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Chapter 1

Introduction

Inverse Problems are present in several fields of Science, namely in Mathematics,
Physics and Engineering. Inverse Problems are usually paired and are defined
as follows.

Definition 1.1 (Inverse Problems).
Two problems are called Inverse Problems from each other if the solution of

one of the problems is part of the formulation of the second and vice-versa. The
easier problem is called the Direct Problem, the one with the harder solution is
called the Inverse Problem.

Example 1.2 (Sum and Difference). The first example of mathematical inverse
problem that one is introduced to is probably sum and difference. These are
clearly two inverse problems, since if

3 + 4 = 7

then one knows that
7− 3 = 4,

that is, the solution of the sum is part of the formulation of the difference. In
other words, if one knows the solutions to all the formulations of one of the
inverse problems, than one can solve the other one by exhaustion, that is, by
trying every possible solution (if that can be done in finite time). In this case, if I
know how to do all the sums, to find the solution of the subtraction 9− 4 I have
to find x such that 4 + x = 9. Also, in this case the sum is usually considered the
direct problem since it is easier (one learns to sum before learning to subtract),
while the difference would be considered the inverse problem.
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Example 1.3 (Jeopardy). Another example of inverse problems gave rise to a pop-
ular TV show in the USA called Jeopardy. Usually in TV contests, the participant
is posed a question to which he has to find the correct answer. However, in Jeop-
ardy, the participant has to find the correct question for a given answer. These are
clearly two inverse problem (finding an answer to a given question and finding a
question to a given answer). However, it is easy to see that there are several ques-
tion for a same given answer. For instance 2016 is the answer to all the following
questions:

• How much is 1000 plus 1016?

• In which year was Marcelo Rebelo de Sousa elected president of Portugal
for the first time?

• ...

It is clear the finding a question to a given answer is the inverse problem, since it
is more difficult. In particular it has an additional difficulty, since the solution is
not unique. Non-uniqueness arises usually in Inverse Problems.
Example 1.4 (Differentiation and Integration). Differentiation and Integration are
also inverse problems of each other. In fact, a continuous function f if

F (t) =

∫ t

0

f(u)du

then
F ′(t) = f(t).

Usually one learns to differentiate before one learns to integrate, but in the con-
text of applied mathematics differentiation is the inverse problem. This is well
illustrated in figure 1.1. Since in applied mathematics and engineering data is
usually corrupted with noise, figure 1.1 illustrates that the integral (area below
the curve) of the exact function and one affected with noise is quite similar. How-
ever, the slope of the tangent line (which is by definition the derivative) can be
highly affected with noise. In this case, in differentiation, the solution does not
depend continuously on the data, which means the small errors in the data may
cause huge errors in the solution. This problem is called ill-conditioning and
leads to ill-posedness, which are concepts to which we will come back in the
following lines.

In this text we will focus on the inverse problem and how to overcome their
main difficulties. The main difficulties for the inverse problems in a general
framework in which we are interested are related with Hadamard’s [Hadamard, 1952]
definition of well-posed problem.
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Figure 1.1: Illustration of the effect of noise in integration (top) and differentiation (bot-
tom).

Definition 1.5 (Well and ill-posedness).
A problem is called well-posed in the sense of Hadamard [Hadamard, 1952]

if

(a) Existence: It as a solution;

(b) Uniqueness: The solution is unique;

(c) Solution depends continuously on the data: Small perturbations in the
data give rise to small perturbations in the solution;

If one or more of the previous conditions fails, the problem is called ill-posed.

The class of inverse problems that we are interested in are usually ill-posed.
As we will see throughout this text, the solution does not depend continuously
on the data, which means that one needs to find a regularized numerical method
to obtain a stable solution. Since data is usually affected by noise, this is a key
issue that one has to deal will. Depending on the problem, existence and unique-
ness by also be compromised, as we will see. In addition, some of the problems
are also non-linear, which means that on top of the regularization to obtain sta-
ble solutions, one will also need to consider linearization methods to solve the
problem. These issues makes inverse problems very challenging to solve.

1.1 Inverse Scattering Problems: General Framework

We are interested in a very specific class of inverse problems, namely inverse
scattering problems.
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Let us consider an incident wave (or beam) usually denoted by ui that prop-
agates in free space, governed by some mathematical model that is usually a
differential equation. For instance, Maxwell-equations govern electromagnetic
wave propagation, while the Helmholtz equation is usually related with acoustic
time-harmonic wave propagation. We will also consider an scatterer D (usually
an obstacle), with some given properties such as shape, location and the way
in reacts to the incident wave. The presence of the obstacle gives rise to the so
called scattered wave us, being the total field u now the sum of the incident and
scattered wave, that is, u = ui + us.

Figure 1.2: Scheme for scattering problems

If the obstacle is impenetrable the wave does not penetrate the obstacle.
These case one usually considers three possibilities, namely sound-soft obsta-
cles which means that

u = 0 in Γ (1.1)

where Γ is the boundary of the obstacle D, which means the total field vanishes
in the boundary of the obstacle; sound-hard obstacles which means that

∂u

∂ν
= 0 in Γ (1.2)

where ν is the exterior unit normal vector to the boundary of D, which means
that the normal derivative of the total field vanishes on the boundary of the ob-
stacle D; and an impedance condition given by

∂u

∂ν
− iλu = 0 in Γ (1.3)
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which relates to a behavior between the sound-soft and sound-hard obstacle.
We note that if λ = 0 one has a sound-hard obstacle while if λ → +∞ one has
a sound-soft one. The impedance condition is the more realistic one, since in
reality there are no perfect sound-soft or sound-hard obstacles, however these
are useful in some model situations.

If the obstacle is penetrable the one has a transmission condition usually of
the form  u1 = λu2

∂u1

∂ν
=
∂u2

∂ν

in Γ (1.4)

which governs the transition between the interior and exterior total field u1, u2,
respectively, inside and outside the obstacle D.

Another possibility for the model is to consider an inhomogeneous medium,
instead of an obstacle. This means that though no obstacle is not present some
coefficients of the governing equations change in some part of the domain, due
to a scatterer with different density, electrical properties, etc.

At this stage, and focusing on impenetrable obstacle, we are ready to formu-
late the direct and inverse problem in a general framework for inverse scattering
problems.

Direct Problem 1.6 (General direct problem).
Given an incident field ui and the properties of the scatterer D, determine the

scattered field us.

Inverse Problem 1.7 (General inverse problem).
Given a set of incident fields ui1, ui2, . . . , uiN and the corresponding scattered

fields us1, us2, . . . , usN , find some properties of the unknown obstacle D, such as
shape, location and physical properties.

Though we are not currently working with any problem in particular, there
are some statements that can be done right away. The first is that the inverse
problem is more difficult to solve than the direct problem. The second, is that
the direct problem has a unique solution (the incident field and the scatterer de-
termine a unique scattered field). For the inverse problem this is not quite true.
As we will see this problem usually does not have a unique solution for a finite
set of incident and scattered fields, that is, there might be more than one scat-
terer that would give rise to the same set of scattered field for the given incident
field. In addition, since the measures scattered fields are affected with noise, in
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a mathematical sense there might not be even a solution, that is, there is no scat-
terer D that would give rise to the measured scattered fields (with noise). In this
sense, existence is not the correct question to ask in terms of scattering inverse
problems, and in fact though mathematically challenging, it is not interesting for
practical use. Finally, if the presence of two obstacle creates interacting fields
between them, the problem is nonlinear, since the scattered field with the two
obstacles is not the sum of the scattered fields for each of the obstacles individu-
ally.

1.2 Relation with Medical Imaging

The relation between Medical Imaging and Inverse Scattering problems is quite
clear. In fact, inverse scattering problems are the mathematical model for medical
imaging. In medical imaging what one wants is to image the interior of the hu-
man body (the scatterer), by applying incident fields (or beams) and measuring
the scattered field (or beam).

For instance, Magnetic Resonance Imaging (MRI) relies on the imposition of
magnetic fields and the measure of the scattered fields to image the interior of
the human body. This works since the different organs have different electrical
and magnetic conductivities and permeabilities. In fact, a MRI image is a plot
of these coefficients, therefore making it possible for the physician to distinguish
between the position of the organs and presence of anomalies.

Ultrasound relies on incident acoustic waves in different frequencies and
their echoes in the interfaces between organs and different propagation of acous-
tic waves within the organs. These echoes are then measured in the probe, mak-
ing it able to establish from which depth they were send, due to the use of differ-
ent acoustic frequencies. Again, the produced image is a map of sound echoes.

X-ray imaging is based in the fact the X-rays are more attenuated in bones
that in tissue. Therefore, standing in front of an X-ray emission machine, the
image obtained is just a map of the different attenuated intensities of the beams
that arrives at the film.

Computerized tomography (CT) is based in the same principle as X-ray imag-
ing, but instead of considering one single direction of incident beams, the emis-
sor and receiver rotate along the body on opposite sides, being able to determine
an attenuation map in a slice of the human body.

Several other examples could be given, but for now we will focus on the
mathematical background that will allow us to mathematically formulate these
inverse problems. This will be the basis for the approaches to numerically solve
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these models, as we will see in upcoming chapters.





Chapter 2

Functional Analysis Revisited

In this chapter we will revisit some results of functional analysis that are im-
portant fro what follows. In the majority of cases, we will not show the proofs,
since they can be check in any functional analysis book (e.g. [Schechter, 2001]).
In particular, some books in numerical analysis (e.g [Kress, 1998]), also contain
the proofs for the following results.

2.1 Normed and Banach Spaces

Let us start with the definition of norm, that will be the basis for the definition of
normed space and eventually Banach space.

Definition 2.1 (Norm).
Let X be a linear real (or complex) space. The function ‖.‖ : X → R is called

a norm if for all x, y ∈ X and α ∈ R (or α ∈ C) if the following hold

(a) Positivity: ‖x‖ ≥ 0 ;

(b) Definitivity: ‖x‖ = 0⇔ x = 0 ;

(c) Homogeneity: ‖αx‖ = |α| ‖x‖;

(d) Triangular inequality : ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

Definition 2.2 (Normed, Complete and Banach space).
A linear real (or complex) space X is called normed, if it is equipped with a

norm.
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A normed space X is called complete if every Cauchy sequence(xn)n∈N of
elements in X , that is,

∀ε>0 ∃N∈N ∀n,m>N ‖xn − xm‖ < ε,

is convergent for some element x ∈ X .
A complete normed space is called a Banach space.

Example 2.3 (Banach Spaces). Some example of Banach spaces are the following:

(a) The spaces Rn and Cn are Banach with the norms

‖x‖p = p

√√√√ n∑
i=1

|xi|p

where p ∈ N.

(b) The spaces Rn and Cn are Banach with the maximum norm

‖x‖∞ = max
i=1,...,n

|xi|.

(c) The space of real or complex sequences (xn)n∈N given by

`p =
{

(xn)n∈N : ‖x‖p <∞
}

with the norm

‖x‖p = p

√√√√ ∞∑
i=1

|xi|p

are Banach spaces.

(d) The space of real or complex sequences (xn)n∈N given by

`∞ =
{

(xn)n∈N : ‖x‖∞ <∞
}

with the maximum norm

‖x‖∞ = max
i∈N
|xi|.

are Banach spaces.
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(e) The space of functions

Lp = {f : [a, b]→ R : ‖f‖p <∞}

with the norm

‖x‖p =
p

√∫ b

a

|f(x)|pdx

are Banach spaces.

(f) more examples of functions spaces will be recalled later in section 2.4.

We also need to recall some results for operators in normed spaces. We start
by defining a linear operator.

Definition 2.4 (Linear Operator).
Let A : X → Y be an operator from space X to the real (or complex) space Y .

Then A is called linear if

A(αx+ βy) = αAx+ βAy, (2.1)

for all x, y ∈ X and α, β ∈ R (or C).

We also define as follows the norm of an operator, induced by the norms of
the spaces it maps from and into.

Definition 2.5 (Operator Norm, Bounded Operator).
LetX, Y be two normed spaces. We define by operator’s norm for a linear op-

erator A : X → Y (induced by the norms ‖.‖X and ‖.‖Y in X and Y , respectively)
by

‖A‖ := sup
‖x‖X=1

‖Ax‖Y . (2.2)

If ‖A‖ <∞ the operator A is bounded.

To ease the notation, in the following we will drop the indexes X and Y of
the norms. We have the following upper bound for bounded operators.

