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UNIVERSITY OF PORTO

Abstract
Faculty of Sciences of the University of Porto

Department of Computer Science

MSc. Data Science

Finding patterns that predict hyper and hypoglycaemia

by Ricardo Bruno FARIA

Diabetes is a serious illness due to either a malfunction of the pancreas that stops

producing insulin or the body’s inability to use the insulin produced and if left untreated

can cause serious problems. Personalized insulin injections are needed to control the

glucose level of patients with type 1 diabetes and in order to try to predict the glucose

level over time a machine learning analysis with the OhioT1DM Dataset will be made.

This dataset contains continuous glucose insulin, physiological sensor and self-reported

life-event data collected over an eight-week period for 12 patients. The Deep Learning

models used in the analysis are the LSTM, GRU, BiLSTM, BiGRU, 1D CNN, TCN and

mixed models combining 1D CNN + LSTM or GRU.

This dataset contains missing values and inconsistencies in the number of rows and

columns for each variable. In order to merge every variable into a single dataframe for

each patient, these variables are re-sampled to a time window of 30 minutes containing

the mean, mode or sum of the values within that time window. To predict the value of the

glucose level of the next 30 minutes information of all variables within the past 24 hours

is used.

Different versions of the models are tested, a personalized version that only trains the

models with one patient’s data and a generalized version that trains with all data. The

generalized version had better results and lower training time.

After this test, two more versions are tested, one that trains models with all variables

and one uses only a selection of variables. The version with the selected variables had a

smaller training time and slightly better results on the top performing models.

The best final models were the simpler versions of LSTM, GRU and 1D CNN + LSTM.

The combined model of 1D CNN and LSTM had the lowest training time of 97 seconds
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and the best performance with a RMSE of 0.0617. This show that for this dataset, maybe

due to the dataset size or number of variables, simple deep learning models outperform

more complex models.
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Resumo
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Encontrar padrões que prevêm hyper e hipoglicemia

por Ricardo Bruno FARIA

A diabetes é uma doença grave devido ou a um mau funcionamento do pâncreas que

deixa de produzir insulina ou à incapacidade do corpo de utilizar a insulina produzida

e, se não for tratada, pode causar problemas graves. São necessárias injecções persona-

lizadas de insulina para controlar o nı́vel de glucose dos pacientes com diabetes tipo 1 e

para tentar prever o nı́vel de glucose ao longo do tempo será feita uma análise de Machine

Learning com o OhioT1DM Dataset.

Este dataset contém valores continuos da insulina, glicose, sensores fisiológicos e da-

dos de eventos de vida auto-reportados, recolhidos durante um perı́odo de oito semanas

para 12 pacientes. Os modelos de Deep Learning utilizados na análise são os LSTM, GRU,

BiLSTM, BiGRU, 1D CNN, TCN e modelos mistos que combinam 1D CNN + LSTM ou

GRU.

Este conjunto de dados contém alguns missing values e inconsistências no número de

linhas e colunas para cada variável. A fim de juntar cada variável num único dataframe

para cada paciente, estas variáveis são re-sampled para uma janela de tempo de 30 minutos

contendo a média, moda ou soma dos valores dentro dessa janela de tempo. Para prever

o valor do nı́vel de glicose dos próximos 30 minutos, é utilizada a informação de todas as

variáveis nas últimas 24 horas.

São testadas diferentes versões dos modelos, uma versão personalizada que apenas

treina os modelos com dados de um paciente e uma versão generalizada que treina com

todos os dados. A versão generalizada teve melhores resultados e menor tempo de treino.

Após este teste, são testadas mais duas versões, uma que treina modelos com todas as

variáveis e outra que utiliza apenas uma selecção de variáveis. A versão com as variáveis
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seleccionadas teve um tempo de treino menor e resultados ligeiramente melhores nos

modelos com melhor desempenho.

Os melhores modelos finais foram as versões mais simples de LSTM, GRU e 1D CNN

+ LSTM. O modelo combinado 1D CNN e LSTM teve o menor tempo de treino de 97

segundos e o melhor desempenho com um RMSE de 0,0617. Isto mostra que para este

dataset, talvez devido ao tamanho do dataset ou ao número de variáveis, os modelos

simples de Deep Learning superam os modelos mais complexos.
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Chapter 1

Introduction

Diabetes mellitus, commonly known as diabetes, is a metabolic illness in which the pa-

tient’s blood sugar levels remain elevated for an extended period of time. If left untreated

it causes major health problems such as cardiovascular disease, blindness, kidney failure,

lower limb amputation and even death. The source of this condition is a dysfunction of

the pancreas which causes it to produce insufficient or no insulin.

Nearly 537 million adults (20-79 years) had diabetes in 2021 and this number is pre-

dicted to rise over time. By 2030, the total number of people living with diabetes are pre-

dicted to be 643 million and by 2045, 783 million. In 2021, diabetes claimed the lives of 6.7

million people. Almost half of all adults with diabetes (240 million) are undiagnosed [1].

Since diabetes is such an important problem that affects an increasing number of peo-

ple, it is critical to delay or avoid the disease by eating a balanced diet and exercising

regularly. However, diabetes cannot always be prevented, and in some cases it must be

controlled with insulin injections to maintain normal glucose levels. Insulin doses, how-

ever, are dependent on various parameters such as physical activity, nutrition, and the

glycaemic level at that particular time. Because all of these vary depending on a person’s

habits, it is impossible to treat everyone with diabetes in the same manner. It is necessary

to personalize the treatment in order for it to be effective, however, even if the patient

follows a strict diet, glucose levels can quickly fluctuate.

To have a more personalized treatment, we need to understand what causes the glu-

cose level to oscillate so that it can be forecasted when blood glucose levels are nearing

dangerous levels, to avoid hypo and hyperglycemia. In this thesis we aim to predict

these glucose oscillations with a Machine Learning analysis, using a dataset with various

variables and glucose levels. The dataset used is the OhioT1DM Dataset [2] the contains

1



2 FINDING PATTERNS THAT PREDICT HYPER AND HYPOGLYCAEMIA

continuous glucose insulin taken, physiological sensor and self-reported life-event data

collected over an eight-week period for 12 patients with type 1 diabetes.

1.1 Diabetes

Diabetes is a long-term chronic condition that affects how the body transforms food into

energy, either to the pancreas’ inability to create enough insulin or the body’s inability to

use the insulin produced. Insulin is a hormone that aids glucose absorption into cells for

energy production. Hyperglycemia occurs when the body’s ability to use or manufacture

insulin is impaired, resulting in a rise in blood glucose levels, and it has been linked to

several health concerns as well as organ and tissue failure over time.

Type 1, Type 2, and Gestational Diabetes are the three most common kinds of dia-

betes [3, 4].

Type 1 diabetes is also known as insulin-dependent diabetes or juvenile diabetes since

it is most often initially diagnosed in children and young people. However, it can strike

anyone at any age. Because the immune system targets and destroys the cells in the pan-

creas that create insulin, people with this type of diabetes are unable to produce any in-

sulin. To keep blood glucose levels under control, these individuals must receive insulin

injections on a daily basis. Type 1 diabetes affects 5-10% of people with diabetes and there

is currently no way to prevent it[3].

Type 2 diabetes is the most prevalent type of diabetes, which arises when the body

does not use insulin as it should. It most commonly affects middle-aged and older people,

but it can strike anyone at any age[5]. Because the symptoms are not always obvious,

testing is critical. Healthy habits, such as eating nutritious foods and exercising regularly,

can help avoid or at least delay the onset of this illness.

Gestational diabetes can develop in pregnant women, which, most of the time, dis-

appears after the baby is born. However, women affected and their children have an

increased risk of developing type 2 diabetes later in life.

1.2 Dataset

The OhioT1DM Dataset, used in this thesis, collected data on several variables for 6 pa-

tients in 2018 and 6 patients in 2020 for a total of 12 patients over the course of eight

weeks. This dataset was first made accessible for research purposes in 2018 for the first
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Blood Glucose Level Prediction (BGLP) Challenge [6] and it contained information on the

first six patients.

All patients are anonymous and therefore referred by random ID numbers. All pa-

tients were on insulin pump therapy with continuous glucose monitoring (CGM) that

tracks the glucose level through a tiny sensor inserted under the skin, usually on the belly

or arm [7]. The insulin pumps used by the patients were either the Medtronic 530G or

the Medtronic 630G. Additionally, the patients used the Medtronic Enlite CGM sensors to

monitor glycaemic levels. Patients reported life-event data via a custom smartphone app

and physiological data was collected with a fitness band. The patients of 2018 used Basis

Peak fitness bands while patients of 2020 wore Empatica Embrace.

The static data of each patient is shown in Table 1.1, this information includes patient

ID, gender, age range, insulin pump model, sensor band type and cohort.

TABLE 1.1: Patient data from OhioT1DM 2018 and 2020 [2]

ID Gender Age Pump Model Sensor Band Cohort
540 male 20–40 630G Empatica 2020
544 male 40–60 530G Empatica 2020
552 male 20–40 630G Empatica 2020
567 female 20–40 630G Empatica 2020
584 male 40–60 530G Empatica 2020
596 male 60–80 530G Empatica 2020
559 female 40–60 530G Basis 2018
563 male 40–60 530G Basis 2018
570 male 40–60 530G Basis 2018
575 female 40–60 530G Basis 2018
588 female 40–60 530G Basis 2018
591 female 40–60 530G Basis 2018

For the sequential data, the dataset includes [2]:

• CGM blood glucose level every 5 minutes

• Periodic self-monitoring Blood glucose level (finger sticks)

• Insulin doses, both bolus and basal

• Self-reported (SR) meal times with carbohydrate estimates

SR times of exercise

SR times of sleep

SR times of work
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SR times of stress

SR times of illness

• Data from the Basis Peak Band (5-minute aggregations):

Heart Rate

Galvanic Skin Response (GSR)

Skin Temperature

Air Temperature

Step Count

Sleep Time

• Data from the Empatica Embrace Band (1-minute aggregations):

Galvanic Skin Response (GSR)

Skin Temperature

Magnitude of Acceleration

Sleep Time

The data is divided in two sets for each patient, one for Training and one for Test

examples.

TABLE 1.2: Train-Test split of glucose entries for each patient [2]

ID BGLP Challenge Training Examples Test Examples
540 2020 11947 2884
544 2020 10623 2704
552 2020 9080 2352
567 2020 10858 2377
584 2020 12150 2653
596 2020 10877 2731
559 2018 10796 2514
563 2018 12124 2570
570 2018 10982 2745
575 2018 11866 2590
588 2018 12640 2791
591 2018 10847 2760

Each set contains the following data fields:

• 3 data fields - Patient ID, insulin type and weight.
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• glucose level - Continuous glucose monitoring (CGM) data every 5 minutes. Has

two columns: ”ts” - contains the information of the day, month, year, hour, minute,

second; ”value” - blood glucose in mg/dL.

• finger stick - Self-monitoring values of blood glucose. It has the same columns as

”glucose level” but has irregular time intervals as this test is taken by initiative of

the patient.

• basal - Basal insulin rate that is injected continuously until a new basal rate is se-

lected. Also has as columns ”ts” and ”value”. It Has irregular time intervals that

depend on how long a basal rate was set.

• temp basal - A temporary basal insulin rate that supersedes the patient’s normal

basal rate. When the value is 0, this indicates that the basal insulin flow has been

suspended. At the end of a temp basal, the basal rate goes back to the normal basal

rate, basal. It has 3 columns: ”ts begin” - Initial time; ”ts end” - ending time; ”value”.

The number of rows depends on how many temp basal rates were set by the patient.

• bolus - Insulin delivered to the patient. It has 5 columns for 2018 patients and 4

columns for 2020 patients: ”ts begin”, ”ts end”, ”type”, ”dose” for both years and

”bwz carb input” for 2018 patients. There are 4 types of insulin: Normal - delivers

all insulin at once; Square - delivers all insulin over a period of time; Normal dual

and Square dual that is a combination of the previous types. The fifth column has

information of the carbs ingested similar to the ”meal” field.

• meal - Self-reported meals, it has 3 columns: ”ts”; ”type” - type of meal; ”carbs” -

patient’s estimate for the carbohydrates.

• sleep - Self-reported sleep with 3 columns: ”ts begin”; ”ts end”; ”quality” - Patient’s

rating of the sleep quality: 1 - Poor; 2 - Fair; 3 - Good.

• work - Self-reported time of going to and from work with the subjective physical

intensity of the activity. Columns: ”ts begin”, ”ts end” and ”intensity”.

• stressors - Self-reported times of stress. It has 3 columns ”ts”, ”type” and ”descrip-

tion” but only the time column has values. Some patient’s have no entries on this

dataset.
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• hypo event - Self-reported hypoglycemic episodes, has only one column: ”ts”. Some

patient’s have no entries on this dataset.

• illness - Self-reported time of when the patient felt ill. It has 4 columns: ”ts begin”,

”ts end” , ”type” and ”description” but only the first column has values. Some pa-

tient’s have no entries on this dataset.

• exercise - Self-reported start time and duration of exercise with subjective Intensity.

It has 5 columns: ”ts begin”, ”intensity”, ”duration”, ”type” and ”competitive” but

the last two columns have no values.

• basis heart rate - Heart rate in bpm every 5 minutes. This data is only available for

2018 patients. It has 2 columns: ”ts” and ”value”.

• basis gsr - Galvanic skin response, also known as skin conductance or electrodermal

activity every 5 minutes for 2018 patients and every 1 minute for 2020 patients. It

has 2 columns: ”ts” and ”value”.

• basis skin temperature - Skin temperature, in Fahrenheit, every 5 minutes for 2018

patients and every 1 minute for 2020 patients. It has 2 columns: ”ts” and ”value”.

• basis air temperature - Air temperature, in degrees Fahrenheit every 5 minutes.

