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Abstract
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Sound Characterization of Urban Environments by Computational Methods

by Ana Filipa R. NOGUEIRA

Smart Cities are emerging to improve their citizens’ lives, in which Environmental Sound

Classification (ESC) has a crucial role due to the different areas in which it can be applied,

such as security, surveillance, manufacturing, autonomous vehicles, and noise mitigation,

among others. Since Urban Sounds, for the significant part, are composed of audio events

occurring daily, which presents unstructured characteristics containing a lot of noise and

some sounds unrelated to the sound event making ESC a very challenging problem; thus,

several computational algorithms have been proposed to solve this problem.

In this thesis, various model architectures were implemented to overcome this prob-

lem, being its efficiency assessed, and several datasets were used: the UrbanSound8K, the

ESC-50 and the ESC-10 dataset.

Therefore, firstly, a baseline model that consists of several dense and dropout layers

using handcrafted features as input and different dropout rates were employed, and the

influence of increasing the models’ depth was tested. Several experiments showed that a

combination of features provides more information to the model due to higher represen-

tation capabilities; the dropout rate should be used to avoid models’ overfitting but not a

value too high to allow the model to have enough information to learn, lastly, the increase

in depth did not show significant benefits being detrimental in most cases.

Some end-to-end models were explored in the following step: DenseNet, ResNet and

Inception. For these models, it was considered image domain pre-training that gave a

considerable performance boost allowing better results and faster convergences; further-

more, it was tested the influence of data augmentation, which only shown to be beneficial

in some situations.
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Finally, a Transformer model was used, trained with image domain pre-training once

again, which gave a huge performance boost compared to the no pre-trained version.

Nonetheless, pre-training from the image and audio domain was also used, showing

even better results, and highlighting the benefits of having an in-task domain pre-training.

Moreover, using data augmentation techniques such as SpecAugment, noise and mixup

were employed; however, the best results were obtained when only SpecAugment was

considered.

All models were tested with different optimization functions making it possible to

conclude that SGD, Adagrad and Adadelta present a poor performance regardless of

the model or dataset, showing their inability to produce robust models. On the other

hand, for the best optimizer, there is no consensus between the models being the best

for the baseline models, the Nadam optimizer, for the end-to-end models, the Adam opti-

mizer, and for the Transformer, AdamW was the best for the ESC-50, Adam for the ESC-10

dataset and for the UrbanSound8K, Adamax was considered the best, however, for this

last dataset, AdamW gave a pretty similar performance. Therefore, it can be concluded

that the choice of the best optimization function depends on the model and the chosen

dataset.

Therefore, out of all these models, the best performance was obtained for the Trans-

former model with an accuracy score of 89.8% for UrbanSound8K, 95.8% for ESC-50 and

99% for ESC-10.

Keywords - Convolutional Neural Networks, Transformers, Data augmentation, Fea-

ture extraction, Optimization function, Classification.
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Resumo
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Caracterização Sonora de Ambientes Urbanos por Métodos Computacionais

por Ana Filipa R. NOGUEIRA

Com o intuito de melhorar a vida dos cidadãos estão a emergir cidades inteligentes nas

quais a classificação de ambientes sonoros tem um papel crucial devido às diferentes

áreas nas quais pode ser aplicada, tal como segurança, vigilância, fabricação, veı́culos

autónomos, mitigação de ruı́dos, entre outros. Uma vez que os sons urbanos, na sua mai-

oria, são compostos por eventos de áudio que ocorrem diariamente, os quais apresentam

caracterı́sticas não estruturadas, contendo muito ruı́do e alguns sons não relacionados

com o evento sonoro tornando a classificação de ambientes sonoros um problema bas-

tante desafiador. Assim, para resolver este problema têm sido propostos vários algorit-

mos computacionais.

Nesta tese, foram implementadas várias arquiteturas de modelos para ultrapassar este

problema e para testar a sua eficiência foram usados diversos conjuntos de dados: Urban-

Sound8K, ESC-50 e ESC-10.

Inicialmente foi criado um modelo de base que consiste em várias camadas densas

e de abandono que utilizam recursos artesanais como entrada. Utilizaram-se diferentes

taxas de abandono e testou-se também, a influência do aumento da profundidade dos

modelos. As diversas experiências permitiram entender que uma combinação de recur-

sos fornece mais informações ao modelo devido à maior capacidade de representação; a

taxa de abandono deve ser usada para evitar o sobreajuste dos modelos, mas, não deve

ser muito elevada para permitir que o modelo tenha informações suficientes para apren-

der; por fim, o aumento da profundidade não mostrou benefı́cios significativos sendo

prejudicial na maioria dos casos.

De seguida, foram explorados alguns modelos ponta-a-ponta, nomeadamente, Den-

seNet, ResNet e Inception. Para estes modelos, foi considerado um pré-treinamento do
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domı́nio de imagem o que originou um grande aumento do desempenho, permitindo

melhores resultados e convergências mais rápidas. Testou-se também a influência do au-

mento de dados e verificou-se que só em algumas situações era benéfico.

Por fim, foi utilizado um modelo Transformer treinado com pré-treinamento do domı́nio

de imagem que, mais uma vez, permitiu obter um grande aumento do desempenho

quando comparado com a versão não pré-treinada. Porém, os resultados foram ainda me-

lhores quando foi utilizado o pré-treinamento do domı́nio de imagem e áudio, destacando-

se os benefı́cios de ter pré-treinamento do mesmo domı́nio da tarefa. Além disso, foram

empregues técnicas de aumento de dados como SpecAugment, ruı́do e mistura, contudo,

os melhores resultados foram obtidos quando apenas SpecAugment foi utilizado.

Todos os modelos foram testados com diferentes funções de otimização permitindo

concluir que SGD, Adagrad e Adadelta apresentam um mau desempenho independente

do modelo ou conjunto de dados, mostrando a sua incapacidade de produzir modelos ro-

bustos. Por outro lado, para o melhor otimizador não há consenso entre os modelos. Para

os modelos de base o melhor é o otimizador Nadam; para os modelos ponta-a-ponta,

o otimizador Adam; já para o Transformer, o AdamW foi o melhor para o conjunto de

dados ESC-50, o Adam para o ESC-10 e para o UrbanSound8K o Adamax, porém, neste

último conjunto de dados o AdamW teve um desempenho bastante semelhante. Por con-

seguinte, pode-se concluir que a escolha da melhor função de otimização depende do

modelo e do conjunto de dados escolhido.

Assim, de todos estes modelos o melhor desempenho foi obtido para o modelo Trans-

former com um resultado de precisão de 89,8% para UrbanSound8K, 95,8% para ESC-50

e 99% para ESC-10.

Palavras-chave - Redes Neuronais Convolucionais, Transformers, Aumento de da-

dos, Extração de caraterı́sticas, Função de optimização, Classificação.
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Chapter 1

Introduction

This chapter presents a small overview of the dissertation. Starting with a brief contextu-

alisation of the importance of distinguishing sounds in urban environments and the chal-

lenges this task presents, followed by some of the implemented classification algorithms

developed to solve this problem. Afterwards, it is described the employed methodology,

the research objectives and a summary of this thesis’s structure with a short description

of each chapter.

1.1 Urban Sound

As a result of the growth of the urban population worldwide (Syed et al. [32]), cities are

consolidating their position as one of the central structures in human organisations. This

concentration of resources around cities offers new opportunities to be exploited. Smart

Cities are emerging as a paradigm to take advantage of these opportunities to improve

their citizens’ lives. Smart Cities use sensing architecture deployed in the city to provide

new and disruptive city-wide services to the citizens and policy-makers. One of the main

requirements concerns Urban Sound characterisation, which still poses different problems

(Das et al. [3], Mushtaq and Su [22]). It is estimated that major cities must handle thou-

sands of co-occurring events, with rapid, occurring events that require immediate action

passing unnoticed by authorities (Das et al. [3], Mushtaq and Su [22]).

Urban Sound characterisation is a problem that has been subjected to studies by the

scientific community. It consists of analysing and detecting relevant sound class events

that can arise from various occurrences and locations to reason about abnormal occur-

rences and actions for a given location.

1
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Efforts have been made to develop computational algorithms to automatically clas-

sify Urban Sounds acquired at different instants in the same location or different ones,

extract sound features and classify a set of particular sounds. However, limitations are

still present regarding the combination of multiple classes, abnormal noise conditions

and a wide range of events co-occurring (Das et al. [2, 3], Mushtaq and Su [22]).

Earlier sound classification algorithms are traditionally based on handcrafted features

(Giannakopoulos et al. [9], Gong et al. [11], Luz et al. [18], Mu et al. [21]). Recently, the pro-

posed algorithms are based on Deep Learning (DL) approaches, with the most successful

DL architecture being the Convolutional Neural Networks (CNN) (Luz et al. [18], Mu et al.

[21]) and recent Transformers (Akbari et al. [1], Elliott et al. [8], Koutini et al. [16], Park

et al. [23], Wyatt et al. [41]). In the CNN, the data is propagated through layers via convo-

lutions and other operations, such as pooling, flattening and dropout, giving the network

the ability to learn both local and high-level on the image space (Giannakopoulos et al.

[9], Luz et al. [18]). Sound Classification based on CNNs has already been proposed, with

most of the current approaches exploring the use of pre-trained CNNs, by redefining the

last layers to address the Sound Classification problem (Mushtaq and Su [22], İlker Türker

and Aksu [46]), and recently using attention models (Akbari et al. [1], Kong et al. [15]) and

novel augmentation techniques (Mushtaq and Su [22], Salamon and Bello [29]).

As to Urban Sound classification, which has as the main objective the extraction of

sound events of relevance from urban scenarios, most of the proposed solutions are based

on CNNs, with some works being supported by Recurrent Neural Networks (RNN) (Gi-

meno et al. [10], Kong et al. [15]) particularly for sound events that occur in sequence, but

should be understood as only one sound event, e.g. footsteps (Kong et al. [15]), also by

exploring Long-Short Term Memory (LSTM) models (Das et al. [2], Gimeno et al. [10]),

and recently attention mechanisms (Qiao et al. [25], Ristea et al. [26], Tripathi and Mishra

[38], Zhang et al. [43, 44]). However, the optimal architecture for each application has not

yet been established, and many opportunities are still possible. Urban Sound understand-

ing has not been addressed properly to operate in real urban scenarios and distributed

environments. There is a bright future for DL applied to Urban Sound systems, with its

huge potential to complement other forms of sensing such as an image, and enable multi-

modal sound and image understanding, solutions still not fully explored (Das et al. [3]).
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1.2 Methodology to be employed

For the development of this work, first, the representation capabilities of different features

and their combinations using a model composed of several dense layers and dropout

layers will be explored. Besides, the influence of the dropout rate and the increase of

models’ depth will be tested.

Afterwards, different end-to-end models will be employed, like Dense Convolutional

Network (DenseNet), Residual Neural Network (ResNet) and Inception. These models

will be used with no pre-training and pre-training from the image domain to see the vari-

ations in terms of performance, and the difference data augmentation can cause.

Ultimately, a Transformer model will be implemented with no pre-training, with pre-

training only from the image domain and pre-training from the image and audio domain.

Furthermore, the influence of using distinct batch sizes and data augmentation techniques

will be studied.

Moreover, for all of the mentioned models, it will be applied several optimization

functions to discover which one is the most advantageous.

These procedures will be followed to find the best model for sound classification in

urban environments that is robust in different scenarios.

1.3 Objectives

The principal objective of this project is to develop and apply Machine Learning (ML)

algorithms to automatically detect and classify Urban Sound events in different urban en-

vironments and obtain the reasoning about abnormal sound occurrences, which are vital

tasks in modern urban surveillance systems. Specifically, the idea consists of character-

ising and exploring a wide set of ML models to perform multi-class sound classification

from urban scenarios, where the diversity of classes that can be automatically identified

ranges from dog bark, traffic, horns and others, while simultaneously being capable of

dealing with abnormal sound events such as gun fires, explosions or other unusual sound

events. The input data will be sounds from publicly available datasets, allowing the ex-

traction of useful information from the sound events and automatically identifying and

classifying relevant sound events.

The underlying purpose is to decrease the response time of the authorities by provid-

ing relevant alerts to sound occurrences that require their prompt response while, at the
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same time, freeing them to mitigate other issues that concern the urban scenario opera-

tion.

The Urban Sound understanding underlies multiple variables that are hard to identify

in useful time and require constant attention from a vast personnel group. The solutions

to be developed will be useful to reduce the person’s workload while providing infor-

mation about city patterns that can be explored to improve the quality and safety of the

citizens’ life.

With this in mind, the objectives of this thesis rely on the accomplishment of the fol-

lowing steps:

• Deepening the knowledge in the field of sound features and models for Urban

Sound Classification and their optimal combination to obtain the best performing

model.

• Evaluation of the most promising State-of-the-Art (SOTA) techniques and formula-

tion of model variations to address specific Urban Sound challenges to be applied

to real-world scenarios, among auxiliary methods.

• Design and implementation of DL model to overcome some of the identified limita-

tions in the main baselines and derived methods to better understand the limitations

and potentialities of the end-to-end models.

• Publish the attained developments, starting with a survey that encompasses the

relevant SOTA in the field and a specific application of Transformers in the Urban

Sound scenarios, supported by extensive comparison with other SOTA approaches.

1.4 Outline of the Thesis

This thesis is structured as follows:

• Chapter 2 concisely presents a literature review regarding Urban Sound models and

applications, focusing on strategies and architecture variations to enable multi-class

classification.

• Chapter 3 presents a detailed analysis of baseline models, focusing on feature com-

binations, optimization and model depth to identify the most prominent set of mod-

els.
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• Chapter 4 presents a detailed analysis of end-to-end models, focusing on the multi-

sound classification tasks, to identify the ideal set of models and hyperparameters

to be employed in real-world scenarios.

• Chapter 5 presents a detailed analysis of the end-to-end model based on the atten-

tion mechanism, with a focus on the multi-sound classification tasks, to identify the

impact of model architecture, transfer learning approaches from image and sound

domains, and data augmentation and corresponding hyperparameters to determine

the optimal model.

• Chapter 6 discusses the overall findings in models for Urban Sound classification

and points for new lines of research.





Chapter 2

Literature Review

In this chapter, the main methods employed in sound classification and segmentation

are assessed by identifying and discussing State-of-the-Art (SOTA) works relevant to the

development of this thesis.

2.1 Methodology of Systematic Review

This section addresses the methodology used to search and select the SOTA works under

study. The main goal was to sort out the important recent works on Environmental/Ur-

ban Sound classification and processing. The following complementary questions were

considered:

• Which dataset was used?

• Which architecture was utilized (developed or adapted)?

• What metrics were used for evaluation?

2.1.1 Search Method

A systematic literature search was conducted from June to September 2022 using Scopus,

Science Direct, and Semantic Scholar with the following keywords in various combina-

tions: ”environmental sound”, ”urban sound”, ”classification”, ”processing”, ”segmen-

tation”, ”machine learning”, ”deep learning” and ”transformers”. After removing dupli-

cated results, 1215 unique results were produced. Based on an analysis of the title and

abstract, 826 studies were excluded for being utterly unrelated to the subject of study.

Of the remaining studies, 301 works were excluded by applying the following criteria:

7
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including only studies written in English, peer-reviewed studies (research articles, liter-

ature reviews, and book chapters), and finally, by carefully reviewing the body of text,

only 26 studies were maintained. Figure 2.1 presents a Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) diagram of the systematic search process

performed.

FIGURE 2.1: PRISMA diagram of the performed literature search process.

2.2 Sound Classification Methods

Sound classification methods can be applied in several areas, ranging from surveillance

and noise mitigation, or context-aware computing. Therefore, to most accurately attribute

a class to a specific sound, several Machine Learning (ML) models were developed capa-

ble of extracting nuclear characteristics of audio samples during training and then classi-

fying unseen audios with a certain degree of confidence.



2. LITERATURE REVIEW 9

2.2.1 Neural Networks

Researchers have identified some limitations that prevented them from obtaining good

results on the sound classification task. Therefore, Salamon and Bello [29] employed a

Deep Convolutional Neural Networks (DCNN) in combination with data augmenting

techniques (noise injection, shifting time, changing pitch and speed) among the training

set to solve the scarcity of labelled data. Das et al. [2] used a Long-Short Term Memory

(LSTM) in combination with spectral features obtained from the audio training segments.

Das et al. [3] explored the use of a Convolutional Neural Networks (CNN) model with a

specific Additive Angular Margin Loss (AAML) and more commonly explored the use of

stacked features such as Mel Frequency Cepstral Coefficients (MFCC) and Chromagram

in combination with a CNN. Zinemanas et al. [45] used an Audio Prototype Network (AP-

Net) model which is composed of two components: an autoencoder and a classifier. Mu

et al. [21] introduced a CNN-based model associated with attention mechanisms, called

Temporal-frequency attention based Convolutional Neural Network (TFCNN).

The goal of the models is to provide a good generalization performance for unseen

data, commonly requiring large quantities of data to effectively train the models. To ad-

dress the scarcity of labelled data for Environmental Sound Classification (ESC), Salamon

and Bello [29] proposed four different augmenting deformations to apply to the training

set:

• Time stretching: slows down or speeds up the audio sample, but the pitch remains

unchanged.

• Pitch shifting: the audio sample’s pitch is raised or lowered while keeping the du-

ration unchanged.

• Dynamic range compression: compress the dynamic range of the audio using pa-

rameterizations from the Dolby E standard* and the Icecast online radio streaming

server†.

• Background noise addition: mix background sounds’ recordings from different

scenes with the audio sample.

Furthermore, a detailed analysis of the different techniques is performed to determine

the impact of the various data augmentation in the final accuracy, enabling quantification

*Standards and Practices for Authoring Dolby Digital and Dolby E Bitstreams. Dolby E Bitstreams [5]
†https://icecast.org/ (accessed 29 August 2022)

https://icecast.org/
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of the contributions of each of the data transformations employed on the training data,

suggesting that a class-conditional augmentation during training would be beneficial.

Moreover, it is necessary to understand which features and models can achieve bet-

ter accuracy. Das et al. [2] presented a comparative study between a CNN and a LSTM

model using different combinations of spectral features. First, a pre-processing of the

audio signal is performed to reduce the amount of redundant information; the Nyquist-

Shannon theorem states that the sample rates should be at least twice the value of the

frequency of a continuous waveform. However, to reduce the training time, the down-

sampling was achieved using the librosa library (McFee et al. [20]) default sampling rate.

The next step corresponded to the extraction of spectral features such as MFCC, Mel-

spectrogram, Chroma Short-Term Fourier Transformation (STFT), Chroma Constant Q-

transform (CQT), Chroma Energy Normalized Statistics (CENS), Spectral Contrast, and

Tonnetz, combined with augmentation of the training data (pitch shift, time stretch and

pitch shift with time stretch), with the final models employed in the classification of the

sound event and with a detailed evaluation of the respective accuracy, made it possible to

reach the following conclusions:

• An increase in the number of epochs lead to an exponential decrease in the valida-

tion error for training and testing data. Still, after a certain number of epochs, the

improvement in the validation error is negligible.

• LSTM model has better performance, in most cases than the CNN, which becomes

more pronounced with the data augmentation since the LSTM memory cell includes

constant error backpropagation, which allows dealing better with data noise.

• Focusing on the influence of the different features, the one which gives the best

accuracy result is the MFCC. However, it is possible to outperform that by using a

stack of different features such as MFCC and Chroma STFT.

Hence, the best accuracy performance was achieved by the LSTM model with the stacked

features of MFCC and Chroma STFT.

Besides the concerns with the type of model and the features that are the best per-

forming ones, it is also necessary to consider the loss function, limiting the model’s clas-

sification accuracy potential. Das et al. [3] evaluated different loss functions like Soft-

max loss, angular Softmax loss, large margin cosine loss, and additive angular margin

loss among the model’s final accuracy; as input, the MFCC features used alone, and the
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stacked features version that combines MFCC and Chromagram are compared in terms

of final model accuracy results. Detailed analysis of the results showed a significant im-

provement in the performance of the models when the features were stacked together.

Besides, it was possible to conclude that there is a boost in the accuracy when a modified

Softmax loss function is used in comparison with the Softmax loss function, resulting in

the best model to be the CNN-based model with additive angular margin loss, with the

input data to be the stacked features of MFCC and Chroma STFT.

In addition, it is essential to make the model predictable to identify which input pa-

rameter drives the model’s decisions and reduce future malfunctions. To achieve this,

Zinemanas et al. [45] proposed an APNet composed of two main components: an au-

toencoder and a classifier. The autoencoder is composed of the encoder, which is consti-

tuted by three convolutional layers, where after the first two convolutional layers, a max-

pooling layer is applied to capture features at different time-frequency resolutions, and

the decoder, formed by three transpose convolutional layers that allow obtaining good

audio quality in the reconstruction by minimizing the reconstruction error given by the

Euclidean mean square loss function over its inputs and output. Then, the classifier con-

sists of three layers: a prototype layer, a weighted sum layer and a fully connected layer.

The prototype layer is responsible for storing a set of prototypes, which are learned in the

latent space, that are representatives of each class. In order to learn the prototypes in the

latent space, it is necessary to minimize the loss function, which happens when there is

at least one similar training example for each learned prototype. Therefore, the training

examples will cluster around prototypes in the latent space. The output of this layer is a

similarity measure based on the distance from each encoded data instance to each proto-

type. The similarity measure has two steps: calculating a frequency-dependent similarity

and integrating the frequency dimension using a learnable weighted sum. The frequency-

dependent similarity assigns a different weight to each frequency bin in the latent space,

allowing the prototypes to be based on the most relevant frequency bins, calculated us-

ing the square Euclidean distance, followed by a Gaussian function. Subsequently, the

frequency dimension is integrated to obtain Ŝ while using the following weighted sum:

Ŝij =
F

∑
f=1

Hj[ f ]Sij[ f ] (2.1)

where H is the trainable kernel and F the length of the vector for each prototype.
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This allows the network to learn the best way to weigh each frequency bin for each pro-

totype. The kernel is important in discriminating between overlapping sound classes by

focusing on each prototype’s most relevant frequency bins. Finally, the fully connected

layer learns the decisions to transform the similarity measure into the predictions; to be

able to perform classification, the activation function of this layer is a Softmax. Due to

the expectation that the network gives more weight to the prototypes related to the class

and obtains more interpretable kernel weights, the bias term is not used. It is also im-

portant to refer that since the prototypes can be converted from the latent space to the

time-frequency input representation by applying the decoder function, it is possible to

illustrate the prediction process while using the Melspectograms of data instances and

prototypes, even though this is performed in the latent space. Therefore, the network has

as input a time-frequency representation of the audio signal, from where the autoencoder

transforms into its representation in the latent space of valuable features. Then, the clas-

sifier reuses the encoded input to make a prediction based on the similarity between the

encoded input and a set of prototype representatives of each class. Accordingly to the

previous description is possible to understand that this model provides an insight into

the decision-making process, eliminating redundant prototypes and channels and deter-

mining the prototypes that are more representative of each class. This enables an under-

standing of which operation is more beneficial for identifying a specific sound, leading

to an immediate improvement in the results. However, even though the model provides

a good baseline, the accuracy of a non-interpretative model is much higher, despite not

being as transparent about what drives its decisions.

As different mechanisms can identify sounds, Mu et al. [21] proposed a TFCNN that,

due to the frequency and temporal attention mechanisms, can reduce the influence of

background noise and irrelevant frequency bands. The authors also concluded that tran-

sient sounds enhance their classification performance when using temporal attention mech-

anisms. In contrast, continuous sounds benefit more from a frequency attention mecha-

nism. So, the weight combination of both attention mechanisms gives more attention to

the useful information and makes the feature distribution of sound events clearer and

distinguishable. The model’s architecture consists of two parts, the generation attention

and the backbone network. The generation attention part aims that the calculations used

to represent learning to be concentrated in specific areas by giving different degrees of at-

tention to the frequency band and time frame parts of the extracted Log-Melspectrogram
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from the original data. Accordingly, the temporal attention mechanism focuses on the se-

mantically related time frame part and suppresses noise or silent frames. The frequency

attention mechanism assigns more weight to the active frequency bands with distinguish-

able information. Then, the backbone network part of the model consists of a convolu-

tional layer, a pooling layer and a fully connected layer, making it possible to extract

time-frequency features from the spectrogram processed by the attention mechanism and

predict sound events. The results obtained for this implementation were inferior to some

CNN-based models. Nevertheless, the authors find their model still advantageous be-

cause it can ensure high accuracy with low network structure complexity and simple fea-

ture processing.

Table 2.1 summarizes the works found on audio classification using Neural Networks

and their focus, limitations, and performances.

2.2.2 Transformers

Other researchers also based their models on attention mechanisms, particularly in a

transduction model called Transformer, due to its several advantages, such as the to-

tal computational complexity per layer, the amount of computation that can be paral-

lelized and the path length between long-range dependencies in the network. This section

presents some models based on the Transformer’s architecture.

Some researchers created models with a hybrid architecture combining Transformers

with CNN like Kong et al. [15], which presents a Convolutional Neural Network Trans-

former (CNN-Transformer) and an automatic threshold optimization method. Others fo-

cus on models based only on Transformers, such as the ones developed by Elliott et al.

[8] and Wyatt et al. [41] which present Bidirectional Encoder Representations from Trans-

formers (BERT) based models capable of performing sound classification at the edge. In

the case of Gong et al. [11], the authors developed an Audio Spectrogram Transformer

(AST), which is a convolutional-free, purely attention-based model able to provide one

output for a single channel audio input. Park et al. [23] introduced Many-to-Many Audio

Spectrogram Transformer (M2M-AST), a model based on AST, but that allows different

resolution outputs sequences for multi-channel audio inputs. Akbari et al. [1] presented a

Video-Audio-Text Transformer (VATT) and a technique to reduce the training complexity
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TABLE 2.1: Summary of the found works on audio classification using Neural Networks.

Authors/Year Model features Contributions/Benefits Limitation(s) Dataset/Metrics

Salamon
and Bello
(2017) [29]

DCNN combined
with data augmen-
tation techniques
(Time stretching, pitch
shifting, dynamic
range compression,
background noise).

Overcomes the problem of
data scarcity; Shows that Deep
Learning (DL) models produce
better results due to their repre-
sentational power and capacity
combined with data augmenta-
tion.

Some augmentation
techniques have
a negative impact
on some classes’
accuracy results.

UrbanSound8K;
Accuracy (73%
without data
augmentation
and 79% with
data augmenta-
tion).

Das et al.
(2020) [2]

CNN and LSTM mod-
els with a stack of mul-
tiple features as input
and data augmenta-
tion techniques (pitch
shift, time stretch and
pitch shift along with
time stretch).

Increasing the number of epochs
leads to a decrease in the valida-
tion error until reaching conver-
gence; LSTM deals better with
data noise; The single feature in-
put that allows the best result
is MFCC; however, the stack of
features of MFCC and Chroma
STFT gave the best results out of
all input features.

Needs large datasets;
Execution time of
37.14 min with a
GeForce RTX200
GPU with 6 Giga-
bytes of VRAM and
boost clock of 1.68
GHz and consumes
around 8 Gigabytes
of RAM to train both
models.

UrbanSound8K;
Accuracy (98.81%
for LSTM model
using data aug-
mentation and
stack of MFCC
and Chroma
STFT as input).

Das et al.
(2021) [3]

CNN model with a
single feature input
(MFCC) and with a
stack of features using
as loss function a
modified Softmax loss
function.

The stack of MFCC and Chroma
STFT as input provided the best
results; A modified Softmax loss
function shows to be more bene-
ficial than the Softmax loss func-
tion; Additive angular margin
loss is the loss function that gave
the best results.

The sophisticated
loss functions cre-
ate an intelligible
space to separate
the different classes
due to a compact-
ness increase within
classes.

UrbanSound8K;
Accuracy (99.60%
of CNN model
with an additive
angular margin
loss function
without data
augmentation).

Zinemanas
et al.
(2021) [45]

APNet with a time-
frequency representa-
tion of the audio sig-
nal as input; predic-
tion based on the sim-
ilarity between the en-
coded input and a set
of prototypes.

Provides insights into the
decision-making process, help-
ing the design of better models;
Model more explicit, giving the
possibility to understand which
prototypes are more represen-
tative of each class and which
operation is more beneficial for
identifying a specific sound.

The obtained results
aren’t competi-
tive with a non-
interpretative DL
model.

Medley-Solos-
DB, Google
Speech Com-
mands, Ur-
banSound8K;
Accuracy (65.8%
Medley-Solos-
DB; 89% Google
Speech Com-
mands; 76.2% for
UrbanSound8K).

Mu et al.
(2021) [21]

TFCNN model which
is a CNN model
with temporal and
frequency attention
mechanisms.

Attention mechanisms reduce
the background noise and ir-
relevant frequency bands influ-
ence; Low network structure
complexity and simple feature
processing.

Doesn’t show a simi-
lar improvement for
all classes, even neg-
atively impacting
the classification for
some classes.

UrbanSound8K,
ESC-50;
Accuracy (84.4%
for ESC-50;
93.1% for Urban-
Sound8K).

with a minor reduction of the end Transformer’s performance, DropToken. Also, to re-

duce the computational and memory complexity, Koutini et al. [16] introduced a method

designated as Patchout.

Motivated by the fact that CNN does not capture the long-time dependencies in an au-

dio clip well, audio recordings are usually weakly labelled and need the right thresholds

to detect sound events, Kong et al. [15] developed a CNN-Transformer and an automatic

threshold optimization method.

Hence, the proposed model has as input a time-frequency representation such as Log-

Melspectrogram to which a CNN is applied to extract high-level features used to obtain

embedding vectors along the time axis. Then, these embedding vectors serve as input to

the encoder part of the Transformer, which allows the modelling of dependencies without
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regard to their distance in the input sequence and more parallel computing. Finally, a

fully connected layer followed by a sigmoid non-linearity is applied to the output of the

encoder part of the Transformer to predict the presence probabilities of sound classes over

time steps.

Consequently, to solve the scarcity of strongly labelled data, the use of weakly la-

belled datasets to train the model was proposed, which can be categorized into two types

of training: segment-wise training and clip-wise training. The difference between them is

that the audio clip is divided into several segments for segment-wise training. Each seg-

ment inherits the tags of the audio clip, which can lead to incorrect tags of the segments

because they may not contain the sound event. Clip-wise training addresses the previous

issue by learning the tags from the hidden layer of a Neural Network. The prediction on

the clip can be obtained by aggregating the segment-wise predictions, so it can be trained

in an end-to-end way with weakly labelled data and outputs directly from the clip-level

prediction, in contrast with segment-wise whose outputs are latent representations learnt

by the Neural Network.

Lastly, applying thresholds to the system’s output is necessary to obtain the presence

or absence and the onset and offset times of sound events. The researchers have pro-

posed an automatic threshold optimization method to select the optimal thresholds. This

method consists primarily of optimizing and evaluating the systems based on the metrics

that do not depend on the thresholds, such as mean average precision. Then, for a trained

system, an optimization of the thresholds was made over a specific metric such as F1-

score or error rate. This optimization method was tested in several CNN-based models,

including the CNN-Transformer, and proved to be effective and beneficial by improving

the results of the models.

However, effective CNN-based models require many parameters, which poses diffi-

culties in operating in small edge devices, being unsuitable for real-life situations. To

carry out a sound application in real-life situations, Elliott et al. [8] have evaluated vari-

ous audio features extraction techniques on BERT-based Transformers, then Wyatt et al.

[41] have employed a trained BERT-based tiny Transformer on a resource-constrained de-

vice and deployed it in noisy environments to perform ESC. Both works are based on

BERT architecture introduced by Devlin et al. [4] and consist of a multi-layer bidirectional

Transformer encoder based on the original implementation described by Vaswani et al.

[39] having as input a given token summed with the position embeddings.
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In the research work of Elliott et al. [8], the main contribution is evaluating Transform-

ers’ performance using several feature extraction methods and their convenience when

applied at the edge. So, besides introducing several feature extraction techniques: ampli-

tude reshaping, curve tokenization, Vector-quantized varitional autoencoders (VQ-VAE),

MFCC, Melspectrogram and the combination of MFCC, Gammatone Frequency Cepstral

Coefficient (GFCC), CQT and Chromagram, the authors also used eleven different aug-

mentation techniques: amplitude clipping, volume amplification, echo, lowpass filter,

pitch, partial erase, speed adjust, noise, Harmonic Percussive Source Separation (HPSS),

bitwise downsample and sampling rate downsample, on the raw audio files. By analysing

the results obtained, it was possible to understand that, in general, the various data aug-

mentations techniques lead to better accuracy results and that the best feature extraction

method was the Melspectrogram, which outperformed all the others. This method is ad-

vantageous because it’s a reasonable inexpensive computational operation. Regarding

MFCC, they performed slightly better than raw amplitudes, and adding additional fea-

ture extraction methods improved the accuracy. However, the cost of computing features

using all four feature extraction methods becomes prohibitive, leading to a prolonged

training and inference time, which would unlikely be helpful at the edge. The authors

also found that models trained in traditional frameworks have relatively little support for

models that can be run at edge devices. The accuracy results obtained with the Trans-

former based model to datasets with a small number of examples per class leads to an

inferior performance compared to a CNN-based model.

For the work presented by Wyatt et al. [41], the objective was to develop a robust

ESC model capable of working in operational resource-constrained settings. The model’s

architecture is based on the design implemented by Elliott et al. [8], which is divided into

three parts:

• an input transformation base which allows choosing the embedding dimension and

is composed of a batch normalization layer, followed by a linear layer. This linear

layer allows one to scale up or down one of the dimensions of audio features to a

chosen dimension. After passing through the linear layer, a positional embedding

to the feature vector is added to incorporate positional information.

• a classic Transformer body which is a scaled-down version of BERT.
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• a prediction head, after which three layers: a mean, a linear and a Softmax are used.

The mean layer does a global average pooling of the output. The other two layers

enable the mapping of the features to output classes before training using cross-

entropy loss.

The methodology implemented to train the model was to use a data loader that takes a

random slice of audio from each audio file and then augments it with a random amount

of noise between a chosen noise threshold. The amount of noise added varies to make

the model robust to high and low signal-to-noise ratios, reducing overfitting. Therefore,

the training with noise can generalize to audio without noise, leading to better results

when compared to its non-noisy counterpart. Integrating noise resiliency directly into the

model prevents having to construct specific environmental/device noise acoustic filters to

handle noise. It can be scaled to be used in cases where thousands of low-power devices

are deployed in various environments.

Due to the need to have a Transformer model that is capable of having competitive

results with datasets that have few examples per class, that can support variable-length

inputs and can be applied to different tasks without change of architecture, Gong et al.

[11] proposed the AST model. The model is a convolutional-free, purely attention-based

model directly applied to an audio spectrogram and can capture long-range global context

even in the lowest layers. Its architecture consists only of the encoder part of the standard

Transformer’s architecture which is simple to implement and reproduce and makes it

easier to perform transfer learning. Since images and audio have similar formats, it is

possible to apply cross-modality transfer learning. To do that, it was used an off-the-shelf

pre-trained Vision Transformer (ViT) since it has an architecture similar to AST. However,

some modifications were still needed because ViT input is a 3-channel image. In contrast,

the AST’s input is a single-channel spectrogram; so to solve this, it is necessary for ViT

patch embedding layer’s weights for each of its three input channels to be averaged. Then,

they serve as the weights of the AST patch embedding layer. The input audio spectrogram

is normalized so that the datasets mean and standard deviation are 0 and 0.5, respectively.

Another concern to have is with the positional embeddings because it learns to encode the

spatial information during the training of the ViT, so to adapt the positional embeddings,

it’s proposed a cut and bi-linear interpolate method that enables the transference of the

two-dimensional (2D) spatial knowledge from a pre-trained ViT to the AST even when
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the input shapes are different. Finally, the last classification layer of the ViT is abandoned

and reinitializes a new one for AST.

These modifications make it possible for AST to use various pre-trained ViT weights

for initialization, which leads to better results than a randomly initialized AST, becom-

ing more significant when the training volume is smaller, demonstrating the reduction in

the demand for in-domain audio data. The authors also found that Data efficiency im-

age Transformer (DeiT), because it uses data augmentation and a knowledge distillation

token, improves data efficiency and generates better results. Then, regarding the impact

of positional embedding adaptation, it demonstrated the importance of transferring spa-

tial knowledge. As for the impact of patch split overlap, it was noticeable that enlarging

the overlap length increases the model’s performance and the computational overhead,

which grows quadratically. Lastly, regarding patch shape and size, splitting the audio

spectrogram into rectangular patches in temporal order achieves better results than split-

ting it into square patches, which cannot be in the temporal order. However, researchers

have used squares patches because no pre-trained model was available that used the same

dataset as ViT and rectangular patches.

Ultimately, the AST model was tested for various datasets achieving SOTA results

while maintaining the same architecture regardless of the input audio length.

Although the previous model has achieved good results, it can only give one audio

classification output for single channel input. Thus, to handle a multichannel audio input

and have different resolution output sequences, Park et al. [23] proposed the M2M-AST,

which is capable of doing sound event localization and detection that consists of two

tasks: sound event detection and direction of arrival estimation.

The proposed model has a similar architecture to AST. The only differences are the

input feature and the classification token configuration. M2M-AST uses as input features

multichannel feature images extracted from 4-channel audio recordings, which will be

segmented into a patch sequence. Afterwards, patch tokens will be extracted through

a linear projection for each patch. Since the goal is to do sound event localization and

detection, the model should output a series of outputs. Therefore, patch embedding con-

sists of appending a classification token sequence with a length equal to the length of

the output sequence at the beginning of the patch token sequence. Then, a learnable po-

sitional embedding was added to the patch embedding to take advantage of the patch

tokens’ position information. The output of the classification token sequence learns the
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audio spectrogram representation by computing self-attention between each patch token.

Finally, it used a denser layer with an activation layer for each task.

Regarding transfer learning, M2M-AST transfers the weights learned by DeiT. How-

ever, some changes were necessary because of the layer learning patch embeddings, which

vary in size. Therefore, since DeiT uses 3-channel input images, for M2M-AST, the weight

corresponding to each channel in the linear projection layer uses the average weight of the

three channels in DeiT. Another change is in the positional embeddings for the patch to-

kens, which are transferred as scale values through cut and bi-linear interpolation to map

relative positions of the positional embeddings in DeiT to the input feature.

Lastly, some experiments were performed, and the results showed that longer inputs

improved both precision and recall, configuring dense patch segmentation with signif-

icant overlap helped improve performance, and a smaller resolution resulted in slight

performance gains due to median filtering for sound event detection. However, for the

other task, the results did not vary significantly with changes in output resolution, finally,

for sound event detection, Soft F-loss performed slightly better than binary cross-entropy,

and for the direction of arrival estimation, masked Mean Squared Error (MSE) improved

performance over binary cross-entropy.

Another concern is reducing the training time while maintaining competitive results.

To address that, Akbari et al. [1] introduced VATT and a technique to reduce the training

complexity with a minor reduction of the end Transformer’s performance, DropToken.

The VATT model is suitable for different downstream tasks in audio, text and video

fields. Its architecture is the same as the encoder part of the standard Transformer’s archi-

tecture, except for the layer of tokenization and linear projection reserved for each modal-

ity separately. Therefore, for each modality, the raw input is projected into an embedding

vector in the tokenization layer and fed into a Transformer. However, for the video or

audio modality, before feeding the token sequence into the Transformer, the DropToken

technique has been applied, which randomly samples a portion of the tokens and then

only feeds the sampled sequence to the Transformer. This approach reduces the compu-

tational costs, consequently reducing the training time and enabling hosts of large mod-

els on hardware with limited memory. The model also presents two major settings: the

backbone Transformers separated and with specific weights for each modality, and the

single backbone Transformer applied to any modality with shared weights. In both, the

backbone extracts modality-specific representations, which are then mapped to common
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spaces, by multi-level projections to be compared with each other by contrastive losses,

so the model is optimized based on the back-propagation of the average loss calculated

over a batch of samples, the loss objective used to align video-audio pairs was Noise Con-

trastive Estimation (NCE) and to align video-text pairs, Multiple Instance Learning NCE.

Regarding the results of several experiments with this model, researchers concluded

that Transformers are effective for learning semantic video, audio and text representa-

tions, even with a model that shares across modalities. Also, multi-modal self-supervised

pre-training is promising for reducing the dependency on large-scaled labelled data. Drop-

Token proved to significantly reduce the pre-training complexity and to have accuracy

and training costs comparable to or better than low-resolution inputs for audio and video

modalities with little impact on the model’s generalization.

Koutini et al. [16] introduced Patchout, which is a method to reduce the computa-

tional and memory complexity for the Transformers’ training and, in addition, improves

the generalization of the trained Transformers by acting as a regularizer. Therefore, its

function is to drop parts of the Transformer’s input sequence during training. First, small

overlapping patches are extracted from the input spectrograms to form the Transformer

input sequence and projected linearly to vectors. Then, the patches are augmented with

both frequency and time encoding. Lastly, to reduce the sequence length and regularize

the training process, parts of the sequence are randomly dropped during training. How-

ever, the whole input sequence is given to the Transformer during inference.

Two types of Patchout methods were introduced the unstructured Patchout, which

chooses the patches randomly regardless of their position and the structured Patchout,

which randomly picks some frequency bins or time frames and removes a whole column

or row of extracted patches.

The researchers also enhance the models’ performance and prevent overfitting by

making use of ImageNet pre-training and some data augmentation techniques such as

two-level mix-up: mix the final spectrograms with random raw waveforms from the

dataset; SpecAugment: masks up to a certain number of frequency bins and time frames;

rolling: rolls the waveforms randomly over time; random gain: multiplies the audio

waveform to change the gain by ±7decibel (dB). Thus, with the development of Patchout

was possible to effectively train Transformers on audio spectrograms and achieve SOTA

results.
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Table 2.2 summarizes the found works on audio classification using Transformers and

their focus, limitations, and performances.

TABLE 2.2: Summary of the found works on audio classification using Transformers.

Authors/Year Model features Contributions/Benefits Limitation(s) Dataset/Metrics

Kong et al.
(2020) [15]

CNN-Transformer
model and an
automatic thresh-
old optimization
method.

Computations are done in
parallel; Use weakly la-
belled datasets to train
the model and outputs
directly clip-level predic-
tions; Automatic thresh-
old optimization.

CNN-based models
need a lot of parame-
ters.

DCASE2017 Task4;
F1-score (AT - 64.6%; SED
- 57.3%); Precision (AT
- 69.1%); Recall (AT -
60.7%); Error rate (SED -
68%).

AT - audio tagging;
SED - sound event detection.

Elliott et al.
(2021) [8]

BERT-based Trans-
former for ESC at
the edge.

Evaluation of Transform-
ers’ performance using
several feature extraction
techniques and data aug-
mentation; Enables ESC
on edge devices.

Models trained in tra-
ditional frameworks
have little support
to be converted to
models that run at the
edge; Cannot have
competitive results
when trained with
small datasets.

ESC-50, Office Sounds;
Accuracy (67.71% for
ESC-50, 95.31% for Office
Sounds).

Wyatt et al.
(2021) [41]

BERT-based Trans-
former for ESC
on a resource-
constrained device
applied in noisy
environments.

The model trained with
noise augmented data can
generalize to audio with-
out noise and prevents
having to construct cus-
tom acoustic filters to be
able to apply the model in
real-life environments.

Needs large datasets;
Only employed on
small form factor
edge devices.

Office Sounds; Accuracy
(non-noisy dataset: 75.4%,
noisy dataset: 81.2%), Pre-
cision (non-noisy dataset:
76.5%, noisy dataset:
79.7%), Recall (non-noisy
dataset: 75.6%, noisy
dataset: 80.6%), F1-score
(non-noisy dataset: 75%,
noisy dataset: 80%).

Gong et al.
(2021) [11]

Audio Spectogram
Transformer, a
purely attention-
based audio classi-
fication model.

Capture long-range
global context even in
the lowest layers; Able
to handle different input
audio lengths without
changing the architecture;
Few parameters and fast
convergence.

Can’t use rectangular
patches due to the
inexistence of a pre-
trained model that
used the same dataset
as ViT; Unable to use
only an AudioSet
pre-trained model.

AudioSet, ESC-50, Speech
Commands V2; mAP
(AudioSet: 0.485), Accu-
racy (ESC-50: 95.6% and
Speech Commands V2:
98.11%).

Park et al.
(2021) [23]

Audio Spectro-
gram Transformer
that can handle
various output
resolutions.

Shows that Soft F-loss
performs better than bi-
nary cross-entropy; De-
sign to have a variety of
output resolutions.

Large model size;
Evaluates sound
event localization
and detection using
only one dataset.

TAU-NIGENS Spatial
Sound Events 2021; Er-
ror rate (0.50), F1-score
(65.7%), Recall dominant
score (74.7%).

Akbari et
al. (2021)
[1]

Transformers
for multimodal
self-supervised
learning from raw
video, audio and
text.

Learns effectively se-
mantic video, audio
and text representations;
DropToken technique
reduces the pre-training
complexity and training
time, making it possible
to host large models in
limited hardware.

Needs large datasets
due to the large size
of the network.

Only 2 out of 10 datasets
were from the audio do-
main: ESC-50, AudioSet.
mAP (AudioSet: 39.4%),
AUC (AudioSet: 97.1%),
d-prime (AudioSet: 2.895),
Accuracy (ESC-50: 84.9%).

Koutini et
al. (2021)
[16]

Audio Transformer
with Patchout
which optimizes
and regularizes
Transformers on
audio spectro-
grams.

Patchout improves the
generalization and re-
duces the computation
and memory complexity.

Increases the training
time.

AudioSet, OpenMIC, ESC-
50, DCASE20; mAP (Au-
dioSet: 0.496, OpenMIC:
0.843), Accuracy (ESC-50:
96.8%, DCASE20: 76.3%).

mAP - mean average precision, AUC - area under the receiver operating characteristic curve.
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2.3 Sound Segmentation Methods

Proper audio segmentation is a pre-processing step in audio analysis. Its purpose is to

separate the digital audio signal into segments containing audio information from a spe-

cific acoustic type. To be able to perform audio segmentation, some steps should be fol-

lowed:

• Feature extraction: The audio input is cut into overlapping frames to allow extrac-

tion of the parametric feature vector from each frame.

• Initial detection: It is an optional step in which the objective is to remove the silent

parts and discard the parts of the signal that are out of interest.

• Segmentation: The vector sequence of features is segmented into sub-sequences

with common acoustic characteristics. Two main approaches can be employed:

distance-based and model-based techniques.

• Post-processing or smoothing: It is also an optional step in which the goal is to

correct the errors related to detecting segments with a duration shorter than the

defined threshold.

Several metrics and algorithms can be used for the two mentioned main techniques

in the segmentation step. Some examples of distance metrics are the Euclidean distance,

the Bayesian Information Criterion, Kullback Leibler KL2 distance, the generalized likeli-

hood ratio, and the Hotelling T2 statistic; in terms of models, they can range from Guas-

sian Mixture Model (GMM), Hidden Markov Model (HMM), Support Vector Machine

(SVM), Artificial Neural Networks (ANN), Boosting Technology, k-Nearest Neighbor (k-

NN), Decision Trees and Fuzzy Logic (Theodorou et al. [37]).

Next, some examples of segmentation based on models are introduced; Tax et al.

[36] presented a DCNN model that is capable of learning the log-scaled Melspectrogram

transformation from raw waveform, providing a spectrum visually similar but slightly

smoothed, showing that upon initializing the first layers of an end-to-end Neural Net-

work classifier with the learned transformation can give comparable results to a model

trained on the highly processed Melspectrograms. Besides, due to the capacity of CNNs

to approximate complex mappings, it is possible to force the network to learn such trans-

formation implicitly and limit the need for ad-hoc architectural choices. Therefore, these
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findings showed that the performance of Neural Network-based models could be im-

proved by incorporating knowledge from established audio signal processing methods.

Martı́n-Morató et al. [19] discussed two problems arising from the temporal uncer-

tainty of audio events: the generation of errors at the decision level for models trained

with carefully annotated strong labels or perfectly segmented audio events when imple-

mented in a realistic scenario, where weakly segmented audio events and different levels

of background noise exists; and systems trained with weakly labelled datasets that face

the temporal uncertainty problem directly during training. Therefore, to solve these prob-

lems, the authors have proposed a pooling layer aimed at compensating for non-relevant

information of audio events by applying a non-linear transformation of the learned con-

volutional feature maps on the temporal axis, which follows a uniform distance sub-

sampling criterion in the learned feature space that allows propagating better the infor-

mation of the actual event through the network. The proposed pooling layer shows to

be an advantageous method to learn from weakly labelled data without adding more pa-

rameters and to increase the robustness under adverse scenarios with severe training and

test mismatches.

As for Gimeno et al. [10], the authors introduced a Bidirectional Long-Short Term

Memory (BLSTM) network with a new block incorporated onto the Neural Network,

named Combination and Pooling block, that aims to reduce the redundant temporal infor-

mation through a time pooling mechanism while learning an appropriate representation

through an one-dimensional (1D) convolution layer. Then, the system consists of a Re-

current Neural Networks (RNN) based classifier and an HMM re-segmentation module

with the combination of Mel log filter bank, chroma features, and also, 1st and 2nd deriva-

tives, as input. Adding the chroma features improved the accuracy in the ground truth

boundary experiments. On the other hand, the 1st and 2nd derivatives incorporate the au-

dio signal’s dynamic information, which is more relevant to generate the class boundaries

than for the classification task. The HMM re-segmentation significantly reduces the sys-

tem error by forcing a minimum segment length for the class labels and also proved that is

beneficial for the segmentation system when the output’s temporal resolution is reduced.

The introduction of the Combination and Pooling block allows the downsampling to be

implemented inside of the Neural Network. Then, to configure the temporal pooling lay-

ers, a pooling factor regulates the length of the output sequences in relation to the input

length. The pooling layers separate an input sequence into different sub-sequences with
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the same length and no overlapping. After some experiences with multiple configurations

changing the layers and the position of the Combination and Pooling block compared to

the BLSTM, allowed the authors to conclude that having only a pooling layer between

the two BLSTM layers makes it possible to achieve better results without adding more

parameters while decreasing computational complexity. Then, to improve the model’s re-

sults, it was used a data-agnostic data augmentation routine, Mixup, that generates new

virtual training examples (x̃, ỹ) according to the following equations:
x̃ = λxi + (1 − λ)xj

ỹ = λyi + (1 − λ)yj

(2.2)

where (xi, xj) are two feature vectors randomly drawn from the training dataset, (yi, yj)

are their corresponding one hot encoding labels and λ ∈ [0, 1].

Other methods like the one introduced by Giannakopoulos et al. [9] focus on the fea-

ture extraction step. The objective of Giannakopoulos et al. [9] was to use CNNs as a

method to extract context-aware deep audio features that can offer additional feature rep-

resentations to any soundscape analysis classification, which proved, when combined

with handcrafted audio features, to give a boost in the classification accuracy without the

need for CNN training. The two feature representation steps are combined in an early-

fusion scheme and classified using SVM with a Radial Basis Function (RBF) kernel. The

handcrafted audio features aim to represent the audio signal in a space able to discrim-

inate an unknown sample between the involved audio classes. In order to do that, each

signal is represented by a series of statistics computed over short-term audio features

processed on a mid-term basis, which consists of first dividing the audio signal into mid-

term overlapping or non-overlapping windows, then, each one of those is processed by

short-term processing, and the feature sequence from each mid-term segment is used for

computing feature statistics, resulting in each mid-term segment being represented by

a set of statistics, either from the time or frequency domain. The examples of such fea-

tures used in this work were the zero crossing rate, energy, entropy of energy, spectral

centroid, spectral spread, spectral entropy, spectral flux, spectral roll-off, MFCC, chroma

vector and chroma deviation. The context-aware deep features were extracted using a

supervised CNN trained to discriminate between different audio urban context classes

based on spectrograms using STFT of short-term segments. The output of the last fully

connected layer is used as a feature extractor in the initial soundscape classification task.
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By evaluating the model’s performance on the datasets was possible to show that the

combination of handcrafted features with the context-aware deep features culminates in

a boost of the model’s results.

Luz et al. [18] proposed a small parameter space CNN model to extract deep features

combined with handcrafted features. In addition, a feature selection step was performed

to reduce feature dimensionality, making the training process faster and less computation-

ally expensive by identifying redundant and inconsistent features, attaining it suitable for

mobile sound recognition applications or embedded systems. Also, identifying which

group of handcrafted features can enrich deep features to better discriminate between

Urban Sounds. The feature selection experiment results indicate that associating percep-

tual, static, and physical features from frequency and time domains with deep features

significantly improves the classification performance.

Table 2.3 summarizes the found works on audio processing with segmentation based

on models or/and handcrafted features and their focus, limitations, and performances.

