0.313 0.325 0.288	AUC 0.909 0.910 0.870 0.886 0.865 0.884 0.870 0.886 0.886 0.886 0.865 0.866 0.762 0.773 0.805 0.688	micro f1score 0.588 0.575 0.550 0.525 0.513 0.538 0.500 0.500 0.475 0.450 0.375 0.313 0.313 0.325 0.288	macro f1score 0.575 0.570 0.535 0.533 0.515 0.511 0.491 0.488 0.462 0.423 0.349 0.302 0.289 0.283 0.270	prec 0.659 0.640 0.595 0.617 0.526 0.739 0.614 0.833 0.605 0.692 0.583 0.313 0.400 0.395 0.429	0.363 0.400 0.313 0.250 0.213 0.328 0.125 0.288 0.225 0.288 0.225 0.088 0.205 0.063 0.050 0.188 0.075	mfcc60 mfcc40 mfcc80 mel80 mel40 mel60 mel20 stft40 stft80 stft60 cqt20 cqt40 stft20 cens80 cens40	acc 0.625 0.600 0.550 0.550 0.555 0.463 0.463 0.463 0.463 0.460 0.363 0.350 0.363 0.250	AUC 0.874 0.894 0.878 0.873 0.878 0.851 0.851 0.859 0.859 0.857 0.793 0.774 0.851 0.774 0.851	micro f1score 0.625 0.600 0.550 0.550 0.550 0.525 0.463 0.475 0.463 0.400 0.363 0.350 0.363 0.250	macro f1score 0.621 0.603 0.594 0.552 0.551 0.541 0.463 0.455 0.430 0.339 0.325 0.306 0.246	$\begin{array}{c} \textbf{0.657} \\ \textbf{0.608} \\ \textbf{0.639} \\ \textbf{0.574} \\ \textbf{0.581} \\ \textbf{0.581} \\ \textbf{0.562} \\ \textbf{0.565} \\ \textbf{0.587} \\ \textbf{0.585} \\ \textbf{0.326} \\ \textbf{0.375} \\ \textbf{0.436} \\ \textbf{0.435} \\ \textbf{0.235} \end{array}$	0.575 0.563 0.575 0.488 0.525 0.513 0.325 0.338 0.300 0.188 0.225 0.213 0.250 0.200		

TABLE B.16: Results of the 4 best models for single features and dropout of 0.2 - ESC-10.

	Mod	el 11: (o	ptimizer	: Adam)				Mod	el 12: (optimizer	r: SGD)			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
mfcc60	0.353	0.811	0.353	0.344	0.419	0.303	mfcc80	0.275	0.860	0.275	0.258	0.505	0.125	
mfcc40	0.335	0.806	0.335	0.328	0.394	0.283	mfcc60	0.255	0.859	0.255	0.236	0.448	0.108	
mfcc80	0.303	0.790	0.303	0.293	0.359	0.253	mfcc40	0.245	0.856	0.245	0.219	0.495	0.113	
mel20	0.255	0.824	0.255	0.237	0.379	0.138	mel20	0.178	0.808	0.178	0.163	0.400	0.040	
mel40	0.240	0.817	0.240	0.229	0.406	0.178	mel40	0.173	0.799	0.173	0.159	0.387	0.060	
mel60	0.238	0.799	0.238	0.225	0.328	0.148	mel60	0.173	0.785	0.173	0.157	0.364	0.060	
mel80	0.235	0.800	0.235	0.224	0.330	0.150	mel80	0.170	0.782	0.170	0.151	0.338	0.058	
stft40	0.145	0.748	0.145	0.133	0.288	0.053	cens80	0.080	0.603	0.080	0.030	0.000	0.000	
stft60	0.148	0.740	0.148	0.127	0.271	0.058	cqt40	0.053	0.653	0.053	0.025	0.000	0.000	
stft80	0.140	0.730	0.140	0.121	0.315	0.058	cqt80	0.048	0.679	0.048	0.024	0.000	0.000	
cqt80	0.118	0.703	0.118	0.110	0.163	0.043	stft80	0.053	0.704	0.053	0.023	0.000	0.000	
stft20	0.123	0.750	0.123	0.110	0.339	0.050	cens20	0.038	0.536	0.038	0.023	0.000	0.000	
cqt20	0.105	0.731	0.105	0.093	0.209	0.035	stft60	0.060	0.702	0.060	0.021	0.000	0.000	
cqt40	0.108	0.720	0.108	0.093	0.222	0.050	stft40	0.053	0.696	0.053	0.018	0.000	0.000	
cens40	0.090	0.684	0.090	0.081	0.160	0.065	cqt20	0.035	0.606	0.035	0.012	0.000	0.000	
cens20	0.088	0.678	0.088	0.080	0.159	0.043	stft20	0.055	0.665	0.055	0.011	0.000	0.000	
cens80	0.088	0.658	0.088	0.067	0.134	0.055	cens40	0.050	0.627	0.050	0.010	0.000	0.000	
	Mode	13: (op	otimizer:	Adamax))		Model 14: (optimizer: Nadam)							
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall	
			f1score	f1score	1					f1score	f1score	-		
mfcc80	0.328	0.874	0.328	0.314	0.521	0.190	mfcc80	0.350	0.802	0.350	0.330	0.413	0.315	
mfcc60	0.295	0.845	0.295	0.283	0.484	0.153	mfcc60	0.335	0.788	0.335	0.316	0.401	0.288	
mfcc40	0.283	0.854	0.283	0.263	0.479	0.145	mfcc40	0.305	0.814	0.305	0.295	0.366	0.253	
mel20	0.198	0.844	0.198	0.175	0.455	0.050	mel40	0.270	0.825	0.270	0.259	0.424	0.160	
mel40	0.185	0.821	0.185	0.169	0.389	0.053	mel20	0.250	0.823	0.250	0.234	0.369	0.138	
mel80	0.180	0.799	0.180	0.162	0.353	0.060	mel60	0.235	0.796	0.235	0.225	0.364	0.148	
stft20	0.160	0.796	0.160	0.139	0.588	0.025	mel80	0.230	0.794	0.230	0.216	0.343	0.148	
mel60	0.158	0.799	0.158	0.138	0.368	0.053	stft60	0.148	0.732	0.148	0.130	0.205	0.043	
stft40	0.163	0.793	0.163	0.129	0.476	0.025	stft40	0.148	0.740	0.148	0.128	0.253	0.050	
stft60	0.145	0.790	0.145	0.122	0.440	0.028	stft20	0.133	0.765	0.133	0.120	0.233	0.043	
stft80	0.145	0.791	0.145	0.111	0.333	0.025	stft80	0.118	0.727	0.118	0.104	0.200	0.040	
cqt80	0.125	0.742	0.125	0.100	0.350	0.018	cens40	0.103	0.677	0.103	0.093	0.142	0.060	
cqt40	0.115	0.756	0.115	0.087	0.444	0.020	cqt80	0.110	0.705	0.110	0.092	0.226	0.060	
cens20	0.090	0.708	0.090	0.078	0.545	0.015	cqt40	0.100	0.708	0.100	0.091	0.193	0.043	
cqt20	0.105	0.756	0.105	0.078	0.400	0.015	cqt20	0.093	0.727	0.093	0.088	0.215	0.035	
cens40	0.073	0.752	0.073	0.063	0.476	0.025	cens20	0.090	0.668	0.090	0.078	0.162	0.045	
cens80	0.075	0.741	0.075	0.058	0.235	0.030	cens80	0.075	0.664	0.075	0.052	0.112	0.048	

TABLE B.17: Results of the 4 best models for single features and dropout of 0.2 - ESC-50.

146

B.3.4 Dropout Rate of 0.6

	Mod	el 15: (o	ptimizer	: Adam)			Model 16: (optimizer: SGD)							
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
mel40	0.463	0.888	0.463	0.460	0.818	0.113	mel40	0.375	0.831	0.375	0.338	0.857	0.075	
mel80	0.438	0.827	0.438	0.420	0.643	0.113	mel20	0.350	0.867	0.350	0.291	0.714	0.063	
stft60	0.450	0.858	0.450	0.405	0.667	0.100	mel80	0.325	0.797	0.325	0.282	0.500	0.063	
stft40	0.425	0.870	0.425	0.384	0.583	0.088	mel60	0.300	0.820	0.300	0.270	0.444	0.050	
mel60	0.400	0.846	0.400	0.368	0.667	0.075	cens40	0.238	0.669	0.238	0.186	0.000	0.000	
mel20	0.388	0.869	0.388	0.350	0.429	0.113	mfcc60	0.263	0.763	0.263	0.181	0.200	0.013	
stft20	0.375	0.849	0.375	0.330	0.625	0.063	stft80	0.250	0.767	0.250	0.157	0.000	0.000	
mfcc80	0.350	0.749	0.350	0.300	0.385	0.063	mfcc80	0.225	0.756	0.225	0.155	0.250	0.013	
cqt80	0.350	0.751	0.350	0.299	0.000	0.000	cens80	0.238	0.647	0.238	0.155	0.000	0.000	
cens20	0.313	0.698	0.313	0.290	0.304	0.088	stft60	0.250	0.744	0.250	0.153	0.000	0.000	
stft80	0.313	0.834	0.313	0.288	0.500	0.013	cqt40	0.213	0.679	0.213	0.131	0.000	0.000	
cens40	0.288	0.815	0.288	0.264	0.294	0.188	stft20	0.200	0.745	0.200	0.102	0.000	0.000	
cens80	0.313	0.782	0.313	0.260	0.357	0.188	cqt20	0.188	0.679	0.188	0.099	0.000	0.000	
cqt20	0.288	0.797	0.288	0.247	0.364	0.050	stft40	0.213	0.761	0.213	0.094	0.000	0.000	
cqt40	0.263	0.782	0.263	0.209	0.111	0.013	cqt80	0.163	0.699	0.163	0.084	0.000	0.000	
mfcc40	0.188	0.715	0.188	0.164	0.500	0.013	mfcc40	0.163	0.749	0.163	0.084	0.250	0.013	
mfcc60	0.238	0.707	0.238	0.162	0.200	0.013	cens20	0.138	0.563	0.138	0.080	0.000	0.000	
Model 17: (optimizer: Adamax)						Model 18: (optimizer: Nadam)								
	wode	l 17: (op	otimizer:	Adamax)				Mode	1 18: (oj	ptimizer:	Nadam)			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
Features mel20		1	micro	macro		recall 0.025	Features stft40			micro	macro	prec 0.692	recall 0.113	
	acc	AUC	micro f1score	macro f1score	prec			acc	AUC	micro f1score	macro f1score	•		
mel20	acc 0.425 0.413 0.375	AUC 0.852 0.873 0.808	micro f1score 0.425	macro f1score 0.408	prec 0.500	0.025	stft40	acc 0.500	AUC 0.872	micro f1score 0.500	macro f1score 0.476	0.692	0.113	
mel20 mel40	acc 0.425 0.413 0.375 0.338	AUC 0.852 0.873	micro f1score 0.425 0.413	macro f1score 0.408 0.393	prec 0.500 1.000	0.025 0.125	stft40 stft80	acc 0.500 0.488	AUC 0.872 0.843	micro f1score 0.500 0.488	macro f1score 0.476 0.451	0.692 0.600	0.113 0.075	
mel20 mel40 mel80	acc 0.425 0.413 0.375	AUC 0.852 0.873 0.808	micro f1score 0.425 0.413 0.375	macro f1score 0.408 0.393 0.357	prec 0.500 1.000 0.643	0.025 0.125 0.113	stft40 stft80 mel80	acc 0.500 0.488 0.413	AUC 0.872 0.843 0.858	micro f1score 0.500 0.488 0.413	macro f1score 0.476 0.451 0.415	0.692 0.600 0.571	0.113 0.075 0.100	
mel20 mel40 mel80 mel60	acc 0.425 0.413 0.375 0.338 0.325 0.325	AUC 0.852 0.873 0.808 0.813 0.829 0.845	micro f1score 0.425 0.413 0.375 0.338 0.325 0.325	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250	prec 0.500 1.000 0.643 0.615	0.025 0.125 0.113 0.100 0.075 0.063	stft40 stft80 mel80 mel20	acc 0.500 0.488 0.413 0.438 0.425 0.425	AUC 0.872 0.843 0.858 0.878	micro f1score 0.500 0.488 0.413 0.438	macro f1score 0.476 0.451 0.415 0.407	0.692 0.600 0.571 0.450 0.611 0.571	0.113 0.075 0.100 0.113 0.138 0.100	
mel20 mel40 mel80 mel60 cens80	acc 0.425 0.413 0.375 0.338 0.325 0.325 0.325 0.225	AUC 0.852 0.873 0.808 0.813 0.829	micro f1score 0.425 0.413 0.375 0.338 0.325	macro f1score 0.408 0.393 0.357 0.334 0.271	prec 0.500 1.000 0.643 0.615 0.500	0.025 0.125 0.113 0.100 0.075	stft40 stft80 mel80 mel20 stft60	acc 0.500 0.488 0.413 0.438 0.425	AUC 0.872 0.843 0.858 0.878 0.873	micro f1score 0.500 0.488 0.413 0.438 0.425	macro f1score 0.476 0.451 0.415 0.407 0.402	0.692 0.600 0.571 0.450 0.611	0.113 0.075 0.100 0.113 0.138	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80	acc 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.250	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736	micro f1score 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.225 0.250	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000	0.025 0.125 0.113 0.100 0.075 0.063 0.000 0.000	stft40 stft80 mel80 mel20 stft60 mel40	acc 0.500 0.488 0.413 0.425 0.425 0.425 0.425 0.400 0.363	AUC 0.872 0.843 0.858 0.878 0.873 0.858 0.840 0.853	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563	0.113 0.075 0.100 0.113 0.138 0.100 0.075 0.113	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60	acc 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.250 0.225	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684	micro f1score 0.425 0.413 0.375 0.338 0.325 0.325 0.225	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000	0.025 0.125 0.113 0.100 0.075 0.063 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60	acc 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400	AUC 0.872 0.843 0.858 0.878 0.873 0.858 0.840	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380	0.692 0.600 0.571 0.450 0.611 0.571 0.500	0.113 0.075 0.100 0.113 0.138 0.100 0.075	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80	acc 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.250 0.225 0.275	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736	micro f1score 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.225 0.250	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000	0.025 0.125 0.113 0.100 0.075 0.063 0.000 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20	acc 0.500 0.488 0.413 0.425 0.425 0.425 0.425 0.400 0.363	AUC 0.872 0.843 0.858 0.878 0.873 0.858 0.840 0.853	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563	0.113 0.075 0.100 0.113 0.138 0.100 0.075 0.113	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80 mfcc80 stft20 stft60	acc 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.250 0.225 0.275 0.250	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736 0.673 0.793 0.803	micro f1score 0.425 0.413 0.375 0.338 0.325 0.225 0.225 0.225 0.225 0.225 0.225 0.225	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208 0.207 0.193 0.184	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000 0.000 0.000 0.000	0.025 0.125 0.113 0.000 0.075 0.063 0.000 0.000 0.000 0.000 0.000 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20 cens20	acc 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325	AUC 0.872 0.843 0.858 0.878 0.873 0.858 0.840 0.853 0.710 0.785 0.765	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334 0.307 0.306 0.277	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563 0.353 0.500 0.600	$\begin{array}{c} 0.113\\ 0.075\\ 0.100\\ 0.113\\ 0.138\\ 0.100\\ 0.075\\ 0.113\\ 0.075\\ 0.050\\ 0.038\\ \end{array}$	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80 mfcc80 stft20	acc 0.425 0.413 0.375 0.338 0.325 0.225 0.250 0.225 0.275 0.250 0.250 0.300	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736 0.673 0.673 0.793 0.803 0.803	micro f1score 0.425 0.413 0.375 0.338 0.325 0.225 0.225 0.225 0.225 0.275 0.250 0.200	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208 0.207 0.193	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000 0.000 0.000 0.000 0.000	0.025 0.125 0.113 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20 cens20 cqt40	acc 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325 0.275	AUC 0.872 0.843 0.858 0.873 0.858 0.873 0.858 0.840 0.853 0.710 0.785 0.765 0.825	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.425 0.338 0.338 0.325 0.325 0.325 0.275	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334 0.307 0.306 0.277 0.276	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563 0.353 0.500 0.600 0.429	0.113 0.075 0.100 0.113 0.138 0.100 0.075 0.113 0.075 0.050	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80 mfcc80 stft20 stft60	acc 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.250 0.225 0.275 0.250	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736 0.673 0.793 0.803	micro f1score 0.425 0.413 0.375 0.338 0.325 0.225 0.225 0.225 0.225 0.225 0.225 0.225	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208 0.207 0.193 0.184	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000 0.000 0.000 0.000	0.025 0.125 0.113 0.000 0.075 0.063 0.000 0.000 0.000 0.000 0.000 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20 cens20 cqt40 cqt80	acc 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325	AUC 0.872 0.843 0.858 0.873 0.858 0.873 0.858 0.840 0.853 0.710 0.785 0.765 0.825 0.825	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334 0.307 0.306 0.277	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563 0.353 0.500 0.600	$\begin{array}{c} 0.113\\ 0.075\\ 0.100\\ 0.113\\ 0.138\\ 0.100\\ 0.075\\ 0.113\\ 0.075\\ 0.050\\ 0.038\\ \end{array}$	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80 mfcc80 stft20 stft60 stft80 stft40 cens20	acc 0.425 0.413 0.375 0.338 0.325 0.225 0.250 0.225 0.275 0.250 0.250 0.300	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736 0.673 0.673 0.793 0.803 0.803	micro f1score 0.425 0.413 0.375 0.338 0.325 0.225 0.225 0.225 0.225 0.275 0.250 0.200	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208 0.207 0.193 0.184 0.180	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000 0.000 0.000 0.000 0.000	0.025 0.125 0.113 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20 cens20 cqt40 cqt80 mfcc80	acc 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325 0.275	AUC 0.872 0.843 0.858 0.873 0.858 0.873 0.858 0.840 0.853 0.710 0.785 0.765 0.825	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.425 0.338 0.338 0.325 0.325 0.325 0.275	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334 0.307 0.306 0.277 0.276	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563 0.353 0.500 0.600 0.429	$\begin{array}{c} 0.113\\ 0.075\\ 0.100\\ 0.113\\ 0.138\\ 0.100\\ 0.075\\ 0.113\\ 0.075\\ 0.050\\ 0.038\\ 0.075\\ \end{array}$	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80 mfcc80 stft20 stft60 stft80 stft40	acc 0.425 0.413 0.375 0.338 0.325 0.225 0.225 0.225 0.225 0.250 0.300 0.300 0.225 0.200 0.200	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736 0.673 0.793 0.803 0.804 0.788 0.620 0.719	micro f1score 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.250 0.225 0.275 0.250 0.200 0.300 0.225	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208 0.207 0.193 0.184 0.180 0.168	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.025 0.125 0.113 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20 cens20 cqt40 cqt80 mfcc80 cens40	acc 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325 0.275 0.275	AUC 0.872 0.843 0.858 0.873 0.858 0.873 0.858 0.840 0.853 0.710 0.785 0.765 0.825 0.825	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.425 0.363 0.338 0.325 0.325 0.275 0.275	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334 0.307 0.306 0.277 0.276 0.266	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563 0.353 0.500 0.600 0.429 0.283	0.113 0.075 0.100 0.113 0.138 0.100 0.075 0.113 0.075 0.050 0.038 0.075 0.188	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80 mfcc80 stft20 stft60 stft80 stft40 cens20	acc 0.425 0.413 0.375 0.325 0.325 0.250 0.225 0.250 0.225 0.250 0.205 0.300 0.225 0.200	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736 0.673 0.736 0.673 0.803 0.803 0.804 0.788 0.620	micro f1score 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.250 0.225 0.275 0.250 0.200	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208 0.207 0.193 0.184 0.180 0.168 0.158	prec 0.500 1.000 0.643 0.615 0.500 0.833 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000	0.025 0.125 0.113 0.100 0.075 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20 cens20 cqt40 cqt80 mfcc80 cens40 cqt20	acc 0.500 0.488 0.413 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325 0.275 0.275 0.300 0.300 0.300 0.213	AUC 0.872 0.843 0.858 0.873 0.878 0.873 0.858 0.873 0.853 0.710 0.785 0.765 0.825 0.825 0.825 0.798	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.425 0.400 0.363 0.338 0.325 0.325 0.325 0.275 0.275 0.300	macro f1score 0.476 0.451 0.415 0.407 0.402 0.401 0.380 0.334 0.307 0.306 0.277 0.276 0.266 0.260	0.692 0.600 0.571 0.450 0.611 0.571 0.500 0.563 0.353 0.500 0.600 0.429 0.283 0.313	0.113 0.075 0.100 0.113 0.138 0.100 0.075 0.113 0.075 0.050 0.038 0.075 0.188 0.063	
mel20 mel40 mel80 mel60 cens80 cens40 mfcc60 cqt80 mfcc80 stft20 stft60 stft80 stft40 cens20 cqt20	acc 0.425 0.413 0.375 0.338 0.325 0.225 0.225 0.225 0.225 0.250 0.300 0.300 0.225 0.200 0.200	AUC 0.852 0.873 0.808 0.813 0.829 0.845 0.684 0.736 0.673 0.793 0.803 0.804 0.788 0.620 0.719	micro f1score 0.425 0.413 0.375 0.338 0.325 0.325 0.225 0.225 0.225 0.225 0.250 0.225 0.250 0.300 0.225 0.200 0.200	macro f1score 0.408 0.393 0.357 0.334 0.271 0.250 0.227 0.208 0.207 0.193 0.184 0.180 0.168 0.158 0.143	prec 0.500 1.000 0.643 0.500 0.833 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.025 0.125 0.113 0.100 0.075 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.000	stft40 stft80 mel80 mel20 stft60 mel40 mel60 stft20 cens20 cqt40 cqt80 mfcc80 cens40 cqt20 cens80	acc 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.325 0.325 0.275 0.275 0.275 0.275 0.300 0.300	AUC 0.872 0.843 0.858 0.873 0.878 0.873 0.858 0.873 0.853 0.710 0.785 0.765 0.825 0.825 0.825 0.825 0.798 0.776	micro f1score 0.500 0.488 0.413 0.438 0.425 0.425 0.425 0.400 0.363 0.325 0.325 0.325 0.275 0.275 0.275 0.300 0.300	macro f1score 0.476 0.451 0.407 0.402 0.401 0.380 0.334 0.307 0.306 0.277 0.276 0.266 0.260 0.253	$\begin{array}{c} \textbf{0.692} \\ 0.600 \\ 0.571 \\ 0.450 \\ 0.611 \\ 0.571 \\ 0.500 \\ 0.563 \\ 0.353 \\ 0.353 \\ 0.500 \\ 0.429 \\ 0.283 \\ 0.313 \\ 0.357 \end{array}$	0.113 0.075 0.100 0.113 0.138 0.100 0.075 0.113 0.075 0.050 0.038 0.075 0.188 0.063 0.188	