This data is only available for 2018 patients. It has 2 columns: ”ts” and ”value”.

• basis steps - Step count, aggregated every 5 minutes. This data is only available for

2018 patients. It has 2 columns: ”ts” and ”value”.

• basis sleep - Sensor’s report of the times when the patient was asleep. It has 4

columns: ”tbegin”, ”tend”, ”quality” and ”type”. The last column is always empty

and the ”quality” has a numeric estimate of sleep quality for 2018 patients while for

2020 has only 0s.

• acceleration - Magnitude of acceleration every 1 minute. This data is only available

for 2020 patients, therefore, it will not be used.

All these variables can be used to make predictions on the glucose level. .

However, in traditional Machine Learning models feature engineering is done manu-

ally, while on Deep Learning these features are learned directly from the data, saving time

and learning more complex data patterns [8].

There are several types of Deep Learning models:
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• Artificial Neural Networks – ANN – Used for tabular data

• Recurrent Neural Networks – RNN – Used for sequential data

• Convolutional Neural Networks – CNN – Used for images

More complex neural networks are made in order to solve problems with these vanilla

networks so it is needed to test more than one NN to know which one is better in a

particular case. The next chapter will cover the differences in these NN.

A deep learning analysis of this dataset has already been made by several AI re-

searchers, however, most of these analyses did not use all variables or had a poor pre-

processing of the used variables. Additionally, most did not use any type of scaling of

the data. The amount of information used to make predictions is also different, some re-

searchers use only the previous 30 minutes of data to predict the following 30 minutes

while others use the previous 1 or 2 hours.

The objective of this thesis is to find a NN that can accurately predict the glucose level

after a certain period of time and compare the performance of a personalized (trained

with only one patient) and generalized (trained with all patients) model.

Before using the models, a preprocessing of the data is needed as each variable has a

different number of columns, rows and time stamps. Depending on the structure of each

variable’s dataframe, different types of preprocessing are applied and then all dataframes

are merged into a single dataframe with only one column for the time stamps. To make

predictions on the glucose level of the following 30 minutes, the information of all vari-

ables within the previous 24 hours will be used. All types of models with different num-

bers of layers will be compared and the model with the lowest error and training time

will be selected.





Chapter 2

State of the Art

In this chapter, the different types of Deep Learning models used for time series fore-

casting are explained. Each model has some strengths and weaknesses, so these models

are always being improved and new models are created in order to counter some of the

weaknesses.

2.1 Neural Networks

Time series forecasting is a vital topic of study in a variety of fields, including weather

forecasting, stock price forecasting, the number of customers at a store or hospital, among

others.

There are numerous options for dealing with Time Series. ARIMA (Autoregressive inte-

grated moving average) and SARIMA (Seasonal ARIMA) models are two of these alterna-

tives.

These methods often require hand-engineered features, prepared by domain exerts.

Most real-world problems have multiple variables as input so they are not suited to

ARIMA that focus on univariate data. They are also focused on linear relationships and

complete data so they do not perform well in predicting nonlinear patterns or predicting

with missing values [8].

Deep Learning models, on the other hand, learn these features directly from the data,

which saves time spent fine-tuning parameters and allows them to learn more compli-

cated data patterns. These models are robust to noise and can learn even with missing

values. They also support multivariate inputs and can learn nonlinear and complex rela-

tionships [8].

9
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Having an image classification problem as an example, to extract features from an

image, a strong understanding of the image’s subject is required and it takes time to do

so.

In Deep Learning, feature extraction is done automatically, as seen in Figure 2.1.

FIGURE 2.1: Machine Learning vs Deep Learning [9]

These Deep Learning models are called Neural Networks and there are several types

of NN:

• ANN - Artificial Neural Network

• RNN - Recurrent Neural Network

• CNN - Convolutional Neural Network

2.2 ANN - Artificial Neural Network

An Artificial Neural Network is a collection of interconnected nodes known as percep-

trons or neurons that are arranged in one or more layers. Each neuron receives a signal

and processes it before passing it on to the next layer of neurons. The weight of each

neuron and connection changes as the learning progresses. Because the inputs are exclu-

sively processed in the forward direction, ANNs are also known as Feed-Forward Neural

Networks (Figure 2.2).

The three layers of an ANN are also illustrated in the same image. The input layer

receives the data, the hidden layer processes the inputs (which can be a single or more

layers), and the output layer returns the output [10]. The structure of each neuron is

represented in Figure 2.3.
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FIGURE 2.2: Artificial Neural Network Diagram [9]

FIGURE 2.3: Neuron Diagram [10]

Each neuron receives all the input values (blue circles) multiplied by the weight as-

signed to each link (grey lines). The weight attributed to the neuron itself, known as bias,

is added after the sum of all these values. Because the sum of all these values can quickly

escalate as the number of layers grows, an Activation function is applied before transfer-

ring the value shown in the green circle on to the next neuron to keep the value between

-1 and 1.

As Activation Functions, there are numerous alternatives, like those presented in Fig-

ure 2.4, these functions should be differentiable and continuous everywhere [11].

The first activation function, on the left side, is the ReLU or Rectified linear function.

This function returns the max value between 0 and X, so, any negative number will be

returned as 0 and the other numbers are kept the same.

The second function, in the middle, is the Sigmoid function, often known as the Lo-

gistic function, displayed in the middle. This function ensures the values on the green



12 FINDING PATTERNS THAT PREDICT HYPER AND HYPOGLYCAEMIA

FIGURE 2.4: Activation Function [11]

circle stay between 0 and 1. It is linear for values near 0 but flattens off for larger values,

resulting in numbers near +1 or 0.

The last function on the right is the Hyperbolic Tangent activation function, often

known as TanH and behaves similarly to the sigmoid function, except that it limits the

values between -1 and 1. The benefit of this function is that the negative inputs will be

mapped strictly to negative and the only positive outputs are the positive inputs [11].

After the last hidden layer the output value is compared to the actual value. If the

value is not what was expected then all the weights of bias and connections will be fine-

tuned from the last layer till the first, this is called Back Propagation.

FIGURE 2.5: Cost and Gradient [12]

After the weights have been modified on the next iteration of the model train, a new

cost (difference between the actual and predicted value) is determined, and this process is

repeated until the cost is reduced, as illustrated in Figure 2.5. An NN’s incremental step is

one of its parameters. The training process will be substantially slower if the incremental

step is too small, but the outcomes may not be optimal if the incremental step is too high,

therefore, there must be a compromise between training time and results.

In this thesis, it is considered a regression problem and there are various functions

to determine that cost (or loss function). Some of which are the Mean Squared Error
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(MSE), Root Mean Squared Error (RSME) and the Mean Absolute Error (MAE) [8] which

equations are the 2.1, 2.2 and 2.3, respectively.

1
N

N

∑
i=1

(ŷ − yi)
2 (2.1)

The MSE is obtained by summing the squared differences of between the observed

value (y) and the predicted value (ŷ) and dividing by the number of test rows (N) [13].

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2 (2.2)

The RMSE is obtained by using the square root of MSE.

1
N

N

∑
i=1

|ŷ − yi| (2.3)

The MAE is similar to MSE but is instead obtained by summing the absolute value of

the differences.

Unlike MAE, MSE and RSME are more punishing of larger forecast errors [8]. This

is due to the fact that the summation used is the squared differences, so these values will

increase rapidly if the differences are larger.

While determining a minimum cost on a dataset with a small number of variables

may be simple, this is not the case as the number of variables grows. This has a significant

impact on the model’s performance, known as the Hughe’s Phenomenon and shown in

Figure 2.6.

FIGURE 2.6: Hughe’s Phenomenon [12]
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A problem associated with ANNs is that they are not able to capture sequential infor-

mation in the input data which is needed to analyse time-series [11].

2.3 RNN - Recurrent Neural Network

Recurrent Neural Networks (RNNs) address the challenge of sequential data through

different feedback links in the architecture, enabling notion of state [9].

Figure 2.7 illustrates this difference, which is a recurrent link on each node. This

loop ensures that sequential information is preserved, making RNN more appropriate

for working with Time Series data.

FIGURE 2.7: RNN vs ANN [9]

The data processed on each iteration is made up of the current iteration’s input, xt,

and a combination of prior outputs, ht−1. The output of this iteration is ot. Figure 2.8

shows this impact as well.

FIGURE 2.8: RNN data on each iteration [9]

Although RNNs are capable of perceiving sequential input, they are affected by the

vanishing gradient problem [14], which causes short-term memory. The information from

the first iteration gets smaller and smaller as the number of iterations increases, until it

vanishes [11].
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To tackle this problem, new types of RNN were created, LSTM (Long Short Term

Memory) and GRU (Gated Recurrent Units).

As the name suggests, the Gated Recurrent Units have additional gates, compared to

vanilla RNN, used to control the flow of information in the network. These gates are also

present in LSTM models and are able to pass long sequences of information and use them

to make predictions.

Figure 2.9 represents the basic LSTM Architecture, introduced by Hochreiter & Schmid-

huber [15], that includes three additional gates. Each gate is a neural network with its own

weights and biases. These new gates are the Forget Gate, Input Gate and Output Gate.

The cell state serves as the network’s memory, storing information from previous it-

erations. The effects of short-term memory are reduced because information from earlier

time steps is carried all the way [16]. As it goes through the gates, the data on this cell

state can be added or erased. These gates are neural networks that decide whether or not

to keep or forget information during training. Each gate has a Sigmoid activation function

(red circles) that confines values between 0 and 1, which is what eliminates or adds infor-

mation about cell states, values near 0 are forgotten or not contributed to the cell stated

and values near 1 are added.

FIGURE 2.9: LSTM Architecture [17]

The data on the bottom black line is a combination of the prior hidden state (possible

values for this time step) and the current input and it goes through all three gates.
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When these values reach the Forget gate, they pass via the Sigmoid function; values

near 0 indicate the information will be removed from the cell state, while values around

1 indicate that the information will be maintained.

The information will be processed through a Sigmoid function on the Input Gate to

determine which information is significant (near 1) and which information is not impor-

tant (near 0). A TanH activation function (blue circle) processes the same data, limiting

the values to -1 and -1 in order to regulate the network. Then these regulated values are

multiplied and essential values are picked and added to the cell state.

Finally, the Output gate determines what the next hidden state will be. The prior

hidden state and the new input are passed through a Sigmoid state at this stage, after

which the new cell state information (after the Forget and Input gates) is passed through

a TanH function. Then, both TanH and Sigmoid output are multiplied in order to obtain

the new hidden state which will be carried over to the next time step.

The GRU, introduced by Cho, et al. [18] is akin to the LSTM. GRUs does not have

access to the cell state and instead relies on the hidden state to send data to the next time

step. It contains two gates: the Update Gate and the Reset Gate, as shown in Figure 2.10.

FIGURE 2.10: GRU Architecture [17]

This Update Gate serves as both a Forget and an Input Gate, deciding what informa-

tion to erase and what information to add [16].

The Reset Gate is used to determine whether or not the prior hidden state is significant.
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GRU is faster to train than LSTM because it has fewer gates, although in most cases,

both are utilized and one is chosen based on performance. Both GRU and LSTM models

have a Bidirectional model, the Bi-GRU and Bi-LSTM, that process the information in two

directions: Backwards (future to past) and Forward (past to future).

2.4 CNN - Convolutional Neural Network

The Convolutional Neural Network, introduced by LeCun et al. [19], is another type of

NN that is commonly used in image processing [8].

CNN neurons are filters, known as kernels, that extract relevant characteristics from

input and produce a feature map. CNNs capture the spatial properties of an image and

learn the relationship between the image and its arrangement of pixels, as demonstrated

in Figure 2.11.

FIGURE 2.11: CNN – Image Classification [9]

In terms of image processing, CNNs outperform ANNs in determining whether an

image belongs to a specific category, but is in a different location, slightly tilted, or sim-

ply zoomed (Figure 2.12). This happens because, unlike an ANN, CNN captures picture

features with 2d mapping rather than processing an array of values.

The same filter is applied to various regions of an input in each layer [11]. Figure 2.13

shows a 5x5 image that has been turned into a 2x2 map by sliding the same 3x3 filter

across the image by 2 pixels. The CNN parameters are the kernel, which determines the

filter’s window size and the stride, which determines the shift size as well as the padding.

To prevent reducing too much the image size in each layer, a padding is applied

adding pixels to the data with 0s resulting in an output with higher dimensions as shown

in Figure 2.14.



18 FINDING PATTERNS THAT PREDICT HYPER AND HYPOGLYCAEMIA

FIGURE 2.12: CNN – Image Classification

FIGURE 2.13: CNN – Convolving image 5x5 with a kernel = 2 and stride = 2 [9]

FIGURE 2.14: CNN – Convolving image 5x5 with a kernel = 2, stride = 1 and padding (2
on the left, 1 on the right) [20]
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A clear example of this map is shown in Figure 2.15 where the convolution result is

the sum of the values in each box multiplied by the values of the filter. As shown in the

figure, the values on the first box, (1, 7, 11, 1) are element-wise multiplied by the filter (1,

1, 0, 1) and summed up (1 + 7 + 0 + 1). Then it shifts across the other values of the matrix

and this process is repeated for each box in the input matrix [11].

FIGURE 2.15: CNN – Convolving 3x3 image with a 2x2 filter Example [21]

The final type of layer (can be more than one layer), the Fully Connected Layers, are a

traditional neural network that are applied after all of the mapping has been completed.

The 2D matrix output is converted to an array, and each value is handled as a separate

feature representing the entire image. As in an ANN, each feature is multiplied by the

weight associated with each connection to each node, and then the bias of the neuron is

added (Figure 2.16).