Researchers have shown that deep features contain more relevant information than

handcrafted features, which translates into better results. To further improve the models’

performance, researchers have implemented attention mechanisms that allow focusing on

the semantically relevant characteristics. Therefore, the following section focus on studies

that implement different attention mechanisms.

2.3.1 Attention Mechanisms

Some studies focus on incorporating attention mechanisms to improve Convolutional

Recurrent Neural Networks (CRNN) models’ performance, such as the research works

of Qiao et al. [25], Zhang et al. [43, 44]. The study presented by Zhang et al. [43] in-

corporates temporal attention and channel attention mechanisms, later, Zhang et al. [44]

used a frame-level attention mechanism. Both proposals used a CRNN model consti-

tuted of eight convolution layers to learn high-level representations from the input log-

gammatone spectrogram and the channel temporal attention mechanism enhanced the

representational power of CNN. Therefore, to learn the temporal correlation information,

it’s used two layers of Bidirectional Gated Recurrent Unit (B-GRU) to which the CNN-

learned features were given as input. Finally, the features are fed into a fully connected

layer with Softmax as an activation function for the classification task. Also, some data

augmentation techniques were used to avoid overfittings, such as time and frequency
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TABLE 2.3: Summary of the found works on audio processing with segmentation based
on models or/and handcrafted features.

Authors/Year Model features Contributions/Benefits Limitation(s) Dataset/Metrics

Tax et al.
(2017) [36]

End-to-end CNN
model classifier
with the first layers
initialized.

Training the first layers
of a DCNN model using
unlabelled data allows us
to learn high-level audio
representations; Incorporat-
ing knowledge from audio
processing methods can
improve the performance
of Neural Network-based
models.

Not able to
outperform the
models trained
on processed
features.

ESC50;
Accuracy (around 50%).

Martı́n-
Morató et
al. (2020) [19]

CNN-based models
with an adaptive
pooling layer based
on a non-linear
transformation of
the learned con-
volutional feature
maps on the tempo-
ral axis.

Distance-based pooling
layer to improve CNN-
based models for audio
classification in adverse sce-
narios; Systems generalize
better to mismatching test
conditions; Learn more ro-
bustly from weakly labelled
data; Allows to propagate
better the information of
the actual event through the
network.

Only uses iso-
lated events
with a clear
beginning and
end.

UrbanSound8K, ESC-
30, DCASE2017 T4;
Macro-averaging ac-
curacy (ESC-30: 77%,
UrbanSound8K: 73.96%),
F1-score (DCASE2017
T4: 48.3%), Precision
(DCASE2017 T4: 68.2%),
Recall (DCASE2017 T4:
46.7%).

Gimeno et al.
(2020) [10]

BLSTM with a Com-
bination and Pool-
ing block.

A combination of BLSTM
modelling capabilities with
HMM backend smooths the
results and significantly re-
duces system error; Com-
bination and Pooling block
reduce redundant temporal
information.

Needs large
datasets; The
proposed block
wasn’t capable
of outperform-
ing the model
with HMM re-
segmentation.

3/24 TV, CARTV; Seg-
mentation error rate
(3/24 TV: 11.80%;
CARTV: 24.93%), Aver-
age class error (3/24 TV:
19.25%), Accuracy (3/24
TV: 16.05%).

Giannakopoulos
et al. (2019)
[9]

CNN to extract
context-aware deep
audio features and
combine them in an
early-fusion scheme
with handcrafted
audio features.

Using CNN as a feature
extractor can improve the
performance of the audio
classifier by the transference
of audio contextual knowl-
edge without the need for
CNN training.

Low accuracy re-
sults.

TUT Acoustic Scene
(used to train), Ur-
banSound8K, ESC-50;
Accuracy (ESC50: 52.2%;
UrbanSound8K: 73.1%).

Luz et al.
(2021) [18]

CNN model to ex-
tract deep features
that are combined
with handcrafted
features. As clas-
sifiers, it was used
Support Vector Ma-
chine and Random
Forest.

Feature selection steps to
reduce feature dimensional-
ity and understand which
handcrafted features could
enrich deep features to
better discriminate between
Urban Sounds; Deep fea-
tures contain more relevant
information than hand-
crafted features.

No applica-
tion of data
augmentation
techniques; Only
adopted one
CNN model
not too deep to
extract features
from Melspec-
trograms.

ESC-10, UrbanSound8K;
Accuracy (ESC-10:
86.2%; UrbanSound8K:
96.8%).

masking and Mixup. These data augmentations allowed the models to focus on the se-

mantically relevant frames, producing discriminative features, and arrive at the conclu-

sion that applying the attention mechanism to lower layers since the attention mechanism

can help preserve the lower-level features which normally carry basic and useful informa-

tion, yields better results in comparison to applying to higher-level layers, and employing

attention for RNN layers allows achieving the highest accuracy result and using sigmoid

as scaling function generates better attention weights than Softmax when applying atten-

tion at CNN layers. Furthermore, it was possible to understand that temporal attention
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reduces the impact of background noise since channel attention puts more attention on

the filters, which can detect the essential characteristics of the sounds. Frame-level at-

tention can focus on critical temporal events while reducing the impact of background

noise.

Regarding the research of Qiao et al. [25], besides developing a CRNN model with

a temporal-frequency attention mechanism, it has also developed a CRNN model using

sub-spectrogram segmentation-based feature extraction and score level fusion to high-

light the advantages of an attention mechanism. Therefore, the authors, on the one hand,

show that the sub-spectrogram segmentation mechanism truncates the whole spectro-

gram into a certain number of parts instead of generating the log Gammatone spectro-

gram based on the entire frequency band. It uses a score level fusion to combine different

classification results from different sub-spectrograms, considering the frequency domain

characteristics but ignoring the temporal domain ones. The score level fusion improves

the model accuracy compared to the uniform weights assignment, and that low-frequency

bands contain a large proportion of the characteristics of Environmental Sounds. How-

ever, high-frequency bands contain a few characteristics that are still indispensable for

the classification task. On the other hand, concerning the temporal-frequency attention

mechanism, the following advantages were highlighted: the use of the CNN layers to

extract temporal-frequency representations from the input log Gammatone spectrogram

shows low complexity despite the ability to learn more valuable information from the

input and gives higher accuracy results by focusing on the most critical frames and fre-

quency bands. To conclude, SpecAugmented and Mixup data augmentation techniques

were used in order to increase the diversity of the training.

Tripathi and Mishra [38] introduced an attention-based Residual Neural Network

(ResNet) model that efficiently learns Spatio-temporal relationships in the spectrogram,

skipping the irrelevant regions. Regarding the augmentation techniques, the authors uti-

lized time shift, adding noise and SpecAugment. The proposed attention module allows

capturing long-range contextual information between the spectrogram’s local features,

improving compactness and addressing intra-class inconsistency, which is the variations

between spectrogram features extracted from the different signals belonging to the same

class that can cause performance degradation. In addition, the study revealed that the

attention module provided the best accuracy results when affixed after the last residual

layer, so higher layers provided more valuable features to define the characteristics of a
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sound, and the attention module conserves them.

Ristea et al. [26] developed an architecture that employs two Transformer blocks in se-

quence, the first block attends to tokens within the same frequency bin (vertical axis), and

the second attends to tokens within the same time interval (horizontal axis) of the spectro-

gram. The model used noise perturbation, time shifting, speed perturbation, Mixup and

SpecAugment as data augmentation techniques. This implementation linearly scales the

number of trainable parameters with the input size, which reduces the memory footprint.

It can handle high-resolution spectrograms and shows that performing attention only on

one axis is insufficient. Thus, combining both attentions gives a considerable performance

boost regardless of the chosen order for the vertical and horizontal block. The order only

has a marginal influence on the results.

Table 2.4 summarizes the found works on audio processing with attention mecha-

nisms and their focus, limitations, and performances.

The following subsection presents some autoencoder implementations.

2.3.2 Autoencoders

Different types of autoencoders allow a multiplicity of applications, such as the one de-

scribed by Sudo et al. [31], which implements a multichannel Environmental Sound seg-

mentation method which consists of four blocks: Feature Extraction, Sound Source Lo-

calization and Separation (SSLS), Sound Source Separation and Classification (SSSC) and

reconstruction. In this approach, the feature extraction is constructed using the short-

time Fourier transform of the initial input signal, the magnitude spectrograms as spectral

features, and the sine and cosine interchannel phase difference as spatial features. The

SSLS block uses Deeplav3+, which has an encoder-decoder structure, enabling it to im-

prove the segmentation performance for Environmental Sounds with different durations.

The Deeplav3+ allows the extraction of high-level features to predict a spectrogram for

each azimuth angle regardless of the class. It creates a feature map much smaller than

the original spectrogram, allowing it to extract an extensive range of contexts without in-

creasing the number of parameters. The SSSC block also uses Deeplav3+, but here, the

input corresponds to each spectrogram of the output of the SSLS block, inserted one by

one. This block surpasses the influence of the spatial features, preventing the network

from overfitting to the relationship between the direction of arrival and the given class. In
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TABLE 2.4: Summary of the found works on audio processing with attention mecha-
nisms.

Authors/Year Model features Contributions/Benefits Limitation(s) Dataset/Metrics

Zhang et
al. (2019)
[43]

CRNN model with
temporal and chan-
nel attention mecha-
nisms.

The two attention mech-
anisms enhance the rep-
resentation capabilities of
CNN and lead it to focus on
the semantically relevant
parts of the sounds; Ap-
plying the attention mecha-
nism to lower-layers yields
better results than applying
it to higher-level layers.

Doesn’t quantify the
robustness to noise.

ESC10, ESC50,
DCASE2016; Accuracy
(ESC10: 94.2%, ESC50:
86.5%, DCASE2016:
88.9%).

Zhang et
al. (2020)
[44]

Frame-level atten-
tion mechanism
based on CRNN.

The attention model auto-
matically focuses on the se-
mantically relevant frames
and produces discrimina-
tive features; Low compu-
tational complexity.

Doesn’t quantify the
robustness to noise.

ESC-50, ESC-10; Accu-
racy (ESC-10: 93.7%,
ESC-50: 86.1%).

Qiao et al.
(2021) [25]

CRNN model using
sub-spectrogram
segmentation based
feature extraction
and score level fu-
sion; CRNN model
using temporal-
frequency attention.

Score level fusion improves
the accuracy in comparison
with the uniform weights
assignment; Low complex-
ity when generating the
temporal-frequency atten-
tion map when using the
attention mechanism; High
accuracy results when
using temporal-frequency
mechanisms.

Sub-spectrogram
segmentation mech-
anism only considers
frequency domain
characteristics;
Multi-dimensional
search spaces are
needed to opti-
mize segmentation
boundaries and
the number of seg-
ments which are, in
general, computa-
tionally prohibitive.

ESC-50; Accuracy (ESC-
50: sub-spectrogram
segmentation: 82.1%,
temporal-frequency
attention: 86.4%).

Tripathi
and
Mishra
(2021) [38]

Attention-guided
residual network
that efficiently learns
Spatio-temporal
relationships of a
signal’s spectro-
gram.

The attention module re-
solves the intra-class incon-
sistency; Identifies more se-
mantically relevant parts
of the spectrogram, and
correctly highlights them
while providing a visual
description.

Doesn’t quantify the
robustness to noise.

ESC-10, DCASE 2019
Task-1(A); Accuracy
(ESC-10: 92.16%
(augmented), 92%,
DCASE 2019: 82.21%
(augmented), 82%),
Precision (ESC-10:
88.70%, DCASE 2019:
83.47%), Recall (ESC-10:
89.80%, DCASE 2019:
82.28%), F1-score (ESC-
10: 87.93%, DCASE
2019: 82.39%).

Ristea et al.
(2022) [26]

Separable Trans-
former: separates
the attention for
the horizontal axis
(time) from the ver-
tical axis (frequency)
of spectrograms.

Reduces the number of
learnable parameters,
which reduces the memory
footprint; Able to handle
high-resolution spectro-
grams.

Doesn’t quantify the
robustness to noise.

ESC-50, Speech Com-
mands V2, CREMA-D;
Accuracy (CREMA-D:
70.47%, Speech Com-
mands V2: 98.51%,
ESC-50: 91.13%).
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conclusion, this approach allows performing a multichannel Environmental Sound seg-

mentation without the need to set beforehand the number of sound sources, preventing

the overfit between the direction of arrival and the class by explicitly separating the SSLS

block and the SSSC block and, finally, the SSSC block can separate sound sources arriving

from a close direction that the SSLS block was not able to separate.

Other approaches do not rely totally on autoencoders. Still, just a part of it, for ex-

ample, only the encoder part, like the model presented by Venkatesh et al. [40] which

illustrates a system called You Only Hear Once (YOHO) that predicts the boundaries of

acoustic classes through regression. This model is a CNN whose architecture is consti-

tuted by the MobileNet architecture that allows the reduction of the time and frequency

dimension by presenting a decoder-like architecture with some extra layers to flatten the

last two dimensions and a final layer to perform a binary classification that detects the

presence, the start, and endpoints of an acoustic class segment. The model’s input feature

is the Log-Melspectrograms, and the dimension of the input depends not only on the du-

ration of the audio example but also on the specifications of the Log-Melspectrogram. For

the post-processing, to smooth the output and eliminate spurious audio events, threshold-

dependent smoothing is used that allows the removal of audio events whose duration was

too short and the silence segments between consecutive events of the same acoustic class

if they are also too short. In conclusion, this model leads to a fast post-processing and

smoothing process due to YOHO’s ability to directly predict the acoustic class bound-

aries, resulting in a more end-to-end setup. However, it is limited by the time resolution

of the input; nevertheless, if the input were raw audio instead of Log-Melspectrogram,

the model would be entirely an end-to-end DL approach.

Table 2.5 summarizes the found works on autoencoder-like architecture for Environ-

mental Sound processing and their focus, limitations, and performances.

Some techniques and steps of audio segmentation had already been mentioned in the

previous section, such as feature extraction widely used by all the earlier models to pre-

dict the class. Das et al. [2] used the librosa library due to the default sampling rate that

allows a reduction in training time. Zinemanas et al. [45] mentioned the use of an autoen-

coder scheme which allows the extraction of features and the prediction of the class by
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TABLE 2.5: Summary of the found works on audio processing with autoencoder-like
architecture.

Authors/Year Model features Contributions/Benefits Limitation(s) Dataset/Metrics

Sudo et al.
(2021) [31]

Multichannel En-
vironmental Sound
segmentation method
constituted by a
sound source localiza-
tion block and a sound
source separation and
classification block.

Not necessary to set the
number of sound sources;
No overfitting between
the direction of arrival
and the class relationship;
Sine and cosine of inter-
channel phase difference
are optimum for sound
source localization and
separation.

Lack of suffi-
ciently large
datasets with
separated
sound source
signals and
direction of
arrival labels.

The dataset is a combination
of 10 datasets resulting in a
dataset with 75 classes; Root
Mean Square Error (18.59).

Venkatesh
et al.
(2021) [40]

YOHO: end-to-end
model with a CNN
architecture adapted
from the MobileNet
architecture.

Converts the detection of
acoustic boundaries into a
regression problem; Due
to fast inference, YOHO is
suitable for real-time ap-
plications; Directly out-
puts the time boundaries.

Limited by the
time resolution
of the input.

BBC Radio Devon and MuS-
peak, MIREX music-speech
detection, TUT Sound Event
Detection, Urban-SED; F1-
score (BBC Radio Devon and
MuSpeak: 97.22%, MIREX:
90.20%, TUT Sound Event
Detection: 44%, Urban-SED:
≈ 60%); Error rate (TUT
Sound Event Detection:
0.7517).

constructing a latent space more capable of expressing the audio features. Mu et al. [21] in-

troduced self-attention mechanisms combining a temporal and frequency attention mech-

anism which allows reducing the influence of background noise and irrelevant frequen-

cies and focusing on the most important parts of the signal; besides that, the researchers

used HPSS to separated between harmonic and percussive components. For the models

based on Transformers, all of them also took advantage of feature extraction. However,

this step is especially explored by Elliott et al. [8], which introduces several techniques, as

mentioned in the previous chapter. Kong et al. [15] presented a post-processing method

capable of automatically optimizing the values for the thresholds. Other researchers such

as Akbari et al. [1] and Koutini et al. [16] introduced DropToken and Patchout, respec-

tively, which are techniques that randomly drop part of the input sequence before feeding

it to the Transformer in order to reduce the training complexity.

To end, the chapter has presented some new feature extraction techniques developed

envisioning the enhancement of the ESC task.

2.3.3 New Feature Extraction Techniques

In this section, both works have presented new feature extraction techniques and show

their efficiency by employing them in transfer learning models using several data aug-

mentation techniques.



32
SOUND CHARACTERIZATION OF URBAN ENVIRONMENTS BY COMPUTATIONAL

METHODS

Therefore, the novel features presented by Mushtaq and Su [22] are based on the

logarithmic scale of the Melspectrogram named L2M, corresponding to the Log(Log-

Melspectrogram) and with L3M corresponding to Log(Log(Log-Melspectrogram)), which

are particularly useful for two new data augmentation techniques, NA-1 and NA-2, based

on Spectrogram Image Features (SIF). Both NA-1 and NA-2 use a single image as a fea-

ture at a time, but NA-1 consists of the enhancement of SIF data by combining various

spectrogram-based audio features. At the same time, NA-2 is a vertical combination of

various accumulated features in the form of spectral images in pairs. Besides, trim si-

lence was used as a pre-processing technique due to the silent parts of the audio clips.

Regarding the transfer learning model, Dense Convolutional Network (DenseNet)-161

with ImageNet weights was the chosen classifier which was further fine-tuned by using

individual optimal learning rates in combination with discriminative learning.

İlker Türker and Aksu [46] proposed a novel time-convexity representation based on

graph representations of consecutive frames after segmentation with constant window

and hop-length parameters of the original sound signal. This representation, named Con-

nectogram, is a colourful graph-generator approach that includes three layers, each de-

rived with different undersampling rates in which the horizontal axis stands for time, and

the vertical axis for signal fluctuations is a Red-Green-Blue (RGB) image that can serve as

input for the models. This approach seems to carry frequency-related info pairs with

amplitude information by having amplitude information of the original sound as verti-

cal fluctuations. The intensity of these fluctuations corresponds to the colours. However,

Connectogram is not a competitive representation but can significantly improve the repre-

sentation capability of Melspectrograms if generated with the same segmentation param-

eters. The best accuracy result was obtained when a combination of two Melspectrogram

with different parameters and a Connectogram was used as input for the ResNet50 model.

Concerning data augmentation, the input allows having two stages of augmentation,

the first regarding deformation methods to the raw sounds and the second includes image

distortion methods that are applied to the Connectogram such as rotation, horizontal and

vertical shift, brightness, shear and zoom.

Table 2.6 summarizes the found works that employ new feature extraction techniques

and their focus, limitations, and performances.

Table 2.7 summarizes the results of all of the articles considered in the literature review.
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TABLE 2.6: Summary of the found works on audio processing that introduces new fea-
ture extraction techniques.

Authors/Year Model features Contributions/Benefits Limitation(s) Dataset/Metrics

Mushtaq
and Su
(2020) [22]

DenseNet-161
fine-tuned with
optimal learn-
ing rates and
discriminative
learning.

Introduction of L2M
and L3M features;
New data augmen-
tation techniques:
NA-1 and NA-2; Can
achieve high results
with few training
epochs and less
amount of original
data.

L2M and
L3M are out-
performed
by other Mel
filter-based
features.
Compu-
tationally
heavy.

ESC-10, ESC-50, UrbanSound8K (US8K);
Accuracy (ESC-10: 99.22%, ESC-50:
98.52%, US8K: 97.98%), Error rate (ESC-
10: 0.777%, ESC-50: 1.476%, US8K:
2.018%), F1-score (ESC-10: 99.25%, ESC-
50: 98.53%, US8K: 98.13%), Recall (ESC-
10: 99.25%, ESC-50: 98.53%, US8K:
98.13%), Precision (ESC-10: 99.24%, ESC-
50: 98.57%, US8K: 98.14%), Kappa score,
Matthews Correlation Coefficient, False
Discovery rate, Fowlkes-Mallows index,
Miss rate.

İlker
Türker
and Aksu
(2022) [46]

ResNet50 with
a combination
of two Melspec-
trogram with
different pa-
rameters and a
Connectogram as
input

Introduces a time-
convexity graph-
based representation
for sounds, Connec-
togram, capable of
being fused with
Melspectrograms to
improve their repre-
sentation capabilities.

Connectogram
is not a pow-
erful rep-
resentation
when used
by itself.

ESC-10;
Accuracy (ESC-10: 96.46%)
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TABLE 2.7: Results summary of all models considered for the literature review.

Authors Dataset Acc Other metrics
Salamon and Bello
[29] UrbanSound8k 79% -

Das et al. [2] UrbanSound8k (unofficial split) 98.81% -
Das et al. [3] UrbanSound8k (unofficial split) 99.60% -

Zinemanas et al.
[45]

UrbanSound8k
Google Speech Commands
Medley-Solos-DB

76.2%
89%
65.8%

-

Mu et al. [21] UrbanSound8k
ESC-50

93.1%
84.4% -

Kong et al. [15] DCASE2017 Task 4 - AT - F1-score: 64.6%, Precision: 69.1%, Recall: 60.7%
SED - F1-score: 57.3%, Error rate: 68%

Elliott et al. [8] ESC-50
Office Sounds

67.71%
95.31% -

Wyatt et al. [41] Office Sounds 81.2% Precision: 79.7%, Recall: 80.6%, F1-score: 80%

Gong et al. [11]
ESC-50
Speech Commands V2
AudioSet

95.6%
98.11%
-

-
-
mAP: 0.485

Park et al. [23] TAU-NIGENS Spatial Sound
Events 2021 - F1-score: 65.7%, Recall: 74.7%, Error rate: 0.50

Akbari et al. [1] ESC-50
AudioSet

84.9%
-

-
mAP: 39.4%, AUC: 97.1%, d-prime: 2.895

Koutini et al. [16]

ESC-50
AudioSet
OpenMIC
DCASE20

96.8%
-
-
76.3%

-
mAP: 0.496
mAP: 0.843
-

Tax et al. [36] ESC-50 ≈50% -

Martı́n-Morató
et al. [19]

UrbanSound8K
ESC-30
DCASE2017 T4

73.96%
77%
-

-
-
F1-score: 48.3%, Precision: 68.2%, Recall: 46.7%

Gimeno et al. [10] 3/24 TV
CARTV

16.05%
-

Segmentation error: 11.80%, ACE: 19.25%
Segmentation error: 24.93%

Giannakopoulos
et al. [9]

UrbanSound8K
ESC-50

73.1%
52.2% -

Luz et al. [18] UrbanSound8K
ESC-10

96.8%
86.2% -

Zhang et al. [43]
ESC-50
ESC-10
DCASE2016

86.5%
94.2%
88.9%

-

Zhang et al. [44] ESC-50
ESC-10

86.1%
93.7% -

Qiao et al. [25] ESC-50 86.4% -
Tripathi and
Mishra [38]

ESC-10
DCASE 2019 Task-1(A)

92.16%
82.21% -

Ristea et al. [26]
ESC-50
Speech Commands V2
CREMA-D

91.13%
98.51%
70.47%

-

Sudo et al. [31] 75-classes dataset combining 10
datasets - Root Mean Square Error: 18.59

Venkatesh et al.
[40]

Urban-SED
TUT Sound Event Detection
BBC Radio Devon and MuSpeak
MIREX

-

F1-score: ≈ 60%
F1-score: 44%, Error rate: 0.7517
F1-score: 97.22%
F1-score: 90.20%

UrbanSound8K 97.98%
Error rate: 2.018%, F1-score: 98.13%, Recall: 98.13%,
Precision: 98.14%, Kappa score: 97.09%, MCC:
97.73%, FDR: 1.854%, FM: 98.14%, Miss rate: 1.863%

Mushtaq and Su
[22] ESC-50 98.52%

Error rate: 1.476%, F1-score: 98.53%, Recall: 98.53%,
Precision: 98.57%, Kappa score: 98.95%, MCC:
98.49%, FDR: 1.469%, FM: 98.55%, Miss rate: 1.469%

ESC-10 99.22%
Error rate: 0.777%, F1-score: 99.25%, Recall: 99.25%,
Precision: 99.24%, Kappa score: 98.93%, MCC:
99.13%, FDR: 0.758%, FM: 99.24%, Miss rate: 0.744%

İlker Türker and
Aksu [46] ESC-10 96.46% -

Acc - Accuracy, AT - Audio Tagging, SED - Sound Event Detection, mAP - mean average precision, ACE - Average Class Error, AUC - area under the
receiver operating characteristic curve, MCC - Matthews Correlation Coefficient, FDR - False Discovery rate, FM - Fowlkes-Mallows index.
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2.4 Conclusion

There are three stages to performing the sound classification: pre-processing the audio

signal, the acoustic feature extraction and the audio signal classification (Das et al. [2]).

Therefore, researchers have proposed several models to address this challenge, focus-

ing on different stages of the task. Some try to develop or improve the model’s archi-

tecture by using modified versions of the loss functions, methods to drop parts of the

input sequence or by exploring various types of architectures such as DCNN, CRNN,

LSTM, ResNet, DenseNet and more recently, Transformers. Most of the approaches were

based on DL methods because even if it’s more challenging to identify which parameters

drive the model’s decision, non-interpretative DL models show superior results (Salamon

and Bello [29], Zinemanas et al. [45]). Others have concentrated more on the sound seg-

mentation part of the task with approaches ranging from implementations of different

features extraction techniques, however, the combination of handcrafted features allows

typically to achieve better results (Das et al. [2, 3]), particularly when handcrafted fea-

tures are combined with deep features (Giannakopoulos et al. [9], Luz et al. [18]); also,

the use of model-based techniques to segment the sound like CNNs or autoencoders are

capable of learning transformations from the raw waveforms and able to give comparable

results to models trained on highly processed features (Tax et al. [36]) or by the introduc-

tion of new blocks or layers that allow reducing the redundant information (Gimeno et al.

[10], Martı́n-Morató et al. [19]) and the employ of different attention mechanisms to fo-

cus on the semantically relevant characteristics showing greater improvements those that

combine time and frequency attention.

Furthermore, a problem that ESC’s researchers discuss is the scarcity of data, to which

they used several audio data augmentation techniques to solve the problem and avoid

overfitting. On the other hand, some researchers used cross-modality transfer learning by

relying on pre-trained models in the image domain. Such fact allowed them to apply the

weights feature knowledge to facilitate and accelerate the training process and use data

augmentation techniques commonly used in the vision domain.

The objective of this literature review was to summarize the most recent works on the

subject to understand the current approaches in this area, the problems or limitations and

finally, the state-of-art approach. Out of the articles considered in this review, the work

of Mushtaq and Su [22] was the approach that gave the best results for the most popu-

lar ESC datasets (97.98% for UrbanSound8k, 98.52% for ESC-50 and 99.22% for ESC-10),
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evaluated according to the official splits by doing the k-fold cross-validation evaluation

of the results.



Chapter 3

Baseline Models

This chapter describes the process used to obtain the baseline model. Starting with the fea-

ture extraction techniques, the definition of the overall architecture of the model, different

optimization functions, complemented by an exhaustive evaluation of the performance of

the various models, supported by six distinct metrics: Accuracy, area under the receiver

operating characteristic (ROC) curve (AUC), precision, recall, micro and macro F1-score.

3.1 Datasets

This section describes the characteristics of some of the most used datasets in Environ-

mental Sound Classification (ESC). The chosen datasets UrbanSound8K, ESC-50 and ESC-

10 will allow not only to have more models from different published articles with which is

possible to compare results, but also to see the behaviour of the models when the number

of classes is maintained but the composition and name of the classes changes, and when

there is an increase in the number of classes.

3.1.1 UrbanSound8K

The dataset consists of 8732 labelled audio slices with an audio length of 4 seconds or

less, with the sampling rate varying from 16 to 44.1 kHz and is organized into 10 folds.

All audio clips are taken from field recordings uploaded to the Freesound project. Figure

3.1 presents the data distribution per class (Salamon et al. [28]).

37
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FIGURE 3.1: Distribution of data per class of UrbanSound8K dataset.

3.1.2 ESC-50

The dataset consists of 2000 labelled clips with a length of 5 seconds organized into

50 classes with 40 examples per class extracted from public field recordings available

through the Freesound project. The extracted samples were converted to a unified for-

mat with a rate of 44.1 kHz, single-channel, and Ogg Vorbis* compressed at 192 kbit/s.

The dataset has also been rearranged into 5 uniformly sized folds for comparable cross-

validation, ensuring that clips from the same initial source file are always part of a single

fold. The distribution of examples per class is shown in Figure 3.2 (Piczak [24]).

3.1.3 ESC-10

This dataset is a subset of 10 classes from the ESC-50 dataset, making it a more constrained

set with the differences between classes much more pronounced. The distribution of ex-

amples per class is shown in Figure 3.3 (Piczak [24]).

*https://xiph.org/vorbis/ (accessed 29 August 2022)

https://xiph.org/vorbis/
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FIGURE 3.2: Distribution of data per class of ESC-50 dataset.

FIGURE 3.3: Distribution of data per class of ESC-10 dataset.

3.2 Feature Extraction Techniques

Different feature extraction techniques were implemented and evaluated to provide the

classifier with more distinguishable characteristics and complementary representations
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that correctly classify the given audio clips. Next, a description of the implemented spec-

tral audio features is presented, supported by the librosa library (McFee et al. [20]).

• Zero crossing rate: is a time-domain feature that considers the sign changing rate of

the signal during an audio frame, corresponding to the number of times the signal

crosses the zero level.

• RMS: measures the energy of a signal by dividing the signal into several windows

by applying the following equation to each window:

RMSw =

√√√√ 1
T

T

∑
t=1

x2
t (3.1)

where T is the window size, and xt is the amplitude of the tth sample in the window,

w.

• Poly features: generates a new feature matrix with all polynomial combinations

of features raised to a degree less or equal to the specified degree. Therefore, the

new matrix consists of bias terms, the features raised to power for each degree until

reaching the desired degree and the interactions between all pairs of features.

• Tonnetz: computes the tonal centroid features, corresponding to a planar represen-

tation of pitch relations that projects chroma features onto a six-dimensional (6D)

basis. The 6D tonal centroid vector, ζ, for time frame n is given by the following

equation:

ζn(d) =
1

∥cn∥1

11

∑
l=0

Φ(d, l)cn(l) (3.2)

where c is the chroma vector, ∥cn∥1 the L1 norm of cn, Φ the transformation matrix

representing the basis of the 6D space, l the chroma vector pitch class index, and

d ∈ [0, 5] denotes which of the six dimensions of ζn is being evaluated.

• Melspectrogram: is a spectrogram that corresponds to a visual representation of the

spectrum of frequencies of a given signal as it varies with time. The signal ampli-

tude is represented by the colour of each point in the image. The frequencies are

converted to the mel scale, a scale of pitches (property of sounds that allows their

ordering on a frequency-related scale) judged by listeners to be equal in distance

from one another.
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• Mel Frequency Cepstral Coefficients (MFCC): are coefficients that collectively rep-

resent a sound’s short-term power spectrum. So, the process to develop MFCC is

the following:

1. Apply the discrete Fourier transform to a window of the signal.

2. Map the magnitudes of the spectrum obtained above into the mel scale.

3. Take the logarithm of the magnitudes at each mel frequency.

4. Apply the discrete cosine transform to the logarithmic mel frequency coeffi-

cients.

Since the first few MFCCs coefficients are capable of representing the majority

of the signal information, higher-order discrete cosine transform components

can be truncated.

5. Creation of a spectrum over mel frequencies. The amplitudes of the spectrum

are the MFCCs.

Therefore, MFCC can be calculated using the next equation:

c(n) =
M−1

∑
m=0

log (s(m)) cos

(
πn(m − 0.5)

M

)
(3.3)

where n = 0, 1, 2, ..., C − 1 and C is the number of MFCCs, c(n) the cepstral coeffi-

cients, M the total number of Mel weighting filters, s(m) = ∑N−1
k=0

[
|X(k)|2Hm(k)

]
,

with X(k) being the magnitude spectrum, N the number of points used to compute

the discrete Fourier transform, and Hm(k) the Mel weighting filter that corresponds

to the weight given to the kth energy spectrum bin that contributes to the mth output

band.

• Chroma features: is the distribution of the signal’s energy across a predefined set

of pitch classes, allowing to capture harmonic and melodic characteristics of sound

while being robust to changes in timbre.

Its purpose is to represent the harmonic content of a short-time window of audio,

which results in the magnitude spectrum from where it is possible to extract a fea-

ture vector using Short-Term Fourier Transformation (STFT), Constant Q-transform

(CQT), Chroma Energy Normalized Statistics (CENS), among others.
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– Chroma STFT: is a chroma feature that extracts the feature vector using the

STFT, which is a successive evaluation of Fourier transform over short seg-

ments of the signal. The values obtained using STFT tell which frequencies

are present on the signal and the corresponding time interval they appear. So,

STFT is used to determine the sinusoidal frequency and phase content of lo-

cal sections of a signal as it changes over time and can be calculated using the

following equation:

STFT{x[n]}(m, w) =
+∞

∑
n=−∞

x[n]w[n − m]e−jwn (3.4)

where STFT{x[n]} represents the STFT of the signal x[n], w the window func-

tion and m the time index.

– Chroma CQT: is a chroma feature that transforms the audio data to the fre-

quency domain. The transformation is applied to a series of filters logarithmi-

cally spaced in frequency. The equation to calculate CQT is the following:

X[k] =
1

N[k]

N[k]−1

∑
n=0

W[k, n]x[n] exp
(
−j2πQn

N[k]

)
(3.5)

where x[n] is the nth sample of the temporal signal, W[k, n] the window func-

tion, N[k] the length of the window in samples at the frequency of the kth spec-

tral component, and Q the ratio of frequency to bandwidth.

– Chroma CENS: adds a degree of abstraction by considering short-time statis-

tics over energy distributions within the chroma bands. The CENS features

correlate to the short-time harmonic content of the audio signal and learn the

variations of properties such as dynamics, timbre, and articulations, among

others.

Therefore, to produce CENS features, the following steps need to be followed:

1. Obtain chroma vectors using chroma CQT;

2. Normalize the chroma vectors concerning the L1 norm;

3. Quantization of amplitude based on log-like amplitude thresholds that in-

troduce a logarithmic compression;

4. Smoothing using a sliding window;

5. Downsampling.
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• Spectral features: extract frequency and power characteristics of a signal, is an ex-

cellent tool for analysing repetitive patterns in a given signal, such as vibrations.

– Spectral centroid: indicates where the centre of mass of the spectrum is located

and provides a noise-robust estimate of how the dominant frequency of signal

changes over time. The higher the centroid, the higher the sound’s frequency.

The central frequency, fc, at time frame t is calculated using the following equa-

tion:

fc(t) =
∑k S(k, t) f (k)

∑k S(k, t)
(3.6)

where S(k, t) is the spectral magnitude at frequency bin k and time frame t, and

f (k) the frequency at bin k.

– Spectral bandwidth: is the difference between the upper and lower frequen-

cies in a continuous band of frequencies. To calculate the bandwidth of a signal

at a particular time frame is necessary to sum up the maximum deviation of the

signal on both sides of the centroid point of the signal, an operation that cor-

responds to the following equation that computes the pth order spectral band-

width.

Spectral bandwidth =

(
∑

k
S(k, t)

(
f (k, t)− fc(t)

)p

)1/p

(3.7)

where S(k, t) is the spectral magnitude at frequency bin k and time frame t,

f (k, t) the frequency at bin k and time frame t, and fc is the spectral centroid or

central frequency of the signal at time frame t.

– Spectral contrast: divides each frame of a spectrogram into sub-bands and

estimates the energy contrast by comparing the mean energy of spectral peaks

to spectral valleys in each sub-band separately, with high contrast values corre-

sponding to clear, narrow-band signals and low contrast values to non-harmonic

components or broad-band noise.

– Spectral flatness: quantifies how much a sound resembles a pure tone, as op-

posed to being noise-like. High spectral flatness indicates that the spectrum is

similar to white noise and has equivalent power in all spectral bands. On the

other hand, low spectral flatness suggests that the power spectrum is concen-

trated in a relatively small number of bands.
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Therefore, spectral flatness can be defined as the ratio of the geometric mean

regarding the arithmetic mean of a power spectrum, being expressed as:

Spectral flatness =
exp

(
1
N ∑N−1

n=0 ln (x(n))
)

1
N ∑N−1

n=0 x(n)
(3.8)

where x(n) represents the magnitude at the frequency bin n and N the length

of the samples to consider for the spectral band.

– Spectral rolloff: computes the roll-off frequency, defined as the cutoff fre-

quency where a certain defined percentage of the total energy of the spectrum

is contained. It is helpful to determine the maximum or minimum frequency of

the signal by setting the ratio to a value close to 1 (one) or 0 (zero), respectively.

Besides evaluating the performance with the features input alone, it was also studied

the model’s behaviour with different combinations of the above features. The combina-

tions performed are presented in Table 3.1.

TABLE 3.1: Summary table of feature combinations.

mfccstft MFCC, Chroma STFT (nº bins = 40)
mfccstft80 MFCC, Chroma STFT (nº bins = 80)

mfccmel MFCC, Melspectrogram (nº bins = 80)
mmq MFCC, Melspectrogram, Chroma CQT (nº bins = 80)

mmcens MFCC, Melspectrogram, Chroma CENS (nº bins = 80)
mms40 MFCC, Melspectrogram, Chroma STFT (nº bins = 40)
mms60 MFCC, Melspectrogram, Chroma STFT (nº bins = 60)
mms80 MFCC, Melspectrogram, Chroma STFT (nº bins = 80)

mmstftq MFCC, Melspectrogram, Chroma STFT, Chroma CQT (nº bins = 80)

mmsqc MFCC, Melspectrogram, Chroma STFT, Chroma CQT, Chroma CENS (nº bins =
40)

mmsqc80 MFCC, Melspectrogram, Chroma STFT, Chroma CQT, Chroma CENS (nº bins =
80)

scontpoly Spectral Contrast, Poly features (polynomial order = 6)
tsp Spectral Contrast, Poly features, Tonnetz (nº bands = 5, polynomial order = 5)

zrsp Zero crossing rate, RMS, Spectral Flatness, Poly features (polynomial order = 0)

zsrssp Zero crossing rate, Spectral Centroid, Spectral Rolloff, RMS, Spectral Bandwith,
Spectral Flatness, Poly features (polynomial order = 0)

3.3 Model’s Architecture and Functions

Initially, an architecture consisting of three dense layers with 256 units with ReLu was

used as the activation function, which returns 0 (zero) if the input is negative or the value

if is positive; one dense layer of 10 units with Softmax function, that is a generalization of
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the logistic regression function to multiclass problems by assigning a probability to each

class whose probability summation over all classes must be equal to 1 (one), and can be

defined by the following equation:

σi(z) =
ezi

∑K
j=1 ezj

(3.9)

where z is the input vector and K is the number of classes. Furthermore, there is a dropout

layer between the dense layers with a rate value of 0.4. The scheme of the model’s archi-

tecture is shown in Figure 3.4.

FIGURE 3.4: Baseline model architecture.

The dense layer has the neurons connected to every neuron of the preceding layer,

making it deeply connected with its previous layer. Then, the dense layer performs the

following operation to deliver the output:

output = activation(dot(input, kernel) + bias) (3.10)

where activation corresponds to the element-wise activation function, in this case, was

used for the first 3 layers, the ReLu function and the last one, the Softmax function; the
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kernel corresponds to a weighted matrix created by the layer, with the bias being a bias

vector.

The dropout layer prevents overfitting by randomly setting a percentage of the activa-

tions to zero with a frequency of rate at each step during training time and scales up the

other input values by 1/(1-rate) to the total sum remains unchanged.

To study the influence of the rate on the dropout layer, some experiences were con-

ducted by employing different rate values such as [0, 0.2, 0.4, 0.6 and 0.8]. Also, model

modifications were created to improve the models’ performance by adding two extra lay-

ers: one dense layer and one dropout layer.

Furthermore, it is important to note that depending on the dataset used, it may be

necessary to change the number of units in the last dense layer, as this must be equal to

the number of classes in the dataset. Thus, for the ESC-50 dataset, this layer must have 50

units.

After creating the model, it is necessary to configure it for training, requiring the mod-

els to be compiled and the loss function, optimization function and metrics defined.

3.3.1 Loss Function

For the loss function, due to the objective of sound classification, it only matters if the

output prediction is right or wrong, and the use of datasets has several classes that are as

an one-hot encoded, so categorical cross-entropy was the chosen loss function.

Categorical cross-entropy measures the entropy difference between two probability

distributions which can be calculated using the following equation:

Loss = −
N

∑
i=1

yi log(ŷi) (3.11)

where N is the output size which is the number of classes, ŷi the ithe scalar value in the

model output, which is the Softmax probability for ithe class, and yi is the corresponding

truth value.

3.3.2 Optimization Function

Several optimization functions, such as Stochastic Gradient Descent (SGD), Adagrad,

Adadelta, Adam, Adamax and Nadam, all minimize the loss function by changing the

models’ weights.
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Next is a description of the characteristics of the different optimization functions em-

ployed.

SGD is a stochastic approximation of gradient descent optimization since it is calcu-

lated from a randomly selected subset of data (Ruder [27]). The values are calculated

following the next algorithm, which should be repeated until the model converges to the

desired minimum.

1. Training examples are randomly shuffle

2. For i = 1, ..., M:

θ
(j)
i = θ

(j)
i−1 − η∇L(θ(j)

i−1) (3.12)

for every j = 0, ..., n where n is the total number of weights to be optimized, M the

number of training examples, θ(j) the weight that is being optimized, η the learning

rate, and ∇L(θ(j)
i−1) =

∂L
∂θ

(j)
i−1

the partial derivative of the loss function with respect to

the weight θ
(j)
i−1.

Adagrad means adaptive gradient descent and is an optimizer similar to SGD but uses

different learning rates for each iteration. This learning rate change is based on how fre-

quently weight updates during training. The more the weights change, the minor changes

in the learning rate (Duchi et al. [7]), allowing for the sparse parameter to get more signif-

icant updates, improving convergence.

The rule to change the learning rate is given by:

ηi =
η√

αi + ϵ
(3.13)

where αi = ∑i
t=1

(
∂L

∂θ
(j)
i−t

)2

is the summation of gradient square, being L the loss function,

θ
(j)
i−t the t-the iteration before the i-the iteration of the θ(j) weight, ϵ is just a small constant

to avoid divisions by zero, η is the initial learning rate manually defined and ηi the up-

dated value of the learning rate i-the iteration, which will be the one used to compute the

values of the weights in equation 3.12.

Adadelta is an extension of Adagrad. Instead of summing up all the past squared gra-

dients, it uses a moving window of a fixed size of gradient updates that allows Adadelta

to continue learning even after many updates (Zeiler [42]). So, in this case, the learning

rate is defined by:
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ηi =

√
Di−1 + ϵ√

vi + ϵ
(3.14)

where Di = βḊi−1 + (1 − β)
(

θ
(j)
i − θ

(j)
i−1

)2
and vi is i-the iteration of the exponential

weighted average of squared gradients defined by vi = βvi−1 +(1− β)

(
∂L

∂θ
(j)
i−1

)2

, β ∈ [0, 1[

is a constant that controls the decay rate, usually set around 0.9 to give more importance

to the previous weighted average, allowing to change the vi slowly with the new values

of the squared gradient, L is the loss function, θ
(j)
i−1 is the iteration previous to the i-the

iteration of θ(j) weight.

Adam is an adaptive moment estimation, a stochastic gradient descent method based

on adaptive estimation of the first and second-order moments. This method combines the

gradient descent with the momentum algorithm, allowing the gradient descent algorithm

to converge much faster by considering the exponentially weighted average of gradients

with the root mean square propagation algorithm, similar to Adagrad. However, instead

of taking the cumulative sum of squared gradients, it takes the exponential moving aver-

age that corresponds in equation 3.13 to replace αi by vi (Kingma and Ba [14]).

Therefore, the Adam optimizer algorithm can be defined by:

θ
(j)
i = θ

(j)
i−1 − m̂i

(
η√

v̂i + ϵ

)
(3.15)

where θ(j) is the weight that is being optimized, η is the learning rate, ϵ is a small constant

to avoid divisions by zero, m̂i = mi/(1− β1i) is the bias-corrected estimate of momentum,

mi = β1mi−1 + (1 − β1)

(
∂L

∂θ
(j)
i−1

)
, β1 ∈ [0, 1[ is a constant that controls the rate of decay of

mi, v̂i = vi/(1 − β2i) is the bias-corrected estimate of exponential weighted average of

squared gradients, and β2 ∈ [0, 1[ is a constant that controls the rate of decay of vi.

The moving averages require bias correction to prevent the moment estimates from

being biased towards zero, a situation that occurs during the initial iterations because the

moving averages are initialized as zero and when the decay rates are low (β1 and β2 close

to 1 (one)).

Adamax is an adaptation of the Adam optimizer that generalizes the approach to the

infinite norm of maximum |(max)| (Kingma and Ba [14]) and is defined by:

θ
(j)
i = θ

(j)
i−1 −

(
m̂i

ui

η

1 − β1i

)
(3.16)
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where θ(j) is the weight that is being optimized, η is the learning rate, m̂i is the bias-

corrected momentum estimate, ui = max

(
β2ui−1,

∣∣∣∣ ∂L
∂θ

(j)
i

∣∣∣∣
)

is the exponential weighted

infinity norm, and β2 ∈ [0, 1[ is a constant that controls the rate of decay of ui and L the

loss function.

Nadam is the Nesterov-accelerated adaptive moment estimation similar to the Adam

optimizer but with a Nesterov moment that applies momentum to the parameters before

computing the gradient (Dozat [6]). So, the next equation allows to calculate Nadam

optimization:

θ
(j)
i = θ

(j)
i−1 − m̄i

η√
v̂i + ϵ

(3.17)

where θ(j) is the weight that is being optimized, η the learning rate, m̄i the Nesterov’s

moment which is defined by
1−β1i

1−∏i
t=1 β1t

(
∂L

∂θ
(j)
i−1

)
+ β1i+1 m̂i and m̂i =

mi
1−∏i+1

t=1 β1t
, and v̂i is the

bias-corrected estimate of an exponentially weighted average of squared gradients.

3.3.3 Metrics

Metrics are essential to access the model’s performance, compare it with other models,

and select the best-performing model.

This work used six metrics: Accuracy, AUC, precision, recall, micro and macro F1-

score.

Accuracy measures how often the algorithm classifies a data point correctly, so it is the

number of correctly classified data points out of all data points. Mathematically, it can be

defined as:

Accuracy =
nº of correct predictions
Total nº of predictions

(3.18)

AUC measures the ability of a classifier to distinguish between classes. It integrates

the ROC curve graph that evaluates the model performance in all classification thresholds.

This metric is preferable because it is scale-invariant. Instead of measuring the abso-

lute values, it measures how well predictions are ranked invariant to classification thresh-

olds, measuring the quality of the model’s prediction independent of the chosen classifi-

cation threshold. However, this is not robust when it is necessary to have well-calibrated

probability outputs or when there is a wide disparity in the cost of False Negative (FN) vs

False Positive (FP), requiring the need to minimize one type of classification error.
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Precision gives the number of correctly classified data points out of all points identi-

fied as being of a certain class. In binary, problems can be defined mathematically as:

Precision =
TP

TP + FP
(3.19)

True Positive (TP) are the examples that are correctly identified as positive.

Recall gives the number of correctly classified data points out of all points belonging

to the class on the dataset. In binary, problems can be defined as:

Recall =
TP

TP + FN
(3.20)

F1-score corresponds to the harmonic mean of precision and recall, which allows as-

sessing model performance based on the values of two metrics:

F1-score =
2(Precision ∗ Recall)

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
(3.21)

In multiclass problems, it is possible to define different averaging types to calculate the n

F1-score metric. One is the micro average F1-score, which computes the global average

score by summing all values across all classes for TP, FN and FP and then plugs it in

the F1-score equation 3.21. Also, there is a F1-score calculated using an average macro

scheme corresponding to the computation of the arithmetic mean of all instances per class

F1-scores.

3.4 Baseline Experiments - Using UrbanSound8K Dataset

Firstly, six different optimizers were evaluated with the architecture presented in Figure

3.4, with each model variation corresponding to a different optimization function. (model

1: Adam; model 2: Adamax; model 3: SGD; model 4: Nadam; model 5: Adagrad and

model 6: Adadelta). Also, to quantify which of the features gives better results, a study

was carried out using the different spectral features described in Section 3.2. The dataset

used to evaluate the baseline model’s performance was the UrbanSound8K.

For easy assessment of the results, all tables are arranged in descending order accord-

ing to the values of the macro F1-score, with the best result for each column in the fol-

lowing tables being highlighted. Also, for tables referring to a single input feature, on the

name of each feature, a number is added in front to represent the number of chroma bins,
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bins in mel scale, or the number of MFCC used respectively, depending on the type of fea-

ture and the acronym that is commonly represented. As example, mfcc for MFCC, mel for

Melspectrogram, stft for Chroma STFT, cens for Chroma CENS, cqt for Chroma CQT and

tonz for Tonnetz. Regarding all figures with graphical representations, the curves repre-

sented for the different models correspond to referred feature or combination of features

that provided the top result according to the macro F1-score for each model presented on

the respective table. The legend of each graph shows which model it refers to and the

individual input or group of features used.

3.4.1 Models with a Single Feature Input - Baseline Model Architecture

Table 3.2 shows the top 5 best performing features, according to the macro F1-score metric,

of the six basic models with the architecture presented on Figure 3.4.

TABLE 3.2: Results of the 6 models for different features.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel80 0.591 0.873 0.591 0.593 0.643 0.483 mfcc60 0.522 0.886 0.522 0.551 0.774 0.278
mfcc60 0.572 0.885 0.572 0.578 0.682 0.527 mfcc80 0.516 0.878 0.516 0.528 0.765 0.314
mfcc40 0.575 0.894 0.575 0.575 0.646 0.527 mel80 0.465 0.838 0.465 0.459 0.761 0.228
mfcc80 0.559 0.881 0.559 0.563 0.648 0.520 mfcc40 0.441 0.797 0.441 0.440 0.519 0.226
mel60 0.486 0.850 0.486 0.497 0.550 0.381 mel60 0.423 0.832 0.423 0.436 0.683 0.170

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.611 0.904 0.611 0.622 0.722 0.550 mfcc80* 0.637 0.908 0.637 0.628 0.747 0.572
mfcc60 0.616 0.898 0.616 0.618 0.682 0.564 mfcc40 0.576 0.873 0.576 0.583 0.651 0.535
mfcc40 0.593 0.893 0.593 0.607 0.693 0.519 mfcc60 0.573 0.864 0.573 0.571 0.654 0.529
mel80 0.491 0.859 0.491 0.501 0.703 0.294 mel80 0.535 0.857 0.535 0.539 0.583 0.419
mel40 0.466 0.862 0.466 0.477 0.688 0.260 mel60 0.487 0.836 0.487 0.490 0.569 0.415

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.209 0.595 0.209 0.179 0.317 0.118 mfcc60 0.368 0.753 0.368 0.361 1.000 0.033
mel60 0.213 0.637 0.213 0.164 0.556 0.066 mel80 0.323 0.793 0.323 0.329 0.538 0.060
tonz20 0.208 0.538 0.208 0.163 0.000 0.000 mel40 0.329 0.779 0.329 0.329 0.766 0.059
cens20 0.167 0.597 0.167 0.140 0.000 0.000 mel60 0.283 0.786 0.283 0.287 0.803 0.068
cens40 0.145 0.554 0.145 0.130 0.000 0.000 mel20 0.295 0.762 0.295 0.257 0.723 0.041
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Looking at the results, variations of MFCC and Melspectogram features are, in almost

all cases, the top 5 features for all models and MFCC with a number of MFCC equal to 60

and 80 are the features which gives best results, in general. When comparing the results

returned by the models according to the different metrics was possible to conclude that

the first four models’ results are above 0.5 in almost all metrics for most features. The

model with Nadam optimizer and MFCC feature input with 80 MFCC, followed by the

model with Adamax optimizer and with input one of the top three features for this model
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were the cases that allowed to produce better results in almost all metrics when compared

to other models configuration.

On Figure 3.5 is represented the curves of AUC and loss function for the different

models according to the top feature shown in Table 3.2. By analysis of the loss curves, it is

possible to conclude that, except for model 5, all the other models have converged around

the 70th epoch. Regarding model 5, looking at the loss function, it is possible to see that

the model has not yet converged at the 100th epoch, so it should have been trained for

more epochs to see if it can reach convergence. Nevertheless, looking at the tendency of

the AUC curve, it does not seem likely that this particular model, after convergence, will

give better results than any of the other models.

FIGURE 3.5: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the six base models.