TABLE B.18: Results of the 4 best models for single features and dropout of 0.6 - ESC-10.

	Mod	el 15: (o	ptimizer	: Adam)				Mod	el 16: (optimize	r: SGD)			
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall	
mel20	0.193	0.855	0.193	0.168	0.467	0.018	mel40	0.093	0.683	0.093	0.081	0.571	0.010	
mel40	0.158	0.824	0.158	0.137	0.476	0.025	mel20	0.098	0.671	0.098	0.076	0.750	0.008	
mfcc60	0.133	0.783	0.133	0.120	0.556	0.013	mel60	0.090	0.677	0.090	0.063	0.875	0.018	
mel60	0.135	0.821	0.135	0.112	0.647	0.028	cens20	0.050	0.566	0.050	0.035	0.000	0.000	
mel80	0.133	0.810	0.133	0.112	0.600	0.015	mfcc60	0.050	0.558	0.050	0.030	0.000	0.000	
mfcc80	0.123	0.781	0.123	0.101	0.571	0.010	stft80	0.078	0.668	0.078	0.029	0.000	0.000	
stft20	0.133	0.805	0.133	0.099	0.579	0.028	stft60	0.068	0.660	0.068	0.027	0.000	0.000	
stft60	0.138	0.786	0.138	0.097	0.500	0.030	cens40	0.060	0.608	0.060	0.026	0.000	0.000	
stft40	0.133	0.793	0.133	0.095	0.450	0.023	mfcc80	0.043	0.599	0.043	0.021	0.000	0.000	
cens20	0.115	0.719	0.115	0.088	0.375	0.015	cens80	0.060	0.632	0.060	0.020	0.000	0.000	
stft80	0.123	0.771	0.123	0.085	0.500	0.023	mfcc40	0.043	0.619	0.043	0.020	0.000	0.000	
cens40	0.100	0.770	0.100	0.084	0.333	0.023	stft40	0.038	0.655	0.038	0.017	0.000	0.000	
cqt40	0.108	0.763	0.108	0.081	0.364	0.010	stft20	0.050	0.637	0.050	0.013	0.000	0.000	
cqt20	0.103	0.770	0.103	0.068	0.455	0.013	cqt20	0.035	0.570	0.035	0.011	0.000	0.000	
mfcc40	0.083	0.720	0.083	0.066	0.600	0.008	cqt40	0.030	0.590	0.030	0.011	0.000	0.000	
cens80	0.085	0.734	0.085	0.063	0.250	0.038	cqt80	0.038	0.601	0.038	0.011	0.000	0.000	
cqt80	0.085	0.737	0.085	0.056	0.273	0.008	mel80	0.018	0.501	0.018	0.004	0.000	0.000	
	Mode	l 17: (op	otimizer:	Adamax)		Model 18: (optimizer: Nadam)							
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall	
			f1score	f1score						f1score	f1score	-		
stft40	0.118	0.777	0.118	0.085	1.000	0.010	mel20	0.160	0.853	0.160	0.132	0.615	0.020	
stft60	0.128	0.777	0.128	0.081	1.000	0.010	stft20	0.153	0.799	0.153	0.130	0.550	0.028	
stft80	0.123	0.772	0.123	0.079	1.000	0.008	mel40	0.153	0.834	0.153	0.126	0.545	0.015	
stft20	0.103	0.774	0.103	0.068	1.000	0.010	mfcc80	0.130	0.764	0.130	0.114	0.500	0.005	
cens80	0.098	0.764	0.098	0.066	0.667	0.020	mel80	0.115	0.796	0.115	0.104	0.500	0.018	
mel20	0.065	0.589	0.065	0.061	0.000	0.000	mel60	0.120	0.806	0.120	0.096	0.353	0.015	
cens40	0.098	0.780	0.098	0.059	0.667	0.015	cens40	0.118	0.772	0.118	0.096	0.440	0.028	
cens20	0.088	0.678	0.088	0.055	0.600	0.008	stft60	0.120	0.783	0.120	0.094	0.476	0.025	
cqt40	0.083	0.728	0.083	0.043	0.667	0.005	stft80	0.128	0.782	0.128	0.093	0.429	0.023	
cqt20	0.083	0.736	0.083	0.040	0.000	0.000	stft40	0.118	0.791	0.118	0.089	0.500	0.025	
cqt80	0.083	0.730	0.083	0.038	1.000	0.003	cqt20	0.115	0.772	0.115	0.083	0.444	0.010	
mel40	0.043	0.585	0.043	0.032	1.000	0.003	mfcc60	0.100	0.738	0.100	0.081	0.667	0.005	
mel80	0.038	0.595	0.038	0.027	0.200	0.003	cens20	0.108	0.718	0.108	0.081	0.333	0.015	
mel60	0.035	0.582	0.035	0.021	0.333	0.003	cqt80	0.105	0.755	0.105	0.075	0.364	0.010	
mfcc60	0.028	0.513	0.028	0.009	0.000	0.000	cens80	0.093	0.733	0.093	0.071	0.315	0.043	
mfcc80	0.025	0.506	0.025	0.007	0.000	0.000	mfcc40	0.090	0.709	0.090	0.065	0.500	0.003	
mfcc40	0.020	0.507	0.020	0.005	0.000	0.000	cqt40	0.093	0.765	0.093	0.063	0.400	0.020	

TABLE B.19: Results of the 4 best models for single features and dropout of 0.6 - ESC-50.

B.3.5 Dropout Rate of 0 and Adamax

Model 19:	(optim	izer: Ao	damax; d	r: 0; datas	set: ESC	C-10)	Model 19:	(optim	izer: A	damax; d	r: 0; datas	et: ESC	C-50)
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfcc80	0.575	0.918	0.575	0.580	0.592	0.563	mfcc80	0.323	0.771	0.323	0.317	0.373	0.295
mfcc60	0.550	0.909	0.550	0.566	0.609	0.525	mfcc40	0.308	0.779	0.308	0.298	0.343	0.260
mfcc40	0.575	0.893	0.575	0.565	0.584	0.563	mfcc60	0.293	0.783	0.293	0.283	0.336	0.253
mel80	0.525	0.835	0.525	0.524	0.557	0.488	mel20	0.238	0.827	0.238	0.224	0.325	0.095
mel20	0.525	0.872	0.525	0.523	0.554	0.450	mel60	0.208	0.781	0.208	0.204	0.292	0.113
mel40	0.525	0.877	0.525	0.520	0.543	0.475	mel40	0.205	0.810	0.205	0.202	0.301	0.103
stft60	0.525	0.894	0.525	0.498	0.690	0.250	mel80	0.205	0.795	0.205	0.201	0.304	0.130
mel60	0.500	0.859	0.500	0.495	0.521	0.463	stft20	0.163	0.794	0.163	0.149	0.441	0.038
stft40	0.463	0.874	0.463	0.446	0.591	0.163	stft40	0.160	0.779	0.160	0.138	0.545	0.045
stft80	0.413	0.874	0.413	0.398	0.656	0.263	stft80	0.143	0.784	0.143	0.117	0.333	0.038
stft20	0.375	0.854	0.375	0.362	0.692	0.113	stft60	0.140	0.778	0.140	0.115	0.326	0.035
cqt40	0.338	0.773	0.338	0.335	0.357	0.125	cqt80	0.113	0.737	0.113	0.097	0.275	0.028
cqt80	0.325	0.782	0.325	0.321	0.323	0.125	cens20	0.103	0.694	0.103	0.089	0.406	0.033
cens20	0.288	0.688	0.288	0.289	0.333	0.088	cqt40	0.113	0.730	0.113	0.086	0.324	0.028
cens80	0.338	0.800	0.338	0.278	0.450	0.225	cens80	0.090	0.699	0.090	0.078	0.222	0.045
cqt20	0.275	0.775	0.275	0.255	0.333	0.100	cens40	0.073	0.731	0.073	0.068	0.239	0.028
cens40	0.250	0.787	0.250	0.236	0.273	0.188	cqt20	0.085	0.742	0.085	0.065	0.333	0.023
dr - dropou	t rate; a	cc - acci	aracy; AU	JC - area i	under ti	he receiv	ver operating	charact	eristic c	urve; pre	c - precisi	on.	
All motrice			<u> </u>				1 0			· 1	1		

TABLE B.20: Results of Adamax optimizer's models for single features and dropout of 0.

B.4 ESC Datasets - Combination of Features as Input

B.4.1 Baseline Model Architecture

	Mod	el 1: (o	ptimizer	Adam)				Moc	del 2: (o	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmsqc80	0.713	0.938	0.713	0.701	0.740	0.675	mms40	0.538	0.908	0.538	0.499	0.656	0.263
mmq	0.688	0.941	0.688	0.673	0.729	0.538	mmstftq40	0.475	0.858	0.475	0.433	0.640	0.200
mms40	0.675	0.942	0.675	0.663	0.707	0.513	mmcens40	0.438	0.864	0.438	0.396	0.586	0.213
mmstftq	0.675	0.938	0.675	0.661	0.758	0.625	mmstftq	0.413	0.793	0.413	0.383	0.519	0.175
mmq40	0.675	0.940	0.675	0.660	0.780	0.488	mfccstft	0.425	0.858	0.425	0.375	0.433	0.163
mmcens	0.663	0.906	0.663	0.648	0.725	0.625	mms60	0.400	0.809	0.400	0.350	0.591	0.163
mmstftq40	0.650	0.925	0.650	0.644	0.759	0.513	mmcens	0.363	0.761	0.363	0.325	0.563	0.113
mms80	0.663	0.932	0.663	0.641	0.700	0.525	mmq	0.363	0.817	0.363	0.314	0.647	0.138
mms60	0.650	0.928	0.650	0.637	0.690	0.500	mmq40	0.375	0.843	0.375	0.309	0.440	0.138
mmsqc	0.650	0.928	0.650	0.632	0.763	0.563	mms80	0.338	0.816	0.338	0.301	0.588	0.125
mfccstft	0.638	0.897	0.638	0.631	0.695	0.513	mmsqc	0.350	0.834	0.350	0.297	0.619	0.163
mmcens40	0.650	0.915	0.650	0.622	0.725	0.463	mfccstft80	0.250	0.746	0.250	0.197	0.440	0.138
mfccstft80	0.625	0.887	0.625	0.606	0.677	0.550	mmsqc80	0.263	0.773	0.263	0.192	1.000	0.075
mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000
mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000
	Mode	1 3: (op	timizer: .	Adamax)				Mode	el 4: (op	timizer:	Nadam)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
mmcens	0.613	0.894	0.613	0.587	0.708	0.213	mmsqc	0.738	0.910	0.738	0.727	0.773	0.725
mmsqc80	0.538	0.907	0.538	0.525	0.718	0.350	mmstftq40	0.725	0.916	0.725	0.719	0.737	0.700
mms60	0.538	0.912	0.538	0.521	0.684	0.163	mmq40	0.688	0.902	0.688	0.677	0.692	0.675
mmstftq	0.513	0.903	0.513	0.497	0.826	0.238	mmq	0.663	0.884	0.663	0.657	0.675	0.650
mms80	0.500	0.893	0.500	0.493	0.667	0.175	mms80	0.663	0.894	0.663	0.647	0.688	0.663
mmcens40	0.488	0.868	0.488	0.482	0.824	0.175	mmsqc80	0.662	0.928	0.662	0.647	0.704	0.625
mmq40	0.488	0.891	0.488	0.463	0.778	0.175	mmcens	0.650	0.938	0.650	0.647	0.689	0.525
mmq	0.463	0.865	0.463	0.447	0.696	0.200	mms60	0.638	0.924	0.638	0.618	0.679	0.475
mms40	0.425	0.835	0.425	0.396	0.714	0.125	mmstftq	0.625	0.935	0.625	0.615	0.701	0.588
mfccstft	0.400	0.813	0.400	0.387	0.438	0.088	mfccstft80	0.625	0.890	0.625	0.607	0.661	0.463
mmsqc	0.388	0.827	0.388	0.362	0.909	0.125	mms40	0.625	0.931	0.625	0.605	0.684	0.488
mmstftq40	0.388	0.823	0.388	0.345	0.813	0.163	mfccstft	0.613	0.913	0.613	0.582	0.744	0.400
mfccstft80	0.288	0.807	0.288	0.278	0.556	0.125	mmcens40	0.600	0.930	0.600	0.577	0.750	0.450
mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000
mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000
	Model	5: (opt	imizer: A	Adadelta))			Mode	16: (op	timizer: /	Adagrad)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recal
mmq40	0.213	0.533	0.213	0.103	0.205	0.188	mmsqc	0.563	0.908	0.563	0.554	0.750	0.150
mms60	0.113	0.504	0.113	0.102	0.083	0.063	mmstftq40	0.450	0.883	0.450	0.426	0.543	0.238
mfccstft	0.150	0.541	0.150	0.090	0.145	0.113	mmsqc80	0.450	0.884	0.450	0.426	0.568	0.263
mmsqc	0.150	0.565	0.150	0.085	0.154	0.125	mmstftq	0.388	0.848	0.388	0.359	0.600	0.150
mmcens40	0.163	0.541	0.163	0.056	0.163	0.163	mms80	0.388	0.856	0.388	0.344	0.600	0.188
mms80	0.088	0.493	0.088	0.051	0.052	0.038	mmq40	0.350	0.832	0.350	0.343	0.706	0.150
mmsqc80	0.088	0.546	0.088	0.047	0.085	0.075	mmcens	0.400	0.836	0.400	0.343	0.588	0.250
mmstftq	0.138	0.516	0.138	0.047	0.118	0.113	mfccstft	0.375	0.855	0.375	0.339	0.625	0.125
mmcens	0.100	0.524	0.100	0.045	0.110	0.100	mmq	0.350	0.819	0.350	0.337	0.448	0.163
mmq	0.113	0.501	0.113	0.042	0.118	0.113	mmcens40	0.375	0.853	0.375	0.299	0.529	0.113
mms40	0.075	0.472	0.075	0.034	0.052	0.038	mfccstft80	0.400	0.857	0.400	0.291	0.444	0.100
mfccstft80	0.100	0.518	0.100	0.020	0.107	0.100	mms40	0.350	0.852	0.350	0.289	0.500	0.163
mfccmel40	0.100	0.500	0.100	0.018	0.100	0.100	mms60	0.338	0.831	0.338	0.271	0.667	0.100
mfccmel80	0.100	0.500	0.100	0.018	0.100	0.100	mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000
mmstftq40	0.063	0.468	0.063	0.015	0.066	0.063	mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000
•	cy; AU					ing cha	racteristic cur	ve; pred	c - preci	sion.			