Theorem 2.6.
In the conditions of the previous result, if A is bounded, we have in particular that

‖Ax‖ ≤ ‖A‖ ‖x‖, ∀x ∈ X. (2.3)

Similarly, if A and B are bounded operator, then

‖ABx‖ ≤ ‖A‖ ‖B‖ ‖x‖, ∀x ∈ X, (2.4)

that is, ‖AB‖ ≤ ‖A‖ ‖B‖.
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Proof. is shown simply by

‖Ax‖ =

∥∥∥∥A( x

‖x‖

)∥∥∥∥ ‖x‖ ≤ sup
‖x‖=1

‖Ax‖ ‖x‖ = ‖A‖ ‖x‖ .

The proof of (2.4) is now trivial, considering y = Bx and applying (2.3) twice.

Another important definition is of continuous operator.

Definition 2.7 (Continuous operator).
Let X, Y be two linear normed space. The operator A : X → Y is said to

be continuous at point x if for every sequence (xn)n∈N convergent to x

xn → x

one has Axn → Ax. If A is continuous for all x ∈ X, the operator is said to be
continuous in X .

For linear operators, one can show that continuous at a point and continuous
in X are equivalent.

Theorem 2.8.
Let X, Y be two linear normed spaces and A : X → Y a linear operator. Then A is

continuous at a point x0 ∈ X if and only if it is continuous in X .

Proof. Let A continuous in x0 and let xn → x 6= x0. Then for yn := xn − x+ x0 we
have yn → x0 and therefore Ayn → Ax0. Now, by linearity of the operator, one
has

Axn − Ax = Ayn − Ax0 → 0.

so Axn → Ax. As x is arbitrary, the result is shown.

For linear operators, one also has the equivalence between continuous and
bounded operators.

Theorem 2.9.
Let X, Y be two linear normed spaces and A : X → Y a linear operator. Then A is

continuous if and only if A is bounded.

Proof. Let A be bounded and xn → 0. Then

‖Axn‖ ≤ ‖A‖ ‖xn‖ → 0
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so Axn → 0 and by theorem 2.8 A is continuous.
Let A be continuous and let as assume that it is not bounded, that is, there ex-

ists a sequence (xn)n∈N such that ‖xn‖ = 1 and ‖A‖ > n.Defining yn = xn/‖Axn‖,
we have by linearity of the operator that ‖Ayn‖ = 1. However

‖yn‖ ≤
1

n
→ 0

so by continuity of the operator we have Ayn → 0, which contradicts the previ-
ous. Therefore A must be bounded.

The solution of an operator equation of the form Ax = b is similar to the
problem of inverting the operator A. Therefore, we must define an invertible
operator.

Definition 2.10 (Invertible Operator).
Let A : X → Y be a bijective, that is, for all b ∈ Y there exists a unique x ∈ X

such that
Ax = b.

The operator A−1 : Y → X such that

Ax = y ⇔ A−1b = x,

is called the inverse operator of A.

IfA is a matrix, we know from linear algebra (e.g. [Magalhï¿½es, 1997]) thatA
is invertible if and only if

min{|λ| : λis an eigenvalue of A} > 0,

or in other words, if the determinant of A (given by the product of the eigenval-
ues) is different from zero.

For the case of operators in Banach spaces, there are several results that ensure
the invertibility of an operator, such as the following.

Theorem 2.11.
Let X be a Banach space and B : X → X a linear operator with norm ‖B‖ < 1.

Let I : X → X be the identity operator, that is, Ix = x for all x ∈ X . Then the
operator I −B is invertible and its inverse is given by

(I −B)−1 =
∞∑
n=0

Bn (2.5)



14 2.1. Normed and Banach Spaces

and has norm with the following upper bound

‖(I −B)−1‖ ≤ 1

1− ‖B‖
.

Proof. We only present the general idea of the proof, leaving the details for [Kress, 1998].
We star by verifying that the series on the right hand side of (2.5) is convergent,
since ‖B‖ < 1 and from mathematical analysis [Ferreira, 1995] we know that if
the series of the norms

∑∞
n=1 ‖Bnx‖ converges the series (2.5) also converges. As

(I −B)
∞∑
n=0

Bn =
∞∑
n=0

Bn −
∞∑
n=1

Bn = I

and
∞∑
n=0

Bn(I −B) =
∞∑
n=0

Bn −
∞∑
n=1

Bn = I,

we show that (2.5) represents the inverse of I − B. The upper bound for the
norm comes from the upper bound of (2.5) by the series of the norms and the
expression for the geometric sum.

2.1.1 Finite Dimensional Banach Spaces

The numerical resolution of problems in applied mathematics gives usually rise
to the solution of linear systems or the use of matrices for the formulation of
linear approximations of the problems. In this way, it is particularly relevant the
study of vector and matrices spaces. In this section we will recall some results
for finite dimensional spaces, in which these are included.

We start by recalling that any normed space of finite dimension is a Banach
space. For that, we real the Bolzano-Weierstrass theorem, that will be the ground
for the proof.

Theorem 2.12 (Bolzano-Weierstrass).
Any bounded sequence (xn)n∈N in Rn, that is, such that it exists a C > 0 such that

‖xn‖ < C, ∀n ∈ N,

as a convergent subsequence , that is, there is a x ∈ Rn such that

xn(k) → x, k →∞.
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Proof. The proof can be found in any undergraduate level book in mathematical
analysis such us [Anton, 1999, Ferreira, 1995].

The Bolzano-Weierstrass theorem can be extended for any normed space of
finite dimension by the following result.

Theorem 2.13.
In a finite dimensional normed space X , any bounded sequence (xn)n∈N has a con-

vergent subsequence.

Proof. Let {u1, u2, . . . , uk} a basis of X and consider the representation

xn =
k∑
i=1

αn,iui.

As (xn)n∈Nis bounded, then every sequence of the vector of coefficients (αn)n∈N is
bounded in Rn. Then, by the Bolzano-Weierstrass theorem 2.12, there exists α ∈
Rn such that

αn(k) → α, k →∞.

Therefore, as j →∞ one has

xn(j) → x =
k∑
i=1

αiui.

The following result is also a consequence of the Bolzano-Weierstrass theo-
rem.

Theorem 2.14 (Equivalence of norms in finite dimensional spaces).
If X is a normed space with finite dimension, all norms are equivalent, that is,given

two norms ‖.‖1 and ‖.‖2 there exists two constants c1 and c2 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c1‖x‖2∀x ∈ X.

Proof. See [Kress, 1998, Thm.3.8].

We are now in place to show the following result.

Theorem 2.15.
A normed space X with finite dimension is a Banach space.
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Proof. We want to show that every Cauchy sequence (xn)n∈N is convergent.
Let {u1, u2, . . . , uk} a basis of X and let us consider the representation of the

Cauchy sequence given by

xn =
k∑
i=1

αn,iui.

By theorem 2.14 we have that C > 0 is such that

max
i=1,...,k

|αn,i − αm,i| ≤ C‖xn − xm‖,∀n,m ∈ N.

Therefore (αn,i)n∈N is a Cauchy sequence in C (or R) for every i = 1, . . . , k,, so it is
convergent, since C (or R) is complete. Therefore, we have the convergence of xn
to

xn → x =
k∑
i=1

αiui.

where αi is the limit of the sequence (αn,i)n∈N for every i = 1, . . . , k,.

2.2 Hilbert and pre-Hilbert spaces

We now recall the definition of inner product and Hilbert space.

Definition 2.16 (Inner product, pre-Hilbert space).
A function (., .) : X × X → C (or R) defined for a complex (or real) linear

space X is said to be an inner product if it satisfies the following properties

(a) Positivity: (x, x) ≥ 0;

(b) Definitiveness : (x, x) = 0⇔ x = 0 ;

(c) Symmetry: (x, y) = (y, x);

(d) Linearity: (αx+ βy, z) = α(x, z) + β(y, z);

for all x, y, z ∈ X and α, β ∈ C (or R).
A linear space equipped with an inner product is called a Pre-Hilbert space.

We recall also the Cauchy-Schwarz inequality, that will be useful later on.
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Theorem 2.17 (Cauchy-Schwarz).
For the inner product we have the following inequality

|(x, y)|2 ≤ (x, x)(y, y). (2.6)

Proof. For x = 0 it is trivial. For x 6= 0, one has

0 ≤ (αx+ βy, αx+ βy) = |α|2(x, x) + 2Re
(
αβ̄(x, y)

)
+ |β|2(y, y).

The result now comes from the choice of α as

α = − (x, y)√
(x, x)

, β =
√

(x, x).

The Cauchy-Schwartz inequality is the starting point to show that it is always
possible to define a norm in a pre-Hilbert space.

Theorem 2.18 (Norm induced by an inner product).
A pre-Hilbert space is always a normed s+ace with the induced norm

||x|| =
√

(x, x).

Proof. It is sufficient to show that this norm satisfies all the properties of the def-
inition 2.1 of a norm. We leave the proof as an exercise, suggesting the use of the
Cauchy-Schwartz inequality to show the triangular inequality.

We also note that using the induced norm, the Cauchy-Schwartz inequal-
ity (2.6) can be written as

|(x, y)| ≤ ‖x‖ ‖y‖. (2.7)

Moreover, with a norm available, it makes sense to define a complete space in
the context of pre-Hilbert spaces.

Definition 2.19 (Hilbert space).
A complete pre-Hilbert space is called a Hilbert space.

Moreover, theorem 2.18 shows that every Hilbert space is a Banach space, so
every results shown for Banach spaces are available for Hilbert spaces.

It is also important to introduce adjoint operator, for what follows.
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Theorem 2.20.
Let X, Y be Hilbert spaces. Let A : X → Y be a bounded linear operator. Then there

exists a so-called adjoint operator A∗ : Y → X such that

(Ax, y)Y = (x,A∗y)X , ∀x ∈ X, y ∈ Y

where (., .)X and (., .)Y are the inner products in X and Y , respectively.

Proof. See, for instance, [Schechter, 2001].

2.3 Compact Operators

Compact operators will play a key role on the following text, so we will now
take some lines to establish its definition and some of its properties. We aim at
Fredholm theory, that we will consider in section 2.5, that will set the basis for
some of the inversion schemes that we will consider to solve inverse problems.

We start by characterizing a compact set in a normed space.

Theorem 2.21 (Compact set).
A subset U of a normed space X is compact if and only if

(a) any sequence (xn)n ∈ U has a subsequence with limit in U ;

(b) any infinite subset of U has (at least) on limit point in U ;

(c) is complete and totally bounded (that is, for any ε > 0 there exists a finite number
of balls with radius ε, whose union contains U ;

Note that (a)− (c) are all equivalent.
A set is called relatively compact if it closure is compact.

Proof. The proof can be found in any topology or functional analysis book, such
as [Bass, 2013].

Theorem 2.22.
Let X be a normed space. If a subset U ⊂ X is compact, then it is bounded and

complete.
Let X be an Euclidean space. Then a subset U ⊂ X being bounded and complete

implies also that U is compact.
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Proof. We refer to [Bass, 2013].

Let us now define a compact operator.

Definition 2.23 (Compact Operator).
Let X, Y be normed space and A : X → Y be a linear operator. Then A is

called compact if the image of any bounded set in X is compact in Y .

There are several important properties of compact operators that we will list
now.

Theorem 2.24.
Let A : X → Y be a compact linear operator. Then A is bounded.

Proof. Let xn be a bounded sequence in X , such that ‖Axn‖Y →∞. Then (Axn)n
could not have a convergent subsequence, so A would not be compact.

From theorem 2.9 and the previous result it is clear that a compact linear
operator is also continuous.

Theorem 2.25.
Let X, Y be Hilbert spaces and A : X → Y be a compact linear operator. Then A∗ is

compact.

Proof. See for instance [Schechter, 2001].

We also note that the composition of a compact and a continuous operator is
a compact operator.

Theorem 2.26.
Let X, Y, Z be Hilbert spaces and A : X → Y and B : Y → Z be linear bounded

operators. If either A or B is compact, then the operator BA is compact.

Proof. See for instance [Schechter, 2001].

It is also important to look at the eigenvalues of compact operators A : X →
X , mapping from X to X . An eigenvalue λ is a value such that there exist x ∈ X
such that

Ax = λx.

Eigenvalues determine whether an operator is easily invertible, or, in other words,
whether the image of an operator depends continuously on the object x, in the
context of Hadamard ill-posedness 1.5. In this sense, studying the spectral prop-
erties of compact operators is important, that is, study how eigenvalues of com-
pact operators behave.
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Theorem 2.27 (Spectral theorem for compact operators).
Let X be a normed space with infinite dimension and A : X → X a compact linear

operator. Then

(a) zero is an eigenvalue of A.

(b) The eigenvalues λ 6= 0 are at most countable many, each has finite multiplicity,
and accumulate only at zero.

If A is also self-adjoint, that is, if A = A∗, then all the eigenvalues are real.

Proof. See, for example, [Schechter, 2001] and [Kress, 1999].