Therefore, considering that Adagrad and Adadelta gave inferior results in comparison

to the other models, only the top four performing remainder models were considered for

the subsequent studies. As result, the following tables show the results for the models’

variations based on these four models, with Table 3.3 representing models with an extra

layer added, and Table 3.4 and 3.5 the results of the models with a different dropout rate

of 0.2 and 0.6, respectively.

3.4.2 Models with a Single Feature Input - Extra Layer

Comparing the results for the models with an extra layer with the base models is possible

to conclude that the only model that has benefited from this change was the model with
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TABLE 3.3: Results of the 4 best models with an extra layer for different features.

Model 7: (optimizer: Adam) Model 8: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.573 0.879 0.573 0.584 0.627 0.524 mfcc80* 0.539 0.873 0.539 0.561 0.856 0.263
mfcc40 0.584 0.879 0.584 0.579 0.652 0.550 mfcc60 0.514 0.857 0.514 0.539 0.777 0.146
mfcc60 0.522 0.865 0.522 0.539 0.638 0.471 mfcc40 0.490 0.838 0.490 0.505 0.725 0.227
mel80 0.526 0.852 0.526 0.534 0.556 0.441 mel80 0.430 0.844 0.430 0.440 0.708 0.203
mel20 0.487 0.845 0.487 0.486 0.532 0.373 mel60 0.415 0.839 0.415 0.420 0.714 0.194

Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.596 0.902 0.596 0.610 0.656 0.529 mfcc60 0.577 0.875 0.577 0.587 0.694 0.532
mfcc60 0.558 0.883 0.558 0.565 0.624 0.511 mfcc40 0.585 0.880 0.585 0.574 0.667 0.534
mfcc40 0.557 0.892 0.557 0.561 0.681 0.458 mfcc80 0.556 0.865 0.556 0.566 0.640 0.526
mel40 0.486 0.857 0.486 0.487 0.680 0.297 mel40 0.493 0.845 0.493 0.495 0.540 0.384
mel60 0.462 0.857 0.462 0.467 0.681 0.294 mel80 0.485 0.849 0.485 0.488 0.548 0.419
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

SGD as an optimizer, with the max benefit being 0.082 for precision. For accuracy and

micro F1-score with a gain of 0.017 and macro F1-score of 0.010. In terms of features,

MFCC and Melspectrogram are the preferable features, but in this case, in general, the

feature that gave better results was MFCC with 80 MFCC.

Figure 3.6 shows the evolution of the AUC and loss function for the selected four base

models and the corresponding models with an extra layer. It is possible to observe that

the models have converged in all cases. In general, there are no significant differences

between the base models or the models with an extra layer for the AUC metric at the

100th epoch.

FIGURE 3.6: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the four base models and their corresponding ones with an extra layer.
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Therefore, since there were no evident benefits for most of the models in changing

the depth of the given architecture for the following studies, the base architecture was

maintained. Next, it was studied the influence of the dropout rate.

3.4.3 Models with a Single Feature Input - Dropout Rate

The conducted experiments are summarize in Table 3.4 and Table 3.5, showing the results

for models with a dropout rate of 0.2 and 0.6, respectively.

TABLE 3.4: Results of the 4 best models for different features and dropout of 0.2.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.620 0.862 0.620 0.616 0.639 0.606 mfcc80 0.582 0.897 0.582 0.583 0.707 0.472
mfcc60 0.582 0.857 0.582 0.587 0.613 0.572 mfcc40 0.570 0.876 0.570 0.570 0.708 0.478
mfcc40 0.589 0.855 0.589 0.582 0.618 0.581 mfcc60 0.575 0.894 0.575 0.568 0.729 0.492
mel80 0.503 0.816 0.503 0.505 0.539 0.481 mel80 0.498 0.849 0.498 0.505 0.658 0.324
stft60 0.514 0.856 0.514 0.504 0.562 0.425 mel60 0.460 0.831 0.460 0.472 0.686 0.258

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.613 0.886 0.613 0.616 0.638 0.587 mfcc80 0.605 0.849 0.605 0.607 0.622 0.596
mfcc40 0.597 0.868 0.597 0.608 0.636 0.579 mfcc60 0.587 0.862 0.587 0.603 0.616 0.560
mfcc60 0.602 0.875 0.602 0.604 0.643 0.583 mfcc40 0.539 0.823 0.539 0.524 0.558 0.527
stft40 0.539 0.885 0.539 0.523 0.629 0.429 stft80 0.496 0.829 0.496 0.487 0.518 0.386
mel80 0.490 0.849 0.490 0.496 0.609 0.357 stft40 0.493 0.846 0.493 0.485 0.563 0.428
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

TABLE 3.5: Results of the 4 best models for different features and dropout of 0.6.

Model 15: (optimizer: Adam) Model 16: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.591 0.894 0.591 0.611 0.788 0.448 mel40 0.387 0.806 0.387 0.371 0.765 0.074
mfcc80 0.608 0.902 0.608 0.610 0.823 0.493 mel20 0.386 0.798 0.386 0.350 0.676 0.055
mfcc40 0.601 0.894 0.601 0.609 0.803 0.424 cqt80 0.341 0.764 0.341 0.344 0.787 0.044
mel80 0.487 0.862 0.487 0.489 0.643 0.297 mel60 0.342 0.788 0.342 0.332 0.775 0.074
mel20 0.478 0.847 0.478 0.478 0.629 0.247 mfcc80 0.352 0.778 0.352 0.325 0.934 0.068

Model 17: (optimizer: Adamax) Model 18: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.569 0.887 0.569 0.596 0.768 0.384 mfcc60 0.599 0.898 0.599 0.612 0.848 0.448
mfcc60 0.530 0.883 0.530 0.551 0.787 0.349 mfcc80 0.578 0.882 0.578 0.592 0.810 0.449
mfcc40 0.490 0.879 0.490 0.517 0.830 0.320 mfcc40 0.562 0.887 0.562 0.557 0.827 0.399
stft40 0.460 0.876 0.460 0.456 0.637 0.228 mel80 0.495 0.856 0.495 0.503 0.710 0.317
stft60 0.434 0.864 0.434 0.431 0.630 0.220 mel20 0.485 0.845 0.485 0.483 0.645 0.269
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

By varying the dropout rate, it can be concluded that having a dropout rate of 0.2

gives better results in most metrics than the dropout rate of 0.6. Compared with the

dropout rate of 0.4 selected for the base models, the most beneficial dropout rate depends

on the chosen optimization function. For the models with Adam or SGD optimizer, the

0.2 dropout rate was more beneficial. Still, for the models with Adamax or Nadam, the
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dropout rate of 0.4 produced better results in most metrics. Comparing the results for the

dropout rate of 0.6 and the base models is possible to conclude that, in general, the base

models have produced better results except for the model with the Adam optimizer.

In terms of features, MFCC and Melspectrogram continue to be the preferable features

for the models with a dropout rate of 0.6 and for the models where the dropout rate was

set to 0.2, MFCC with 80 MFCC is the feature that provided better results in most metrics,

being the top feature for all the models.

In Figure 3.7, observing the AUC curves, it is evident that the models with SGD as

optimizers, when using a lower dropout rate, exhibit better performance. Regarding the

loss function, it is possible to observe that all models have converged and that models 11

and 14 have started to overfit.

FIGURE 3.7: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the four base models and their corresponding ones with a dropout rate of 0.2

and 0.6.

So, these results culminate in the following conclusions; models with Adam, Adamax

or Nadam as optimizers are the ones that allowed for achieving better results, in most

cases, for all metrics. The dropout rate of 0.2 was the most beneficial for the Adam op-

timizer models. However, the model has begun to overfit. When comparing the results

obtained for the models with the Adamax optimizer for the top 2 input features, the base

model gives better results in most metrics than the models with the other selected dropout

rates. Finally, for Nadam optimizer models, the dropout rate of 0.4 was the one that al-

lowed the best results out of all models in most metrics, and the change of the dropout

rate up or down was inefficient.
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To further understand the influence of changing the dropout rate, a study was made

for the models with Adam and Adamax as optimizers because models with Adam opti-

mizers have improved their performance with both rate changes. For Adamax optimizer

models, the top feature for the dropout rate of 0.2 had similar results to the top feature

for the base model; regarding the use of Nadam optimizer in the models, the change in

dropout rate was only detrimental. So, the following study uses Adam and Adamax as

optimizers and a dropout rate of 0.8 and 0 to evaluate the impact, with results shown in

Table 3.6.

TABLE 3.6: Results of the 2 best models for different features and dropout rate of 0.8 and
without dropout.

Model 19: (optimizer: Adam; dropout: 0.8) Model 20: (optimizer: Adam; dropout: 0)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel20 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.565 0.577 0.564
mel40 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.508 0.525 0.508
stft40 0.265 0.750 0.265 0.264 0.683 0.033 mfcc80 0.523 0.785 0.523 0.505 0.536 0.519
mfcc80 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.489 0.487 0.464
cens20 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 0.483 0.497 0.453

Model 21: (optimizer: Adamax; dropout: 0.8) Model 22: (optimizer: Adamax; dropout: 0)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

stft20 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.569 0.825 0.569 0.570 0.580 0.564
cqt80 0.266 0.672 0.266 0.255 0.806 0.035 mfcc80 0.493 0.790 0.493 0.509 0.503 0.490
stft40 0.253 0.778 0.253 0.255 0.537 0.026 stft60 0.487 0.845 0.487 0.489 0.538 0.429
cens20 0.275 0.699 0.275 0.255 0.917 0.026 mel60 0.491 0.801 0.491 0.488 0.549 0.425
stft80 0.259 0.764 0.259 0.251 0.514 0.023 mel80 0.480 0.808 0.480 0.485 0.552 0.437
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Based on the results presented in Table 3.6, it is possible to see that in both cases, the

models without dropout gave better results than the models with a dropout rate equal to

0.8, which confirms what was previously observed. Nevertheless, comparing these results

with the previous ones, the models that provided better results are still the previously

identified baselines. However, the models that provided the worst results have changed

to those with a dropout of 0.8.

In Figure 3.8, a graphic plot of the AUC and loss is presented, showing the results of

the models with Adam and Adamax as an optimizer and a dropout rate of 0.4, 0.8 and 0.

Analysing the graph, both models without a dropout rate suffer from overfitting, and the

models with a dropout rate of 0.8 give the worst results.

Therefore, these results show evidence that the value used for the dropout rate greatly

influences the final results, and if the dropout rate is too low, the model will suffer from

overfitting. Still, if it is too high, the model will not have enough information to distin-

guish properly between classes due to a large number of activation being set to zero, a fact
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that does not allow the network to learn, culminating in low values for the different met-

rics. These inferences are corroborated by Srivastava et al. [30] which has also explored

the effect of varying the dropout rate while maintaining the same architecture using dif-

ferent datasets from several domains, reaching the following conclusions: a high value

for the dropout rate leads to underfitting since very few units will turn on during training

and the decrease in the dropout rate makes the error go down until the interval where

the dropout rate is situated between 0.2 and 0.6 inclusive, in which the error becomes flat,

then, after this interval further decreasing the dropout rate will increase the error.

FIGURE 3.8: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the two best base models and their corresponding ones with a dropout rate of

0.8 and 0.

In conclusion, looking at all of the results, the model configuration that gave the best

result in most metrics was model 4, which used Nadam optimizer, the base architec-

ture and as input MFCC with 80 MFCC. Also, model 11 has the base architecture with

a dropout rate of 0.2, which gave the best results out of all the models with Adam opti-

mizer when evaluated using MFCC with 80 MFCC; however, the model started to suffer

from overfitting, indicating that the ideal dropout rate for the model with Adam opti-

mizer should be superior to 0.2 and inferior to 0.4 because the dropout rate of 0.2 has

given better results than the dropout rate of 0.4. For the models with Adamax optimiz-

ers, having a dropout rate superior to 0.4 shows some degradation in the performance.

On the other hand, the dropout rate of 0.2 and 0.4 for the top feature give similar results,

but when comparing the top 2 features, the results are better for the dropout rate of 0.4.

Finally, for the model with SGD optimizer, the decrease in the dropout rate shows to be
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beneficial. Considering that the model did not show overfitting, further decreasing the

dropout rate would have given better results before overfitting.

3.4.4 Models with a Combination of Features as Input - Baseline Model Ar-

chitecture

To determine the best set of features, a study was conducted to determine the best com-

bination of features for this baseline model. All features were combined in many ways as

possible to perform this study. Due to the different output shapes of features, some fea-

tures could not be combined; therefore it was only tried 15 different combinations. Table

3.7 summarizes the performance of the base models.

TABLE 3.7: Results of the 6 models for different feature combinations.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.669 0.925 0.669 0.682 0.736 0.638 mms80 0.630 0.898 0.630 0.662 0.845 0.312
mmstftq 0.659 0.910 0.659 0.681 0.719 0.634 mms60 0.602 0.909 0.602 0.624 0.830 0.367
mmsqc 0.627 0.912 0.627 0.658 0.696 0.605 mfccmel 0.603 0.894 0.603 0.624 0.855 0.366
mms40 0.634 0.909 0.634 0.652 0.717 0.600 mfccstft80 0.591 0.897 0.591 0.611 0.802 0.305
mmcens 0.627 0.894 0.627 0.652 0.678 0.602 mmstftq 0.601 0.898 0.601 0.610 0.820 0.348

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mms60 0.655 0.926 0.655 0.680 0.756 0.625 mmsqc80 0.676 0.926 0.676 0.693 0.719 0.652
mmq 0.640 0.912 0.640 0.668 0.697 0.601 mmstftq 0.663 0.914 0.663 0.687 0.712 0.639
mmsqc80 0.634 0.900 0.634 0.656 0.677 0.585 mms80 0.650 0.901 0.650 0.676 0.687 0.634
mfccstft80 0.628 0.915 0.628 0.654 0.695 0.585 mmsqc 0.658 0.919 0.658 0.676 0.709 0.620
mms40 0.637 0.921 0.637 0.651 0.752 0.585 mmq 0.645 0.916 0.645 0.669 0.723 0.608

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfccstft80 0.247 0.665 0.247 0.217 0.245 0.029 mmstftq 0.409 0.828 0.409 0.419 0.933 0.067
mfccmel 0.249 0.636 0.249 0.186 0.295 0.121 mmsqc80 0.423 0.827 0.423 0.407 0.786 0.053
mms40 0.251 0.610 0.251 0.180 0.235 0.127 mmsqc 0.384 0.780 0.384 0.383 0.830 0.047
mmsqc80 0.208 0.638 0.208 0.175 0.269 0.116 mms60 0.338 0.776 0.338 0.348 0.907 0.047
mmq 0.201 0.688 0.201 0.169 0.261 0.145 mfccstft 0.370 0.789 0.370 0.345 0.914 0.038
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Looking at the performance of the six base models is possible to verify that giving as

input a combination of features instead of a single feature provides much better results

for all models, which would be expected since many of them are very discriminating

features. Nevertheless, the models that performed better with individual features are the

same with a better performance with a combination of features. In terms of a group of

features, the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT and

Chroma CENS with 80 bins is the group of features that ranks in the highest positions for

the top 5 of most models.
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Figure 3.9 shows a graphic representation of the AUC curves and loss function evo-

lution over the defined epochs for the six models, having each one as input the best per-

forming combination of features. These graphics conclude that model 5 is the only one

that still has not entirely converged. Still, it seems to be on the verge of convergence, so

considering the tendency of both curves is unlikely that this model will outperform any

other, so no further training was performed. Observing the performance of the other mod-

els is clear that model 5 has an inferior performance compared to the others, evidencing

the weak capability of MFCC and Chroma STFT only.

Therefore, the two worst-performing models were not considered for the following

studies.

FIGURE 3.9: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the six base models with a group of features as input.

3.4.5 Models with a Combination of Features as Input - Extra Layer

Next, the performance of the models was studied when an extra layer was added, with

results presented in Table 3.8.

Comparing the results obtained with the base models and the models with an extra

layer can be observed that the top result of the model with Adam optimizer had slightly

improved when the extra layer was added in three of the six metrics considered, having a

positive influence on accuracy and micro F1-score of 0.002, macro F1-score of 0.004, recall

of 0.010. For precision, the value was the same. The model with Adamax optimizer has

also got three metrics with a slight improvement: accuracy and micro F1-score of 0.003,
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TABLE 3.8: Results of the 4 models with an extra dense and dropout layer for different
feature combinations.

Model 7: (optimizer: Adam) Model 8: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.671 0.916 0.671 0.686 0.736 0.648 mmsqc 0.582 0.889 0.582 0.616 0.804 0.300
mmq 0.658 0.905 0.658 0.685 0.713 0.631 mmq 0.602 0.893 0.602 0.612 0.812 0.274
mms40 0.663 0.912 0.663 0.683 0.750 0.644 mmsqc80 0.595 0.890 0.595 0.610 0.822 0.299
mfccstft 0.664 0.918 0.664 0.683 0.735 0.636 mfccmel 0.566 0.900 0.566 0.593 0.832 0.302
mmstftq 0.634 0.914 0.634 0.656 0.700 0.599 mfccstft80 0.570 0.876 0.570 0.585 0.829 0.208

Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.658 0.919 0.658 0.680 0.710 0.633 mmstftq* 0.699 0.911 0.699 0.720 0.756 0.664
mms40 0.628 0.913 0.628 0.655 0.690 0.568 mmsqc 0.687 0.922 0.687 0.703 0.777 0.645
mfccstft 0.626 0.914 0.626 0.650 0.703 0.576 mmsqc80 0.676 0.910 0.676 0.689 0.713 0.650
mms60 0.626 0.901 0.626 0.648 0.687 0.591 mms80 0.654 0.906 0.654 0.670 0.706 0.599
mmsqc 0.606 0.907 0.606 0.628 0.694 0.578 mms40 0.648 0.918 0.648 0.668 0.703 0.625
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

recall of 0.008, and for macro F1-score, the result was the same. The model with Nadam

optimizer was the model that showed more improvements by having 5 out of 6 metrics

improved, with an increase of 0.023 for accuracy and micro F1-score, 0.027 for macro F1-

score, 0.037 for precision and 0.012 for recall. In contrast, the model with SGD optimizer

was the only one that didn’t improve the results for most metrics with the addition of the

extra layer, showing some of the limitations of the SGD for larger sets.

Considering the group of features, the combination of MFCC, Melspectrogram, Chroma

STFT, Chroma CQT, Chroma CENS with a number of bins equal to 80 was the most ben-

eficial combination for the models with Adam or Adamax as an optimizer and is the only

combination of features that appears in the top 5 of all models.

In Figure 3.10, as can be concluded, all models have converged, and the model with

SGD as the optimizer is the one that shows a slightly worst behaviour.

Since the benefits are relatively small for two models, being significant only for one,

the base architecture was maintained in the subsequent studies.

3.4.6 Models with a Combination of Features as Input - Dropout Rate

So, for the next study, only the dropout rate of the model was changed to 0.2 and 0.6

concerning the base model. The results are presented on Table 3.9 for the dropout rate of

0.2 and Table 3.10 for the dropout rate of 0.6.

Analysing the tables of results is possible to conclude that the model with Adam or

Nadam as optimizer has shown better performance for a dropout rate of 0.6 and worst

for 0.2. The model with the Adamax optimizer obtained better results for 0.2 and worst
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FIGURE 3.10: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the four base models and their corresponding ones with an extra layer with a

group of features as input.

TABLE 3.9: Results of the 4 models with a dropout rate of 0.2 for different feature combi-
nations.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mms60 0.668 0.895 0.668 0.693 0.691 0.658 mms80 0.627 0.904 0.627 0.641 0.731 0.550
mmq 0.646 0.889 0.646 0.670 0.675 0.633 mfccstft80 0.594 0.892 0.594 0.593 0.718 0.477
mmstftq 0.642 0.881 0.642 0.667 0.664 0.637 mmsqc 0.591 0.890 0.591 0.589 0.706 0.454
mms40 0.637 0.889 0.637 0.655 0.677 0.624 mfccstft 0.591 0.869 0.591 0.587 0.697 0.425
mmsqc80 0.622 0.866 0.622 0.641 0.639 0.618 mms60 0.588 0.894 0.588 0.586 0.663 0.522

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc 0.685 0.907 0.685 0.697 0.708 0.664 mms80 0.675 0.898 0.675 0.695 0.697 0.668
mmstftq 0.670 0.914 0.670 0.691 0.691 0.657 mmsqc80 0.639 0.882 0.639 0.668 0.657 0.624
mmsqc80 0.651 0.894 0.651 0.673 0.670 0.636 mmsqc 0.644 0.877 0.644 0.665 0.665 0.636
mmcens 0.632 0.889 0.632 0.655 0.671 0.614 mms60 0.650 0.899 0.650 0.664 0.665 0.639
mmq 0.645 0.903 0.645 0.647 0.678 0.621 mmstftq 0.631 0.882 0.631 0.654 0.652 0.625
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

for 0.6. Finally, the model with SGD optimizer has the worst results for both dropout

rates compared with the base models. The improvements for the Adam optimizer model

were accuracy and micro F1-score of 0.007, macro F1-score of 0.014 and precision of 0.045.

For Nadam optimizer model, accuracy, micro F1-score and macro F1-score has improved

0.028, then, 0.003 for AUC and 0.070 for precision, respectively. For the Adamax optimizer

using this model, the improvements were 0.030 for accuracy and micro F1-score, 0.017

for macro F1-score and 0.039 for recall. So, once again, the model that showed more

significant improvements in metrics was the model with Nadam optimizer.

Focusing on the most beneficial group of features, for the dropout rate of 0.2 was the
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TABLE 3.10: Results of the 4 models with a dropout rate of 0.6 for different feature com-
binations.

Model 15: (optimizer: Adam) Model 16: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc 0.676 0.923 0.676 0.696 0.781 0.551 mfccmel 0.271 0.764 0.271 0.288 0.877 0.085
mmsqc80 0.650 0.927 0.650 0.684 0.807 0.550 mfccstft80 0.292 0.779 0.292 0.267 0.804 0.049
mms60 0.662 0.916 0.662 0.679 0.828 0.568 mms40 0.257 0.794 0.257 0.247 0.865 0.054
mms80 0.651 0.910 0.651 0.674 0.786 0.522 mfccstft 0.201 0.756 0.201 0.205 0.769 0.048
mmstftq 0.634 0.905 0.634 0.662 0.757 0.556 mmstftq 0.201 0.710 0.201 0.162 0.667 0.017

Model 17: (optimizer: Adamax) Model 18: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq 0.636 0.911 0.636 0.657 0.767 0.489 mmsqc* 0.704 0.929 0.704 0.721 0.789 0.594
mfccstft80 0.621 0.913 0.621 0.640 0.787 0.478 mms80 0.675 0.918 0.675 0.696 0.827 0.558
mmq 0.575 0.870 0.575 0.595 0.787 0.296 mms40 0.654 0.921 0.654 0.680 0.788 0.536
mfccstft 0.557 0.881 0.557 0.585 0.732 0.373 mmsqc80 0.640 0.925 0.640 0.677 0.744 0.554
mmcens 0.571 0.879 0.571 0.583 0.746 0.389 mmstftq 0.644 0.907 0.644 0.669 0.741 0.541
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT and Chroma CENS

with 40 bins because is one of the groups of features that appears in three out of four

models and also, is the one that appears in higher positions of the top 5 combinations

of features, meaning that are very discriminating features among many parameter vari-

ations. For the dropout rate of 0.6, the combination of MFCC, Melspectrogram, Chroma

STFT, Chroma CQT with a number of bins equal to 80 is the one that appears in the top

5 of all models. However, the top combination of features that allowed the models with

Adam and Nadam optimizers to achieve the best results was the combination of MFCC,

Melspectrogram, Chroma STFT, Chroma CQT and Chroma CENS with 40 bins which are

the two best performing models for this dropout rate.

In Figure 3.11, the graphics plots show that all models have converged, and models

11 and 14, as previously observed when individual features were used as input, started

to suffer from overfitting. Analysing the AUC curves, the model with SGD optimizer had

the worst performance of all models when the dropout rate was 0.6. For the other models,

the performance differences are not evident. Still, it is possible to see that for the models

with Adam and Nadam optimizers, the dropout rate of 0.2 provided the worst result. For

the Adamax model, the dropout rate of 0.4 was the most beneficial.

3.4.7 Models with a Combination of Features as Input - Extra Layer and Dropout

Rate

Using Adam and Adamax optimizers, there were minor improvements when an extra

layer was added to the model and when the dropout rate was changed to 0.6 for the
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FIGURE 3.11: Graphs of the evolution of AUC (left) and loss function (right) with epochs
for the four base models and their corresponding ones with a dropout rate of 0.2 and 0.6

with a group of features as input.

Adam optimizer and 0.2 for the Adamax optimizer. So, the following study considers

these improvements to see if combined could produce even better results and evaluate if

the dropout rate of 0.8 and an extra layer would work better for the Adamax optimizer

model or no dropout rate with an extra layer for the Adam optimizer model. Also, a

combination of Nadam optimizer is studied, an extra layer and a dropout rate of 0.6 and

the same combination but with a dropout rate of 0.8.

Table 3.11 shows the results for the models with the mentioned modifications.

Analysing the results shown in Table 3.11, it can be concluded that the Adam and

Nadam optimizer model with a dropout rate of 0.6 has a much higher performance than

the model with 0.8. Then, regarding the models with Adamax as an optimizer, the dropout

rate of 0.2 was also more beneficial. Comparing the three best models in this table with

the base models is possible to conclude that the results for Adam and Nadam optimizer

models were worse than the base model. However, for Adamax optimizer models, in

most metrics, the model with an extra layer and a dropout rate of 0.2 has a higher perfor-

mance when compared to the base model. Also, the three best-performing combinations

of features for this model are better than the best-performing combination of features of

the base model. The difference between the best performing group of features for the base

model and the combination of features with more top values of model 25 for the different

metrics are for accuracy and micro F1-score of 0.016, for macro F1-score of 0.004 and 0.032

for recall.
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TABLE 3.11: Results of the 3 models with an extra layer and dropout rate of 0.6 and 0.8
for Adam and Nadam optimizer and 0.2 and 0 for the Adamax optimizer with different

feature combinations.

Model 23: (optimizer: Adam and dropout rate: 0.6) Model 24: (optimizer: Adam and dropout rate: 0.8)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mms60 0.626 0.898 0.626 0.653 0.775 0.466 mms40 0.214 0.639 0.214 0.188 0.875 0.042
mmsqc 0.613 0.902 0.613 0.651 0.763 0.430 mfccstft 0.189 0.680 0.189 0.165 0.854 0.042
mmstftq 0.613 0.895 0.613 0.643 0.799 0.474 mms60 0.166 0.571 0.166 0.143 0.957 0.026
mfccstft80 0.605 0.907 0.605 0.615 0.802 0.441 mms80 0.168 0.611 0.168 0.130 0.952 0.024
mms40 0.588 0.881 0.588 0.614 0.743 0.421 mmsqc80 0.154 0.574 0.154 0.123 1.000 0.023

Model 25: (optimizer: Adamax and dropout rate: 0.2) Model 26: (optimizer: Adamax and dropout rate: 0)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80* 0.662 0.906 0.662 0.690 0.689 0.650 mmstftq 0.618 0.850 0.618 0.636 0.624 0.608
mms80 0.664 0.894 0.664 0.685 0.692 0.652 mms80 0.609 0.855 0.609 0.626 0.619 0.602
mms40 0.671 0.900 0.671 0.684 0.718 0.657 mmsqc80 0.575 0.823 0.575 0.601 0.583 0.572
mmstftq 0.649 0.893 0.649 0.670 0.668 0.638 mmcens 0.599 0.849 0.599 0.599 0.612 0.593
mfccmel 0.650 0.890 0.650 0.654 0.687 0.638 mms40 0.582 0.825 0.582 0.595 0.594 0.577

Model 27: (optimizer: Nadam and dropout rate: 0.6) Model 28: (optimizer: Nadam and dropout rate: 0.8)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq 0.639 0.897 0.639 0.668 0.826 0.465 mmsqc 0.182 0.638 0.182 0.168 0.879 0.035
mmsqc 0.615 0.898 0.615 0.638 0.807 0.440 mms80 0.204 0.651 0.204 0.167 1.000 0.026
mmsqc80 0.615 0.893 0.615 0.637 0.780 0.436 mms40 0.179 0.632 0.179 0.154 0.857 0.036
mms60 0.611 0.907 0.611 0.635 0.771 0.458 mms60 0.111 0.596 0.111 0.142 1.000 0.026
mms40 0.605 0.901 0.605 0.627 0.765 0.464 mmcens 0.160 0.615 0.160 0.125 1.000 0.026
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Figure 3.12 shows the various AUC and loss curves for Adam, Adamax and Nadam

optimizer models with the dropout rates of 0.4, 0 and 0.8.

FIGURE 3.12: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the two base models and their corresponding ones with an extra layer and
dropout rate of 0.2 and 0 (zero) for Adamax and 0.6 and 0.8 for Adam with a group of

features as input.

So, according to Figure 3.12 all models have converged, model 26 has suffered from

overfitting and model 24 and 28 had inferior performance. Analysing the AUC curves per
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set of models with the same optimizer is possible to conclude that for Adam and Adamax

at the end of the 100th epoch, the best performance is given by the base models and the

worst by the models with a drop rate of 0.8 or without any dropout rate, respectively. For

Nadam optimizer models, the worst performance was clearly of the model with a dropout

rate of 0.8, while several models performed equally well based on the AUC curve analysis.

According to the obtained results, it can be concluded that Adam, Adamax and Nadam

are the optimizers that proportionate better results, confirming the previous analysis. The

results showed that for Adam and Nadam, the best model was when the base architec-

ture was maintained and when the dropout rate was changed to 0.6. On the other hand,

for Adamax, when the dropout rate was changed to 0.2 or added an extra layer with a

dropout rate changed to 0.2, the models improved 4 out of 6 metrics. However, the one

that provided the more significant improvement on most metrics was the model with the

base architecture and a dropout rate of 0.2. In terms of the group of features, the one that

allowed to produce the best results for these Adam, Nadam and Adamax optimizers was

the combination of MFCC, Melspectrogram, Chroma STFT, Chroma CQT, Chroma CENS

with 40 bins. To summarise, out of the three best models, the one that provided the best

results was the model with the Nadam optimizer.

3.4.8 Best Models Analysis and Discussion Using UrbanSound8K

In order to be able to compare the results in an unbiased way according to Salamon et al.

[28], it is necessary to do 10 folds cross-validation and average out the values to obtain the

final results. Table 3.12 shows the results for each folder as the test folder and the average

metric values for the best model with a single feature input and the best model with a

combination of features as input.

Figure 3.13 presents the confusion matrices for the two performing models previously

mentioned to see how well they perform per class to understand which classes generate

a higher error as well as the ones that are better identified by the models. Analysing the

confusion matrices, it can be seen that even though model 4 with ”mfcc80” has an inferior

performance compared to model 18 with ”mmsqc” for all metrics, model 4 was capable

of outperforming model 18 for four classes which were car horns with an improvement of

4 percentage points (pp), 5 pp for a dog bark, 2 pp for drilling and 4 pp for street music.

However, model 18, in general, can better predict the class, especially for children playing

and gunshot classes for which the percentage error is equal to or less than 23%. Thus,
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TABLE 3.12: Results for the 10 folds of the top performing model with a single feature
and with a group of features as input.

Model 4: (optimizer: Nadam; dr: 0.4; feature: mfcc80) Model 18: (optimizer: Nadam; dr: 0.6; feature: mmsqc)

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 0.512 0.829 0.512 0.535 0.628 0.301 1 0.584 0.867 0.584 0.608 0.713 0.475
2 0.515 0.858 0.515 0.514 0.619 0.447 2 0.557 0.872 0.557 0.570 0.675 0.417
3 0.524 0.871 0.524 0.523 0.621 0.467 3 0.525 0.837 0.525 0.561 0.630 0.392
4 0.543 0.890 0.543 0.517 0.725 0.337 4 0.606 0.900 0.606 0.603 0.731 0.492
5 0.627 0.919 0.627 0.617 0.778 0.568 5 0.632 0.912 0.632 0.652 0.745 0.534
6 0.542 0.878 0.542 0.551 0.656 0.439 6 0.548 0.869 0.548 0.580 0.662 0.447
7 0.585 0.895 0.585 0.593 0.768 0.372 7 0.641 0.910 0.641 0.652 0.833 0.459
8 0.609 0.896 0.609 0.635 0.851 0.333 8 0.660 0.907 0.660 0.694 0.795 0.553
9 0.680 0.923 0.680 0.688 0.756 0.651 9 0.647 0.891 0.647 0.675 0.738 0.559
10 0.637 0.908 0.637 0.628 0.747 0.572 10 0.704 0.929 0.704 0.721 0.789 0.594

Average 0.577 0.887 0.577 0.580 0.715 0.449 Average 0.611 0.889 0.611 0.632 0.731 0.492
dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

both models show more difficulties identifying sounds belonging to the air conditioner,

drilling, engine idling and jackhammer classes. On the other hand, car horns, children

playing and gunshots were the classes with the highest accuracy for both models.

Mu et al. [21] found that the benefits of the attention mechanisms depend on the sound

characteristics, being more profitable for transient sounds, temporal attention mecha-

nisms, and for continuous sounds, frequency attention mechanisms. With these find-

ings in mind, the obtained results can indicate a higher facility for the models to identify

sounds with pronounced temporal characteristics. Therefore, the models are more capa-

ble of identifying transient rather than continuous sounds.

FIGURE 3.13: Confusion matrices for the best model using as input a single feature on
the left and the best model using a group of features as input, on the right.
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3.5 Baseline Models - Using ESC Dataset

After analysing the results of all the previous models, a similar study was performed

for the datasets ESC-10 and ESC-50 to see the models’ performance changes for balanced

datasets with the same number of classes as UrbanSound8K and with a higher number of

classes.

3.5.1 Models with a Single Feature Input - Baseline Model Architecture

Next, Table 3.13 and 3.14 the results for the base models with a single feature input for

ESC-10 and ESC-50, respectively, are presented according to the same methodology used

in models for UrbanSound8K.

TABLE 3.13: Results of the 6 models for different features - ESC-10.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.613 0.880 0.613 0.601 0.642 0.425 mel60 0.463 0.852 0.463 0.442 0.526 0.125
mfcc80 0.588 0.879 0.588 0.574 0.667 0.425 mel80 0.450 0.858 0.450 0.433 0.714 0.188
mel40 0.563 0.891 0.563 0.567 0.603 0.438 mel40 0.450 0.875 0.450 0.427 0.500 0.113
mel20 0.575 0.897 0.575 0.558 0.617 0.463 mel20 0.438 0.886 0.438 0.413 0.455 0.063
mel60 0.538 0.843 0.538 0.528 0.548 0.425 mfcc80 0.425 0.852 0.425 0.364 0.455 0.125

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel40 0.488 0.878 0.488 0.465 0.765 0.163 mfcc40 0.650 0.894 0.650 0.644 0.723 0.425
mfcc60 0.475 0.890 0.475 0.410 0.462 0.075 mel40 0.588 0.900 0.588 0.597 0.603 0.438
stft80 0.425 0.859 0.425 0.409 0.667 0.025 mfcc60 0.600 0.877 0.600 0.594 0.630 0.363
mel80 0.425 0.831 0.425 0.405 0.579 0.138 mel20 0.600 0.899 0.600 0.587 0.545 0.375
stft40 0.400 0.859 0.400 0.385 0.500 0.013 mfcc80 0.575 0.874 0.575 0.558 0.630 0.363

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

cens40 0.175 0.532 0.175 0.116 0.000 0.000 mel60 0.400 0.838 0.400 0.383 0.647 0.138
cens80 0.225 0.498 0.225 0.115 0.000 0.000 mel40 0.413 0.828 0.413 0.367 0.667 0.125
mfcc40 0.125 0.482 0.125 0.093 0.094 0.075 mel80 0.400 0.813 0.400 0.365 0.565 0.163
mel80 0.163 0.543 0.163 0.082 0.417 0.125 mfcc60 0.413 0.830 0.413 0.361 0.571 0.200
mel40 0.088 0.479 0.088 0.078 0.000 0.000 mel20 0.375 0.843 0.375 0.320 0.778 0.088
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Similar to what was previously observed for UrbanSound8K, for the ESC datasets, the

best model was still the one that used Nadam as an optimizer, and the two worst were

the ones that used Adadelta and Adagrad optimizers. So, these two worst optimizers

were not considered for the following studies. In terms of features, Melspectrogram and

MFCC are the preferable features, however, for ESC-10 the feature which produced the

best results was MFCC with 40 MFCC and for ESC-50, MFCC with 80 MFCC.

In Figure 3.14 and 3.15 is shown the AUC and loss curves of the base models for the

ESC-10 and ESC-50 datasets, respectively.
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TABLE 3.14: Results of the 6 models for different features - ESC-50.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.313 0.854 0.313 0.293 0.504 0.170 mel80 0.173 0.780 0.173 0.139 0.394 0.033
mfcc60 0.305 0.856 0.305 0.290 0.503 0.188 mel60 0.158 0.781 0.158 0.131 0.480 0.030
mfcc40 0.288 0.850 0.288 0.271 0.456 0.130 mel40 0.153 0.796 0.153 0.126 0.429 0.030
mel20 0.263 0.858 0.263 0.249 0.519 0.105 mfcc80 0.143 0.782 0.143 0.123 0.375 0.015
mel40 0.240 0.855 0.240 0.228 0.540 0.118 mel20 0.148 0.800 0.148 0.118 0.450 0.023

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.188 0.845 0.188 0.146 0.214 0.008 mfcc80 0.313 0.850 0.313 0.297 0.511 0.168
stft40 0.148 0.794 0.148 0.119 0.533 0.020 mfcc60 0.310 0.848 0.310 0.290 0.515 0.173
mel40 0.128 0.773 0.128 0.118 0.421 0.020 mfcc40 0.300 0.866 0.300 0.275 0.496 0.145
stft60 0.153 0.797 0.153 0.118 0.538 0.018 mel20 0.258 0.854 0.258 0.242 0.556 0.113
stft20 0.153 0.795 0.153 0.117 0.636 0.018 mel40 0.238 0.850 0.238 0.218 0.543 0.110

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

cens80 0.045 0.507 0.045 0.020 0.000 0.000 mel40 0.113 0.712 0.113 0.078 0.333 0.013
mel80 0.023 0.535 0.023 0.014 0.033 0.005 mel20 0.108 0.713 0.108 0.074 0.545 0.015
mel60 0.020 0.533 0.020 0.013 0.019 0.003 mel60 0.103 0.690 0.103 0.064 0.450 0.023
mel40 0.018 0.508 0.018 0.008 0.026 0.003 mel80 0.095 0.671 0.095 0.063 0.308 0.020
mfcc40 0.025 0.517 0.025 0.007 0.036 0.013 cens80 0.043 0.583 0.043 0.018 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

FIGURE 3.14: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the six base models for ESC-10.

Observing the curves is possible to conclude that with the ESC-10 dataset, all models

have converged; however, for the ESC-50 dataset, model 3, which used Adamax opti-

mizer, was the only one that has not converged which is an unexpected situation accord-

ing to the previous results, but can be justified by the more challenging dataset that may

require a few more epochs with this configuration.
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FIGURE 3.15: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the six base models for ESC-50.

Focusing on the AUC curves, model 5 is the worst one, followed by model 6. Nonethe-

less, models 1 and 4 show identical behaviours corresponding to the best performances.

However, model 3 presents a final result slightly worse than the best ones. Considering

that this model at the end of the 100th epoch had not fully converged, perhaps with fur-

ther training, a better convergence and corresponding results could be obtained. So, to

confirm that, model 3 was trained until convergence, culminating in the results presented

in Table 3.15 and Figure 3.16.

TABLE 3.15: Results of the model with Adamax optimizer for different features - ESC-50.

Model 3: (optimizer: Adamax)
Features acc AUC micro f1score macro f1score precision recall
mfcc60 0.318 0.871 0.318 0.312 0.465 0.133
mfcc80 0.323 0.869 0.323 0.304 0.477 0.158
mfcc40 0.290 0.866 0.290 0.275 0.568 0.125
mel20 0.233 0.858 0.233 0.209 0.525 0.053
mel80 0.185 0.826 0.185 0.172 0.488 0.053

acc - accuracy; AUC - area under the receiver operating characteristic curve.
All metrics range from [0, 1] (the higher, the better).

Therefore, Figure 3.16 shows that the model has only converged around the 170th

epoch, and the difference in the results after convergence is quite considerable, as can be

seen graphically by the differences in the loss and AUC value. Table 3.15 further confirms

the improvements by comparing either with the same model or the others. In particular,

the top 2 features have produced better results than any of the previous models in most

metrics.
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FIGURE 3.16: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the Adamax optimizer model for ESC-50.

For the subsequent studies, only the four best optimizers were used to explore the

potential benefits of changing the architecture by adding a new layer and changing the

dropout rate could produce. After looking at the results, it was clear that adding an

extra layer and the dropout rate of 0.6 did not improve the model’s performance, so these

results are only shown in Appendix B just for reference.

3.5.2 Models with a Single Feature Input - Dropout Rate of 0.2

Tables 3.16 and 3.17 displays the results for the models when the dropout rate was changed

to 0.2.

TABLE 3.16: Results of the 4 best models for single features and dropout of 0.2 - ESC-10.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.650 0.878 0.650 0.647 0.676 0.625 mel40 0.525 0.881 0.525 0.517 0.600 0.225
mfcc40 0.625 0.893 0.625 0.618 0.644 0.588 mfcc80 0.513 0.891 0.513 0.497 0.647 0.413
mfcc80 0.600 0.873 0.600 0.586 0.613 0.575 mel80 0.500 0.860 0.500 0.482 0.600 0.263
mel80 0.525 0.862 0.525 0.533 0.547 0.513 mfcc60 0.500 0.888 0.500 0.476 0.583 0.438
mel60 0.538 0.851 0.538 0.531 0.557 0.488 mel60 0.488 0.865 0.488 0.469 0.583 0.263

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc40 0.588 0.909 0.588 0.575 0.659 0.363 mfcc60 0.625 0.874 0.625 0.621 0.657 0.575
mfcc60 0.575 0.910 0.575 0.570 0.640 0.400 mfcc40 0.600 0.894 0.600 0.603 0.608 0.563
mfcc80 0.550 0.870 0.550 0.535 0.595 0.313 mfcc80 0.613 0.878 0.613 0.594 0.639 0.575
mel40 0.525 0.886 0.525 0.533 0.617 0.363 mel80 0.550 0.873 0.550 0.552 0.574 0.488
mel20 0.513 0.865 0.513 0.515 0.526 0.250 mel40 0.550 0.878 0.550 0.551 0.581 0.538
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE 3.17: Results of the 4 best models for single features and dropout of 0.2 - ESC-50.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.353 0.811 0.353 0.344 0.419 0.303 mfcc80 0.275 0.860 0.275 0.258 0.505 0.125
mfcc40 0.335 0.806 0.335 0.328 0.394 0.283 mfcc60 0.255 0.859 0.255 0.236 0.448 0.108
mfcc80 0.303 0.790 0.303 0.293 0.359 0.253 mfcc40 0.245 0.856 0.245 0.219 0.495 0.113
mel20 0.255 0.824 0.255 0.237 0.379 0.138 mel20 0.178 0.808 0.178 0.163 0.400 0.040
mel40 0.240 0.817 0.240 0.229 0.406 0.178 mel40 0.173 0.799 0.173 0.159 0.387 0.060

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.328 0.874 0.328 0.314 0.521 0.190 mfcc80 0.350 0.802 0.350 0.330 0.413 0.315
mfcc60 0.295 0.845 0.295 0.283 0.484 0.153 mfcc60 0.335 0.788 0.335 0.316 0.401 0.288
mfcc40 0.283 0.854 0.283 0.263 0.479 0.145 mfcc40 0.305 0.814 0.305 0.295 0.366 0.253
mel20 0.198 0.844 0.198 0.175 0.455 0.050 mel40 0.270 0.825 0.270 0.259 0.424 0.160
mel40 0.185 0.821 0.185 0.169 0.389 0.053 mel20 0.250 0.823 0.250 0.234 0.369 0.138
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Analysing the results, all models have improved their performance except for the

model with Nadam optimizer for the ESC-10 dataset.

For the ESC-10 dataset, model 11, which has Adam as the optimizer, got results analo-

gous to what was obtained by the Nadam optimizer in the initial model. Then, regarding

the results for the ESC-50 dataset, the models with Adam and Nadam optimizers showed

identical results for the base models. However, when the dropout rate was decreased to

0.2, the model with Adam optimizer showed an improved capacity to produce the best

results by a small margin compared to the results produced by the model with Nadam

optimizer. Regarding the features, it is evident that MFCC and Melspectrogram are the

preferable features. Nonetheless, MFCC with 60 MFCC stands out because it gives the

best results for both datasets when the model uses Adam as an optimizer, corresponding

to the presented models with the best results with a dropout rate of 0.2.

In Figure 3.17 and 3.18 is represented the curves for the base models and the corre-

spondent ones with a dropout rate of 0.2.

These figures show that models 11 and 14 have overfitted, being more pronounced for

the ESC-50 dataset and unlike in the base models that the model with Adamax optimizer

for the ESC-50 dataset has not converged, when the dropout rate is changed to 0.2, the

model converges. This model offered the best result when considering the AUC curve

metric.

Since models 11 and 14 have been overfitted, further reduction of the dropout rate will

not improve the results. Regarding the models with Adamax optimizer, when the dropout

rate was changed to 0.2, it showed considerable improvements, allowing convergence in

both datasets without overfitting. Due to previous experiments with UrbanSound8K,
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FIGURE 3.17: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the four best models with a dropout rate of 0.2 for ESC-10.

FIGURE 3.18: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the four best models with a dropout rate of 0.2 for ESC-50.

the dropout rate change seems to be the next logical step to take to improve the model’s

performance. However, it would be improbable that a lower dropout rate would improve

the results. However, this study was made to rule out this hypothesis properly, as shown

in Table 3.18 and Figure 3.19.

Analysing the results, it can be confirmed that the results did not improve when the

dropout rate was set to 0 (zero), which is consistent since dropout act as a regularization

to avoid model overfitting. Focusing on the loss curves, it is possible to see that model 19

has suffered from overfitting for ESC-50. However, for ESC-10, the same model did not
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TABLE 3.18: Results for Adamax optimizer’s models for single features and dropout of
0.

Model 19: (optimizer: Adamax; dr: 0; dataset: ESC-10) Model 19: (optimizer: Adamax; dr: 0; dataset: ESC-50)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.575 0.918 0.575 0.580 0.592 0.563 mfcc80 0.323 0.771 0.323 0.317 0.373 0.295
mfcc60 0.550 0.909 0.550 0.566 0.609 0.525 mfcc40 0.308 0.779 0.308 0.298 0.343 0.260
mfcc40 0.575 0.893 0.575 0.565 0.584 0.563 mfcc60 0.293 0.783 0.293 0.283 0.336 0.253
mel80 0.525 0.835 0.525 0.524 0.557 0.488 mel20 0.238 0.827 0.238 0.224 0.325 0.095
mel20 0.525 0.872 0.525 0.523 0.554 0.450 mel60 0.208 0.781 0.208 0.204 0.292 0.113
dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

FIGURE 3.19: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the models with Adamax as an optimizer and without dropout rate for ESC-

10 and ESC-50.

show the same behaviour, but even though the model has not overfitted, the results were

worst than the model trained with a dropout rate of 0.2.

Therefore, out of all these models, the one that allowed the best results was the model

with Adam optimizer and a dropout rate of 0.2 for both datasets. For ESC-10, model 11

and model 4 produce similar results. Nonetheless, there is a big difference in the recall

value which makes model 11 slightly better than model 4.

3.5.3 Models with a Combination of Features as Input - Baseline Model Ar-

chitecture

In the study made for UrbanSound8K, the change of models’ input to a combination of

features significantly boosted the models’ performance, so the same approach was em-

ployed in the ESC datasets.
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Table 3.19 and Table 3.20 show the results of the ESC datasets for the base architecture

models with a combination of features as input.

It is necessary to note that in addition to the combination of features already men-

tioned in Table 3.1, four new features groups were used, which were ”mmq40”, ”mm-

stftq40”, ”mmcens40” and ”mfccmel40” which correspond to the same combination of

features presented on Table 3.1 with the same group of letters. However, the number of

bins was set to 40.

TABLE 3.19: Results of the 6 models for different feature combinations - ESC-10.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.713 0.938 0.713 0.701 0.740 0.675 mms40 0.538 0.908 0.538 0.499 0.656 0.263
mmq 0.688 0.941 0.688 0.673 0.729 0.538 mmstftq40 0.475 0.858 0.475 0.433 0.640 0.200
mms40 0.675 0.942 0.675 0.663 0.707 0.513 mmcens40 0.438 0.864 0.438 0.396 0.586 0.213
mmstftq 0.675 0.938 0.675 0.661 0.758 0.625 mmstftq 0.413 0.793 0.413 0.383 0.519 0.175
mmq40 0.675 0.940 0.675 0.660 0.780 0.488 mfccstft 0.425 0.858 0.425 0.375 0.433 0.163

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmcens 0.613 0.894 0.613 0.587 0.708 0.213 mmsqc 0.738 0.910 0.738 0.727 0.773 0.725
mmsqc80 0.538 0.907 0.538 0.525 0.718 0.350 mmstftq40 0.725 0.916 0.725 0.719 0.737 0.700
mms60 0.538 0.912 0.538 0.521 0.684 0.163 mmq40 0.688 0.902 0.688 0.677 0.692 0.675
mmstftq 0.513 0.903 0.513 0.497 0.826 0.238 mmq 0.663 0.884 0.663 0.657 0.675 0.650
mms80 0.500 0.893 0.500 0.493 0.667 0.175 mms80 0.663 0.894 0.663 0.647 0.688 0.663

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq40 0.213 0.533 0.213 0.103 0.205 0.188 mmsqc 0.563 0.908 0.563 0.554 0.750 0.150
mms60 0.113 0.504 0.113 0.102 0.083 0.063 mmstftq40 0.450 0.883 0.450 0.426 0.543 0.238
mfccstft 0.150 0.541 0.150 0.090 0.145 0.113 mmsqc80 0.450 0.884 0.450 0.426 0.568 0.263
mmsqc 0.150 0.565 0.150 0.085 0.154 0.125 mmstftq 0.388 0.848 0.388 0.359 0.600 0.150
mmcens40 0.163 0.541 0.163 0.056 0.163 0.163 mms80 0.388 0.856 0.388 0.344 0.600 0.188
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Once again, for ESC-50, the two models that presented the worst results was model 5

and 6 with Adadelta and Adagrad optimizers, respectively. The best results were given

by model 1 with Adam optimizer for ESC-50 and model 4 with Nadam for ESC-10 dataset.

Unlike the other experiments, for ESC-10, the two worst models were Adadelta and SGD,

conforming to the non-robustness of both optimizers on large datasets. Thus, following

the previous methodology, the two worst models for each dataset were not considered in

the subsequent analyses.

In terms of the group of features, for ESC-10, the combination of MFCC, Melspec-

trogram, Chroma STFT, Chroma CQT with 80 bins correspond to the group of features

that appears in most models, and MFCC, Melspectrogram and Chroma CQT with 80 bins
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TABLE 3.20: Results of the 6 models for different feature combinations - ESC-50.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq 0.393 0.873 0.393 0.379 0.575 0.250 mmq 0.178 0.789 0.178 0.153 0.591 0.033
mmstftq 0.383 0.875 0.383 0.361 0.584 0.243 mms60 0.173 0.770 0.173 0.151 0.529 0.023
mmsqc80 0.365 0.869 0.365 0.352 0.511 0.243 mms40 0.155 0.808 0.155 0.149 0.667 0.030
mmcens40 0.365 0.895 0.365 0.345 0.635 0.200 mmcens40 0.175 0.795 0.175 0.145 0.722 0.033
mms40 0.358 0.879 0.358 0.343 0.550 0.193 mmcens 0.158 0.776 0.158 0.140 0.650 0.033

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.230 0.844 0.230 0.194 0.565 0.033 mmstftq 0.375 0.878 0.375 0.354 0.571 0.223
mmq 0.200 0.827 0.200 0.168 0.647 0.028 mmstftq40 0.360 0.882 0.360 0.346 0.497 0.180
mmstftq 0.183 0.787 0.183 0.168 0.462 0.015 mmsqc 0.355 0.884 0.355 0.345 0.524 0.215
mmsqc 0.180 0.836 0.180 0.156 0.571 0.020 mms80 0.345 0.872 0.345 0.339 0.605 0.188
mfccstft80 0.163 0.821 0.163 0.155 0.440 0.028 mms60 0.355 0.874 0.355 0.337 0.536 0.203

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq40 0.035 0.503 0.035 0.011 0.051 0.033 mms60 0.055 0.589 0.055 0.057 0.286 0.005
mmstftq 0.023 0.523 0.023 0.009 0.032 0.015 mmq 0.060 0.614 0.060 0.054 0.429 0.008
mmsqc 0.030 0.518 0.030 0.009 0.030 0.020 mms80 0.060 0.609 0.060 0.050 0.250 0.005
mmq 0.015 0.506 0.015 0.009 0.028 0.013 mfccstft 0.048 0.620 0.048 0.043 0.000 0.000
mmsqc80 0.013 0.503 0.013 0.008 0.014 0.008 mmcens 0.055 0.572 0.055 0.042 0.167 0.003
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

appear in the top 5 of almost every model for ESC-50. Furthermore, the mentioned com-

bination of features is also the one that permit obtaining the top result out of all models

for the ESC-50 dataset.