FIGURE 2.16: CNN – Fully Connected Layer [21]

Traditional CNNs, on the other hand, are not built for sequential data, so 1 Dimension

Convolutional Neural Networks were created to overcome this problem [11]. The kernel

(filter) of this new type of NN is made up of a set of sequential values centered around

a point, as shown in Figure 2.17 (left). Standard 1D CNNs had an issue because they
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relied on the input of x(1) and x(2) values to forecast the value of x(0), which is equivalent

of attempting to predict the present while knowing the future. Causal CNN solves this

problem by only using past values as input.

FIGURE 2.17: 1D CNN – Standard vs Causal [22]

It is possible to learn and train from the past in Causal CNN, but it is extremely dif-

ficult to learn and train from the distant past. In this case, a larger filter is required to

capture information from more points, but this is not parameter efficient, or one addi-

tional layer for each point is required, which is a significant problem. Taking a music

audio file with a sampling rate of 44.1 kHz as an example, this corresponds to 44,100

points per second of music, hence analyzing these files would demand a large number of

layers. Because a large number of layers creates the vanishing/exploding gradient prob-

lem, the number of layers must be lowered, and Causal Dilated CNNs are adopted to do

this [23]. These take into account points that are not immediately before x(0) but are sep-

arated by a dilation factor, d, and thus can take as input points from the distant past with

fewer layers. However, it has no information about the values between, for example, the

values of x(-1), x(-2), and x(-3), as shown in Figure 2.18.

FIGURE 2.18: Causal Dilated CNN [22]

In order to have information of all points and learn from the far past, these Causal

Dilated CNNs have several layers with different dilation factors as shown in Figure 2.19,

this is called Temporal Convolutional Network (TCN).
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FIGURE 2.19: Temporal Convolutional Network [24]

The gradient flow is oriented vertically rather than horizontally in this sort of NN,

hence the gradient is not time dependent like it is in RNN. This is significant because

we can now treat this data in parallel rather than sequentially, resulting in a significant

reduction in training time when utilizing GPUs [25]. They do not have the vanishing/ex-

ploding gradient problem since they have fewer layers, therefore they can learn from the

far past without difficulty.

TCNs are not perfect, even with these advantages, because their receptive field is fixed

a priori when the number of layers is defined, therefore values beyond this range are

ignored when calculating the output at a certain position [25].

Most of these models will be tested in order to find the model that best predicts our

dataset.





Chapter 3

Preprocessing

This chapter will cover the loading, exploration, preprocessing and merge of each vari-

able’s data. The variables of this dataset have different time intervals, different number

of rows and some patients have more variables than the others which makes it difficult

to gather every variable in a single dataframe for each patient. To do so, every variable

needs to be preprocessed according to its characteristics.

3.1 Loading Dataset

The data provided by the OhioT1DM dataset is in XML format, so in order to work with

this dataset the XML’s data was parsed into CSV files.

As the data is originally split in train and test datasets, the same split is maintained

after the parsing. The output of the parser consists in, for both test and train datasets,

12 folders corresponding to the 12 patients, each folder containing one CSV file for each

variable. There are 18 variables for 2018 patients and 16 variables for 2020 patients.

In Figure 3.1 it is shown that the number and size of files for each patient is different

as some patients may not contain information on some variables and some CSV files have

more rows than others. This discrepancy in rows is explained by the fact that some vari-

ables like ”basis gsr” or ”glucose level” have rows for each interval of 1 or 5 minutes and

variables like ”illness” or ”exercise” only have rows if the patient was ill or did exercise.

Before loading all CSV files, a dictionary called patients is made. The key of the dic-

tionary is the number of each patient followed by ” testing” or ” training”.

Then, for each key in the dictionary we save a list of pair of strings containing the

name of each variable and the corresponding CSV file as presented on Figure 3.2.

23
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FIGURE 3.1: CSV data for one patient in the train folder

'584_testing' : ( 'glucose_level' , 'test/584-ws-testing.xml/glucose_level.csv' ) ,
( 'basis_gsr' , 'test/584-ws-testing.xml/basis_gsr.csv' ) ,
( 'meal' , 'test/584-ws-testing.xml/meal.csv' ) ,
( … )

'588_testing' : ( 'glucose_level' , 'test/588-ws-testing.xml/glucose_level.csv' ) ,
( 'basis_gsr' , 'test/588-ws-testing.xml/basis_gsr.csv' ) ,
( 'meal' , 'test/588-ws-testing.xml/meal.csv' ) ,
( … )

( … )

key value

FIGURE 3.2: Example of patients dictionary

Using the patients dictionary to read each CSV file, the new dictionary, d f dict, is

made. d f dict is a dictionary of dictionaries, each key corresponds to one patient (”584 testing”)

and the value is a dictionary containing a pandas dataframe for each variable as shown

in Figure 3.3.

This structure of dataframes will be useful for the preprocessing since it is easy to

specify which dataframe is used by using df dict[’patient id’][’variable’].
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'584_testing' : 'glucose_level' :

'basis_gsr':

( … )

( … )
'588_testing' :

key value

ts value
0 30-08-2021 11:53:00 116
1 30-08-2021 11:58:00 117
2 30-08-2021 12:03:00 119
( … )

ts value
0 30-08-2021 11:05:00 0.000063
1 30-08-2021 11:10:00 0.000063
2 30-08-2021 11:15:00 0.000063
( … )

key value

FIGURE 3.3: Example of df dict dictionary.

3.2 Preprocessing

As said previously, different variables have different time intervals and, therefore, differ-

ent timestamps. These time intervals are laid-out in Table 3.1, ”X” means that this variable

is not present in this batch of patients and the other variables are not periodic, and thus

the interval between values varies. Since the variable ”acceleration” was only introduced

in 2020, the CSV of this variable was not used.

TABLE 3.1: Time interval of each variable for patients of 2018 and 2020 in minutes

Variable 2018 2020
glucose level 5 5

basis skin temperature 5 1
basis gsr 5 1

basis air temperature 5 X
basis steps 5 X

basis heart rate 5 X
basis sleep 5 ?
acceleration X 1

This inconsistency of time stamps is one of the reasons why it is not possible to merge

all CSV files into one dataframe since there is not a timestamp that can contain the infor-

mation of all variables. In order for this to be possible, all time stamps in every variable

will be re-scaled to time intervals of 30 minutes that will enclose all values within this

temporal window. This process will be different for each variable.
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Due to this inconsistency of time intervals some variables have more rows than the

others as shown in Table 3.2 that contains information of the minimum, mean and max-

imum number of events for each variable across all patients for train and test dataset.

Highlighted rows are the patient’s manual entries

TABLE 3.2: Min, Mean and Max number of events for each variable for Train and Test
dataset.

Train Test
min mean max min mean max

glucose level 9080 11232.5 12640 2364 2645.2 2896
meal 32 149.4 265 0 31.2 54
basal 23 86.5 163 8 21.2 32

temp basal 2 39.4 232 0 8.2 55
bolus 134 251.9 347 36 59.2 102
work 0 14.6 35 0 3.2 6

exercise 0 15.6 46 0 2.8 10
sleep 0 33.5 46 0 8.2 12

basis sleep 9 512.5 1087 5 115.4 237
basis skin temperature 11822 25111.2 53219 2612 6538.9 13796

basis gsr 11769 25099.2 53219 2606 6536.9 13796
stressors 0 0.5 3 0 0.1 1

illness 0 0.9 4 0 0.2 2
hypo event 0 9.9 37 0 1 4

basis heart rate 0 6164.6 12980 0 1337.1 2720
basis air temperature 0 6664.9 12948 0 1338.9 2716

basis steps 0 6739.9 13297 0 1460.4 2727
finger stick 137 328.7 592 25 68.2 143

Some variables like ”glucose level” have similar min, mean and max because these

values are obtained every 5 minutes for all patients and so the number of events depends

only on the number of missing values and the duration of the collection of these values.

Other variables like ”basis skin temperature” or ”basis gsr” have a great discrepancy

between min, mean and max number of events due to the difference in time interval of

these variables. As shown in Table 3.1, 2020 patients collected information about these

variables every 1 minute while 2018 patients did so every 5 minutes thus 2020 patients

will have much more rows than the others.

The ”basis air temperature”, ”basis heart rate” and ”basis steps” have different values

because these variables were not available in 2020 patients.

There is also a discrepancy in the number of rows in the ”basis sleep” variable, this is

due to the fact that in 2020 there is only one row per night of sleep with the initial and

wake-up time and in 2018 each night of sleep is divided into several rows.
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Most of the other variables are self-reported so the difference in the number of rows

depends on the frequency that the patient reported each variable.

For variables that have multiple values within 30 minutes, a mean or mode function

needs to be applied in order to obtain only one value. For variables that do not always

have at least one value in each 30 minute interval a filling function is applied. Thus, for

the preprocessing of each variable at least two functions are used, a re-sample function

and a fill function.

3.3 Re-sampler

In this section the several re-samplers are explained for each variable. Some variables can

use the same preprocessor while others may need a specific function, depending on how

the information of that variable is saved.

3.3.1 preprocessing ts

One of the most simple re-sampler used was the preprocessing ts that is applied on

some variables such as ”glucose level” or ”basis heart rate”. This function, as all other

preprocessors, transforms the values on the time columns (”ts”) into datetime format us-

ing the function datetime.strptime(). After that, the values are re-sampled to 30 minute

intervals applying the mean of the original values in that interval. An example of this step

is shown in Table 3.3.

TABLE 3.3: Example of heart rate dataframe before and after the re-sample using the
mean, in bpm.

Before After
ts heart rate ts heart rate

18:18 70 18:00 75
18:23 75 18:30 82
18:28 80 19:00 80
18:33 85
18:38 85
18:48 80
18:53 85
18:58 75
19:03 80

This function will be applied to the following variables:

• glucose level
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• basis skin temperature

• basis gsr

• basis heart rate

• basal

• basis air temperature

• finger stick

3.3.2 preprocessing ts sum

In these kinds of variables like the heart rate, using the mean of the values within the 30

minutes interval is the best way to represent the value but this is not true for all variables.

For example, in the case of ”basis steps” or ”meal” variables, using the mean would result

in obtaining the mean steps every 5 minutes or the mean of carbs of two inputs within

30 min. So, to re-sample these variables the function .sum() is used instead. If there is

no value in every 30 minute interval, that time stamp will be added with a NaN that will

be replaced later with a filler. An example of the function preprocessing ts sum is in

Table 3.4

TABLE 3.4: Example of meal dataframe before and after the re-sample using the sum, in
carbs.

Before After
ts meal ts meal

18:03 20 18:00 30
18:25 10 18:30 NaN
20:09 60 19:00 NaN
21:48 15 19:30 NaN

20:00 60
20:30 NaN
21:00 NaN
21:30 15

Unlike all other variables, ”illness”, ”hypo event” and ”stressors” do not have a ”value”

or ”intensity” column, instead they have only a time column and time stamps at which

the patient was ill, stressed or had an hypo event. So, in each of these variables a new col-

umn ”value” was added and set to 1 and the function preprocessing ts sum was applied

to the dataframe. If there is no value in every 30 minute interval, that time stamp will be
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added with a NaN that will be replaced later with a filler. In the ”illness” dataframe there

are two time columns but the ”ts end” is always empty, so this column is removed and

the column ”ts begin” is renamed to ”ts”. Since there is no more than one event within 30

minutes, the column ”value” will then be a binary variable that states if a patient was ill,

stressed or had an hypo event in that time stamp. The Table 3.5 shows this transforma-

tion.

TABLE 3.5: Example of stressors dataframe before and after the re-sample using the sum

Before Transformed After
ts ts value ts value

2021-09-22 13:59:00 2021-09-22 13:59:00 1 2021-09-22 13:30:00 1
2021-09-24 14:06:00 2021-09-24 14:06:00 1 2021-09-22 14:00:00 NaN
2021-10-08 18:12:00 2021-10-08 18:12:00 1 ... ...

2021-10-08 18:00:00 1

The variables that will use the preprocessing ts sum function are the following:

• basis steps

• meal

• stressors

• illness

• hypo event

3.3.3 preprocessing tbte

While most of the variables have only one column for time, ”ts”, some variables like

”work”, ”sleep” and others have two columns, ”ts begin” and ”ts end”. These kinds of

variables with two time columns need some kind of treatment in order to have only one

so the re-sample can be applied.

To do this, a dummy dataframe is created with the same columns as the original but

replacing both time columns with only one, ”ts”. This ”ts” column has datetime values,

every 5 minutes, from the first time stamp on the column ”ts begin” until the last time

stamp on the column ”ts end” ensuring that it contains the entire range of the original

dataframe. Then, a for loop is made for each line in the dummy dataframe that checks if

each time stamp in the ”ts” column is contained in the intervals between ”ts begin” and

”ts end” of the original dataframe. If it is contained, then it means that in the time stamp
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”ts”, the patient is working or sleeping, therefore the value of the ”intensity” column for

this time stamp is the same as the original dataframe, otherwise the value is 0. There are

some rows that have ”ts begin” = ”ts end” and since it is not possible to know how long

the patient worked or slept, these rows are removed. Then, this dummy dataset is re-

sampled to 30 minutes and a mode function is applied to select the most occurring value

within 30 min. This whole process is shown in Table 3.6.

TABLE 3.6: Example of work dataframe before and after the re-sample using the mode.

(A) Transformation into dummy dataframe.

Before Dummy
ts begin ts end intensity ts intensity

2021-08-31 08:14:00 2021-08-31 17:15:00 4 2021-08-31 08:14:00 4
2021-09-01 07:15:00 2021-09-01 17:34:00 5 2021-08-31 08:19:00 4

... ... ... 2021-08-31 08:24:00 4
2021-10-14 08:06:00 2021-10-14 17:00:00 5 ... ...