The previous result shows that compact operators are not invertible in infinite
dimension. Moreover, even if Ax = f is solvable, the inversion of A is ill-posed,
since their eigenvalues accumulate at zero.

We also consider the following result.

Theorem 2.28.
Let X be a normed space and A : X → Y a linear bounded operator with finite

dimensional range, that is, the space

R(A) = {A(x) : x ∈ X}

has finite dimension. Then A is compact.

Proof. The result follows from the fact that R(A) is complete from theorem 2.15,
Bolzano-Weierstrass theorem 2.12 and the definition of compact set 2.21.

2.4 Function spaces

We will recall some function spaces that will be important for us, defining for
what follows the domain D as a closed domain.

Definition 2.29 (Space of continuously differentiable functions).
The space of functions Cn(D) defines all the continuously differentiable

functions f : D → R up to order n.
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Definition 2.30 (Lp Spaces).
The Lp(D) space is the space of all the functions that have bounded Lp norm,

that is, that
Lp(D) = {f : D → R : ‖f‖p <∞}

with

‖f‖p = p

√∫
D

[f(y)]pdy. (2.8)

For the infinity norm p =∞, one has

‖f‖∞ = max
x∈D
|f(x)|.

Definition 2.31 (Sobolev Spaces).
The Sobolev space W p,k is defined by the

W p,k =
{
f : D → R : ‖Djf‖k <∞, ∀|j| ≤ p

}
where j = (j1, j2, . . . , jn), |j| = j1 +j2 +· · ·+jn andDj is the derivative of order |j|
given by

Djf =
∂|j|f

∂xj11 ∂x
j2
2 . . . ∂x

jn
n

. (2.9)

For k = 2, the Sobolev space is denoted by Hp(D) := W p,2(D). Moreover, Hp
0 (D)

is the space of functions in Hp(D) with null trace in the boundary of D.

It is no coincidence that we called spaces to the previous sets of functions. It is
easy to check in any analysis or mathematical applications book (e.g-[Bass, 2013,
Kress, 1998]) that the previous sets are linear spaces. Moreover, all of them can
be equipped with a norm. For Lp(D) the norm considered is (2.8), while for
instance C(D) can be equipped with ||.||∞ or ||.||2. As for Sobolev spaces the
norm to consider is

‖f‖W p,k =
∑

j:0≤|j|≤p

∥∥Djf
∥∥
k

or for Hp(D) or Hp
0 (D) the norm

‖f‖Hp =
∑

j:0≤|j|≤p

∥∥Djf
∥∥

2
. (2.10)
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In this sense, these are normed spaces. One can also show that both Lp with the
norm ‖.‖p and Hp with the norm ‖.‖p are complete spaces, making them Banach
spaces. As for the space Cp(D) it is in general not complete with the norm ||.||∞
or ||.||2.

Considering now the inner product

(f, g)2 =

∫
D

f(y)g(y)dy

that gives rise to the ‖.‖2, the space L2(D) is a Hilbert space.
It is also important to know how these spaces are related between them,

namely to check the embedding theorems between these spaces.

2.5 Fredholm-Riesz Theory and Integral Operators

An integral equation is a equation involving an integral of the unknown solu-
tion function. The results for existence and uniqueness of solution for an integral
equation include the so-called the Fredholm-Riesz theory. Fredholm developed
this theory for integral equations with continuous kernels in the early XXth cen-
tury, while Riesz extended the results for compact operators.

For what follows we will be interested in integral equations of the first kind∫ b

a

k(x, y)ϕ(y)dy = f(x), x ∈ [a, b] (2.11)

and second kind

ϕ(x) +

∫ b

a

k(x, y)ϕ(y)dy = f(x), x ∈ [a, b] (2.12)

where [a, b] is clearly a closed set, ϕ is the unknown, k is the (known) kernel and f
is a (known) function.

We first establish the following result, that will be of crucial importance for
us.

Theorem 2.32.
Let k : [a, b] × [a, b] → R be continuous or weakly singular, that is, k is defined

and continuous for all x 6= y and there exists M > 0, α ∈]0, 1] such that

|k(x, y)| ≤M |x− y|α−1.
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Then the integral operator A : C([a, b])→ C([a, b]) defined by

(Aϕ)(x) =

∫ b

a

k(x, y)ϕ(y)dy = f(x), x ∈ [a, b] (2.13)

is compact.

Proof. See [Kress, 1999].

Now that we established that this operator is compact, theorem 2.27 estab-
lishes that for infinite dimensional spaces, the inversion of A is extremely ill-
posed, since there are eigenvalues tending to zero. This means that the solution
of equation (2.11) is extremely ill-posed.

As for second king integral equations the situation is quite different. Fred-
holm showed that if the kernel k and the second member fare continuous, then (2.12)
has one unique solution in C([a, b]). This is based in the so called Fredholm al-
ternative, that can be generalized for compact operators as follows.

Theorem 2.33 (Fredholm alternative).
Let X be normed space. Let A : X → X be a compact linear operator and I the

identity operator. Then I − A satisfies exactly one of the following:

• I − A is bijective, that is, is injective and surjective;

• the dimension of the kernel of I − A, that is, the dimension of the space

{x ∈ X : (I − A)x = 0},

is greater of equal to one.

Proof. See [Kress, 1999].

Fredholm alternative establishes the equivalence between injectivity and sur-
jectivity for operators of the form I − A, with A compact. In this sense, writ-
ing (2.12) as

(I − A)ϕ = f

with A as in (2.13), it is clear that A is compact for a continuous or weakly sin-
gular kernel k. Since A is compact, Fredholm alternative is applicable to (2.12),
meaning that for the integral equation of the second kind (2.12), uniqueness of
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solution is equivalent to existence solution. This means, for instance for K ∈
C([a, b])× C([a, b]) that if

ϕ(x) +

∫ b

a

k(x, y)ϕ(y)dy = 0, x ∈ [a, b]

has only the trivial solution ϕ = 0, the integral equation of the second kind (2.12)
is uniquely solvable in C([a, b]) for every f ∈ C([a, b]).



Chapter 3

Conditioning

It Mathematics, it is a good practice to study the existence of solution before try-
ing to solve a problem. If it does not exist, it does not make sense to search for
it. Moreover, it is also important to know whether the solution is unique. If it
is not, though a method gives a solution, it is important to understand if that
solution we the one we are looking for for the problem at hand. In numerical
analysis, where one looks for an approximation of the solution, another impor-
tant problems arises: well-conditioning. As already mentioned in the follow up
of definition 1.5, it is important to check if small errors in the data give rise to
small errors in the solution. This is of key importance for obtaining approxima-
tions of the solution, moreover if one has in mind that in real practical problems
data is usually affected by noise.

In the sequence of the definition 1.5 of well-conditioning, it is said that the
problem associated with the operator A given by

Ax = b (3.1)

is well-conditioned at x, if there exists a constant C ≥ 0 such that

δb̃ ≤ Cδx,∀x ∈ Vx,

where Vx is a neighborhood of x, δb̃ = ‖b−b̃‖
‖b‖ is the relative error of the second

member and δx is the relative error of the solution. This means that the relative
error of the results is controlled by the relative error in the data, that is, the result
depends continuously on the data.

As an introduction to the study of conditioning of linear problems, we start
by establishing a norm for the linear operator A. We start by linear operators in
finite dimension, that is, that can be represented by a matrix.
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3.1 Matrices Norms

In this section, we will consider a complex matrix A with dimensions n × n and
entries ai,j for i, j = 1, 2, . . . , n and two complex column vectors x, b ∈ Cn given
by

A =



a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

...
... . . . ...

...
ai1 ai2 . . . aij . . . ain
...

...
... . . . ...

an1 an2 . . . anj . . . ann


, x =


x1

x2

...
xn

 , b =


b1

b2

...
bn

 . (3.2)

Looking at a matrix n×n as an operator from the space of column vectors Rn

(or Cn) into itself, it is possible to consider the induced norm (2.2) for the matrices
operators space.

Therefore one has the following result, that characterizes some matrix norms.

Theorem 3.1 (Matrix Norms).
The norms in the space of column vectors Rn (or Cn) given by

‖x‖1 =
n∑
i=1

|xi| (3.3)

‖x‖∞ = max
i=1,...,n

|xi| (3.4)

‖x‖2 =

√√√√ n∑
i=1

|xi|2 (3.5)

induce (in the sense of definition 2.5) the norms in the linear space of real (or complex)
matrices of dimensions n× n given by

‖A‖1 = max
j=1,...,n

n∑
i=1

|aij| (3.6)

‖A‖∞ = max
i=1,...,n

n∑
j=1

|aij| (3.7)

‖A‖2 =
√
ρ (A∗A) (3.8)

respectively, where A∗ is the adjoint matrix given by the (conjugate) transpose matrix
of A and the spectral radius is given by

ρ(A) := max
i=1,...,n

{|λi| : λi is eigenvalue ofA} . (3.9)
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The matrix norm (3.6) is called columns norm,while the matrix norm (3.7) is called lines
norm.

If A is hermitian, that is, if A = A∗, then

‖A‖2 = ρ(A). (3.10)

Proof. Exercise.

Remark 3.2 (Matrix norms in Octave). In Octave, the command norm(A,p) com-
putes the p norm (p=1,2,Inf) of matrix A.

Exercise 3.3. Show that the matrix norm ‖.‖2 induced by the euclidean norm for
column vectors satisfies

‖A‖2 ≤

√√√√ n∑
i,j=1

|aij|2.

Resolution.
By the Cauchy-Schwartz inequality (2.7) one has

‖Ax‖2
2 =

n∑
i=1

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣
2

≤
n∑
i=1

(
n∑
j=1

|aij|

)2( n∑
j=1

|xj|

)2

(Cauchy-Schwartz (2.7))

=

(
n∑
j=1

|xj|

)2 n∑
i=1

(
n∑
j=1

|aij|

)2

=

 n∑
i=1

(
n∑
j=1

|aij|

)2
 ‖x‖2

2

hence we have the result by the definition of operator norm (2.2).

Theorem 3.4.
For every norm in Cn and any square matrix A, one has

ρ(A) ≤ ‖A‖. (3.11)

On the other hand, for all ε > 0 there exists a norm such that

‖A‖ ≤ ρ(A) + ε. (3.12)
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Proof. Let vm be an eigenvector ofA associated to the eigenvalue λm such that |λm| =
ρ(A). Without loss of generality, we assume that vm as unitary norm. Then

||A|| = sup
||x||=1

‖Ax‖ ≥ ‖Avm‖ = |λm| = ρ(A).

so (3.11) is proven. For the proof of (3.12) we refer for instance to [Kress, 1998,
Kincaid and Cheney, 2009].

3.2 Conditioning of linear equations

Thought we started focused on linear equations of the form (3.1), where the lin-
ear operator A has finite dimension, what follows can also be applied to linear
operators with infinite dimension. Therefore, we formulate the results in this
section for linear operators A (with possible infinite dimension) as defined in 2.4
in normed spaces, since we will need the definition of the norm of A. Obviously,
the results are also valid for finite dimensional operators.

The following theorem gives us an upper bound for the conditioning of linear
equations. We note that to speak about the conditioning of a linear equation (3.1)
we assume that the equation has a unique solution, that is, that the operator A
should be invertible in the sense of definition 2.10

Definition 3.5 (Condition number).
Let A : X → Y be an invertible operator. We call condition number of the

operator A to
cond(A) = ‖A−1‖ ‖A‖. (3.13)

We note that the condition number depends on the norm that one considers.

Remark 3.6 (Conditioning number in Octave). In Octave, one can compute the
command inverse(A) to compute the inverse matrix of the matrix Aand the
command cond(A,p) to compute the condition number of the matrix A in the
norm p (p=1,2,Inf).

Independently of the norm considered, we have the lower bound for the con-
dition number given by the following result.

Theorem 3.7.
Let A : X → Y an invertible operator. Then

cond(A) ≥ 1. (3.14)
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Proof. We have

1 = ‖I‖ = ‖A−1A‖ ≤ ‖A−1‖‖A‖ = cond(A).

It is also important to establish upper bounds for the error of solution of linear
equations of the form

Ax = b,

when the operator A or the second member b is affected by errors. We have the
following results

Theorem 3.8 (Conditioning of linear equations).
Let X and Y Banach spaces and let A : X → Y be a linear operator with bounded

inverse A−1 : Y → X . Let also Ã be a linear operator such that

‖A−1‖‖Ã− A‖ < 1

and let x and x̃, respectively, be the solutions of the linear equations

Ax = b e Ãx̃ = b̃.