Figures 3.20 and 3.21 show the evolution of AUC and loss curves with epochs. It

is possible to verify that for ESC-50, model 3 did not reach convergence within the 100

training epochs, so it should be trained until convergence to see the best results it can

give, which may overcome the results obtained by model 1.

Because the models that presented the best performance were fully trained, the results

are shown next in Figure 3.22 and Table 3.21 for model 3 with ESC-50 fully trained to fairly

compare this model results with the others.

Therefore, looking at the Figure mentioned above, it is possible to conclude that model

3 converged around the 170th epoch. The graph presents two curves corresponding to

two different combinations of feature inputs; one corresponds to the group of features

that gave the best performance for the base architecture model, and the other is the group

that gives the best results for the fully trained model.

Focusing on Table 3.21, model 3 shows a considerable performance improvement but

could not outperform model 1, so model 1 is still the best for the ESC-50 dataset.

After getting the results for the base architecture models thoroughly trained, other

experiments were performed for the four best models for each dataset by adding an extra
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FIGURE 3.20: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the four base models with a combination of features as input for ESC-10.

FIGURE 3.21: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for the four base models with a combination of features as input for ESC-50.

TABLE 3.21: Results for model 3 fully trained for different feature combinations - ESC-50.

Model 3: (optimizer: Adamax; dataset: ESC-50)
Features acc AUC micro f1score macro f1score precision recall
mmstftq 0.360 0.885 0.360 0.348 0.602 0.178
mms80 0.348 0.890 0.348 0.341 0.625 0.188
mfccstft 0.348 0.886 0.348 0.337 0.512 0.158
mmsqc 0.353 0.902 0.353 0.335 0.579 0.193

mfccstft80 0.350 0.867 0.350 0.322 0.516 0.205
dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve.
All metrics range from [0, 1] (the higher, the better).
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FIGURE 3.22: Graphs of the evolution of AUC (left) and loss function (right) with the
epochs for model 4 with ESC-10 dataset and model 3 with ESC-50.

layer and changing the dropout rate to 0.2 and 0.6 to assess the impact of those changes.

As previously noted for experiments with a single feature input, the only change that

provided better results than the base architecture models has the dropout rate change to

0.2.

So next, the results for the dropout rate of 0.2 for both datasets are presented.

3.5.4 Models with a Combination of Features as Input - Dropout Rate of 0.2

Table 3.22 and Table 3.23 show the results for the models with a dropout rate of 0.2.

TABLE 3.22: Results of the 4 best models for dropout of 0.2 and different feature combi-
nations - ESC-10.

Model 11: (optimizer: Adam) Model 12: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq 0.725 0.936 0.725 0.724 0.750 0.713 mmstftq 0.638 0.907 0.638 0.639 0.707 0.513
mmcens40 0.713 0.952 0.713 0.708 0.727 0.700 mmq40 0.600 0.928 0.600 0.569 0.724 0.525
mmstftq40 0.713 0.929 0.713 0.699 0.733 0.688 mmcens 0.550 0.912 0.550 0.528 0.696 0.400
mmq40 0.700 0.952 0.700 0.694 0.724 0.688 mmcens40 0.550 0.921 0.550 0.525 0.620 0.388
mmq 0.688 0.932 0.688 0.687 0.705 0.688 mms40 0.563 0.919 0.563 0.520 0.773 0.425

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq40 0.700 0.939 0.700 0.694 0.758 0.625 mms60 0.775 0.956 0.775 0.774 0.787 0.738
mmstftq 0.700 0.958 0.700 0.691 0.782 0.538 mmq40 0.725 0.942 0.725 0.719 0.753 0.725
mmsqc80 0.700 0.942 0.700 0.689 0.735 0.625 mmcens40 0.700 0.926 0.700 0.691 0.757 0.700
mmq 0.675 0.934 0.675 0.665 0.699 0.638 mmstftq40 0.688 0.925 0.688 0.682 0.714 0.688
mmcens40 0.663 0.950 0.663 0.654 0.750 0.563 mmsqc 0.675 0.921 0.675 0.677 0.761 0.638
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE 3.23: Results of the 4 best models for dropout of 0.2 and different feature combi-
nations - ESC-50.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq40 0.398 0.829 0.398 0.386 0.472 0.358 mms40 0.313 0.863 0.313 0.289 0.519 0.140
mmstftq 0.390 0.810 0.390 0.386 0.452 0.340 mmcens40 0.303 0.868 0.303 0.279 0.495 0.130
mmstftq40 0.393 0.839 0.393 0.385 0.476 0.350 mms80 0.275 0.852 0.275 0.263 0.500 0.138
mmsqc80 0.393 0.811 0.393 0.382 0.449 0.360 mmsqc80 0.275 0.844 0.275 0.262 0.510 0.130
mmsqc 0.390 0.817 0.390 0.376 0.445 0.333 mmstftq 0.255 0.852 0.255 0.245 0.405 0.113

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.383 0.875 0.383 0.373 0.583 0.228 mfccstft80 0.403 0.816 0.403 0.388 0.459 0.353
mmstftq 0.365 0.889 0.365 0.349 0.556 0.223 mmsqc 0.385 0.840 0.385 0.371 0.472 0.358
mms80 0.348 0.878 0.348 0.334 0.555 0.215 mmstftq 0.378 0.825 0.378 0.371 0.452 0.350
mfccstft80 0.345 0.874 0.345 0.329 0.544 0.218 mmstftq40 0.370 0.827 0.370 0.364 0.457 0.323
mmsqc 0.350 0.874 0.350 0.328 0.545 0.198 mms40 0.368 0.818 0.368 0.354 0.435 0.310
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

Analysing the values for the various metrics can verify that this change improved all

models’ performance. The model with the Nadam optimizer provided the best results for

both datasets.

Regarding the group of features, the combination of MFCC, Melspectrogram, Chroma

STFT and Chroma CQT with 80 bins appear to be the preferable group since it appears in

almost all models’ top 5 and also, produces the top results of two models for ESC-10.

Looking to Figures 3.23 and 3.24, it is possible to verify that all models with a dropout

rate of 0.2 have converged. For the ESC-50, models 11 and 14 were overfitted and fo-

cused on the results of the AUC curves, these are the only two models showing more bad

behaviour than the corresponding base models.

3.5.5 Cross-validating Results

Since the UrbanSound dataset, significant differences in the results were observed de-

pending on the folder considered as the test folder. The same study was done for the ESC

datasets. However, it was not expected significant discrepancies in the results depending

on the test folder because the datasets are balanced, so the model should have approxi-

mately the same difficulty attributing the suitable class to the unseen data regardless of

the considered training and test folders.

Table 3.24 shows the results for the 5-fold cross-validation in which each folder is taken

as the test folder for the ESC-10 and ESC-50 datasets.

Deep analysis of the results, it is possible to see that using a particular folder as the

test folder can give better results with considerable differences in some metrics values
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FIGURE 3.23: Graphs of the evolution of AUC (left) and loss function (right) with epochs
for the four best base models and their corresponding ones with a dropout rate of 0.2

with a group of features as input for ESC-10.

FIGURE 3.24: Graphs of the evolution of AUC (left) and loss function (right) with epochs
for the four best base models and their corresponding ones with a dropout rate of 0.2

with a group of features as input for ESC-50.

between the best and the worst performance. Therefore, even though these are balanced

datasets, performing cross-validation and averaging out the results seems to be the more

fair way to compare the results due to the different difficulties the model has depending

on the considered test folder.

Regarding the models’ efficiency in distinguish between classes, Figure 3.25 and Fig-

ure 3.26 show the confusion matrices of the 5-fold cross-validation model’s average used

for the ESC-10 dataset and ESC-50 dataset, respectively.
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TABLE 3.24: Results for the 5 folds of the top performing model for ESC-10 and ESC-50
dataset.

ESC-10 dataset ESC-50 dataset
Model 14: (opt: Nadam; dr: 0.2; feature: mms60) Model 14: (opt: Nadam; dr: 0.2; feature: mfccstft80)

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 0.775 0.956 0.775 0.774 0.787 0.738 1 0.403 0.816 0.403 0.388 0.459 0.353
2 0.675 0.936 0.675 0.663 0.707 0.663 2 0.360 0.805 0.360 0.339 0.411 0.310
3 0.800 0.962 0.800 0.797 0.842 0.800 3 0.375 0.832 0.375 0.352 0.438 0.338
4 0.775 0.968 0.775 0.774 0.827 0.775 4 0.380 0.848 0.380 0.361 0.443 0.348
5 0.713 0.921 0.713 0.709 0.724 0.688 5 0.388 0.821 0.388 0.369 0.447 0.345

Average 0.748 0.948 0.748 0.743 0.777 0.733 Average 0.381 0.824 0.381 0.362 0.439 0.339
opt - optimizer; dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve;
prec - precision. All metrics range from [0, 1] (the higher, the better).

FIGURE 3.25: Confusion matrix for the best model using the ESC-10 dataset.

Analysing the confusion matrices can be concluded that for the ESC-10 dataset, dog

and clock tick classes are the most challenging classes with an accuracy inferior to 70%,

and the most straightforward class is sneezing, which has 90% of accuracy. Regarding the

ESC-50 dataset, the classes with the highest accuracy are sea waves, clapping, and toilet

flush, with a value of 70% or superior. However, there are 36 classes with an accuracy

inferior to 50%, with the lowest value being 2% for hand saw, water drops, and clock tick

classes.
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FIGURE 3.26: Confusion matrix for the best model using the ESC-50 dataset.

3.6 Overall Baseline Conclusions

This chapter explored the different optimization functions, feature extraction techniques,

the loss function used, and the different used metrics and defined the architecture of the

baseline model. To conclude the chapter, several experiences were performed to obtain

the best baseline model.

Therefore, models were implemented with different inputs of single and group fea-

tures, dropout rates and a higher number of layers. The various experiences allow to

reach the following conclusions:

• Analysing the base models, Adagrad and Adadelta are the optimizers that produce

the worst results regardless if the input is a single feature or a group feature, except

in one case with the ESC-10 dataset where SGD performed worst than Adagrad.
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• Regarding the UrbanSound8K dataset, adding an extra layer for a single feature in-

put, the only model that benefited from the change was the one that used SGD* as

an optimizer. For a combination of features, the models with Adam and Adamax

as optimization functions showed a slight improvement in the results. The model

with Nadam* as optimizer attained 5 out 6 best metrics. However, unlike in a sin-

gle feature input, the model with SGD optimizer did not show any performance

improvement. For the ESC datasets, adding an extra layer did not improve the

models’ performances, regardless of model input or optimization function.

• Changing the dropout rate for the single feature input was beneficial for Adam, ei-

ther by changing the rate to 0.2 or 0.6. For SGD, only the change for 0.2 was better

than the base model. For Adamax, the base model and the model with a dropout

rate of 0.2 had similar results for the top result. However, when analysing the top

2 features, the base model was better, and for Nadam, neither change was benefi-

cial. Adam and Adamax used dropout rates of 0.8 and 0 to explore the advantages

of changing the dropout rate further. These changes revealed that the dropout rate

increase started to be too high for the model to have enough information to distin-

guish correctly between classes. A low rate leads the model to overfit. Regarding

the group of features, for Adam and Nadam*, changing to 0.6 improved the results.

For Adamax, the change to 0.2 provided better results than the base model, and no

change was profitable for SGD. For the ESC datasets, only the change for a dropout

rate of 0.2 produced improvements in models’ results either for a single or a combi-

nation of features as input.

• For the models with a group of features as input trained for UrbanSound8K, it was

observed that some results had improved when an extra layer was added and when

the dropout rate was changed. However, the combination of these alterations was

only profitable for Adamax* when an extra layer was added, and the dropout rate

was 0.2.

Out of all these experiences, the optimization function that allowed the best result was

Nadam, whether for a single* or a group of features* for UrbanSound8K and the ESC

datasets with a combination of features as input, however, for a single feature input,

Adam show to be more beneficial. Regarding the input features, MFCC was the single

feature that produce better results, particularly, MFCC with 80 MFCCs for UrbanSound8K



3. BASELINE MODELS 83

and with 60 MFCCs to ESC datasets. For a group of features, the combination of MFCC,

Melspectrogram, Chroma STFT, Chroma CQT and Chroma CENS with 40 bins was the

combination that gave the best results for UrbanSound8K and the second best result out

of all experiences for ESC-10.





Chapter 4

End-to-End Models

This chapter employed the acquired knowledge in implementing the baselines and de-

veloping State-of-the-Art (SOTA) end-to-end models to classify Urban Sound events ef-

fectively. Extensive experiments and model evaluation with hyper-parameter tuning and

different architectures are extensively evaluated and discussed to identify the limitations

and potentialities of the different models and improvements regarding the established

baselines.

4.1 Residual Neural Network (ResNet)

This architecture was introduced by He et al. [12] to solve the vanishing gradients prob-

lem and mitigate the degradation of Deep Neural Network (DNN)s with several lay-

ers. The vanishing gradient problem complicates convergence since the gradient is back-

propagated to earlier layers. The repeated multiplications may make the gradient go

infinitely small, making it challenging for model convergence. This model degradation

is noticeable as network depth increases, leading to a degradation of the accuracy, and

adding more layers to a suitably deep model leads to higher training error.

To solve the degradation problem is introduced a deep residual learning framework

which lets the layers fit a residual mapping, F(x) where F(x) := H(x) − x ⇔ H(x) :=

F(x) + x where H(x) is the desired underlying mapping and x is the input of the layer.

This approach can be accomplished by a feedforward neural network with shortcut con-

nections.

85
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Shortcut connections prevent the vanishing gradients as they are used to skip one or

more layers to perform identity mapping, and their outputs are added to the outputs of

the stacked layers.

So, ResNet are constituted by a stack of residual blocks, which are an ensemble of con-

volutional layers followed by a batch normalization layer and a ReLU activation function

with shortcut connections that skips a stack of layers and adds the input directly before

the last ReLU activation function of the stack, Figure 4.1 represents a residual block.

FIGURE 4.1: Residual block (adapted from He et al. [12]).

The model architecture used in this work was ResNet 50, constituted by the following

50 layers:

• convolutional layer with 64 different kernels with a stride of 2 and a kernel size of

7x7.

• max pooling layer with a size of 3x3 and a stride of 2;

• stack of a convolutional layer with 64 different kernels of size 1x1, a convolution

layer with 64 different kernels of size 3x3 and a convolution layer with 256 different

kernels of size 1x1. There are 3 stacks with this combination, and there is a skip

connection between each stack;

• stack of a convolutional layer with 128 different kernels of size 1x1, a convolution

layer with 128 different kernels of size 3x3 and a convolution layer with 512 different

kernels of size 1x1. There are 4 stacks with this combination, and there is a skip

connection between each stack;
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• stack of a convolutional layer with 256 different kernels of size 1x1, a convolution

layer with 256 different kernels of size 3x3 and a convolution layer with 1024 differ-

ent kernels of size 1x1. There are 6 stacks with this combination, and there is a skip

connection between each stack;

• stack of a convolutional layer with 512 different kernels of size 1x1, a convolution

layer with 512 different kernels of size 3x3 and a convolution layer with 2048 differ-

ent kernels of size 1x1. There are 3 stacks with this combination, and there is a skip

connection between each stack;

• then, it has done an average pool, and at the end, there is a fully connected layer

with Softmax as the activation function.

A skip connection is performed between the stacks of different layers with a stride of 2.

4.2 Dense Convolutional Network (DenseNet)

Previous Deep Convolutional Neural Networks (DCNN) architectures like ResNet cre-

ate short paths from early layers to the last layers to solve the vanishing gradient prob-

lem. DenseNet, introduced by Huang et al. [13], instead uses a dense connectivity pattern

which directly connects all layers, with matching feature-map sizes, with each other. So,

each layer obtains additional input from all preceding layers and passes on its feature

maps to all subsequent layers. Unlike, in ResNet where features are combined by sum-

mation before they serve as input to a layer, DenseNet concatenates the features; thereby,

the lth layer has l inputs consisting of the feature maps of all preceding convolutional

blocks, so, an L-layer network has L(L+1)
2 connections. This allows the final classifier to

make decisions based on all feature maps in the network.

Therefore, the advantages of DenseNets are the flow of information and gradients

throughout the network, the direct access that each layer has to the gradients from the

loss function and the original input signal facilitates the training of DCNN.

The network architecture used in this work was DenseNet201, see Figure 4.2, which is

constituted by the following 201 layers:

• Convolutional layer with a kernel size of 7x7 and a stride of 2;

• Max pooling layer with a kernel size of 3x3 and a stride of 2;
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• Dense block: a stack of a convolutional layer with a kernel size of 1x1 and a con-

volutional layer with a kernel size of 3x3. There are 6 stacks formed by the same

layers;

• Transition Layer: convolutional layer with a kernel size of 1x1, and it is done an

average pool with a kernel size of 2x2 and stride of 2;

• Dense block is composed of the same layers as the first dense block, but there are 12

stacks in a row;

• Transition Layer composed of the same layers as the first transition layer;

• Dense block is composed of the same layers as the first dense block, but there are 48

stacks in a row;

• Transition Layer composed of the same layers as the first transition layer;

• Dense block is composed of the same layers as the first dense block, but there are 32

stacks in a row;

• To finalize, it has done a global average pool with a kernel size of 7x7, and then it is

passed to a fully connected layer with Softmax as the activation function.

Before each convolution, it performed the following operations: batch normalization and

ReLU.

FIGURE 4.2: DenseNet architecture. DenseNet201 has 6, 12, 48 and 32 convolutional
layers in each of the dense blocks, respectively.
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4.3 Inception

The creation of this architecture was motivated by the fact that the most straightforward

way to improve the performance of DNNs is by increasing their depth and width (num-

ber of units per level of depth). However, this will usually mean more parameters which

make the network more prone to overfit and increase the use of computational resources.

Therefore, a network that uses extra sparsity and exploits the current hardware by utiliz-

ing dense matrices should be used to solve the mentioned problems.

Inception is introduced by Szegedy et al. [33] to fulfil those requirements and is based

on two ideas: find how an optimal local sparse structure in a convolutional network can

be approximated and covered by readily available dense components; and judiciously ap-

ply dimension reduction and projection whenever the computational requirements would

otherwise increase too much. Therefore, an Inception network consists of several Incep-

tion layers, which are a combination of a 1x1 convolutional layer, a 3x3 convolutional

layer and a 5x5 convolutional layer with their output filter banks concatenated into a sin-

gle output vector that will serve as input of the next layer, stacked upon each other with

occasional max-pooling layers with a stride of 2. For the model to be memory efficient

during training, it seems beneficial to start using Inception layers only at higher layers,

keeping the others as convolutional layers.

The main benefit of this architecture is that it allows increasing the width of the net-

work without uncontrollably increasing computational complexity. However, suppose

the architecture is scaled up. In that case, most computational gains can be immediately

lost. Due to the lack of clear reasons why some design decisions were taken, Szegedy

et al. [34] introduced Inception-v2 and later, the same group of researchers also devel-

oped Inception-v3, Szegedy et al. [35], which was the architecture used in this work.

Therefore, the researchers have proposed the following upgrades: avoid representa-

tional bottlenecks, particularly early in the network, because they can cause the loss of too

much information, so the input dimension should not be drastically changed; increase the

activations per tile as they allow for more disentangled features. As a result, the model

will train faster; spatial aggregation is done over lower dimensional embeddings, which

won’t cause much or any loss in representational power, and it will facilitate the dimen-

sion reduction, which will make the learning faster; lastly, balance the width and depth

of the network that should be increased in parallel to get higher quality networks. This

led to the following changes the 5x5 convolution is replaced by two 3x3 convolutions,
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the nxn convolutions are substituted by a 1xn followed by an nx1 convolution, and to

solve the bottleneck problem, the filter bank outputs are made wider instead of deeper

to prevent excessive dimension reductions which were implemented in Inception-v2. For

Inception-v3, besides the changes mentioned for Inception-v2, it was also factorized 7x7

convolutions into three 3x3 convolutions; use auxiliary classifiers along with batch nor-

malization to improve the convergence and avoid the vanishing gradient problem; and

ultimately, label smoothing, which is a regularization technique that introduces noise for

the labels to account for mistakes that datasets might have in them, to regularize the clas-

sifier layer by estimating the effect of label-dropout during training. Thus, the architecture

of Inception-v3, Figure 4.3, is 42 layers deep, consisting of the following layers:

• Convolutional layer with a patch size of 3x3 and stride of 2;

• Convolutional layer with a patch size of 3x3;

• Convolutional layer with a patch size of 3x3 and padding;

• Pool layer with a patch size of 3x3 and stride of 2;

• Convolutional layer with a patch size of 3x3;

• Convolutional layer with a patch size of 3x3 and stride of 2;

• Convolutional layer with a patch size of 3x3;

• 3 standard inception modules with 288 filters, each with a grid size of 35x35;

• 5 factorized inception modules;

• 2 inception modules with a concatenated output filter bank size of 2048 for each tile;

• Pool layer with a patch size of 8x8;

• Linear layer to convert the input into logits;

• Softmax layer.

Between the change to different inception, the module always performs grid size reduc-

tion, which decreases the feature maps’ grid size by expanding the network filters’ activa-

tion dimension before applying maximum or average pooling to avoid a representational

bottleneck.
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FIGURE 4.3: Inception-v3 architecture.

4.4 Results

In this section, the results for the ResNet, DenseNet and Inception models with different

optimization functions are presented, as was done in 3.4 section. However, instead of us-

ing Nadam as optimization function, was used AdamW which is a stochastic optimization

method that decouples Adam’s weight decay from the gradient update, allowing only the

gradients of the loss function to be adapted. So, the decouple weight decay regularizes all

weights with the same rate (Loshchilov and Hutter [17]).

Then, a detailed analysis of data augmentation’s influence on the models’ perfor-

mance is presented, more specifically, the influence of the combination of time stretch

with a pitch shift.

4.4.1 USC Dataset - Pre-trained vs. No Pre-trained

This section shows the average results of the 10 folds obtained for the UrbanSound8K

dataset for the different model architectures with the following optimization functions:

Adam, Adadelta, Adagrad, Adamax, Stochastic Gradient Descent (SGD) and AdamW.

Table 4.1, Table 4.2 and Table 4.3 present the results for the ResNet, DenseNet and Incep-

tion model with the use of pre-trained model weights and models trained from scratch,

respectively and the number of the epoch that gave the best results.

Analysing the results for the pre-trained models, it can be concluded that for ResNet,

Adamax provides the best results. On the other hand, Adam is the most beneficial opti-

mization function for DenseNet and Inception models. It is also evident that DenseNet
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TABLE 4.1: Results for the average of 10 folds results for ResNet model for the various
optimizers.

Model ResNet (Pre-trained) Model ResNet (No pre-trained)
Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (63) 0.723 0.960 0.723 0.723 0.736 0.723 SGD (65) 0.309 0.761 0.309 0.284 0.321 0.309
Adam (57) 0.816 0.975 0.816 0.827 0.823 0.816 Adam (67) 0.708 0.945 0.708 0.723 0.712 0.708
Adamax (62) 0.828 0.976 0.828 0.837 0.836 0.828 Adamax (63) 0.695 0.937 0.695 0.711 0.705 0.695
AdamW (65) 0.821 0.976 0.821 0.830 0.829 0.821 AdamW (67) 0.704 0.945 0.704 0.715 0.714 0.704
Adadelta (64) 0.643 0.937 0.643 0.616 0.677 0.643 Adadelta (63) 0.258 0.724 0.258 0.229 0.273 0.258
Adagrad (58) 0.806 0.973 0.806 0.814 0.812 0.806 Adagrad (64) 0.583 0.904 0.583 0.602 0.600 0.583
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.2: Results for the average of 10 folds results for DenseNet model for the various
optimizers.

Model DenseNet (Pre-trained) Model DenseNet (No pre-trained)
Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (65) 0.731 0.963 0.731 0.735 0.742 0.731 SGD (66) 0.417 0.832 0.417 0.404 0.453 0.417
Adam (58) 0.833 0.977 0.833 0.844 0.841 0.833 Adam (68) 0.738 0.950 0.738 0.749 0.742 0.738
Adamax (58) 0.818 0.973 0.818 0.828 0.821 0.818 Adamax (62) 0.722 0.952 0.722 0.732 0.729 0.722
AdamW (66) 0.831 0.978 0.831 0.837 0.837 0.831 AdamW (67) 0.742 0.954 0.742 0.756 0.752 0.742
Adadelta (64) 0.625 0.930 0.625 0.612 0.652 0.625 Adadelta (64) 0.361 0.806 0.361 0.310 0.395 0.361
Adagrad (59) 0.811 0.975 0.811 0.818 0.815 0.811 Adagrad (65) 0.709 0.950 0.709 0.719 0.719 0.709
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.3: Results for the average of 10 folds results for the Inception model for the
various optimizers.

Model Inception (Pre-trained) Model Inception (No pre-trained)
Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (64) 0.593 0.923 0.593 0.541 0.620 0.593 SGD (63) 0.294 0.758 0.294 0.248 0.293 0.294
Adam (62) 0.827 0.973 0.827 0.840 0.833 0.827 Adam (68) 0.713 0.944 0.713 0.725 0.717 0.713
Adamax (56) 0.797 0.968 0.797 0.806 0.803 0.797 Adamax (64) 0.693 0.943 0.693 0.706 0.698 0.693
AdamW (66) 0.812 0.973 0.812 0.824 0.816 0.812 AdamW (66) 0.726 0.955 0.726 0.738 0.730 0.726
Adadelta (62) 0.412 0.824 0.412 0.341 0.411 0.412 Adadelta (60) 0.204 0.663 0.204 0.152 0.193 0.204
Adagrad (59) 0.775 0.971 0.775 0.787 0.783 0.775 Adagrad (62) 0.513 0.884 0.513 0.523 0.538 0.513
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

with Adam optimizer is the model that achieves the best results in all metrics. Regard-

ing the best randomly initialized models, it is possible to conclude that in all metrics,

the pre-trained models provided better results with a difference of around 10 percentage

points (pp) in most metrics. In terms, of optimizers for ResNet, Adam was the preferable

optimization function, nonetheless, for the DenseNet and Inception models, AdamW op-

timization function gave the best results. However, DenseNet gave the best results for the

randomly initialized or the model that used pre-trained model weights.

Figure 4.4 shows the graphical representation of the accuracy and loss curves for the

different models with the most advantageous optimizer for each model.

The graphics of Figure 4.4 show that all models have converged, ResNet with pre-

trained weights around the 10th epoch and all the other models around the 30th epoch.
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FIGURE 4.4: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the models with the optimizer that allowed the best results for each model (no

PT - no pre-trained).

Focusing on the accuracy’s evolution with the epochs is possible to verify that the evolu-

tion curve of ResNet is almost straight. For all the other models, the same behaviour is

obtained after approximately the 30th epoch, which means that the accuracy value stops

improving after the models’ convergence significantly; however, all pre-trained models

have achieved high accuracy. Nonetheless, DenseNet model shows to be slightly better

than the other models. Also, the no pre-trained models because they are trained from

scratch the starting accuracy is lower than pre-trained models, which highlights the need

to train the models for more epochs to reach convergence.

4.4.2 USC Dataset - Data Augmentation

This section explores the influence that data augmentation has on the models’ perfor-

mance, so, taking into account the results obtained in the previous section, this study was

made for the pre-trained models using the optimizer that provided the best results for

each model. Table 4.4, Table 4.5 and Table 4.6 show the results for the different models

with and without data augmentation for all the folds, respectively.

Comparing the results obtained for data with and without augmentation can be con-

cluded that, on average, the results without data augmentation were better than those

obtained with data augmentation. These results are unexpected since data augmentation

is one of the most used methods to improve models’ performance.
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TABLE 4.4: Results for the 10 folds for ResNet model with and without data augmenta-
tion.

ResNet: (data aug: no; optimizer: Adamax (62 epochs)) ResNet: (data aug: yes; optimizer: Adamax (64 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (54) 0.787 0.958 0.787 0.810 0.814 0.787 1 (65) 0.785 0.955 0.785 0.806 0.806 0.785
2 (67) 0.832 0.973 0.832 0.836 0.835 0.832 2 (64) 0.857 0.977 0.857 0.867 0.858 0.857
3 (60) 0.752 0.972 0.752 0.768 0.750 0.752 3 (69) 0.765 0.969 0.765 0.794 0.776 0.765
4 (63) 0.861 0.984 0.861 0.860 0.863 0.861 4 (67) 0.819 0.977 0.819 0.815 0.822 0.819
5 (62) 0.868 0.991 0.868 0.875 0.873 0.868 5 (58) 0.864 0.990 0.864 0.873 0.876 0.864
6 (58) 0.820 0.971 0.820 0.836 0.832 0.820 6 (58) 0.801 0.973 0.801 0.815 0.808 0.801
7 (67) 0.865 0.972 0.865 0.866 0.869 0.865 7 (62) 0.842 0.970 0.842 0.841 0.846 0.842
8 (68) 0.766 0.969 0.766 0.773 0.773 0.766 8 (64) 0.734 0.962 0.734 0.723 0.679 0.734
9 (64) 0.862 0.983 0.862 0.873 0.867 0.862 9 (68) 0.881 0.983 0.881 0.889 0.890 0.881

10 (53) 0.871 0.990 0.871 0.878 0.882 0.871 10 (61) 0.870 0.986 0.870 0.880 0.886 0.870
Average 0.828 0.976 0.828 0.837 0.836 0.828 Average 0.822 0.974 0.822 0.830 0.825 0.822
data aug - data augmentation; acc - accuracy; AUC - area under the receiver operating characteristic curve;
prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.5: Results for the 10 folds for DenseNet model with and without data augmen-
tation.

DenseNet: (data aug: no; optimizer: Adam (58 epochs)) DenseNet: (data aug: yes; optimizer: Adam (67 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (63) 0.809 0.963 0.809 0.833 0.829 0.809 1 (68) 0.771 0.952 0.771 0.795 0.806 0.771
2 (61) 0.827 0.978 0.827 0.827 0.825 0.827 2 (67) 0.850 0.977 0.850 0.868 0.859 0.850
3 (67) 0.720 0.963 0.720 0.742 0.721 0.720 3 (68) 0.735 0.961 0.735 0.761 0.734 0.735
4 (48) 0.834 0.980 0.834 0.833 0.846 0.834 4 (67) 0.791 0.963 0.791 0.785 0.799 0.791
5 (55) 0.902 0.995 0.902 0.904 0.907 0.902 5 (67) 0.841 0.986 0.841 0.846 0.852 0.841
6 (69) 0.813 0.971 0.813 0.832 0.822 0.813 6 (67) 0.786 0.965 0.786 0.799 0.791 0.786
7 (44) 0.876 0.978 0.876 0.880 0.884 0.876 7 (68) 0.841 0.970 0.841 0.843 0.850 0.841
8 (69) 0.803 0.964 0.803 0.815 0.815 0.803 8 (62) 0.764 0.958 0.764 0.783 0.776 0.764
9 (51) 0.871 0.986 0.871 0.883 0.876 0.871 9 (69) 0.844 0.977 0.844 0.856 0.846 0.844

10 (55) 0.878 0.989 0.878 0.889 0.888 0.878 10 (69) 0.886 0.983 0.886 0.894 0.896 0.886
Average 0.833 0.977 0.833 0.844 0.841 0.833 Average 0.811 0.969 0.811 0.823 0.821 0.811
data aug - data augmentation; acc - accuracy; AUC - area under the receiver operating characteristic curve;
prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.6: Results for the 10 folds for Inception model with and without data augmen-
tation.

Inception: (data aug: no; optimizer: Adam (62 epochs)) Inception: (data aug: yes; optimizer: Adam (67 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (65) 0.833 0.961 0.833 0.858 0.855 0.833 1 (67) 0.804 0.955 0.804 0.822 0.818 0.804
2 (52) 0.828 0.975 0.828 0.839 0.828 0.828 2 (68) 0.841 0.975 0.841 0.849 0.844 0.841
3 (65) 0.711 0.958 0.711 0.735 0.705 0.711 3 (67) 0.734 0.966 0.734 0.756 0.724 0.734
4 (67) 0.819 0.976 0.819 0.816 0.828 0.819 4 (67) 0.806 0.964 0.806 0.806 0.811 0.806
5 (68) 0.897 0.987 0.897 0.906 0.905 0.897 5 (64) 0.803 0.972 0.803 0.816 0.817 0.803
6 (62) 0.815 0.973 0.815 0.838 0.828 0.815 6 (68) 0.783 0.974 0.783 0.801 0.780 0.783
7 (68) 0.850 0.972 0.850 0.853 0.859 0.850 7 (67) 0.833 0.964 0.833 0.837 0.832 0.833
8 (61) 0.777 0.967 0.777 0.793 0.774 0.777 8 (64) 0.726 0.952 0.726 0.719 0.679 0.726
9 (67) 0.864 0.979 0.864 0.876 0.874 0.864 9 (69) 0.836 0.974 0.836 0.849 0.838 0.836

10 (46) 0.873 0.984 0.873 0.882 0.879 0.873 10 (68) 0.878 0.987 0.878 0.888 0.889 0.878
Average 0.827 0.973 0.827 0.840 0.833 0.827 Average 0.804 0.968 0.804 0.814 0.803 0.804
data aug - data augmentation; acc - accuracy; AUC - area under the receiver operating characteristic curve;
prec - precision. All metrics range from [0, 1] (the higher, the better).

Regarding the easiest fold, there is no consensus between all the models. Nonetheless,

DenseNet and Inception agreed by giving their best performance for the same folders in

both situations.
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In Figure 4.5, the behaviour of the models is pretty similar, being even challenging to

distinguish between them; however, it is possible to see a slight worst behaviour for the

models that were trained with data augmentation techniques.

FIGURE 4.5: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the models with the optimizer that allowed the best results for each model (no

aug - no augmentation).

Lastly, analysing the confusion matrix presented in Figure 4.6 for the best model on

this dataset which was the DenseNet model with no data augmentation and Adam as the

optimization function is possible to understand that the most difficult class is air condi-

tioner that is most misclassified as drilling or engine idling. On the other hand, the model

can easily identify sounds from the car horn, children playing, dog bark, gunshot and

street music classes giving an accuracy superior to 90%.

4.4.3 ESC Datasets - Pre-trained vs. No Pre-trained

This section presents a similar study to what was done for the UrbanSound8K but now

for the ESC datasets. Therefore, Table 4.7, Table 4.8 and Table 4.9 show the results for the

ResNet, DenseNet and Inception model, respectively, with the use of pre-trained model

weights and models trained from scratch and the number of the epoch that gave the best

results for the ESC-10 and ESC-50 dataset.

Unlike what was observed for the UrbanSound8K dataset, in the ESC-50 dataset,

for ResNet, the optimizer that provided the best results was Adam, for DenseNet was

AdamaW and for Inception, Adam continued to be the most beneficial optimization func-

tion. Regarding the best performing model for ESC-50, it is not as evident but ResNet

got 4 out of 6 metrics better than the DenseNet model with a maximum difference being
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FIGURE 4.6: Confusion matrix for the UrbanSound8K dataset.

TABLE 4.7: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
ResNet model for the various optimizers.

ESC-50 dataset
Model ResNet (Pre-trained) Model ResNet (No pre-trained)

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (66) 0.159 0.788 0.159 0.140 0.176 0.159 SGD (64) 0.039 0.630 0.039 0.025 0.024 0.039
Adam (66) 0.882 0.996 0.882 0.877 0.896 0.882 Adam (62) 0.683 0.978 0.683 0.673 0.702 0.683
Adamax (64) 0.860 0.995 0.860 0.855 0.874 0.860 Adamax (65) 0.599 0.969 0.599 0.587 0.617 0.599
AdamW (60) 0.881 0.996 0.881 0.878 0.893 0.881 AdamW (64) 0.669 0.979 0.669 0.658 0.681 0.669
Adadelta (65) 0.048 0.644 0.048 0.028 0.031 0.048 Adadelta (63) 0.034 0.614 0.034 0.015 0.014 0.034
Adagrad (63) 0.790 0.992 0.790 0.785 0.812 0.790 Adagrad (64) 0.243 0.865 0.243 0.205 0.211 0.243

ESC-10 dataset
Model ResNet (Pre-trained) Model ResNet (No pre-trained)

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (65) 0.410 0.826 0.410 0.392 0.431 0.410 SGD (61) 0.205 0.715 0.205 0.186 0.207 0.205
Adam (58) 0.930 0.997 0.930 0.928 0.939 0.930 Adam (62) 0.838 0.974 0.838 0.836 0.858 0.838
Adamax (61) 0.935 0.996 0.935 0.934 0.946 0.935 Adamax (58) 0.785 0.973 0.785 0.779 0.822 0.785
AdamW (60) 0.940 0.998 0.940 0.938 0.948 0.940 AdamW (64) 0.833 0.971 0.833 0.832 0.855 0.833
Adadelta (67) 0.150 0.677 0.150 0.095 0.091 0.150 Adadelta (57) 0.113 0.610 0.113 0.035 0.043 0.113
Adagrad (59) 0.918 0.993 0.918 0.916 0.927 0.918 Adagrad (56) 0.653 0.938 0.653 0.626 0.645 0.653
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

of 0.2 pp, then, for the macro F1-score and area under the receiver operating characteris-

tic (ROC) curve (AUC) metric, ResNet got 0.1 pp worst result than DenseNet, so overall,

ResNet was superior. Inception got the worst results for all metrics compared to the other

models. For the ESC-10 dataset, regarding the optimization function that provided the
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TABLE 4.8: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
DenseNet model for the various optimizers.

ESC-50 dataset
Model DenseNet (Pre-trained) Model DenseNet (No pre-trained)

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (63) 0.130 0.766 0.130 0.115 0.131 0.130 SGD (63) 0.078 0.715 0.078 0.043 0.052 0.078
Adam (66) 0.874 0.996 0.874 0.872 0.890 0.874 Adam (66) 0.761 0.987 0.761 0.754 0.780 0.761
Adamax (67) 0.847 0.994 0.847 0.844 0.861 0.847 Adamax (64) 0.713 0.984 0.713 0.705 0.734 0.713
AdamW (57) 0.880 0.997 0.880 0.878 0.895 0.880 AdamW (67) 0.749 0.987 0.749 0.741 0.764 0.749
Adadelta (68) 0.035 0.600 0.035 0.022 0.028 0.035 Adadelta (66) 0.043 0.651 0.043 0.019 0.022 0.043
Adagrad (67) 0.758 0.988 0.758 0.747 0.773 0.758 Adagrad (62) 0.400 0.923 0.400 0.367 0.401 0.400

ESC-10 dataset
Model DenseNet (Pre-trained) Model DenseNet (No pre-trained)

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (65) 0.395 0.806 0.395 0.374 0.413 0.395 SGD (59) 0.300 0.816 0.300 0.258 0.307 0.300
Adam (58) 0.938 0.997 0.938 0.936 0.945 0.938 Adam (63) 0.888 0.986 0.888 0.883 0.905 0.888
Adamax (59) 0.918 0.995 0.918 0.917 0.930 0.918 Adamax (63) 0.868 0.985 0.868 0.863 0.887 0.868
AdamW (57) 0.930 0.997 0.930 0.930 0.938 0.930 AdamW (64) 0.898 0.989 0.898 0.893 0.915 0.898
Adadelta (61) 0.170 0.606 0.170 0.141 0.218 0.170 Adadelta (62) 0.175 0.678 0.175 0.108 0.131 0.175
Adagrad (62) 0.903 0.994 0.903 0.902 0.912 0.903 Adagrad (64) 0.818 0.979 0.818 0.810 0.845 0.818
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.9: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
the Inception model for the various optimizers.

ESC-50 dataset
Model Inception (Pre-trained) Model Inception (No pre-trained)

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (62) 0.047 0.651 0.047 0.031 0.042 0.047 SGD (57) 0.037 0.602 0.037 0.017 0.019 0.037
Adam (65) 0.821 0.990 0.821 0.816 0.841 0.821 Adam (66) 0.630 0.973 0.630 0.620 0.651 0.630
Adamax (65) 0.778 0.986 0.778 0.772 0.798 0.778 Adamax (63) 0.479 0.951 0.479 0.458 0.476 0.479
AdamW (66) 0.820 0.989 0.820 0.817 0.833 0.820 AdamW (68) 0.619 0.973 0.619 0.608 0.639 0.619
Adadelta (58) 0.032 0.559 0.032 0.018 0.024 0.032 Adadelta (56) 0.023 0.528 0.023 0.008 0.007 0.023
Adagrad (64) 0.501 0.952 0.501 0.472 0.525 0.501 Adagrad (60) 0.187 0.820 0.187 0.144 0.162 0.187

ESC-10 dataset
Model Inception (Pre-trained) Model Inception (No pre-trained)

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
SGD (58) 0.193 0.676 0.193 0.159 0.225 0.193 SGD (58) 0.133 0.631 0.133 0.090 0.110 0.133
Adam (55) 0.938 0.993 0.938 0.937 0.944 0.938 Adam (61) 0.830 0.981 0.830 0.824 0.849 0.830
Adamax (62) 0.905 0.994 0.905 0.905 0.920 0.905 Adamax (65) 0.760 0.971 0.760 0.754 0.779 0.760
AdamW (58) 0.905 0.992 0.905 0.904 0.918 0.905 AdamW (56) 0.825 0.978 0.825 0.821 0.843 0.825
Adadelta (56) 0.123 0.549 0.123 0.107 0.155 0.123 Adadelta (42) 0.135 0.566 0.135 0.086 0.090 0.135
Adagrad (56) 0.830 0.984 0.830 0.831 0.854 0.830 Adagrad (65) 0.573 0.915 0.573 0.555 0.618 0.573
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

best results for each model, the results lead to the conclusion that for DenseNet and In-

ception, Adam is the preferable optimization function like what was observed for the

UrbanSound8K dataset, however, for the ResNet model, AdamW showed to be the best

optimization function and also, gave the best results out of all models for this dataset. In-

ception was again the model that considering all metrics’ values, gave the worst results.

Figures 4.7 and 4.8 show the graphical representation of the accuracy and loss curves

for the different models with the most advantageous optimizer for each model trained for

the ESC-50 and ESC-10 dataset, respectively.

In this case, all models converged after the 30th epoch. Regarding the accuracy curves,
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FIGURE 4.7: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the models with the optimizer that allowed the best results for each model for

the ESC-50 dataset. (no PT - no pre-trained).

FIGURE 4.8: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the models with the optimizer that allowed the best results for each model for

the ESC-10 dataset. (no PT - no pre-trained).

all models showed similar behaviour. Still, no pre-trained models showed lower accuracy

because they were trained from scratch; the initial accuracy is inferior. They cannot get as

high results as pre-trained models due to the lack of learned filters to extract meaningful

features. Also, the superiority of the DenseNet models is evident for the no pre-trained

models and the inferiority of the Inception model for the no pre-trained models with the

ESC-50 dataset.

4.4.4 ESC Datasets - Data Augmentation

This section also explored the influence of data augmentation using the ESC datasets.

The results are presented in the following tables, Table 4.10, Table 4.11, Table 4.12 for the



4. END-TO-END MODELS 99

different models with and without data augmentation for all the folds.

TABLE 4.10: Results for the 5 folds on ESC-50 and ESC-10 datasets for ResNet model
with and without data augmentation.

ESC-50 dataset
ResNet: (data aug: no; optimizer: Adam (66 epochs)) ResNet: (data aug: yes; optimizer: Adam (62 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (69) 0.893 0.996 0.893 0.891 0.905 0.893 1 (68) 0.895 0.997 0.895 0.893 0.910 0.895
2 (59) 0.888 0.996 0.888 0.878 0.900 0.888 2 (63) 0.885 0.997 0.885 0.880 0.896 0.885
3 (69) 0.875 0.996 0.875 0.872 0.894 0.875 3 (56) 0.893 0.995 0.893 0.892 0.902 0.893
4 (66) 0.898 0.997 0.898 0.895 0.907 0.898 4 (69) 0.933 0.999 0.933 0.932 0.939 0.933
5 (66) 0.855 0.994 0.855 0.850 0.873 0.855 5 (56) 0.900 0.992 0.900 0.901 0.913 0.900

Average 0.882 0.996 0.882 0.877 0.896 0.882 Average 0.901 0.996 0.901 0.899 0.912 0.901

ESC-10 dataset
ResNet: (data aug: no; optimizer: AdamW (60 epochs)) ResNet: (data aug: yes; optimizer: AdamW (65 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (59) 0.963 0.999 0.963 0.962 0.966 0.963 1 (63) 0.963 0.999 0.963 0.962 0.966 0.963
2 (65) 0.925 0.999 0.925 0.925 0.935 0.925 2 (64) 0.938 0.999 0.938 0.937 0.941 0.938
3 (62) 0.888 0.993 0.888 0.880 0.905 0.888 3 (68) 0.888 0.996 0.888 0.871 0.883 0.888
4 (56) 0.988 1.000 0.988 0.987 0.989 0.988 4 (62) 0.950 0.996 0.950 0.950 0.954 0.950
5 (60) 0.938 0.999 0.938 0.937 0.946 0.938 5 (67) 0.950 0.997 0.950 0.950 0.952 0.950

Average 0.940 0.998 0.940 0.938 0.948 0.940 Average 0.938 0.997 0.938 0.934 0.939 0.938
data aug - data augmentation; acc - accuracy; AUC - area under the receiver operating characteristic curve;
prec - precision. All metrics range from [0, 1] (the higher, the better).

TABLE 4.11: Results for the 5 folds on ESC-50 and ESC-10 datasets for DenseNet model
with and without data augmentation.

ESC-50 dataset
DenseNet: (data aug: no; opt: AdamW (57 epochs)) DenseNet: (data aug: yes; opt: AdamW (66 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (69) 0.895 0.998 0.895 0.894 0.905 0.895 1 (68) 0.918 0.999 0.918 0.915 0.927 0.918
2 (27) 0.843 0.995 0.843 0.839 0.865 0.843 2 (65) 0.895 0.997 0.895 0.892 0.906 0.895
3 (69) 0.875 0.997 0.875 0.874 0.888 0.875 3 (66) 0.893 0.997 0.893 0.890 0.897 0.893
4 (66) 0.915 0.999 0.915 0.913 0.930 0.915 4 (68) 0.915 0.998 0.915 0.912 0.924 0.915
5 (56) 0.870 0.996 0.870 0.869 0.885 0.870 5 (63) 0.885 0.998 0.885 0.881 0.900 0.885

Average 0.880 0.997 0.880 0.878 0.895 0.880 Average 0.901 0.998 0.901 0.898 0.911 0.901

ESC-10 dataset
DenseNet: (data aug: no; opt: Adam (58 epochs)) DenseNet: (data aug: yes; opt: Adam (60 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (69) 0.950 0.998 0.950 0.950 0.960 0.950 1 (67) 0.975 0.999 0.975 0.975 0.980 0.975
2 (45) 0.938 0.996 0.938 0.938 0.946 0.938 2 (59) 0.913 0.994 0.913 0.911 0.929 0.913
3 (60) 0.888 0.997 0.888 0.882 0.902 0.888 3 (65) 0.963 0.999 0.963 0.962 0.967 0.963
4 (64) 0.963 1.000 0.963 0.962 0.965 0.963 4 (54) 0.975 0.999 0.975 0.975 0.978 0.975
5 (54) 0.950 0.996 0.950 0.949 0.954 0.950 5 (56) 0.925 0.998 0.925 0.922 0.934 0.925

Average 0.938 0.997 0.938 0.936 0.945 0.938 Average 0.950 0.998 0.950 0.949 0.958 0.950
data aug - data augmentation; opt - optimizer; acc - accuracy; AUC - area under the receiver operating characteristic
curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

Analysing the results tables, unlike observed for the UrbanSound8K dataset experi-

ments, for the ESC datasets, the employment of data augmentation was beneficial in all

cases except for the ResNet model trained with the ESC-10 dataset. Thus, for ESC-50,

ResNet and DenseNet models got around a 2 pp increase and around 4 pp for the In-

ception model, in most metrics. For the ESC-10 dataset’s results, ResNet got very similar

results for both versions. However, the no augmentation data training allowed slightly
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TABLE 4.12: Results for the 5 folds on ESC-50 and ESC-10 datasets for Inception model
with and without data augmentation.

ESC-50 dataset
Inception: (data aug: no; optimizer: Adam (65 epochs)) Inception: (data aug: yes; optimizer: Adam (65 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (62) 0.835 0.989 0.835 0.833 0.849 0.835 1 (68) 0.878 0.992 0.878 0.877 0.893 0.878
2 (65) 0.798 0.987 0.798 0.789 0.829 0.798 2 (58) 0.863 0.993 0.863 0.858 0.875 0.863
3 (67) 0.818 0.989 0.818 0.812 0.835 0.818 3 (69) 0.855 0.991 0.855 0.852 0.867 0.855
4 (69) 0.875 0.994 0.875 0.873 0.890 0.875 4 (63) 0.903 0.996 0.903 0.902 0.913 0.903
5 (63) 0.778 0.988 0.778 0.773 0.804 0.778 5 (65) 0.820 0.989 0.820 0.809 0.840 0.820

Average 0.821 0.990 0.821 0.816 0.841 0.821 Average 0.864 0.992 0.864 0.860 0.877 0.864

ESC-10 dataset
Inception: (data aug: no; optimizer: Adam (55 epochs)) Inception: (data aug: yes; optimizer: Adam (62 epochs))

Folds acc AUC micro
f1score

macro
f1score prec recall Folds acc AUC micro

f1score
macro
f1score prec recall

1 (64) 0.925 0.997 0.925 0.925 0.933 0.925 1 (54) 0.950 0.999 0.950 0.950 0.955 0.950
2 (46) 0.925 0.991 0.925 0.924 0.933 0.925 2 (63) 0.925 0.998 0.925 0.924 0.940 0.925
3 (54) 0.938 0.987 0.938 0.937 0.943 0.938 3 (65) 0.938 0.998 0.938 0.933 0.944 0.938
4 (49) 0.950 0.997 0.950 0.950 0.954 0.950 4 (68) 0.975 0.999 0.975 0.975 0.978 0.975
5 (62) 0.950 0.991 0.950 0.949 0.956 0.950 5 (59) 0.913 0.995 0.913 0.914 0.923 0.913

Average 0.938 0.993 0.938 0.937 0.944 0.938 Average 0.940 0.998 0.940 0.939 0.948 0.940
data aug - data augmentation; acc - accuracy; AUC - area under the receiver operating characteristic curve;
prec - precision. All metrics range from [0, 1] (the higher, the better).

better results, with the maximum difference being 0.9 pp, for DenseNet and Inception,

data augmentation was beneficial, giving an improvement of around 1 pp and 0.2 pp, in

most metrics, respectively. This can be due to strong data transformation that approxi-

mated one class to another among the feature distribution or dispersed the data represen-

tation among different class boundaries.

Concerning the easiest folder, the models trained with no augmented data have all

given better results for the 4th fold. However, the same was not observed for all the models

trained with augmented data. Even though 3 models still had the best performance using

fold 4, others identified fold 1 as the easiest.

Figures 4.9 and Figure 4.10 show that all models have converged around the 30th epoch

and for ESC-50 dataset, all models trained with data augmentation gave better results and

the Inception models show the worst behaviours. For ESC-10, even though it is difficult

to distinguish between the curves, DenseNet with data augmentation shows a slightly

better result than the others.

Finally, Figure 4.11 and Figure 4.12 show the confusion matrices using the best model

for each dataset. So, for the ESC-50 dataset, it was used the ResNet model and for the ESC-

10 dataset, the DenseNet model, both using Adam as optimizer and data augmentation.

Analysing the confusion matrices is possible to conclude that for the ESC-50 dataset,

there are five classes with an accuracy inferior to 80% which are water drops, laughing,

drinking sipping, helicopter and fireworks, being the worst value for drinking sipping,
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FIGURE 4.9: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the models with the optimizer that allowed the best results for each model for

the ESC-50 dataset (no aug - no augmentation).