	Mod	el 1: (o j	ptimizer:	Adam)				Moc	lel 2: (o	ptimizer	: SGD)		
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
reatures	acc		f1score	f1score	1	recuii	reatures	ucc		f1score	f1score	1	
mmq	0.393	0.873	0.393	0.379	0.575	0.250	mmq	0.178	0.789	0.178	0.153	0.591	0.033
mmstftq	0.383	0.875	0.383	0.361	0.584	0.243	mms60	0.173	0.770	0.173	0.151	0.529	0.023
mmsqc80	0.365	0.869	0.365	0.352	0.511	0.243	mms40	0.155	0.808	0.155	0.149	0.667	0.030
mmcens40	0.365	0.895	0.365	0.345	0.635	0.200	mmcens40	0.175	0.795	0.175	0.145	0.722	0.033
mms40	0.358	0.879	0.358	0.343	0.550	0.193	mmcens	0.158	0.776	0.158	0.140	0.650	0.033
mms60	0.353	0.878	0.353	0.342	0.574	0.203	mfccstft80	0.145	0.783	0.145	0.129	0.615	0.020
mmsqc	0.348	0.881	0.348	0.334	0.617	0.238	mmq40	0.135	0.784	0.135	0.123	0.714	0.025
mmq40	0.340	0.886	0.340	0.331	0.542	0.195	mmsqc80	0.148	0.773	0.148	0.122	0.500	0.023
mms80	0.343	0.875	0.343	0.331	0.557	0.208	mmstftq40	0.135	0.728	0.135	0.114	0.750	0.038
mmstftq40	0.348	0.868	0.348	0.327	0.527	0.218	mfccstft	0.133	0.768	0.133	0.113	0.600	0.023
mfccstft	0.328	0.876	0.328	0.313	0.500	0.175	mmstftq	0.138	0.765	0.138	0.107	0.500	0.020
mmcens	0.315	0.869	0.315	0.293	0.554	0.180	mms80	0.128	0.783	0.128	0.103	0.455	0.025
mfccstft80	0.310	0.862	0.310	0.287	0.452	0.190	mmsqc	0.115	0.790	0.115	0.100	0.471	0.020
mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000
mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000
	Mode	l 3: (op	timizer: .	Adamax)				Mode	el 4: (op	otimizer:	Nadam)		
Features	200	AUC	micro	macro	proc	recall	Features	200	AUC	micro	macro	proc	rocall
reatures	acc	AUC	f1score	f1score	prec	recan	reatures	acc	AUC	f1score	f1score	prec	recall
mmsqc80	0.230	0.844	0.230	0.194	0.565	0.033	mmstftq	0.375	0.878	0.375	0.354	0.571	0.223
mmq	0.200	0.827	0.200	0.168	0.647	0.028	mmstftq40	0.360	0.882	0.360	0.346	0.497	0.180
mmstftq	0.183	0.787	0.183	0.168	0.462	0.015	mmsqc	0.355	0.884	0.355	0.345	0.524	0.215
mmsqc	0.180	0.836	0.180	0.156	0.571	0.020	mms80	0.345	0.872	0.345	0.339	0.605	0.188
mfccstft80	0.163	0.821	0.163	0.155	0.440	0.028	mms60	0.355	0.874	0.355	0.337	0.536	0.203
mmstftq40	0.190	0.840	0.190	0.155	0.429	0.015	mmq40	0.343	0.881	0.343	0.333	0.549	0.195
mfccstft	0.170	0.792	0.170	0.148	0.333	0.010	mmq	0.343	0.866	0.343	0.327	0.566	0.203
mms40	0.173	0.809	0.173	0.145	0.500	0.015	mms40	0.343	0.877	0.343	0.327	0.569	0.195
mms80	0.138	0.777	0.138	0.125	0.364	0.010	mmsqc80	0.348	0.871	0.348	0.321	0.508	0.233
mms60	0.128	0.751	0.128	0.114	0.533	0.020	mfccstft80	0.335	0.858	0.335	0.319	0.516	0.205
mmcens	0.118	0.798	0.118	0.100	0.455	0.013	mmcens	0.335	0.869	0.335	0.316	0.503	0.185
mmcens40	0.110	0.736	0.110	0.095	0.636	0.018	mmcens40	0.318	0.876	0.318	0.309	0.527	0.170
mmq40	0.088	0.748	0.088	0.077	0.308	0.010	mfccstft	0.313	0.868	0.313	0.299	0.485	0.165
mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000
mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000
	Model	5: (opt		Adadelta)				Mode	l 6: (op	timizer: /			
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
	0.025	0 502	f1score	f1score	0.051	0.022		0.055	0 590	f1score	f1score	0.000	0.005
mmstftq40	0.035	0.503	0.035	0.011	0.051	0.033	mms60	0.055	0.589	0.055	0.057	0.286	0.005
mmstftq	0.023	0.523	0.023	0.009	0.032	0.015	mmq	0.060	0.614 0.609	0.060 0.060	0.054	0.429 0.250	0.008
mmsqc	0.030	0.518	0.030 0.015	0.009 0.009	0.030	0.020	mms80	0.060 0.048	0.609		0.050 0.043	0.250	0.005
mmq	0.015	0.506					mfccstft			0.048			
mmsqc80	0.013 0.020	$0.503 \\ 0.510$	0.013	0.008	0.014 0.015	0.008	mmcens	0.055	0.572 0.535	0.055	0.042	0.167	0.003 0.010
mmcens40	0.020	0.510	0.020 0.028	0.007 0.007	0.015	0.010	mmq40		0.555	0.045 0.063	0.037	0.571 0.000	0.010
mfccstft80	0.028	0.496					mfccstft80	0.063 0.028	0.552		0.036		0.000
mms40			0.023	0.006			mmsqc80	0.028			0.032		
mmq40	0.028 0.013	$0.485 \\ 0.502$	0.028 0.013	0.006 0.006	0.021 0.005	0.013	mmstftq mmstftq40		0.579	0.048	0.031 0.029	$0.500 \\ 0.143$	0.013 0.003
mfccstft	0.013				0.005	0.003	mmstftq40		0.551	0.030			
mms60 mms80		0.494	0.015	0.004	0.021		mmsqc mms40	0.048	0.590	0.048	0.028	0.000	0.000
	0.018	0.474	0.018	0.003		0.013	mms40	0.045	0.565	0.045	0.027	0.000	0.000
mmcens	0.005	0.495	0.005	0.002	0.014		mmcens40	0.035	0.528	0.035	0.018	0.000	0.000
mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000
mfccmel80		0.500	0.020	0.001	0.000	0.000	mfccmel80		0.500	0.020	0.001	0.000	0.000
						ing cha	racteristic cur	ve; prec	- preci	sion.			
All metrics r	ange fr	om [0,	I] (the hig	gner, the l	better).								

	Mo	del 3: (oj	ptimizer: Adama	x; dataset: ESC-5		
Features	acc	AUC	micro f1score	macro f1score	precision	recall
mmsqc80	0.333	0.881	0.333	0.322	0.609	0.098
mmq	0.310	0.872	0.310	0.289	0.614	0.088
mfccstft80	0.283	0.874	0.283	0.267	0.656	0.100
mmsqc	0.265	0.888	0.265	0.254	0.704	0.095
mmstftq40	0.258	0.871	0.258	0.248	0.705	0.078
mfccstft	0.268	0.868	0.268	0.240	0.620	0.078
mmq40	0.253	0.872	0.253	0.234	0.571	0.060
mmcens40	0.238	0.874	0.238	0.226	0.745	0.088
mmstftq	0.233	0.844	0.233	0.210	0.659	0.068
mms80	0.240	0.844	0.240	0.204	0.618	0.053
mms40	0.210	0.842	0.210	0.188	0.640	0.040
mmcens	0.210	0.835	0.210	0.179	0.719	0.058
mms60	0.200	0.833	0.200	0.174	0.520	0.033
mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000
mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000
acc - accurac	y; AUC -	area unc	ler the receiver o	perating characte	ristic curve.	
4 11	<i>c</i>	[0 4] (1]				

TABLE B.23: Results for model 3 fully trained with ESC-50 dataset.

All metrics range from [0, 1] (the higher, the better).

B.4.2 Extra Layer

TABLE B.24: Results of the 4 models with extra layer for different feature combinations - ESC-10.

	Mod	el 7: (o	ptimizer:	Adam)				Mode	l 8: (op	timizer: /	Adagrad)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmq40	0.700	0.931	0.700	0.684	0.766	0.450	mms40	0.375	0.812	0.375	0.347	0.000	0.000
mms80	0.688	0.952	0.688	0.681	0.759	0.513	mms60	0.400	0.824	0.400	0.330	1.000	0.025
mms60	0.675	0.931	0.675	0.663	0.860	0.463	mmstftq	0.388	0.837	0.388	0.322	0.333	0.013
mms40	0.675	0.946	0.675	0.661	0.773	0.425	mms80	0.375	0.813	0.375	0.315	0.600	0.038
mmstftq40	0.663	0.943	0.663	0.640	0.796	0.488	mmsqc	0.375	0.834	0.375	0.300	1.000	0.013
mfccstft80	0.638	0.881	0.638	0.632	0.686	0.438	mmq40	0.325	0.858	0.325	0.289	0.600	0.038
mmstftq	0.650	0.917	0.650	0.629	0.750	0.488	mfccstft80	0.375	0.783	0.375	0.284	0.000	0.000
mmcens	0.638	0.923	0.638	0.628	0.667	0.475	mmsqc80	0.375	0.837	0.375	0.281	0.667	0.025
mmq	0.638	0.929	0.638	0.624	0.722	0.488	mmcens	0.313	0.823	0.313	0.267	0.600	0.038
mmsqc	0.638	0.932	0.638	0.624	0.717	0.475	mmq	0.300	0.827	0.300	0.241	0.143	0.013
mmsqc80	0.625	0.929	0.625	0.607	0.692	0.563	mmstftq40	0.275	0.751	0.275	0.199	0.833	0.063
mmcens40	0.600	0.928	0.600	0.594	0.705	0.388	mfccstft	0.175	0.787	0.175	0.131	1.000	0.013
mfccstft	0.588	0.870	0.588	0.562	0.675	0.338	mmcens40	0.175	0.800	0.175	0.111	0.500	0.013
mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000
mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000
ı	Mode	1 9: (op	timizer:	Adamax)			· · · · ·	Mode	l 10: (o	ptimizer:	Nadam)	1	
Features	acc	AUC	micro	macro	121 00	recall	Features	acc	AUC	micro	macro	131 000	recall
Teatures	acc	AUC	f1score	f1score	prec	recan	reatures	acc	AUC	f1score	f1score	prec	lecali
mmsqc	0.500	0.879	0.500	0.468	1.000	0.013	mmstftq	0.725	0.953	0.725	0.714	0.792	0.525
mfccstft80	0.475	0.874	0.475	0.420	0.750	0.038	mmsqc	0.700	0.934	0.700	0.688	0.774	0.513
mmstftq	0.425	0.878	0.425	0.414	1.000	0.038	mms80	0.688	0.938	0.688	0.665	0.731	0.475
mms80	0.425	0.836	0.425	0.406	0.667	0.025	mms60	0.663	0.923	0.663	0.658	0.783	0.450
mmq	0.450	0.852	0.450	0.387	0.800	0.050	mmsqc80	0.663	0.926	0.663	0.653	0.703	0.563
mmcens40	0.388	0.832	0.388	0.370	0.800	0.050	mmstftq40	0.663	0.912	0.663	0.652	0.776	0.475
mmsqc80	0.388	0.889	0.388	0.369	0.545	0.075	mmq	0.663	0.953	0.663	0.643	0.813	0.488
mms60	0.388	0.832	0.388	0.352	1.000	0.013	mmq40	0.638	0.921	0.638	0.636	0.735	0.450
mmcens	0.300	0.756	0.300	0.293	0.833	0.063	mmcens	0.600	0.933	0.600	0.599	0.760	0.475
mmq40	0.313	0.811	0.313	0.265	1.000	0.050	mmcens40	0.613	0.910	0.613	0.594	0.763	0.363
mmstftq40	0.300	0.785	0.300	0.244	0.000	0.000	mms40	0.600	0.917	0.600	0.579	0.756	0.388
mms40	0.250	0.791	0.250	0.241	0.000	0.000	mfccstft80	0.588	0.882	0.588	0.568	0.640	0.400
			0.150	0.129	1.000	0.025	mfccstft	0.550	0.893	0.550	0.523	0.639	0.288
mfccstft	0.150	0.717				1				1	1		
mfccstft mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000
mfccstft mfccmel80 mfccmel40	0.100 0.100	0.500 0.500	0.100 0.100	0.018 0.018	$0.000 \\ 0.000$	0.000	mfccmel80 mfccmel40 racteristic cur	0.100	0.500	0.100	0.018 0.018	$0.000 \\ 0.000$	0.000 0.000