2021-08-31 17:14:00 4
2021-08-31 17:19:00 0
2021-08-31 17:24:00 0

... ...
2021-09-01 07:14:00 0
2021-09-01 07:19:00 5
2021-09-01 07:24:00 5

... ...
2021-10-14 16:54:00 5
2021-10-14 16:59:00 5

(B) Re-sample of dummy dataframe.

Dummy After
ts intensity ts intensity

2021-08-31 08:14:00 4 2021-08-31 08:00:00 4
2021-08-31 08:19:00 4 2021-08-31 08:30:00 4
2021-08-31 08:24:00 4 2021-08-31 09:00:00 4

... ... ... ...
2021-08-31 17:14:00 4 2021-08-31 17:00:00 4
2021-08-31 17:19:00 0 2021-08-31 17:30:00 0
2021-08-31 17:24:00 0 2021-08-31 18:00:00 0

... ... ... ...
2021-09-01 07:14:00 0 2021-09-01 07:00:00 0
2021-09-01 07:19:00 5 2021-09-01 07:30:00 5
2021-09-01 07:24:00 5 2021-09-01 08:00:00 5

... ... ... ...
2021-10-14 16:54:00 5 2021-10-14 16:00:00 5
2021-10-14 16:59:00 5 2021-10-14 16:30:00 5
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The ”basis sleep” variable had an additional step because of the distinction between

the dataframes of batch of patients. In 2018, patients wore Basis Peak fitness bands, these

bands saved information about sleep quality and the time stamps were irregular as shown

in Table 3.7 in contrast with 2020 patients that wore Empatica Embrace that did not save

any information about quality and saved only the beginning and the end of the sleep. So,

to make it easier to compare the dataframe of both batches, the quality value was always

set to 1, this way the ”basis sleep” variable will be a binary variable that defines if the

patient was asleep or not.

TABLE 3.7: Comparing basis sleep dataframe between patients from 2018 and 2020.

2018 2020
ts begin ts end qual ts begin ts end qual

30-08-2021 22:24:00 30-08-2021 22:26:00 93 14-05-2025 07:02:00 14-05-2025 08:34:00 0
30-08-2021 22:26:00 30-08-2021 22:45:00 93 14-05-2025 21:59:00 15-05-2025 04:31:00 0

... ... ... ... ... ...
14-10-2021 23:47:00 15-10-2021 00:03:00 92 28-06-2025 22:11:00 29-06-2025 04:06:00 0

The preprocessing tbte function will be applied on the variables ”work”, ”sleep”,

”basis sleep”, ”temp basal” and ”exercise”.

3.3.4 preprocessing ex

One other variable that needs preprocessing in terms of the time columns is the vari-

able ”exercise”. This variable, unlike the others, instead of having a pair ”ts begin” and

”ts end” has a column ”ts” and a column ”duration”. To solve this problem, the ”ts”

column was renamed to ”ts begin” and a empty ”ts end” column was added. To fill the

new column, the values on ”duration” were added to the time stamp of ”ts begin”. After-

wards the column ”duration” is removed. After this step, the preprocessing ex function,

the transformed ”exercise” dataframe has now the same format as the variable ”meal” and

can be re-sampled the same way. This whole process is displayed on Table 3.8.

TABLE 3.8: Example of exercise dataframe before and after the transformation and re-
sample using the mode.

Before Transformed After
ts duration intensity ts begin ts end intensity ts intensity

16:45:00 61 10 16:45:00 17:46:00 10 16:30:00 10
17:00:00 10
17:30:00 0
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3.3.5 preprocessing bolus

Lastly, the function for the variable ”bolus” which sample is presented on Table 3.9.

TABLE 3.9: Sample of bolus dataframe from a 2018 patient.

ts being ts end type dose bwz carb input
07-12-2021 07:36:54 07-12-2021 07:36:54 normal dual 8.0 102
07-12-2021 07:41:58 07-12-2021 08:11:58 square dual 6.4 0
07-12-2021 18:31:52 07-12-2021 18:31:52 normal dual 4.0 65
07-12-2021 18:34:32 07-12-2021 19:04:32 square dual 4.1 0
07-12-2021 22:19:46 07-12-2021 22:19:46 normal 0.7 0

The format of this dataframe is different between patients as the 2018 patients have the

column ”bwz carb input” and 2020 patients do not, however this column can be removed

as it has the exact same information as the ”meal” dataframe. For this variable there are

4 distinct values for ”type”: normal, square, normal dual and square dual. These types

of bolus are shown in Figure 3.4, the normal bolus is an instant injection of insulin, in the

square option the insulin is injected over a period of time and finally the normal dual and

square dual that is a combination of the previous ones.

FIGURE 3.4: Types of bolus [26]

Figure 3.5 is a print screen of the Medtronic 630G [26] insulin pump and explains how

the Dual wave bolus works. First the dose of insulin units is selected, then the patient

selects the percentage of insulin to be taken now as normal dual bolus and the rest is

taken over a period of time as squared dual bolus. This is also shown in Table 3.9, normal

and normal dual bolus have ”t begin” = ”t end” since the insulin is taken instantly and

square dual has ”t begin” ̸= ”t end”.

Since all other variables are re-scaled to 30 minutes time intervals, if the square or

square dual duration were 30 minutes or bellow there would be no need to do a prepro-

cessing. This is due to the fact that the insulin units taken within 30 minutes would be

the same if it was instantaneously or over 30 minutes. In fact, most of the duration for
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FIGURE 3.5: Dual Wave bolus [26]

the square and square dual is 30 minutes, however that is not always so a preprocessing

needs to be done.

An example of this process is demonstrated in Figure 3.6. The first step is to check

the duration of the rows with ”type” = square and divide by 30 minutes, this will give

the number of ”full cycles” (1 cycle on the left example / 3 on the right example) and

the duration of the ”incomplete cycle” (15 / 0 minutes) if the duration is not multiple

of 30. With these values it is possible to obtain the value of the dose injected during the

incomplete cycle (3 / 0 insulin units). This value is then subtracted to the total insulin dose

(9 / 18 iu) which is then divided by the number of complete cycles (1 / 3 cycles) giving

the insulin dose injected each full cycle (6 / 6 iu). After the update of the dose value on

the original row, the new rows are added. On the left example, since there is only one

full cycle there is no need to duplicate this row, instead a new row with the incomplete

cycle’s dose is added and the time ts 1 of this row is obtained by adding 30 minutes to

the original time stamp ts 0. In the right example there is no incomplete cycles so no new

rows are added, the original row is duplicated 2 times (number of full cycles minus 1)

and the time stamps of these rows are updated adding 30 and 60 minutes respectively.

After this split of the square and square dual inputs, these doses are already separated

by 30 minute intervals and so the columns ”ts end” and ”type” can be removed. Finally,

this dataframe is re-sampled to 30 minutes using the .sum() function aggregating values

within each time stamp. Table 3.10 shows both transformations of the ”bolus” dataframe

during the preprocessing bolus function.
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TABLE 3.10: Example of bolus dataframe before, after the split and after sum.

(A) Bolus Split.

Before After Split
ts begin ts end type dose ts dose
15:01:30 15:01:30 normal 3 15:01:30 3
15:10:00 15:55:00 square 9 15:10:00 6
15:12:50 15:42:50 square 1.2 15:12:50 1.2
18:16:20 19:46:20 square 18 15:40:00 3

18:16:20 6
18:46:20 6
19:16:20 6

(B) Re-sample with sum.

After Split After Sum
ts dose ts dose

15:01:30 3 15:00 10.2
15:10:00 6 15:30 3
15:12:50 1.2 16:00 NaN
15:40:00 3 ... ...
18:16:20 6 18:00 6
18:46:20 6 18:30 6
19:16:20 6 19:00 6

3.3.6 preprocessing basal

The only variables left are the ”basal” and ”temp basal”. Since they contain information

about the basal insulin these two variables will be merged into one. When inside the

timestamp of the ”temp basal”, the ”basal” will be overwritten. To do this, each variable

will be re-sampled into 5 minute intervals instead of 30. For the variable ”temp basal” the

function preprocessing tbte was used as shown in Table 3.11. That function turns the

temporal scale dataset of this variable into a 5 minute interval that contains NaN if this

timestamp was outside the ”ts begin” and ”ts end” or the temporary basal value if it was

inside that range.

The function preprocessing ts was applied to the ”basal” variable with a 5 minute

time interval. Since the basal value is constant until the next basal value is set, the values

of each will be filled with the forward filler as shown in Table 3.13. After this step both

variables are re-scaled to 5 minutes and if, for a given timestamp there is a value on the

”temp basal” (other than NaN), then for that timestamp the ”basal” value will be updated
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15:55 – 15:10 = 45 > 30

Find Incomplete
cycle dose

Check full cycles

45 / 30 = 1.5:
1 Complete Cycle
1 Incomplete Cycle
Inc. Cycle Time = 30*0.5 = 15

Inc_dose = Inc_time * total_dose

total_time

= 15 * 9 / 45 = 3

Comp_dose = Total_dose – Inc_dose

Numb_Comp_Cycle

= (9 – 3) / 1 = 6

Edit value of dose from 9 to 6
1 Complete Cycle – No duplicate rows
1 Incomplete Cycle – New row added

ts_1 = ts_0 + 30 min = 15:10 + 30 = 15:40
dose = inc_dose = 3

19:46 – 18:16 = 90 > 30

Inc_dose = 0

Check full cycles

90 / 30 = 3:
3 Complete Cycles
0 Incomplete Cycle

Numb_Comp_Cycle

= (18 – 0) / 3 = 6

Comp_dose = Total_dose – Inc_dose

Edit value of dose from 18 to 6
3 Complete Cycles – 2 duplicate rows
0 Incomplete Cycle – No rows added

Edit ts values of
duplicated rows

ts_1 = ts_0 + 30 min = 18:16 + 30 = 18:46
ts_2 = ts_0 + 60 min = 18:16 + 60 = 19:16

FIGURE 3.6: Bolus split function for the 2nd (left) and 4th (right) row of Table 3.10

TABLE 3.11: Sample of the ”temp basal” dataframe for patient 544.

Before After
ts begin ts end value ts value

24-06-2027 12:11:39 24-06-2027 12:37:28 0 2027-06-24 12:10:00 NaN
25-06-2027 07:58:30 25-06-2027 08:19:09 0 2027-06-24 12:15:00 0

... ... ... 2027-06-24 12:20:00 0
2027-06-24 12:25:00 0
2027-06-24 12:30:00 0
2027-06-24 12:35:00 0
2027-06-24 12:40:00 NaN

... ...

with the temporary one. After this merge, the ”basal” variable is re-sampled to 30 minute

time intervals using the mean. This whole process is demonstrated in Table 3.12.
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TABLE 3.12: Example of basal dataframe before, after the 5 min re-sample, after the
merge with temp basal dataframe and after the 30 min re-sample for patient 544.

Before 5 min Resample After temp merge Final
ts value ts value ts value ts value

24-06-2027 00:00:00 1.7 00:00:00 1.7 00:00:00 1.7 00:00:00 1.7
24-06-2027 03:00:00 1.8 00:05:00 1.7 00:05:00 1.7 00:00:00 1.7
24-06-2027 08:00:00 1.5 ... ... ... ... ... ...
24-06-2027 11:00:00 1.0 12:00:00 1 12:00:00 1 11:30:00 1.0
24-06-2027 16:00:00 1.3 12:05:00 1 12:05:00 1 12:00:00 0.3

... ... 12:10:00 1 12:10:00 0 12:30:00 0.8
12:15:00 1 12:15:00 0 13:00:00 1

... ... ... ... ... ...

3.4 Filler

After re-sampling all variables the NaN values need to be substituted. To fill variables

like ”basis skin temperature” or ”basis heart rate” the missing values will be filled with

the last known value. In these cases, even though some values might be missing, it does

not make sense to fill these values with 0 because this would mean that the heart rate

at that specific time is 0, which is not possible. To counter this, in the re-sampled time

intervals that have no values, it is assumed that the value is the last known value. An

example of this fill function is presented on Table 3.13.

TABLE 3.13: Example of heart rate dataframe before and after the Fill Function f f ill in
bpm.

t Before After
18:00 80 80
18:30 NaN 80
19:00 NaN 80
19:30 77 77
20:00 NaN 77
20:30 75 75
21:00 80 80

The other option for the filler, which is the most common one, is filling the missing

values with 0. Taking as example the variable ”meal” in which a patient ate 30 carbs at

18:30 and 60 carbs at 20:00, if the NaN were replaced with the last known value it would

mean that this patient ate 30 carbs at 18:30, 30 carbs at 19:00, 30 carbs at 19:30 and 60 carbs

at 20:00 and this is not what really happened. In these cases the correct way to fill the

missing values is replacing them with 0 as shown in Table 3.14.
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TABLE 3.14: Example of meal dataframe before and after the Fill Function f illna in carbs.

t Before After
18:00 30 30
18:30 NaN 0
19:00 NaN 0
19:30 NaN 0
20:00 60 60
20:30 NaN 0
21:00 NaN 0

3.4.1 Dataframe merge

A summary of the re-samplers and fillers used is in Table 3.15, these dataframes will then

be stored in a new dictionary, d f new with the exact same format as the d f dict.

TABLE 3.15: Summary of functions used in each variable.