Then we have the upper bound for the relative error of the solution

δx̃ ≤
cond(A)

1− cond(A)δÃ
(δb̃ + δÃ) (3.15)

where the relative error is defined by δx̃ = ‖x−x̃‖
‖x‖ .

Proof. We start by noting that by theorem 2.11, the operator I + A−1(Ã− A) is
invertible. Then, the operator Ã is also invertible, since it can be written by

Ã = A
(
I + A−1(Ã− A)

)
and his inverse is given by

Ã−1 =
(
I + A−1(Ã− A)

)−1

A−1

and has norm bound by

‖Ã−1‖ ≤ ‖A−1‖
1− ‖A−1‖‖Ã− A‖

. (3.16)
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By the definition of x and x̃ one has

Ã(x̃− x) = b̃− b− (Ã− A)x,

therefore applying the inverse of Ã and getting upper bounds for the norms one
has

‖x̃− x‖ ≤ ‖Ã−1‖
(
‖b̃− b‖+ ‖Ã− A‖‖x‖

)
.

Applying (3.16), dividing both members by ‖x‖ and considering the definition
of condition number to get ‖Ã−1‖ = cond(A)/‖Ã‖, one gets

‖x− x̃‖
‖x‖

≤ cond(A)

1− cond(A)
‖Ã− A‖
‖A‖

(
‖b̃− b‖
‖A‖‖x‖

+
‖Ã− A‖
‖A‖

)
.

and therefore the result, since

‖A‖‖x‖ ≥ ‖Ax‖ = ‖b‖.

The previous result shows that the higher the condition number, the worst
the resolution of the linear equation is conditioned, since the term

cond(A)

1− cond(A)δÃ
→∞

when cond(A) → ∞. This is even more clear where the errors are only in the
second member b.

Exercise 3.9. Show that if the linear operatorA is invertible and exact (i.e., Ã = A),
one has the upper bound.

δx̃ ≤ cond(A)δb̃. (3.17)

Resolution.
Comes directly from (3.15) considering Ã− A = 0.

Exercise using Octave 3.10. Consider the norm ‖.‖2 and the linear system Ax = b

with

A =

 3 5 −1

2 −4 2

5 1 1.0001

 , b =

 0

1

10

 .
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(a) Compute the condition number of A, using Octave.

(b) What can you conclude about the conditioning of the resolution of Ax = b.

(c) Consider the approximations

Ã =

 3 5 −1

2 −4 2

5 1 1.00005

 , b̃ =

 0

1

10.00005

 .
Compute the relative errors of the matrix Ã and vector b̃, by its definition,
using the command norm in Octave.

(d) Verify the conditions of theorem 3.8, using the commands inv and norm
of Octave.

(e) Compute the upper bound for the relative error of the solution of the linear
system Ãx̃ = b̃ with respect to the solution of Ax = b.

(f) Compute the exact error.

Answer.

(a) cond2(A) = 1.3831× 105.

(b) As the condition number is high, the system is ill-conditioned.

(c) δÃ =
‖Ã− A‖2

‖A‖2

≈ 6.8778× 10−6; δb̃ =
‖b̃− b‖2

‖b‖2

= 4.9752× 10−6.

(d) Since we are considering matrices (and therefore linear operators), one just
has to verify that A is invertible and

‖A−1‖2‖Ã− A‖2 = 0.95130 < 1,

therefore, the hypothesis of the theorem are verified.

(e) From (3.15) we have δx̃ ≤ 33.661, that is the upper bound tells us that the
relative error of the solution in less than 3366, 1%.

(f) We have the solutions

x = [−2.4545, 3.2727, 9]T × 104; x̃ = [−4.9091, 6.5455, 18]T × 104

and therefore obtain δx̃ = 1, that is, an error of 100 %.
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We will focus in solving linear equations of the form

Ax = b̃

where b̃ is a small perturbation of the exact value b, that is, the second member is
affected by errors. As we have seen, the conditioning of the equation is related
with the condition number of A, by (3.17).

We also note that the condition number is related with the invertibility of A.
In particular, ifA as eigenvalues close to zero, the invertibility ofA is ill-conditioned
and the condition number will be high. This claim has its support on the defi-
nition of condition number and theorem 3.4. In fact, as the eigenvalues of A−1

are the inverse of the eigenvalues of A, so if A has an eigenvalues close to zero
(with respect to the other eigenvalues), then A−1 has a large eigenvalue in abso-
lute value, so ρ(A−1) is large. In this way, by theorem 3.4, whatever the norm
considered, we have ‖A−1‖ very large and therefore the condition number will
be very large (supposing that ‖A‖ is not close to zero, since this would imply that
its eigenvalues are close to zero by theorem 3.4).

Therefore, a way to control the ill-conditioning in the resolution of a linear
equation Ax = b is to control the eigenvalues of A, that is, solve a similar linear
equation where the eigenvalues of the corresponding linear operator are away
from zero.

3.3 Regularization

In this section we will focus on some regularization methods for ill-conditioning
equations, that is, we will consider processes to stabilize the resolution of linear
equations. We start by recalling the concept of singular system, that we will gen-
eralize for compact operators. From theorem 2.28, this is also applied to matrices,
that are special cases of compact operators.

If A is a compact linear operator, then its adjoint A∗ is also compact from
theorem 2.25 and therefore the operator AA∗ is a self-adjoint compact operator.
The spectrum of the operator AA∗ is characterized in theorem 2.27 and is the
starting point for the singular system that we now describe.

Theorem 3.11 (Singular System).
Let A : X → Y be a linear compact operator. Then there exists orthonormal sys-

tems u1, u2, . . . , un, · · · ∈ X and v1, v2, . . . , vn, · · · ∈ Y and real values

µ1 ≥ µ2 ≥ · · · ≥ µn ≥ . . .
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ordered and repeated by its multiplicity such that

Auj = µjvj, A∗vj = µjuj, j = 1, 2, . . . , n, . . . (3.18)

The system (µj, uj, vj) is called singular system of the compact operator A and the
values µj are called singular values of A.

Moreover, the linear equation Ax = b has a unique solution if and only if

(b, y) = 0, ∀y ∈ Y : A∗z = 0.

In that case, the solution is given by

x =
∑
j

1

µj
(b, vj)uj. (3.19)

Proof. We refer to [Kress, 1998] for the proof.

Exercise using Octave 3.12. In Octave, use the command [V MU U] = svd(A)
to obtain the singular system of Ã as in exercise 3.10. Verify that (3.18) holds.

Answer.
We obtain the column vectors U

u1 = [−0.59153,−0.79603, 0.12814]T ; u2 = [−0.76710, 0.50670,−0.39347]T ;

u3 = [−0.24829, 0.33104, 0.91036]T ;

and the column vectors V

v1 = [−0.80923, 0.31051− 0.49872]T ; v2 = [0.10866,−0.75515,−0.64649]T ;

v3 = [−0.57735,−0.57735, 0.57735]T ;

that are an orthonormal basis of R3 and obtain the singular values from the di-
agonal of MU given by

µ1 = 7.2697; µ2 = 5.7577; µ3 = 2.6280× 10−5.

The expression of the solution (3.19) illustrates the relation between the sin-
gular values of A and the conditioning of the linear equation Ax = b. To simplify
the analysis, we will consider A an invertible n×matrix, which means that all its
eigenvalues and singular values are different from zero.
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We start by noting that if the singular values µj are close to zero, the fac-
tor 1/µj makes the numerical solution unstable. In fact, as µ2

j are the eigenvalues
of A∗A since from (3.18) one has

A∗Auj = µjA
∗vj = µ2

juj,

from (3.10) one gets

cond2(A) =
µ2

1

µ2
n

therefore if the lower eigenvalue µn is close to zero, the conditioning of the linear
equation Ax = b is compromised.

Finally, we will compare the eigenvalues λj of A to their singular values µj .
We start by noting that the eigenvalues of the adjoint (complex conjugate trans-
pose) matrix A∗ are the complex conjugate eigenvalues of A. Therefore, as the
determinant of a matrix is the product of its eigenvalues, one gets

n∏
j=1

µ2
j = det(A∗A) = det(A∗) det(A) =

n∏
j=1

λ̄2
j

n∏
j=1

λ2
j =

n∏
j=1

|λj|2.

In a hand waving argument, if one of the eigenvalues is close to zero (making
the inversion of the matrix ill-conditioned), the product of the eigenvalues, and
therefore the singular values is close to zero. Therefore, one of the singular values
must be close to zero. As seen before, if the eigenvalues are close to zero, the
linear equation is ill-conditioned.

3.3.1 Regularization by singular values decomposition

Equation (3.19) illustrates the ill-conditioning associated with singular values µj
close to zero. On the other hand, it also allows to approximate the solution of
the problem in a stable way. Having that in mind, one can truncate the sum, not
considering singular values µj lower than some given ε > 0. In this way the
contribution of the terms 1/µj for unstable values disappears. We then get the
approximation

xp =

p∑
j=1

1

µj
(b, vj)uj,

where p is the index such that µp ≥ ε and µp+1 < ε. The choice of ε or in a similar
way, the choice of p is crucial to the quality of the approximation. On one hand
one wants a stable solution. On the other hand, one does not want to truncate
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the sum too much, in order to get a good approximation, since by the triangular
inequality one gets

‖x− xp‖2 ≤
n∑

j=p+1

1

µj
|(b, vj)|.

This error shows us that if b is perpendicular to the space generated by the vj
para j = p + 1, . . . , n, . . . , then (b, vj) = 0 and therefore the error is null. On the
other hand, if b belongs to that space, the error might be huge.

3.3.2 Tikhonov Regularization

The regularization by decomposition in singular values is unpractical, since one
needs to compute the singular system of A, which is by itself sometimes time
consuming and unstable. In this section, we will consider another method for
regularization, namely Tikhonov regularization. The idea is to replace the reso-
lution of the linear equation

Ax̃ = b̃

by the linear equation
(αI + A∗A)xα = A∗b̃ (3.20)

with some regularization parameter α > 0. As we will show next, the equa-
tion 3.20 has better conditioning than the original equation and its solution xα is
close to x.

Theorem 3.13 (Tikhonov Regularization).
Let (µj, uj, vj) be the singular system for the compact linear operatorA and let α > 0

be a real constant.
Then the operator M = αI + A∗A related with the resolution by Tikhonov regular-

ization (3.20) has condition number

cond2(M) ≤ µ2
1 + α

µ2
n + α

. (3.21)

Moreover, the solution of (3.20) can be written in the form

xα =
∑
j

µj
α + µ2

j

(b̃, vj)uj. (3.22)

If x is the solution of the linear equation Ax = b then we have the upper bound for the
error

‖x− xα‖2 ≤ ‖b‖2

∑
j

∣∣∣∣ α

µj(α + µ2
j)

∣∣∣∣+ eb̃
∑
j

∣∣∣∣ µj
(α + µ2

j)

∣∣∣∣ (3.23)

where the absolute error of the second member is given by eb̃ = ‖b− b̃‖2.
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Proof. By (3.18) one gets

(αI + A∗A)uj = (α + µ2
j)uj,

therefore the eigenvalues of M are given by (α + µ2
j). Moreover, since M is her-

mitian, result (3.21) comes directly from (3.10). The representation (3.22) comes
directly form the singular representation (3.19) by noticing that (α + µ2

j , uj, uj)

is a singular system of M and (A∗b̃, uj) = (b̃, Auj) = µj(b̃, vj). Finally, from the
representations (3.19) and (3.22) one gets

x− xα =
n∑
j=1

(
1

µj
(b, vj)−

µj
(α + µ2

j)
(b̃, vj)

)
uj

=
n∑
j=1

([
1

µj
− µj

(α + µ2
j)

]
(b, vj) +

µj
(α + µ2

j)
(b− b̃, vj)

)
uj

=
n∑
j=1

(
α

µj(α + µ2
j)

(b, vj) +
µj

(α + µ2
j)

(b− b̃, vj)
)
uj

and from the triangular inequality and Cauchy-Schwartz, one obtains (3.23).

The application of Tikhonov regularization as a great advantage with respect
to regularization by singular value decomposition: one does not need to com-
pute the singular system. In fact, to apply Tikhonov regularization one only
needs to solve (3.20). The major disadvantage of Tikhonov regularization is that
one needs to chose the regularization parameter α appropriately, similarly to
having to choose the proper index p to truncate the sum in the regularization
with singular value decomposition. This is usually not trivial and it most cases,
it is still an open problem. On the one hand, α should be small to ensure that the
linear equation (3.20) as a similar solution to the original system. This is clear,
since the first term in the error estimate (3.23) goes to zero, as α goes to zero.
On the other hand, α cannot be too small to ensure that the solution is stable, or
in other words, to ensure that the erro in the second member b̃ is not amplified.
This is clear in the second term of the error estimate (3.23). A similar indication
is given by the upper bound for the condition number (3.21), since α must not be
too small to ensure well-conditioning of the Tikhonov equation (3.20).
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Exercise using Octave 3.14. Consider the matrix A of dimensions n × n, whose
entry (j, k) is given by ajk = sin(jk/n) and the column vector b is such that

bj =
n∑
k=1

k sin(kj/n).