FIGURE 4.10: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the models with the optimizer that allowed the best results for each model for

the ESC-10 dataset (no aug - no augmentation).

which is mainly misclassified as keyboard typing and pig. Nonetheless, there are 33

classes with an accuracy equal to or superior to 90%, and three of them got an accuracy

score of 100%, which were the class of toilet flush, clock alarm and church bells. Regard-

ing the confusion matrix for the ESC-10 dataset, the dog class is the class with the lowest

accuracy score of 82%, which was mostly misclassified as sneezing. On the other hand, all

the other classes had an accuracy superior to 90%, with the best results being for rooster,

clock tick and chainsaw classes with an accuracy of 100%.
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FIGURE 4.11: Confusion matrix for the ESC-50 dataset.
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FIGURE 4.12: Confusion matrix for the ESC-10 dataset.
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4.5 Conclusion

In conclusion, Inception is the model that exhibits the worst results in most situations, and

DenseNet is more capable of giving better results without pre-training by demonstrating

that behaviour for all datasets.

Regarding the experiences, the no pre-trained models show the worst behaviour re-

gardless of the dataset, giving around 10 pp for UrbanSound8K, 17 pp for ESC-50 and 8

pp for ESC-10 worst results than the corresponding pre-trained models. Then, consider-

ing the results obtained for the models trained with data augmentation, UrbanSound8K

got unexpected results by giving worse performances than the no data augmented mod-

els with differences between 0.2 pp and 3 pp. On the other hand, the ESC datasets gave

the expected results by having their performance improved except for the ResNet model

for the ESC-10 dataset, which got around 0.3 pp worst; however, for the others, the ben-

efits range between 1 and 4 pp. Thus, it can be concluded that pre-training has a huge

influence on all models’ performance regardless of the dataset. The data augmentation

techniques depend on the dataset and the model’s architecture. However, they can en-

hance the performance in some situations, even if the impact isn’t so pronounced.

Observing the cross-validation results, there is no consensus about the most accessible

folder depending on the model, if it is pre-trained and if data augmentation techniques

were employed, showing the different capacities of the models to represent the sounds

depending on the input.

Concerning the optimizers, Adam was the optimization function capable of giving

the best performance for all datasets and, in most situations, for the different models.

For ESC-50, the DenseNet model with AdamW optimizer gave very similar results to the

ResNet model with Adam optimizer making it challenging to affirm which one is the best.

Compared with the baseline models, there was a huge performance boost of 19.9 pp

for UrbanSound8K, 46.4 pp for ESC-50 and 17.6 pp for ESC-10, on average, showing the

superiority of the end-to-end pre-trained models.



Chapter 5

Transformers

This chapter explores the model architecture Transformer. Several experiences were done

using different optimization functions, data augmentation techniques, batch sizes, and

temporal and frequency strides and explored the use of no pre-training, pre-training with

ImageNet and pre-training with ImageNet and AudioSet. These were evaluated using

different metrics for the UrbanSound8K and ESC datasets.

5.1 Transformer

It is a transduction model that relies entirely on an attention mechanism to compute rep-

resentations of its input and output, proposed by Vaswani et al. [39].

The model architecture is constituted of an encoder which maps an input sequence of

symbol representations to a sequence of continuous representations and a decoder that

generates an output sequence of symbols one at a time. At each step, the model is auto-

regressive, so it uses the previously generated symbols as additional input when generat-

ing the next one.

In Figure 5.1, on the left side is represented the encoder architecture and on the right

is the decoder architecture described below.

The encoder is composed of a stack of identical layers, each one of them has two

sub-layers: a multi-head self-attention mechanism and a position-wise fully connected

feed-forward network, and around each of the two sub-layers, there is a residual connec-

tion followed by a normalization layer.

The decoder is composed of a stack of identical layers with three sub-layers which

are the two mentioned previously in the encoder architecture, and a third one which is

105
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a multi-head attention over the output of the encoder stack. Furthermore, there is a

modification in the self-attention sub-layer in the decoder stack to prevent positions from

attending to subsequent positions, ensuring, in combination with the fact that the output

embeddings are offset by one position, that the predictions only depend on the known

outputs of previous positions. Finally, similarly to the encoder, it also employs residual

connections around each sub-layers, followed by layer normalization.

A brief description of each layer in the model is then presented:

• Embeddings: are used to convert the input tokens and output tokens to vectors of

a certain dimension;

• Positional Encoding: it is the relative or absolute position of the tokens in the se-

quence that allows the model to use the order of the sequence;

• Multi-head attention: performs an attention function parallel to the projected ver-

sions of queries, keys and values, allowing the model to jointly attend to information

from different representation subspaces at different positions;

The Transformer uses this layer in three different ways:

– Self-attention layer in encoder: all keys, values and queries come from the out-

put of the previous layer in the encoder, which allows each position in the

encoder to attend to all positions in the previous layer of the encoder;

– Self-attention layer in decoder: allows each position in the decoder to attend to

all positions in the decoder up to and including that position. Then, to preserve

the auto-regressive property, this is implemented inside of scaled dot-product

attention by masking out all values in the input of the Softmax corresponding

to illegal connections;

– Layer in the decoder over the output of the encoder stack layer: queries come

from the previous decoder layer and the memory keys and values from the

output of the encoder, which allows the decoder in every position to attend

over all positions in the input sequence;

• Position-wise Feed-Forward Networks: consists of two linear transformations with

a ReLU activation in between, applied to each position separately and identically;

• Linear and Softmax: the learned linear transformation and the Softmax function are

used to convert the decoder output to predicted next-token probabilities.
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FIGURE 5.1: Transformer architecture (Vaswani et al. [39]).

The employed architecture is based on the Audio Spectrogram Transformer (AST)

model introduced by Gong et al. [11]. Its architecture consists of a patch embedding layer

which converts the input spectrogram into a sequence of patches and flattens it into a one-

dimensional (1D) patch. Then, a trainable positional embedding is added to each patch

embedding to capture the input order information and the temporal order of the patch

sequence. Also, a classification token is appended at the beginning of the sequence. The

resulting sequence serves as input for the standard Transformer’s encoder part explained

in this section’s beginning. Finally, the Transformer encoder’s output of the classification

token serves as the audio spectrogram representation, which a linear layer will map with

sigmoid activation to labels for classification. Figure 5.2 illustrates the models’ architec-

ture.
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FIGURE 5.2: AST architecture (Gong et al. [11]).

5.2 Experiments and Results

This section presents the results of the different experiences using the Transformer archi-

tecture. Starting with the analyses of the effect of pre-training, in particular, the difference

between just distilling knowledge from an image domain model or two models: one from

the image domain and the other from the audio domain, next, the influence of changing

the batch size is explored and finally, the differences that the various data augmentation

techniques can provoke.

5.2.1 ESC Datasets - No Pre-trained vs. Pre-trained

As concluded in Section 4, the employment of pre-training gives a faster model conver-

gence resulting in a quicker training process and a huge boost to the models’ performance.

Therefore, this section presents the results for the ESC datasets with the different opti-

mization functions and with no pre-training, pre-training with ImageNet and pre-training

with ImageNet and AudioSet. Tables 5.1 and 5.2 summarize the obtained results.

TABLE 5.1: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
the no pre-trained model for the various optimizers.

ESC-50 dataset - No pre-trained ESC-10 dataset - No pre-trained
Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (23) 0.058 0.710 0.058 0.026 0.083 0.058 Adadelta (24) 0.293 0.808 0.293 0.202 0.380 0.293
Adagrad (19) 0.252 0.879 0.252 0.220 0.277 0.252 Adagrad (24) 0.483 0.916 0.483 0.458 0.620 0.483
Adam (24) 0.387 0.924 0.387 0.362 0.418 0.387 Adam (24) 0.458 0.898 0.458 0.428 0.528 0.458
Adamax (23) 0.342 0.911 0.342 0.315 0.374 0.342 Adamax (22) 0.468 0.901 0.468 0.433 0.570 0.468
AdamW (23) 0.439 0.936 0.439 0.424 0.468 0.439 AdamW (23) 0.528 0.918 0.528 0.507 0.617 0.528
SGD (23) 0.073 0.734 0.073 0.034 0.091 0.073 SGD (23) 0.363 0.847 0.363 0.300 0.448 0.363
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).
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TABLE 5.2: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
the pre-trained models for the various optimizers.

ESC-50 dataset
ImageNet pre-trained ImageNet and AudioSet pre-trained

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (22) 0.033 0.569 0.033 0.022 0.053 0.033 Adadelta (15) 0.025 0.505 0.025 0.012 0.043 0.025
Adagrad (19) 0.843 0.993 0.843 0.838 0.880 0.843 Adagrad (23) 0.814 0.991 0.814 0.806 0.859 0.814
Adam (16) 0.884 0.995 0.884 0.881 0.922 0.884 Adam (18) 0.950 0.999 0.950 0.948 0.977 0.950
Adamax (19) 0.885 0.996 0.885 0.882 0.926 0.885 Adamax (18) 0.947 0.998 0.947 0.946 0.965 0.947
AdamW (18) 0.886 0.996 0.886 0.884 0.927 0.886 AdamW (18) 0.958 0.999 0.958 0.956 0.978 0.958
SGD (23) 0.055 0.633 0.055 0.036 0.072 0.055 SGD (18) 0.020 0.517 0.020 0.013 0.044 0.020

ESC-10 dataset
ImageNet pre-trained ImageNet and AudioSet pre-trained

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (21) 0.138 0.574 0.138 0.092 0.198 0.138 Adadelta (16) 0.105 0.528 0.105 0.089 0.181 0.105
Adagrad (23) 0.923 0.996 0.923 0.920 0.975 0.923 Adagrad (24) 0.988 0.999 0.988 0.987 0.995 0.988
Adam (21) 0.930 0.997 0.930 0.927 0.983 0.930 Adam (20) 0.990 1.000 0.990 0.990 0.999 0.990
Adamax (22) 0.933 0.996 0.933 0.932 0.974 0.933 Adamax (23) 0.988 1.000 0.988 0.987 0.998 0.988
AdamW (21) 0.938 0.998 0.938 0.935 0.982 0.938 AdamW (23) 0.985 1.000 0.985 0.985 0.998 0.985
SGD (21) 0.210 0.673 0.210 0.171 0.276 0.210 SGD (19) 0.130 0.543 0.130 0.098 0.214 0.130
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

Analysing the results, it can be verified that the pre-training has a big impact on the

results showing an improvement of around 43 percentage points (pp), in most metrics,

between the no pre-trained and the pre-trained using ImageNet, culminating in a more

significant difference than what was observed for the models discussed in Section 4. These

results confirm the need for Transformer to have large datasets for competitive results.

Focusing on Table 5.2 can be noticed, for both datasets, a performance improvement

when the ImageNet and AudioSet pre-training are used with a difference of 7.2 pp for

ESC-50 and approximately 5.3 pp for ESC-10 in 4 out of 6 metrics, which demonstrates

the importance of having pre-training models of the same domain has the datasets.

Regarding the optimization function, the one that allowed the best performance was

for ESC-50, AdamW and ESC-10, Adam.

Figure 5.3 and Figure 5.4 show the different accuracy and loss curves for the best

result of each pre-trained configuration for both datasets. Observing the curves for both

datasets is possible to reach the same conclusions that the no pre-trained model cannot

give competitive results. Pre-training with both ImageNet and AudioSet shows to be the

most beneficial configuration.

5.2.2 ESC Datasets - Batch Size

In this section, the results obtained with the change of the batch size to 24 and 64 for the

ESC-50 and ESC-10 datasets are presented in Table 5.3.
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FIGURE 5.3: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the Transformer with the different pre-train configurations with the optimizer

that allowed the best results for each model for the ESC-50 dataset.

FIGURE 5.4: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the Transformer with the different pre-train configurations with the optimizer

that allowed the best results for each model for the ESC-10 dataset.

Comparing the results shown in Table 5.3 can be inferred that a batch size of 24 gives a

small benefit for the ESC-50 dataset with a maximum difference of 0.2 pp when compared

to the batch size of 64. However, the batch size of 48 gives better results by having a

difference of 0.1 pp in 3 out of the 6 metrics compared to the batch size of 24. For the

ESC-10 dataset, no differences are observed in most metrics except precision, which gives

a value 0.1 pp lower than the others for the batch size of 24. Then, for the other batch sizes,

there is no difference in the results between them, so it is equally good to use either batch

size, but considering the memory capacity depending on the size, a smaller batch size

results in a smaller GPU memory occupancy in training. Therefore, for the subsequent

studies, pre-training using both models, the batch size of 48 was kept unchanged.
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TABLE 5.3: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
the pre-trained Transformer with a batch size of 24 and 64 for the various optimizers,

respectively.

ESC-50 dataset
Batch size: 24 Batch size: 64

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (18) 0.024 0.541 0.024 0.016 0.051 0.024 Adadelta (25) 0.024 0.543 0.024 0.016 0.051 0.024
Adagrad (23) 0.828 0.991 0.828 0.819 0.871 0.828 Adagrad (25) 0.828 0.991 0.828 0.819 0.871 0.828
Adam (18) 0.957 0.999 0.957 0.956 0.979 0.957 Adam (16) 0.955 0.999 0.955 0.954 0.980 0.955
Adamax (18) 0.947 0.998 0.947 0.945 0.971 0.947 Adamax (22) 0.945 0.998 0.945 0.943 0.972 0.945
AdamW (15) 0.955 0.999 0.955 0.954 0.979 0.955 AdamW (25) 0.954 0.999 0.954 0.952 0.979 0.954
SGD (22) 0.037 0.556 0.037 0.029 0.068 0.037 SGD (23) 0.037 0.557 0.037 0.029 0.068 0.037

ESC-10 dataset
Batch size: 24 Batch size: 64

Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (19) 0.115 0.526 0.115 0.088 0.176 0.115 Adadelta (10) 0.083 0.502 0.083 0.069 0.168 0.083
Adagrad (22) 0.985 0.998 0.985 0.985 0.992 0.985 Adagrad (24) 0.975 0.998 0.975 0.975 0.990 0.975
Adam (18) 0.990 1.000 0.990 0.990 0.998 0.990 Adam (21) 0.985 1.000 0.985 0.985 1.000 0.985
Adamax (23) 0.990 1.000 0.990 0.990 0.998 0.990 Adamax (23) 0.990 1.000 0.990 0.990 0.998 0.990
AdamW (21) 0.985 1.000 0.985 0.985 0.999 0.985 AdamW (23) 0.990 1.000 0.990 0.990 0.999 0.990
SGD (19) 0.125 0.541 0.125 0.094 0.181 0.125 SGD (15) 0.118 0.484 0.118 0.082 0.153 0.118
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

Figures 5.5 and 5.6 show the accuracy and loss curves for both datasets, and it is possi-

ble to verify that in both cases, changing the batch size was not significative do to the dif-

ficulty there is in distinguishing between the curves. However, it shows that the smaller

the batch size, the faster it reaches convergence.

FIGURE 5.5: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the Transformer with the different batch sizes for the optimizer that allowed

the best results for each model for the ESC-50 dataset.

5.2.3 ESC Datasets - Data Augmentation Techniques

This section explored the influence of different data augmentation techniques such as

SpecAugment, noise addition and Mixup. The corresponding results are shown on Table

5.4, Table 5.5 and Table 5.6.
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FIGURE 5.6: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the Transformer with the different batch sizes for the optimizer that allowed

the best results for each model for the ESC-10 dataset.

5.2.3.1 No Data Augmentation

This section presents the results if no data augmentation technique was applied to the

model because, in the above situations, it was always used the SpecAugment technique

to mask up to 48 frequency bins and 96-time frames.

TABLE 5.4: Results for the average of 5 folds results on the ESC-50 and ESC-10 datasets
for the pre-trained models without using any data augmentation technique for the vari-

ous optimizers.

ESC-50 dataset (data augmentation: no) ESC-10 dataset (data augmentation: no)
Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (15) 0.022 0.530 0.022 0.016 0.045 0.022 Adadelta (17) 0.073 0.470 0.073 0.049 0.142 0.073
Adagrad (23) 0.830 0.991 0.830 0.817 0.872 0.830 Adagrad (23) 0.975 0.998 0.975 0.975 0.989 0.975
Adam (15) 0.948 0.999 0.948 0.946 0.975 0.948 Adam (22) 0.985 1.000 0.985 0.985 0.998 0.985
Adamax (22) 0.947 0.999 0.947 0.945 0.964 0.947 Adamax (22) 0.985 0.999 0.985 0.985 0.996 0.985
AdamW (19) 0.954 0.999 0.954 0.953 0.976 0.954 AdamW (22) 0.988 1.000 0.988 0.987 0.997 0.988
SGD (17) 0.032 0.550 0.032 0.025 0.055 0.032 SGD (18) 0.128 0.563 0.128 0.106 0.213 0.128
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

As can be observed in Table 5.4, the SpecAugment provides a improvement of around

0.3 pp for ESC-50 and of 0.2 pp for ESC-10, in most metrics.

SpecAugment proved to be a beneficial data augmentation technique for both datasets.

Thus, this technique was used in subsequent studies, and to improve the results further,

random noise and Mixup augmentations were added.

5.2.3.2 Noise

This section considers the addition of random noise to the input waveform. Table 5.5

presents the results obtained for the ESC-50 and ESC-10 datasets.
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TABLE 5.5: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
the pre-trained models with noise addition for the various optimizers.

ESC-50 dataset (data augmentation: noise) ESC-10 dataset (data augmentation: noise)
Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (12) 0.023 0.538 0.023 0.017 0.051 0.023 Adadelta (13) 0.078 0.445 0.078 0.058 0.135 0.078
Adagrad (24) 0.824 0.987 0.824 0.813 0.856 0.824 Adagrad (23) 0.980 0.998 0.980 0.979 0.990 0.980
Adam (18) 0.958 0.999 0.958 0.956 0.978 0.958 Adam (23) 0.988 1.000 0.988 0.987 0.999 0.988
Adamax (19) 0.946 0.999 0.946 0.944 0.971 0.946 Adamax (22) 0.988 0.999 0.988 0.988 0.995 0.988
AdamW (17) 0.954 0.999 0.954 0.952 0.979 0.954 AdamW (21) 0.988 1.000 0.988 0.987 0.998 0.988
SGD (19) 0.037 0.512 0.037 0.027 0.053 0.037 SGD (16) 0.098 0.541 0.098 0.067 0.182 0.098
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

Observing Table 5.5, the addition of noise showed no performance improvements,

matching the best model obtained previously for ESC-50 and giving a slightly poorer

execution for the ESC-10 dataset. Concerning the optimization functions, Adam gave the

best results for both datasets.

5.2.3.3 Mixup

The following section explores the use of the Mixup rate by mixing the raw waveforms

randomly from the dataset and the final spectrograms. The used Mixup rate was 0.5,

Table 5.6 summarizes the results for the ESC datasets.

TABLE 5.6: Results for the average of 5 folds results on ESC-50 and ESC-10 datasets for
the pre-trained models with a Mixup of 0.5 for the various optimizers.

ESC-50 dataset (data augmentation: Mixup: 0.5) ESC-10 dataset (data augmentation: Mixup: 0.5)
Opt. function acc AUC mf1 Mf1 prec recall Opt. function acc AUC mf1 Mf1 prec recall
Adadelta (9) 0.026 0.520 0.026 0.019 0.045 0.026 Adadelta (12) 0.093 0.463 0.093 0.068 0.151 0.093
Adagrad (22) 0.034 0.943 0.034 0.024 0.596 0.034 Adagrad (24) 0.470 0.988 0.470 0.496 0.953 0.470
Adam (21) 0.719 0.997 0.719 0.786 0.952 0.719 Adam (21) 0.890 0.998 0.890 0.900 0.992 0.890
Adamax (24) 0.628 0.995 0.628 0.702 0.926 0.628 Adamax (24) 0.810 0.998 0.810 0.833 0.989 0.810
AdamW (20) 0.725 0.997 0.725 0.788 0.952 0.725 AdamW (23) 0.860 0.998 0.860 0.875 0.988 0.860
SGD (15) 0.024 0.525 0.024 0.015 0.044 0.024 SGD (15) 0.113 0.495 0.113 0.084 0.153 0.113
opt. function - optimization function; AUC - area under the receiver operating characteristic curve; mf1 - micro
f1score; Mf1 - macro f1score; prec - precision. All metrics range from [0, 1] (the higher, the better).

Table 5.6 shows that in both cases, the results get a lot worst with huge differences in

the accuracy, micro F1-score and recall by approximately 23 pp and 10 pp and on macro

F1-score around 17 pp and 9 pp for ESC-50 and ESC-10, respectively. In this study, Adam

for the ESC-10 was also the optimization function that provided the best results. On the

other hand, for ESC-50, AdamW has the preferable optimization function.

Lastly, Figure 5.7 and Figure 5.8 show the accuracy and loss curves concerning the

different used combinations of augmentation techniques. Observing the curves for both

datasets, it is difficult to distinguish between them, except for the model trained with the

Mixup, which performed much worse than all the others.
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FIGURE 5.7: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the Transformer with the different augmentation techniques for the optimizer

that allowed the best results for each model for the ESC-50 dataset.

FIGURE 5.8: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the Transformer with the different augmentation techniques for the optimizer

that allowed the best results for each model for the ESC-10 dataset.

The best results for both datasets were obtained when the optimization function AdamW

for ESC-50 and Adam for ESC-10 were used and a Transformer model with the follow-

ing configuration: pre-trained using ImageNet and AudioSet, a batch size of 48, and

SpecAugment as data augmentation technique which allowed to reach an accuracy re-

sult of 95.8% for ESC-50 and 99% for ESC-10 evaluated by doing 5-cross-validation and

considering the best epoch for each fold. These accuracy results indicate that some classes

were misclassified to try to understand which classes the model could not distinguish. In

Figure 5.9 and Figure 5.10 the confusion matrices for both datasets are presented.

Analysing the confusion matrices, it is possible to understand that for the ESC-50

dataset, there were 17 classes with an accuracy of 100%, 29 with an accuracy equal or
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FIGURE 5.9: Confusion matrix for ESC-50 dataset.

FIGURE 5.10: Confusion matrix for ESC-10 dataset.
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superior to 90% and only 4 classes with an accuracy inferior to 90% with the lowest result

being for the helicopter class with an accuracy of 75%. The other three most challenging

classes to identify were washing machine, footsteps and wind.

Then, for the ESC-10 dataset, the only classes that did not achieve 100% were rain

which was misclassified as crackling fire and helicopter, and crackling fire, which was

misclassified as rain and helicopter. However, both classes achieved an accuracy of 95%.

To conclude, the model performance for the UrbanSound8K dataset was tested, giving

an accuracy, micro F1-score and recall result of 89.8% with Adamax or AdamW optimiza-

tion functions, as seen in Table 5.7. In Figure 5.11 is represented the accuracy and loss

curves for the model using Adamax and AdamW as the optimization function due to the

similar results they provide, making it difficult to infer which one is the best. Analysing

the accuracy curves is possible to verify that the model trained with Adamax presented a

more linear behaviour throughout the epochs than AdamW.

TABLE 5.7: Results for the average of 10 folds results on UrbanSound8K dataset for the
pre-trained models and with the use of SpecAugment.

UrbanSound8K
Opt. function acc AUC micro f1score macro f1score prec recall
Adadelta (24) 0.236 0.669 0.236 0.197 0.226 0.236
Adagrad (15) 0.875 0.984 0.875 0.884 0.928 0.875

Adam (7) 0.897 0.988 0.897 0.905 0.939 0.897
Adamax (9) 0.898 0.986 0.898 0.904 0.938 0.898
AdamW (8) 0.898 0.985 0.898 0.906 0.937 0.898

SGD (25) 0.460 0.821 0.460 0.407 0.436 0.460
opt. function - optimization function; acc - accuracy; AUC - area under the receiver operating
characteristic curve; prec - precision. All metrics range from [0, 1] (the higher, the better).

FIGURE 5.11: Graphs of the evolution of accuracy (left) and loss function (right) with
epochs for the Transformer pre-trained with ImageNet and AudioSet for the optimizers

that allowed the best results for the UrbanSound8K dataset.
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Due to the more linear behaviour, Adamax was considered the preferable optimization

function, so Figure 5.12 shows the confusion matrix for the Transformer using Adamax

as an optimization function trained with the UrbanSound8K dataset, which makes it pos-

sible to identify that air conditioner, drilling, engine idling and jackhammer are the most

challenging classes to distinguish having an accuracy result inferior to 90% with the worst

result being for an air conditioner with 76%. However, the model can perfectly identify

gunshot sounds, which was the only class not mistaken for another class, and no class

was confused as being of the gunshot class.

FIGURE 5.12: Confusion matrix for UrbanSound8K dataset.

5.3 Conclusion

This chapter evaluated the Transformer architecture and the influence that pre-training

only from the image domain, pre-training from the image and audio domain, changing

the batch size, and using different data augmentation techniques can cause depending on

the optimizer and dataset.

From these experiments, it was possible to conclude that using pre-trained models can

improve the models’ results. Nonetheless, when using as optimization function SGD or

Adadelta the results were worst, proving the non-robustness to large datasets. However,
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the other optimizers’ pre-training with both ImageNet and AudioSet produced better re-

sults.

Regarding the batch size, by changing the batch size, the model showed no improve-

ments. For the ESC-10 dataset, the increase in batch size produced the same best result,

so the smaller value was kept to occupy less memory.

Concerning the data augmentation techniques, using SpecAugment improved the re-

sults compared to the no augment results. However, adding more data augmentation

techniques produced no benefits, especially disadvantageous with Mixup.

Compared with baseline models, the improvement was, on average, 51.4 pp for ESC-

50, 21.0 pp for ESC-10 and 25.9 pp for UrbanSound8K. Also, compared with the models

presented in the previous section can be observed that for all datasets, Transformer was

the model that provided the best results with differences of 4.95 pp for ESC-50, 3.40 pp

for ESC-10 and 6.02 pp for UrbanSound8K.



Chapter 6

Overall Discussion and Conclusions

This work presented different model architectures: the baseline models were based on

a simple set of dense layers and explored the use of dropout rate, which significantly

influences the model’s ability to learn. If the rate is too high, the model hasn’t enough

information to be able to learn, and if it is too low, the model is more prone to overfit;

changes in the architecture, in most cases, the addition of the extra layers was injurious;

and different input features being possible to conclude that the combination of features is

more advantageous. Then, the end-to-end models were evaluated, particularly the Dense

Convolutional Network (DenseNet), Residual Neural Network (ResNet) and Inception,

which revealed to be the least capable model out of these three models that can learn the

features from an input spectrogram.

The use of pre-training based on ImageNet greatly increased the models’ performance

regardless of the chosen architecture. Using data augmentation techniques depending on

the dataset or chosen architecture might not always be advantageous, sometimes leading

to poorer results due to the dramatic modification in sound characteristics that approx-

imates one class to another. Finally, a more recent architecture called Transformer was

used, relying entirely on attention mechanisms to compute its input and output repre-

sentations. This architecture showed the importance of having large datasets by showing

the different model performances depending on the pre-training configuration, ranging

from no pre-training to pre-training using ImageNet and pre-training using ImageNet

and AudioSet.

Besides, the batch size was changed, and some combinations of different data augmen-

tation techniques were used. The experiments done with the Transformer model confirm

119
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the benefits of having pre-training and allowed to understand that a more significant im-

provement can be obtained when it is used in-task domain pre-training models, in this

case, from the audio domain. The batch size is not a significant parameter for the other

experiments. Once again, using data augmentation techniques depending on the combi-

nation might not be beneficial, concluding that SpecAugment alone was the best option.

Concerning the various optimization functions, these parameters dramatically de-

pend on the model architecture, dataset, input, pre-training, and data augmentation.

However, three optimization functions consistently gave the worst performances: Stochas-

tic Gradient Descent (SGD), Adagrad and Adadelta. For the baseline model, it was shown

a preference for the Nadam optimizer. For the end-to-end models, the highlight is to

Adam optimizer. For the Transformer, the preferable optimization function was AdamW

for the ESC-50, Adam for the ESC-10 and Adamax for the UrbanSound8K.

However, there is a common difficulty between all the models concerning the accu-

racy per class for the UrbanSound8K dataset. All models exhibit lower accuracy values

to the same classes. The most challenging class was the air conditioner, followed by en-

gine idling, jackhammer and drilling, which must be pretty similar classes because the

referred classes are mostly misclassified as being of each other’s classes. In addition, the

gunshot class was also the most straightforward class for all models. Regarding the ESC

datasets, there is no consensus; however, helicopter seems to be the most challenging class

by appearing with a low score in most situations, and the most straightforward class is

sneezing for ESC-10 and toilet flush for ESC-50.

Table 6.1 presents a discussion between the most relevant models aggregated by each

dataset under study.

After reviewing the results, Transformer is shown to be the most capable of providing

better results by showing significant improvements compared with the best baseline and

end-to-end model for each dataset with an average difference of 32.8 percentage points

(pp) and 4.79 pp, respectively. Thus, the best accuracy results obtained for each dataset

were for ESC-10, 99%, for ESC-50, 95.8% and for UrbanSound8K, 89.8%. Although it

was not capable of achieving State-of-the-Art (SOTA) results, it gave very competitive

results by being the second best result on the ESC-10 dataset with only a difference of 0.22

pp to the top result, the third best score for the ESC-50 dataset and the fourth best for

UrbanSound8K considering the official splits, as can be confirmed in Table 6.2.
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TABLE 6.1: Summary and discussion of several of the proposed models.

Model DA PI PA Metrics Discussion
Dataset: ESC-10

Baseline model + mms60
+ Nadam + dr: 0.2 - - -

acc: 74.8%, AUC: 94.8%,
mf1: 74.8%, Mf1: 74.3%,
prec: 77.7%, rec: 73.3%.

Combination of features gives more discriminating information to the baseline
model.

DenseNet + AdamW - - -
acc: 89.8%, AUC: 98.9%,
mf1: 89.8%, Mf1: 89.3%,
prec: 91.5%, rec: 89.8%.

Improves the baseline performance by 13.23 pp, on average.

ResNet + AdamW - ✓ -
acc: 94.0%, AUC: 99.8%,
mf1: 94.0%, Mf1: 93.8%,
prec: 94.8%, rec: 94.0%.

The use of pre-training from ImageNet improves, on average, the end-to-end
model performance by 3.55 pp.

DenseNet + Adam ✓ ✓ -
acc: 95.0%, AUC: 99.8%,
mf1: 95.0%, Mf1: 94.9%,
prec: 95.8%, rec: 95.0%.

The addition of data augmentation techniques provides a slight improvement
of 0.85 pp, on average.

Transformer + AdamW ✓ - -
acc: 52.8%, AUC: 91.8%,
mf1: 52.8%, Mf1: 50.7%,
prec: 61.7%, rec: 52.8%.

The use of a Transformer model without pre-training cannot give competitive
results.

Transformer + AdamW ✓ ✓ -
acc: 93.8%, AUC: 99.8%,
mf1: 93.8%, Mf1: 93.5%,
prec: 98.2%, rec: 93.8%.

The use of pre-training from ImageNet gives the Transformer model an aver-
age boost of 35.05 pp. Showing the need for large datasets to train.

Transformer + AdamW - ✓ ✓
acc: 98.8%, AUC: 100%,
mf1: 98.8%, Mf1: 98.7%,
prec: 99.7%, rec: 98.8%.

Using pre-training from ImageNet and AudioSet gives a better performance
than just an ImageNet pre-trained Transformer with an average increase of
3.65 pp.

Transformer + Adam ✓ ✓ ✓
acc: 99.0%, AUC: 100%,
mf1: 99.0%, Mf1: 99.0%,
prec: 99.9%, rec: 99.0%.

The addition of data augmentation to the pre-train from both domains gives,
on average, a slight improvement of 0.18 pp. The average boost for the base-
line model is 21.03 pp and for the best end-to-end model of 3.40 pp.

Dataset: ESC-50

Baseline model + mfcc-
stft80 + Nadam + dr: 0.2 - - -

acc: 38.1%, AUC: 82.4%,
mf1: 38.1%, Mf1: 36.2%,
prec: 43.9%, rec: 33.9%.

Combination of features gives more discriminating information to the baseline
model.

DenseNet + Adam - - -
acc: 76.1%, AUC: 98.7%,
mf1: 76.1%, Mf1: 75.4%,
prec: 78.0%, rec: 76.1%.

Improves the baseline performance by 34.63 pp, on average.

ResNet + Adam - ✓ -
acc: 88.2%, AUC: 99.6%,
mf1: 88.2%, Mf1: 87.7%,
prec: 89.6%, rec: 88.2%.

The use of pre-training from ImageNet improves, on average, the end-to-end
model performance by 10.18 pp.

ResNet + Adam ✓ ✓ -
acc: 90.1%, AUC: 99.6%,
mf1: 90.1%, Mf1: 89.9%,
prec: 91.2%, rec: 90.1%.

The addition of data augmentation techniques gives a small increase of 1.58
pp, on average.

Transformer + AdamW ✓ - -
acc: 43.9%, AUC: 93.6%,
mf1: 43.9%, Mf1: 42.4%,
prec: 46.8%, rec: 43.9%.

The use of a Transformer model without pre-training cannot provide good
results; however, better than the baseline model.

Transformer + AdamW ✓ ✓ -
acc: 88.6%, AUC: 99.6%,
mf1: 88.6%, Mf1: 88.4%,
prec: 92.7%, rec: 88.6%.

The use of pre-training from ImageNet gives a huge performance boost
of 38.67 pp, on average, compared to the Transformer model without pre-
training.

Transformer + AdamW - ✓ ✓
acc: 95.4%, AUC: 99.9%,
mf1: 95.4%, Mf1: 95.3%,
prec: 97.6%, rec: 95.4%.

Using pre-training from ImageNet and AudioSet gives an average improve-
ment of 5.42 pp compared to the ImageNet pre-trained Transformer.

Transformer + AdamW ✓ ✓ ✓
acc: 95.8%, AUC: 99.9%,
mf1: 95.8%, Mf1: 95.6%,
prec: 97.8%, rec: 95.8%.

The addition of data augmentation gives a small improvement of 0.28 pp, on
average. The average boost is to the baseline model of 51.35 pp and 4.95 pp
for the best end-to-end model.

Dataset: UrbanSound8K

Baseline model + mmsqc
+ Nadam + dr: 0.6 - - -

acc: 61.1%, AUC: 88.9%,
mf1: 61.1%, Mf1: 63.2%,
prec: 73.1%, rec: 49.2%.

Combination of features gives more discriminating information to the baseline
model.

DenseNet + AdamW - - -
acc: 74.2%, AUC: 95.4%,
mf1: 74.2%, Mf1: 75.6%,
prec: 75.2%, rec: 74.2%.

Improves the baseline performance by 12.03 pp, on average.

DenseNet + Adam - ✓ -
acc: 83.3%, AUC: 97.7%,
mf1: 83.3%, Mf1: 84.4%,
prec: 84.1%, rec: 83.3%.

The use of pre-training from ImageNet improves the end-to-end model per-
formance by 7.88 pp, on average.

ResNet + Adamax ✓ ✓ -
acc: 82.2%, AUC: 97.4%,
mf1: 82.2%, Mf1: 83.0%,
prec: 82.5%, rec: 82.2%.

The use of data augmentation techniques was detrimental.

Transformer + Adamax ✓ ✓ ✓
acc: 89.8%, AUC: 98.6%,
mf1: 89.8%, Mf1: 90.4%,
prec: 93.8%, rec: 89.8%.

The Transformer model pre-trained with datasets from both domains and us-
ing data augmentation gives an average boost of 25.93 pp regarding the base-
line model and of 6.02 pp compared to the best end-to-end model.

DA: data augmentation; PI: Pre-trained ImageNet; PA: Pre-trained AudioSet; dr: dropout rate; acc: accuracy; AUC: area under the receiver operating
characteristic curve; mf1: micro f1score; Mf1: macro f1score; prec: precision; rec: recall; pp: percentage points.
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TABLE 6.2: Accuracy results of all models considered for the literature review and pro-
posed models.

Authors/Year UrbanSound8k ESC-50 ESC-10
J. K. Das, A. Ghosh, A. K. Pal, S. Dutta and A. Chakrabarty (2020) [2] 98.81% (unofficial split) - -
J.K. Das, A. Chakrabarty and M.J. Piran (2021) [3] 99.60% (unofficial split) - -
T. Giannakopoulos, E. Spyrou and S. J. Perantonis (2019) [9] 73.1% 52.2% -
I. Martin-Morato, M. Cobos and F. J. Ferri (2020) [19] 73.96% - -
P. Zinemanas, M. Rocamora, M. Miron, F. Font and X. Serra (2021)
[45] 76.2% - -

J. Salamon and J. P. Bello (2017) [29] 79% - -
W. Mu, B. Yin, X. Huang, J. Xu and Z. Du (2021) [21] 93.1% 84.4% -
J.S. Luz, M.C. Oliveira, F.H.D. Araújo and D.M.V. Magalhães (2021)
[18] 96.8% - 86.2%

T. M. S. Tax, J. L. D. Antich, H. Purwins and L. Maaløe (2017) [36] - ≈ 50% -
David Elliott, Carlos E. Otero, Steven Wyatt and Evan Martino (2021)
[8] - 67.71% -

H. Akbari, L. Yuan, R. Qian, W. Chuang, S. Chang, Y. Cui and B. Gong
(2021) [1] - 84.9% -

Z. Zhang, S. Xu, S. Zhang, T. Qiao and S. Cao (2020) [44] - 86.1% 93.7%
T. Qiao, S. Zhang, S. Cao and S. Xu (2021) [25] - 86.4% -
Z. Zhang, S. Xu, S. Zhang, T. Qiao and S. Cao (2019) [43] - 86.5% 94.2%
N.-C. Ristea, R. T. Ionescu and F. S. Khan (2022) [26] - 91.13% -
Y. Gong, Yu-An Chung and J. Glass (2021) [11] - 95.6% -
K. Koutini, J. Schlüter, H. Eghbal-zadeh and G. Widmer (2021) [16] - 96.8% -
A. M. Tripathi and A. Mishra (2021) [38] - - 92.16%
İ. Türker and S. Aksu (2022) [46] - - 96.46%
Z. Mushtaq and S.-F. Su (2020) [22] 97.98% 98.52% 99.22%
Proposed models
Baseline model 61.1% 38.1% 74.8%
Inception 82.7% 86.4% 94.0%
ResNet 82.8% 90.1% 94.0%
DenseNet 83.3% 90.1% 95.0%
Transformer 89.8% 95.8% 99.0%

Future research will explore the inclusion of a dropout method like Patchout intro-

duced by Koutini et al. [16] to obligate the model to perform classification using incom-

plete sequences, which improves the Transformer’s performance. Furthermore, for the

end-to-end models, instead of introducing a simple Melspectrogram, it might be benefi-

cial the introduction of a logarithmic spectrogram such as Log(Log-Melspectrogram) or

Log(Log(Log-Melspectrogram)) as proved by Mushtaq and Su [22].



Appendix A

Description of Autoencoder Model

The following section presents a brief description of the basic architecture of the autoen-

coder model.

A.1 Autoencoder

An autoencoder is a feed-forward neural network that is trained to attempt to copy ap-

proximately its input to its output in an unsupervised manner. The architecture of an

autoencoder, as it is possible to see in Figure A.1*, consists of 3 components:

• Encoder: compresses the input data into an encoded representation in a latent space

which is typically several orders of magnitude smaller than the input data;

• Code: contains the compressed knowledge representations;

• Decoder: reconstructs the data back from its encoded form using the latent space

attributes. The output and the input must be of the same dimension.

FIGURE A.1: Autoencoder architecture.

*https://www.metamaven.com/beyond-backpropagation-can-go-deeper-deep-learning/

autoencoder 800px web/ (accessed September 2022).
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Appendix B

Complete Tables of the Baseline

Models

In the following appendix, it’s presented the complete tables of the features and combi-

nations of features used to achieve the best baseline models for the UrbanSound8K, the

ESC-10 and the ESC-50 datasets.

The used abbreviations and the meaning of the number that appears in front of each

feature:

• zcr - zero-crossing rate;

• rms - root mean square;

• rol - spectral rolloff; roll-off percentage;

• poly - poly features; order of the polynomial to fit;

• sflat - spectral flatness;

• scontrast - spectral contrast; number of frequency bands;

• scent - spectral centroid; FFT window size;

• sband - spectral bandwidth; FFT window size;

• mel - melspectrogram, mfcc - Mel Frequency Cepstral Coefficients (MFCC); number

of Mel bands;
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• stft - chroma Short-Term Fourier Transformation (STFT), cqt - chroma Constant Q-

transform (CQT), cens - chroma Chroma Energy Normalized Statistics (CENS), tonz

- tonnetz; number of chroma bins.

If a feature has no number in front means that the default parameters were used. The

abbreviations for the combinations of features are summarized in Table 3.1.

B.1 UrbanSound8K - Single Feature Input

B.1.1 Baseline Model Architecture

TABLE B.1: Results of the 6 models for different features.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel80 0.591 0.873 0.591 0.593 0.643 0.483 mfcc60 0.522 0.886 0.522 0.551 0.774 0.278
mfcc60 0.572 0.885 0.572 0.578 0.682 0.527 mfcc80 0.516 0.878 0.516 0.528 0.765 0.314
mfcc40 0.575 0.894 0.575 0.575 0.646 0.527 mel80 0.465 0.838 0.465 0.459 0.761 0.228
mfcc80 0.559 0.881 0.559 0.563 0.648 0.520 mfcc40 0.441 0.797 0.441 0.440 0.519 0.226
mel60 0.486 0.850 0.486 0.497 0.550 0.381 mel60 0.423 0.832 0.423 0.436 0.683 0.170
stft60 0.507 0.862 0.507 0.492 0.582 0.305 mel40 0.412 0.830 0.412 0.411 0.767 0.177
mel40 0.481 0.821 0.481 0.478 0.517 0.367 mel20 0.400 0.826 0.400 0.386 0.696 0.140
stft80 0.483 0.859 0.483 0.472 0.591 0.330 stft60 0.374 0.835 0.374 0.367 0.589 0.118
mel20 0.468 0.839 0.468 0.472 0.510 0.338 stft20 0.348 0.833 0.348 0.349 0.381 0.067
stft20 0.452 0.865 0.452 0.451 0.598 0.348 stft40 0.345 0.842 0.345 0.336 0.636 0.100
stft40 0.459 0.865 0.459 0.449 0.606 0.345 cqt40 0.344 0.782 0.344 0.332 0.607 0.078
cqt20 0.435 0.817 0.435 0.430 0.640 0.219 cqt80 0.331 0.773 0.331 0.331 0.603 0.109
cqt80 0.397 0.811 0.397 0.396 0.607 0.210 cens20 0.341 0.764 0.341 0.329 0.745 0.042
cqt40 0.391 0.782 0.391 0.387 0.547 0.179 stft80 0.325 0.822 0.325 0.319 0.636 0.134
cens20 0.362 0.788 0.362 0.343 0.512 0.246 cqt20 0.300 0.774 0.300 0.290 0.339 0.044
cens40 0.342 0.792 0.342 0.334 0.451 0.249 scontrast 0.305 0.754 0.305 0.269 0.467 0.025
scontrast 0.324 0.764 0.324 0.291 0.465 0.157 cens40 0.264 0.763 0.264 0.243 0.609 0.084
poly10 0.281 0.777 0.281 0.243 0.432 0.023 scontrast4 0.204 0.695 0.204 0.185 0.368 0.008
scontrast4 0.253 0.732 0.253 0.242 0.266 0.025 tonz20 0.201 0.647 0.201 0.168 0.333 0.002
tonz20 0.232 0.694 0.232 0.231 0.622 0.082 tonz40 0.171 0.655 0.171 0.167 0.357 0.006
poly5 0.274 0.752 0.274 0.227 0.000 0.000 tonz80 0.147 0.654 0.147 0.150 0.455 0.006
cens80 0.211 0.687 0.211 0.219 0.405 0.140 poly10 0.258 0.735 0.258 0.145 1.000 0.005
tonz80 0.205 0.685 0.205 0.200 0.409 0.043 sflat 0.173 0.685 0.173 0.130 0.359 0.017
tonz40 0.198 0.671 0.198 0.198 0.419 0.062 zcr 0.190 0.716 0.190 0.121 0.636 0.042
zcr 0.223 0.667 0.223 0.164 0.660 0.042 cens80 0.128 0.673 0.128 0.118 0.320 0.010
sflat 0.192 0.652 0.192 0.150 0.650 0.016 poly5 0.214 0.722 0.214 0.108 0.000 0.000
poly 0.225 0.650 0.225 0.149 1.000 0.022 poly3 0.222 0.676 0.222 0.106 0.000 0.000
poly3 0.188 0.645 0.188 0.143 0.900 0.022 poly 0.209 0.640 0.209 0.094 0.000 0.000
poly2 0.165 0.625 0.165 0.125 1.000 0.024 poly2 0.205 0.648 0.205 0.091 0.000 0.000
rms 0.227 0.653 0.227 0.112 1.000 0.017 rms 0.190 0.625 0.190 0.081 0.000 0.000
rol0.25 0.119 0.500 0.119 0.021 0.000 0.000 rol0.25 0.119 0.500 0.119 0.021 0.000 0.000
rol0.45 0.119 0.500 0.119 0.021 0.000 0.000 rol0.45 0.119 0.500 0.119 0.021 0.000 0.000
rol0.65 0.119 0.500 0.119 0.021 0.000 0.000 rol0.65 0.119 0.500 0.119 0.021 0.000 0.000
scent2048 0.119 0.500 0.119 0.021 0.000 0.000 scent2048 0.119 0.500 0.119 0.021 0.000 0.000
rol0.85 0.119 0.500 0.119 0.021 0.000 0.000 rol0.85 0.119 0.500 0.119 0.021 0.000 0.000
rol0.99 0.119 0.511 0.119 0.021 0.000 0.000 rol0.99 0.119 0.500 0.119 0.021 0.000 0.000
sband 0.119 0.500 0.119 0.021 0.000 0.000 scent8000 0.119 0.500 0.119 0.021 0.000 0.000
scent8000 0.111 0.500 0.111 0.020 0.000 0.000 sband8000 0.115 0.500 0.115 0.021 0.000 0.000
sband8000 0.039 0.500 0.039 0.008 0.000 0.000 sband 0.099 0.500 0.099 0.018 0.000 0.000
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Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.611 0.904 0.611 0.622 0.722 0.550 mfcc80 0.637 0.908 0.637 0.628 0.747 0.572
mfcc60 0.616 0.898 0.616 0.618 0.682 0.564 mfcc40 0.576 0.873 0.576 0.583 0.651 0.535
mfcc40 0.593 0.893 0.593 0.607 0.693 0.519 mfcc60 0.573 0.864 0.573 0.571 0.654 0.529
mel80 0.491 0.859 0.491 0.501 0.703 0.294 mel80 0.535 0.857 0.535 0.539 0.583 0.419
mel40 0.466 0.862 0.466 0.477 0.688 0.260 mel60 0.487 0.836 0.487 0.490 0.569 0.415
stft80 0.478 0.870 0.478 0.471 0.631 0.341 stft40 0.478 0.865 0.478 0.474 0.569 0.319
stft40 0.477 0.886 0.477 0.456 0.613 0.344 stft60 0.492 0.864 0.492 0.471 0.609 0.341
stft20 0.455 0.877 0.455 0.447 0.591 0.297 mel40 0.448 0.836 0.448 0.458 0.503 0.368
stft60 0.456 0.874 0.456 0.439 0.590 0.323 stft20 0.458 0.870 0.458 0.455 0.591 0.323
mel60 0.411 0.846 0.411 0.434 0.602 0.235 mel20 0.446 0.832 0.446 0.448 0.499 0.313
mel20 0.431 0.840 0.431 0.423 0.648 0.204 stft80 0.430 0.851 0.430 0.421 0.560 0.300
cqt20 0.423 0.815 0.423 0.416 0.560 0.161 cqt20 0.411 0.817 0.411 0.398 0.556 0.214
cqt80 0.401 0.809 0.401 0.399 0.592 0.216 cqt40 0.389 0.799 0.389 0.380 0.579 0.219
cqt40 0.395 0.809 0.395 0.391 0.580 0.183 cqt80 0.376 0.790 0.376 0.371 0.528 0.214
cens20 0.393 0.791 0.393 0.375 0.528 0.158 cens20 0.384 0.790 0.384 0.361 0.513 0.233
cens40 0.369 0.799 0.369 0.358 0.549 0.182 scontrast 0.367 0.771 0.367 0.348 0.472 0.119
scontrast 0.362 0.785 0.362 0.337 0.486 0.127 cens40 0.344 0.785 0.344 0.339 0.460 0.252
poly10 0.337 0.789 0.337 0.263 0.769 0.036 scontrast4 0.280 0.747 0.280 0.258 0.389 0.033
scontrast4 0.271 0.732 0.271 0.261 0.298 0.030 tonz20 0.237 0.694 0.237 0.236 0.640 0.087
zcr 0.270 0.682 0.270 0.239 0.610 0.030 poly10 0.277 0.777 0.277 0.223 0.625 0.042
tonz20 0.229 0.687 0.229 0.220 0.676 0.030 poly5 0.233 0.733 0.233 0.216 0.833 0.018
tonz40 0.232 0.709 0.232 0.216 0.520 0.031 tonz80 0.223 0.685 0.223 0.213 0.371 0.051
tonz80 0.214 0.704 0.214 0.210 0.558 0.035 tonz40 0.211 0.679 0.211 0.207 0.492 0.072
cens80 0.178 0.712 0.178 0.169 0.353 0.078 cens80 0.186 0.690 0.186 0.192 0.348 0.116
poly5 0.191 0.710 0.191 0.162 0.778 0.017 zcr 0.229 0.677 0.229 0.177 0.654 0.041
poly 0.205 0.648 0.205 0.140 1.000 0.017 sflat 0.229 0.656 0.229 0.169 0.838 0.037
sflat 0.179 0.660 0.179 0.138 0.650 0.016 poly3 0.210 0.661 0.210 0.152 0.333 0.001
poly3 0.198 0.671 0.198 0.133 0.222 0.005 poly 0.186 0.643 0.186 0.132 0.909 0.024
poly2 0.168 0.649 0.168 0.119 0.000 0.000 poly2 0.191 0.640 0.191 0.129 1.000 0.024
rms 0.219 0.654 0.219 0.105 0.000 0.000 rms 0.216 0.654 0.216 0.107 1.000 0.017
rol0.25 0.119 0.500 0.119 0.021 0.000 0.000 rol0.99 0.119 0.485 0.119 0.021 0.000 0.000
rol0.85 0.119 0.500 0.119 0.021 0.000 0.000 sband 0.119 0.500 0.119 0.021 0.000 0.000
sband 0.111 0.500 0.111 0.020 0.000 0.000 scent8000 0.119 0.500 0.119 0.021 0.000 0.000
scent2048 0.111 0.500 0.111 0.020 0.000 0.000 rol2 0.119 0.500 0.119 0.021 0.000 0.000
rol0.65 0.099 0.500 0.099 0.018 0.000 0.000 sband8000 0.119 0.500 0.119 0.021 0.000 0.000
scent8000 0.039 0.500 0.039 0.008 0.000 0.000 rol0.45 0.099 0.500 0.099 0.018 0.000 0.000
rol0.99 0.039 0.500 0.039 0.008 0.000 0.000 scent2048 0.039 0.500 0.039 0.008 0.000 0.000
rol0.45 0.038 0.500 0.038 0.007 0.000 0.000 rol0.25 0.038 0.500 0.038 0.007 0.000 0.000
sband8000 0.038 0.500 0.038 0.007 0.000 0.000 rol0.65 0.038 0.500 0.038 0.007 0.000 0.000

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.209 0.595 0.209 0.179 0.317 0.118 mfcc60 0.368 0.753 0.368 0.361 1.000 0.033
mel60 0.213 0.637 0.213 0.164 0.556 0.066 mel80 0.323 0.793 0.323 0.329 0.538 0.060
tonz20 0.208 0.538 0.208 0.163 0.000 0.000 mel40 0.329 0.779 0.329 0.329 0.766 0.059
cens20 0.167 0.597 0.167 0.140 0.000 0.000 mel60 0.283 0.786 0.283 0.287 0.803 0.068
cens40 0.145 0.554 0.145 0.130 0.000 0.000 mel20 0.295 0.762 0.295 0.257 0.723 0.041
mel80 0.123 0.564 0.123 0.128 0.136 0.018 mfcc40 0.220 0.676 0.220 0.227 0.818 0.032
tonz80 0.131 0.555 0.131 0.117 0.000 0.000 stft80 0.223 0.731 0.223 0.204 0.545 0.014
mel20 0.134 0.661 0.134 0.108 0.553 0.025 scontrast4 0.214 0.666 0.214 0.189 0.000 0.000
mel40 0.160 0.589 0.160 0.104 0.534 0.056 stft60 0.198 0.724 0.198 0.185 0.917 0.013
mfcc40 0.153 0.645 0.153 0.100 0.227 0.098 stft40 0.213 0.754 0.213 0.183 0.875 0.017
mfcc80 0.146 0.572 0.146 0.096 0.197 0.075 cens40 0.201 0.698 0.201 0.177 0.000 0.000
cens80 0.104 0.558 0.104 0.082 0.000 0.000 mfcc80 0.200 0.638 0.200 0.176 1.000 0.030
poly10 0.184 0.632 0.184 0.082 0.000 0.000 stft20 0.177 0.732 0.177 0.168 1.000 0.001
rms 0.174 0.541 0.174 0.081 0.000 0.000 scontrast 0.226 0.689 0.226 0.159 0.500 0.001
sflat 0.158 0.605 0.158 0.081 0.000 0.000 cqt80 0.146 0.658 0.146 0.133 1.000 0.001
stft40 0.104 0.576 0.104 0.073 0.000 0.000 tonz40 0.195 0.600 0.195 0.126 0.000 0.000
zcr 0.148 0.545 0.148 0.063 0.000 0.000 cqt40 0.143 0.656 0.143 0.124 0.000 0.000
poly5 0.145 0.594 0.145 0.057 1.000 0.017 poly10 0.214 0.728 0.214 0.112 1.000 0.010
tonz40 0.109 0.554 0.109 0.055 0.000 0.000 poly3 0.209 0.642 0.209 0.104 0.000 0.000
scontrast4 0.116 0.536 0.116 0.050 0.000 0.000 cqt20 0.121 0.641 0.121 0.100 0.000 0.000
stft20 0.074 0.572 0.074 0.045 0.000 0.000 poly5 0.134 0.686 0.134 0.095 0.000 0.000
stft60 0.074 0.588 0.074 0.042 0.000 0.000 cens20 0.108 0.670 0.108 0.092 0.000 0.000
poly2 0.059 0.500 0.059 0.037 0.000 0.000 tonz80 0.129 0.611 0.129 0.090 0.000 0.000
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Model 5: (optimizer: Adadelta) - continuation Model 6: (optimizer: Adagrad) - continuation

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

stft80 0.075 0.573 0.075 0.037 0.000 0.000 zcr 0.195 0.662 0.195 0.085 0.000 0.000
cqt40 0.053 0.523 0.053 0.034 0.000 0.000 poly2 0.183 0.587 0.183 0.079 0.000 0.000
scontrast 0.060 0.509 0.060 0.031 0.000 0.000 tonz20 0.084 0.597 0.084 0.079 0.000 0.000
poly 0.054 0.502 0.054 0.031 0.000 0.000 rms 0.192 0.580 0.192 0.075 0.000 0.000
poly3 0.042 0.548 0.042 0.028 0.000 0.000 sflat 0.153 0.627 0.153 0.071 0.000 0.000
cqt20 0.045 0.530 0.045 0.022 0.000 0.000 poly 0.146 0.598 0.146 0.065 0.000 0.000
rol0.25 0.119 0.514 0.119 0.021 0.125 0.119 cens80 0.075 0.590 0.075 0.049 0.000 0.000
rol0.65 0.119 0.507 0.119 0.021 0.119 0.119 rol0.85 0.119 0.515 0.119 0.021 0.000 0.000
rol0.85 0.119 0.508 0.119 0.021 0.119 0.119 rol0.45 0.119 0.502 0.119 0.021 0.000 0.000
sband8000 0.111 0.508 0.111 0.020 0.111 0.111 scent8000 0.119 0.532 0.119 0.021 0.000 0.000
scent2048 0.099 0.468 0.099 0.018 0.099 0.099 rol0.99 0.119 0.488 0.119 0.021 0.000 0.000
cqt80 0.042 0.547 0.042 0.013 0.000 0.000 rol0.25 0.111 0.528 0.111 0.020 0.000 0.000
rol0.45 0.039 0.397 0.039 0.008 0.036 0.036 rol0.65 0.111 0.525 0.111 0.020 0.000 0.000
scent8000 0.039 0.466 0.039 0.008 0.039 0.039 sband8000 0.099 0.493 0.099 0.018 0.000 0.000
sband 0.039 0.456 0.039 0.008 0.040 0.039 scent2048 0.099 0.482 0.099 0.018 0.000 0.000
rol0.99 0.038 0.474 0.038 0.007 0.038 0.038 sband 0.039 0.489 0.039 0.008 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

B.1.2 Extra Layer

TABLE B.2: Results of the 4 best models with an extra layer for different features.