Variable Prepro func Fill func
glucose level ts last value

basis skin temperature ts last value
basis gsr ts last value

basis heart rate ts last value
basal ts last value

basis air temperature ts last value
finger stick ts fillna
basis steps ts sum fillna

meal ts sum fillna
stressors ts sum fillna

illness ts sum fillna
hypo event ts sum fillna

work tbte fillna
sleep tbte fillna

basis sleep tbte fillna
temp basal tbte none

exercise ex + tbte fillna
bolus bolus fillna

After these functions were applied, the only important columns in each dataframe

are the time column ”ts” and the columns containing the values like ”value”, ”intensity”

and ”quality” which will be renamed to the name of the variable. All other columns in

all dataframes are either empty like ”illness”:”description” or contain unnecessary infor-

mation like ”bolus”:”bwz carb input” so several columns from certain dataframes will be

removed. The removed columns for each dataframe are the following:

• ”meal” : ”type”
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• ”basis sleep” : ”type”

• ”stressors” : ”type” ,”description”

• ”illness” : ”type”, ”ts end”, ”description”

• ”bolus” : ”type”, ”ts end”, ”bwz carb input”

• ”exercise” : ”type”, ”duration”, ”competitive”

Then, a new dictionary, d f all, is made that has a key for each patient and as value a

copy of ”glucose level” dataframe. Then all other variables’ dataframes are merged into

this one according to the time stamps of ”glucose level”. Only rows within the first and

last ”ts” of this dataframe will be added. In case a variable has no rows within these time

stamps the value NaN will be given.

This merge is detailed in Table 3.16, the first and last row of ”meal” dataset do not

cover the entire range of ”glucose level” dataframe so some rows are filled with NaN val-

ues. In the case of ”basis sleep”, the range of this dataframe is bigger than ”glucose level”

so some rows are cut-off.

If a dataframe is empty or does not exists the join will fail, so, before merging, non

existing dataframes like ”basis steps” for 2020 patients will be created. Some patients have

empty dataframes with the wrong structure such as ”basis heart rate” for patient ”596”

as shown in Table 3.17 and to solve this, all empty dataframes will have their columns

changed to match the format of the original non-empty dataframes.

After this step, a new row will be added to all empty dataframes, otherwise the join

will fail. This row will have a time stamp of ′01 − 01 − 2000 00 : 00 : 01′ and all other

values as 0, as demonstrated in Table 3.18.

The prepocessing functions will also be applied to these dataframes so the columns

that are not needed are dropped and the time columns are transformed to datetime for-

mat.

Since these time stamps are before the first ”ts” of ”glucose level”, the merge will suc-

ceed but add only NaN values to the new dataframe.

After the merge and as seen in Table 3.16, some variables will have NaN so these

new dataframes will have values filled with either 0 or using .ffill() and .bfill()

functions according to the fill functions on Table 3.15. The function .bfill() backward

fills the NaN values with the first know values in case the first known value of a variable
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TABLE 3.16: Example of ”glucose level”, ”meal” and ”basis sleep” dataframes from a pa-
tient in the dictionary d f new and after the merge in the dictionary d f all.

(A) Example of dataframes in the dictionary d f new.

Before
ts glucose ts meal ts basis sleep

2021-08-30 11:30 116.5 2021-08-30 13:00 60 2021-08-30 7:30 1
2021-08-30 12:00 113.3 2021-08-30 13:30 0 2021-08-30 8:00 0
2021-08-30 12:30 124.2 2021-08-30 14:00 0 2021-08-30 8:30 0
2021-08-30 13:00 147.0 ... ... ... ...
2021-08-30 13:30 151.7 2021-08-30 17:30 15 2021-08-30 11:30 0

... ... ... ... ... ...
2021-10-14 22:00 199.3 2021-10-14 13:00 50 2021-10-14 23:00 0
2021-10-14 23:00 168.7 ... ... 2021-10-14 23:30 1
2021-10-14 23:30 140.6 2021-10-14 18:00 20 2021-10-15 00:00 1

(B) Example of the final dataframe in the dictionary d f all.

After
ts glucose meal basis sleep

2021-08-30 11:30 116.5 NaN 0
2021-08-30 12:00 113.3 NaN 0
2021-08-30 12:30 124.2 NaN 0
2021-08-30 13:00 147.0 60 0
2021-08-30 13:30 151.7 0 0

... ... ... ...
2021-10-14 22:00 199.3 NaN 0
2021-10-14 23:00 168.7 NaN 0
2021-10-14 23:30 140.6 NaN 1

TABLE 3.17: Example of ”basis heart rate” dataframe from patient ”596” and ”588”.

596 588
ts intensity type duration competitive ts value

30-08-2021 11:04:00 83
... ...

is at a time stamp later than the first ”ts” of ”glucose level”. For variables that contain only

NaN values, .ffill() and .bfill() functions will not work, in these cases the variables

will be filled with 0.

The final structure of the d f all dictionary is displayed in Figure 3.7. This whole pro-

cess takes about 6 minutes for the train dataset and 1 minute for the test dataset.

The Table 3.19 shows the total duration of the dataset for each patient for train and
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TABLE 3.18: Example of the updated dataframes for patient ”596”.

basis heart rate work
ts value ts begin ts end intensity

01-01-2000 00:00:01 0 01-01-2000 00:00:01 01-01-2000 01:00:00 0

'584_testing' :

'588_testing' :

key value

ts glucose meal basis_sleep work
2021-08-30 11:30 116.5 0 0 0
2021-08-30 12:00 113.3 0 0 0
2021-08-30 12:30 124.2 0 0 4
2021-08-30 13:00 147.0 60 0 4
2021-08-30 13:30 151.7 0 0 4
( … )

( … )

FIGURE 3.7: Example of df all dictionary for the test folder.

test dataset. These numbers were obtained subtracting the timestamp for the first row

to the last row. The datasets contain values corresponding to 38 days up to 47 days in

the Train dataset and 9 to 13 days in the Test dataset. Patient 552 has the smallest Train

dataset and the biggest Test dataset but this will not be changed in order to preserve the

same information in the original CSVs.

TABLE 3.19: Duration of the collection of values for each patient for train and test dataset.

Patient Train Duration Test Duration
540 45 days 12:00:00 10 days 15:00:00
544 43 days 23:30:00 10 days 21:30:00
552 38 days 12:30:00 13 days 17:00:00
567 46 days 23:30:00 9 days 23:00:00
584 45 days 23:30:00 10 days 09:30:00
596 47 days 07:30:00 10 days 00:00:00
559 41 days 22:30:00 9 days 23:30:00
563 45 days 11:00:00 9 days 08:00:00
570 40 days 07:30:00 9 days 23:30:00
575 45 days 11:30:00 9 days 10:30:00
588 45 days 12:00:00 10 days 00:00:00
591 44 days 06:30:00 9 days 21:00:00

To check the amount of missing values affected by the filling functions some variables

were preprocessed and then the number of NaN was counted. With the number of NaN it

is possible to obtain the percentage of missing values in each variable. These values were
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only obtained for 5 variables: ”glucoselevel”, ”skin temperature”, ”gsr”, ”heart rate” and

”air temperature”. The other variables are self report and it makes no sense to check the

amount of rows affected by the filling functions because it is impossible to know if an NaN

is a missing value or if the patient did not eat, exercised or was ill at that time stamp. The

amount of missing values will not be obtained for variables like work or sleep because if

a patient did not self reported the ts begin and ts end it is not possible to know how many

rows would be affected because the patient could have slept any number of hours or even

did not go to work that day. The Table 3.20 contains the percentage of missing values for

the 5 variables for the 2018 patients and for the 3 variables for 2020 patients for both train

and test datasets.

TABLE 3.20: Percentage of missing values of train and test datasets after 30 min re-sample
and before the filling functions.

(A) Train missing values.

variable 559 563 570 575 588 591 540 544 552 567 584 596
glucose level 9.1 6.7 4.8 7 3.2 14.2 7.7 15.3 16.5 18 6.4 19.3

skin temperature 1.6 1.7 0.9 4.9 1.1 7.7 51.8 7.6 50.4 36.5 26.1 38.7
basis gsr 1.6 1.7 0.9 4.9 1.1 7.8 51.8 7.6 50.3 36.5 26.1 38.7
heart rate 1.6 1.7 0.9 4.9 1.1 7.8

air temperature 1.6 1.7 0.9 4.9 1.1 7.7
(B) Test Missing Values.

variable 559 563 570 575 588 591 540 544 552 567 584 596
glucose level 10.4 4 3.1 3.3 2.7 2.5 4.3 12.8 39 15 8.6 7.6

skin temperature 3.8 4.2 0.4 0.4 0.9 5.6 36.7 6.4 35.3 29 12.6 31
basis gsr 3.8 4.2 0.4 0.7 0.9 5.6 36.7 6.4 35.3 29 12.6 31
heart rate 3.8 4 0.2 0.2 0.7 5.6

air temperature 3.8 4.2 0.4 0.4 0.9 5.6

Overall the patients from 2020 contain much more missing values than the previous

batch of patients. For the training dataset of 2018 only one patient had more than 10%

of missing values for the glucose level while for 2020 4 patients had more than 15% of

missing values.

The distribution of some of these missing values is presented in Figures 3.8 and 3.9.

As shown in the first figure, the intervals of missing values for the glucose level for the

train dataset of patient 567 are usually short with a duration of a few hours. The missing

values of the variable ”basis gsr” are exactly the same as the skin temperature. In this case
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FIGURE 3.8: Time series of glucose level and skin temperature for train dataset of patient
567.

there is an interval greater than one week with missing values but since the values do not

have a great variation, this week of missing values will be replaced with the last known

missing value.

For the case of the test dataset of patient 552, all 3 variables have a long period of

missing values as shown in the second figure. This is also the reason that the Test duration

for this patient is greater than the others as previously shown in Table 3.19. If this was

a train dataset, it would be worrisome to have models train with such a long period of

missing values in the glucose level, in that case this dataframe would be split into two

different dataframes removing the whole week of missing values. However this is a test

dataframe, although it will lower the values of the metrics while predicting the glucose

level of this patient, it will not have any impact on the performance of the models so the

split will not be made and the missing values are filled with the previous known value.

The other patients’ missing values had similar behavior as the patient 567 so all miss-

ing values are filled with the ffill() function.
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FIGURE 3.9: Time series of glucose level and skin temperature for test dataset of patient
552.





Chapter 4

Modeling

After the preprocessing of the datasets the data needs to be transformed into a format

that can be used by the deep learning models, and to do so, a few rows containing all

information of some hours will be gathered as X data to predict the glucose value of the

next timestamp, the Y data. After the transformation, deep learning models will be tested

to check if everything runs as expected and finally build more complex models.

4.1 Data Transformation

After preprocessing, the data is in the form of two dictionaries of dataframes, one for the

training folder, d f all tr and one for the testing folder, d f all te. If the models need to be

tested without some columns, a bin map is made as shown next.

Then, a new pair of dictionaries, d f select tr and d f select te, is created by making a

copy of d f all dictionaries selecting the wanted columns using the bin map.

Deep learning models are sensitive to the scale of the input data and so it is good

practice to re-scale the data to the range -1 to +1 or 0 to 1 [13].

One of the possible scalers would be the StandardScaler()[27]. Equation 4.1 is the

formula for the standard scaler where µ is the mean of the data and σ the standard devi-

ation.

xscaled =
x − µ

σ
(4.1)

This turns the data into values with mean = 0 and standard deviation = 1. This results

in na output that has values outside the range -1 to +1.

The other option is the MinMaxScaler()[27].

45
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xscaled =
x − xmin

xmax − xmin
(4.2)

As shown in equation 4.2 this scaler subtracts the minimum value and this value is

divided by the range (x max − x min) of the data. This scaler preserves the shape of the

original distribution of data and does not reduce the importance of outliers [28].

After the selection of columns, the MinMaxScaler() function will be applied to all

dataframes that will turn all the values in each column into the range of 1 (max value in

that column) and 0 (min value).

The format that will be used as input for the models will be, the ”X data”, an array

with all values for rows within a window size and the ”y data” that is the glucose value

of the window size + 1 row. The value of this window size will be set to 48, since each

row has a time interval of 30 minutes, this means that the models will use values within

24 hours to predict the glucose value of the next 30 minutes. This transformation, the

df to X y function, is displayed on Figure 4.1 and this function is used on both training

and test dataframes. Using the .shape function for the ”X data tr”, for the training data,

it returns (2137, 48, 17), 2137 arrays containing 48 arrays of 17 values while ”y data tr”

returns (2137,), a single array with 2137 values.

ts glucose meal basal
[0] 2027-05-19 11:30 0.089 0 0.846
[1] 2027-05-19 12:00 0.142 0 0.846
[2] 2027-05-19 12:30 0.297 0 0.846
[3] 2027-05-19 13:00 0.284 0 0.846
( … )
[47] 2027-05-20 11:00 0.183 0 0
[48] 2027-05-20 11:30 0.124 0 0
[49] 2027-05-20 12:00 0.094 0 0
[50] 2027-05-20 12:30 0.189 0 0
( … )

[0.089, 0, 0.846, (…)] ,
[0.142, 0, 0.846, (…)] ,
[0.297, 0, 0.846, (…)] ,
(…)
[0.183, 0, 0, (…)] ,
[0.124, 0, 0, (…)] 
,
[0.142, 0, 0.846, (…)] ,
[0.297, 0, 0.846, (…)] ,
[0.284, 0, 0.846, (…)] ,
(…)
[0.183, 0, 0, (…)] ,
[0.124, 0, 0, (…)] ,
[0.094, 0, 0, (…)]
,
(…)

y_data[0] [ 0.124,
y_data[1] 0.094,
y_data[2] 0.189,
y_data[...] (…) ]

X_data[0]

X_data[1]

X_data[...]

df_select_tr X_data_tr Y_data_tr

FIGURE 4.1: Data transformation from training dataframe to arrays for patient 540.

Then, a dictionary d f f inal, as shown in Figure 4.2, containing all this data is made

that has 8 keys for each patient:

• ”X tr” - X Training data containing the first 1700 arrays of ”X data tr”.

• ”y tr” - y Training data containing the first 1700 values of ”y data tr”.
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• ”X val” - X Validating data containing the remaining arrays of ”X data tr”.

• ”y val” - X Validating data containing the remaining values of ”y data tr”.