Features acc AUC micro flscore flscore micro flscore flscore micro flscore flscore macro flscore flscore flscore prec flscore flscore prec flscore flscore prec flscore flscore prec flscore flscore prec flscore flscore prec flscore prec flscor		Mod	el 7: (oj	ptimizer:	Adam)			Model 8: (optimizer: SGD)							
mmsqc800.3500.8820.3500.3290.6290.183mms400.1430.7740.1430.1190.8570.015mmstftq00.3280.3790.3350.3210.5930.168mmstftq0.1180.7640.1180.1010.6670.010mmstftq0.3280.3650.3280.3110.6520.150mmstftq0.1110.7460.1100.0960.5560.013mmsq0.3380.8600.3380.3110.6280.178mmcens0.1030.7460.1030.0940.5000.000mfcstft0.3130.8700.3230.3030.6620.133mmtens0.1030.7460.1030.0940.5000.000mmsd00.3230.8700.3330.3010.6630.140mmeens0.1150.7500.1050.0840.6000.008mmsd00.3250.8700.3350.3010.6200.557mfcstft800.150.1580.0750.0010.000mmsd00.3150.8600.3150.2950.5730.168mmsd00.0330.3700.0100.0000.001mfcstft800.020.5000.0200.0010.0000.000mfccstf800.030.7540.0130.0710.6250.133mfcstft800.1280.4910.3180.2950.5730.168mms600.0300.5000.0010.000mfcstft8	Features	acc				-	recall	Features	acc						
mmstftq400.3350.8790.3350.3210.5930.168mmstftq0.1180.7640.1180.1080.6670.010mmq400.3280.8790.3280.3110.6520.150mmq400.1180.7740.1280.7770.1280.1010.5060.013mmq400.3380.8800.3380.3110.6220.103mmstftq400.1030.7640.1030.0940.5000.010mfccstft0.3130.8730.3130.3040.6820.178mmcens0.1030.7640.1030.0940.6000.008mmcens0.3130.8770.3180.3020.6820.145mms600.1150.7500.1150.0820.4290.008mms600.3150.8730.3100.2950.5730.138mfccstft800.1010.7640.1030.0740.0010.001mms600.3150.8730.3160.2950.5730.188mms600.0330.7540.0930.0710.6250.013mms600.3150.8740.3180.2930.6260.134mms600.0930.7540.0930.0660.5330.020mms600.3160.6890.3180.2930.6260.143mms600.0930.7540.0930.0660.5330.202mms600.3160.5910.2020.0010.0000.000mfccmel800.200.001 <th>mmq40</th> <th></th> <th></th> <th></th> <th>0.343</th> <th></th> <th></th> <th>mmsqc</th> <th>0.143</th> <th>0.761</th> <th>0.143</th> <th>0.127</th> <th>0.700</th> <th>0.018</th>	mmq40				0.343			mmsqc	0.143	0.761	0.143	0.127	0.700	0.018	
mmstfrq0.3280.8790.3280.3150.6640.188mmqq0'0.1280.7770.1280.1010.5000.013mmq0.3280.8650.3280.3110.6620.150mmstfrq00.1010.7460.1100.0940.5560.013mmcers0.3380.8800.3380.3310.6680.178mmcers00.130.7610.1030.0940.5000.010mfcstff0.3130.8770.3130.3040.6830.140mmcers00.150.7540.1000.0840.6000.080mmcens00.3230.8700.3180.3020.6820.145mms600.1150.7500.1050.7640.1050.7640.1050.7780.6000.008mms600.3250.8620.3250.3000.5790.138mfccstff800.1150.7540.1050.7540.1050.7540.0320.4290.000mms600.3150.8620.3180.2920.5730.168mms600.0930.7540.0930.0710.6250.133mms600.3150.8600.3150.2920.5010.000mfccstff800.1350.7540.0930.0710.0000.000mfcstff800.3150.8600.3160.2920.0110.0000.000mfccstff800.2920.0200.0010.000mfcstff800.1280.4910.3180.792<	mmsqc80	0.350	0.882	0.350	0.329	0.652	0.183	mms40	0.143		0.143	0.119	0.857	0.015	
mmq0.3280.8850.3280.3110.6520.150mmstfq400.1100.7460.1100.0960.5560.013mmsqc0.3380.8800.3380.3110.6020.178mmcens0.1030.7460.1030.0940.5000.010mfccstff800.3230.3700.3230.3040.6680.404mmcens400.1030.7500.1000.0840.6000.008mms600.3250.8620.3250.3000.5790.138mms600.150.7500.1150.0820.4290.008mms600.3250.8620.3130.3000.5790.138mms600.150.7500.1180.0730.0700.028mms600.3150.8600.3130.2920.5730.156mms600.150.7500.1030.0710.6200.008mms600.3180.8730.3100.2920.5730.156mms600.0330.7500.0930.0710.6200.00mfcstff800.3180.8910.3180.2920.0010.000mfcme1400.0200.0010.0000.000mfcstff800.180.8220.1280.1230.6060.1280.1280.1280.3330.3230.3130.323mfcstff800.180.3200.180.0070.000mms600.3530.3570.3530.3400.0660.163mms600.13	mmstftq40	0.335	0.879	0.335	0.321	0.593	0.168	mmstftq	0.118	0.764	0.118	0.108	0.667	0.010	
mmsqc0.3380.3880.3110.6280.178mmcens0.1030.7610.1030.0940.5000.010mfccstft0.3130.8730.3130.3060.6020.133mmcens400.1230.7640.1230.0930.0000.020mmcens0.3230.8750.3180.3020.6830.140mmq0.1010.7500.1050.0840.6020.008mmcens400.3180.8750.3180.3020.6820.145mms600.1150.7500.1150.0820.4290.008mmsem0.3250.8620.3250.3000.5790.138mms600.1150.7500.1150.0820.4290.008mmsem0.3150.8620.3250.3000.5790.138mms600.1150.7500.1180.0700.0700.018mfcstft800.3150.8690.3150.2950.5730.168mmsqe800.0200.5000.0200.0010.0000.000mfcremt400.0200.5000.0200.0010.0000.000mfcremt400.0200.0010.0000.000mfcremt400.2000.5000.2020.0010.0000.000mfcremt400.2020.5050.3400.6760.383mfcremt400.180.3290.1580.1230.6000.008mmsqe800.3550.8750.3400.6760.188mmsqc0 <th< th=""><th>mmstftq</th><th>0.328</th><th>0.879</th><th>0.328</th><th>0.315</th><th>0.664</th><th>0.188</th><th>mmq40</th><th>0.128</th><th>0.777</th><th>0.128</th><th>0.101</th><th>0.500</th><th>0.013</th></th<>	mmstftq	0.328	0.879	0.328	0.315	0.664	0.188	mmq40	0.128	0.777	0.128	0.101	0.500	0.013	
mfcsift0.3130.8730.3130.3060.6020.133mmcens400.1230.7640.1230.0930.0000.008mmcens0.3230.8700.3230.3040.6830.140mmg0.1000.7500.1010.0840.0000.008mmes600.3250.8620.3250.3000.6790.138mfcsift800.1150.7500.1150.0820.4290.008mms600.3100.8620.3250.3000.6790.138mfccsift800.1150.7640.1180.0700.0700.018mfcs0.3100.8620.3250.3000.5790.138mfccsift800.1180.7800.1180.0710.6250.013mfcs0.3180.8910.3180.2950.5730.168mms600.0200.0700.0200.0010.0000.000mfccmel400.0200.5000.0200.0010.0000.000mfccmel400.0200.0000.0010.0000.000mfccstft800.180.4290.1880.1230.6000.000mms600.2550.3550.3550.3400.6350.320.3310.3020.6610.33mfcstft800.130.760.130.0760.1080.000mms600.3550.8590.3550.3400.6760.188mms600.130.760.130.0770.0000.000mms600.353<	mmq		0.865	0.328	0.311	0.652	0.150	mmstftq40	0.110	0.746	0.110	0.096	0.556	0.013	
mmcens0.3230.8700.3230.3040.6830.140mmq0.1000.7500.1000.0840.6000.008mmcens400.3150.8620.3180.3020.6820.145mms600.1150.7500.1150.0820.4020.008mms600.3250.8620.3250.3000.5790.138mfccsff800.1050.7640.1050.0760.0070.6000.008mms600.3150.8600.3150.2950.530.168mms6200.0930.7500.0930.0710.6250.0330.001mms400.3180.8910.3180.2930.6260.143mms600.0930.7500.0930.0010.0010.000.001mfccmf400.0200.5000.0200.0010.0010.000mms6000.0200.5000.0010.0000.000mfccmf400.0200.5000.0200.0010.0000.000mms600.0200.5000.0010.0000.000mfccmf400.020.5000.5000.0000.000mms600.3550.4750.3350.3400.6760.188mfccsff800.180.480.4920.480.4010.0000.000mms600.3550.8750.3550.3400.6660.55mfccsff800.180.480.4920.4920.4920.5020.4920.5020.5660.55<	mmsqc	0.338	0.880	0.338	0.311	0.628	0.178	mmcens	0.103	0.761	0.103	0.094	0.500	0.010	
mmcens400.3180.3750.3180.3020.6820.1450.mms600.1150.7500.1150.0820.4290.008mms600.3250.8620.3250.3000.5790.138mfccstft800.1150.7640.1050.0780.0080.008mms600.3100.8700.3100.2960.6020.155mfccstft80.1180.7800.1180.0770.0700.018mms600.3180.8910.3150.2930.5260.133mms800.0930.7540.0930.0010.0020.0010.000mfccmel400.0200.5000.0200.0010.0000.000mms800.0320.5000.0010.0000.000mfccmel480.0200.5000.0200.0010.0010.000mms800.0200.5000.0010.0000.000mfccmt880.2930.5000.2020.0010.0010.0000.000mfccmel400.2020.5000.0200.0010.000mfccstft800.1580.4920.1580.4230.6000.008mmsqc800.3550.8750.3300.3400.6260.158mmsqc800.1580.4520.1580.1230.6020.000mmsqc800.3430.8890.3430.3220.5760.133mmsqc800.1330.7760.1330.7760.0330.0720.000mmsqc80.3430.3230.	mfccstft	0.313	0.873	0.313	0.306	0.602	0.133	mmcens40	0.123	0.764	0.123	0.093	0.800	0.020	
mms600.3250.8620.3250.3000.5790.138mfcctft800.1050.7640.1050.0780.0780.000mms600.3150.8600.3150.2960.6020.155mms600.0930.7500.0930.0180.0770.0030.013mms400.3180.8910.3180.2930.6260.133mms600.0930.7500.0930.0010.0000.000mfccml400.0200.5000.0200.0010.0000.000mms600.0200.5000.0200.0010.00mfccml400.2000.5000.2000.0010.0010.000mms600.0200.5000.0200.0010.000mfccml400.2000.5000.5000.5000.0200.0010.0000.000mfccml400.2000.5000.0010.0000.000mfccml400.2000.500 <t< th=""><th>mmcens</th><th>0.323</th><th>0.870</th><th>0.323</th><th>0.304</th><th>0.683</th><th>0.140</th><th>mmq</th><th>0.100</th><th>0.750</th><th>0.100</th><th>0.084</th><th>0.600</th><th>0.008</th></t<>	mmcens	0.323	0.870	0.323	0.304	0.683	0.140	mmq	0.100	0.750	0.100	0.084	0.600	0.008	
mms800.3100.8730.3100.2960.6020.155mfccstft0.1180.7800.1180.0770.0700.018mfccstft800.3150.8600.3150.2950.2950.5730.168mmsqc800.0930.7540.0930.0100.0200.000 <th>mmcens40</th> <th>0.318</th> <th>0.875</th> <th>0.318</th> <th>0.302</th> <th>0.682</th> <th>0.145</th> <th>mms60</th> <th>0.115</th> <th>0.750</th> <th>0.115</th> <th>0.082</th> <th>0.429</th> <th>0.008</th>	mmcens40	0.318	0.875	0.318	0.302	0.682	0.145	mms60	0.115	0.750	0.115	0.082	0.429	0.008	
mfccstft800.3150.8600.3150.2950.5730.168mmsqc800.0930.7500.0930.0710.6250.013mms400.3180.8910.3180.2930.6260.143mms800.0930.7540.0930.0160.0680.5330.020mfccmel400.0200.0200.0200.0200.0200.0200.0200.0200.0200.0200.0010.0000.000mfccmel800.0200.0200.0200.0200.0200.0200.0200.0200.0200.0010.0000.000mfcreml800.220.0200.0200.0200.0200.0200.0200.0200.0200.0010.0000.000mfccstft800.1580.8290.1580.1230.6000.000mmsqc800.3550.8750.3550.3400.6760.188mmsqc0.1130.8290.1580.0200.0010.0000.000mmsqc800.3430.8890.3430.3220.5750.133mmq0.1130.7810.0710.0010.0000.000mmsqc800.3430.8890.3430.3220.5750.153mmq400.1130.7740.0130.0770.0330.000mmsfq400.3100.8650.3100.2920.5630.123mms400.0930.7770.0930.0720.0000.000mmsfq400.3100.8650.310	mms60	0.325	0.862	0.325	0.300	0.579	0.138	mfccstft80	0.105	0.764	0.105	0.078	0.600	0.008	
mms400.3180.8910.3180.2930.6260.143mms400.0930.7540.0930.0680.5330.020mfccmel400.0000.0000.000mfccmel400.0000.0000.000mfccmel400.0000.0330.8790.3330.3300.6330.183mmsc800.1330.7640.1380.0800.0000.000mms600.3430.8890.3430.3200.6160.153mms400.1330.7670.1030.0770.0000.000mms600.3430.8810.3430.3230.3050.2330.1630.1230.1630.1730.1630.1730.1630.1730.1630.1730.1630.1730.1630.1730.1630.1630.1630.1630.1630.1630.1630.1630.1630.1630.1630.1630.1630.1630.1630.1630.	mms80	0.310	0.873	0.310	0.296	0.602	0.155	mfccstft	0.118	0.780	0.118	0.077	0.700	0.018	