Model 7: (optimizer: Adam) Model 8: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.573 0.879 0.573 0.584 0.627 0.524 mfcc80 0.539 0.873 0.539 0.561 0.856 0.263
mfcc40 0.584 0.879 0.584 0.579 0.652 0.550 mfcc60 0.514 0.857 0.514 0.539 0.777 0.146
mfcc60 0.522 0.865 0.522 0.539 0.638 0.471 mfcc40 0.490 0.838 0.490 0.505 0.725 0.227
mel80 0.526 0.852 0.526 0.534 0.556 0.441 mel80 0.430 0.844 0.430 0.440 0.708 0.203
mel20 0.487 0.845 0.487 0.486 0.532 0.373 mel60 0.415 0.839 0.415 0.420 0.714 0.194
mel40 0.479 0.829 0.479 0.478 0.499 0.360 mel20 0.409 0.823 0.409 0.393 0.675 0.168
stft40 0.468 0.874 0.468 0.465 0.611 0.306 mel40 0.375 0.816 0.375 0.371 0.692 0.161
stft60 0.476 0.859 0.476 0.464 0.613 0.307 cqt40 0.336 0.778 0.336 0.339 0.604 0.080
mel60 0.449 0.837 0.449 0.454 0.548 0.405 cqt80 0.346 0.786 0.346 0.333 0.673 0.081
stft80 0.434 0.843 0.434 0.436 0.601 0.278 stft60 0.331 0.821 0.331 0.331 0.615 0.099
stft20 0.431 0.864 0.431 0.428 0.555 0.303 cens20 0.332 0.761 0.332 0.323 0.612 0.036
cqt20 0.407 0.804 0.407 0.396 0.599 0.192 stft80 0.331 0.821 0.331 0.321 0.496 0.134
cqt40 0.389 0.797 0.389 0.387 0.615 0.162 cqt20 0.309 0.775 0.309 0.307 0.471 0.029
cqt80 0.385 0.792 0.385 0.387 0.605 0.155 stft40 0.305 0.819 0.305 0.298 0.347 0.073
scontrast 0.356 0.777 0.356 0.334 0.511 0.115 stft20 0.308 0.822 0.308 0.284 0.440 0.061
cens20 0.337 0.756 0.337 0.317 0.458 0.171 scontrast 0.295 0.756 0.295 0.235 0.423 0.013
cens40 0.323 0.790 0.323 0.316 0.439 0.244 cens40 0.256 0.761 0.256 0.234 0.527 0.082
tonz80 0.245 0.697 0.245 0.233 0.456 0.062 tonz80 0.182 0.666 0.182 0.172 1.000 0.002
poly10 0.266 0.778 0.266 0.228 0.644 0.035 tonz40 0.201 0.661 0.201 0.160 1.000 0.002
tonz20 0.228 0.695 0.228 0.224 0.636 0.092 poly10 0.260 0.736 0.260 0.145 1.000 0.005
tonz40 0.216 0.689 0.216 0.214 0.435 0.060 scontrast4 0.134 0.655 0.134 0.142 0.444 0.005
scontrast4 0.215 0.718 0.215 0.204 0.204 0.013 poly5 0.221 0.713 0.221 0.133 0.000 0.000
cens80 0.180 0.681 0.180 0.183 0.369 0.129 zcr 0.197 0.712 0.197 0.131 0.621 0.043
poly5 0.221 0.743 0.221 0.182 0.000 0.000 sflat 0.166 0.685 0.166 0.126 0.684 0.016
sflat 0.214 0.647 0.214 0.175 0.923 0.014 rms 0.217 0.637 0.217 0.111 0.000 0.000
zcr 0.225 0.678 0.225 0.170 0.615 0.029 tonz20 0.125 0.602 0.125 0.103 0.222 0.002
poly 0.227 0.647 0.227 0.143 1.000 0.022 cens80 0.122 0.673 0.122 0.101 0.259 0.008
poly2 0.170 0.631 0.170 0.125 1.000 0.018 poly 0.210 0.642 0.210 0.094 0.000 0.000
poly3 0.192 0.629 0.192 0.124 0.889 0.010 poly3 0.213 0.671 0.213 0.088 0.000 0.000
rol0.25 0.184 0.615 0.184 0.123 0.000 0.000 poly2 0.204 0.650 0.204 0.080 0.000 0.000
rms 0.214 0.650 0.214 0.104 0.000 0.000 sband 0.119 0.500 0.119 0.021 0.000 0.000
sband 0.119 0.500 0.119 0.021 0.000 0.000 rol2 0.119 0.500 0.119 0.021 0.000 0.000
rol0.45 0.119 0.500 0.119 0.021 0.000 0.000 sband8000 0.119 0.500 0.119 0.021 0.000 0.000
rol2 0.119 0.500 0.119 0.021 0.000 0.000 rol0.65 0.115 0.500 0.115 0.021 0.000 0.000
sband8000 0.111 0.500 0.111 0.020 0.000 0.000 scent8000 0.115 0.500 0.115 0.021 0.000 0.000
rol0.65 0.039 0.500 0.039 0.008 0.000 0.000 rol0.25 0.039 0.500 0.039 0.008 0.000 0.000
scent8000 0.039 0.451 0.039 0.008 0.000 0.000 rol0.45 0.039 0.500 0.039 0.008 0.000 0.000
scent2048 0.038 0.500 0.038 0.007 0.000 0.000 rol0.99 0.039 0.500 0.039 0.008 0.000 0.000
rol0.99 0.038 0.466 0.038 0.007 0.000 0.000 scent2048 0.038 0.500 0.038 0.007 0.000 0.000
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Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.596 0.902 0.596 0.610 0.656 0.529 mfcc60 0.577 0.875 0.577 0.587 0.694 0.532
mfcc60 0.558 0.883 0.558 0.565 0.624 0.511 mfcc40 0.585 0.880 0.585 0.574 0.667 0.534
mfcc40 0.557 0.892 0.557 0.561 0.681 0.458 mfcc80 0.556 0.865 0.556 0.566 0.640 0.526
mel40 0.486 0.857 0.486 0.487 0.680 0.297 mel40 0.493 0.845 0.493 0.495 0.540 0.384
mel60 0.462 0.857 0.462 0.467 0.681 0.294 mel80 0.485 0.849 0.485 0.488 0.548 0.419
stft60 0.472 0.868 0.472 0.464 0.617 0.337 mel20 0.472 0.831 0.472 0.473 0.504 0.348
mel80 0.458 0.859 0.458 0.457 0.657 0.300 stft20 0.460 0.869 0.460 0.457 0.612 0.355
stft20 0.466 0.874 0.466 0.456 0.596 0.326 stft60 0.456 0.855 0.456 0.453 0.551 0.271
stft40 0.460 0.877 0.460 0.450 0.592 0.330 stft40 0.455 0.859 0.455 0.445 0.592 0.330
stft80 0.446 0.857 0.446 0.441 0.577 0.308 mel60 0.441 0.835 0.441 0.441 0.543 0.397
cqt20 0.449 0.822 0.449 0.438 0.626 0.184 stft80 0.436 0.855 0.436 0.427 0.581 0.282
mel20 0.430 0.837 0.430 0.425 0.608 0.262 cqt40 0.406 0.806 0.406 0.407 0.582 0.203
cqt40 0.419 0.814 0.419 0.424 0.640 0.213 cqt20 0.409 0.807 0.409 0.400 0.617 0.221
cqt80 0.404 0.814 0.404 0.401 0.639 0.190 cqt80 0.398 0.800 0.398 0.397 0.638 0.194
cens20 0.372 0.781 0.372 0.355 0.539 0.155 cens40 0.351 0.783 0.351 0.351 0.460 0.233
cens40 0.344 0.805 0.344 0.340 0.527 0.176 cens20 0.355 0.779 0.355 0.341 0.507 0.203
scontrast 0.317 0.763 0.317 0.301 0.470 0.122 scontrast 0.317 0.775 0.317 0.308 0.475 0.116
poly10 0.315 0.789 0.315 0.260 0.714 0.024 poly10 0.270 0.778 0.270 0.232 0.605 0.031
scontrast4 0.263 0.732 0.263 0.239 0.281 0.019 cens80 0.208 0.682 0.208 0.217 0.411 0.146
tonz20 0.229 0.687 0.229 0.221 0.523 0.027 tonz20 0.228 0.690 0.228 0.217 0.673 0.081
tonz80 0.239 0.707 0.239 0.221 0.476 0.036 tonz80 0.217 0.687 0.217 0.212 0.431 0.053
tonz40 0.223 0.695 0.223 0.211 0.544 0.037 tonz40 0.217 0.683 0.217 0.199 0.426 0.059
cens80 0.192 0.711 0.192 0.194 0.417 0.099 scontrast4 0.190 0.710 0.190 0.190 0.182 0.012
zcr 0.211 0.675 0.211 0.173 0.660 0.042 zcr 0.217 0.676 0.217 0.171 0.654 0.041
sflat 0.203 0.657 0.203 0.160 0.722 0.016 sflat 0.202 0.650 0.202 0.157 0.909 0.012
poly 0.245 0.656 0.245 0.152 1.000 0.016 poly5 0.198 0.730 0.198 0.157 0.000 0.000
poly2 0.189 0.647 0.189 0.145 0.000 0.000 poly 0.235 0.652 0.235 0.151 0.000 0.000
poly5 0.172 0.699 0.172 0.135 0.000 0.000 poly3 0.168 0.637 0.168 0.121 0.563 0.011
poly3 0.177 0.659 0.177 0.111 1.000 0.002 rol0.25 0.172 0.625 0.172 0.115 0.000 0.000
rms 0.210 0.651 0.210 0.100 0.000 0.000 poly2 0.139 0.630 0.139 0.112 1.000 0.022
rol0.25 0.151 0.622 0.151 0.093 0.000 0.000 rms 0.217 0.651 0.217 0.106 1.000 0.017
sband 0.119 0.500 0.119 0.021 0.000 0.000 sband 0.119 0.511 0.119 0.021 0.000 0.000
rol0.65 0.119 0.500 0.119 0.021 0.000 0.000 rol0.45 0.119 0.511 0.119 0.021 0.000 0.000
rol0.45 0.111 0.517 0.111 0.020 0.000 0.000 sband8000 0.119 0.500 0.119 0.021 0.000 0.000
sband8000 0.099 0.500 0.099 0.018 0.000 0.000 scent2048 0.119 0.500 0.119 0.021 0.000 0.000
rol2 0.039 0.500 0.039 0.008 0.000 0.000 rol0.65 0.111 0.506 0.111 0.020 0.000 0.000
rol0.99 0.039 0.500 0.039 0.008 0.000 0.000 rol2 0.111 0.500 0.111 0.020 0.000 0.000
scent8000 0.038 0.500 0.038 0.007 0.000 0.000 scent8000 0.099 0.500 0.099 0.018 0.000 0.000
scent2048 0.038 0.500 0.038 0.007 0.000 0.000 rol0.99 0.039 0.477 0.039 0.008 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.1.3 Dropout Rate of 0.2

TABLE B.3: Results of the 4 best models for different features and dropout of 0.2.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.620 0.862 0.620 0.616 0.639 0.606 mfcc80 0.582 0.897 0.582 0.583 0.707 0.472
mfcc60 0.582 0.857 0.582 0.587 0.613 0.572 mfcc40 0.570 0.876 0.570 0.570 0.708 0.478
mfcc40 0.589 0.855 0.589 0.582 0.618 0.581 mfcc60 0.575 0.894 0.575 0.568 0.729 0.492
mel80 0.503 0.816 0.503 0.505 0.539 0.481 mel80 0.498 0.849 0.498 0.505 0.658 0.324
stft60 0.514 0.856 0.514 0.504 0.562 0.425 mel60 0.460 0.831 0.460 0.472 0.686 0.258
stft80 0.507 0.854 0.507 0.504 0.560 0.415 stft40 0.456 0.862 0.456 0.453 0.623 0.176
stft20 0.505 0.863 0.505 0.492 0.565 0.436 stft60 0.453 0.863 0.453 0.449 0.678 0.161
stft40 0.481 0.854 0.481 0.481 0.531 0.404 mel40 0.438 0.828 0.438 0.441 0.667 0.249
mel60 0.467 0.783 0.467 0.466 0.480 0.409 mel20 0.423 0.824 0.423 0.418 0.626 0.166
mel40 0.424 0.766 0.424 0.428 0.441 0.364 cqt80 0.388 0.792 0.388 0.390 0.656 0.121
mel20 0.417 0.790 0.417 0.420 0.459 0.373 stft80 0.379 0.834 0.379 0.367 0.479 0.186
cqt40 0.400 0.789 0.400 0.401 0.482 0.296 cqt20 0.363 0.784 0.363 0.355 0.495 0.066
cqt80 0.387 0.783 0.387 0.387 0.468 0.305 stft20 0.351 0.846 0.351 0.354 0.514 0.114
cens20 0.364 0.751 0.364 0.362 0.405 0.307 cens20 0.337 0.758 0.337 0.332 0.750 0.068
cqt20 0.368 0.774 0.368 0.358 0.485 0.287 cqt40 0.333 0.786 0.333 0.319 0.610 0.103
scontrast 0.374 0.755 0.374 0.349 0.449 0.237 scontrast 0.306 0.746 0.306 0.277 0.457 0.108
scontrast4 0.329 0.764 0.329 0.321 0.459 0.154 cens40 0.290 0.769 0.290 0.270 0.600 0.104
cens40 0.331 0.747 0.331 0.321 0.371 0.296 scontrast4 0.249 0.695 0.249 0.231 0.287 0.035
poly10 0.275 0.760 0.275 0.238 0.493 0.043 tonz40 0.192 0.678 0.192 0.182 0.278 0.006
cens80 0.214 0.670 0.214 0.223 0.397 0.173 tonz80 0.189 0.670 0.189 0.167 0.292 0.008
poly5 0.229 0.734 0.229 0.199 0.533 0.029 poly10 0.251 0.735 0.251 0.145 1.000 0.002
tonz20 0.205 0.674 0.205 0.197 0.443 0.092 cens80 0.147 0.684 0.147 0.136 0.263 0.012
tonz40 0.178 0.676 0.178 0.178 0.322 0.081 sflat 0.166 0.699 0.166 0.125 0.326 0.017
zcr 0.215 0.667 0.215 0.177 0.660 0.042 zcr 0.191 0.713 0.191 0.124 0.597 0.044
tonz80 0.179 0.677 0.179 0.174 0.266 0.059 poly5 0.217 0.717 0.217 0.118 0.000 0.000
sflat 0.195 0.657 0.195 0.152 0.896 0.072 tonz20 0.111 0.625 0.111 0.110 0.400 0.002
rol0.65 0.191 0.655 0.191 0.148 1.000 0.010 rms 0.204 0.635 0.204 0.107 0.000 0.000
poly 0.186 0.641 0.186 0.130 1.000 0.024 poly3 0.221 0.686 0.221 0.103 0.000 0.000
poly3 0.178 0.669 0.178 0.127 0.880 0.026 poly 0.204 0.642 0.204 0.096 0.000 0.000
poly2 0.162 0.625 0.162 0.115 1.000 0.023 poly2 0.204 0.655 0.204 0.090 0.000 0.000
rms 0.214 0.656 0.214 0.108 1.000 0.017 rol0.25 0.119 0.500 0.119 0.021 0.000 0.000
rol0.25 0.119 0.500 0.119 0.021 0.000 0.000 scent8000 0.119 0.500 0.119 0.021 0.000 0.000
rol0.45 0.119 0.500 0.119 0.021 0.000 0.000 sband8000 0.115 0.500 0.115 0.021 0.000 0.000
scent2048 0.119 0.500 0.119 0.021 0.000 0.000 sband 0.111 0.500 0.111 0.020 0.000 0.000
sband 0.119 0.500 0.119 0.021 0.000 0.000 rol2 0.111 0.500 0.111 0.020 0.000 0.000
rol2 0.111 0.506 0.111 0.020 0.000 0.000 rol0.65 0.099 0.500 0.099 0.018 0.000 0.000
rol0.99 0.111 0.500 0.111 0.020 0.000 0.000 rol0.99 0.039 0.500 0.039 0.008 0.000 0.000
scent8000 0.099 0.500 0.099 0.018 0.000 0.000 rol0.45 0.038 0.500 0.038 0.007 0.000 0.000
sband8000 0.038 0.500 0.038 0.007 0.000 0.000 scent2048 0.038 0.500 0.038 0.007 0.000 0.000

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.613 0.886 0.613 0.616 0.638 0.587 mfcc80 0.605 0.849 0.605 0.607 0.622 0.596
mfcc40 0.597 0.868 0.597 0.608 0.636 0.579 mfcc60 0.587 0.862 0.587 0.603 0.616 0.560
mfcc60 0.602 0.875 0.602 0.604 0.643 0.583 mfcc40 0.539 0.823 0.539 0.524 0.558 0.527
stft40 0.539 0.885 0.539 0.523 0.629 0.429 stft80 0.496 0.829 0.496 0.487 0.518 0.386
mel80 0.490 0.849 0.490 0.496 0.609 0.357 stft40 0.493 0.846 0.493 0.485 0.563 0.428
stft60 0.505 0.878 0.505 0.492 0.594 0.399 stft20 0.491 0.854 0.491 0.480 0.563 0.437
mel60 0.471 0.839 0.471 0.484 0.604 0.329 mel80 0.479 0.787 0.479 0.480 0.503 0.458
stft80 0.471 0.857 0.471 0.458 0.570 0.362 stft60 0.472 0.845 0.472 0.466 0.512 0.398
stft20 0.456 0.872 0.456 0.451 0.581 0.349 mel60 0.461 0.804 0.461 0.462 0.467 0.401
mel40 0.428 0.834 0.428 0.437 0.562 0.297 mel40 0.434 0.789 0.434 0.447 0.446 0.384
cqt40 0.447 0.819 0.447 0.437 0.574 0.307 cqt40 0.405 0.790 0.405 0.410 0.476 0.320
mel20 0.419 0.829 0.419 0.422 0.537 0.249 cqt20 0.409 0.791 0.409 0.402 0.500 0.335
cqt20 0.404 0.800 0.404 0.401 0.549 0.221 mel20 0.376 0.771 0.376 0.375 0.403 0.332
cqt80 0.398 0.808 0.398 0.397 0.523 0.288 cqt80 0.362 0.776 0.362 0.362 0.426 0.284
cens20 0.380 0.784 0.380 0.367 0.503 0.234 cens20 0.358 0.752 0.358 0.341 0.432 0.317
cens40 0.369 0.788 0.369 0.365 0.491 0.240 cens40 0.341 0.745 0.341 0.337 0.371 0.293
scontrast 0.346 0.781 0.346 0.330 0.472 0.191 scontrast 0.360 0.764 0.360 0.333 0.432 0.232
scontrast4 0.303 0.750 0.303 0.291 0.381 0.088 scontrast4 0.341 0.754 0.341 0.318 0.448 0.153
tonz40 0.244 0.705 0.244 0.240 0.494 0.047 poly10 0.274 0.763 0.274 0.235 0.388 0.039
tonz80 0.219 0.696 0.219 0.220 0.446 0.039 tonz20 0.207 0.684 0.207 0.212 0.462 0.103
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Model 13: (optimizer: Adamax) - continuation Model 14: (optimizer: Nadam) - continuation

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

poly10 0.256 0.780 0.256 0.217 0.443 0.047 poly5 0.235 0.728 0.235 0.209 0.586 0.020
tonz20 0.222 0.685 0.222 0.212 0.556 0.060 cens80 0.201 0.680 0.201 0.207 0.361 0.170
cens80 0.198 0.699 0.198 0.199 0.410 0.125 tonz80 0.198 0.676 0.198 0.191 0.416 0.104
zcr 0.221 0.677 0.221 0.192 0.595 0.030 tonz40 0.197 0.666 0.197 0.191 0.381 0.090
poly5 0.195 0.722 0.195 0.175 0.600 0.018 zcr 0.209 0.667 0.209 0.176 0.660 0.042
sflat 0.196 0.656 0.196 0.156 0.591 0.016 rol0.25 0.208 0.696 0.208 0.162 0.526 0.012
poly3 0.200 0.659 0.200 0.155 0.955 0.025 poly3 0.186 0.666 0.186 0.140 0.800 0.029
poly2 0.183 0.637 0.183 0.147 1.000 0.024 poly 0.178 0.643 0.178 0.140 0.742 0.027
rol0.25 0.191 0.676 0.191 0.143 0.435 0.012 sflat 0.177 0.649 0.177 0.139 0.483 0.017
poly 0.177 0.640 0.177 0.132 0.808 0.025 poly2 0.173 0.631 0.173 0.128 1.000 0.024
rms 0.214 0.646 0.214 0.110 0.000 0.000 rms 0.217 0.654 0.217 0.114 0.778 0.017
sband8000 0.119 0.500 0.119 0.021 0.000 0.000 sband8000 0.115 0.500 0.115 0.021 0.000 0.000
rol0.99 0.119 0.500 0.119 0.021 0.000 0.000 rol0.45 0.115 0.500 0.115 0.021 0.000 0.000
rol0.45 0.119 0.500 0.119 0.021 0.000 0.000 rol0.65 0.115 0.500 0.115 0.021 0.000 0.000
scent2048 0.119 0.500 0.119 0.021 0.000 0.000 scent2048 0.099 0.510 0.099 0.018 0.000 0.000
scent8000 0.099 0.500 0.099 0.018 0.000 0.000 sband 0.099 0.500 0.099 0.018 0.000 0.000
sband 0.099 0.500 0.099 0.018 0.000 0.000 rol2 0.099 0.500 0.099 0.018 0.000 0.000
rol0.65 0.099 0.500 0.099 0.018 0.000 0.000 rol0.99 0.039 0.500 0.039 0.008 0.000 0.000
rol2 0.039 0.500 0.039 0.008 0.000 0.000 scent8000 0.038 0.500 0.038 0.007 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).

B.1.4 Dropout Rate of 0.6

TABLE B.4: Results of the 4 best models for different features and dropout of 0.6.

Model 15: (optimizer: Adam) Model 16: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.591 0.894 0.591 0.611 0.788 0.448 mel40 0.387 0.806 0.387 0.371 0.765 0.074
mfcc80 0.608 0.902 0.608 0.610 0.823 0.493 mel20 0.386 0.798 0.386 0.350 0.676 0.055
mfcc40 0.601 0.894 0.601 0.609 0.803 0.424 cqt80 0.341 0.764 0.341 0.344 0.787 0.044
mel80 0.487 0.862 0.487 0.489 0.643 0.297 mel60 0.342 0.788 0.342 0.332 0.775 0.074
mel20 0.478 0.847 0.478 0.478 0.629 0.247 mfcc80 0.352 0.778 0.352 0.325 0.934 0.068
stft20 0.458 0.869 0.458 0.459 0.655 0.258 mel80 0.301 0.781 0.301 0.325 0.795 0.074
stft60 0.446 0.860 0.446 0.458 0.671 0.222 mfcc60 0.305 0.786 0.305 0.297 0.898 0.053
mel60 0.444 0.851 0.444 0.458 0.687 0.275 stft60 0.272 0.800 0.272 0.271 0.536 0.036
mel40 0.437 0.846 0.437 0.441 0.636 0.265 cqt20 0.263 0.750 0.263 0.260 0.345 0.023
stft40 0.436 0.868 0.436 0.437 0.645 0.232 cqt40 0.270 0.759 0.270 0.258 0.619 0.047
stft80 0.409 0.851 0.409 0.416 0.706 0.172 stft40 0.264 0.809 0.264 0.252 0.538 0.033
cqt40 0.363 0.783 0.363 0.354 0.596 0.111 stft20 0.249 0.810 0.249 0.243 0.596 0.037
cqt20 0.349 0.792 0.349 0.348 0.538 0.085 stft80 0.249 0.776 0.249 0.241 0.417 0.048
cqt80 0.331 0.780 0.331 0.333 0.655 0.093 cens20 0.252 0.722 0.252 0.229 0.750 0.011
cens40 0.335 0.801 0.335 0.331 0.491 0.158 cens40 0.244 0.731 0.244 0.214 0.424 0.017
cens20 0.343 0.769 0.343 0.327 0.632 0.103 mfcc40 0.201 0.740 0.201 0.203 0.875 0.050
poly10 0.337 0.785 0.337 0.265 0.800 0.033 tonz80 0.208 0.654 0.208 0.184 0.625 0.006
tonz80 0.235 0.698 0.235 0.235 0.545 0.029 tonz40 0.214 0.660 0.214 0.179 0.400 0.002
tonz20 0.235 0.687 0.235 0.231 0.630 0.020 tonz20 0.177 0.644 0.177 0.163 0.286 0.002
scontrast 0.292 0.746 0.292 0.230 0.452 0.017 poly10 0.269 0.736 0.269 0.162 1.000 0.002
tonz40 0.250 0.694 0.250 0.229 0.574 0.032 poly5 0.222 0.706 0.222 0.142 0.000 0.000
zcr 0.246 0.676 0.246 0.199 0.600 0.029 sflat 0.151 0.687 0.151 0.112 0.467 0.017
cens80 0.188 0.716 0.188 0.190 0.397 0.092 cens80 0.136 0.646 0.136 0.110 0.800 0.005
scontrast4 0.166 0.677 0.166 0.163 0.333 0.005 zcr 0.188 0.709 0.188 0.109 0.660 0.042
sflat 0.203 0.641 0.203 0.157 0.909 0.012 scontrast 0.168 0.673 0.168 0.103 0.000 0.000
poly5 0.213 0.731 0.213 0.157 0.000 0.000 rms 0.200 0.624 0.200 0.095 0.000 0.000
poly 0.251 0.654 0.251 0.152 1.000 0.017 poly2 0.216 0.639 0.216 0.089 0.000 0.000
poly2 0.214 0.646 0.214 0.139 0.000 0.000 poly3 0.204 0.659 0.204 0.088 0.000 0.000
poly3 0.158 0.651 0.158 0.091 0.889 0.010 poly 0.205 0.636 0.205 0.081 0.000 0.000
rms 0.194 0.646 0.194 0.075 0.000 0.000 scontrast4 0.063 0.608 0.063 0.050 0.000 0.000
rol0.25 0.119 0.500 0.119 0.021 0.000 0.000 rol0.25 0.119 0.500 0.119 0.021 0.000 0.000
rol0.65 0.119 0.500 0.119 0.021 0.000 0.000 sband 0.119 0.500 0.119 0.021 0.000 0.000
rol2 0.119 0.500 0.119 0.021 0.000 0.000 scent2048 0.119 0.500 0.119 0.021 0.000 0.000
sband8000 0.119 0.500 0.119 0.021 0.000 0.000 rol2 0.115 0.500 0.115 0.021 0.000 0.000
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Model 15: (optimizer: Adam) - continuation Model 16: (optimizer: SGD) - continuation

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

sband 0.119 0.500 0.119 0.021 0.000 0.000 rol0.65 0.111 0.500 0.111 0.020 0.000 0.000
scent2048 0.119 0.500 0.119 0.021 0.000 0.000 scent8000 0.039 0.500 0.039 0.008 0.000 0.000
rol0.99 0.119 0.500 0.119 0.021 0.000 0.000 sband8000 0.038 0.500 0.038 0.007 0.000 0.000
rol0.45 0.099 0.500 0.099 0.018 0.000 0.000 rol0.99 0.038 0.500 0.038 0.007 0.000 0.000
scent8000 0.039 0.500 0.039 0.008 0.000 0.000 rol0.45 0.038 0.500 0.038 0.007 0.000 0.000

Model 17: (optimizer: Adamax) Model 18: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.569 0.887 0.569 0.596 0.768 0.384 mfcc60 0.599 0.898 0.599 0.612 0.848 0.448
mfcc60 0.530 0.883 0.530 0.551 0.787 0.349 mfcc80 0.578 0.882 0.578 0.592 0.810 0.449
mfcc40 0.490 0.879 0.490 0.517 0.830 0.320 mfcc40 0.562 0.887 0.562 0.557 0.827 0.399
stft40 0.460 0.876 0.460 0.456 0.637 0.228 mel80 0.495 0.856 0.495 0.503 0.710 0.317
stft60 0.434 0.864 0.434 0.431 0.630 0.220 mel20 0.485 0.845 0.485 0.483 0.645 0.269
stft80 0.430 0.862 0.430 0.429 0.628 0.222 mel40 0.467 0.853 0.467 0.470 0.632 0.283
mel60 0.440 0.827 0.440 0.424 0.777 0.146 mel60 0.460 0.827 0.460 0.469 0.614 0.276
stft20 0.428 0.865 0.428 0.412 0.549 0.188 stft20 0.454 0.870 0.454 0.463 0.662 0.271
mel40 0.415 0.828 0.415 0.396 0.753 0.153 stft40 0.458 0.871 0.458 0.448 0.616 0.266
mel80 0.404 0.834 0.404 0.384 0.837 0.153 stft80 0.432 0.858 0.432 0.441 0.636 0.223
cqt80 0.363 0.803 0.363 0.366 0.701 0.137 stft60 0.427 0.843 0.427 0.428 0.609 0.231
cqt20 0.358 0.801 0.358 0.358 0.553 0.106 cqt80 0.364 0.790 0.364 0.377 0.608 0.104
cqt40 0.351 0.803 0.351 0.345 0.671 0.119 cqt40 0.356 0.786 0.356 0.364 0.628 0.103
cens20 0.354 0.788 0.354 0.340 0.600 0.108 cens40 0.344 0.805 0.344 0.345 0.519 0.146
mel20 0.357 0.815 0.357 0.318 0.731 0.127 cens20 0.342 0.766 0.342 0.324 0.543 0.106
cens40 0.294 0.785 0.294 0.284 0.519 0.128 cqt20 0.319 0.787 0.319 0.308 0.565 0.084
scontrast 0.286 0.768 0.286 0.258 0.714 0.018 poly10 0.332 0.792 0.332 0.272 0.741 0.024
scontrast4 0.249 0.704 0.249 0.216 0.357 0.006 scontrast 0.309 0.764 0.309 0.262 0.632 0.014
poly10 0.271 0.754 0.271 0.194 1.000 0.001 tonz40 0.258 0.704 0.258 0.232 0.527 0.035
tonz80 0.207 0.705 0.207 0.170 0.400 0.017 tonz80 0.234 0.702 0.234 0.227 0.615 0.029
poly5 0.234 0.715 0.234 0.165 0.000 0.000 scontrast4 0.225 0.708 0.225 0.211 0.429 0.004
cens80 0.172 0.718 0.172 0.162 0.432 0.049 zcr 0.260 0.672 0.260 0.211 0.610 0.030
tonz20 0.182 0.681 0.182 0.158 0.346 0.011 tonz20 0.213 0.690 0.213 0.201 0.593 0.019
tonz40 0.191 0.698 0.191 0.158 0.486 0.020 cens80 0.178 0.711 0.178 0.179 0.388 0.087
zcr 0.219 0.690 0.219 0.150 0.636 0.042 sflat 0.183 0.636 0.183 0.154 1.000 0.011
poly 0.243 0.660 0.243 0.131 0.000 0.000 poly 0.251 0.657 0.251 0.152 1.000 0.016
poly3 0.226 0.683 0.226 0.126 0.000 0.000 poly2 0.191 0.648 0.191 0.144 1.000 0.007
poly2 0.219 0.657 0.219 0.114 0.000 0.000 poly5 0.205 0.730 0.205 0.120 0.000 0.000
sflat 0.140 0.662 0.140 0.108 0.467 0.017 rms 0.222 0.649 0.222 0.106 0.000 0.000
rms 0.215 0.660 0.215 0.104 0.000 0.000 poly3 0.171 0.665 0.171 0.101 0.154 0.002
sband 0.119 0.500 0.119 0.021 0.000 0.000 rol0.25 0.119 0.511 0.119 0.021 0.000 0.000
rol0.99 0.119 0.500 0.119 0.021 0.000 0.000 rol2 0.119 0.500 0.119 0.021 0.000 0.000
rol0.25 0.111 0.500 0.111 0.020 0.000 0.000 sband8000 0.119 0.500 0.119 0.021 0.000 0.000
rol2 0.099 0.500 0.099 0.018 0.000 0.000 rol0.65 0.119 0.511 0.119 0.021 0.000 0.000
sband8000 0.099 0.500 0.099 0.018 0.000 0.000 rol0.45 0.119 0.500 0.119 0.021 0.000 0.000
scent2048 0.039 0.500 0.039 0.008 0.000 0.000 sband 0.111 0.500 0.111 0.020 0.000 0.000
rol0.65 0.039 0.500 0.039 0.008 0.000 0.000 scent2048 0.039 0.500 0.039 0.008 0.000 0.000
scent8000 0.039 0.500 0.039 0.008 0.000 0.000 scent8000 0.039 0.500 0.039 0.008 0.000 0.000
rol0.45 0.038 0.500 0.038 0.007 0.000 0.000 rol0.99 0.038 0.500 0.038 0.007 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.1.5 Dropout Rate of 0.8 and 0 for Adam and Adamax

TABLE B.5: Results of the 2 best models for different features and dropout rate of 0.8 and
without dropout.

Model 19: (optimizer: Adam; dropout: 0.8) Model 20: (optimizer: Adam; dropout: 0)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel20 0.349 0.789 0.349 0.291 0.764 0.050 mfcc60 0.566 0.820 0.566 0.565 0.577 0.564
mel40 0.308 0.754 0.308 0.275 0.788 0.062 mfcc40 0.514 0.799 0.514 0.508 0.525 0.508
stft40 0.265 0.750 0.265 0.264 0.683 0.033 mfcc80 0.523 0.785 0.523 0.505 0.536 0.519
mfcc80 0.260 0.762 0.260 0.260 0.852 0.055 mel80 0.479 0.768 0.479 0.489 0.487 0.464
cens20 0.283 0.717 0.283 0.256 0.872 0.041 stft60 0.483 0.807 0.483 0.483 0.497 0.453
cens40 0.270 0.774 0.270 0.245 0.624 0.081 stft20 0.460 0.792 0.460 0.459 0.483 0.431
mfcc40 0.257 0.739 0.257 0.242 0.544 0.044 mel60 0.455 0.772 0.455 0.454 0.471 0.447
stft60 0.251 0.739 0.251 0.238 0.529 0.022 stft40 0.444 0.798 0.444 0.442 0.464 0.419
mfcc60 0.262 0.783 0.262 0.237 0.577 0.054 stft80 0.435 0.776 0.435 0.424 0.453 0.418
mel80 0.276 0.745 0.276 0.235 0.745 0.049 cqt80 0.388 0.743 0.388 0.386 0.400 0.372
stft20 0.245 0.791 0.245 0.234 0.741 0.024 mel40 0.392 0.732 0.392 0.379 0.403 0.380
mel60 0.272 0.723 0.272 0.222 0.786 0.039 cqt20 0.362 0.742 0.362 0.361 0.375 0.333
cqt40 0.174 0.648 0.174 0.197 0.700 0.008 cqt40 0.355 0.730 0.355 0.357 0.368 0.348
cqt20 0.208 0.699 0.208 0.185 0.889 0.010 mel20 0.358 0.720 0.358 0.353 0.368 0.344
stft80 0.197 0.713 0.197 0.175 0.548 0.020 scontrast 0.354 0.730 0.354 0.332 0.395 0.314
cqt80 0.143 0.620 0.143 0.160 0.444 0.005 cens20 0.337 0.694 0.337 0.328 0.341 0.327
cens80 0.142 0.680 0.142 0.134 0.229 0.013 cens40 0.309 0.685 0.309 0.310 0.317 0.300
poly10 0.235 0.732 0.235 0.133 0.125 0.001 scontrast4 0.290 0.726 0.290 0.279 0.344 0.198
zcr 0.191 0.652 0.191 0.122 1.000 0.004 poly10 0.234 0.721 0.234 0.206 0.293 0.043
tonz80 0.143 0.647 0.143 0.118 0.333 0.004 cens80 0.201 0.651 0.201 0.205 0.329 0.170
tonz40 0.142 0.651 0.142 0.114 0.250 0.002 zcr 0.220 0.666 0.220 0.199 0.595 0.030
tonz20 0.127 0.630 0.127 0.112 0.500 0.005 tonz20 0.201 0.656 0.201 0.192 0.341 0.112
poly5 0.177 0.692 0.177 0.079 0.000 0.000 tonz40 0.185 0.650 0.185 0.181 0.212 0.082
sflat 0.099 0.616 0.099 0.078 0.000 0.000 poly5 0.198 0.707 0.198 0.176 0.690 0.024
poly2 0.195 0.633 0.195 0.071 0.000 0.000 tonz80 0.176 0.631 0.176 0.169 0.237 0.091
rms 0.198 0.642 0.198 0.066 0.000 0.000 rol0.25 0.225 0.688 0.225 0.165 0.388 0.023
poly 0.203 0.599 0.203 0.065 0.000 0.000 sflat 0.186 0.648 0.186 0.147 0.816 0.037
scontrast 0.116 0.546 0.116 0.029 0.000 0.000 poly3 0.162 0.664 0.162 0.132 0.686 0.029
scontrast4 0.053 0.524 0.053 0.026 0.000 0.000 poly2 0.179 0.630 0.179 0.132 0.913 0.025
poly3 0.119 0.575 0.119 0.022 0.000 0.000 poly 0.147 0.615 0.147 0.130 1.000 0.024
rol0.65 0.119 0.500 0.119 0.021 0.000 0.000 rms 0.172 0.631 0.172 0.124 0.538 0.008
scent8000 0.119 0.500 0.119 0.021 0.000 0.000 rol0.65 0.153 0.659 0.153 0.107 1.000 0.008
rol0.99 0.119 0.500 0.119 0.021 0.000 0.000 scent8000 0.160 0.650 0.160 0.105 0.900 0.022
rol0.45 0.115 0.500 0.115 0.021 0.000 0.000 rol0.45 0.160 0.650 0.160 0.102 0.560 0.033
rol2 0.115 0.500 0.115 0.021 0.000 0.000 sband 0.194 0.660 0.194 0.090 0.000 0.000
sband 0.111 0.500 0.111 0.020 0.000 0.000 scent2048 0.141 0.646 0.141 0.090 0.619 0.031
scent2048 0.099 0.500 0.099 0.018 0.000 0.000 sband8000 0.122 0.653 0.122 0.061 0.000 0.000
sband8000 0.099 0.500 0.099 0.018 0.000 0.000 rol0.99 0.119 0.500 0.119 0.021 0.000 0.000
rol0.25 0.038 0.500 0.038 0.007 0.000 0.000 rol2 0.119 0.526 0.119 0.021 0.000 0.000

Model 21: (optimizer: Adamax; dropout: 0.8) Model 22: (optimizer: Adamax; dropout: 0)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

stft20 0.266 0.807 0.266 0.260 0.521 0.030 mfcc40 0.569 0.825 0.569 0.570 0.580 0.564
cqt80 0.266 0.672 0.266 0.255 0.806 0.035 mfcc80 0.493 0.790 0.493 0.509 0.503 0.490
stft40 0.253 0.778 0.253 0.255 0.537 0.026 stft60 0.487 0.845 0.487 0.489 0.538 0.429
cens20 0.275 0.699 0.275 0.255 0.917 0.026 mel60 0.491 0.801 0.491 0.488 0.549 0.425
stft80 0.259 0.764 0.259 0.251 0.514 0.023 mel80 0.480 0.808 0.480 0.485 0.552 0.437
cqt40 0.258 0.688 0.258 0.246 0.926 0.030 stft40 0.476 0.844 0.476 0.476 0.525 0.406
stft60 0.239 0.784 0.239 0.233 0.514 0.023 stft20 0.489 0.854 0.489 0.475 0.559 0.399
cqt20 0.245 0.666 0.245 0.209 0.889 0.010 mfcc60 0.462 0.780 0.462 0.455 0.470 0.458
cens40 0.235 0.692 0.235 0.187 1.000 0.020 stft80 0.428 0.816 0.428 0.426 0.469 0.385
mfcc60 0.221 0.650 0.221 0.165 0.000 0.000 mel40 0.412 0.785 0.412 0.403 0.486 0.344
tonz80 0.161 0.671 0.161 0.151 0.500 0.004 cqt20 0.391 0.772 0.391 0.382 0.486 0.288
zcr 0.221 0.719 0.221 0.148 0.654 0.041 cqt40 0.386 0.784 0.386 0.380 0.469 0.317
tonz40 0.161 0.675 0.161 0.136 0.375 0.004 mel20 0.378 0.788 0.378 0.373 0.453 0.290
mel20 0.229 0.612 0.229 0.134 0.714 0.012 cens40 0.352 0.750 0.352 0.365 0.388 0.307
tonz20 0.128 0.649 0.128 0.117 0.421 0.010 cqt80 0.350 0.771 0.350 0.361 0.408 0.313
poly10 0.222 0.709 0.222 0.115 1.000 0.002 cens20 0.355 0.750 0.355 0.340 0.405 0.277
cens80 0.123 0.660 0.123 0.111 0.500 0.004 scontrast 0.354 0.771 0.354 0.332 0.446 0.265
sflat 0.139 0.680 0.139 0.108 0.722 0.016 scontrast4 0.326 0.762 0.326 0.314 0.421 0.184
mfcc80 0.176 0.633 0.176 0.087 0.000 0.000 cens80 0.215 0.676 0.215 0.231 0.376 0.162
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Model 21: (optimizer: Adamax; dropout: 0.8) - cont. Model 22: (optimizer: Nadam; dropout: 0) - cont.

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc40 0.155 0.599 0.155 0.084 0.000 0.000 poly10 0.263 0.764 0.263 0.222 0.700 0.050
poly2 0.179 0.603 0.179 0.082 0.000 0.000 tonz80 0.227 0.693 0.227 0.221 0.405 0.063
rms 0.198 0.650 0.198 0.071 0.000 0.000 tonz40 0.217 0.690 0.217 0.217 0.452 0.067
mel40 0.134 0.542 0.134 0.068 0.000 0.000 tonz20 0.214 0.660 0.214 0.206 0.477 0.073
mel60 0.128 0.551 0.128 0.060 0.000 0.000 poly5 0.244 0.734 0.244 0.195 0.789 0.018
poly5 0.140 0.649 0.140 0.046 0.000 0.000 zcr 0.228 0.673 0.228 0.190 0.654 0.041
poly 0.135 0.586 0.135 0.046 0.000 0.000 sflat 0.192 0.650 0.192 0.154 0.843 0.051
mel80 0.122 0.572 0.122 0.041 0.000 0.000 poly3 0.183 0.650 0.183 0.153 0.957 0.026
scontrast4 0.124 0.552 0.124 0.035 0.000 0.000 rol0.25 0.201 0.697 0.201 0.137 0.382 0.016
poly3 0.127 0.582 0.127 0.032 0.000 0.000 poly2 0.172 0.626 0.172 0.137 1.000 0.024
scontrast 0.116 0.556 0.116 0.029 0.000 0.000 rms 0.219 0.640 0.219 0.133 0.000 0.000
rol0.25 0.119 0.500 0.119 0.021 0.000 0.000 poly 0.168 0.631 0.168 0.130 0.710 0.026
scent8000 0.119 0.500 0.119 0.021 0.000 0.000 scent2048 0.174 0.628 0.174 0.126 0.929 0.016
sband 0.119 0.500 0.119 0.021 0.000 0.000 rol0.45 0.190 0.669 0.190 0.112 0.512 0.025
sband8000 0.119 0.500 0.119 0.021 0.000 0.000 rol2 0.178 0.649 0.178 0.096 0.000 0.000
rol0.99 0.119 0.500 0.119 0.021 0.000 0.000 scent8000 0.143 0.632 0.143 0.095 0.673 0.044
rol2 0.119 0.500 0.119 0.021 0.000 0.000 sband8000 0.135 0.617 0.135 0.083 0.000 0.000
rol0.45 0.115 0.500 0.115 0.021 0.000 0.000 rol0.65 0.141 0.645 0.141 0.071 0.506 0.051
rol0.65 0.039 0.500 0.039 0.008 0.000 0.000 sband 0.141 0.631 0.141 0.052 0.000 0.000
scent2048 0.038 0.500 0.038 0.007 0.000 0.000 rol0.99 0.111 0.500 0.111 0.020 0.000 0.000
cont. - continuation; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.2 UrbanSound8K - Combination of Features as Input

B.2.1 Baseline Model Architecture

TABLE B.6: Results of the 6 models for different feature combinations.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.669 0.925 0.669 0.682 0.736 0.638 mms80 0.630 0.898 0.630 0.662 0.845 0.312
mmstftq 0.659 0.910 0.659 0.681 0.719 0.634 mms60 0.602 0.909 0.602 0.624 0.830 0.367
mmsqc 0.627 0.912 0.627 0.658 0.696 0.605 mfccmel 0.603 0.894 0.603 0.624 0.855 0.366
mms40 0.634 0.909 0.634 0.652 0.717 0.600 mfccstft80 0.591 0.897 0.591 0.611 0.802 0.305
mmcens 0.627 0.894 0.627 0.652 0.678 0.602 mmstftq 0.601 0.898 0.601 0.610 0.820 0.348
mmq 0.626 0.916 0.626 0.650 0.688 0.607 mmcens 0.597 0.893 0.597 0.610 0.860 0.315
mfccstft80 0.652 0.894 0.652 0.646 0.701 0.618 mmsqc80 0.608 0.894 0.608 0.598 0.862 0.351
mms80 0.614 0.902 0.614 0.632 0.659 0.585 mms40 0.566 0.886 0.566 0.591 0.815 0.305
mms60 0.603 0.893 0.603 0.613 0.671 0.571 mmq 0.563 0.890 0.563 0.575 0.832 0.349
mfccstft 0.601 0.899 0.601 0.606 0.679 0.575 mmsqc 0.538 0.873 0.538 0.574 0.726 0.275
mfccmel 0.579 0.888 0.579 0.598 0.640 0.559 mfccstft 0.485 0.858 0.485 0.501 0.706 0.195
zrsp 0.258 0.675 0.258 0.238 0.647 0.039 zsrssp 0.197 0.715 0.197 0.128 0.607 0.044
zsrssp 0.216 0.666 0.216 0.173 0.654 0.041 zrsp 0.196 0.718 0.196 0.128 0.607 0.044
scontpoly 0.119 0.511 0.119 0.021 0.000 0.000 tsp 0.119 0.500 0.119 0.021 0.000 0.000
tsp 0.039 0.466 0.039 0.008 0.000 0.000 scontpoly 0.038 0.500 0.038 0.007 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mms60 0.655 0.926 0.655 0.680 0.756 0.625 mmsqc80 0.676 0.926 0.676 0.693 0.719 0.652
mmq 0.640 0.912 0.640 0.668 0.697 0.601 mmstftq 0.663 0.914 0.663 0.687 0.712 0.639
mmsqc80 0.634 0.900 0.634 0.656 0.677 0.585 mms80 0.650 0.901 0.650 0.676 0.687 0.634
mfccstft80 0.628 0.915 0.628 0.654 0.695 0.585 mmsqc 0.658 0.919 0.658 0.676 0.709 0.620
mms40 0.637 0.921 0.637 0.651 0.752 0.585 mmq 0.645 0.916 0.645 0.669 0.723 0.608
mmstftq 0.611 0.912 0.611 0.639 0.694 0.579 mms40 0.638 0.913 0.638 0.650 0.695 0.620
mmsqc 0.621 0.927 0.621 0.636 0.714 0.588 mms60 0.618 0.902 0.618 0.647 0.674 0.590
mms80 0.614 0.909 0.614 0.629 0.683 0.571 mmcens 0.602 0.884 0.602 0.618 0.635 0.595
mfccstft 0.612 0.915 0.612 0.629 0.712 0.575 mfccmel 0.599 0.878 0.599 0.617 0.650 0.569
mmcens 0.609 0.904 0.609 0.626 0.671 0.577 mfccstft 0.597 0.897 0.597 0.605 0.673 0.545
mfccmel 0.596 0.903 0.596 0.623 0.666 0.559 mfccstft80 0.590 0.886 0.590 0.604 0.637 0.569
zrsp 0.243 0.678 0.243 0.205 0.600 0.032 zrsp 0.225 0.678 0.225 0.200 0.583 0.025
zsrssp 0.222 0.684 0.222 0.172 0.647 0.039 zsrssp 0.221 0.659 0.221 0.194 0.605 0.027
tsp 0.119 0.500 0.119 0.021 0.000 0.000 scontpoly 0.119 0.500 0.119 0.021 0.000 0.000
scontpoly 0.038 0.500 0.038 0.007 0.000 0.000 tsp 0.119 0.500 0.119 0.021 0.000 0.000

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfccstft80 0.247 0.665 0.247 0.217 0.245 0.029 mmstftq 0.409 0.828 0.409 0.419 0.933 0.067
mfccmel 0.249 0.636 0.249 0.186 0.295 0.121 mmsqc80 0.423 0.827 0.423 0.407 0.786 0.053
mms40 0.251 0.610 0.251 0.180 0.235 0.127 mmsqc 0.384 0.780 0.384 0.383 0.830 0.047
mmsqc80 0.208 0.638 0.208 0.175 0.269 0.116 mms60 0.338 0.776 0.338 0.348 0.907 0.047
mmq 0.201 0.688 0.201 0.169 0.261 0.145 mfccstft 0.370 0.789 0.370 0.345 0.914 0.038
mmstftq 0.221 0.647 0.221 0.163 0.403 0.104 mfccmel 0.343 0.783 0.343 0.314 0.929 0.047
mms80 0.191 0.609 0.191 0.146 0.235 0.092 mmq 0.294 0.765 0.294 0.300 0.935 0.051
mmsqc 0.191 0.618 0.191 0.146 0.318 0.092 mms40 0.288 0.730 0.288 0.285 0.921 0.042
mms60 0.177 0.601 0.177 0.124 0.202 0.087 mfccstft80 0.277 0.723 0.277 0.282 0.892 0.039
mmcens 0.173 0.643 0.173 0.122 0.236 0.100 mmcens 0.258 0.730 0.258 0.257 0.907 0.047
mfccstft 0.152 0.597 0.152 0.072 0.195 0.124 mms80 0.243 0.706 0.243 0.235 0.923 0.043
zsrssp 0.159 0.562 0.159 0.064 0.000 0.000 zsrssp 0.179 0.688 0.179 0.080 0.000 0.000
zrsp 0.131 0.549 0.131 0.047 0.000 0.000 zrsp 0.168 0.668 0.168 0.064 0.000 0.000
scontpoly 0.119 0.511 0.119 0.021 0.000 0.000 scontpoly 0.119 0.522 0.119 0.021 0.000 0.000
tsp 0.099 0.465 0.099 0.018 0.000 0.000 tsp 0.039 0.500 0.039 0.008 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.2.2 Extra Layer

TABLE B.7: Results of the 4 models with an extra dense and dropout layer for the different
feature combinations.