• ”X te” - X Testing data containing all arrays of ”X data te”.

• ”y te” - y Testing data containing all values of ”y data te”.

• ”d f tr” - Copy of the training dataset

• ”d f te” - Copy of the testing dataset

'540' : 'X_tr' :

'y_tr' :

'X_val' :

'y_val' :

'X_te' :

'y_te' :

'df_tr' :

'df_te' :

key value

key value

['X_data_tr'][1700:]

['y_data_tr'][1700:]

['X_data_tr'][:1700]

['y_data_tr'][:1700]

['X_data_te']

['y_data_te']

df_select_tr['540_training']

df_select_te['540_testing']

FIGURE 4.2: df final dictionary for patient 540.

The initial train data is split into train and validation data because a separate test set

is needed in order to evaluate the model on unseen data. The model is trained using

”X tr” and ”y tr”, then validated on ”X val” and ”y val” and then tested on ”X te” and

”y te”. Most of the test data had between 400 and 500 rows and most of the train data

had between 2100 and 2200. Splitting the train data by the 1700th row will result in a

validation set with almost the same size as the test set.

The data is now ready to be used in the deep learning models.

4.2 Model Functions

The model compile function, mod compile, is used to configure the learning parameters

of the models and train the models. It has 4 required arguments and 5 arguments that

have a default value when not used, these arguments are:

• model name − String − Contains the name of the model currently running.
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• df data − Dictionary − The dictionary with all needed data, d f f inal.

• df metric − Dataframe − Data frame where some output information will be saved.

• model − Keras Model − The deep learning model used.

• l r − Float − Model’s Learning Rate − Default: 0.001.

• epo − Int − Epochs, the number of times each model will train with a dataset −

Default: 50.

• min d − Float − Min-Delta, the minimum variation of the metric − Default: 0.0002.

• pat − Int − Patience, max number of epochs without improvement on the metric −

Default: 4.

• metric − String − Metric used for EarlyStopping − Default: ’loss’.

The first step on model training is to configure the model, this is done using [29]:

model.compile(loss=MeanSquaredError(), optimizer=Adam(learning_rate=l_r),

metrics = [RootMeanSquaredError()])

This step will select the metric used for the loss function (MSE), the optimizer used

(Adam) [11], the optimizer learning rate (l r) and the list of metrics to be evaluated by the

model during training (RMSE).

A loss function, also known as cost function, is a function that saves the differences of

a predicted value and its actual value. The goal of an optimization problem is to minimize

the loss function with a certain learning rate as shown in Figure 2.5.

Then a early stopping configuration is created using [29]:

tf.keras.callbacks.EarlyStopping(monitor=metric, patience = pat,

min_delta = min_d, restore_best_weights = True)

Using this configuration the model will stop training earlier if there is no improvement

on the metric selected on the monitor argument. The goal is to minimize the loss, so, at the

end of every epoch the model will check if the loss decreased at least the min delta value

and if there is no improvement within patience epochs, the training terminates. The loss

of the model can rise so, if the model was stopped using this method the best weights for

the model are restored.
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This rise in the loss is due to an overfit to the training dataset. As the epochs go by,

the model learns and its error decreases both on training and validation data but after a

certain number of epochs the validation loss will rise and enter the overfitting zone of the

Figure 4.3. While in the underfitting zone the model can still learn and improve but once

it starts overfitting the algorithm cannot perform accurately against unseen data so the

training needs to be stopped.

FIGURE 4.3: Early Stopping.

This effect is also shown on Figure 4.4 that contains the train and validation loss for

two models with 200 and 1000 epochs. The values of patience and min delta were selected

as 4 and 0.0002 respectively after testing a few models and looking at the loss plots and

then deciding what was the order of magnitude at which the loss stopped improving.

FIGURE 4.4: Train and Validation Loss for two different models with 200 and 1000 epochs.

Finally, the function [29]:
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history = model.fit( df_data['X_tr'], df_data['y_tr'],

validation_data = (df_data['X_val'], df_data['y_val']),

epochs = epo, callbacks = [earlystop]

)

that trains the model over a certain number of epochs. The output information about

the train and validation loss and rmse in each epoch is saved in a new variable, history, so

plots such as Figure 4.4 can be made. The mod compile function returns the trained model

and the variable history.

After the models are trained it is time to use the test data and predict these val-

ues using the mod pred function which has 4 required arguments, the same ones of the

mod compile function. Using model.predict(df data[’X te’]).flatten()[29] a list of

the predicted glucose values is obtained and this list is saved in a dataframe, test res,

alongside the actual values of the glucose (df data[’y te’]). The index of this dataframe

is changed to the index of the test dataframe (df data[’df te’].index[w s:]), starting

after ”w s” rows since these rows are used to start the predictions.

A sample of this dataframe is in Table 4.1 and with this dataset it is possible to obtain

the MSE and MAE values as well as plot the time-series of both predicted and actual

values.

TABLE 4.1: Sample of the test res” dataframe for patient 540.

ts test pred actual
2027-07-05 00:00:00 0.721 0.862
2027-07-05 00:30:00 0.865 0.982
2027-07-05 01:00:00 0.956 1.000
2027-07-05 01:30:00 0.854 0.984

4.3 1st Models

The first batch of models to be tested were simple versions of the LSTM, GRU and

1DCNN. For this test, the value of the patience will be 3 epochs instead of 4 and the

min delta will be 0.0005 instead of 0.0002. These values will trigger the earlystop earlier,

reducing the train time, and since these are not the final values, it does not matter if the

metrics are a bit worse than they should be.
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The shape of the input layer of the first model, an LSTM model, is a 2D matrix with

”windowsize” and variables used. This is the input shape used for all models. The follow-

ing layer is a LSTM layer with 64 units (dimensionality of the output space) using a TanH

activation function (default value). This is followed by a Dense layer that transforms the

64 outputs into 8 using a relu activation function. Since the value that needs to be pre-

dicted is a single value of the glucose, another Dense layer is used that transforms the 8

outputs into a single value.

1 def m_lstm1():

2 lstm1 = Sequential()

3 lstm1.add(InputLayer((w_s, n_col)))

4 lstm1.add(LSTM(64))

5 lstm1.add(Dense(8, 'relu'))

6 lstm1.add(Dense(1, 'linear'))

7 return lstm1

LISTING 1: First LSTM model.

The second and third models are very similar to the first one but using GRU and

1D CNN layer.

In the 1D CNN the kernel size needs to be specified and the output shape of this layer

depends on this value. Since the type of data used is a timeseries, the type of padding

needs to be causal as shown in Section 2.4. Before the Dense layer a Flatten layer is added

to turn the output into 1D shape.

1 def m_conv1():

2 conv1 = Sequential()

3 conv1.add(InputLayer((w_s, n_col)))

4 conv1.add(Conv1D(64, kernel_size=2, padding="causal", activation = 'relu'))

5 conv1.add(Flatten())

6 conv1.add(Dense(8, 'relu'))

7 conv1.add(Dense(1, 'linear'))

8 return conv1

LISTING 2: First 1D CNN model.

The last model is a slightly upgraded version of the first model. This model has an

LSTM layer with 32 units and the information on the sequences will be passed on to a

new LSTM layer with 64 units. After this step, the Dropout layer drops 20% of the units

which helps prevent overfitting.
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1 def m_lstm2():

2 lstm2 = Sequential()

3 lstm2.add(InputLayer((w_s, n_col)))

4 lstm2.add(LSTM(32, return_sequences=True))

5 lstm2.add(LSTM(64))

6 lstm2.add(Dropout(0.20))

7 lstm2.add(Dense(8, 'relu'))

8 lstm2.add(Dense(1, 'linear'))

9 return lstm2

LISTING 3: Second LSTM model.

A new dictionary, model dict, is created as demonstrated in Figure 4.5 which has as

key the ”model name” and each model contains 1 up to 6 keys. The only required key

is the ”model” that will contain the keras model, all other keys are the parameters used

in the mod compile function. When using mod compile with mod compile(model name,

patient, df final[patient], **model dict[model name]) it will check if the model dict

contains any key with the same name as the other parameters and if so, those values will

be used as arguments instead of the default values. This dictionary is useful to pass to the

function all models and their names and if some models need specific parameters they

can be altered in this dictionary. Later on all that is needed is to create new models, add

them to the dictionary, and with a for loop, all models can be tested easily.

'lstm1' : 'model' : m_lstm1

'l_r' : 0.001

'epo' : 50

'min_d' : 0.0005

'pat' : 3

'metric' : 'losss'

'model': m_gru1'gru1' :

key value

key value

FIGURE 4.5: Model dictionary.
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For each model, a new version with 48 units instead of 64 was tested to see if having

the same units as the number of inputs would help in the performance of the models.

In the first test with these initial models, each model was trained with only one patient

and made predictions on the corresponding test dataset. Using all ”test res” dataframes

containing information on the actual and predicted values for each patient, metrics such

as MSE, MAE and RMSE were obtained.

For each model, two versions were tested, a personalized version in which a model is

only trained with that patient train dataset and a generalized version in which each model

is trained with all train datasets from all patients.

For all the initial models, more layers were added with different parameters. All mod-

els will be named as the following ”model type” + ”order of complexity”, this way it is

easier to see if more complex models (with more layers), such as lstm4, outperform sim-

pler models (with less layers) of the same type such as lstm1.

For the LSTM, 7 models are tested, 3 of these are Bi − LSTM models whose structure

is displayed in Tabel 4.2. Bi − LSTM Are Bidirectional LSTM that process the information

in two directions: Backwards (future to past) and Forward(past to future).

TABLE 4.2: Structure of LSTM models.

lstm1 lstm2 lstm3 lstm4 bi-lstm1 bi-lstm2 bi-lstm3
LSTM(64) LSTM(32) LSTM(64) LSTM(32) BiLSTM(32) BiLSTM(64) BiLSTM(32)
Dense(8) LSTM(64) LSTM(128) LSTM(64) BiLSTM(64) BiLSTM(128) BiLSTM(64)
Dense(1) Dense(8) Dropout(0.2) LSTM(128) Dense(8) Dropout(0.2) BiLSTM(128)

Dense(1) Dense(8) Dropout(0.2) Dense(1) Dense(8) Dropout(0.2)
Dense(1) Dense(64) Dense(1) Dense(64)

Dropout(0.2) Dropout(0.2)
Dense(8) Dense(8)
Dense(1) Dense(1)

Higher numbered models have more LSTM layers with a different number of units

that pass the information into other LSTM layers. To prevent overfit some of the infor-

mation is removed using dropout layers.

Similar to the previous models, there are 6 models for GRU which 2 of these are Bi −

GRU as shown in Table .

The next batch of models are the 1D CNN models. As illustrated in Table 4.4 there are

5 different models.

Each convolutional layer has 2 parameters, the number of units and the kernel size

and all layers have causal padding. The first 3 models have a kernel size of 2, the conv4 is
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TABLE 4.3: Structure of GRU models.

gru1 gru2 gru3 gru4 bi-gru1 bi-gru2
GRU(64) GRU(32) GRU(64) GRU(32) BiGRU(64) BiGRU(32)
Dense(8) GRU(64) GRU(128) GRU(64) BiGRU(128) BiGRU(64)
Dense(1) Dense(8) Dropout(0.2) GRU(128) Dropout(0.2) BiGRU(128)

Dense(1) Dense(8) Dropout(0.2) Dense(8) Dropout(0.2)
Dense(1) Dense(64) Dense(1) Dense(64)

Dropout(0.2) Dropout(0.2)
Dense(8) Dense(8)
Dense(1) Dense(1)

TABLE 4.4: Structure of 1D CNN models.

conv1 conv2 conv3 conv4 conv5
Conv1D(64, 2) Conv1D(64, 2) Conv1D(64, 2) Conv1D(64, 4) Conv1D(32, 8)

Flatten() Flatten() MaxPooling() MaxPooling() MaxPooling()
Dense(8) Dropout(0.2) Conv1D(128, 2) Conv1D(128, 4) Conv1D(64, 4)
Dense(1) Dense(32) Flatten() Flatten() Pooling()

Dense(8) Dense(64) Dropout(0.2) Conv1D(128, 2)
Dense(1) Dense(1) Dense(64) Flatten()

Dense(8) Dropout(0.2)
Dense(1) Dense(64)

Dense(8)
Dense(1)

similar to conv3 but with higher kernel size. The last 1D CNN has 3 convolutional layers

with increasing number of units and decreasing kernel size. To reduce the features after

a convolution layer the MaxPooling layer condenses these features to 25% of their size

selecting the most salient [8]. These features are then passed into a new convolution layer.

These models can be combined [8], the next batch mixed model of 1D CNN + LSTM

and 1D CNN + GRU were tested as demonstrated in Table 4.5. These models are similar

to some of the models on Tables 4.2 and 4.3 but have an additional first layer that is a

convolutional layer with 64 units and kernel size 2.

TABLE 4.5: Structure of mixed models.

convlstm1 convlstm2 convlstm3 convgru1 convgru2
Conv1D(64, 2) Conv1D(64, 2) Conv1D(64, 2) Conv1D(64, 2) Conv1D(64, 2)

LSTM(64) LSTM(64) LSTM(32) GRU(64) GRU(32)
Dense(8) LSTM(128) LSTM(64) Dense(8) GRU(64)
Dense(1) Dropout(0.2) LSTM(128) Dense(1) Dense(8)

Dense(8) Dropout(0.2) Dense(1)
Dense(1) Dense(64)

Dropout(0.2)
Dense(8)
Dense(1)
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The last models tested are the Temporal Convolutional Networks - TCN. These 3

models have several dilation values as shown in Figure 2.19 and as presented in Table 4.6

all TCN layers have 64 units but different kernel sizes. The dilation values are: 1, 2, 4, 8,

16, 32 and 64.