mfccmel400.0200.0500.0200.0010.0000.000mfccmel400.0200.0500.0200.0010.0000.000mfccmel800.0200.0000.0200.000mscres0.3530.3530.3530.3530.3430.3200.6760.138mscr0.1330.7820.1330.7630.1330.0760.1330.0760.1330.0760.0000.000mmsfrq0.3430.8810.3430.3220.6760.1330.7570.1330.0770.0010.000mmsfrq0.3430.8810.3430.3220.5780.1330.7570.1330.0770.0010.000mmsfrq0.3430.8810.3430.3220.5780.1330.7570.1330.0770.0010.000mmsfrq0.3130.8810.3430.3230.3330.3230.3130.3240.5780.1330.7570.1330.0720.0000.000mmsfrq0.3130.8810.3430.3230.3330.3240.5750.1330.1330.750.1330.750.1330.750.1330.750.1330.750.1330.750.1330.75	mfccstft80	0.315	0.860	0.315	0.295	0.573	0.168	mmsqc80	0.093	0.750	0.093	0.071	0.625	0.013	
mfccmel800.0200.0500.0200.0010.0000.000mfccmel800.0200.0000.0000.0000.000Moteviscosvis	mms40	0.318	0.891	0.318	0.293	0.626	0.143	mms80	0.093	0.754	0.093	0.068	0.533	0.020	
Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam) Features acc AUC micro flscore prec flscore recall Features acc AUC micro flscore prec flscore recall mfccstft80 0.158 0.829 0.158 0.123 0.600 0.008 mmsqc80 0.355 0.875 0.355 0.340 0.676 0.188 mmsqc 0.145 0.802 0.145 0.118 0.000 0.000 mmsqc80 0.353 0.879 0.353 0.322 0.613 0.183 mmq 0.113 0.741 0.113 0.081 0.800 0.000 mmsqc 0.343 0.889 0.343 0.322 0.575 0.153 mmq40 0.103 0.776 0.103 0.077 0.000 0.000 mmcens40 0.323 0.879 0.323 0.309 0.653 0.123 mms40 0.093 0.777 0.093 0.072 0.000 0.000 mmq40 0.310 0.865<	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000	
Features acc AUC micro f1score macro f1score prec f1score recall Features acc AUC micro f1score prec f1score recall mfccstft80 0.158 0.829 0.158 0.123 0.600 0.008 mmsqc80 0.355 0.875 0.355 0.340 0.676 0.188 mmsqc 0.145 0.802 0.145 0.118 0.000 0.000 mmsqc80 0.353 0.879 0.353 0.332 0.613 0.183 mmq 0.113 0.741 0.113 0.081 0.800 0.000 mmsqc 0.343 0.889 0.343 0.322 0.575 0.153 mmq40 0.103 0.776 0.103 0.077 0.000 0.000 mmstftq40 0.340 0.881 0.343 0.322 0.575 0.153 mms40 0.093 0.757 0.093 0.072 0.000 0.000 mmq40 0.310 0.865 0.310 0.289 0.637	mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000	
Peatures acc AUC fiscore fisco		Mode	1 9: (op	timizer:	Adamax)				Mode	l 10: (oj	ptimizer:	Nadam)			
mf costft80 0.158 0.829 0.158 0.123 0.600 0.008 mmsqc80 0.355 0.875 0.355 0.340 0.676 0.188 mmsqc 0.145 0.802 0.145 0.118 0.000 0.000 mmstftq 0.353 0.879 0.353 0.340 0.676 0.188 mmsqc80 0.133 0.786 0.113 0.096 0.000 0.000 mmstftq 0.343 0.889 0.343 0.322 0.676 0.153 mmq 0.113 0.711 0.113 0.081 0.800 0.000 mmstfq 0.343 0.889 0.343 0.322 0.575 0.153 mmq40 0.103 0.776 0.103 0.077 0.000 0.000 mmstfq40 0.340 0.881 0.340 0.315 0.575 0.153 mms40 0.093 0.777 0.093 0.072 0.000 0.000 mmq40 0.310 0.285 0.316 0.286 0.316 0.2	Features	acc	AUC			prec	recall	Features	acc	AUC			prec	recall	
mmsqc 0.145 0.802 0.145 0.118 0.000 0.000 mmstrq 0.353 0.879 0.353 0.332 0.613 0.118 mmsqc80 0.133 0.786 0.133 0.096 0.000 0.000 mmsqc 0.343 0.889 0.343 0.326 0.646 0.155 mmq 0.113 0.741 0.113 0.081 0.800 0.000 mmsqc 0.343 0.889 0.343 0.322 0.575 0.153 mmq40 0.103 0.776 0.103 0.077 0.000 0.000 mmstfq40 0.343 0.881 0.343 0.322 0.575 0.153 mmfcstft 0.118 0.783 0.118 0.075 0.333 0.030 mmstfq40 0.340 0.811 0.340 0.315 0.323 0.399 0.637 0.123 mms40 0.993 0.757 0.993 0.072 0.000 0.000 mfccstft 0.310 0.865 0.310 0.289<						1		reatures					-		
mmsqc80 0.133 0.786 0.133 0.096 0.000 0.000 mmsqc 0.343 0.889 0.343 0.326 0.646 0.155 mmq 0.113 0.741 0.113 0.081 0.800 0.010 mms80 0.343 0.889 0.343 0.326 0.646 0.155 mmq40 0.103 0.776 0.103 0.077 0.000 0.000 mms80 0.343 0.881 0.343 0.322 0.575 0.153 mfccstft 0.118 0.778 0.118 0.075 0.333 0.000 mms80 0.343 0.881 0.340 0.315 0.758 0.173 mms40 0.093 0.757 0.093 0.072 0.000 0.000 mmq40 0.310 0.855 0.310 0.289 0.637 0.145 mms80 0.090 0.749 0.090 0.662 0.000 0.000 mfccstft 0.305 0.868 0.318 0.884 0.310 0.284	mfccstft80														
mmq 0.113 0.741 0.113 0.081 0.800 0.010 mms80 0.343 0.881 0.343 0.322 0.575 0.153 mmq40 0.103 0.776 0.103 0.077 0.000 0.000 mmsftq40 0.343 0.343 0.343 0.343 0.322 0.575 0.153 mfccstft 0.118 0.776 0.103 0.077 0.000 0.000 mmstftq40 0.340 0.881 0.340 0.315 0.758 0.173 mfccstft 0.118 0.783 0.118 0.075 0.333 0.000 mmcens40 0.323 0.879 0.323 0.309 0.653 0.123 mms80 0.093 0.757 0.093 0.072 0.000 0.000 mmq40 0.310 0.865 0.310 0.289 0.637 0.145 mms80 0.090 0.749 0.090 0.062 0.000 0.000 mfcstft 0.305 0.868 0.318 0.282 0.5	mmsqc							mmstftq							
mmq400.1030.7760.1030.0770.0000.000mmstftq400.3400.8810.3400.3150.7580.173mfccstft0.1180.7830.1180.0750.3330.003mmcens400.3230.8790.3230.3090.6530.123mms400.0930.7570.0930.0720.0000.000mmq400.3100.8650.3100.2890.6370.145mms800.0900.7490.0900.0620.0000.000mmcens400.3150.8680.3180.2820.6370.138mmstftq0.850.7580.0850.0620.0000.000mmcens0.3180.8680.3180.2820.6550.138mmstftq0.850.7590.0850.0620.0000.000mmcens0.3180.8680.3180.2820.5850.138mmcens0.0850.7590.0850.0620.0000.000mmcens0.3100.8480.3100.2800.6140.128mmcens0.0850.6910.0850.0581.0000.000mmq0.2930.8650.2620.2010.105mmcens400.0700.7060.7070.0550.0000.000mms600.2850.2850.2610.5080.105mmcens400.0200.0500.0500.0010.0000.000mms600.2950.2950.2590.5880.125 <t< th=""><th>mmsqc80</th><th></th><th></th><th>0.133</th><th>0.096</th><th></th><th>0.000</th><th>mmsqc</th><th></th><th></th><th></th><th>0.326</th><th></th><th></th></t<>	mmsqc80			0.133	0.096		0.000	mmsqc				0.326			
mfcxtft 0.118 0.783 0.118 0.075 0.333 0.003 mmcen40 0.323 0.879 0.323 0.309 0.653 0.123 mms40 0.093 0.757 0.093 0.072 0.000 0.000 mmq40 0.310 0.865 0.310 0.289 0.637 0.145 mms80 0.090 0.749 0.090 0.062 0.000 0.000 mfccstft 0.305 0.869 0.305 0.286 0.573 0.138 mmstftq 0.085 0.758 0.085 0.062 0.000 0.000 mmcens 0.318 0.868 0.318 0.282 0.585 0.138 mmstftq 0.085 0.759 0.085 0.062 0.000 0.000 mmcens 0.318 0.868 0.318 0.282 0.585 0.138 mmcens 0.085 0.759 0.085 0.062 0.000 0.000 mms40 0.310 0.848 0.310 0.280 0.614 0.128 mmcens 0.085 0.691 0.055 0.000 0.000	mmq		-	0.113	0.081			mms80	0.343						
mms40 0.093 0.757 0.093 0.072 0.000 0.000 mmq40 0.310 0.865 0.310 0.289 0.637 0.145 mms80 0.090 0.749 0.090 0.662 0.000 0.000 mfcstft 0.305 0.869 0.305 0.289 0.637 0.138 mmstftq 0.855 0.758 0.085 0.622 0.000 0.000 mfcstft 0.305 0.869 0.305 0.286 0.573 0.138 mmstftq 0.855 0.759 0.085 0.622 0.500 0.000 mmcens 0.318 0.868 0.318 0.282 0.585 0.138 mmcens 0.855 0.759 0.855 0.622 0.000 mms40 0.310 0.848 0.310 0.282 0.585 0.138 mmcens 0.855 0.691 0.055 0.000 0.000 mmq0 0.293 0.876 0.293 0.262 0.700 0.105 mmcens40	mmq40							mmstftq40							
mms80 0.090 0.749 0.090 0.062 0.000 mfcstft 0.305 0.869 0.305 0.286 0.573 0.138 mmstftq 0.085 0.758 0.085 0.662 0.500 0.003 mmcens 0.318 0.869 0.305 0.286 0.573 0.138 mmstftq40 0.085 0.759 0.085 0.662 0.000 0.000 mmcens 0.318 0.868 0.318 0.282 0.585 0.138 mmcens 0.085 0.759 0.085 0.662 0.000 0.000 mms40 0.310 0.884 0.310 0.280 0.614 0.128 mmcens 0.085 0.691 0.085 0.058 1.000 0.000 mmq 0.293 0.876 0.293 0.262 0.700 0.105 mmcens40 0.070 0.706 0.070 0.055 0.000 0.000 mfcstft80 0.285 0.876 0.285 0.261 0.508 0.150	mfccstft		0.783	0.118	0.075	0.333	0.003	mmcens40	0.323	0.879	0.323	0.309	0.653	0.123	
mmstftq 0.085 0.758 0.085 0.062 0.500 0.003 mmcens 0.318 0.868 0.318 0.282 0.585 0.138 mmstftq40 0.085 0.759 0.085 0.062 0.000 0.000 mms40 0.310 0.848 0.310 0.282 0.585 0.138 mmcens 0.085 0.691 0.085 0.058 1.000 0.003 mmq 0.293 0.846 0.293 0.262 0.700 0.105 mmcens40 0.070 0.706 0.070 0.055 0.000 0.000 mfccstft80 0.285 0.285 0.261 0.508 0.105 mms60 0.068 0.760 0.020 0.001 0.000 mms60 0.295 0.879 0.295 0.259 0.588 0.125 mms60 0.020 0.000 0.000 mfccmel40 0.200 0.001 0.000 0.000 0.020 0.500 0.201 0.001 0.000	mms40			0.093	0.072			mmq40		0.865	0.310	0.289			
mmstftq40 0.085 0.759 0.085 0.062 0.000 0.000 mms40 0.310 0.884 0.310 0.280 0.614 0.128 mmcens 0.085 0.691 0.085 0.058 1.000 0.003 mmq 0.293 0.876 0.293 0.262 0.700 0.105 mmcens40 0.070 0.706 0.070 0.055 0.000 0.000 mfccstft80 0.285 0.856 0.262 0.700 0.508 0.510 mms60 0.068 0.760 0.068 0.041 0.000 0.000 mms60 0.295 0.876 0.285 0.261 0.508 0.510 mms60 0.020 0.500 0.001 0.000 0.000 mms60 0.295 0.879 0.295 0.259 0.588 0.125 mfccmel40 0.020 0.500 0.001 0.000 0.000 mfccmel40 0.020 0.001 0.000 0.001	mms80		-		0.062			mfccstft		0.869	0.305	0.286			
mmcens 0.085 0.691 0.085 0.058 1.000 0.003 mmq 0.293 0.876 0.293 0.262 0.700 0.105 mmcens40 0.070 0.706 0.070 0.055 0.000 0.000 mfccstft80 0.285 0.876 0.293 0.262 0.700 0.105 mms60 0.068 0.760 0.068 0.041 0.000 0.000 mms60 0.295 0.876 0.293 0.262 0.700 0.105 mfccmel40 0.020 0.500 0.001 0.000 0.000 mfccmel40 0.205 0.295 0.295 0.295 0.259 0.588 0.125	mmstftq				0.062			mmcens			0.318	0.282	0.585		
mmcens40 0.070 0.706 0.070 0.055 0.000 0.000 mfccstft80 0.285 0.856 0.285 0.261 0.508 0.150 mms60 0.068 0.760 0.068 0.041 0.000 0.000 mms60 0.295 0.879 0.295 0.259 0.588 0.125 mfccmel40 0.020 0.500 0.001 0.000 0.000 mfccmel40 0.020 0.020 0.001 0.000 0.000	mmstftq40				0.062			mms40				0.280			
mms60 0.068 0.760 0.068 0.041 0.000 0.000 mms60 0.295 0.879 0.295 0.259 0.588 0.125 mfccmel40 0.020 0.500 0.001 0.000 0.000 mfccmel40 0.020 0.020 0.001 0.000 0.000	mmcens											0.262			
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000	mmcens40		0.706	0.070	0.055		0.000	mfccstft80			0.285	0.261		0.150	
	mms60	0.068	0.760	0.068	0.041	0.000	0.000	mms60	0.295	0.879	0.295	0.259	0.588	0.125	
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000	mfccmal40	0.020	0 500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000	
	Infectien40	0.020	0.000	0.020	0.001		0.000								