Consider also b̃ affected by error, such that

b̃j = bj + 10−12 cos(2000j/n).

The solution of the system Ax = b is given by the vector with components xj = j

for j = 1, 2, . . . , N . Consider n = 12 for what follows.

(a) In Octave, define the matrix A and vectors b and b̃.

(b) Compute the relative and absolute error of b̃ in the euclidean norm.

(c) Compute the condition number of A in the euclidean norm.

(d) Compute the relative error of the solution of Ax̃ = b̃ obtained by the direct
resolution of the linear system in Octave given by the commands xtil = A\ btil
with respect to the exact solution x.

(e) Compute an approximation to the solution by regularization by singular
value decomposition, using the higher p = 10 singular values. Compute
the respective relative error.

(f) Compute an approximation to the solution by Tikhonov regularization, us-
ing a regularization parameter α = 10−10. Compute the respective relative
error.

(g) Graphically compare the obtained solutions and draw some comments on
the result.

Answer.

(a) In a ’.m’ file, we write the algorithm:

N=12;
b = double(zeros(N,1));
btil = double(zeros(N,1));
A = double(zeros(N,N));
for j= 1: N
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for k= 1: N
A(j,k) = sin(j*k/N);
b(j) = b(j) + k*sin(k*j/N);

end
btil(j)= b(j)+10∧(-12)*cos(2000*j/N);

end

(b) One gets the absolute eb̃ = 2.1277× 10−12 and relative δb̃ = 1.9864× 10−14%

errors in the data, being therefore quite small.

(c) One gets cond2(A) = 1.7470 × 1014, therefore the system Ax = b is ill-
conditioned.

(d) We have x̃ = [27.18,−40.25, 47.18,−31.27 . . . , 12.00] therefore

δx̃ = 312.10%.

This huge error in the results originated from a small error in the data is
justified by the ill-conditioning of the system and the lack of regularization
in the resolution.

(e) We obtain the regularized solution

xp ≈ [1.00, 2.00, 3.00, . . . , 12.00]T

by writing a ’.m’ file with the following algorithm:

[v mu u] = svd(A);
p = 10;
xp = zeros(N,1);
for j= 1: p

xp = xp + dot(btil,v(:,j))*u(:,j)/mu(j,j);
end

The relative error is δxp = 0.00016850%.

(f) We obtain the regularized solution

xα ≈ [1.00, 2.00, 3.00, . . . , 12.00]T

by writing a ’.m’ file with the following algorithm:

alpha = 10∧(-10);
MTik = alpha*eye(N) + A’*A;
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bTik = (A’)*btil;
xTik = MTik\ bTik;

The relative error is δxα = 0.00069637%.

(g) The comparison between the three approximate solutions and the exact one
is shown in figure 3.1, obtained by the following commands:

figure(1)
plot(x,’r-’);
hold on;
plot(xtil,’b-’);
plot(xp,’g-’);
plot(xTik,’c-’);
legend(’Solucao exata’,’Solucao com erro’,’SVD’,’Tikhonov’);
hold off;
The instability of the solution by direct solution of the linear system is clear,
While the regularized solutions coincide graphically with the exact solu-
tion. This illustrates how regularization can be used to solve in a stable
way a ill-conditioned system with a smooth solution.

Figure 3.1: Comparison between the numerical solutions and the exact solution regard-
ing exercise 3.14.





Chapter 4

Computerized Tomography

4.1 Introduction

In this chapter we will focus on the mathematical modeling of Computerized
Tomography (CT) and some numerical reconstruction algorithm. These lectures
notes are based in the lecture notes of Prof. Rainer Kress [Kress, 2005] in Tomo-
graphie (in german) and the book [Natterer, 2001], so we refer to those for a more
detailed version of what we address here.

First we will focus on the geometrical setting of the problem, and in partic-
ular, how the image of a slice of the body can be obtained from this imaging
modality.

Computerized tomography is based on the emission of X-rays through a body
of unknown density f = f(x) depending only on the spatial coordinate x ∈ R2.
The goal is to recover the unknown density f from the knowledge the source
intensity of the ray and the measured intensity in the receiver, for a set of rays
traveling over different trajectories.

There are several assumptions that one needs to make for the mathemati-
cal modeling of computerized tomography. The first assumption is that X-rays
travel over straight lines, which is not exactly the case but is a very good approx-
imation. Therefore, one assumes a geometrical setting as in figure 4.1.

In this way, any line L corresponding to the trajectory of a ray can be charac-
terized by a unit vector θ ∈ R2 and a length s ∈ R, that is

Ls,θ =
{
sθ + tθ⊥ : t ∈ R

}
(4.1)

where θ⊥ is a unit vector perpendicular to θ. The second assumption for the
mathematical modeling of CT is that the loss of energy is proportional to the
density itself. In fact, one assumes that locally the variation of the intensity ∆I of
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Figure 4.1: General geometrical setting for a line L corresponding to the trajectory of a
ray in CT.

the ray is proportional to the density f , to the current intensity I and the traveled
distance ∆x, that is,

∆I = −γfI∆x.

Taking the previous assumption as ∆x→ 0, one gets that

dI

dx
= −γfI,

that is
I ′(x)

I(x)
= −γf(x).

Integrating the latter in x over the trajectory L, one gets that

ln(Ireceiver)− ln(Isource) = −γ
∫
L

f(x)dx

that is, taking the parametrization (4.1), one gets

ln

(
Ireceiver
Isource

)
= −γ

∫ ∞
−∞

f(sθ + tθ⊥)dt.
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For imaging purposes, one can redefine f = γf , since the plot of f or γf will only
vary by a matter of scale and therefore both will equally distinguish different
densities. Therefore, we can simplify the CT mathematical model as

ln

(
Isource
Ireceiver

)
=

∫ ∞
−∞

f(sθ + tθ⊥)dt. (4.2)

We are now in a position to define the Radon transform, that will be of great
use throughout this chapter. Before this definition, we also define the Schwarz
space of functions, in which the Radon transform is defined.

Definition 4.1 (Schwarz space).
Let f : R2 → C.
Then the Schwarz space S(R2) is the space of functions f ∈ C∞(R2) such that

both f and all its derivatives decay faster than any power of x in infinity, that is

S(R2) =

{
f ∈ C∞(R2) : sup

x∈R2

|xnDjf(x)| ≤ ∞, ∀n ∈ N,∀j ∈ N2

}
with Djf defined as in (2.9).

The Schwarz space S(R2) guarantees that the function f vanishes in an ap-
propriate speed to infinity, so that the line integral is well defined.

Definition 4.2 (Radon Transform).
Let f ∈ S(R2).
Then the Radon transform (Rf) : R× Ω→ C of f is defined as

(Rf) (s, θ) =

∫ ∞
−∞

f(sθ + tθ⊥)dt, (4.3)

where Ω = {θ : |θ| = 1} is the unit circumference.

The Radon transform makes the formulation of (4.2) easier, in the sense that
it can be written has

(Rf)(s, θ) = ln

(
Isource
Ireceiver

)
,

where the right hand side is known for each ray defined by s and θ.
In this way, the direct problem in the context of CT can be formulated as

follows



44 4.2. Fourier Transform

Direct Problem 4.3. Given the density f , find the Radon transform (Rf)(s, θ).
However, our interest is the inverse problem. It is now clear that the inverse

problem of interest, that is related to computerized tomography imaging is the
following.
Inverse Problem 4.4 (Computerized tomography with full data). Given the Radon
transform (RF )(s, θ) of f for all s ∈ R and θ ∈ Ω, determine the unknown den-
sity f .

The previous problem will be the basis for the mathematical discussion of the
inverse problem in the context of CT in the following sections. However, there is
also another problem that is interesting in theory, since in practice sometimes one
cannot recover data from a region K. For instance, a prosthesis can ruin the data
from lines crossing it, so one needs to recover the density outside that region,
form the knowledge of the Radon transform for lines not crossing that region.
Inverse Problem 4.5 (Computerized tomography exterior problem). Given a bounded
and convex domain K and the Radon transform (RF )(s, θ) of f for all s ∈ R
and θ ∈ Ω such that the line Lθ,s satisfies Lθ,s ∩K = ∅, determine the unknown
density f .

Moreover, it is clear that in real situations one does not have full data, that is,
one does not have the value of Radon transform for all lines, but only for a finite
set (si, θi) for i = 1, 2, . . . , n. There are several possible configuration for the rays.
One of them is to use parallel rays and then rotate them, as in the animation in
figure 4.2.

Therefore, the numerical methods of interest should consider the following
inverse problem.
Inverse Problem 4.6 (Computerized tomography with limited data). Given the
Radon transform (Rf)(s, θ) of f for a finite set (si, θi) ∈ R × Ω for i = 1, 2, . . . , n,
determine a (stable) approximation to the unknown density f .

In either case, CT imaging is based on the inversion of the Radon transform.
Being the Radon transform based on a integral transformation, we should expect
that the inversion of the Radon transform is ill-posed. This statement is sup-
ported by theorem 2.32 that makes the integral transformation compact and the-
orem 2.27 that ensures that the inversion of compact operators is ill-posed. This
should be taken into account for the inversion schemes in sections 4.3 and 4.6.

4.2 Fourier Transform

In order to prepare the inversion formulas to the solution of the CT inverse prob-
lem 4.4 we will recall the definition and some results on the Fourier transform.
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Figure 4.2: Possible configuration of parallel rays for CT imaging (click on the
image to animate).

Though the definition can be used for higher dimensions, we will focus on the
bi-dimensional space R2.

Definition 4.7 (Fourier Transform).
Let f ∈ L1(Rm).

Then the Fourier transform of f is given by

f̂(ξ) =
1

(
√

2π)m

∫
Rm

f(x)e−iξ.xdx, x = (x1, x2, . . . xm)

The map
F : f → f̂

is called the Fourier transformation.

The Fourier transform has the following properties

Theorem 4.8 (Properties of the Fourier transform).
Let f ∈ L1(Rm) and g ∈ L1(Rn).
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Then,

(Ff(x+ a))(ξ) = eiξ.a(Ff)(ξ), ∀a ∈ Rm (4.4)

(Ff(λx))(ξ) =
1

|λ|m
(Ff)

(
ξ

λ

)
, ∀λ ∈ R, λ 6= 0 (4.5)

(Fm+n(f(x)g(y)))(ξ, η) = (Fmf)(ξ)(Fng)(η) (4.6)

Proof. All these proofs are quite trivial, using proper variable changes in the in-
tegration. For (4.4), one only needs to take into account that for y = x + a one
has

(Ff(x+ a))(ξ) =
1

(
√

2π)m

∫
Rm

f(x+ a)e−iξ.xdx

=
eiξ.a

(
√

2π)m

∫
Rm

f(x+ a)e−iξ.(x+a)dx

=
eiξ.a

(
√

2π)m

∫
Rm

f(y)e−iξ.ydx

= eiξ.a(Ff)(ξ).

Similarly, for (4.5) since y = λx implies dy = |y|mdx, one gets

(Ff(λx))(ξ) =
1

(
√

2π)m

∫
Rm

f(λx)e−iξ.xdx

=
1

(
√

2π)m

∫
Rm

f(λx)e−i
ξ
λ
.(λx)dx

=
1

|λ|m(
√

2π)m

∫
Rm

f(y)e−i
ξ
λ
.ydy

=
1

|λ|m
(Ff)

(
ξ

λ

)
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Finally, for (4.5), being z = (x, y), h(z) = f(x)g(y) and ζ = (ξ, η) one gets

(Fm+n(f(x)g(y)))(ξ, η) =(Fh)(ζ)

=
1

√
2π

m+n

∫
Rm+n

h(z)e−iζ.zdz

=
1

√
2π

m+n

∫
Rm

∫
Rn
f(x)g(y)e−i(ξ.x+η.y)dydx

=

(
1√
2π

m

∫
Rm

f(x)e−iξ.xdx

)(
1√
2π

n

∫
Rn
g(y)e−iη.ydy

)
=(Fmf)(ξ)(Fng)(η)

The Fourier transform is in general not invertible. However, it would be nice
to have a space of functions in which this transform would be invertible. As
we will see in the following results, the Fourier transform is invertible in the
Schwartz space in definition 4.1. To prepare this result, we will show that the
Fourier transform of a derivative of f is related with the Fourier transform of f .