TABLE 4.6: Structure of TCN models.

tcn1 tcn2 tcn3
TCN(64, 2) TCN(64, 3) TCN(64, 6)
Dense(1) Dense(1) Dense(1)

Dropout(0.2) Dropout(0.2) Dropout(0.2)
Dense(1) Dense(1) Dense(1)





Chapter 5

Results

In this section the results of the models will be displayed and compared. The first com-

parison is using the initial models and compares the Personalized version of the models

against the Generalized version. In the Personalized version each model is trained with

one patient and tested with the same patient while the generalized version uses all pa-

tients datasets.

Then after selecting the best version, new and more complex models are trained with

different amounts of variables. The first case will train with all 17 variables of the dataset

while the second case will train with only a selection of variables. These values are also

compared in terms of training time and metrics.

5.1 Personalized vs Generalized models

The first version tested was the personalized version. The Table 5.1 shows, for each model,

the total time training for all 12 patients and the mean of the metrics for this version. Both

GRU and 1D CNN models with 64 units outperformed their versions with 48 units, while

in the LSTM model, the best version is the one with 48 units. All 64 units versions are

slightly slower but this is to be expected as they have more neurons.

In order to avoid overfit to only one patient and to train with more data, in the second

version of these models, the generalized version, each model was trained with all patients

and only then predictions were made.

The mean of the metrics for the predictions of each patient with the models trained

with all patients and the total time of training is shown in Table 5.2.

57
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TABLE 5.1: Total time in seconds spent on models, mean MSE, mean MAE and mean
RMSE sorted by lowest RMSE - Personalized Version.

model total time mean mse mean mae mean rmse
gru1 199 0.0058 0.0543 0.075

gru1 48 182 0.0061 0.0568 0.0771
lstm1 48 232 0.0064 0.0568 0.0785

lstm1 252 0.0072 0.0614 0.0831
lstm2 466 0.0093 0.0676 0.089
conv1 46 0.0184 0.1007 0.1292

conv1 48 41 0.0252 0.1114 0.1416

TABLE 5.2: Total time spent on models, mean MSE, mean MAE and mean RMSE sorted
by lowest RMSE - Generalized Version.

model total time mean mse mean mae mean rmse
gru1 117 0.0039 0.0434 0.0621
lstm1 119 0.0039 0.0441 0.0623

gru1 48 107 0.0041 0.0442 0.0636
lstm2 230 0.0044 0.0464 0.0657

lstm1 48 108 0.0049 0.0506 0.0695
conv1 33 0.0091 0.0738 0.0943

conv1 48 32 0.0123 0.0865 0.1084

With the generalized version all models with 64 units had better performance (lower

metrics) and so, in the next models, layers with multiples of 64 units will be used.

The comparison between the personalized and the generalized versions is presented

in Table 5.3. These values were obtained by subtracting the values of Table 5.2 to Table 5.1.

All times are positive, which means that training with each patient one at a time took

more time than training with all patients sequentially. This happens because as the models

are trained with more patients, with each patient it will not learn as much as the first

patients and so the loss value improves less and less and the EarlyStop terminates the

training with that patient and proceeds to the next dataset. All differences in the metrics

are positive, indicating that the generalized version outperforms personalized versions.

Using this information, all the new models will only be trained with all patients.
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TABLE 5.3: Differences in time, mean MSE, mean MAE and mean RMSE sorted by Model
name: Personalized − Generalized.

model time dif mean mse dif mean mae dif mean rmse dif
lstm1 133 0.0033 0.0173 0.0208

lstm1 48 124 0.0015 0.0062 0.0090
lstm2 236 0.0049 0.0212 0.0233
conv1 13 0.0093 0.0269 0.0349

conv1 48 9 0.0129 0.0249 0.0332
gru1 82 0.0019 0.0109 0.0129

gru1 48 75 0.0020 0.0126 0.0135

5.2 All vs Selected variables

The new models were tested with all 17 variables of the dataset and these results are in

Table 5.4.

TABLE 5.4: Time and error statistics sorted by RMSE - Generalized version with All vari-
ables.

model name time mean mse mean mae mean rmse
lstm1 192 0.0039 0.0440 0.0622
gru4 734 0.0040 0.0449 0.0632
gru3 388 0.0041 0.0450 0.0633
gru1 217 0.0041 0.0453 0.0639
lstm4 782 0.0042 0.0448 0.0643
bigru1 648 0.0043 0.0464 0.0650

convlstm1 259 0.0044 0.0462 0.0655
convlstm3 987 0.0044 0.0472 0.0664

bilstm2 944 0.0045 0.0482 0.0671
bilstm1 617 0.0046 0.0484 0.0675
bilstm3 1506 0.0046 0.0483 0.0677

convlstm2 696 0.0048 0.0502 0.0690
gru2 306 0.0049 0.0503 0.0695

convgru1 296 0.0049 0.0504 0.0698
lstm3 541 0.0050 0.0511 0.0701

convgru2 524 0.0050 0.0506 0.0706
lstm2 348 0.0053 0.0540 0.0727

conv1 48 63 0.0072 0.0630 0.0845
bigru2 1150 0.0074 0.0632 0.0859
conv2 80 0.0075 0.0646 0.0865
tcn1 522 0.0076 0.0660 0.0871

conv1 77 0.0088 0.0715 0.0933
tcn2 1097 0.0088 0.0706 0.0937
tcn3 1101 0.0094 0.0732 0.0965

conv3 116 0.0117 0.0818 0.1076
conv4 123 0.0120 0.0816 0.1086
conv5 119 0.0149 0.0933 0.1216
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We can see that the worse models are the 1D CNN and TCN models and that in these

cases more complex models not only have higher training time but also have lower per-

formance. It is also shown that the Bidirectional versions of the LSTM and GRU usually

have lower performance and higher training time than the original versions.

Among the top 6 models (with mean rmse greater or equal than 0.0650) 3 are GRU, 2

are LSTM and one is Bi − GRU. It also shows that simpler models are not worse, as 2 of

the top 6 models are the lstm1 and gru1.

In order to have lower training time a new training will be made but without some

variables.

The removed variables are the following:

• Sleep - Since there is already information about the sleep using the basis sleep, the

self-reported version will be removed.

• Stressors and Illness - As shown in Table 3.2 there are very few events of this self-

reported variable so it will be removed.

• Heart Rate, Air Temperature and Steps - These variables will be removed since they

are not available for half of the patients.

• Finger Stick - This variable is removed since it either contains 0 or the glucose value

at that time stamp so it does not add any relevant new information.

The results for all the models trained with the selected variables are displayed in Ta-

ble 5.5.

Once again the worse models are the 1D CNN and TCN. This time, although the

order changed, the top 6 best models are almost the same and there are more models with

mean rmse lower than 0.0650. Since many of the removed variables had mostly 0s, these

variables might have lowered the performance of the models.

Table 5.6 contains the comparison of the models that were in the top 6 models in either

Table 5.4 or 5.5. These values are obtained by subtracting the version with the selected

variables from the version with all variables.

All time differences are positive, that means that all models with the selected variables

had a faster training time. Although they were faster, it is noticeable that differences of

the metrics for models lstm1 and gru4 are negative which implies that these models had

a better performance while training with all variables.
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TABLE 5.5: Time and error statistics sorted by RMSE - Generalized version with Selected
variables.

model name time mean mse mean mae mean rmse
lstm3 452 0.0039 0.0433 0.0618
bigru1 591 0.0039 0.0428 0.0618
gru3 377 0.0039 0.0426 0.0618
gru1 173 0.0039 0.0429 0.0620
gru2 269 0.0041 0.0450 0.0635
lstm4 651 0.0041 0.0450 0.0636

convlstm3 699 0.0042 0.0458 0.0645
bilstm2 761 0.0042 0.0468 0.0646

convlstm1 134 0.0042 0.0449 0.0648
lstm1 167 0.0042 0.0449 0.0648
lstm2 280 0.0043 0.0458 0.0650
gru4 613 0.0043 0.0471 0.0654

bigru2 1028 0.0044 0.0463 0.0657
convgru1 227 0.0045 0.0479 0.0668
convgru2 317 0.0045 0.0473 0.0669
convlstm2 518 0.0046 0.0490 0.0675

bilstm1 481 0.0053 0.0532 0.0720
bilstm3 1204 0.0054 0.0527 0.0727

tcn2 884 0.0078 0.0670 0.0880
tcn3 952 0.0087 0.0703 0.0930
tcn1 405 0.0088 0.0729 0.0933

conv1 60 0.0094 0.0729 0.0953
conv2 78 0.0114 0.0809 0.1046
conv3 108 0.0134 0.0890 0.1150
conv4 130 0.0138 0.0901 0.1171
conv5 115 0.0177 0.1011 0.1311

TABLE 5.6: Differences in time and error statistics sorted by Model name - Generalized
version: All - Selected variables.

model name time mean mse mean mae mean rmse
lstm1 25 -0.0003 -0.0009 -0.0026
lstm3 89 0.0011 0.0078 0.0083
lstm4 131 0.0001 -0.0002 0.0007
gru1 44 0.0002 0.0024 0.0029
gru2 37 0.0008 0.0053 0.0060
gru3 11 0.0002 0.0024 0.0015
gru4 121 -0.0003 -0.0022 -0.0022

bigru1 57 0.0004 0.0036 0.0032
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Looking at Tables 5.5 and 5.2 it can be seen that the top values of mean rmse are

around 0.0620 in both cases. Although the later models were trained using a patience of

4 and min delta of 0.0002 for the earlystop values and the models in Table 5.2 used the

value 3 and 0.0005 respectively, they had similar results.

So, as a last test the new models will be trained with patience = 3 and min delta =

0.0005 reducing the train time. The models that will be tested with these parameters are

the best model of each model type in Table 5.5. In the case LSTM both model 3 and 1 will

be tested because both were the best model in Tables 5.4 and 5.5. For GRU the models

trained are gru1 and gru3 since they have the same value of mean rmse. So the models

tested with the new parameters are the following:

• lstm1

• lstm3

• bilstm2

• gru1

• gru3

• bigru1

• conv1

• convlstm1

• convgru1

TABLE 5.7: Time and error statistics sorted by Model - Generalized version with Selected
variables - Pat = 3, min delta = 0.0005.

model name time mean mse mean mae mean rmse
lstm1 116 0.0038 0.0426 0.0612

convlstm1 93 0.0038 0.0426 0.0612
gru3 256 0.0039 0.0429 0.0619

bigru1 421 0.0040 0.0452 0.0629
bilstm2 506 0.0041 0.0452 0.0634

gru1 101 0.0041 0.0453 0.0635
lstm3 322 0.0041 0.0457 0.0638

convgru1 134 0.0044 0.0476 0.0657
conv1 30 0.0080 0.0674 0.0883
tcn2 534 0.0102 0.0765 0.1005
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With the new parameters the train time was reduced and some models like lstm1,

convlstm1 had better performance than with the previous parameters when comparing

Tables 5.7 and 5.5. There are also models such as conv1 and tcn2 that performed worse,

maybe these models need more epochs for the training. The results for the predictions of

each patient individually for for these models can be found on the Tables A.1 up to A.10

Usually the best overall best performing patient is patient 552, this is the patient with

almost 40% missing values in the glucose level. Figure 5.1 shows the comparison of the

predictions (black line) and the actual glucose values (blue line) for this patient using the

model lstm1.

FIGURE 5.1: Plot of predictions for patient 552 model lstm1.

Most models seem to do a fine job predicting the constant values that were filled with

the forward fill function so the results for this patient might be a bit biased positively. Due

to this bias, the plots presented in Figures A.1 up to A.7 are the predictions for the patient

570 that is the second best performing patient overall using the models of Table 5.7. These

figures also contain the plots of the predictions for patient 591 that is usually the worst

performing patient.

Each time the models are tested, even with the same parameters, sometimes there are

slight fluctuations on the training time (± 10s) and on the metrics (mse ± 0.002). To avoid

these slight fluctuations on the final models, they will be trained 2 more times. Table 5.8

contains the results for the mean of the 3 outputs for the best models, convlstm1, lstm1,

gru1 and gru3. The information for other models is not shown due to poor performance

or higher training time.

TABLE 5.8: Time and error statistics sorted by Model - Generalized version with Selected
variables - Pat = 3, min delta = 0.0005 - Mean of 3 different trains.

model name time mean mse mean mae mean rmse
convlstm1 97 0.0039 0.0431 0.0617

lstm1 118 0.0039 0.0431 0.0617
gru1 109 0.0040 0.0444 0.0630
gru3 264 0.0041 0.0449 0.0635
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All models had similar performance, but gru3 training time was significantly higher.

Among the three other models, the convlstm1 was the fastest and the one with lower

mean rmse. The plots for the 2 best and 2 worse performing patients for this model are

shown in Figures 5.2a and 5.2b respectively. The same plots for the two other models,

lstm1 and gru1, are shown in Figures A.8 and A.9

(A) Plot of predictions for patient 552 and 570 using model convlstm1.

(B) Plot of predictions for patient 567 and 591 using model convlstm1.

FIGURE 5.2: Plot of predictions for top 2 and bottom 2 performing patients using model
convlstm1.

5.3 Comparing Other Methods

In the second Blood Glucose Level Prediction (BGLP) Challenge, concluded on August

30, 2020, several AI researchers proposed different approaches to predict glucose levels,

using the OhioT1DM dataset [6].
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In this section, two of these approaches will be analysed and discussed. Additionally,

other two approaches that use the OhioT1DM dataset for glucose value prediction, will

also be examined.

In this challenge all predictions were made using a time interval of the data of 30 and

60 minutes.

Approaches such as Bhimireddy et al. [30] and Freiburghaus et al. [31], used Deep

Learning [32].