TABLE B.25: Results of the 4 models with extra layer for different feature combinations -ESC-50.

acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

Dropout Rate of 0.2 B.4.3

TABLE B.26: Results of the 4 best models for dropout of 0.2 and different feature combi-nations - ESC-10.

	Mod	el 1: (oj	ptimizer:	Adam)				Mode	l 2: (op	timizer: A	Adagrad)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmstftq	0.725	0.936	0.725	0.724	0.750	0.713	mmstftq	0.638	0.907	0.638	0.639	0.707	0.513
mmcens40	0.713	0.952	0.713	0.708	0.727	0.700	mmq40	0.600	0.928	0.600	0.569	0.724	0.525
mmstftq40	0.713	0.929	0.713	0.699	0.733	0.688	mmcens	0.550	0.912	0.550	0.528	0.696	0.400
mmq40	0.700	0.952	0.700	0.694	0.724	0.688	mmcens40	0.550	0.921	0.550	0.525	0.620	0.388
mmq	0.688	0.932	0.688	0.687	0.705	0.688	mms40	0.563	0.919	0.563	0.520	0.773	0.425
mms60	0.700	0.926	0.700	0.684	0.718	0.700	mmq	0.550	0.894	0.550	0.519	0.609	0.350
mms40	0.688	0.941	0.688	0.681	0.689	0.638	mmsqc	0.563	0.911	0.563	0.515	0.681	0.400
mmsqc	0.675	0.916	0.675	0.670	0.707	0.663	mfccstft	0.525	0.891	0.525	0.490	0.625	0.313
mms80	0.675	0.911	0.675	0.664	0.703	0.650	mfccstft80	0.513	0.912	0.513	0.489	0.604	0.400
mmcens	0.663	0.896	0.663	0.658	0.680	0.638	mms80	0.500	0.891	0.500	0.479	0.574	0.388
mmsqc80	0.675	0.923	0.675	0.656	0.697	0.663	mmsqc80	0.500	0.901	0.500	0.476	0.547	0.363
mfccstft	0.613	0.881	0.613	0.611	0.632	0.538	mms60	0.488	0.904	0.488	0.465	0.581	0.313
mfccstft80	0.613	0.877	0.613	0.603	0.618	0.588	mmstftq40	0.500	0.931	0.500	0.463	0.654	0.425
mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000
mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000
	Mode	1 3: (op	timizer: 1	Adamax)				Mode	el 4: (op	timizer:	Nadam)		
			•							•			
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	nrec	recall
Features	acc	AUC	f1score	f1score	prec	recall	Features	acc	AUC	f1score	f1score	prec	recall
mmstftq40	0.700	0.939	f1score 0.700	f1score 0.694	0.758	0.625	mms60	0.775	0.956	f1score 0.775	f1score 0.774	0.787	0.738
mmstftq40 mmstftq	0.700 0.700	0.939 0.958	f1score 0.700 0.700	f1score 0.694 0.691	0.758 0.782	0.625 0.538	mms60 mmq40	0.775 0.725	0.956 0.942	f1score 0.775 0.725	f1score 0.774 0.719	0.787 0.753	0.738 0.725
mmstftq40 mmstftq mmsqc80	0.700 0.700 0.700	0.939 0.958 0.942	f1score 0.700 0.700 0.700	f1score 0.694 0.691 0.689	0.758 0.782 0.735	0.625 0.538 0.625	mms60 mmq40 mmcens40	0.775 0.725 0.700	0.956 0.942 0.926	f1score 0.775 0.725 0.700	f1score 0.774 0.719 0.691	0.787 0.753 0.757	0.738 0.725 0.700
mmstftq40 mmstftq mmsqc80 mmq	0.700 0.700 0.700 0.675	0.939 0.958 0.942 0.934	f1score 0.700 0.700 0.700 0.675	f1score 0.694 0.691 0.689 0.665	0.758 0.782 0.735 0.699	0.625 0.538 0.625 0.638	mms60 mmq40 mmcens40 mmstftq40	0.775 0.725 0.700 0.688	0.956 0.942 0.926 0.925	f1score 0.775 0.725 0.700 0.688	f1score 0.774 0.719 0.691 0.682	0.787 0.753 0.757 0.714	0.738 0.725 0.700 0.688
mmstftq40 mmstftq mmsqc80 mmq mmcens40	0.700 0.700 0.700 0.675 0.663	0.939 0.958 0.942 0.934 0.950	f1score 0.700 0.700 0.675 0.663	f1score 0.694 0.691 0.689 0.665 0.654	0.758 0.782 0.735 0.699 0.750	0.625 0.538 0.625 0.638 0.563	mms60 mmq40 mmcens40 mmstftq40 mmsqc	0.775 0.725 0.700 0.688 0.675	0.956 0.942 0.926 0.925 0.921	f1score 0.775 0.725 0.700 0.688 0.675	f1score 0.774 0.719 0.691 0.682 0.677	0.787 0.753 0.757 0.714 0.761	0.738 0.725 0.700 0.688 0.638
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mmsqc	0.700 0.700 0.675 0.663 0.663	0.939 0.958 0.942 0.934 0.950 0.946	f1score 0.700 0.700 0.675 0.663 0.663	f1score 0.694 0.691 0.689 0.665 0.654 0.644	0.758 0.782 0.735 0.699 0.750 0.742	0.625 0.538 0.625 0.638 0.563 0.613	mms60 mmq40 mmcens40 mmstftq40 mmsqc mmsqc80	0.775 0.725 0.700 0.688 0.675 0.675	0.956 0.942 0.926 0.925 0.921 0.939	f1score 0.775 0.725 0.700 0.688 0.675 0.675	f1score 0.774 0.719 0.691 0.682 0.677 0.675	0.787 0.753 0.757 0.714 0.761 0.693	0.738 0.725 0.700 0.688 0.638 0.650
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mmsqc mms60	0.700 0.700 0.675 0.663 0.663 0.650	0.939 0.958 0.942 0.934 0.950 0.946 0.949	f1score 0.700 0.700 0.675 0.663 0.663 0.663 0.650	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642	0.758 0.782 0.735 0.699 0.750 0.742 0.782	0.625 0.538 0.625 0.638 0.563 0.613 0.538	mms60 mmq40 mmcens40 mmstftq40 mmsqc mmsqc80 mmq	0.775 0.725 0.700 0.688 0.675 0.675 0.675	0.956 0.942 0.926 0.925 0.921 0.939 0.917	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669	0.787 0.753 0.757 0.714 0.761 0.693 0.712	0.738 0.725 0.700 0.688 0.638 0.650 0.650
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mmsqc mms60 mmq40	0.700 0.700 0.675 0.663 0.663 0.650 0.663	0.939 0.958 0.942 0.934 0.950 0.946 0.949 0.947	f1score 0.700 0.700 0.675 0.663 0.663 0.650 0.663	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641	0.758 0.782 0.735 0.699 0.750 0.742 0.782 0.772	0.625 0.538 0.625 0.638 0.563 0.613 0.538 0.550	mms60 mmq40 mmcens40 mmstftq40 mmsqc mmsqc80 mmq mms80	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.675	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665	0.787 0.753 0.757 0.714 0.761 0.693 0.712 0.701	0.738 0.725 0.700 0.688 0.638 0.650 0.650 0.675
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mmsqc mms60 mmq40 mfccstft	0.700 0.700 0.675 0.663 0.663 0.650 0.663 0.638	0.939 0.958 0.942 0.934 0.950 0.946 0.949 0.947 0.908	f1score 0.700 0.700 0.675 0.663 0.663 0.650 0.663 0.663	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641 0.624	0.758 0.782 0.735 0.699 0.750 0.742 0.782 0.772 0.667	0.625 0.538 0.625 0.638 0.563 0.613 0.538 0.550 0.525	mms60 mmq40 mmcens40 mmsqtfq40 mmsqc mmsqc80 mmq mms80 mfccstft80	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665 0.652	0.787 0.753 0.757 0.714 0.761 0.693 0.712 0.701 0.699	0.738 0.725 0.700 0.688 0.638 0.650 0.650 0.675 0.638
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mmsqc mms60 mmq40 mfccstft mms40	0.700 0.700 0.675 0.663 0.663 0.650 0.663 0.638 0.625	0.939 0.958 0.942 0.934 0.950 0.946 0.949 0.947 0.908 0.945	f1score 0.700 0.700 0.675 0.663 0.650 0.663 0.663 0.638 0.625	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641 0.624 0.616	0.758 0.782 0.735 0.699 0.750 0.742 0.782 0.772 0.667 0.724	0.625 0.538 0.625 0.638 0.563 0.538 0.550 0.525 0.525	mms60 mmq40 mmcens40 mmsqc mmsqc80 mmq mms80 mfccstft80 mmcens	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867 0.916	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675	f1score 0.774 0.719 0.691 0.682 0.675 0.665 0.652 0.646	0.787 0.753 0.757 0.714 0.761 0.693 0.712 0.701 0.699 0.662	0.738 0.725 0.700 0.688 0.638 0.650 0.650 0.675 0.638 0.613
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mmsqc mms60 mmq40 mfccstft	0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.638 0.625 0.613	0.939 0.958 0.942 0.934 0.950 0.946 0.949 0.947 0.908 0.945 0.937	f1score 0.700 0.700 0.675 0.663 0.650 0.663 0.663 0.638 0.625 0.613	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641 0.624 0.616 0.612	0.758 0.782 0.735 0.699 0.750 0.742 0.782 0.772 0.667 0.724 0.689	0.625 0.538 0.625 0.638 0.563 0.613 0.538 0.550 0.525 0.525 0.525	mms60 mmq40 mmcens40 mmsqc mmsqc80 mmq mms80 mfccstft80 mmcens mmstftq	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867 0.916 0.899	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.663 0.650	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665 0.652 0.646 0.638	0.787 0.753 0.757 0.714 0.761 0.693 0.712 0.701 0.699 0.662 0.649	0.738 0.725 0.700 0.688 0.638 0.650 0.650 0.675 0.638 0.613 0.600
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mmsqc mms60 mfccstft mms40 mms80 mmcens	0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.638 0.625 0.613 0.613	0.939 0.958 0.942 0.934 0.950 0.946 0.949 0.947 0.908 0.945 0.937 0.938	f1score 0.700 0.700 0.675 0.663 0.650 0.663 0.663 0.638 0.625 0.613	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.644 0.624 0.616 0.612 0.592	0.758 0.735 0.699 0.750 0.742 0.782 0.772 0.667 0.724 0.689 0.701	0.625 0.538 0.625 0.638 0.563 0.538 0.550 0.525 0.525 0.525 0.525 0.588	mms60 mmq40 mmcens40 mmsqc mmsqc80 mmq mms80 mfccstft80 mmcens mmstftq mms40	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867 0.916 0.899 0.953	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665 0.652 0.646 0.638 0.637	0.787 0.753 0.757 0.714 0.761 0.693 0.712 0.701 0.699 0.662 0.649 0.658	0.738 0.725 0.700 0.688 0.638 0.650 0.650 0.675 0.638 0.613 0.600 0.625
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mms60 mmg40 mfccstft mms40 mms80 mmcens mfccstft80	0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.638 0.625 0.613 0.613 0.613 0.575	0.939 0.958 0.942 0.934 0.950 0.946 0.949 0.947 0.908 0.945 0.937 0.938 0.914	f1score 0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.638 0.625 0.613 0.575	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641 0.624 0.616 0.612 0.592 0.554	0.758 0.782 0.735 0.699 0.750 0.742 0.772 0.667 0.724 0.689 0.701 0.609	0.625 0.538 0.625 0.638 0.563 0.538 0.550 0.525 0.525 0.525 0.525 0.588 0.488	mms60 mmq40 mmcens40 mmsqc mmsqc80 mmq mms80 mfccstft80 mmcens mmstftq mms40 mfccstft	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.663 0.650 0.650 0.650 0.650 0.588	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867 0.916 0.899 0.953 0.896	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.650 0.650 0.650 0.588	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665 0.652 0.646 0.638 0.637 0.583	0.787 0.753 0.757 0.714 0.761 0.693 0.712 0.701 0.699 0.662 0.649 0.658 0.634	0.738 0.725 0.700 0.688 0.638 0.650 0.650 0.675 0.638 0.613 0.600 0.625 0.563
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mms60 mmq40 mfccstft mms40 mms80 mmcens mfccstft80 mfccmel40	0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.638 0.625 0.613 0.613 0.575 0.100	$\begin{array}{c} 0.939\\ \textbf{0.958}\\ 0.942\\ 0.934\\ 0.950\\ 0.946\\ 0.949\\ 0.947\\ 0.908\\ 0.945\\ 0.937\\ 0.938\\ 0.914\\ 0.500\\ \end{array}$	f1score 0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.613 0.575 0.100	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641 0.624 0.612 0.592 0.554 0.018	0.758 0.782 0.735 0.699 0.750 0.742 0.772 0.667 0.724 0.689 0.701 0.609 0.000	0.625 0.538 0.625 0.638 0.563 0.538 0.550 0.525 0.525 0.525 0.525 0.528 0.588 0.488 0.000	mms60 mmq40 mmcens40 mmsqt mmsqc mmsqc mmg mms80 mfccstft80 mmcens mmstftq mms40 mfccstft mfccmel40	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650 0.588 0.100	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867 0.916 0.899 0.953 0.896 0.500	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650 0.650 0.588 0.100	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665 0.652 0.646 0.638 0.637 0.583 0.018	$\begin{array}{c} \textbf{0.787} \\ \textbf{0.753} \\ \textbf{0.757} \\ \textbf{0.757} \\ \textbf{0.714} \\ \textbf{0.761} \\ \textbf{0.693} \\ \textbf{0.712} \\ \textbf{0.701} \\ \textbf{0.699} \\ \textbf{0.662} \\ \textbf{0.649} \\ \textbf{0.658} \\ \textbf{0.634} \\ \textbf{0.000} \end{array}$	$\begin{array}{c} 0.738\\ \textbf{0.725}\\ 0.700\\ 0.688\\ 0.638\\ 0.650\\ 0.650\\ 0.675\\ 0.638\\ 0.613\\ 0.600\\ 0.625\\ 0.563\\ 0.000\\ \end{array}$
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mms60 mmq40 mfccstft mms40 mmcens mfccstft80 mfccmel40 mfccmel80	0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.663 0.625 0.613 0.613 0.613 0.575 0.100 0.100	$\begin{array}{c} 0.939\\ \textbf{0.958}\\ 0.942\\ 0.934\\ 0.950\\ 0.946\\ 0.949\\ 0.947\\ 0.908\\ 0.945\\ 0.937\\ 0.938\\ 0.914\\ 0.500\\ 0.500\\ \end{array}$	f1score 0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.613 0.613 0.575 0.100	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641 0.624 0.616 0.612 0.592 0.554 0.018 0.018	0.758 0.782 0.735 0.699 0.750 0.742 0.742 0.772 0.667 0.724 0.689 0.701 0.609 0.000 0.000	0.625 0.538 0.625 0.638 0.563 0.550 0.525 0.525 0.525 0.525 0.525 0.588 0.488 0.000 0.000	mms60 mmq40 mmcens40 mmstftq40 mmsqc80 mmq mms80 mfccstft80 mmcens mmstftq mms40 mfccstft mfccmel40 mfccmel80	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650 0.650 0.558 0.100 0.100	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867 0.916 0.899 0.953 0.896 0.500 0.500	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650 0.588 0.100 0.100	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665 0.652 0.646 0.638 0.637 0.583	0.787 0.753 0.757 0.714 0.761 0.693 0.712 0.701 0.699 0.662 0.649 0.658 0.634	0.738 0.725 0.700 0.688 0.638 0.650 0.650 0.675 0.638 0.613 0.600 0.625 0.563
mmstftq40 mmstftq mmsqc80 mmq mmcens40 mms60 mmq40 mfccstft mms40 mmcens mfccstft80 mfccmel40 mfccmel80	0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.663 0.625 0.613 0.613 0.613 0.575 0.100 0.100	$\begin{array}{c} 0.939\\ \textbf{0.958}\\ 0.942\\ 0.934\\ 0.950\\ 0.946\\ 0.949\\ 0.947\\ 0.908\\ 0.945\\ 0.937\\ 0.938\\ 0.914\\ 0.500\\ 0.500\\ \end{array}$	f1score 0.700 0.700 0.675 0.663 0.663 0.663 0.663 0.613 0.613 0.575 0.100	f1score 0.694 0.691 0.689 0.665 0.654 0.644 0.642 0.641 0.624 0.616 0.612 0.592 0.554 0.018 0.018	0.758 0.782 0.735 0.699 0.750 0.742 0.742 0.772 0.667 0.724 0.689 0.701 0.609 0.000 0.000	0.625 0.538 0.625 0.638 0.563 0.550 0.525 0.525 0.525 0.525 0.525 0.588 0.488 0.000 0.000	mms60 mmq40 mmcens40 mmsqt mmsqc mmsqc mmg mms80 mfccstft80 mmcens mmstftq mms40 mfccstft mfccmel40	0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650 0.650 0.558 0.100 0.100	0.956 0.942 0.926 0.925 0.921 0.939 0.917 0.913 0.867 0.916 0.899 0.953 0.896 0.500 0.500	f1score 0.775 0.725 0.700 0.688 0.675 0.675 0.675 0.675 0.663 0.650 0.650 0.650 0.588 0.100 0.100	f1score 0.774 0.719 0.691 0.682 0.677 0.675 0.669 0.665 0.652 0.646 0.638 0.637 0.583 0.018	$\begin{array}{c} \textbf{0.787} \\ \textbf{0.753} \\ \textbf{0.757} \\ \textbf{0.757} \\ \textbf{0.714} \\ \textbf{0.761} \\ \textbf{0.693} \\ \textbf{0.712} \\ \textbf{0.701} \\ \textbf{0.699} \\ \textbf{0.662} \\ \textbf{0.649} \\ \textbf{0.658} \\ \textbf{0.634} \\ \textbf{0.000} \end{array}$	$\begin{array}{c} 0.738\\ \textbf{0.725}\\ 0.700\\ 0.688\\ 0.638\\ 0.650\\ 0.650\\ 0.675\\ 0.638\\ 0.613\\ 0.600\\ 0.625\\ 0.563\\ 0.000\\ \end{array}$

	Mod	el 1: (o	ptimizer:	Adam)				Mod	lel 2: (o	ptimizer	: SGD)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmq40	0.398	0.829	0.398	0.386	0.472	0.358	mms40	0.313	0.863	0.313	0.289	0.519	0.140
mmstftq	0.390	0.810	0.390	0.386	0.452	0.340	mmcens40	0.303	0.868	0.303	0.279	0.495	0.130
mmstftq40	0.393	0.839	0.393	0.385	0.476	0.350	mms80	0.275	0.852	0.275	0.263	0.500	0.138
mmsqc80	0.393	0.811	0.393	0.382	0.449	0.360	mmsqc80	0.275	0.844	0.275	0.262	0.510	0.130
mmsqc	0.390	0.817	0.390	0.376	0.445	0.333	mmstftq	0.255	0.852	0.255	0.245	0.405	0.113
mmq	0.383	0.817	0.383	0.373	0.445	0.358	mmq	0.253	0.858	0.253	0.244	0.496	0.148
mms60	0.368	0.828	0.368	0.350	0.439	0.308	mfccstft	0.270	0.856	0.270	0.243	0.468	0.110
mfccstft80	0.358	0.811	0.358	0.349	0.429	0.333	mfccstft80	0.248	0.852	0.248	0.241	0.506	0.105
mmcens	0.353	0.820	0.353	0.341	0.416	0.305	mmstftq40	0.238	0.849	0.238	0.223	0.500	0.120
mms80	0.360	0.805	0.360	0.339	0.405	0.308	mmcens	0.238	0.827	0.238	0.220	0.435	0.125
mmcens40	0.345	0.823	0.345	0.335	0.405	0.283	mms60	0.250	0.856	0.250	0.219	0.429	0.113
mfccstft	0.338	0.804	0.338	0.334	0.397	0.300	mmq40	0.243	0.844	0.243	0.218	0.486	0.128
mms40	0.343	0.826	0.343	0.327	0.436	0.315	mmsqc	0.228	0.854	0.228	0.212	0.490	0.118
mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000
mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000	mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000
	Mode	1 3: (op	timizer:	Adamax)				Mode	el 4: (op	timizer:	Nadam)		
Features	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
reatures	acc		f1score	f1score			reatures	acc		f1score	f1score	-	
mmsqc80	0.383	0.875	0.383	0.373	0.583	0.228	mfccstft80	0.403	0.816	0.403	0.388	0.459	0.353
mmstftq	0.365	0.889	0.365	0.349	0.556	0.223	mmsqc	0.385	0.840	0.385	0.371	0.472	0.358
mms80	0.348	0.878	0.348	0.334	0.555	0.215	mmstftq	0.378	0.825	0.378	0.371	0.452	0.350
mfccstft80	0.345	0.874	0.345	0.329	0.544	0.218	mmstftq40	0.370	0.827	0.370	0.364	0.457	0.323
mmsqc	0.350	0.874	0.350	0.328	0.545	0.198	mms40	0.368	0.818	0.368	0.354	0.435	0.310
mmq	0.335	0.866	0.335	0.316	0.536	0.188	mms80	0.375	0.821	0.375	0.352	0.424	0.330
mmcens					0.400	01(0)	mmsqc80	0.363	0.810	0.363	0.348	0.417	0.335
	0.330	0.865	0.330	0.314	0.492	0.160	minisquo	0.303	0.010	0.303	0.540	0.117	
mms60	0.330 0.323	0.865 0.872	0.330 0.323	0.314 0.312	0.492 0.514	0.160	mmcens	0.360	0.810	0.360	0.346	0.427	0.308
							· · ·						0.308 0.310
mms60 mfccstft mmcens40	0.323 0.325 0.323	0.872	0.323	0.312	0.514	0.178 0.155 0.175	mmcens	0.360	0.809	0.360	0.346	0.427	
mms60 mfccstft	0.323 0.325	0.872 0.863	0.323 0.325	0.312 0.307	0.514 0.504	0.178 0.155	mmcens mmq	0.360 0.348	0.809 0.823	0.360 0.348	0.346 0.345	0.427 0.401	0.310
mms60 mfccstft mmcens40 mmstftq40	0.323 0.325 0.323	0.872 0.863 0.878	0.323 0.325 0.323	0.312 0.307 0.306	0.514 0.504 0.538	0.178 0.155 0.175	mmcens mmq mmq40	0.360 0.348 0.343	0.809 0.823 0.813	0.360 0.348 0.343	0.346 0.345 0.337	0.427 0.401 0.403	0.310 0.300
mms60 mfccstft mmcens40	0.323 0.325 0.323 0.313	0.872 0.863 0.878 0.883	0.323 0.325 0.323 0.313	0.312 0.307 0.306 0.304	0.514 0.504 0.538 0.526	0.178 0.155 0.175 0.178	mmcens mmq mmq40 mmcens40	0.360 0.348 0.343 0.353	0.809 0.823 0.813 0.823	0.360 0.348 0.343 0.353	0.346 0.345 0.337 0.334	0.427 0.401 0.403 0.421	0.310 0.300 0.295
mms60 mfccstft mmcens40 mmstftq40 mmq40	0.323 0.325 0.323 0.313 0.318	0.872 0.863 0.878 0.883 0.875	0.323 0.325 0.323 0.313 0.318	0.312 0.307 0.306 0.304 0.300	0.514 0.504 0.538 0.526 0.537	0.178 0.155 0.175 0.178 0.183	mmcens mmq mmq40 mmcens40 mfccstft	0.360 0.348 0.343 0.353 0.333	0.809 0.823 0.813 0.823 0.800	0.360 0.348 0.343 0.353 0.333	0.346 0.345 0.337 0.334 0.319	$\begin{array}{c} 0.427 \\ 0.401 \\ 0.403 \\ 0.421 \\ 0.401 \end{array}$	0.310 0.300 0.295 0.290
mms60 mfccstft mmcens40 mmstftq40 mmq40 mms40	0.323 0.325 0.323 0.313 0.318 0.308	0.872 0.863 0.878 0.883 0.875 0.877	0.323 0.325 0.323 0.313 0.318 0.308	0.312 0.307 0.306 0.304 0.300 0.292	0.514 0.504 0.538 0.526 0.537 0.553	0.178 0.155 0.175 0.178 0.183 0.158	mmcens mmq mmq40 mmcens40 mfccstft mms60	0.360 0.348 0.343 0.353 0.333 0.333	0.809 0.823 0.813 0.823 0.800 0.801	0.360 0.348 0.343 0.353 0.333 0.333	0.346 0.345 0.337 0.334 0.319 0.319	$\begin{array}{c} 0.427 \\ 0.401 \\ 0.403 \\ 0.421 \\ 0.401 \\ 0.410 \end{array}$	0.310 0.300 0.295 0.290 0.308

TABLE B.27: Results of the 4 best models for dropout of 0.2 and different feature combi-nations - ESC-50.

acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

Dropout Rate of 0.6 B.4.4

TABLE B.28: Results of the 4 best models for dropout of 0.6 and different feature combi-nations - ESC-10.