Theorem 4.9.
For f ∈ S(Rm) we have that

F(Djf)(ξ) = (iξ)j(Ff)(ξ)

with j ∈ Nm, ξj = (ξj11 , ξ
j2
2 , . . . , ξ

jm
m , ) and Djf defined as in (2.9).

Proof. In order to use integration by parts and Gauss theorem, we will start be
considering the limit of an integral over a bounded domain, namely by

(Ff)(ξ) =
1

(
√

2π)m
lim
R→∞

∫
|x|≤R

f(x)e−iξ.xdx.

In this way, for the derivative of f in terms of xk, for some k ∈ {1, 2, . . . , n}, by
integration by parts one has

(
√

2π)mF
(
∂f

∂xk

)
(ξ) = lim

R→∞

∫
|x|≤R

∂f

∂xk
(x)e−iξ.xdx

= lim
R→∞

[∫
|x|≤R

∂

∂xk

(
f(x)e−iξ.x

)
dx−

∫
|x|≤R

f(x)
∂

∂xk

(
e−iξ.x

)
dx

]
(4.7)
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By Gauss theorem that states that (under some regularity assumptions)∫
D

gradudx =

∫
∂D

u.νds,

one gets that ∫
|x|≤R

gradudx =

∫
|x|=R

u.
x

R
ds,

and so for the first term on the right hand side of (4.7), one gets

lim
R→∞

∫
|x|≤R

∂

∂xk

(
f(x)e−iξ.x

)
dx = lim

R→∞

∫
|x|=R

f(x)e−iξ.x
x

R
ds = 0

since f is rapidly decaying, since f ∈ S(Rm). For the second term on the right
hand side of (4.7), one gets

lim
R→∞

∫
|x|≤R

f(x)
∂

∂xk

(
e−iξ.x

)
dx = −iξk lim

R→∞

∫
|x|≤R

f(x)e−iξ.xdx

= −iξk
∫
Rm

f(x)e−iξ.xdx

= iξk(
√

2π)m(Ff)(ξ).

Therefore we have shown that

F
(
∂f

∂xk

)
(ξ) = iξk(Ff)(ξ).

The result now follows by repeating the procedure to show that

F

(
∂jkf

∂xjkk

)
(ξ) = (iξk)

jk (Ff)(ξ).

and then extending the procedure to more than one variable as

F
(
∂j1+j2f

∂xj11 ∂x
j2
2

)
(ξ) = (iξ1)j1 (iξ2)j2 (Ff)(ξ).

Another very important aspect is that the Fourier transform is invertible within
the Schwarz space.
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Theorem 4.10 (Inverse Fourier Transformation).
The Fourier Transformation F : S(Rm)→ S(Rm) is a bijective map and the inverse

Fourier transformation is given by

(F−1g)(x) =
1

(
√

2π)m

∫
Rm

g(ξ)eiξ.xdξ, x = (x1, x2, . . . xm) (4.8)

Proof. The proof can be found in any harmonic theory book, though it is quite
technical. We stress that the proof consists in two steps: a) showing that if f ∈
S(Rm) than Ff ∈ S(Rm) and b) showing that the inverse operator of F is given
by (4.8). Step a) must be done very carefully since it implies derivative of an
indefinite integral, that are both defined by limits. To interchange the order of
the limits one needs to take into account if the interchange is legitimate.

Exercise 4.11. Show that

F−1g = F ḡ.

Exercise 4.12. Show that

Dα
ξ (Ff(x))(ξ) = F((−ix)αf(x))(ξ). (4.9)

Another important property is the application of the Fourier transformation
to the convolution.

Theorem 4.13 (Fourier transform of a convolution).
Let f, g ∈ S(Rm).
Then

F(f ∗ g)(ξ) = (
√

2π)m(Ff)(ξ).(Fg)(ξ), (4.10)

where the convolution operator ∗ is defined by

(f ∗ g)(x) =

∫
Rm

f(x− y)g(y)dy.
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Proof. We have that

F(f ∗ g)(ξ) =
1

(
√

2π)m

∫
Rm

e−iξ.x
∫
Rm

f(x− y)g(y)dydx,

=
1

(
√

2π)m

∫
Rm

e−iξ.x
∫
Rm

f(x− y)g(y)dydx,

=
1

(
√

2π)m

∫
Rm

g(y)

∫
Rm

e−iξ.x)f(x− y)dxdy,

=
1

(
√

2π)m

∫
Rm

g(y)e−iξ.y
∫
Rm

e−iξ.(x−y)f(x− y)dxdy,

Now, performing the change of variable x̃ = x− y in the inner integral, one gets

F(f ∗ g)(ξ) =
1

(
√

2π)m

∫
Rm

g(y)e−iξ.y
∫
Rm

e−iξ.(x−y)f(x− y)dxdy,

=
1

(
√

2π)m

∫
Rm

g(y)e−iξ.y
∫
Rm

e−iξ.x̃f(x̃)dx̃dy,

=
1

(
√

2π)m

∫
Rm

g(y)e−iξ.ydy

∫
Rm

e−iξ.x̃f(x̃)dx̃,

= (
√

2π)m(Ff)(ξ).(Fg)(ξ).

Another important property of the Fourier transform is given by Parseval’s
formulas.

Theorem 4.14 (Parseval’s formulas).
For f, g ∈ S(Rm) one has Parseval’s formulas∫

Rm
f̂(ξ)g(ξ)dξ =

∫
Rm

f(ξ)ĝ(ξ)dξ, (4.11)∫
Rm

f̂(ξ)¯̂g(ξ)dξ =

∫
Rm

f(ξ)ḡ(ξ)dξ. (4.12)

Proof. We leave the proof as an exercise.

A direct corollary of the previous result is that the Fourier transform F is an
isomorphism, that is,

‖Ff‖L2 = ‖f‖L2 .

This comes directly from (4.12) with g = f . To finalize this chapter we consider
the Poisson summation formula.
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Theorem 4.15 (Poisson summation formula).
For f ∈ S(Rm) we have the Poisson summation formula∑

j∈Zm
f̂

(
ξ − 2πj

h

)
=

hm

(
√

2π)m

∑
j∈Zm

f(jh)e−ihξ.j. (4.13)

4.3 Inversion Formulas

We are now in a good place to address some inversion formulas for the solution
of the Computerized tomography (CT) inversion problem. In the last section we
were introducing some concepts as the Radon transform and the Fourier trans-
form. We have seen that the Radon transform is clearly related with the solution
of the inverse problem 4.4 of CT, since this problem consists in the regularized
inversion of the Radon transform. However, the use of the Fourier transform to
this end is still to be revealed. To shed some light on this issue, wee will start to
establish the Fourier transform of the Radon transform. the following theorem is
known has the Projection theorem or the Fourier slice theorem.

Theorem 4.16 (Projection theorem).
For f ∈ S(R2) one has

f̂(rθ) =
1√
2π

(R̂f)(θ, r), (4.14)

where one has a 2D Fourier transform on the left-hand side and a 1D Fourier transform
(with respect to the second variable s) on the right-hand side.

Proof. The proof comes directly from the definition of Fourier transform, since
√

2π(R̂f)(θ, r) =

∫ ∞
−∞

(Rf)(θ, s)e−is.rds

=

∫ ∞
−∞

∫ ∞
−∞

f(sθ + θ⊥t)e−is.rdtds.

Now performing the change of variable x = sθ + tθ⊥, since x.θ = s, one has
√

2π(R̂f)(θ, r) =

∫ ∞
−∞

∫ ∞
−∞

f(sθ + θ⊥t)e−irsdtds

=

∫
R2

f(x)e−irθ.xdx

= 2πf̂(rθ)
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as we intended to proof.

We now define the Schwarz space in the domain Ω×R of the Radon transform
as follows.

Definition 4.17.
We define the Schwarz space in the domain Ω× R as

S(Ω× R) := {g ∈ C∞(Ω× R) : g(θ, .) ∈ S(R) uniformly for all θ ∈ Ω} . (4.15)

With this definition, we can state the following result for the Radon transform
of a function the the Schwarz space.

Corollary 4.18. If f ∈ S(R), then Rf ∈ S(Ω× R).

Proof. Follows directly from theorem 4.10 and 4.16, first to show that f̂ ∈ S(R),
than to show that R̂f ∈ S(Ω× R) and finally that Rf ∈ S(Ω× R).

To prepare the first inversion formula, we will first characterize the adjoint
operator of the Radon transform.

Theorem 4.19 (Adjoint operator of the Radon Transform).
The operator R∗ : S(Ω× R)→ S(R2) given by

(R∗g)(x) :=

∫
Ω

g(θ, x.θ)dθ (4.16)

is the L2 adjoint of the Radon transform operator R given by (4.3).

Proof. We have to show that for f ∈ S(R2) and g ∈ S(Ω× R) one has∫
Ω

∫ ∞
−∞

(Rf)(θ, s)g(θ, s)dsdθ =

∫
R2

f(x)R∗g(x)dx.

This can be done, since∫
Ω

∫ ∞
−∞

(Rf)(θ, s)g(θ, s)dsdθ =

∫
Ω

∫ ∞
−∞

∫ ∞
−∞

f(sθ + tθ⊥)g(θ, s)dtdsdθ

=

∫
Ω

∫
R2

f(x)g(θ, x.θ)dxdθ (x = sθ + tθ⊥ ⇒ x.θ = s)

=

∫
R2

f(x)

∫
Ω

g(θ, x.θ)dθdx

=

∫
R2

f(x)(R∗g)(x)dx
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In the next section we will consider some inversion formulas for the CT in-
verse problem 4.4. Some of them will be useful for reconstruction algorithms,
while others will only be useful to prove uniqueness of solution.

4.3.1 Radon’s Inversion Formula

Radon (1917) developed the next inversion formula for Radon transform.

Theorem 4.20 (Radon’s inversion formula).
For f ∈ S(R2) one has Radon’s inversion Formula

f =
1

4π
R∗H

∂

∂s
Rf (4.17)

where the Hilbert transform1 is defined by

(Hg)(s) :=
1

π

∫ ∞
−∞

g(t)

s− t
dt, s ∈ R. (4.18)

Proof. We start by noting that

f(x) =
(
F−1f̂

)
(x)

=
1

2π

∫
R2

eix.ξf̂(ξ)dξ

and making the change of variable ξ = rθ, we get from (4.14) that

f(x) =
1

2π

∫
Ω

∫ ∞
−∞

eirx.θf̂(rθ)rdrdθ

=
1√
2π

1

2π

∫
Ω

∫ ∞
0

eirx.θR̂f(θ, r)rdrdθ

1The Hilbert transform is well-defined in S(R) as a Cauchy singular value∫ ∞
−∞

g(t)

s− t
dt = lim

ε→0

[∫ s−ε

−∞

g(t)

s− t
dt+

∫ ∞
s+ε

g(t)

s− t
dt

]
.
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Now noting that

R̂f(−θ,−r) =
1√
2π

∫ ∞
−∞

eirsRf(−θ, s)ds

=
1√
2π

∫ ∞
−∞

e−irsRf(−θ,−s)ds

=
1√
2π

∫ ∞
−∞

e−irsRf(θ, s)ds (since Rf(θ, s) = Rf(−θ,−s))

= R̂f(θ, r).

we get

f(x) =
1√
2π

1

2π

∫
Ω

∫ ∞
0

eirx.θR̂f(θ, r)rdrdθ

=
1

2

1√
2π

1

2π

∫
Ω

∫ ∞
−∞

eirx.θR̂f(θ, r)|r|drdθ,

Defining now

h(θ, r) =
1√
2π

∫ ∞
−∞

eirsR̂f(θ, r)|r|dr (4.19)

one gets

f(x) =
1

2

1√
2π

1

2π

∫
Ω

∫ ∞
−∞

eirx.θR̂f(θ, r)|r|drdθ,

=
1

2

1

2π

∫
Ω

h(θ, x.θ)dθ,

=
1

4π
(R∗h) (x).

To complete the proof, we need to show that

h(θ, r) = H
∂

∂s
Rf.