Model 7: (optimizer: Adam) Model 8: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.671 0.916 0.671 0.686 0.736 0.648 mmsqc 0.582 0.889 0.582 0.616 0.804 0.300
mmq 0.658 0.905 0.658 0.685 0.713 0.631 mmq 0.602 0.893 0.602 0.612 0.812 0.274
mms40 0.663 0.912 0.663 0.683 0.750 0.644 mmsqc80 0.595 0.890 0.595 0.610 0.822 0.299
mfccstft 0.664 0.918 0.664 0.683 0.735 0.636 mfccmel 0.566 0.900 0.566 0.593 0.832 0.302
mmstftq 0.634 0.914 0.634 0.656 0.700 0.599 mfccstft80 0.570 0.876 0.570 0.585 0.829 0.208
mms60 0.625 0.906 0.625 0.653 0.697 0.594 mmcens 0.572 0.884 0.572 0.583 0.811 0.257
mfccstft80 0.625 0.895 0.625 0.651 0.699 0.593 mmstftq 0.527 0.875 0.527 0.567 0.807 0.286
mfccmel 0.626 0.896 0.626 0.646 0.690 0.571 mms80 0.548 0.878 0.548 0.565 0.805 0.276
mmsqc 0.609 0.896 0.609 0.643 0.682 0.571 mms40 0.532 0.872 0.532 0.545 0.833 0.286
mmcens 0.624 0.899 0.624 0.642 0.683 0.590 mms60 0.502 0.871 0.502 0.523 0.824 0.240
mms80 0.596 0.887 0.596 0.618 0.664 0.573 mfccstft 0.502 0.864 0.502 0.520 0.744 0.177
zrsp 0.246 0.668 0.246 0.222 0.615 0.029 zsrssp 0.190 0.709 0.190 0.125 0.607 0.044
zsrssp 0.213 0.674 0.213 0.174 0.614 0.032 zrsp 0.182 0.706 0.182 0.119 0.585 0.045
scontpoly 0.119 0.500 0.119 0.021 0.000 0.000 scontpoly 0.119 0.500 0.119 0.021 0.000 0.000
tsp 0.038 0.500 0.038 0.007 0.000 0.000 tsp 0.039 0.500 0.039 0.008 0.000 0.000

Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.658 0.919 0.658 0.680 0.710 0.633 mmstftq 0.699 0.911 0.699 0.720 0.756 0.664
mms40 0.628 0.913 0.628 0.655 0.690 0.568 mmsqc 0.687 0.922 0.687 0.703 0.777 0.645
mfccstft 0.626 0.914 0.626 0.650 0.703 0.576 mmsqc80 0.676 0.910 0.676 0.689 0.713 0.650
mms60 0.626 0.901 0.626 0.648 0.687 0.591 mms80 0.654 0.906 0.654 0.670 0.706 0.599
mmsqc 0.606 0.907 0.606 0.628 0.694 0.578 mms40 0.648 0.918 0.648 0.668 0.703 0.625
mmcens 0.596 0.897 0.596 0.615 0.655 0.552 mfccstft 0.649 0.899 0.649 0.659 0.707 0.583
mms80 0.594 0.905 0.594 0.608 0.669 0.575 mmq 0.632 0.900 0.632 0.650 0.670 0.605
mmstftq 0.582 0.898 0.582 0.602 0.636 0.559 mfccstft80 0.622 0.912 0.622 0.649 0.691 0.581
mfccmel 0.578 0.901 0.578 0.593 0.657 0.529 mms60 0.602 0.894 0.602 0.629 0.659 0.559
mfccstft80 0.571 0.890 0.571 0.580 0.655 0.545 mfccmel 0.602 0.878 0.602 0.616 0.628 0.551
mmq 0.575 0.892 0.575 0.575 0.624 0.550 mmcens 0.581 0.886 0.581 0.590 0.624 0.540
zrsp 0.250 0.670 0.250 0.214 0.605 0.027 zsrssp 0.249 0.671 0.249 0.224 0.583 0.025
zsrssp 0.217 0.676 0.217 0.168 0.647 0.039 zrsp 0.210 0.667 0.210 0.171 0.617 0.035
scontpoly 0.119 0.500 0.119 0.021 0.000 0.000 scontpoly 0.119 0.500 0.119 0.021 0.000 0.000
tsp 0.039 0.500 0.039 0.008 0.000 0.000 tsp 0.119 0.500 0.119 0.021 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.2.3 Dropout Rate of 0.2

TABLE B.8: Results of the 4 models with a dropout rate of 0.2 for different feature combi-
nations.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mms60 0.668 0.895 0.668 0.693 0.691 0.658 mms80 0.627 0.904 0.627 0.641 0.731 0.550
mmq 0.646 0.889 0.646 0.670 0.675 0.633 mfccstft80 0.594 0.892 0.594 0.593 0.718 0.477
mmstftq 0.642 0.881 0.642 0.667 0.664 0.637 mmsqc 0.591 0.890 0.591 0.589 0.706 0.454
mms40 0.637 0.889 0.637 0.655 0.677 0.624 mfccstft 0.591 0.869 0.591 0.587 0.697 0.425
mmsqc80 0.622 0.866 0.622 0.641 0.639 0.618 mms60 0.588 0.894 0.588 0.586 0.663 0.522
mfccstft80 0.627 0.879 0.627 0.636 0.657 0.619 mmcens 0.579 0.897 0.579 0.579 0.689 0.476
mmcens 0.619 0.856 0.619 0.630 0.649 0.608 mmq 0.581 0.886 0.581 0.577 0.704 0.498
mmsqc 0.618 0.869 0.618 0.628 0.644 0.603 mfccmel 0.587 0.900 0.587 0.570 0.696 0.497
mms80 0.602 0.866 0.602 0.619 0.624 0.575 mms40 0.558 0.905 0.558 0.563 0.671 0.470
mfccmel 0.584 0.841 0.584 0.593 0.604 0.563 mmsqc80 0.535 0.884 0.535 0.562 0.658 0.450
mfccstft 0.589 0.863 0.589 0.592 0.610 0.579 mmstftq 0.554 0.885 0.554 0.561 0.638 0.459
zsrssp 0.240 0.674 0.240 0.221 0.583 0.025 zsrssp 0.195 0.720 0.195 0.124 0.607 0.044
zrsp 0.216 0.667 0.216 0.199 0.422 0.023 zrsp 0.189 0.711 0.189 0.121 0.585 0.045
scontpoly 0.119 0.500 0.119 0.021 0.000 0.000 tsp 0.119 0.500 0.119 0.021 0.000 0.000
tsp 0.119 0.500 0.119 0.021 0.000 0.000 scontpoly 0.038 0.500 0.038 0.007 0.000 0.000

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc 0.685 0.907 0.685 0.697 0.708 0.664 mms80 0.675 0.898 0.675 0.695 0.697 0.668
mmstftq 0.670 0.914 0.670 0.691 0.691 0.657 mmsqc80 0.639 0.882 0.639 0.668 0.657 0.624
mmsqc80 0.651 0.894 0.651 0.673 0.670 0.636 mmsqc 0.644 0.877 0.644 0.665 0.665 0.636
mmcens 0.632 0.889 0.632 0.655 0.671 0.614 mms60 0.650 0.899 0.650 0.664 0.665 0.639
mmq 0.645 0.903 0.645 0.647 0.678 0.621 mmstftq 0.631 0.882 0.631 0.654 0.652 0.625
mfccmel 0.631 0.901 0.631 0.646 0.679 0.620 mms40 0.636 0.870 0.636 0.653 0.663 0.625
mms80 0.618 0.887 0.618 0.644 0.647 0.601 mfccmel 0.639 0.870 0.639 0.642 0.664 0.632
mms40 0.625 0.885 0.625 0.639 0.671 0.599 mfccstft80 0.624 0.865 0.624 0.640 0.646 0.609
mms60 0.612 0.877 0.612 0.633 0.634 0.588 mmq 0.603 0.854 0.603 0.634 0.617 0.591
mfccstft 0.602 0.873 0.602 0.609 0.638 0.577 mmcens 0.611 0.866 0.611 0.626 0.625 0.601
mfccstft80 0.597 0.858 0.597 0.604 0.623 0.583 mfccstft 0.612 0.872 0.612 0.605 0.627 0.600
zrsp 0.240 0.674 0.240 0.225 0.615 0.029 zsrssp 0.235 0.672 0.235 0.208 0.615 0.029
zsrssp 0.211 0.668 0.211 0.172 0.647 0.039 zrsp 0.208 0.661 0.208 0.184 0.595 0.026
scontpoly 0.115 0.500 0.115 0.021 0.000 0.000 scontpoly 0.119 0.500 0.119 0.021 0.000 0.000
tsp 0.111 0.500 0.111 0.020 0.000 0.000 tsp 0.119 0.500 0.119 0.021 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.2.4 Dropout Rate of 0.6

TABLE B.9: Results of the 4 models with a dropout rate of 0.6 for different feature combi-
nations.

Model 15: (optimizer: Adam) Model 16: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc 0.676 0.923 0.676 0.696 0.781 0.551 mfccmel 0.271 0.764 0.271 0.288 0.877 0.085
mmsqc80 0.650 0.927 0.650 0.684 0.807 0.550 mfccstft80 0.292 0.779 0.292 0.267 0.804 0.049
mms60 0.662 0.916 0.662 0.679 0.828 0.568 mms40 0.257 0.794 0.257 0.247 0.865 0.054
mms80 0.651 0.910 0.651 0.674 0.786 0.522 mfccstft 0.201 0.756 0.201 0.205 0.769 0.048
mmstftq 0.634 0.905 0.634 0.662 0.757 0.556 mmstftq 0.201 0.710 0.201 0.162 0.667 0.017
mmq 0.632 0.912 0.632 0.647 0.782 0.536 mms80 0.198 0.717 0.198 0.160 0.727 0.029
mmcens 0.622 0.897 0.622 0.644 0.735 0.547 mmsqc80 0.190 0.625 0.190 0.143 0.833 0.042
mfccmel 0.628 0.912 0.628 0.644 0.821 0.511 mmsqc 0.246 0.720 0.246 0.140 0.684 0.047
mfccstft80 0.634 0.917 0.634 0.642 0.786 0.519 mmcens 0.222 0.667 0.222 0.132 0.483 0.035
mms40 0.603 0.912 0.603 0.628 0.733 0.472 zrsp 0.194 0.705 0.194 0.126 0.647 0.039
mfccstft 0.569 0.905 0.569 0.595 0.781 0.455 zsrssp 0.186 0.702 0.186 0.122 0.660 0.042
zsrssp 0.257 0.678 0.257 0.202 0.533 0.019 mms60 0.080 0.538 0.080 0.056 0.250 0.002
zrsp 0.249 0.675 0.249 0.198 0.563 0.022 mmq 0.116 0.496 0.116 0.029 0.250 0.002
tsp 0.119 0.500 0.119 0.021 0.000 0.000 scontpoly 0.119 0.500 0.119 0.021 0.000 0.000
scontpoly 0.099 0.500 0.099 0.018 0.000 0.000 tsp 0.111 0.506 0.111 0.020 0.000 0.000

Model 17: (optimizer: Adamax) Model 18: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq 0.636 0.911 0.636 0.657 0.767 0.489 mmsqc 0.704 0.929 0.704 0.721 0.789 0.594
mfccstft80 0.621 0.913 0.621 0.640 0.787 0.478 mms80 0.675 0.918 0.675 0.696 0.827 0.558
mmq 0.575 0.870 0.575 0.595 0.787 0.296 mms40 0.654 0.921 0.654 0.680 0.788 0.536
mfccstft 0.557 0.881 0.557 0.585 0.732 0.373 mmsqc80 0.640 0.925 0.640 0.677 0.744 0.554
mmcens 0.571 0.879 0.571 0.583 0.746 0.389 mmstftq 0.644 0.907 0.644 0.669 0.741 0.541
mmsqc 0.557 0.896 0.557 0.578 0.695 0.427 mmcens 0.638 0.909 0.638 0.658 0.825 0.546
mms80 0.563 0.891 0.563 0.576 0.778 0.361 mms60 0.625 0.910 0.625 0.652 0.800 0.521
mmsqc80 0.545 0.888 0.545 0.572 0.701 0.362 mmq 0.631 0.918 0.631 0.650 0.777 0.523
mms60 0.557 0.900 0.557 0.569 0.755 0.397 mfccstft80 0.624 0.915 0.624 0.645 0.806 0.522
mfccmel 0.558 0.889 0.558 0.562 0.809 0.335 mfccmel 0.603 0.896 0.603 0.628 0.746 0.503
mms40 0.542 0.892 0.542 0.555 0.763 0.338 mfccstft 0.600 0.898 0.600 0.616 0.845 0.458
zrsp 0.222 0.687 0.222 0.154 0.647 0.039 zsrssp 0.211 0.668 0.211 0.160 0.633 0.037
zsrssp 0.221 0.687 0.221 0.152 0.647 0.039 zrsp 0.220 0.670 0.220 0.153 0.600 0.032
tsp 0.119 0.500 0.119 0.021 0.000 0.000 scontpoly 0.119 0.500 0.119 0.021 0.000 0.000
scontpoly 0.111 0.500 0.111 0.020 0.000 0.000 tsp 0.039 0.500 0.039 0.008 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.2.5 Extra Layer and Dropout Rate

TABLE B.10: Results of the 3 models with an extra layer and dropout rate of 0.6 and
0.8 for Adam and Nadam optimizer and 0.2 and 0 for Adamax optimizer with different

feature combinations.

Model 23: (optimizer: Adam and dropout rate: 0.6) Model 24: (optimizer: Adam and dropout rate: 0.8)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mms60 0.626 0.898 0.626 0.653 0.775 0.466 mms40 0.214 0.639 0.214 0.188 0.875 0.042
mmsqc 0.613 0.902 0.613 0.651 0.763 0.430 mfccstft 0.189 0.680 0.189 0.165 0.854 0.042
mmstftq 0.613 0.895 0.613 0.643 0.799 0.474 mms60 0.166 0.571 0.166 0.143 0.957 0.026
mfccstft80 0.605 0.907 0.605 0.615 0.802 0.441 mms80 0.168 0.611 0.168 0.130 0.952 0.024
mms40 0.588 0.881 0.588 0.614 0.743 0.421 mmsqc80 0.154 0.574 0.154 0.123 1.000 0.023
mfccstft 0.587 0.891 0.587 0.612 0.817 0.373 mmsqc 0.189 0.614 0.189 0.113 0.867 0.047
mmsqc80 0.591 0.879 0.591 0.610 0.741 0.399 mfccstft80 0.125 0.614 0.125 0.108 0.958 0.027
mms80 0.572 0.891 0.572 0.588 0.725 0.416 mmcens 0.121 0.577 0.121 0.107 1.000 0.026
mfccmel 0.570 0.889 0.570 0.586 0.786 0.458 mmq 0.128 0.572 0.128 0.104 1.000 0.024
mmq 0.541 0.881 0.541 0.569 0.765 0.330 mmstftq 0.141 0.573 0.141 0.103 1.000 0.018
mmcens 0.551 0.882 0.551 0.565 0.715 0.368 mfccmel 0.124 0.560 0.124 0.097 1.000 0.017
zsrssp 0.215 0.649 0.215 0.149 0.714 0.006 zsrssp 0.165 0.622 0.165 0.070 0.000 0.000
zrsp 0.210 0.659 0.210 0.144 0.526 0.012 zrsp 0.162 0.608 0.162 0.060 0.000 0.000
tsp 0.038 0.466 0.038 0.007 0.000 0.000 tsp 0.119 0.500 0.119 0.021 0.000 0.000
scontpoly 0.038 0.500 0.038 0.007 0.000 0.000 scontpoly 0.115 0.500 0.115 0.021 0.000 0.000

Model 25: (optimizer: Adamax and dropout rate: 0.2) Model 26: (optimizer: Adamax and dropout rate: 0)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.662 0.906 0.662 0.690 0.689 0.650 mmstftq 0.618 0.850 0.618 0.636 0.624 0.608
mms80 0.664 0.894 0.664 0.685 0.692 0.652 mms80 0.609 0.855 0.609 0.626 0.619 0.602
mms40 0.671 0.900 0.671 0.684 0.718 0.657 mmsqc80 0.575 0.823 0.575 0.601 0.583 0.572
mmstftq 0.649 0.893 0.649 0.670 0.668 0.638 mmcens 0.599 0.849 0.599 0.599 0.612 0.593
mfccmel 0.650 0.890 0.650 0.654 0.687 0.638 mms40 0.582 0.825 0.582 0.595 0.594 0.577
mfccstft80 0.642 0.886 0.642 0.653 0.661 0.631 mmsqc 0.575 0.845 0.575 0.592 0.586 0.572
mmcens 0.636 0.887 0.636 0.642 0.662 0.607 mms60 0.564 0.819 0.564 0.583 0.573 0.556
mmsqc 0.621 0.876 0.621 0.637 0.646 0.599 mfccmel 0.570 0.837 0.570 0.581 0.575 0.560
mms60 0.608 0.886 0.608 0.622 0.642 0.572 mmq 0.539 0.831 0.539 0.561 0.549 0.526
mfccstft 0.614 0.875 0.614 0.618 0.639 0.591 mfccstft80 0.560 0.827 0.560 0.554 0.565 0.552
mmq 0.565 0.867 0.565 0.583 0.610 0.548 mfccstft 0.540 0.829 0.540 0.531 0.548 0.533
zrsp 0.249 0.664 0.249 0.230 0.633 0.037 zsrssp 0.211 0.666 0.211 0.184 0.647 0.039
zsrssp 0.220 0.680 0.220 0.185 0.647 0.039 zrsp 0.209 0.661 0.209 0.182 0.617 0.035
scontpoly 0.119 0.500 0.119 0.021 0.000 0.000 scontpoly 0.115 0.500 0.115 0.021 0.000 0.000
tsp 0.099 0.500 0.099 0.018 0.000 0.000 tsp 0.039 0.500 0.039 0.008 0.000 0.000

Model 27: (optimizer: Nadam and dropout rate: 0.6) Model 28: (optimizer: Nadam and dropout rate: 0.8)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq 0.639 0.897 0.639 0.668 0.826 0.465 mmsqc 0.182 0.638 0.182 0.168 0.879 0.035
mmsqc 0.615 0.898 0.615 0.638 0.807 0.440 mms80 0.204 0.651 0.204 0.167 1.000 0.026
mmsqc80 0.615 0.893 0.615 0.637 0.780 0.436 mms40 0.179 0.632 0.179 0.154 0.857 0.036
mms60 0.611 0.907 0.611 0.635 0.771 0.458 mms60 0.111 0.596 0.111 0.142 1.000 0.026
mms40 0.605 0.901 0.605 0.627 0.765 0.464 mmcens 0.160 0.615 0.160 0.125 1.000 0.026
mfccstft 0.603 0.904 0.603 0.625 0.843 0.404 mfccstft80 0.141 0.653 0.141 0.119 0.957 0.026
mms80 0.578 0.887 0.578 0.608 0.691 0.437 mmstftq 0.155 0.578 0.155 0.117 1.000 0.014
mfccmel 0.593 0.886 0.593 0.606 0.741 0.437 mfccstft 0.124 0.605 0.124 0.111 0.857 0.022
mfccstft80 0.570 0.891 0.570 0.600 0.713 0.404 mfccmel 0.136 0.570 0.136 0.105 1.000 0.017
mmq 0.569 0.887 0.569 0.597 0.798 0.430 mmq 0.145 0.550 0.145 0.102 1.000 0.022
mmcens 0.559 0.879 0.559 0.576 0.735 0.362 mmsqc80 0.065 0.548 0.065 0.087 1.000 0.016
zsrssp 0.232 0.663 0.232 0.184 0.524 0.013 zsrssp 0.157 0.638 0.157 0.067 0.000 0.000
zrsp 0.214 0.654 0.214 0.150 0.522 0.014 zrsp 0.157 0.589 0.157 0.059 0.000 0.000
tsp 0.119 0.511 0.119 0.021 0.000 0.000 tsp 0.038 0.500 0.038 0.007 0.000 0.000
scontpoly 0.038 0.500 0.038 0.007 0.000 0.000 scontpoly 0.038 0.500 0.038 0.007 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.3 ESC Datasets - Single Feature Input

B.3.1 Baseline Model Architecture

TABLE B.11: Results of the 6 models for different features - ESC-10.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.613 0.880 0.613 0.601 0.642 0.425 mel60 0.463 0.852 0.463 0.442 0.526 0.125
mfcc80 0.588 0.879 0.588 0.574 0.667 0.425 mel80 0.450 0.858 0.450 0.433 0.714 0.188
mel40 0.563 0.891 0.563 0.567 0.603 0.438 mel40 0.450 0.875 0.450 0.427 0.500 0.113
mel20 0.575 0.897 0.575 0.558 0.617 0.463 mel20 0.438 0.886 0.438 0.413 0.455 0.063
mel60 0.538 0.843 0.538 0.528 0.548 0.425 mfcc80 0.425 0.852 0.425 0.364 0.455 0.125
mel80 0.525 0.895 0.525 0.520 0.611 0.413 mfcc60 0.388 0.863 0.388 0.314 0.517 0.188
mfcc40 0.538 0.881 0.538 0.516 0.667 0.350 mfcc40 0.350 0.795 0.350 0.294 0.375 0.113
stft80 0.513 0.888 0.513 0.490 0.643 0.225 stft80 0.325 0.754 0.325 0.258 0.000 0.000
stft40 0.488 0.885 0.488 0.482 0.571 0.150 stft60 0.263 0.737 0.263 0.197 0.000 0.000
stft60 0.500 0.883 0.500 0.480 0.615 0.200 cens40 0.275 0.754 0.275 0.176 0.000 0.000
stft20 0.413 0.868 0.413 0.406 0.588 0.125 cens80 0.225 0.706 0.225 0.154 0.000 0.000
cens20 0.350 0.704 0.350 0.335 0.405 0.188 cqt40 0.175 0.636 0.175 0.115 0.000 0.000
cqt80 0.350 0.784 0.350 0.320 0.385 0.125 stft40 0.188 0.721 0.188 0.114 0.000 0.000
cqt40 0.313 0.777 0.313 0.288 0.366 0.188 stft20 0.213 0.715 0.213 0.113 0.000 0.000
cqt20 0.288 0.799 0.288 0.269 0.333 0.100 cqt80 0.163 0.637 0.163 0.107 0.000 0.000
cens80 0.313 0.773 0.313 0.252 0.370 0.213 cens20 0.125 0.568 0.125 0.087 0.000 0.000
cens40 0.250 0.795 0.250 0.242 0.234 0.188 cqt20 0.138 0.609 0.138 0.075 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel40 0.488 0.878 0.488 0.465 0.765 0.163 mfcc40 0.650 0.894 0.650 0.644 0.723 0.425
mfcc60 0.475 0.890 0.475 0.410 0.462 0.075 mel40 0.588 0.900 0.588 0.597 0.603 0.438
stft80 0.425 0.859 0.425 0.409 0.667 0.025 mfcc60 0.600 0.877 0.600 0.594 0.630 0.363
mel80 0.425 0.831 0.425 0.405 0.579 0.138 mel20 0.600 0.899 0.600 0.587 0.545 0.375
stft40 0.400 0.859 0.400 0.385 0.500 0.013 mfcc80 0.575 0.874 0.575 0.558 0.630 0.363
mel60 0.400 0.836 0.400 0.383 0.533 0.100 mel80 0.550 0.889 0.550 0.549 0.635 0.413
mel20 0.400 0.870 0.400 0.373 0.714 0.063 mel60 0.500 0.857 0.500 0.493 0.534 0.388
stft60 0.388 0.850 0.388 0.351 0.500 0.013 stft40 0.463 0.874 0.463 0.450 0.500 0.188
cqt40 0.350 0.754 0.350 0.317 0.167 0.013 stft80 0.488 0.857 0.488 0.436 0.613 0.238
cens80 0.363 0.820 0.363 0.312 0.444 0.150 stft20 0.413 0.868 0.413 0.383 0.524 0.138
cqt80 0.325 0.746 0.325 0.303 0.000 0.000 stft60 0.388 0.873 0.388 0.355 0.536 0.188
mfcc40 0.313 0.823 0.313 0.282 0.600 0.075 cqt20 0.338 0.807 0.338 0.330 0.452 0.175
stft20 0.313 0.839 0.313 0.262 1.000 0.013 cens80 0.363 0.774 0.363 0.317 0.422 0.238
cens40 0.275 0.847 0.275 0.250 0.478 0.138 cqt40 0.325 0.789 0.325 0.303 0.385 0.188
cqt20 0.263 0.767 0.263 0.245 0.000 0.000 cqt80 0.325 0.773 0.325 0.289 0.366 0.188
cens20 0.263 0.682 0.263 0.221 0.500 0.050 cens20 0.288 0.676 0.288 0.281 0.333 0.175
mfcc80 0.225 0.799 0.225 0.177 0.308 0.050 cens40 0.225 0.792 0.225 0.216 0.239 0.200

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

cens40 0.175 0.532 0.175 0.116 0.000 0.000 mel60 0.400 0.838 0.400 0.383 0.647 0.138
cens80 0.225 0.498 0.225 0.115 0.000 0.000 mel40 0.413 0.828 0.413 0.367 0.667 0.125
mfcc40 0.125 0.482 0.125 0.093 0.094 0.075 mel80 0.400 0.813 0.400 0.365 0.565 0.163
mel80 0.163 0.543 0.163 0.082 0.417 0.125 mfcc60 0.413 0.830 0.413 0.361 0.571 0.200
mel40 0.088 0.479 0.088 0.078 0.000 0.000 mel20 0.375 0.843 0.375 0.320 0.778 0.088
stft40 0.150 0.576 0.150 0.075 0.000 0.000 mfcc80 0.388 0.847 0.388 0.305 0.464 0.163
cens20 0.100 0.453 0.100 0.049 0.000 0.000 mfcc40 0.350 0.842 0.350 0.300 0.450 0.113
mfcc60 0.075 0.425 0.075 0.037 0.017 0.013 cens80 0.288 0.704 0.288 0.197 0.000 0.000
mel60 0.050 0.463 0.050 0.037 0.083 0.013 cens40 0.200 0.620 0.200 0.118 0.000 0.000
cqt20 0.100 0.523 0.100 0.037 0.000 0.000 cens20 0.125 0.520 0.125 0.048 0.000 0.000
mel20 0.100 0.545 0.100 0.036 0.182 0.025 stft40 0.100 0.616 0.100 0.024 0.000 0.000
stft60 0.088 0.525 0.088 0.036 0.000 0.000 stft20 0.100 0.590 0.100 0.023 0.000 0.000
mfcc80 0.050 0.443 0.050 0.020 0.046 0.038 stft80 0.100 0.622 0.100 0.021 0.000 0.000
cqt40 0.100 0.491 0.100 0.018 0.000 0.000 stft60 0.100 0.596 0.100 0.020 0.000 0.000
stft20 0.088 0.537 0.088 0.017 0.000 0.000 cqt80 0.088 0.560 0.088 0.019 0.000 0.000
stft80 0.025 0.501 0.025 0.017 0.000 0.000 cqt40 0.100 0.538 0.100 0.019 0.000 0.000
cqt80 0.075 0.530 0.075 0.016 0.000 0.000 cqt20 0.100 0.550 0.100 0.018 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.12: Results of the 6 models for different features - ESC-50.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.313 0.854 0.313 0.293 0.504 0.170 mel80 0.173 0.780 0.173 0.139 0.394 0.033
mfcc60 0.305 0.856 0.305 0.290 0.503 0.188 mel60 0.158 0.781 0.158 0.131 0.480 0.030
mfcc40 0.288 0.850 0.288 0.271 0.456 0.130 mel40 0.153 0.796 0.153 0.126 0.429 0.030
mel20 0.263 0.858 0.263 0.249 0.519 0.105 mfcc80 0.143 0.782 0.143 0.123 0.375 0.015
mel40 0.240 0.855 0.240 0.228 0.540 0.118 mel20 0.148 0.800 0.148 0.118 0.450 0.023
mel60 0.225 0.833 0.225 0.207 0.402 0.088 mfcc40 0.138 0.783 0.138 0.114 0.235 0.010
mel80 0.220 0.835 0.220 0.202 0.388 0.095 mfcc60 0.133 0.782 0.133 0.104 0.333 0.015
stft60 0.153 0.779 0.153 0.130 0.395 0.038 cens40 0.060 0.594 0.060 0.037 0.000 0.000
stft20 0.138 0.789 0.138 0.119 0.444 0.040 cens20 0.048 0.550 0.048 0.036 0.000 0.000
stft40 0.145 0.786 0.145 0.113 0.395 0.043 stft80 0.065 0.685 0.065 0.030 0.000 0.000
stft80 0.130 0.775 0.130 0.109 0.289 0.033 cens80 0.050 0.599 0.050 0.027 0.000 0.000
cqt80 0.123 0.758 0.123 0.099 0.257 0.023 cqt80 0.045 0.645 0.045 0.021 0.000 0.000
cqt20 0.110 0.768 0.110 0.090 0.393 0.028 cqt20 0.035 0.571 0.035 0.018 0.000 0.000
cqt40 0.110 0.743 0.110 0.084 0.324 0.028 stft60 0.055 0.682 0.055 0.015 0.000 0.000
cens20 0.093 0.715 0.093 0.079 0.235 0.020 stft20 0.045 0.642 0.045 0.015 0.000 0.000
cens40 0.078 0.719 0.078 0.070 0.141 0.028 stft40 0.045 0.675 0.045 0.013 0.000 0.000
cens80 0.078 0.680 0.078 0.054 0.153 0.045 cqt40 0.028 0.612 0.028 0.004 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.188 0.845 0.188 0.146 0.214 0.008 mfcc80 0.313 0.850 0.313 0.297 0.511 0.168
stft40 0.148 0.794 0.148 0.119 0.533 0.020 mfcc60 0.310 0.848 0.310 0.290 0.515 0.173
mel40 0.128 0.773 0.128 0.118 0.421 0.020 mfcc40 0.300 0.866 0.300 0.275 0.496 0.145
stft60 0.153 0.797 0.153 0.118 0.538 0.018 mel20 0.258 0.854 0.258 0.242 0.556 0.113
stft20 0.153 0.795 0.153 0.117 0.636 0.018 mel40 0.238 0.850 0.238 0.218 0.543 0.110
stft80 0.153 0.793 0.153 0.117 0.563 0.023 mel80 0.228 0.845 0.228 0.215 0.488 0.103
mel80 0.133 0.752 0.133 0.116 0.619 0.033 mel60 0.200 0.844 0.200 0.188 0.468 0.093
mel20 0.125 0.795 0.125 0.106 0.333 0.018 stft60 0.168 0.780 0.168 0.136 0.381 0.040
mfcc60 0.115 0.775 0.115 0.098 0.077 0.003 stft20 0.143 0.799 0.143 0.120 0.441 0.038
mel60 0.113 0.745 0.113 0.097 0.550 0.028 stft80 0.150 0.767 0.150 0.118 0.366 0.038
mfcc40 0.103 0.747 0.103 0.088 0.400 0.005 stft40 0.135 0.786 0.135 0.108 0.359 0.035
cens40 0.100 0.765 0.100 0.086 0.533 0.020 cqt80 0.125 0.744 0.125 0.103 0.267 0.030
cqt80 0.108 0.751 0.108 0.079 0.438 0.018 cqt40 0.123 0.748 0.123 0.102 0.297 0.028
cqt40 0.108 0.756 0.108 0.077 0.429 0.015 cens40 0.093 0.720 0.093 0.086 0.194 0.033
cqt20 0.105 0.752 0.105 0.072 0.429 0.008 cens20 0.100 0.708 0.100 0.083 0.324 0.030
cens80 0.088 0.764 0.088 0.065 0.423 0.028 cqt20 0.095 0.762 0.095 0.076 0.333 0.025
cens20 0.080 0.707 0.080 0.060 0.556 0.013 cens80 0.088 0.695 0.088 0.063 0.192 0.048

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

cens80 0.045 0.507 0.045 0.020 0.000 0.000 mel40 0.113 0.712 0.113 0.078 0.333 0.013
mel80 0.023 0.535 0.023 0.014 0.033 0.005 mel20 0.108 0.713 0.108 0.074 0.545 0.015
mel60 0.020 0.533 0.020 0.013 0.019 0.003 mel60 0.103 0.690 0.103 0.064 0.450 0.023
mel40 0.018 0.508 0.018 0.008 0.026 0.003 mel80 0.095 0.671 0.095 0.063 0.308 0.020
mfcc40 0.025 0.517 0.025 0.007 0.036 0.013 cens80 0.043 0.583 0.043 0.018 0.000 0.000
cens40 0.013 0.510 0.013 0.006 0.000 0.000 cens40 0.033 0.533 0.033 0.016 0.000 0.000
mfcc80 0.028 0.530 0.028 0.005 0.046 0.023 mfcc80 0.023 0.524 0.023 0.012 0.000 0.000
cens20 0.025 0.514 0.025 0.005 0.000 0.000 stft80 0.033 0.545 0.033 0.011 0.000 0.000
mfcc60 0.020 0.507 0.020 0.005 0.026 0.013 mfcc40 0.023 0.519 0.023 0.009 0.000 0.000
cqt80 0.025 0.499 0.025 0.005 0.000 0.000 mfcc60 0.023 0.515 0.023 0.008 0.000 0.000
mel20 0.013 0.503 0.013 0.004 0.000 0.000 cqt80 0.033 0.518 0.033 0.003 0.000 0.000
cqt40 0.025 0.491 0.025 0.003 0.000 0.000 cens20 0.023 0.505 0.023 0.002 0.000 0.000
stft40 0.020 0.503 0.020 0.002 0.000 0.000 cqt40 0.020 0.509 0.020 0.001 0.000 0.000
stft80 0.025 0.515 0.025 0.002 0.000 0.000 stft60 0.020 0.541 0.020 0.001 0.000 0.000
cqt20 0.023 0.498 0.023 0.002 0.000 0.000 stft40 0.018 0.529 0.018 0.001 0.000 0.000
stft60 0.020 0.505 0.020 0.001 0.000 0.000 stft20 0.020 0.524 0.020 0.001 0.000 0.000
stft20 0.015 0.503 0.015 0.001 0.000 0.000 cqt20 0.020 0.513 0.020 0.001 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.13: Results of the model with Adamax optimizer for different features - ESC-50.

Model 3: (optimizer: Adamax)
Features acc AUC micro f1score macro f1score precision recall
mfcc60 0.318 0.871 0.318 0.312 0.465 0.133
mfcc80 0.323 0.869 0.323 0.304 0.477 0.158
mfcc40 0.290 0.866 0.290 0.275 0.568 0.125
mel20 0.233 0.858 0.233 0.209 0.525 0.053
mel80 0.185 0.826 0.185 0.172 0.488 0.053
mel40 0.190 0.834 0.190 0.170 0.462 0.045
mel60 0.175 0.832 0.175 0.160 0.450 0.045
stft20 0.158 0.810 0.158 0.138 0.560 0.035
stft60 0.165 0.792 0.165 0.135 0.367 0.028
stft40 0.150 0.802 0.150 0.124 0.414 0.030
stft80 0.148 0.793 0.148 0.119 0.289 0.028
cqt40 0.135 0.758 0.135 0.110 0.345 0.025
cens40 0.105 0.745 0.105 0.095 0.387 0.030
cqt80 0.115 0.757 0.115 0.094 0.281 0.023
cens20 0.108 0.725 0.108 0.092 0.412 0.018
cqt20 0.118 0.773 0.118 0.091 0.550 0.028
cens80 0.088 0.728 0.088 0.069 0.242 0.040
acc - accuracy; AUC - area under the receiver operating characteristic curve.
All metrics range from [0, 1] (the higher, the better).
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B.3.2 Extra Layer

TABLE B.14: Results of the 4 models with extra layer for different features - ESC-10.

Model 7: (optimizer: Adam) Model 8: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc40 0.600 0.870 0.600 0.587 0.667 0.325 mel20 0.463 0.880 0.463 0.432 0.750 0.075
mel40 0.550 0.865 0.550 0.560 0.604 0.400 mel40 0.413 0.865 0.413 0.381 0.667 0.100
mfcc80 0.550 0.876 0.550 0.551 0.641 0.313 mel80 0.400 0.853 0.400 0.355 0.714 0.125
mfcc60 0.575 0.890 0.575 0.550 0.700 0.350 mel60 0.375 0.842 0.375 0.334 0.615 0.100
mel20 0.563 0.890 0.563 0.550 0.589 0.413 mfcc40 0.388 0.829 0.388 0.310 0.400 0.125
stft80 0.513 0.884 0.513 0.499 0.640 0.200 stft80 0.325 0.773 0.325 0.273 0.000 0.000
stft60 0.500 0.879 0.500 0.491 0.542 0.163 mfcc60 0.313 0.818 0.313 0.270 0.400 0.200
mel60 0.488 0.853 0.488 0.485 0.510 0.325 mfcc80 0.238 0.806 0.238 0.167 0.308 0.050
mel80 0.488 0.889 0.488 0.477 0.612 0.375 cens80 0.213 0.651 0.213 0.138 0.000 0.000
stft40 0.488 0.870 0.488 0.469 0.655 0.238 stft60 0.200 0.735 0.200 0.138 0.000 0.000
stft20 0.463 0.881 0.463 0.453 0.625 0.188 stft20 0.238 0.737 0.238 0.137 0.000 0.000
cens20 0.313 0.686 0.313 0.303 0.317 0.163 cens40 0.188 0.682 0.188 0.128 0.000 0.000
cqt20 0.313 0.820 0.313 0.287 0.323 0.125 cqt40 0.188 0.634 0.188 0.105 0.000 0.000
cqt40 0.300 0.794 0.300 0.270 0.440 0.138 cqt80 0.150 0.665 0.150 0.082 0.000 0.000
cqt80 0.275 0.782 0.275 0.239 0.355 0.138 cqt20 0.125 0.638 0.125 0.082 0.000 0.000
cens80 0.288 0.746 0.288 0.224 0.326 0.175 stft40 0.163 0.742 0.163 0.072 0.000 0.000
cens40 0.213 0.774 0.213 0.206 0.229 0.200 cens20 0.088 0.542 0.088 0.030 0.000 0.000

Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

stft40 0.488 0.871 0.488 0.467 0.667 0.025 mfcc80 0.575 0.880 0.575 0.565 0.620 0.388
stft80 0.463 0.864 0.463 0.437 0.500 0.025 mel40 0.538 0.873 0.538 0.530 0.547 0.363
mel40 0.425 0.856 0.425 0.404 0.727 0.100 mfcc40 0.538 0.872 0.538 0.529 0.667 0.275
mel60 0.388 0.831 0.388 0.371 0.750 0.113 mel20 0.525 0.883 0.525 0.524 0.564 0.388
stft60 0.400 0.847 0.400 0.368 0.500 0.013 stft80 0.550 0.887 0.550 0.516 0.645 0.250
mel20 0.413 0.875 0.413 0.363 0.857 0.075 mfcc60 0.525 0.881 0.525 0.495 0.622 0.288
mel80 0.338 0.823 0.338 0.303 0.545 0.075 stft40 0.513 0.890 0.513 0.485 0.710 0.275
cens40 0.338 0.837 0.338 0.298 0.355 0.138 mel60 0.463 0.860 0.463 0.461 0.490 0.300
mfcc60 0.300 0.793 0.300 0.294 0.000 0.000 mel80 0.475 0.882 0.475 0.458 0.620 0.388
cens80 0.338 0.805 0.338 0.290 0.382 0.163 stft60 0.475 0.873 0.475 0.449 0.563 0.225
cqt80 0.325 0.754 0.325 0.289 0.000 0.000 stft20 0.413 0.858 0.413 0.394 0.500 0.250
stft20 0.350 0.848 0.350 0.288 0.000 0.000 cens40 0.325 0.781 0.325 0.317 0.324 0.275
cqt40 0.338 0.763 0.338 0.287 0.500 0.038 cqt40 0.338 0.769 0.338 0.300 0.289 0.138
mfcc40 0.325 0.810 0.325 0.270 0.000 0.000 cqt20 0.313 0.803 0.313 0.293 0.364 0.150
cens20 0.313 0.687 0.313 0.269 0.667 0.050 cens80 0.325 0.750 0.325 0.268 0.391 0.225
cqt20 0.263 0.758 0.263 0.216 0.000 0.000 cqt80 0.250 0.757 0.250 0.204 0.241 0.088
mfcc80 0.250 0.774 0.250 0.212 0.000 0.000 cens20 0.200 0.653 0.200 0.192 0.226 0.150
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.15: Results of the 4 models with extra layer for different features - ESC-50.

Model 7: (optimizer: Adam) Model 8: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.300 0.856 0.300 0.281 0.505 0.130 mfcc80 0.133 0.775 0.133 0.114 0.667 0.010
mfcc60 0.288 0.849 0.288 0.272 0.474 0.113 mel20 0.140 0.783 0.140 0.112 0.389 0.018
mel20 0.270 0.865 0.270 0.261 0.533 0.100 mfcc40 0.135 0.782 0.135 0.108 0.500 0.008
mfcc40 0.288 0.853 0.288 0.260 0.549 0.125 mel40 0.133 0.778 0.133 0.099 0.722 0.033
mel40 0.238 0.857 0.238 0.213 0.574 0.088 mfcc60 0.120 0.780 0.120 0.095 0.500 0.008
mel60 0.220 0.850 0.220 0.199 0.538 0.070 mel80 0.113 0.775 0.113 0.086 0.412 0.018
mel80 0.213 0.833 0.213 0.182 0.397 0.058 mel60 0.115 0.775 0.115 0.070 0.550 0.028
stft40 0.145 0.780 0.145 0.117 0.406 0.033 cens20 0.053 0.518 0.053 0.028 0.000 0.000
stft20 0.138 0.801 0.138 0.116 0.382 0.033 cens40 0.055 0.588 0.055 0.020 0.000 0.000
stft80 0.143 0.773 0.143 0.109 0.433 0.033 cqt80 0.040 0.627 0.040 0.016 0.000 0.000
stft60 0.148 0.780 0.148 0.109 0.368 0.035 cqt40 0.038 0.625 0.038 0.012 0.000 0.000
cqt20 0.115 0.768 0.115 0.087 0.375 0.023 cens80 0.045 0.604 0.045 0.011 0.000 0.000
cens20 0.103 0.709 0.103 0.084 0.306 0.028 stft40 0.040 0.667 0.040 0.010 0.000 0.000
cens40 0.088 0.721 0.088 0.082 0.132 0.025 stft80 0.045 0.672 0.045 0.008 0.000 0.000
cqt40 0.103 0.751 0.103 0.080 0.296 0.020 stft20 0.045 0.651 0.045 0.007 0.000 0.000
cqt80 0.090 0.737 0.090 0.075 0.267 0.020 stft60 0.048 0.667 0.048 0.007 0.000 0.000
cens80 0.090 0.684 0.090 0.073 0.161 0.045 cqt20 0.025 0.595 0.025 0.005 0.000 0.000

Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

stft40 0.158 0.798 0.158 0.128 0.571 0.020 mfcc80 0.283 0.851 0.283 0.271 0.509 0.138
stft60 0.153 0.790 0.153 0.117 0.750 0.023 mfcc40 0.280 0.860 0.280 0.256 0.486 0.090
stft80 0.143 0.794 0.143 0.115 0.571 0.020 mel20 0.258 0.867 0.258 0.237 0.559 0.095
mfcc80 0.135 0.824 0.135 0.112 0.333 0.003 mel40 0.223 0.858 0.223 0.205 0.500 0.085
stft20 0.143 0.799 0.143 0.103 0.538 0.018 mfcc60 0.235 0.853 0.235 0.204 0.394 0.070
cens40 0.120 0.786 0.120 0.096 0.474 0.023 mel80 0.203 0.840 0.203 0.184 0.456 0.078
mfcc60 0.128 0.797 0.128 0.089 0.400 0.005 mel60 0.203 0.843 0.203 0.180 0.520 0.065
cens80 0.113 0.759 0.113 0.086 0.448 0.033 stft20 0.163 0.794 0.163 0.140 0.436 0.043
mel20 0.115 0.785 0.115 0.084 0.438 0.018 stft40 0.163 0.791 0.163 0.138 0.366 0.038
cqt80 0.105 0.769 0.105 0.078 0.333 0.010 stft60 0.160 0.781 0.160 0.133 0.405 0.038
cqt20 0.110 0.767 0.110 0.074 0.400 0.005 stft80 0.165 0.786 0.165 0.126 0.293 0.030
mfcc40 0.113 0.762 0.113 0.072 0.400 0.005 cqt80 0.135 0.746 0.135 0.108 0.310 0.023
mel60 0.080 0.704 0.080 0.069 0.250 0.005 cqt40 0.133 0.754 0.133 0.106 0.306 0.028
cqt40 0.105 0.761 0.105 0.069 0.444 0.020 cens20 0.120 0.701 0.120 0.098 0.385 0.038
mel80 0.080 0.682 0.080 0.067 0.636 0.018 cens40 0.098 0.728 0.098 0.088 0.195 0.040
mel40 0.085 0.734 0.085 0.062 0.700 0.018 cqt20 0.110 0.773 0.110 0.081 0.360 0.023
cens20 0.088 0.700 0.088 0.061 0.545 0.015 cens80 0.098 0.690 0.098 0.079 0.182 0.055
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.3.3 Dropout Rate of 0.2

TABLE B.16: Results of the 4 best models for single features and dropout of 0.2 - ESC-10.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.650 0.878 0.650 0.647 0.676 0.625 mel40 0.525 0.881 0.525 0.517 0.600 0.225
mfcc40 0.625 0.893 0.625 0.618 0.644 0.588 mfcc80 0.513 0.891 0.513 0.497 0.647 0.413
mfcc80 0.600 0.873 0.600 0.586 0.613 0.575 mel80 0.500 0.860 0.500 0.482 0.600 0.263
mel80 0.525 0.862 0.525 0.533 0.547 0.513 mfcc60 0.500 0.888 0.500 0.476 0.583 0.438
mel60 0.538 0.851 0.538 0.531 0.557 0.488 mel60 0.488 0.865 0.488 0.469 0.583 0.263
mel40 0.538 0.861 0.538 0.530 0.557 0.488 mel20 0.450 0.872 0.450 0.435 0.364 0.100
mel20 0.538 0.858 0.538 0.526 0.571 0.500 mfcc40 0.425 0.850 0.425 0.390 0.481 0.313
stft80 0.525 0.877 0.525 0.515 0.649 0.300 stft40 0.250 0.745 0.250 0.181 0.000 0.000
stft60 0.513 0.865 0.513 0.498 0.524 0.275 cens80 0.263 0.721 0.263 0.170 0.000 0.000
stft40 0.475 0.874 0.475 0.471 0.605 0.325 stft20 0.238 0.739 0.238 0.143 0.000 0.000
stft20 0.400 0.855 0.400 0.399 0.450 0.225 cens40 0.213 0.710 0.213 0.142 0.000 0.000
cqt20 0.375 0.780 0.375 0.371 0.395 0.213 stft60 0.213 0.731 0.213 0.141 0.000 0.000
cqt40 0.375 0.781 0.375 0.364 0.393 0.300 stft80 0.200 0.746 0.200 0.137 0.000 0.000
cens20 0.300 0.693 0.300 0.288 0.353 0.225 cqt40 0.188 0.648 0.188 0.137 0.000 0.000
cens80 0.325 0.763 0.325 0.281 0.370 0.213 cqt80 0.175 0.673 0.175 0.111 0.000 0.000
cqt80 0.300 0.754 0.300 0.254 0.305 0.225 cens20 0.125 0.589 0.125 0.066 0.000 0.000
cens40 0.225 0.747 0.225 0.219 0.221 0.188 cqt20 0.138 0.632 0.138 0.066 0.000 0.000

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc40 0.588 0.909 0.588 0.575 0.659 0.363 mfcc60 0.625 0.874 0.625 0.621 0.657 0.575
mfcc60 0.575 0.910 0.575 0.570 0.640 0.400 mfcc40 0.600 0.894 0.600 0.603 0.608 0.563
mfcc80 0.550 0.870 0.550 0.535 0.595 0.313 mfcc80 0.613 0.878 0.613 0.594 0.639 0.575
mel40 0.525 0.886 0.525 0.533 0.617 0.363 mel80 0.550 0.873 0.550 0.552 0.574 0.488
mel20 0.513 0.865 0.513 0.515 0.526 0.250 mel40 0.550 0.878 0.550 0.551 0.581 0.538
stft80 0.538 0.884 0.538 0.511 0.739 0.213 mel60 0.550 0.851 0.550 0.541 0.600 0.525
mel60 0.500 0.870 0.500 0.491 0.614 0.338 mel20 0.525 0.846 0.525 0.522 0.562 0.513
stft40 0.500 0.886 0.500 0.488 0.833 0.125 stft40 0.463 0.879 0.463 0.463 0.565 0.325
mel80 0.475 0.844 0.475 0.462 0.605 0.288 stft80 0.475 0.859 0.475 0.455 0.587 0.338
stft60 0.450 0.885 0.450 0.423 0.692 0.225 stft60 0.463 0.857 0.463 0.430 0.585 0.300
stft20 0.375 0.866 0.375 0.349 0.583 0.088 cqt20 0.400 0.793 0.400 0.391 0.326 0.188
cqt80 0.313 0.762 0.313 0.302 0.313 0.063 cqt40 0.363 0.774 0.363 0.339 0.375 0.225
cqt20 0.313 0.773 0.313 0.289 0.400 0.050 stft20 0.350 0.851 0.350 0.325 0.436 0.213
cens80 0.325 0.805 0.325 0.283 0.395 0.188 cens80 0.363 0.757 0.363 0.306 0.435 0.250
cens20 0.288 0.688 0.288 0.270 0.429 0.075 cens40 0.250 0.728 0.250 0.246 0.235 0.200
cqt40 0.275 0.756 0.275 0.269 0.286 0.050 cens20 0.263 0.679 0.263 0.246 0.281 0.200
cens40 0.275 0.821 0.275 0.262 0.333 0.175 cqt80 0.263 0.737 0.263 0.221 0.293 0.213
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.17: Results of the 4 best models for single features and dropout of 0.2 - ESC-50.