	Mod	el 1: (oj	ptimizer:	Adam)				Mode	l 2: (op	timizer: A	Adagrad)		
Features	acc	AUC	micro f1score	macro f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mmstftq40	0.638	0.921	0.638	0.623	0.852	0.288	mmsqc	0.375	0.813	0.375	0.350	0.750	0.038
mmsqc	0.638	0.923	0.638	0.622	1.000	0.238	mmstftq	0.350	0.804	0.350	0.301	0.700	0.088
mmsqc80	0.613	0.925	0.613	0.599	0.696	0.200	mmstftq40	0.363	0.833	0.363	0.290	0.714	0.125
mmq	0.613	0.925	0.613	0.599	0.810	0.213	mms60	0.350	0.797	0.350	0.280	0.786	0.138
mmcens	0.613	0.931	0.613	0.586	0.850	0.213	mms40	0.300	0.788	0.300	0.250	0.727	0.100
mmstftq	0.588	0.913	0.588	0.559	0.870	0.250	mms80	0.313	0.776	0.313	0.244	0.500	0.075
mms80	0.575	0.895	0.575	0.540	0.733	0.138	mmcens	0.300	0.766	0.300	0.240	0.400	0.050
mms60	0.488	0.877	0.488	0.490	0.813	0.163	mmsqc80	0.313	0.768	0.313	0.234	0.556	0.188
mms40	0.475	0.914	0.475	0.452	0.769	0.125	mmcens40	0.250	0.746	0.250	0.176	0.412	0.088
mfccstft80	0.400	0.835	0.400	0.329	0.533	0.100	mmq	0.263	0.825	0.263	0.174	0.542	0.163
mmq40	0.325	0.802	0.325	0.319	1.000	0.113	mmq40	0.225	0.781	0.225	0.161	0.692	0.113
mfccstft	0.388	0.831	0.388	0.309	0.529	0.113	mfccstft	0.150	0.769	0.150	0.101	0.500	0.038
mmcens40	0.313	0.784	0.313	0.285	0.800	0.050	mfccstft80	0.163	0.737	0.163	0.084	0.625	0.063
mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel40	0.100	0.500	0.100	0.018	0.000	0.000
mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000	mfccmel80	0.100	0.500	0.100	0.018	0.000	0.000
	Mode	1 3: (op	timizer:	Adamax)				Mode	el 4: (op	timizer:	Nadam)		
			miana							micro	macro		
Eastures		ALIC	micro	macro		maga11	Ecotumos		AUC	micro	macro		maga 11
Features	acc	AUC	f1score	f1score	prec	recall	Features	acc	AUC	f1score	f1score	prec	recall
Features mmsqc80	0.525	0.877	f1score 0.525	f1score 0.512	0.250	0.013	Features mmsqc80	0.600	0.923	f1score 0.600	f1score 0.597	0.857	0.225
	0.525 0.413	0.877 0.831	f1score 0.525 0.413	f1score 0.512 0.399	0.250 0.833	0.013 0.063	mmsqc80 mmstftq	0.600 0.613	0.923 0.909	f1score 0.600 0.613	f1score 0.597 0.597	0.857 0.731	0.225 0.238
mmsqc80	0.525 0.413 0.375	0.877 0.831 0.846	f1score 0.525 0.413 0.375	f1score 0.512 0.399 0.353	0.250 0.833 0.857	0.013 0.063 0.075	mmsqc80 mmstftq mfccstft80	0.600 0.613 0.575	0.923 0.909 0.858	f1score 0.600 0.613 0.575	f1score 0.597 0.597 0.545	0.857 0.731 0.593	0.225 0.238 0.200
mmsqc80 mmstftq	0.525 0.413 0.375 0.388	0.877 0.831 0.846 0.847	f1score 0.525 0.413 0.375 0.388	f1score 0.512 0.399 0.353 0.327	0.250 0.833 0.857 0.000	0.013 0.063 0.075 0.000	mmsqc80 mmstftq	0.600 0.613 0.575 0.563	0.923 0.909 0.858 0.907	f1score 0.600 0.613 0.575 0.563	f1score 0.597 0.597	0.857 0.731	0.225 0.238 0.200 0.150
mmsqc80 mmstftq mmq	0.525 0.413 0.375 0.388 0.325	0.877 0.831 0.846 0.847 0.834	f1score 0.525 0.413 0.375 0.388 0.325	f1score 0.512 0.399 0.353 0.327 0.292	0.250 0.833 0.857 0.000 0.750	0.013 0.063 0.075 0.000 0.038	mmsqc80 mmstftq mfccstft80	0.600 0.613 0.575 0.563 0.525	0.923 0.909 0.858 0.907 0.914	f1score 0.600 0.613 0.575 0.563 0.525	f1score 0.597 0.597 0.545 0.513 0.512	0.857 0.731 0.593 0.857 1.000	0.225 0.238 0.200 0.150 0.150
mmsqc80 mmstftq mmq mms40	0.525 0.413 0.375 0.388 0.325 0.288	0.877 0.831 0.846 0.847 0.834 0.693	f1score 0.525 0.413 0.375 0.388 0.325 0.288	f1score 0.512 0.399 0.353 0.327 0.292 0.263	0.250 0.833 0.857 0.000 0.750 1.000	0.013 0.063 0.075 0.000 0.038 0.013	mmsqc80 mmstftq mfccstft80 mms60	0.600 0.613 0.575 0.563 0.525 0.513	0.923 0.909 0.858 0.907 0.914 0.877	f1score 0.600 0.613 0.575 0.563 0.525 0.513	f1score 0.597 0.545 0.513 0.512 0.475	0.857 0.731 0.593 0.857 1.000 0.625	0.225 0.238 0.200 0.150 0.150 0.125
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40	0.525 0.413 0.375 0.388 0.325 0.288 0.288	0.877 0.831 0.846 0.847 0.834 0.693 0.805	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.288	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250	0.250 0.833 0.857 0.000 0.750 1.000 1.000	0.013 0.063 0.075 0.000 0.038 0.013 0.013	mmsqc80 mmstftq mfccstft80 mms60 mmsqc	0.600 0.613 0.575 0.563 0.525 0.513 0.438	0.923 0.909 0.858 0.907 0.914 0.877 0.859	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438	f1score 0.597 0.597 0.545 0.513 0.512 0.475 0.444	0.857 0.731 0.593 0.857 1.000 0.625 0.800	0.225 0.238 0.200 0.150 0.150 0.125 0.150
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40	0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275	0.877 0.831 0.846 0.847 0.834 0.693 0.805 0.728	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250 0.249	0.250 0.833 0.857 0.000 0.750 1.000 1.000 0.400	0.013 0.063 0.075 0.000 0.038 0.013 0.013 0.025	mmsqc80 mmstftq mfccstft80 mms60 mmsqc mmcens	0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425	0.923 0.909 0.858 0.907 0.914 0.877 0.859 0.877	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425	f1score 0.597 0.545 0.513 0.512 0.475 0.444 0.424	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750	0.225 0.238 0.200 0.150 0.150 0.125 0.150 0.113
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40	0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275 0.263	0.877 0.831 0.846 0.847 0.834 0.693 0.805 0.728 0.747	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275 0.263	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250 0.249 0.248	0.250 0.833 0.857 0.000 0.750 1.000 0.400 0.857	0.013 0.063 0.075 0.000 0.038 0.013 0.013 0.025 0.075	mmsqc80 mmstftq mfccstft80 mms60 mmsqc mmcens mmq	0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400	0.923 0.909 0.858 0.907 0.914 0.877 0.859 0.877 0.869	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400	f1score0.5970.5450.5130.5120.4750.4440.4240.411	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692	0.225 0.238 0.200 0.150 0.150 0.125 0.150 0.113 0.113
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40 mmcens mmq40	0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275 0.263 0.263	0.877 0.831 0.846 0.847 0.834 0.693 0.805 0.728 0.747 0.691	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.288 0.275 0.263 0.263	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250 0.249 0.248 0.235	0.250 0.833 0.857 0.000 0.750 1.000 1.000 0.400 0.857 1.000	0.013 0.063 0.075 0.000 0.038 0.013 0.013 0.025 0.075 0.013	mmsqc80 mmstftq mfccstft80 mms60 mmsqc mmcens mmq mmq40	0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425	0.923 0.909 0.858 0.907 0.914 0.877 0.859 0.877 0.869 0.837	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425	f1score0.5970.5450.5130.5120.4750.4440.4240.4110.367	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692 0.867	0.225 0.238 0.200 0.150 0.150 0.125 0.150 0.113 0.113 0.163
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40 mms80 mmcens	0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.288 0.288 0.275 0.263 0.263 0.263 0.263	0.877 0.831 0.846 0.847 0.834 0.693 0.805 0.728 0.747 0.691 0.667	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.188	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250 0.249 0.248 0.235 0.183	0.250 0.833 0.857 0.000 0.750 1.000 0.400 0.857 1.000 0.000	0.013 0.063 0.075 0.000 0.038 0.013 0.013 0.025 0.075 0.013 0.000	mmsqc80 mmstftq mfccstft80 mms60 mmsqc mmcens mmq mmq40 mms80	0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425 0.288	0.923 0.909 0.858 0.907 0.914 0.877 0.859 0.877 0.869 0.837 0.843	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425 0.288	f1score0.5970.5450.5130.5120.4750.4440.4240.4110.3670.278	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692 0.867 0.538	0.225 0.238 0.200 0.150 0.150 0.125 0.150 0.113 0.113 0.163 0.088
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40 mmcens mmq40	0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.263 0.263 0.263 0.188 0.175	0.877 0.831 0.846 0.847 0.834 0.693 0.805 0.728 0.747 0.691 0.667 0.644	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275 0.263 0.263 0.188 0.175	f1score0.5120.3990.3530.3270.2920.2630.2500.2490.2480.2350.1830.175	0.250 0.833 0.857 0.000 0.750 1.000 0.400 0.857 1.000 0.000 0.000	0.013 0.063 0.075 0.000 0.038 0.013 0.025 0.075 0.013 0.000 0.000	mmsqc80 mmstftq mfccstft80 mmsqc mmsqc mmq mmq40 mms80 mmstftq40 mms40 mmcens40	0.600 0.613 0.575 0.563 0.525 0.513 0.425 0.425 0.400 0.425 0.288 0.263	0.923 0.909 0.858 0.907 0.914 0.877 0.859 0.877 0.869 0.837 0.843 0.843 0.762	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425 0.288 0.263	f1score0.5970.5450.5130.5120.4750.4440.4240.4110.3670.2780.269	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692 0.867 0.538 1.000	0.225 0.238 0.200 0.150 0.125 0.150 0.113 0.113 0.163 0.088 0.088
mmsqc80 mmstftq mms40 mms40 mms60 mmstftq40 mmcens40 mmcens mmq40 mfccstft80 mfccstft mmsqc	0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.263 0.263 0.263 0.188 0.175 0.200	0.877 0.831 0.846 0.847 0.834 0.693 0.805 0.728 0.747 0.691 0.667 0.644 0.648	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263	f1score 0.512 0.399 0.353 0.227 0.292 0.263 0.250 0.249 0.248 0.235 0.183 0.175 0.171	0.250 0.833 0.857 0.000 0.750 1.000 0.400 0.857 1.000 0.000 0.000 1.000	0.013 0.063 0.075 0.000 0.038 0.013 0.025 0.075 0.013 0.000 0.000 0.013	mmsqc80 mmstftq mfccstft80 mmsqc mmcens mmq mmq40 mms80 mmstftq40 mms40 mmcens40 mfccstft	0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425 0.288 0.263 0.213	0.923 0.909 0.858 0.907 0.914 0.877 0.859 0.877 0.869 0.837 0.843 0.762 0.735	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.288 0.263 0.213	f1score 0.597 0.545 0.513 0.512 0.475 0.444 0.424 0.411 0.367 0.278 0.269 0.188	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692 0.867 0.538 1.000 0.375	0.225 0.238 0.200 0.150 0.125 0.150 0.113 0.113 0.163 0.088 0.088 0.038
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40 mmcens mmq40 mfccstft80 mfccstft	0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.263 0.263 0.263 0.188 0.175	0.877 0.831 0.846 0.847 0.834 0.693 0.805 0.728 0.747 0.691 0.667 0.644	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.263 0.168 0.175 0.200 0.100	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250 0.249 0.248 0.235 0.183 0.175 0.171 0.018	0.250 0.833 0.857 0.000 0.750 1.000 0.400 0.857 1.000 0.000 0.000 1.000 0.000	0.013 0.063 0.075 0.000 0.038 0.013 0.025 0.075 0.013 0.000 0.000 0.000 0.013 0.000	mmsqc80 mmstftq mfccstft80 mmsqc mmsqc mmq mmq40 mms80 mmstftq40 mms40 mmcens40	0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425 0.288 0.263 0.213 0.100	0.923 0.909 0.858 0.907 0.914 0.877 0.859 0.877 0.869 0.837 0.843 0.843 0.762	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.400 0.425 0.288 0.263	f1score0.5970.5450.5130.5120.4750.4440.4240.4110.3670.2780.269	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692 0.867 0.538 1.000	0.225 0.238 0.200 0.150 0.125 0.150 0.113 0.113 0.163 0.088 0.088
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40 mmcens mmq40 mfccstft80 mfccstft mmsqc mfccmel40 mfcccmel80	0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.263 0.263 0.263 0.188 0.175 0.200 0.100 0.100	0.877 0.831 0.846 0.847 0.834 0.693 0.7028 0.728 0.747 0.691 0.667 0.644 0.648 0.500 0.500	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275 0.263 0.263 0.175 0.200 0.100 0.100	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250 0.249 0.248 0.235 0.175 0.171 0.018	0.250 0.833 0.857 0.000 0.750 1.000 0.400 0.857 1.000 0.000 0.000 0.000 0.000 0.000	0.013 0.063 0.075 0.000 0.038 0.013 0.025 0.075 0.013 0.000 0.000 0.000 0.013 0.000 0.000	mmsqc80 mmstftq mfccstft80 mms60 mmsqc mmcens mmq mmq40 mms80 mmstftq40 mmcens40 mfccstft mfccmel40 mfccmel80	$\begin{array}{c} 0.600\\ \textbf{0.613}\\ 0.575\\ 0.563\\ 0.525\\ 0.513\\ 0.425\\ 0.425\\ 0.400\\ 0.425\\ 0.288\\ 0.263\\ 0.213\\ 0.100\\ 0.100\\ 0.100 \end{array}$	0.923 0.909 0.858 0.907 0.914 0.877 0.869 0.877 0.869 0.837 0.843 0.843 0.762 0.735 0.500 0.500	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.288 0.263 0.213 0.100	f1score 0.597 0.545 0.513 0.512 0.475 0.444 0.424 0.411 0.367 0.278 0.269 0.188	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692 0.867 0.538 1.000 0.375	0.225 0.238 0.200 0.150 0.125 0.150 0.113 0.113 0.163 0.088 0.088 0.038
mmsqc80 mmstftq mmq mms40 mms60 mmstftq40 mmcens40 mmcens mmq40 mfccstft80 mfccstft mmsqc mfccmel40 mfcccmel80	0.525 0.413 0.375 0.388 0.325 0.288 0.275 0.263 0.263 0.263 0.263 0.188 0.175 0.200 0.100 0.100	0.877 0.831 0.846 0.847 0.834 0.693 0.7028 0.728 0.747 0.691 0.667 0.644 0.648 0.500 0.500	f1score 0.525 0.413 0.375 0.388 0.325 0.288 0.288 0.275 0.263 0.263 0.175 0.200 0.100 0.100	f1score 0.512 0.399 0.353 0.327 0.292 0.263 0.250 0.249 0.248 0.235 0.175 0.171 0.018	0.250 0.833 0.857 0.000 0.750 1.000 0.400 0.857 1.000 0.000 0.000 0.000 0.000 0.000	0.013 0.063 0.075 0.000 0.038 0.013 0.025 0.075 0.013 0.000 0.000 0.000 0.013 0.000 0.000	mmsqc80 mmstftq mfccstft80 mmsqc mmcens mmq mmq40 mms80 mmstftq40 mms40 mfccstft mfccmel40	0.600 0.613 0.575 0.563 0.525 0.513 0.428 0.425 0.400 0.425 0.288 0.263 0.213 0.213 0.100 0.100	0.923 0.909 0.858 0.907 0.914 0.877 0.869 0.877 0.869 0.837 0.843 0.843 0.762 0.735 0.500 0.500	f1score 0.600 0.613 0.575 0.563 0.525 0.513 0.438 0.425 0.288 0.263 0.213 0.100	f1score 0.597 0.545 0.513 0.512 0.475 0.444 0.411 0.367 0.278 0.269 0.188 0.018	0.857 0.731 0.593 0.857 1.000 0.625 0.800 0.750 0.692 0.867 0.538 1.000 0.375 0.000	$\begin{array}{c} 0.225\\ \textbf{0.238}\\ 0.200\\ 0.150\\ 0.150\\ 0.125\\ 0.150\\ 0.113\\ 0.113\\ 0.113\\ 0.163\\ 0.088\\ 0.088\\ 0.038\\ 0.000\\ \end{array}$