To this end, one has

∂

∂s
(Rf)(θ, s) =

∂

∂s

[
F−1R̂f(θ, s)

]
=

1√
2π

∫ ∞
−∞

ireirsR̂f(θ, s)dr
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which can be shown similarly to (4.9). We now not that using the change of
variable t = s− t one can write the Hilbert transform as

(Hg)(s) :=
1

π

∫ ∞
−∞

g(s− t)
t

dt,

while using the change of variable t = s+ t one as

(Hg)(s) := − 1

π

∫ ∞
−∞

g(s+ t)

t
dt,

Summing both of the previous equations, one has

(Hg)(s) :=
1

2π

∫ ∞
−∞

g(s− t)− g(s+ t)

t
dt,

so, since eir(s−t) + eir(s+t) = −2ieirs sin(tr), one has(
H
∂

∂s
(Rf)

)
(θ, s) = H

(
1√
2π

∫ ∞
−∞

ireirsR̂f(θ, s)dr

)
=

1

π
√

2π

∫ ∞
−∞

1

t
r sin(tr)eirs

∫ ∞
−∞

R̂f(θ, s)drdt

=
1

π
√

2π

∫ ∞
−∞

reirsR̂f(θ, s)

∫ ∞
−∞

1

t
sin(tr)dtdr

The result is now proven by noting that (by integration by parts several times)
that

1

π

∫ ∞
−∞

1

t
sin(tr)dt = sgn(r)

and therefore, since |r| = r sgn(r), one gets(
H
∂

∂s
(Rf)

)
(θ, s) =

1

π
√

2π

∫ ∞
−∞

reirsR̂f(θ, s)

∫ ∞
−∞

1

t
sin(tr)dtdr

=
1√
2π

∫ ∞
−∞

r sgn(r)eirsR̂f(θ, s)dr

=
1√
2π

∫ ∞
−∞
|r|eirsR̂f(θ, s)dr

= h(θ, s)

as defined in (4.19).

It is clear that Radon’s inversion formula (4.17) is useless for reconstruction
purposes. Note that the presence of the derivative ∂

∂s
makes the inversion for-

mula highly unstable. However this formula has importance for uniqueness re-
sults, as shown in section 4.4.
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4.3.2 Cormack’s Inversion Formula

Cormack’s inversion formula starts by considering the representation of the solu-
tion as a Fourier series in polar coordinates. We will leave most of the details out
of this text, and will only show some steps in the long way to show Cormack’s
inversion formula. We refer to [Kress, 2005, Natterer, 2001] for details.

In polar coordinates, one represents a point x ∈ R2 as

x = (r cosα, r sinα), r ≥ 0, α ∈ [0, 2π].

Then one represents the density f in Fourier series as

f(x) =
∞∑

m=−∞

fm(r)eimα (4.20)

where

fm(r) =

∫ 2π

0

f(x)e−imαdα.

In the same way, the data g (which is the Radon transform of f ) would be defined
as

g(θ, s) =
∞∑

m=−∞

gm(s)eimα (4.21)

where

gm(s) =
1

2π

∫ 2π

0

g
(

(cosα, sinα), s
)
e−imαdα.

The idea is to express fm in terms of gm and therefore find a way to reconstruct f
from the knowledge of g = Rf . The first question that one needs to ask is
whether the series (4.20) converges.

Theorem 4.21.
Let f ∈ S(R2).
Then the Fourier series (4.20) converges .

Proof. The result follows from the fact that if f ∈ SR2, then f ∈ C∞R2 and there-
fore the Fourier Series converges. In fact, one can prove a little bit more, since by
integration by parts one can gets

fm(r) =
1

2π(im)k

∫ 2π

0

∂k

∂αk
f(r cosα, r sinα)e−imαdα



4. Computerized Tomography 57

and since f ∈ SR2 one gets that∣∣∣∣rn ∂k∂αk f(r cosα, r sinα)

∣∣∣∣ ≤ Cn,k

and therefore
|rnfm(r)| ≤ Cn,k

mk
dr. (4.22)

The following theorem relates the Fourier coefficients fm of the density f (as
in (4.20)) with the Fourier coefficients gm of the data g = Rf (as in (4.21)).

Theorem 4.22.
Let f ∈ S(R2).

Then the Fourier coefficients (4.20) of f are related with the Fourier coefficients (4.21)
of g = Rf by

gm(s) = 2

∫ ∞
s

fm(r)
T|m|

(
s
r

)√
1− s2

r2

, (4.23)

for all m ∈ Z and s > 0, where

Tm(r) = arccos (m cos(r)) . (4.24)

Proof. The result follows (in a non-trivial way) from geometrical arguments and
integration by parts by taking the Radon transform of each coefficient fm of f .
We refer to [Kress, 2005] for the complete proof.

The inversion formula comes now from inverting the integral equation (4.23),
in order to obtain fm in terms of the terms gm and therefore being able to recon-
struct f from the coefficients gm of the data g = Rf .

This can be done (see [Kress, 2005]) by the use of the Mellin transform

(Mf)(s) :=

∫ ∞
0

f(t)ts−1dt, s ∈ C

which is defined for f such that any restriction of f to a closed interval [a, b] is
in L1([a, b]).2

2The function space of functions whose restriction to any closed interval [a, b] is in L1([a, b] is
usually denoted by L1

loc(R.) In this way, the Mellin transform is defined for f ∈ L1
loc([0,∞]).
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The next step is to show (see [Kress, 2005]) from (4.23) and the properties of
the Mellin transform that

(Mgm) (s) = M(rfm)(s)(Mp)(s)

for p = 2
T|m|(t)√

1−t2 . Then one can show that

M(rfm)(s) =
(Mgm) (s)

(Mp)(s)
= (Mgm) (s)(Mq̃)(s)

for some appropriate q̃. From the fact that (under some assumptions, see [Kress, 2005])
the Mellin transform satisfies

(Mgm) (Mq̃) = M (gm ∗ q̃)

where ∗ is the convolution operator, the inversion formula

rfm = gm ∗ q̃

now follows from the injectivity of the Mellin transformation for f ∈ S([0,∞]).
Following the previous procedure, one has Cormack’s inversion formula.

Theorem 4.23 (Cormack’s inversion formula).
Let f ∈ S(R2).

Then we have the Cormack’s inversion formula for the Fourier coefficients

fm(r) = − 1

π

∫ ∞
r

g′m(s)
T|m|

(
s
r

)
√
s2 − r2

ds, r ≥ 0,m ∈ Z (4.25)

Cormack’s inversion formula is nor the best way to numerically reconstruct
the density f directly, since one can show by the Helgason-Ludwig theorem
(See [Kress, 2005, Natterer, 2001]) that gm is rapidly oscillating. There are ways to
stabilize the process, but the main use of this formula is again uniqueness results.

4.4 Uniqueness

In this section we will address some uniqueness results. The first one concerns
the inverse problem for full data 4.4.

Theorem 4.24 (Uniqueness for full data).
Let f1, f2 ∈ S(R2).

If g1 = g2 for g1 := Rf1 and g2 := Rf2, then f1 = f2.
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Proof. This results comes directly from the Radon’s Inversion formula (4.17).

Another important result, is the uniqueness result for the exterior inverse
problem 4.5.

Theorem 4.25 (Uniqueness for the exterior problem).
Let f1, f2 ∈ S(R2) and K ⊂ R2 a convex and bounded set.
If g1 = g2 for g1 := Rf1 and g2 := Rf2 for all lines Lθ,s such that Lθ,s ∩ K = ∅.

Then f1 = f2 in R2 \K.

Proof. If K is a disk of radius r̃, the result comes directly from Cormack’s Inver-
sion formula (4.25) using r ≥ r̃.

Otherwise, since K is bounded and convex, for every x /∈ K there exists a
disk KD,x containing K such that x /∈ KD,x. Therefore, one applies the previous
argument to show that f1 = f2 outside KD,x and therefore f1 = f2 in K.

We will now say some words on uniqueness for the case were we do not have
full data. We will start by the case where instead of considering all angles θ we
only consider a countable (infinite) number of them.

Theorem 4.26 (Uniqueness for countably many θ).
Let f ∈ C∞0 (R2), that is, f ∈ C∞(R2) and has a compact support3.
If Rf(θn, .) = 0 for countably many θ1, θ2, . . . , θn, . . . , then f = 0.

Proof. We start by reminding that if f has compact support than its Fourier trans-
form f̂ is analytic. As Rf(θn, s) = 0 then R̂f(θn, r) = 0. Now from the projection
theorem 4.16

ˆrθn = − 1

4π
R̂f(θn, r) = 0

for countably many θn, n ∈ N. As f̂ is analytic, then f̂ = 0 so f = 0.

The uniqueness for a finite number of angles θ1, θ2, . . . , θn cannot be proven.
However, a question arises of what is the degree of non-uniqueness for the prob-
lem with only a finite set of angles. It can be shown (see [Kress, 2005]) that if f a
compact support in K0 then for any compact set K ⊂ K0there exists f̃ ∈ C∞(R2)

with compact support in K0 such that f̃ = f in K and Rf̃(θj, .) = 0 for j =

1, 2, . . . , n. This shows that the density f + f̃ provides the same data for the CT
problem then f , since

R(f + f̃)(θj, .) = (Rf)(θj, .) + (Rf̃)(θj, .) = (Rf)(θj, .), j = 1, 2, . . . , n.

3If f has support K this means that f = 0 outside K.
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4.5 Shannon’s Theorem

Until now, we were focused on the proof of uniqueness. In fact the inversions
formulas that we studied so far were more related with uniqueness than with
reconstruction algorithms. In this section we will present a theorem that plants
the seed to obtain reconstruction algorithms for band limited functions. We will
start by defining this concept.

Definition 4.27 (Band-limited function).
A function f ∈ L1(Rm) is called band limited if there exists b such that

f̂(ξ) = 0,∀|ξ| > b.

The smaller b with this property is called the band width of f .

Remark 4.28. If f is band limited then by the inverse Fourier transform it is clear
that f does not have larger frequencies than b and therefore it does not have
smaller frequencies than 2π

b
. In this sense, f does not have smaller details than 2π

b

and therefore the smaller the band width b the larger the details of f , since small
details require high frequencies.

Shannon Sampling theorem determines the degree of detail that a band lim-
ited function needs, or in other words, the spacement of a grid of points to
uniquely determine a band limited function.

Theorem 4.29 (Shannon’s Sampling Theorem).
Let f, g ∈ L2(Rm) be band limited functions with band width b.
Let h < π

b
.

Then f is uniquely determined by its values at equidistant grid points jh with j ∈
Zm and given by the sequence

f(x) =
∑
j∈Zm

f(jh)sinc
(π
h

(x− jh)
)
, (4.26)

which converges in L2(Rm) and where

sinc(x) =

{
sin(x)
x
, x 6= 0

1, x = 0
, x ∈ R,

and for x ∈ Rm then sinc(x) = sinc(x1)× sinc(x2)× · · · × sinc(xm)).

Moreover, the Fourier transform of f is determined by

f̂(ξ) =
hm

(
√

2π)m

∑
j∈Zm

f(jh)e−iξ.jh, (4.27)
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which converges in L2
([
−π
h
, π
h

]m)
.

Finally the L2-inner product of two band limited functions is determined by∫
Rm

f(x)ḡ(x)dx = hm
∑
j∈Zm

f(jh)ḡ(jh). (4.28)

Remark 4.30. Shannon’s sampling theorem has several implications. The first one
is that the Fourier transform and the L2 inner product of band limited functions
can be determined exactly by the trapezoidal rule with appropriate space. More-
over, the so called Nyquist condition h < π

b
requires step size h < 1

2
2π
b

, being 2π
b

the size of the smaller structure in f .

To what follows, let us define the operator

(Shf)(x) :=
∑
j∈Zm

f(jh)sinc
(π
h

(x− jh)
)
. (4.29)

It is clear from (4.26) that for band limited functions one has Shf = f.

The importance of Shannon’s Sampling theorem to our context of recovering
densities f ∈ S(R2) from the data g = Rf starts to be unveiled in the next result,
which establishes an upper bound for the error of approximating f by Shf for a
general f ∈ S(Rm).

Theorem 4.31.
Let f ∈ S(Rm).
Then

‖Shf − f‖∞ ≤
2

(
√

2π)m

∫
|ξ≥π

h
|
|f̂(ξ)|dξ. (4.30)

Proof. See [Kress, 2005].

Now, from the properties of the Fourier transform (4.10), it is clear that the
convolution of a limited band filter with any other function in S(R2) is a band
limited function. In this way, band limited functions are usually called low-pass
filters, since the convolution with this functions eliminates the high frequencies.
This will be the seed to the first reconstruction algorithm, namely the filtered
back projection, where instead of aiming to reconstruct the density f we will aim
at reconstructing a low-pass filtered version Wb ∗ f , where Wb is an appropriate
low-pass filter. We then know that the error with this approximation is bounded
by (4.30), that is low, if f has few high frequencies.
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Exercise 4.32. Show that sinc is a pass filter, by computing the integral
√

2π

2

∫ 1

−1

eiξ.xdξ.

Answer.
Since for the function

χ(x) =

{
1
2
, x ∈ [−1, 1]

0, x /∈ [−1, 1]

one has

(F−1χ)(x) =

√
2π

2

∫ 1

−1

eiξxdξ

=

[
eiξx

2ix

]1

−1

=
eix − e−ix

2ix

=
sin(x)

x
= sinc(x)

one has that ŝinc(ξ) = χ(ξ) and therefore sinc is band limited since ŝinc(ξ) = 0

for |ξ| > 1.