Model 11: (optimizer: Adam) Model 12: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc60 0.353 0.811 0.353 0.344 0.419 0.303 mfcc80 0.275 0.860 0.275 0.258 0.505 0.125
mfcc40 0.335 0.806 0.335 0.328 0.394 0.283 mfcc60 0.255 0.859 0.255 0.236 0.448 0.108
mfcc80 0.303 0.790 0.303 0.293 0.359 0.253 mfcc40 0.245 0.856 0.245 0.219 0.495 0.113
mel20 0.255 0.824 0.255 0.237 0.379 0.138 mel20 0.178 0.808 0.178 0.163 0.400 0.040
mel40 0.240 0.817 0.240 0.229 0.406 0.178 mel40 0.173 0.799 0.173 0.159 0.387 0.060
mel60 0.238 0.799 0.238 0.225 0.328 0.148 mel60 0.173 0.785 0.173 0.157 0.364 0.060
mel80 0.235 0.800 0.235 0.224 0.330 0.150 mel80 0.170 0.782 0.170 0.151 0.338 0.058
stft40 0.145 0.748 0.145 0.133 0.288 0.053 cens80 0.080 0.603 0.080 0.030 0.000 0.000
stft60 0.148 0.740 0.148 0.127 0.271 0.058 cqt40 0.053 0.653 0.053 0.025 0.000 0.000
stft80 0.140 0.730 0.140 0.121 0.315 0.058 cqt80 0.048 0.679 0.048 0.024 0.000 0.000
cqt80 0.118 0.703 0.118 0.110 0.163 0.043 stft80 0.053 0.704 0.053 0.023 0.000 0.000
stft20 0.123 0.750 0.123 0.110 0.339 0.050 cens20 0.038 0.536 0.038 0.023 0.000 0.000
cqt20 0.105 0.731 0.105 0.093 0.209 0.035 stft60 0.060 0.702 0.060 0.021 0.000 0.000
cqt40 0.108 0.720 0.108 0.093 0.222 0.050 stft40 0.053 0.696 0.053 0.018 0.000 0.000
cens40 0.090 0.684 0.090 0.081 0.160 0.065 cqt20 0.035 0.606 0.035 0.012 0.000 0.000
cens20 0.088 0.678 0.088 0.080 0.159 0.043 stft20 0.055 0.665 0.055 0.011 0.000 0.000
cens80 0.088 0.658 0.088 0.067 0.134 0.055 cens40 0.050 0.627 0.050 0.010 0.000 0.000

Model 13: (optimizer: Adamax) Model 14: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.328 0.874 0.328 0.314 0.521 0.190 mfcc80 0.350 0.802 0.350 0.330 0.413 0.315
mfcc60 0.295 0.845 0.295 0.283 0.484 0.153 mfcc60 0.335 0.788 0.335 0.316 0.401 0.288
mfcc40 0.283 0.854 0.283 0.263 0.479 0.145 mfcc40 0.305 0.814 0.305 0.295 0.366 0.253
mel20 0.198 0.844 0.198 0.175 0.455 0.050 mel40 0.270 0.825 0.270 0.259 0.424 0.160
mel40 0.185 0.821 0.185 0.169 0.389 0.053 mel20 0.250 0.823 0.250 0.234 0.369 0.138
mel80 0.180 0.799 0.180 0.162 0.353 0.060 mel60 0.235 0.796 0.235 0.225 0.364 0.148
stft20 0.160 0.796 0.160 0.139 0.588 0.025 mel80 0.230 0.794 0.230 0.216 0.343 0.148
mel60 0.158 0.799 0.158 0.138 0.368 0.053 stft60 0.148 0.732 0.148 0.130 0.205 0.043
stft40 0.163 0.793 0.163 0.129 0.476 0.025 stft40 0.148 0.740 0.148 0.128 0.253 0.050
stft60 0.145 0.790 0.145 0.122 0.440 0.028 stft20 0.133 0.765 0.133 0.120 0.233 0.043
stft80 0.145 0.791 0.145 0.111 0.333 0.025 stft80 0.118 0.727 0.118 0.104 0.200 0.040
cqt80 0.125 0.742 0.125 0.100 0.350 0.018 cens40 0.103 0.677 0.103 0.093 0.142 0.060
cqt40 0.115 0.756 0.115 0.087 0.444 0.020 cqt80 0.110 0.705 0.110 0.092 0.226 0.060
cens20 0.090 0.708 0.090 0.078 0.545 0.015 cqt40 0.100 0.708 0.100 0.091 0.193 0.043
cqt20 0.105 0.756 0.105 0.078 0.400 0.015 cqt20 0.093 0.727 0.093 0.088 0.215 0.035
cens40 0.073 0.752 0.073 0.063 0.476 0.025 cens20 0.090 0.668 0.090 0.078 0.162 0.045
cens80 0.075 0.741 0.075 0.058 0.235 0.030 cens80 0.075 0.664 0.075 0.052 0.112 0.048
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.3.4 Dropout Rate of 0.6

TABLE B.18: Results of the 4 best models for single features and dropout of 0.6 - ESC-10.

Model 15: (optimizer: Adam) Model 16: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel40 0.463 0.888 0.463 0.460 0.818 0.113 mel40 0.375 0.831 0.375 0.338 0.857 0.075
mel80 0.438 0.827 0.438 0.420 0.643 0.113 mel20 0.350 0.867 0.350 0.291 0.714 0.063
stft60 0.450 0.858 0.450 0.405 0.667 0.100 mel80 0.325 0.797 0.325 0.282 0.500 0.063
stft40 0.425 0.870 0.425 0.384 0.583 0.088 mel60 0.300 0.820 0.300 0.270 0.444 0.050
mel60 0.400 0.846 0.400 0.368 0.667 0.075 cens40 0.238 0.669 0.238 0.186 0.000 0.000
mel20 0.388 0.869 0.388 0.350 0.429 0.113 mfcc60 0.263 0.763 0.263 0.181 0.200 0.013
stft20 0.375 0.849 0.375 0.330 0.625 0.063 stft80 0.250 0.767 0.250 0.157 0.000 0.000
mfcc80 0.350 0.749 0.350 0.300 0.385 0.063 mfcc80 0.225 0.756 0.225 0.155 0.250 0.013
cqt80 0.350 0.751 0.350 0.299 0.000 0.000 cens80 0.238 0.647 0.238 0.155 0.000 0.000
cens20 0.313 0.698 0.313 0.290 0.304 0.088 stft60 0.250 0.744 0.250 0.153 0.000 0.000
stft80 0.313 0.834 0.313 0.288 0.500 0.013 cqt40 0.213 0.679 0.213 0.131 0.000 0.000
cens40 0.288 0.815 0.288 0.264 0.294 0.188 stft20 0.200 0.745 0.200 0.102 0.000 0.000
cens80 0.313 0.782 0.313 0.260 0.357 0.188 cqt20 0.188 0.679 0.188 0.099 0.000 0.000
cqt20 0.288 0.797 0.288 0.247 0.364 0.050 stft40 0.213 0.761 0.213 0.094 0.000 0.000
cqt40 0.263 0.782 0.263 0.209 0.111 0.013 cqt80 0.163 0.699 0.163 0.084 0.000 0.000
mfcc40 0.188 0.715 0.188 0.164 0.500 0.013 mfcc40 0.163 0.749 0.163 0.084 0.250 0.013
mfcc60 0.238 0.707 0.238 0.162 0.200 0.013 cens20 0.138 0.563 0.138 0.080 0.000 0.000

Model 17: (optimizer: Adamax) Model 18: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel20 0.425 0.852 0.425 0.408 0.500 0.025 stft40 0.500 0.872 0.500 0.476 0.692 0.113
mel40 0.413 0.873 0.413 0.393 1.000 0.125 stft80 0.488 0.843 0.488 0.451 0.600 0.075
mel80 0.375 0.808 0.375 0.357 0.643 0.113 mel80 0.413 0.858 0.413 0.415 0.571 0.100
mel60 0.338 0.813 0.338 0.334 0.615 0.100 mel20 0.438 0.878 0.438 0.407 0.450 0.113
cens80 0.325 0.829 0.325 0.271 0.500 0.075 stft60 0.425 0.873 0.425 0.402 0.611 0.138
cens40 0.325 0.845 0.325 0.250 0.833 0.063 mel40 0.425 0.858 0.425 0.401 0.571 0.100
mfcc60 0.225 0.684 0.225 0.227 0.000 0.000 mel60 0.400 0.840 0.400 0.380 0.500 0.075
cqt80 0.250 0.736 0.250 0.208 0.000 0.000 stft20 0.363 0.853 0.363 0.334 0.563 0.113
mfcc80 0.225 0.673 0.225 0.207 0.000 0.000 cens20 0.338 0.710 0.338 0.307 0.353 0.075
stft20 0.275 0.793 0.275 0.193 0.000 0.000 cqt40 0.325 0.785 0.325 0.306 0.500 0.050
stft60 0.250 0.803 0.250 0.184 0.000 0.000 cqt80 0.325 0.765 0.325 0.277 0.600 0.038
stft80 0.300 0.804 0.300 0.180 0.000 0.000 mfcc80 0.275 0.825 0.275 0.276 0.429 0.075
stft40 0.225 0.788 0.225 0.168 0.000 0.000 cens40 0.275 0.825 0.275 0.266 0.283 0.188
cens20 0.200 0.620 0.200 0.158 1.000 0.038 cqt20 0.300 0.798 0.300 0.260 0.313 0.063
cqt20 0.200 0.719 0.200 0.143 0.000 0.000 cens80 0.300 0.776 0.300 0.253 0.357 0.188
cqt40 0.175 0.722 0.175 0.116 0.000 0.000 mfcc40 0.213 0.699 0.213 0.203 0.250 0.013
mfcc40 0.100 0.638 0.100 0.092 0.000 0.000 mfcc60 0.163 0.753 0.163 0.158 0.143 0.013
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.19: Results of the 4 best models for single features and dropout of 0.6 - ESC-50.

Model 15: (optimizer: Adam) Model 16: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mel20 0.193 0.855 0.193 0.168 0.467 0.018 mel40 0.093 0.683 0.093 0.081 0.571 0.010
mel40 0.158 0.824 0.158 0.137 0.476 0.025 mel20 0.098 0.671 0.098 0.076 0.750 0.008
mfcc60 0.133 0.783 0.133 0.120 0.556 0.013 mel60 0.090 0.677 0.090 0.063 0.875 0.018
mel60 0.135 0.821 0.135 0.112 0.647 0.028 cens20 0.050 0.566 0.050 0.035 0.000 0.000
mel80 0.133 0.810 0.133 0.112 0.600 0.015 mfcc60 0.050 0.558 0.050 0.030 0.000 0.000
mfcc80 0.123 0.781 0.123 0.101 0.571 0.010 stft80 0.078 0.668 0.078 0.029 0.000 0.000
stft20 0.133 0.805 0.133 0.099 0.579 0.028 stft60 0.068 0.660 0.068 0.027 0.000 0.000
stft60 0.138 0.786 0.138 0.097 0.500 0.030 cens40 0.060 0.608 0.060 0.026 0.000 0.000
stft40 0.133 0.793 0.133 0.095 0.450 0.023 mfcc80 0.043 0.599 0.043 0.021 0.000 0.000
cens20 0.115 0.719 0.115 0.088 0.375 0.015 cens80 0.060 0.632 0.060 0.020 0.000 0.000
stft80 0.123 0.771 0.123 0.085 0.500 0.023 mfcc40 0.043 0.619 0.043 0.020 0.000 0.000
cens40 0.100 0.770 0.100 0.084 0.333 0.023 stft40 0.038 0.655 0.038 0.017 0.000 0.000
cqt40 0.108 0.763 0.108 0.081 0.364 0.010 stft20 0.050 0.637 0.050 0.013 0.000 0.000
cqt20 0.103 0.770 0.103 0.068 0.455 0.013 cqt20 0.035 0.570 0.035 0.011 0.000 0.000
mfcc40 0.083 0.720 0.083 0.066 0.600 0.008 cqt40 0.030 0.590 0.030 0.011 0.000 0.000
cens80 0.085 0.734 0.085 0.063 0.250 0.038 cqt80 0.038 0.601 0.038 0.011 0.000 0.000
cqt80 0.085 0.737 0.085 0.056 0.273 0.008 mel80 0.018 0.501 0.018 0.004 0.000 0.000

Model 17: (optimizer: Adamax) Model 18: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

stft40 0.118 0.777 0.118 0.085 1.000 0.010 mel20 0.160 0.853 0.160 0.132 0.615 0.020
stft60 0.128 0.777 0.128 0.081 1.000 0.010 stft20 0.153 0.799 0.153 0.130 0.550 0.028
stft80 0.123 0.772 0.123 0.079 1.000 0.008 mel40 0.153 0.834 0.153 0.126 0.545 0.015
stft20 0.103 0.774 0.103 0.068 1.000 0.010 mfcc80 0.130 0.764 0.130 0.114 0.500 0.005
cens80 0.098 0.764 0.098 0.066 0.667 0.020 mel80 0.115 0.796 0.115 0.104 0.500 0.018
mel20 0.065 0.589 0.065 0.061 0.000 0.000 mel60 0.120 0.806 0.120 0.096 0.353 0.015
cens40 0.098 0.780 0.098 0.059 0.667 0.015 cens40 0.118 0.772 0.118 0.096 0.440 0.028
cens20 0.088 0.678 0.088 0.055 0.600 0.008 stft60 0.120 0.783 0.120 0.094 0.476 0.025
cqt40 0.083 0.728 0.083 0.043 0.667 0.005 stft80 0.128 0.782 0.128 0.093 0.429 0.023
cqt20 0.083 0.736 0.083 0.040 0.000 0.000 stft40 0.118 0.791 0.118 0.089 0.500 0.025
cqt80 0.083 0.730 0.083 0.038 1.000 0.003 cqt20 0.115 0.772 0.115 0.083 0.444 0.010
mel40 0.043 0.585 0.043 0.032 1.000 0.003 mfcc60 0.100 0.738 0.100 0.081 0.667 0.005
mel80 0.038 0.595 0.038 0.027 0.200 0.003 cens20 0.108 0.718 0.108 0.081 0.333 0.015
mel60 0.035 0.582 0.035 0.021 0.333 0.003 cqt80 0.105 0.755 0.105 0.075 0.364 0.010
mfcc60 0.028 0.513 0.028 0.009 0.000 0.000 cens80 0.093 0.733 0.093 0.071 0.315 0.043
mfcc80 0.025 0.506 0.025 0.007 0.000 0.000 mfcc40 0.090 0.709 0.090 0.065 0.500 0.003
mfcc40 0.020 0.507 0.020 0.005 0.000 0.000 cqt40 0.093 0.765 0.093 0.063 0.400 0.020
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.3.5 Dropout Rate of 0 and Adamax

TABLE B.20: Results of Adamax optimizer’s models for single features and dropout of 0.

Model 19: (optimizer: Adamax; dr: 0; dataset: ESC-10) Model 19: (optimizer: Adamax; dr: 0; dataset: ESC-50)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfcc80 0.575 0.918 0.575 0.580 0.592 0.563 mfcc80 0.323 0.771 0.323 0.317 0.373 0.295
mfcc60 0.550 0.909 0.550 0.566 0.609 0.525 mfcc40 0.308 0.779 0.308 0.298 0.343 0.260
mfcc40 0.575 0.893 0.575 0.565 0.584 0.563 mfcc60 0.293 0.783 0.293 0.283 0.336 0.253
mel80 0.525 0.835 0.525 0.524 0.557 0.488 mel20 0.238 0.827 0.238 0.224 0.325 0.095
mel20 0.525 0.872 0.525 0.523 0.554 0.450 mel60 0.208 0.781 0.208 0.204 0.292 0.113
mel40 0.525 0.877 0.525 0.520 0.543 0.475 mel40 0.205 0.810 0.205 0.202 0.301 0.103
stft60 0.525 0.894 0.525 0.498 0.690 0.250 mel80 0.205 0.795 0.205 0.201 0.304 0.130
mel60 0.500 0.859 0.500 0.495 0.521 0.463 stft20 0.163 0.794 0.163 0.149 0.441 0.038
stft40 0.463 0.874 0.463 0.446 0.591 0.163 stft40 0.160 0.779 0.160 0.138 0.545 0.045
stft80 0.413 0.874 0.413 0.398 0.656 0.263 stft80 0.143 0.784 0.143 0.117 0.333 0.038
stft20 0.375 0.854 0.375 0.362 0.692 0.113 stft60 0.140 0.778 0.140 0.115 0.326 0.035
cqt40 0.338 0.773 0.338 0.335 0.357 0.125 cqt80 0.113 0.737 0.113 0.097 0.275 0.028
cqt80 0.325 0.782 0.325 0.321 0.323 0.125 cens20 0.103 0.694 0.103 0.089 0.406 0.033
cens20 0.288 0.688 0.288 0.289 0.333 0.088 cqt40 0.113 0.730 0.113 0.086 0.324 0.028
cens80 0.338 0.800 0.338 0.278 0.450 0.225 cens80 0.090 0.699 0.090 0.078 0.222 0.045
cqt20 0.275 0.775 0.275 0.255 0.333 0.100 cens40 0.073 0.731 0.073 0.068 0.239 0.028
cens40 0.250 0.787 0.250 0.236 0.273 0.188 cqt20 0.085 0.742 0.085 0.065 0.333 0.023
dr - dropout rate; acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.4 ESC Datasets - Combination of Features as Input

B.4.1 Baseline Model Architecture

TABLE B.21: Results of the 6 models for different feature combinations - ESC-10.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.713 0.938 0.713 0.701 0.740 0.675 mms40 0.538 0.908 0.538 0.499 0.656 0.263
mmq 0.688 0.941 0.688 0.673 0.729 0.538 mmstftq40 0.475 0.858 0.475 0.433 0.640 0.200
mms40 0.675 0.942 0.675 0.663 0.707 0.513 mmcens40 0.438 0.864 0.438 0.396 0.586 0.213
mmstftq 0.675 0.938 0.675 0.661 0.758 0.625 mmstftq 0.413 0.793 0.413 0.383 0.519 0.175
mmq40 0.675 0.940 0.675 0.660 0.780 0.488 mfccstft 0.425 0.858 0.425 0.375 0.433 0.163
mmcens 0.663 0.906 0.663 0.648 0.725 0.625 mms60 0.400 0.809 0.400 0.350 0.591 0.163
mmstftq40 0.650 0.925 0.650 0.644 0.759 0.513 mmcens 0.363 0.761 0.363 0.325 0.563 0.113
mms80 0.663 0.932 0.663 0.641 0.700 0.525 mmq 0.363 0.817 0.363 0.314 0.647 0.138
mms60 0.650 0.928 0.650 0.637 0.690 0.500 mmq40 0.375 0.843 0.375 0.309 0.440 0.138
mmsqc 0.650 0.928 0.650 0.632 0.763 0.563 mms80 0.338 0.816 0.338 0.301 0.588 0.125
mfccstft 0.638 0.897 0.638 0.631 0.695 0.513 mmsqc 0.350 0.834 0.350 0.297 0.619 0.163
mmcens40 0.650 0.915 0.650 0.622 0.725 0.463 mfccstft80 0.250 0.746 0.250 0.197 0.440 0.138
mfccstft80 0.625 0.887 0.625 0.606 0.677 0.550 mmsqc80 0.263 0.773 0.263 0.192 1.000 0.075
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmcens 0.613 0.894 0.613 0.587 0.708 0.213 mmsqc 0.738 0.910 0.738 0.727 0.773 0.725
mmsqc80 0.538 0.907 0.538 0.525 0.718 0.350 mmstftq40 0.725 0.916 0.725 0.719 0.737 0.700
mms60 0.538 0.912 0.538 0.521 0.684 0.163 mmq40 0.688 0.902 0.688 0.677 0.692 0.675
mmstftq 0.513 0.903 0.513 0.497 0.826 0.238 mmq 0.663 0.884 0.663 0.657 0.675 0.650
mms80 0.500 0.893 0.500 0.493 0.667 0.175 mms80 0.663 0.894 0.663 0.647 0.688 0.663
mmcens40 0.488 0.868 0.488 0.482 0.824 0.175 mmsqc80 0.662 0.928 0.662 0.647 0.704 0.625
mmq40 0.488 0.891 0.488 0.463 0.778 0.175 mmcens 0.650 0.938 0.650 0.647 0.689 0.525
mmq 0.463 0.865 0.463 0.447 0.696 0.200 mms60 0.638 0.924 0.638 0.618 0.679 0.475
mms40 0.425 0.835 0.425 0.396 0.714 0.125 mmstftq 0.625 0.935 0.625 0.615 0.701 0.588
mfccstft 0.400 0.813 0.400 0.387 0.438 0.088 mfccstft80 0.625 0.890 0.625 0.607 0.661 0.463
mmsqc 0.388 0.827 0.388 0.362 0.909 0.125 mms40 0.625 0.931 0.625 0.605 0.684 0.488
mmstftq40 0.388 0.823 0.388 0.345 0.813 0.163 mfccstft 0.613 0.913 0.613 0.582 0.744 0.400
mfccstft80 0.288 0.807 0.288 0.278 0.556 0.125 mmcens40 0.600 0.930 0.600 0.577 0.750 0.450
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq40 0.213 0.533 0.213 0.103 0.205 0.188 mmsqc 0.563 0.908 0.563 0.554 0.750 0.150
mms60 0.113 0.504 0.113 0.102 0.083 0.063 mmstftq40 0.450 0.883 0.450 0.426 0.543 0.238
mfccstft 0.150 0.541 0.150 0.090 0.145 0.113 mmsqc80 0.450 0.884 0.450 0.426 0.568 0.263
mmsqc 0.150 0.565 0.150 0.085 0.154 0.125 mmstftq 0.388 0.848 0.388 0.359 0.600 0.150
mmcens40 0.163 0.541 0.163 0.056 0.163 0.163 mms80 0.388 0.856 0.388 0.344 0.600 0.188
mms80 0.088 0.493 0.088 0.051 0.052 0.038 mmq40 0.350 0.832 0.350 0.343 0.706 0.150
mmsqc80 0.088 0.546 0.088 0.047 0.085 0.075 mmcens 0.400 0.836 0.400 0.343 0.588 0.250
mmstftq 0.138 0.516 0.138 0.047 0.118 0.113 mfccstft 0.375 0.855 0.375 0.339 0.625 0.125
mmcens 0.100 0.524 0.100 0.045 0.110 0.100 mmq 0.350 0.819 0.350 0.337 0.448 0.163
mmq 0.113 0.501 0.113 0.042 0.118 0.113 mmcens40 0.375 0.853 0.375 0.299 0.529 0.113
mms40 0.075 0.472 0.075 0.034 0.052 0.038 mfccstft80 0.400 0.857 0.400 0.291 0.444 0.100
mfccstft80 0.100 0.518 0.100 0.020 0.107 0.100 mms40 0.350 0.852 0.350 0.289 0.500 0.163
mfccmel40 0.100 0.500 0.100 0.018 0.100 0.100 mms60 0.338 0.831 0.338 0.271 0.667 0.100
mfccmel80 0.100 0.500 0.100 0.018 0.100 0.100 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mmstftq40 0.063 0.468 0.063 0.015 0.066 0.063 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.22: Results of the 6 models for different feature combinations - ESC-50.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq 0.393 0.873 0.393 0.379 0.575 0.250 mmq 0.178 0.789 0.178 0.153 0.591 0.033
mmstftq 0.383 0.875 0.383 0.361 0.584 0.243 mms60 0.173 0.770 0.173 0.151 0.529 0.023
mmsqc80 0.365 0.869 0.365 0.352 0.511 0.243 mms40 0.155 0.808 0.155 0.149 0.667 0.030
mmcens40 0.365 0.895 0.365 0.345 0.635 0.200 mmcens40 0.175 0.795 0.175 0.145 0.722 0.033
mms40 0.358 0.879 0.358 0.343 0.550 0.193 mmcens 0.158 0.776 0.158 0.140 0.650 0.033
mms60 0.353 0.878 0.353 0.342 0.574 0.203 mfccstft80 0.145 0.783 0.145 0.129 0.615 0.020
mmsqc 0.348 0.881 0.348 0.334 0.617 0.238 mmq40 0.135 0.784 0.135 0.123 0.714 0.025
mmq40 0.340 0.886 0.340 0.331 0.542 0.195 mmsqc80 0.148 0.773 0.148 0.122 0.500 0.023
mms80 0.343 0.875 0.343 0.331 0.557 0.208 mmstftq40 0.135 0.728 0.135 0.114 0.750 0.038
mmstftq40 0.348 0.868 0.348 0.327 0.527 0.218 mfccstft 0.133 0.768 0.133 0.113 0.600 0.023
mfccstft 0.328 0.876 0.328 0.313 0.500 0.175 mmstftq 0.138 0.765 0.138 0.107 0.500 0.020
mmcens 0.315 0.869 0.315 0.293 0.554 0.180 mms80 0.128 0.783 0.128 0.103 0.455 0.025
mfccstft80 0.310 0.862 0.310 0.287 0.452 0.190 mmsqc 0.115 0.790 0.115 0.100 0.471 0.020
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.230 0.844 0.230 0.194 0.565 0.033 mmstftq 0.375 0.878 0.375 0.354 0.571 0.223
mmq 0.200 0.827 0.200 0.168 0.647 0.028 mmstftq40 0.360 0.882 0.360 0.346 0.497 0.180
mmstftq 0.183 0.787 0.183 0.168 0.462 0.015 mmsqc 0.355 0.884 0.355 0.345 0.524 0.215
mmsqc 0.180 0.836 0.180 0.156 0.571 0.020 mms80 0.345 0.872 0.345 0.339 0.605 0.188
mfccstft80 0.163 0.821 0.163 0.155 0.440 0.028 mms60 0.355 0.874 0.355 0.337 0.536 0.203
mmstftq40 0.190 0.840 0.190 0.155 0.429 0.015 mmq40 0.343 0.881 0.343 0.333 0.549 0.195
mfccstft 0.170 0.792 0.170 0.148 0.333 0.010 mmq 0.343 0.866 0.343 0.327 0.566 0.203
mms40 0.173 0.809 0.173 0.145 0.500 0.015 mms40 0.343 0.877 0.343 0.327 0.569 0.195
mms80 0.138 0.777 0.138 0.125 0.364 0.010 mmsqc80 0.348 0.871 0.348 0.321 0.508 0.233
mms60 0.128 0.751 0.128 0.114 0.533 0.020 mfccstft80 0.335 0.858 0.335 0.319 0.516 0.205
mmcens 0.118 0.798 0.118 0.100 0.455 0.013 mmcens 0.335 0.869 0.335 0.316 0.503 0.185
mmcens40 0.110 0.736 0.110 0.095 0.636 0.018 mmcens40 0.318 0.876 0.318 0.309 0.527 0.170
mmq40 0.088 0.748 0.088 0.077 0.308 0.010 mfccstft 0.313 0.868 0.313 0.299 0.485 0.165
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000

Model 5: (optimizer: Adadelta) Model 6: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq40 0.035 0.503 0.035 0.011 0.051 0.033 mms60 0.055 0.589 0.055 0.057 0.286 0.005
mmstftq 0.023 0.523 0.023 0.009 0.032 0.015 mmq 0.060 0.614 0.060 0.054 0.429 0.008
mmsqc 0.030 0.518 0.030 0.009 0.030 0.020 mms80 0.060 0.609 0.060 0.050 0.250 0.005
mmq 0.015 0.506 0.015 0.009 0.028 0.013 mfccstft 0.048 0.620 0.048 0.043 0.000 0.000
mmsqc80 0.013 0.503 0.013 0.008 0.014 0.008 mmcens 0.055 0.572 0.055 0.042 0.167 0.003
mmcens40 0.020 0.510 0.020 0.007 0.015 0.010 mmq40 0.045 0.535 0.045 0.037 0.571 0.010
mfccstft80 0.028 0.496 0.028 0.007 0.032 0.020 mfccstft80 0.063 0.552 0.063 0.036 0.000 0.000
mms40 0.023 0.503 0.023 0.006 0.032 0.020 mmsqc80 0.028 0.588 0.028 0.032 0.125 0.003
mmq40 0.028 0.485 0.028 0.006 0.021 0.013 mmstftq 0.048 0.579 0.048 0.031 0.500 0.013
mfccstft 0.013 0.502 0.013 0.006 0.005 0.003 mmstftq40 0.030 0.551 0.030 0.029 0.143 0.003
mms60 0.015 0.494 0.015 0.004 0.021 0.015 mmsqc 0.048 0.590 0.048 0.028 0.000 0.000
mms80 0.018 0.474 0.018 0.003 0.023 0.013 mms40 0.045 0.565 0.045 0.027 0.000 0.000
mmcens 0.005 0.495 0.005 0.002 0.014 0.005 mmcens40 0.035 0.528 0.035 0.018 0.000 0.000
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.23: Results for model 3 fully trained with ESC-50 dataset.

Model 3: (optimizer: Adamax; dataset: ESC-50)
Features acc AUC micro f1score macro f1score precision recall
mmsqc80 0.333 0.881 0.333 0.322 0.609 0.098
mmq 0.310 0.872 0.310 0.289 0.614 0.088
mfccstft80 0.283 0.874 0.283 0.267 0.656 0.100
mmsqc 0.265 0.888 0.265 0.254 0.704 0.095
mmstftq40 0.258 0.871 0.258 0.248 0.705 0.078
mfccstft 0.268 0.868 0.268 0.240 0.620 0.078
mmq40 0.253 0.872 0.253 0.234 0.571 0.060
mmcens40 0.238 0.874 0.238 0.226 0.745 0.088
mmstftq 0.233 0.844 0.233 0.210 0.659 0.068
mms80 0.240 0.844 0.240 0.204 0.618 0.053
mms40 0.210 0.842 0.210 0.188 0.640 0.040
mmcens 0.210 0.835 0.210 0.179 0.719 0.058
mms60 0.200 0.833 0.200 0.174 0.520 0.033
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve.
All metrics range from [0, 1] (the higher, the better).

B.4.2 Extra Layer

TABLE B.24: Results of the 4 models with extra layer for different feature combinations -
ESC-10.

Model 7: (optimizer: Adam) Model 8: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq40 0.700 0.931 0.700 0.684 0.766 0.450 mms40 0.375 0.812 0.375 0.347 0.000 0.000
mms80 0.688 0.952 0.688 0.681 0.759 0.513 mms60 0.400 0.824 0.400 0.330 1.000 0.025
mms60 0.675 0.931 0.675 0.663 0.860 0.463 mmstftq 0.388 0.837 0.388 0.322 0.333 0.013
mms40 0.675 0.946 0.675 0.661 0.773 0.425 mms80 0.375 0.813 0.375 0.315 0.600 0.038
mmstftq40 0.663 0.943 0.663 0.640 0.796 0.488 mmsqc 0.375 0.834 0.375 0.300 1.000 0.013
mfccstft80 0.638 0.881 0.638 0.632 0.686 0.438 mmq40 0.325 0.858 0.325 0.289 0.600 0.038
mmstftq 0.650 0.917 0.650 0.629 0.750 0.488 mfccstft80 0.375 0.783 0.375 0.284 0.000 0.000
mmcens 0.638 0.923 0.638 0.628 0.667 0.475 mmsqc80 0.375 0.837 0.375 0.281 0.667 0.025
mmq 0.638 0.929 0.638 0.624 0.722 0.488 mmcens 0.313 0.823 0.313 0.267 0.600 0.038
mmsqc 0.638 0.932 0.638 0.624 0.717 0.475 mmq 0.300 0.827 0.300 0.241 0.143 0.013
mmsqc80 0.625 0.929 0.625 0.607 0.692 0.563 mmstftq40 0.275 0.751 0.275 0.199 0.833 0.063
mmcens40 0.600 0.928 0.600 0.594 0.705 0.388 mfccstft 0.175 0.787 0.175 0.131 1.000 0.013
mfccstft 0.588 0.870 0.588 0.562 0.675 0.338 mmcens40 0.175 0.800 0.175 0.111 0.500 0.013
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000

Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc 0.500 0.879 0.500 0.468 1.000 0.013 mmstftq 0.725 0.953 0.725 0.714 0.792 0.525
mfccstft80 0.475 0.874 0.475 0.420 0.750 0.038 mmsqc 0.700 0.934 0.700 0.688 0.774 0.513
mmstftq 0.425 0.878 0.425 0.414 1.000 0.038 mms80 0.688 0.938 0.688 0.665 0.731 0.475
mms80 0.425 0.836 0.425 0.406 0.667 0.025 mms60 0.663 0.923 0.663 0.658 0.783 0.450
mmq 0.450 0.852 0.450 0.387 0.800 0.050 mmsqc80 0.663 0.926 0.663 0.653 0.703 0.563
mmcens40 0.388 0.832 0.388 0.370 0.800 0.050 mmstftq40 0.663 0.912 0.663 0.652 0.776 0.475
mmsqc80 0.388 0.889 0.388 0.369 0.545 0.075 mmq 0.663 0.953 0.663 0.643 0.813 0.488
mms60 0.388 0.832 0.388 0.352 1.000 0.013 mmq40 0.638 0.921 0.638 0.636 0.735 0.450
mmcens 0.300 0.756 0.300 0.293 0.833 0.063 mmcens 0.600 0.933 0.600 0.599 0.760 0.475
mmq40 0.313 0.811 0.313 0.265 1.000 0.050 mmcens40 0.613 0.910 0.613 0.594 0.763 0.363
mmstftq40 0.300 0.785 0.300 0.244 0.000 0.000 mms40 0.600 0.917 0.600 0.579 0.756 0.388
mms40 0.250 0.791 0.250 0.241 0.000 0.000 mfccstft80 0.588 0.882 0.588 0.568 0.640 0.400
mfccstft 0.150 0.717 0.150 0.129 1.000 0.025 mfccstft 0.550 0.893 0.550 0.523 0.639 0.288
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.25: Results of the 4 models with extra layer for different feature combinations -
ESC-50.

Model 7: (optimizer: Adam) Model 8: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq40 0.353 0.880 0.353 0.343 0.636 0.140 mmsqc 0.143 0.761 0.143 0.127 0.700 0.018
mmsqc80 0.350 0.882 0.350 0.329 0.652 0.183 mms40 0.143 0.774 0.143 0.119 0.857 0.015
mmstftq40 0.335 0.879 0.335 0.321 0.593 0.168 mmstftq 0.118 0.764 0.118 0.108 0.667 0.010
mmstftq 0.328 0.879 0.328 0.315 0.664 0.188 mmq40 0.128 0.777 0.128 0.101 0.500 0.013
mmq 0.328 0.865 0.328 0.311 0.652 0.150 mmstftq40 0.110 0.746 0.110 0.096 0.556 0.013
mmsqc 0.338 0.880 0.338 0.311 0.628 0.178 mmcens 0.103 0.761 0.103 0.094 0.500 0.010
mfccstft 0.313 0.873 0.313 0.306 0.602 0.133 mmcens40 0.123 0.764 0.123 0.093 0.800 0.020
mmcens 0.323 0.870 0.323 0.304 0.683 0.140 mmq 0.100 0.750 0.100 0.084 0.600 0.008
mmcens40 0.318 0.875 0.318 0.302 0.682 0.145 mms60 0.115 0.750 0.115 0.082 0.429 0.008
mms60 0.325 0.862 0.325 0.300 0.579 0.138 mfccstft80 0.105 0.764 0.105 0.078 0.600 0.008
mms80 0.310 0.873 0.310 0.296 0.602 0.155 mfccstft 0.118 0.780 0.118 0.077 0.700 0.018
mfccstft80 0.315 0.860 0.315 0.295 0.573 0.168 mmsqc80 0.093 0.750 0.093 0.071 0.625 0.013
mms40 0.318 0.891 0.318 0.293 0.626 0.143 mms80 0.093 0.754 0.093 0.068 0.533 0.020
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000

Model 9: (optimizer: Adamax) Model 10: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mfccstft80 0.158 0.829 0.158 0.123 0.600 0.008 mmsqc80 0.355 0.875 0.355 0.340 0.676 0.188
mmsqc 0.145 0.802 0.145 0.118 0.000 0.000 mmstftq 0.353 0.879 0.353 0.332 0.613 0.183
mmsqc80 0.133 0.786 0.133 0.096 0.000 0.000 mmsqc 0.343 0.889 0.343 0.326 0.646 0.155
mmq 0.113 0.741 0.113 0.081 0.800 0.010 mms80 0.343 0.881 0.343 0.322 0.575 0.153
mmq40 0.103 0.776 0.103 0.077 0.000 0.000 mmstftq40 0.340 0.881 0.340 0.315 0.758 0.173
mfccstft 0.118 0.783 0.118 0.075 0.333 0.003 mmcens40 0.323 0.879 0.323 0.309 0.653 0.123
mms40 0.093 0.757 0.093 0.072 0.000 0.000 mmq40 0.310 0.865 0.310 0.289 0.637 0.145
mms80 0.090 0.749 0.090 0.062 0.000 0.000 mfccstft 0.305 0.869 0.305 0.286 0.573 0.138
mmstftq 0.085 0.758 0.085 0.062 0.500 0.003 mmcens 0.318 0.868 0.318 0.282 0.585 0.138
mmstftq40 0.085 0.759 0.085 0.062 0.000 0.000 mms40 0.310 0.884 0.310 0.280 0.614 0.128
mmcens 0.085 0.691 0.085 0.058 1.000 0.003 mmq 0.293 0.876 0.293 0.262 0.700 0.105
mmcens40 0.070 0.706 0.070 0.055 0.000 0.000 mfccstft80 0.285 0.856 0.285 0.261 0.508 0.150
mms60 0.068 0.760 0.068 0.041 0.000 0.000 mms60 0.295 0.879 0.295 0.259 0.588 0.125
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.4.3 Dropout Rate of 0.2

TABLE B.26: Results of the 4 best models for dropout of 0.2 and different feature combi-
nations - ESC-10.

Model 1: (optimizer: Adam) Model 2: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq 0.725 0.936 0.725 0.724 0.750 0.713 mmstftq 0.638 0.907 0.638 0.639 0.707 0.513
mmcens40 0.713 0.952 0.713 0.708 0.727 0.700 mmq40 0.600 0.928 0.600 0.569 0.724 0.525
mmstftq40 0.713 0.929 0.713 0.699 0.733 0.688 mmcens 0.550 0.912 0.550 0.528 0.696 0.400
mmq40 0.700 0.952 0.700 0.694 0.724 0.688 mmcens40 0.550 0.921 0.550 0.525 0.620 0.388
mmq 0.688 0.932 0.688 0.687 0.705 0.688 mms40 0.563 0.919 0.563 0.520 0.773 0.425
mms60 0.700 0.926 0.700 0.684 0.718 0.700 mmq 0.550 0.894 0.550 0.519 0.609 0.350
mms40 0.688 0.941 0.688 0.681 0.689 0.638 mmsqc 0.563 0.911 0.563 0.515 0.681 0.400
mmsqc 0.675 0.916 0.675 0.670 0.707 0.663 mfccstft 0.525 0.891 0.525 0.490 0.625 0.313
mms80 0.675 0.911 0.675 0.664 0.703 0.650 mfccstft80 0.513 0.912 0.513 0.489 0.604 0.400
mmcens 0.663 0.896 0.663 0.658 0.680 0.638 mms80 0.500 0.891 0.500 0.479 0.574 0.388
mmsqc80 0.675 0.923 0.675 0.656 0.697 0.663 mmsqc80 0.500 0.901 0.500 0.476 0.547 0.363
mfccstft 0.613 0.881 0.613 0.611 0.632 0.538 mms60 0.488 0.904 0.488 0.465 0.581 0.313
mfccstft80 0.613 0.877 0.613 0.603 0.618 0.588 mmstftq40 0.500 0.931 0.500 0.463 0.654 0.425
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq40 0.700 0.939 0.700 0.694 0.758 0.625 mms60 0.775 0.956 0.775 0.774 0.787 0.738
mmstftq 0.700 0.958 0.700 0.691 0.782 0.538 mmq40 0.725 0.942 0.725 0.719 0.753 0.725
mmsqc80 0.700 0.942 0.700 0.689 0.735 0.625 mmcens40 0.700 0.926 0.700 0.691 0.757 0.700
mmq 0.675 0.934 0.675 0.665 0.699 0.638 mmstftq40 0.688 0.925 0.688 0.682 0.714 0.688
mmcens40 0.663 0.950 0.663 0.654 0.750 0.563 mmsqc 0.675 0.921 0.675 0.677 0.761 0.638
mmsqc 0.663 0.946 0.663 0.644 0.742 0.613 mmsqc80 0.675 0.939 0.675 0.675 0.693 0.650
mms60 0.650 0.949 0.650 0.642 0.782 0.538 mmq 0.675 0.917 0.675 0.669 0.712 0.650
mmq40 0.663 0.947 0.663 0.641 0.772 0.550 mms80 0.675 0.913 0.675 0.665 0.701 0.675
mfccstft 0.638 0.908 0.638 0.624 0.667 0.525 mfccstft80 0.663 0.867 0.663 0.652 0.699 0.638
mms40 0.625 0.945 0.625 0.616 0.724 0.525 mmcens 0.650 0.916 0.650 0.646 0.662 0.613
mms80 0.613 0.937 0.613 0.612 0.689 0.525 mmstftq 0.650 0.899 0.650 0.638 0.649 0.600
mmcens 0.613 0.938 0.613 0.592 0.701 0.588 mms40 0.650 0.953 0.650 0.637 0.658 0.625
mfccstft80 0.575 0.914 0.575 0.554 0.609 0.488 mfccstft 0.588 0.896 0.588 0.583 0.634 0.563
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.27: Results of the 4 best models for dropout of 0.2 and different feature combi-
nations - ESC-50.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmq40 0.398 0.829 0.398 0.386 0.472 0.358 mms40 0.313 0.863 0.313 0.289 0.519 0.140
mmstftq 0.390 0.810 0.390 0.386 0.452 0.340 mmcens40 0.303 0.868 0.303 0.279 0.495 0.130
mmstftq40 0.393 0.839 0.393 0.385 0.476 0.350 mms80 0.275 0.852 0.275 0.263 0.500 0.138
mmsqc80 0.393 0.811 0.393 0.382 0.449 0.360 mmsqc80 0.275 0.844 0.275 0.262 0.510 0.130
mmsqc 0.390 0.817 0.390 0.376 0.445 0.333 mmstftq 0.255 0.852 0.255 0.245 0.405 0.113
mmq 0.383 0.817 0.383 0.373 0.445 0.358 mmq 0.253 0.858 0.253 0.244 0.496 0.148
mms60 0.368 0.828 0.368 0.350 0.439 0.308 mfccstft 0.270 0.856 0.270 0.243 0.468 0.110
mfccstft80 0.358 0.811 0.358 0.349 0.429 0.333 mfccstft80 0.248 0.852 0.248 0.241 0.506 0.105
mmcens 0.353 0.820 0.353 0.341 0.416 0.305 mmstftq40 0.238 0.849 0.238 0.223 0.500 0.120
mms80 0.360 0.805 0.360 0.339 0.405 0.308 mmcens 0.238 0.827 0.238 0.220 0.435 0.125
mmcens40 0.345 0.823 0.345 0.335 0.405 0.283 mms60 0.250 0.856 0.250 0.219 0.429 0.113
mfccstft 0.338 0.804 0.338 0.334 0.397 0.300 mmq40 0.243 0.844 0.243 0.218 0.486 0.128
mms40 0.343 0.826 0.343 0.327 0.436 0.315 mmsqc 0.228 0.854 0.228 0.212 0.490 0.118
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.383 0.875 0.383 0.373 0.583 0.228 mfccstft80 0.403 0.816 0.403 0.388 0.459 0.353
mmstftq 0.365 0.889 0.365 0.349 0.556 0.223 mmsqc 0.385 0.840 0.385 0.371 0.472 0.358
mms80 0.348 0.878 0.348 0.334 0.555 0.215 mmstftq 0.378 0.825 0.378 0.371 0.452 0.350
mfccstft80 0.345 0.874 0.345 0.329 0.544 0.218 mmstftq40 0.370 0.827 0.370 0.364 0.457 0.323
mmsqc 0.350 0.874 0.350 0.328 0.545 0.198 mms40 0.368 0.818 0.368 0.354 0.435 0.310
mmq 0.335 0.866 0.335 0.316 0.536 0.188 mms80 0.375 0.821 0.375 0.352 0.424 0.330
mmcens 0.330 0.865 0.330 0.314 0.492 0.160 mmsqc80 0.363 0.810 0.363 0.348 0.417 0.335
mms60 0.323 0.872 0.323 0.312 0.514 0.178 mmcens 0.360 0.809 0.360 0.346 0.427 0.308
mfccstft 0.325 0.863 0.325 0.307 0.504 0.155 mmq 0.348 0.823 0.348 0.345 0.401 0.310
mmcens40 0.323 0.878 0.323 0.306 0.538 0.175 mmq40 0.343 0.813 0.343 0.337 0.403 0.300
mmstftq40 0.313 0.883 0.313 0.304 0.526 0.178 mmcens40 0.353 0.823 0.353 0.334 0.421 0.295
mmq40 0.318 0.875 0.318 0.300 0.537 0.183 mfccstft 0.333 0.800 0.333 0.319 0.401 0.290
mms40 0.308 0.877 0.308 0.292 0.553 0.158 mms60 0.333 0.801 0.333 0.319 0.410 0.308
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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B.4.4 Dropout Rate of 0.6

TABLE B.28: Results of the 4 best models for dropout of 0.6 and different feature combi-
nations - ESC-10.

Model 1: (optimizer: Adam) Model 2: (optimizer: Adagrad)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmstftq40 0.638 0.921 0.638 0.623 0.852 0.288 mmsqc 0.375 0.813 0.375 0.350 0.750 0.038
mmsqc 0.638 0.923 0.638 0.622 1.000 0.238 mmstftq 0.350 0.804 0.350 0.301 0.700 0.088
mmsqc80 0.613 0.925 0.613 0.599 0.696 0.200 mmstftq40 0.363 0.833 0.363 0.290 0.714 0.125
mmq 0.613 0.925 0.613 0.599 0.810 0.213 mms60 0.350 0.797 0.350 0.280 0.786 0.138
mmcens 0.613 0.931 0.613 0.586 0.850 0.213 mms40 0.300 0.788 0.300 0.250 0.727 0.100
mmstftq 0.588 0.913 0.588 0.559 0.870 0.250 mms80 0.313 0.776 0.313 0.244 0.500 0.075
mms80 0.575 0.895 0.575 0.540 0.733 0.138 mmcens 0.300 0.766 0.300 0.240 0.400 0.050
mms60 0.488 0.877 0.488 0.490 0.813 0.163 mmsqc80 0.313 0.768 0.313 0.234 0.556 0.188
mms40 0.475 0.914 0.475 0.452 0.769 0.125 mmcens40 0.250 0.746 0.250 0.176 0.412 0.088
mfccstft80 0.400 0.835 0.400 0.329 0.533 0.100 mmq 0.263 0.825 0.263 0.174 0.542 0.163
mmq40 0.325 0.802 0.325 0.319 1.000 0.113 mmq40 0.225 0.781 0.225 0.161 0.692 0.113
mfccstft 0.388 0.831 0.388 0.309 0.529 0.113 mfccstft 0.150 0.769 0.150 0.101 0.500 0.038
mmcens40 0.313 0.784 0.313 0.285 0.800 0.050 mfccstft80 0.163 0.737 0.163 0.084 0.625 0.063
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.525 0.877 0.525 0.512 0.250 0.013 mmsqc80 0.600 0.923 0.600 0.597 0.857 0.225
mmstftq 0.413 0.831 0.413 0.399 0.833 0.063 mmstftq 0.613 0.909 0.613 0.597 0.731 0.238
mmq 0.375 0.846 0.375 0.353 0.857 0.075 mfccstft80 0.575 0.858 0.575 0.545 0.593 0.200
mms40 0.388 0.847 0.388 0.327 0.000 0.000 mms60 0.563 0.907 0.563 0.513 0.857 0.150
mms60 0.325 0.834 0.325 0.292 0.750 0.038 mmsqc 0.525 0.914 0.525 0.512 1.000 0.150
mmstftq40 0.288 0.693 0.288 0.263 1.000 0.013 mmcens 0.513 0.877 0.513 0.475 0.625 0.125
mmcens40 0.288 0.805 0.288 0.250 1.000 0.013 mmq 0.438 0.859 0.438 0.444 0.800 0.150
mms80 0.275 0.728 0.275 0.249 0.400 0.025 mmq40 0.425 0.877 0.425 0.424 0.750 0.113
mmcens 0.263 0.747 0.263 0.248 0.857 0.075 mms80 0.400 0.869 0.400 0.411 0.692 0.113
mmq40 0.263 0.691 0.263 0.235 1.000 0.013 mmstftq40 0.425 0.837 0.425 0.367 0.867 0.163
mfccstft80 0.188 0.667 0.188 0.183 0.000 0.000 mms40 0.288 0.843 0.288 0.278 0.538 0.088
mfccstft 0.175 0.644 0.175 0.175 0.000 0.000 mmcens40 0.263 0.762 0.263 0.269 1.000 0.088
mmsqc 0.200 0.648 0.200 0.171 1.000 0.013 mfccstft 0.213 0.735 0.213 0.188 0.375 0.038
mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel40 0.100 0.500 0.100 0.018 0.000 0.000
mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000 mfccmel80 0.100 0.500 0.100 0.018 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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TABLE B.29: Results of the 4 best models for dropout of 0.6 and different feature combi-
nations - ESC-50.

Model 1: (optimizer: Adam) Model 2: (optimizer: SGD)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mms60 0.180 0.810 0.180 0.167 0.625 0.013 mmstftq40 0.053 0.553 0.053 0.034 0.750 0.008
mmstftq40 0.160 0.771 0.160 0.156 0.500 0.005 mmq40 0.053 0.544 0.053 0.034 1.000 0.008
mfccstft80 0.165 0.778 0.165 0.146 0.533 0.020 mmcens40 0.050 0.547 0.050 0.031 0.800 0.010
mmsqc 0.153 0.782 0.153 0.141 0.667 0.020 mfccstft80 0.045 0.622 0.045 0.031 0.000 0.000
mmsqc80 0.155 0.815 0.155 0.139 0.818 0.023 mms40 0.053 0.545 0.053 0.030 0.667 0.005
mms80 0.158 0.822 0.158 0.135 0.800 0.020 mfccstft 0.053 0.647 0.053 0.029 0.000 0.000
mmstftq 0.143 0.783 0.143 0.135 0.800 0.030 mms60 0.048 0.538 0.048 0.028 0.600 0.008
mmcens40 0.145 0.792 0.145 0.133 0.778 0.018 mmsqc 0.048 0.554 0.048 0.026 1.000 0.005
mmq 0.148 0.783 0.148 0.130 0.778 0.018 mmcens 0.035 0.533 0.035 0.019 0.000 0.000
mmcens 0.120 0.779 0.120 0.112 0.625 0.013 mmsqc80 0.035 0.529 0.035 0.019 1.000 0.003
mmq40 0.120 0.749 0.120 0.103 0.667 0.005 mms80 0.033 0.545 0.033 0.018 1.000 0.003
mfccstft 0.113 0.743 0.113 0.094 0.200 0.003 mmq 0.033 0.525 0.033 0.011 1.000 0.003
mms40 0.088 0.737 0.088 0.081 0.667 0.005 mmstftq 0.023 0.503 0.023 0.009 0.200 0.003
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000

Model 3: (optimizer: Adamax) Model 4: (optimizer: Nadam)

Features acc AUC micro
f1score

macro
f1score prec recall Features acc AUC micro

f1score
macro
f1score prec recall

mmsqc80 0.050 0.555 0.050 0.036 0.000 0.000 mmsqc80 0.203 0.837 0.203 0.159 0.818 0.023
mmstftq 0.035 0.574 0.035 0.025 0.000 0.000 mmstftq40 0.170 0.794 0.170 0.150 0.600 0.008
mmsqc 0.038 0.548 0.038 0.024 0.000 0.000 mmcens40 0.160 0.807 0.160 0.147 0.429 0.008
mfccstft 0.033 0.584 0.033 0.014 0.000 0.000 mmq 0.165 0.805 0.165 0.141 0.667 0.015
mfccstft80 0.035 0.529 0.035 0.013 0.000 0.000 mmq40 0.158 0.803 0.158 0.137 1.000 0.028
mmcens 0.028 0.523 0.028 0.012 0.000 0.000 mms80 0.145 0.770 0.145 0.129 0.857 0.015
mms40 0.025 0.526 0.025 0.009 0.000 0.000 mfccstft80 0.138 0.786 0.138 0.127 0.714 0.013
mms60 0.023 0.503 0.023 0.005 0.000 0.000 mmstftq 0.138 0.775 0.138 0.120 1.000 0.013
mmcens40 0.023 0.530 0.023 0.003 0.000 0.000 mmcens 0.123 0.765 0.123 0.111 0.900 0.023
mmq40 0.020 0.511 0.020 0.001 0.000 0.000 mmsqc 0.130 0.797 0.130 0.108 0.667 0.005
mms80 0.020 0.502 0.020 0.001 0.000 0.000 mms40 0.118 0.789 0.118 0.093 1.000 0.003
mmstftq40 0.020 0.504 0.020 0.001 0.000 0.000 mfccstft 0.105 0.731 0.105 0.091 0.600 0.008
mmq 0.020 0.502 0.020 0.001 0.000 0.000 mms60 0.093 0.700 0.093 0.076 1.000 0.005
mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel40 0.020 0.500 0.020 0.001 0.000 0.000
mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000 mfccmel80 0.020 0.500 0.020 0.001 0.000 0.000
acc - accuracy; AUC - area under the receiver operating characteristic curve; prec - precision.
All metrics range from [0, 1] (the higher, the better).
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