mms60 (mmstftq40 (mfccstft80 (acc 0.180	AUC	micro	macro			Model 2: (optimizer: SGD)						
mmstftq40 (mfccstft80 (f1score	f1score	prec	recall	Features	acc	AUC	micro f1score	macro f1score	prec	recall
mfccstft80 (0.810	0.180	0.167	0.625	0.013	mmstftq40	0.053	0.553	0.053	0.034	0.750	0.008
	0.160	0.771	0.160	0.156	0.500	0.005	mmq40	0.053	0.544	0.053	0.034	1.000	0.008
1	0.165	0.778	0.165	0.146	0.533	0.020	mmcens40	0.050	0.547	0.050	0.031	0.800	0.010
mmsqc (0.153	0.782	0.153	0.141	0.667	0.020	mfccstft80	0.045	0.622	0.045	0.031	0.000	0.000
mmsqc80 (0.155	0.815	0.155	0.139	0.818	0.023	mms40	0.053	0.545	0.053	0.030	0.667	0.005
mms80 (0.158	0.822	0.158	0.135	0.800	0.020	mfccstft	0.053	0.647	0.053	0.029	0.000	0.000
mmstftq (0.143	0.783	0.143	0.135	0.800	0.030	mms60	0.048	0.538	0.048	0.028	0.600	0.008
mmcens40 (0.145	0.792	0.145	0.133	0.778	0.018	mmsqc	0.048	0.554	0.048	0.026	1.000	0.005
mmq (0.148	0.783	0.148	0.130	0.778	0.018	mmcens	0.035	0.533	0.035	0.019	0.000	0.000
mmcens (0.120	0.779	0.120	0.112	0.625	0.013	mmsqc80	0.035	0.529	0.035	0.019	1.000	0.003
mmq40 (0.120	0.749	0.120	0.103	0.667	0.005	mms80	0.033	0.545	0.033	0.018	1.000	0.003
mfccstft (0.113	0.743	0.113	0.094	0.200	0.003	mmq	0.033	0.525	0.033	0.011	1.000	0.003
mms40 (0.088	0.737	0.088	0.081	0.667	0.005	mmstftq	0.023	0.503	0.023	0.009	0.200	0.003
mfccmel40 (0.020	0.500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000
mfccmel80 (0.020	0.500	0.020	0.001	0.000	0.000	mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000
ľ	Mode	l 3: (op	timizer: 4	Adamax)				Mode	el 4: (op	timizer:	Nadam)		
Features a	acc	AUC	micro	macro	prec	recall	Features	acc	AUC	micro	macro	prec	recall
i catures a	acc	AUC	f1score	f1score	pice	iccan	reatures	acc	AUC	f1score	f1score	pice	iccan
mmsqc80 (0.050	0.555	0.050	0.036	0.000	0.000	mmsqc80	0.203	0.837	0.203	0.159	0.818	0.023
mmstftq (0.035	0.574	0.035	0.025	0.000	0.000	mmstftq40	0.170	0.794	0.170	0.150	0.600	0.008
mmsqc (0.038	0.548	0.038	0.024	0.000	0.000	mmcens40	0.160	0.807	0.160	0.147	0.429	0.008
mfccstft (0.033	0.584	0.033	0.014	0.000	0.000	mmq	0.165	0.805	0.165	0.141	0.667	0.015
mfccstft80 (0.035	0.529	0.035	0.013	0.000	0.000	mmq40	0.158	0.803	0.158	0.137	1.000	0.028
mmcens (0.028	0.523	0.028	0.012	0.000	0.000	mms80	0.145	0.770	0.145	0.129	0.857	0.015
mms40 (0.025	0.526	0.025	0.009	0.000	0.000	mfccstft80	0.138	0.786	0.138	0.127	0.714	0.013
mms60 (0.023	0.503	0.023	0.005	0.000	0.000	mmstftq	0.138	0.775	0.138	0.120	1.000	0.013
mmcens40 (0.023	0.530	0.023	0.003	0.000	0.000	mmcens	0.123	0.765	0.123	0.111	0.900	0.023
mmq40 (0.020	0.511	0.020	0.001	0.000	0.000	mmsqc	0.130	0.797	0.130	0.108	0.667	0.005
mms80 (0.020	0.502	0.020	0.001	0.000	0.000	mms40	0.118	0.789	0.118	0.093	1.000	0.003
mmstftq40 (0.020	0.504	0.020	0.001	0.000	0.000	mfccstft	0.105	0.731	0.105	0.091	0.600	0.008
	0.020	0.502	0.020	0.001	0.000	0.000	mms60	0.093	0.700	0.093	0.076	1.000	0.005
mfccmel40 (0.020	0.500	0.020	0.001	0.000	0.000	mfccmel40	0.020	0.500	0.020	0.001	0.000	0.000
mfccmel80 (0.020	0.500	0.020	0.001	0.000	0.000	mfccmel80	0.020	0.500	0.020	0.001	0.000	0.000

TABLE B.29: Results of the 4 best models for dropout of 0.6 and different feature combi-nations - ESC-50.

acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

Bibliography

- Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong. VATT: transformers for multimodal self-supervised learning from raw video, audio and text. *CoRR*, abs/2104.11178, 2021. URL https://arxiv.org/abs/2104.11178. [Cited on pages 2, 13, 19, 21, 31, 34, and 122.]
- [2] Joy Krishan Das, Arka Ghosh, Abhijit Kumar Pal, Sumit Dutta, and Amitabha Chakrabarty. Urban sound classification using convolutional neural network and long short term memory based on multiple features. In 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), pages 1–9, 2020. doi: 10.1109/ICDS50568.2020.9268723. [Cited on pages 2, 9, 10, 14, 30, 34, 35, and 122.]
- [3] Joy Krishan Das, Amitabha Chakrabarty, and Md. Jalil Piran. Environmental sound classification using convolution neural networks with different integrated loss functions. *Expert Systems*, 09 2021. doi: https://doi.org/10.1111/exsy.12804. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12804. [Cited on pages 1, 2, 9, 10, 14, 34, 35, and 122.]
- [4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pretraining of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),* pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423. [Cited on page 15.]
- [5] Dolby E Bitstreams. Standards and practices for authoring dolby digital and dolby e bitstreams. 2002. [Cited on page 9.]

- [6] Timothy Dozat. Incorporating Nesterov Momentum into Adam. In Proceedings of the 4th International Conference on Learning Representations, pages 1–4, 2016. [Cited on page 49.]
- [7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research*, 12: 2121–2159, 07 2011. [Cited on page 47.]
- [8] David Elliott, Carlos E. Otero, Steven Wyatt, and Evan Martino. Tiny transformers for environmental sound classification at the edge. *CoRR*, abs/2103.12157, 2021. URL https://arxiv.org/abs/2103.12157. [Cited on pages 2, 13, 15, 16, 21, 31, 34, and 122.]
- [9] Theodore Giannakopoulos, Evaggelos Spyrou, and Stavros J. Perantonis. Recognition of urban sound events using deep context-aware feature extractors and handcrafted features. In John MacIntyre, Ilias Maglogiannis, Lazaros Iliadis, and Elias Pimenidis, editors, *Artificial Intelligence Applications and Innovations*, pages 184–195, Cham, 2019. Springer International Publishing. ISBN 978-3-030-19909-8. [Cited on pages 2, 24, 26, 34, 35, and 122.]
- [10] Pablo Gimeno, Ignacio Viñals, Alfonso Ortega, Antonio Miguel, and Eduardo Lleida. Multiclass audio segmentation based on recurrent neural networks for broadcast domain data. 2020. [Cited on pages 2, 23, 26, 34, and 35.]
- [11] Yuan Gong, Yu-An Chung, and James R. Glass. AST: audio spectrogram transformer. *CoRR*, abs/2104.01778, 2021. URL https://arxiv.org/abs/2104.01778. [Cited on pages xix, 2, 13, 17, 21, 34, 107, 108, and 122.]
- [12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015. URL https://arxiv.org/abs/1512.03385. [Cited on pages xviii, 85, and 86.]
- [13] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks, 2016. URL https://arxiv.org/abs/ 1608.06993. [Cited on page 87.]
- [14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL https://arxiv.org/abs/1412.6980. [Cited on page 48.]

- [15] Qiuqiang Kong, Yong Xu, and Mark Plumbley. Sound event detection of weakly labelled data with cnn-transformer and automatic threshold optimization. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, PP:1–1, 08 2020. doi: 10.1109/ TASLP.2020.3014737. [Cited on pages 2, 13, 14, 21, 31, and 34.]
- [16] Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Gerhard Widmer. Efficient training of audio transformers with patchout. *CoRR*, abs/2110.05069, 2021. URL https://arxiv.org/abs/2110.05069. [Cited on pages 2, 14, 20, 21, 31, 34, and 122.]
- [17] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017. URL https://arxiv.org/abs/1711.05101. [Cited on page 91.]
- [18] Jederson S. Luz, Myllena C. Oliveira, Flávio H.D. Araújo, and Deborah M.V. Magalhães. Ensemble of handcrafted and deep features for urban sound classification. *Applied Acoustics*, 175:107819, 2021. ISSN 0003-682X. doi: https://doi.org/10.1016/ j.apacoust.2020.107819. URL https://www.sciencedirect.com/science/article/ pii/S0003682X20309245. [Cited on pages 2, 25, 26, 34, 35, and 122.]
- [19] Irene Martín-Morató, Maximo Cobos, and Francesc J. Ferri. Adaptive distance-based pooling in convolutional neural networks for audio event classification. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 28:1925–1935, 2020. doi: 10. 1109/TASLP.2020.3001683. [Cited on pages 23, 26, 34, 35, and 122.]
- [20] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python. In *Proceedings of the 14th python in science conference*, volume 8, pages 18–25, 2015. [Cited on pages 10 and 40.]
- [21] Wenjie Mu, Bo Yin, Xianqing Huang, Jiali Xu, and Zehua Du. Environmental sound classification using temporal-frequency attention based convolutional neural network. *Scientific Reports*, 11, 11 2021. doi: 10.1038/s41598-021-01045-4. [Cited on pages 2, 9, 12, 14, 31, 34, 66, and 122.]
- [22] Zohaib Mushtaq and Shun-Feng Su. Efficient classification of environmental sounds through multiple features aggregation and data enhancement techniques for spectrogram images. *Symmetry*, 12(11), 2020. ISSN 2073-8994. doi: 10.3390/sym12111822. URL https://www.mdpi.com/2073-8994/12/11/1822. [Cited on pages 1, 2, 32, 33, 34, 35, and 122.]

- [23] Sooyoung Park, Youngho Jeong, and TaeJin Lee. Many-to-many audio spectrogram tansformer: Transformer for sound event localization and detection. In DCASE, pages 105–109, 2021. URL http://dcase.community/documents/workshop2021/ proceedings/DCASE2021Workshop_Park_39.pdf. [Cited on pages 2, 13, 18, 21, and 34.]
- [24] Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Proceedings of the 23rd Annual ACM Conference on Multimedia, pages 1015–1018. ACM Press. ISBN 978-1-4503-3459-4. doi: 10.1145/2733373.2806390. URL http://dl.acm.org/ citation.cfm?doid=2733373.2806390. [Cited on page 38.]
- [25] Tianhao Qiao, Shunqing Zhang, Shan Cao, and Shugong Xu. High accurate environmental sound classification: Sub-spectrogram segmentation versus temporal-frequency attention mechanism. *Sensors*, 21(16), 2021. ISSN 1424-8220. doi: 10.3390/s21165500. URL https://www.mdpi.com/1424-8220/21/16/5500. [Cited on pages 2, 25, 27, 29, 34, and 122.]
- [26] Nicolae-Catalin Ristea, Radu Tudor Ionescu, and Fahad Shahbaz Khan. Septr: Separable transformer for audio spectrogram processing, 2022. URL https://arxiv. org/abs/2203.09581. [Cited on pages 2, 28, 29, 34, and 122.]
- [27] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.URL https://arxiv.org/abs/1609.04747. [Cited on page 47.]
- [28] J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban sound research. In 22nd ACM International Conference on Multimedia (ACM-MM'14), pages 1041–1044, Orlando, FL, USA, Nov. 2014. [Cited on pages 37 and 65.]
- [29] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data augmentation for environmental sound classification. *IEEE Signal Processing Letters*, 24:279–283, 2017. [Cited on pages 2, 9, 14, 34, 35, and 122.]
- [30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15(56):1929–1958, 2014. URL http: //jmlr.org/papers/v15/srivastava14a.html. [Cited on page 57.]

- [31] Yui Sudo, Katsutoshi Itoyama, Kenji Nishida, and Kazuhiro Nakadai. Multichannel environmental sound segmentation. *Applied Intelligence*, 51:8245–8259, 2021. doi: 10.1007/s10489-021-02314-5. [Cited on pages 28, 31, and 34.]
- [32] Abbas Shah Syed, Daniel Sierra-Sosa, Anup Kumar, and Adel Elmaghraby. Iot in smart cities: A survey of technologies, practices and challenges. *Smart Cities*, 4(2): 429–475, 2021. ISSN 2624-6511. doi: 10.3390/smartcities4020024. URL https://www.mdpi.com/2624-6511/4/2/24. [Cited on page 1.]
- [33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions, 2014. URL https://arxiv.org/abs/1409.4842. [Cited on page 89.]
- [34] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision, 2015. URL https: //arxiv.org/abs/1512.00567. [Cited on page 89.]
- [35] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016. doi: 10.1109/CVPR.2016.308. [Cited on page 89.]
- [36] Tycho Max Sylvester Tax, Jose Luis Diez Antich, Hendrik Purwins, and Lars Maaløe.
 Utilizing domain knowledge in end-to-end audio processing. *ArXiv*, abs/1712.00254, 2017. [Cited on pages 22, 26, 34, 35, and 122.]
- [37] Theodoros Theodorou, Iosif Mporas, and Nikos Fakotakis. An overview of automatic audio segmentation. *International Journal of Information Technology and Computer Science*, 6:1–9, 10 2014. doi: 10.5815/ijitcs.2014.11.01. [Cited on page 22.]
- [38] Achyut Mani Tripathi and Aakansha Mishra. Environment sound classification using an attention-based residual neural network. *Neurocomputing*, 460:409–423, 2021. ISSN 0925-2312. doi: 10.1016/j.neucom.2021.06.031. URL https://www.sciencedirect.com/science/article/pii/S0925231221009358. [Cited on pages 2, 27, 29, 34, and 122.]

- [39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/ file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. [Cited on pages xix, 15, 105, and 107.]
- [40] Satvik Venkatesh, David Moffat, and Eduardo Reck Miranda. You only hear once: A yolo-like algorithm for audio segmentation and sound event detection, 2021. [Cited on pages 30, 31, and 34.]
- [41] Steven Wyatt, David Elliott, Akshay Aravamudan, Carlos E. Otero, Luis D. Otero, Georgios C. Anagnostopoulos, Anthony O. Smith, Adrian M. Peter, Wesley Jones, Steven Leung, and Eric Lam. Environmental sound classification with tiny transformers in noisy edge environments. In 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), pages 309–314, 2021. doi: 10.1109/WF-IoT51360.2021.9596007. [Cited on pages 2, 13, 15, 16, 21, and 34.]
- [42] Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012. URL https: //arxiv.org/abs/1212.5701. [Cited on page 47.]
- [43] Zhichao Zhang, Shugong Xu, Shunqing Zhang, Tianhao Qiao, and Shan Cao. Learning attentive representations for environmental sound classification. *IEEE Access*, 7: 130327–130339, 2019. doi: 10.1109/ACCESS.2019.2939495. [Cited on pages 2, 25, 29, 34, and 122.]
- [44] Zhichao Zhang, Shugong Xu, Shunqing Zhang, Tianhao Qiao, and Shan Cao. Attention based convolutional recurrent neural network for environmental sound classification. *Neurocomputing*, 453, 09 2020. doi: 10.1016/j.neucom.2020.08.069. [Cited on pages 2, 25, 29, 34, and 122.]
- [45] Pablo Zinemanas, Martín Rocamora, Marius Miron, Frederic Font, and Xavier Serra. An interpretable deep learning model for automatic sound classification. *Electronics*, 10(7), 2021. ISSN 2079-9292. doi: 10.3390/electronics10070850. URL https://www.mdpi.com/2079-9292/10/7/850. [Cited on pages 9, 11, 14, 30, 34, 35, and 122.]

[46] İlker Türker and Serkan Aksu. Connectogram – a graph-based time dependent representation for sounds. *Applied Acoustics*, 191:108660, 2022. ISSN 0003-682X. doi: 10.1016/j.apacoust.2022.108660. URL https://www.sciencedirect.com/science/article/pii/S0003682X22000342. [Cited on pages 2, 32, 33, 34, and 122.]