Bhimireddy et al. used LSTM, Bi − LSTM, 1D CNN − LSTM and TCN models. The

authors however, did not use all the available variables. The variables used were the:

glucose values, finger stick, basal, bolus, meal, sleep, exercise, gsr, skin temperature,

basis sleep, and acceleration. Despite removing several variables, they considered as

a variable every column in the variables above. This resulted in having columns such

as basis sleep type or exercise type that contained no information at all. Thus, the final

dataframe has many columns with only 0s, columns that should have been removed. Al-

though some features’ columns did not contain data, e.g. basis sleep type or exercise type,

the authors preserved the empty columns in the dataset. The final dataframe, given this

methodology, contains columns filled with values equal to zero, that should not exist.

The variable temp basal was not combined with the basal leading to wrong basal values.

The only preprocessing made was a forward fill of all values after the 30 / 60 minute

re-sample. The authors make predictions on the next glucose value with only the infor-

mation of the previous 30 / 60 minutes. In this work, the best preforming model was the

Bi − LSTM with a mean RSME of 21.8 when trying to predict the glucose value of the

next 30 minutes.

Freiburghaus et al., contrary to the previous approach, filtered empty columns, but

used less features. The only variables used in this work were the meal, bolus, basal and

glucose level records. The column bwz carb input, contains redundant meal information

in the 2018 patient datasets and is empty in the 2020 patient datasets. Additionally, the

authors did not consider the type of bolus for each time stamp nor the variable temp basal.

In this work the data was re-sampled to 1 second. Then, a forward fill was applied to

all variables. Finally, the data was re-sampled to 5 minute intervals. The glucose value

predictions are based on the previous two hours of data using a 1D CNN model. The 30

minute glucose level prediction of this work had an RMSE mean of 17.45. This result is

lower than the one obtained in the work by Bhimireddy et al. [30].
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Beside the BGLP Challenge, other authors have used the OhioT1DM dataset to do a

deep learning analysis.

The the work by T. Zhu et al. [33] used TCN to predict glucose values. In this work, the

authors only used the Ohio datasets from 2020. The only variables used were the glucose

value, meal and bolus. The bolus type was not considered, thus the considered bolus data

may lead to incorrect conclusions. Besides other removed variables, the authors removed

the variables basal and temp basal. Using only the bolus variable the insulin intake by

each patient is incomplete. The dataset set used for training was a combination of 50% of

the current subject, and the other five patients contribute to the other half of the training

data with 10% each [33]. They use a time interval of data of 5 minutes and make predic-

tions of the glucose levels on the next 30 minutes using the previous 30 minutes of data.

The RMSE value for this study was 21.72, almost the same as the work by Bhimireddy

et al. [30].

The work by J. Daniels et al. [34] consists on the use of a 1D CNN − LSTM model to

make predictions of the glucose level in the next 30 / 60 minutes. Glucose levels, bolus,

meals and exercise were the considered variables. Once again the variables basal and

temp basal, as well as other variables, were not used. To deal with missing values the

authors use a linear interpolation. The glucose values are scaled down by a factor of 120,

the insulin bolus is scaled by 100 and meal intake values are scaled by 200. The bolus type

is not used. To predict the next glucose value the method uses the previous two hours of

data [34]. The result for the 30 minute predictions was a RSME of 19.79.

M. Rabby et al. [35] used yet a different method with the same dataset. Instead of

selecting a fixed number of variables a priori, they tested their LSTM model with only the

glucose value and obtained the corresponding RMSE. Then, they added one variable and

tested if the RMSE was lower and if so, the variable is kept and more variables are added.

If, when adding a variable, the RMSE rises, that variable is removed. The final selected

variables are the glucose level, meal, bolus and step count. They used the information of

the previous two hours to predict the glucose value of the next 30 minutes of the six 2018

patients. This resulted in a RMSE of 20.07

After reviewing the considered approaches, it is interesting to see that some authors

do not consider certain variables in the data important. Most of the analysed works do

not include the basal insulin rate, and none of the works include the temporary basal rate
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feature. On top of this, most of the approaches do not consider the bolus type. Neglect-

ing these features, may lead to a wrong input of the actual insulin taken by the patient.

Additionally, most of the authors only consider one type of neural network. Two of the

reviewed analysis used 30 minutes of data to predict the next 30 minutes, while the other

three used data from the previous two hours. Finally, most of the analysis did not use any

type of data scaling, which is considered to be a bad practice [13].





Chapter 6

Conclusions and Future Work

In this work we used data from the OhioT1DM dataset [2], which has 12 patients in 2018

and 2020 in order to predict the glucose value of a patient in the next 30 minutes using

information of 17 variables in the previous 24 hours. Comparing the 2 versions of the

initial models, the personalized and generalized versions, it is noticeable that training the

models with all patients sequentially takes less time than training the models 12 times

individually. On top of being faster, the generalized version also produced better results

in terms of the predictions.

Using the generalized version, the train time and the metrics of two new versions were

compared. In the first version the models were trained using all available variables, while

in the second version, the variables sleep, stressors, illness, heart rate, air temperature,

steps and finger stick were removed. As expected, the version trained with a selection

of variables was faster than the other version, and most of the models had better perfor-

mance. This indicates that for most models the removed variables had no impact on the

predictions.

The parameters of the EarlyStop were also changed in order to reduce the number of

times the dataset of each patient is trained that reduced the training time of all models.

Although some models performed worse, some had better performance indicating that

depending on the type of the model it might need to train each dataset more times than

other models.

After all these tests, the best performing models were the simpler versions (with the

lowest amount of layers) of the models LSTM, GRU and ConvLSTM having not only

the lowest metrics but also lowest training time. This shows that for this dataset, maybe

due to the dataset size or number of variables, simple deep learning models outperform

69
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more complex models. The best model of all was the combined model of 1DCNN and

LSTM, having the best values of the metrics and having the lowest training time of the

best performing models.

As future work, several cases can be tested. One of those is re-scaling the dataset to a

different time intervals such as 5 or 15 minutes where the training time will be slower but

the values of the metrics can change.

Removing more variables or trying different combinations of variables can also be

tested and compare the results to see if there is a better combination.

The window size of 24 hours for the X data can also be tested with new values like

using only 12 hours of values or even using bigger window sizes such as 48 hours and see

if the metrics improve.

New values for the compiler can also be tested such as reducing or increasing the

learning rate or reducing the min delta to search the lowest training time with the best

metrics.

New versions of the simpler models can also be tested with higher or lower number

of neurons of the deep learning layers.

Finally more information about future patients can also be added in order to have

even more training data for the models. Having data from more patients will reduce the

overfiting to each patient.
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Appendix A

Further results

A.1 Additional Tables

TABLE A.1: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model lstm1 - Train Time = 116s.

patient mean mse mean mae mean rmse
552 0.0023 0.0304 0.0475
570 0.0026 0.0362 0.0512
559 0.0030 0.0369 0.0547
588 0.0035 0.0415 0.0590
544 0.0037 0.0416 0.0605
584 0.0037 0.0427 0.0610
596 0.0037 0.0429 0.0611
540 0.0039 0.0472 0.0622
563 0.0040 0.0445 0.0630
575 0.0046 0.0473 0.0675
567 0.0052 0.0454 0.0722
591 0.0056 0.0541 0.0749
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TABLE A.2: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model lstm3 - Train Time = 322s.

patient mean mse mean mae mean rmse
552 0.0026 0.0342 0.0505
559 0.0031 0.0388 0.0555
570 0.0033 0.0433 0.0575
588 0.0036 0.0440 0.0603
584 0.0038 0.0438 0.0613
544 0.0039 0.0437 0.0622
596 0.0041 0.0453 0.0643
540 0.0041 0.0502 0.0644
563 0.0044 0.0473 0.0662
575 0.0051 0.0525 0.0711
567 0.0053 0.0471 0.0729
591 0.0062 0.0579 0.0790

TABLE A.3: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model bilstm2 - Train Time = 506s.

patient mean mse mean mae mean rmse
552 0.0023 0.0317 0.0475
559 0.0031 0.0385 0.0558
570 0.0033 0.0432 0.0573
588 0.0036 0.0439 0.0601
544 0.0037 0.0411 0.0611
596 0.0039 0.0450 0.0626
540 0.0040 0.0489 0.0630
584 0.0041 0.0466 0.0638
563 0.0048 0.0486 0.0691
575 0.0052 0.0531 0.0720
567 0.0053 0.0460 0.0728
591 0.0057 0.0556 0.0758

TABLE A.4: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model gru1 - Train Time = 101s.

patient mean mse mean mae mean rmse
552 0.0025 0.0356 0.0502
559 0.0031 0.0383 0.0558
570 0.0033 0.0433 0.0575
588 0.0037 0.0443 0.0612
596 0.0038 0.0437 0.0614
544 0.0038 0.0422 0.0618
540 0.0040 0.0482 0.0629
584 0.0042 0.0473 0.0648
563 0.0044 0.0477 0.0665
575 0.0050 0.0502 0.0709
567 0.0052 0.0459 0.0718
591 0.0060 0.0565 0.0776
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TABLE A.5: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model gru3 - Train Time = 256s.

patient mean mse mean mae mean rmse
552 0.0024 0.0324 0.0490
570 0.0025 0.0365 0.0500
559 0.0027 0.0343 0.0524
588 0.0035 0.0423 0.0587
584 0.0037 0.0420 0.0609
596 0.0038 0.0434 0.0614
544 0.0039 0.0427 0.0622
540 0.0039 0.0470 0.0627
563 0.0042 0.0461 0.0649
575 0.0048 0.0477 0.0692
567 0.0057 0.0457 0.0755
591 0.0057 0.0546 0.0756

TABLE A.6: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model bigru1 - Train Time = 421s.

patient mean mse mean mae mean rmse
552 0.0021 0.0310 0.0463
559 0.0030 0.0382 0.0548
570 0.0034 0.0448 0.0579
544 0.0035 0.0415 0.0594
588 0.0035 0.0439 0.0596
540 0.0037 0.0476 0.0607
584 0.0038 0.0451 0.0620
596 0.0042 0.0475 0.0649
563 0.0044 0.0474 0.0662
567 0.0052 0.0460 0.0723
591 0.0056 0.0545 0.0746
575 0.0058 0.0552 0.0761

TABLE A.7: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model convlstm1 - Train Time = 93s.

patient mean mse mean mae mean rmse
552 0.0023 0.0304 0.0475
570 0.0026 0.0362 0.0512
559 0.0030 0.0369 0.0547
588 0.0035 0.0415 0.0590
544 0.0037 0.0416 0.0605
584 0.0037 0.0427 0.0610
596 0.0037 0.0429 0.0611
540 0.0039 0.0472 0.0622
563 0.0040 0.0445 0.0630
575 0.0046 0.0473 0.0675
567 0.0052 0.0454 0.0722
591 0.0056 0.0541 0.0749
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TABLE A.8: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model convgru1 - Train Time = 134s.

patient mean mse mean mae mean rmse
552 0.0028 0.0395 0.0533
559 0.0034 0.0397 0.0581
588 0.0036 0.0439 0.0601
570 0.0037 0.0469 0.0607
540 0.0041 0.0482 0.0641
596 0.0043 0.0472 0.0653
544 0.0043 0.0492 0.0659
584 0.0044 0.0481 0.0665
563 0.0047 0.0488 0.0683
575 0.0052 0.0521 0.0720
567 0.0058 0.0501 0.0760
591 0.0061 0.0574 0.0782

TABLE A.9: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - Generalized
Verison with Selected variables - Model conv1 - Train Time = 30s.

patient mean mse mean mae mean rmse
552 0.0049 0.0518 0.0703
559 0.0051 0.0541 0.0715
544 0.0063 0.0596 0.0796
540 0.0068 0.0644 0.0823
596 0.0068 0.0620 0.0823
591 0.0071 0.0624 0.0843
588 0.0075 0.0676 0.0863
567 0.0080 0.0650 0.0893
584 0.0084 0.0694 0.0919
575 0.0100 0.0736 0.1002
563 0.0117 0.0849 0.1084
570 0.0128 0.0941 0.1130

TABLE A.10: Time, mean MSE, mean MAE and mean RMSE sorted by RMSE - General-
ized Verison with Selected variables - Model tcn2 - Train Time = 534s.

patient mean mse mean mae mean rmse
559 0.0062 0.0604 0.0788
552 0.0067 0.0554 0.0820
588 0.0086 0.0720 0.0927
540 0.0089 0.0726 0.0943
596 0.0094 0.0710 0.0968
591 0.0101 0.0750 0.1005
544 0.0101 0.0768 0.1007
575 0.0111 0.0794 0.1052
567 0.0125 0.0819 0.1119
570 0.0127 0.0939 0.1125
584 0.0129 0.0867 0.1134
563 0.0138 0.0934 0.1174
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A.2 Additional Figures

FIGURE A.1: Plot of predictions for patient 570 and 591 using model lstm3.

FIGURE A.2: Plot of predictions for patient 570 and 591 using model bigru1.

FIGURE A.3: Plot of predictions for patient 570 and 591 using model gru3.
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FIGURE A.4: Plot of predictions for patient 570 and 591 using model bilstm2.

FIGURE A.5: Plot of predictions for patient 570 and 591 using model convgru1.

FIGURE A.6: Plot of predictions for patient 570 and 591 using model conv1.
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FIGURE A.7: Plot of predictions for patient 570 and 591 using model tcn2.

(A) Plot of predictions for patient 552 and 570 using model lstm1.

(B) Plot of predictions for patient 567 and 591 using model lstm1.

FIGURE A.8: Plot of predictions for top 2 and bottom 2 performing patients using model
lstm1.
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(A) Plot of predictions for patient 552 and 570 using model gru1.

(B) Plot of predictions for patient 567 and 591 using model gru1.

FIGURE A.9: Plot of predictions for top 2 and bottom 2 performing patients using model
gru1.
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