4.6 Reconstructions algorithms

In this section we will consider some reconstruction methods. We refer for in-
stance to [Kress, 2005, Natterer, 2001] for a theoretical background on the several
possibilities. The review paper [Louis, 2006] presents several practical methods
and some numerical reconstructions.

4.6.1 Filtered Back projection (FBP)

From the error estimate (4.30) and the following consideration, the main idea of
the filtered back projection is to recover a filtered version Wb ∗ f of f , being Wb a
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low pass-filter. To this end, we will take the Radon inversion formula (4.17) and
try to write it as

f = R∗︸︷︷︸
Back projection

1

4π
H
∂

∂s︸ ︷︷ ︸
Approx. by convolution

Rf︸︷︷︸
data

or in other words, try to get a relation of the form

Wb ∗ f = R∗(ωb ∗Rf). (4.31)

This is possible, due to the following result.

Theorem 4.33.
Let f1, f2 ∈ S(R2). Then

R(f1 ∗ f2) = (Rf1) ∗ (Rf2). (4.32)

Let f ∈ S(R2) and g ∈ S(Ω× R). Then

(R∗g) ∗ f) = R∗(g ∗Rf). (4.33)

Proof. The relation (4.32) comes directly from the alternate use of the projection
theorem 4.16 and the Fourier transform of a convolution (4.10), namely by

F (R(f1 ∗ f2)) (θ, s) =
√

2πF (f1 ∗ f2) (sθ)

= (
√

2π)3 (Ff1(sθ).Ff2(sθ))

=
√

2π (FRf1(θ, s).FRf2(θ, s))

= F (Rf1(θ, s) ∗Rf2(θ, s)) .

Now the injectivity of the Fourier transform gives the result (4.32). To prove (4.33),
by the definition of convolution and of R∗ one has

(R∗g) ∗ f)(x) =

∫
R2

(R∗g)(x− y)f(y)dy

=

∫
R2

∫
Ω

g(θ, (x− y).θ)f(y)dθdy

=

∫
Ω

∫
R2

g(θ, (x− y).θ)f(y)dydθ
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Now by making the change of variable y = sθ+ tθ⊥, that implies y.θ = s, one has

(R∗g) ∗ f)(x) =

∫
Ω

∫
R2

g(θ, (x− y).θ)f(y)dydθ

=

∫
Ω

∫ ∞
−∞

∫ ∞
−∞

g(θ, x.θ − s)f(sθ + tθ⊥)dtdsdθ

=

∫
Ω

∫ ∞
−∞

g(θ, x.θ − s)
∫ ∞
−∞

f(sθ + tθ⊥)dt︸ ︷︷ ︸
=Rf(θ,s)

dsdθ

=

∫
Ω

∫ ∞
−∞

g(θ, x.θ − s)Rf(θ, s)dsdθ

=

∫
Ω

(g ∗Rf) (θ, x.θ)dθ

= R∗(g ∗Rf)(x).

as we wanted to prove.

The identity (4.33) allows our goal of find an identity of the form (4.31), so in
this way, (4.33) can be seen as an inversion formula for a filtered solution. In fact,
replacing g by ωb in (4.33), one gets

(R∗wb)︸ ︷︷ ︸
=Wb

∗f = R∗(ωb ∗ Rf︸︷︷︸
g

), (4.34)

so our goal now is to find ωb such that Wb = (R∗wb) is the optimal low-pass filter.
Therefore, in order to guarantee that Wb is band limited, we need to study the
behaviour of the Fourier Transform of R∗g, as in the following theorem.

Theorem 4.34.
Let g ∈ S(Ω× R). Then

R̂∗g(ξ) =

√
2π

|ξ|

[
ĝ

(
xi

|ξ|
, |ξ|
)

+ ĝ

(
− xi
|ξ|
,−|ξ|

)]
, ξ 6= 0. (4.35)

Proof. For any w ∈ C∞(R2) one has, using Parseval’s formula (4.11) and the def-
inition of adjoint operator R∗, we have∫

R2

R̂∗g(ξ)w(ξ)dξ =

∫
R2

R∗g(ξ)ŵ(ξ)dξ

= (R∗g, ŵ)L2(R2)

= (g,Rŵ)L2(Ω×R)

=

∫
Ω

∫
R
g(θ, s)(Rŵ)(θ, s)dsdθ.
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Using Parseval’s formula (4.11) in the second variable one has∫
R2

R̂∗g(ξ)w(ξ)dξ =

∫
Ω

∫
R
g(θ, s)(Rŵ)(θ, s)dsdθ

=

∫
Ω

∫
R
ĝ(θ, σ)(F−1Rŵ)(θ, σ)dσdθ.

Now, by the projection theorem (4.14)

F−1Rŵ(θ, σ) =
√

2πF−1ŵ(σθ)

=
√

2πw(σθ)

so∫
R2

R̂∗g(ξ)w(ξ)dξ =

∫
Ω

∫
R
ĝ(θ, σ)

(
F−1Rŵ

)
(θ, σ)dσdθ

=
√

2π

∫
Ω

∫
R
ĝ(θ, σ)w(σθ)dσdθ

=
√

2π

∫
Ω

(∫ 0

−∞
ĝ(θ, σ)w(σθ)dσ +

∫ +∞

0

ĝ(θ, σ)w(σθ)dσ

)
dθ

=
√

2π

∫
Ω

(∫ +∞

0

ĝ(θ,−σ)w(−σθ)dσ +

∫ +∞

0

ĝ(θ, σ)w(σθ)dσ

)
dθ

=
√

2π

∫
Ω

∫ +∞

0

(ĝ(θ,−σ)w(−σθ) + ĝ(θ, σ)w(σθ)) dσdθ

=
√

2π

∫
Ω

∫ +∞

0

1

σ
(ĝ(θ,−σ)w(−σθ) + ĝ(θ, σ)w(σθ))σdσdθ.

Finally, with the change of variable ξ = σθ which implies that θ = ξ
|ξ| , σ = |ξ|

and dξ = σdσdθ one has∫
R2

R̂∗g(ξ)w(ξ)dξ =

∫
R2

√
2π

|ξ|

[
ĝ

(
xi

|ξ|
, |ξ|
)

+ ĝ

(
− xi
|ξ|
,−|ξ|

)]
w(ξ)dξ.

for any w ∈ C∞(R2), which concludes the proof.

The previous result will now help to construct ωb since we want Wb = R∗ωb
to satisfy

Ŵb(ξ) =

{
1

2π
, |ξ| ≤ b

0, |ξ| > b
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but so that ωb is even and independent of direction, that is ω̂b = ω̂b(σ) indepen-
dent of θ. From (4.35), one now gets

ŵb(σ) =

{
|σ|

2
√

2π
, |ξ| ≤ b

0, |ξ| > b
(4.36)

From the inversion Fourier transform, one now gets

ωb(s) =
1√
2π

∫ b

−b
ŵb(σ)eisσdσ

=
1

8π2

∫ b

−b
|σ|eisσdσ

=
1

4π2

∫ b

0

σ cos(sσ)dσ

which after integration is given by

ωb(s) =
1

4π2

{
1
s2

(cos(bs)− 1) + b
2

sin(bs), s 6= 0,
b2

2
, s = 0.

With this choice one gets a reconstruction method by (4.31). Other possibilities
for ωb can be found in [Natterer, 2001].

Remark 4.35. The application of (4.31) is not computationally efficient. One needs
to take into account that one should have a rectangular grid in order to be able
to use Fast Fourier transform in the discretization of the convolution. Details can
be seen in [Natterer, 2001].

4.6.2 Fourier method

The Fourier method is based in the direct application of the Projection theo-
rem 4.16. In a brief way, the idea is to follow the next steps:

• FM1 - Given the data g(θ, s) = (Rf)(θ, s) determine the Fourier transform
of f by direct application of (4.14) by

f̂(sθ) =
1√
2π
ĝ(s, θ). (4.37)

• FM2 - Since the previous step determines the Fourier transform f̂ in polar
coordinates, one needs at this intermediate step determine f̂ in a rectangu-
lar grid to obtain f in the following step.
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• FM3 - Obtain f by inverse Fourier transform of f̂ obtained in the previous
step by

f(x) =
1

2π

∫
R2

eiξ.xf̂(ξ)dξ. (4.38)

The key step in this reconstruction method is step FM2. In fact, this is the
step that usually turns the reconstructions of the Fourier method to be bad. Let
us consider an example.

Example 4.36. Let us assume the setting of the parallel scanner in figure 4.2. Then
our data is given by

g(θj, s`), j = 1, . . . , p, ` = −q, . . . , q,

with s` = `h, being h the (uniform) spacing between two following values sell
and sell+1. Let us also assume that g(θ, .) as support in [−1, 1]. Then, one knows
that hatg is band-limited with band width 1, so by Shannon’s theorem 4.29 it suf-
fices to sample ĝ in a grid of points of spacement π, since the Nyquist condition
is

h ≤ π

b
= π.

In this way, considering the points (θj, rπ), j = 1, 2, . . . n, r = −q, . . . , q as a grid
for ĝ, one has

ĝ(θj, rπ) =
1√
2π

∫ 1

−1

e−irπsg(θ, s)ds,

and applying the trapezoidal rule in the known points s` with spacement h, one
gets

ĝ(θj, rπ) ≈ h√
2π

q∑
`=−q

e−irπ`hg(θ, s`)︸ ︷︷ ︸
:=g̃j,r

,

where the values g(θ, s`) are known, since they are our data. Note that the error
given by the previous approximation can be obtained by Poisson summation
formula (4.13), since, as ĝ is assumed to be band-limited, one has for ξ = rπ

and m = 1 that

∞∑
j=−∞

ĝ

(
θj, rπ −

2πj

h

)
=

h

(
√

2π)

q∑
j=−q

g(θj, jh)e−ihrjπ︸ ︷︷ ︸
=g̃j,r

,
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which can be rewritten as

ĝ(θj, rπ) = g̃j,r −
∞∑

j=−∞
j 6=0

ĝ

(
θj, rπ −

2πj

h

)
︸ ︷︷ ︸

error

.

Therefore, if g is essentially band limited, that the error is small. This concludes
step FM1.

For step FM2, one aims at approximating the value of ĝ(ξk) for ξk = kh in
a rectangular grid with spacing h and k ∈ Z, using the values g̃jk,rk in polar
coordinates from step FM1. One can consider for instance a piecewise constant
approximation by the nearest neighbour, that is,

ĝ(ξk) ≈ g̃jk,rk

such that rkθjk is the closest value to ξk.
Having in mind the projection theorem in step FM1, one considers

f̂(ξk) =
1√
2π
ĝ(ξk) ≈

1√
2π
g̃jk,rk , (4.39)

finalizing step FM3.
Then, in step FM3, having in mind that ĝ(θ, .) is band-limited (and so is f̂ by

the projection theorem), it suffices to use the Nyquist condition h = π and from
Shannon’s sampling theorem (4.27) (applied to f̂ with m = 2) one has

f(x) =
π2

2π

∑
k∈Zm

f̂(kπ)eiπx.k,

that is, the formula
f(x) =

π

2

∑
k∈Z2

f̂(ξk)e
−iπx.k

is exact, and therefore, the error of

f(x) =
π

2

∑
|k|≤q

f̂(ξk)e
−iπx.k

is almost null if f is essentially band limited.

It is clear from the previous example that the errors of steps FM1 and FM3 are
small if f is essentially band-limited. Therefore, the interpolation step FM2 is the
one responsible for the bad quality of the reconstructions of the Fourier method.
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4.6.3 Algebraic Reconstruction Technique (ART)

The Algebraic Reconstruction Technique (ART) is a reconstruction method that
cope very easily with different setting of CT, in what concerns the lines in which
the intensity attenuation is measured. It is based in Kaczmarz’s method, that we
now introduce. Kaczmarz’s method is also know as the method of successive
orthogonal projections and was used in the first commercial X-ray scanner in
1972.

The Kaczmarz’s method deals with the following problem.
Let X and Y1, Y2, . . . , Yp be Hilbert spaces and let Y = Y1 × Y2 × · · · × Yp. One

wants to find ϕ ∈ X such that

Ajϕ = fj, j = 1, 2, . . . , p,

for some given surjective operators Aj : X → Yj and f = (f1, f2, . . . , fp) ∈ Y .

Example 4.37. If X = Rp and Y1 = Y2 = · · · = Yp = R, and operators of the form

Ajϕ =

p∑
k=1

ajkϕk

this corresponds to find ϕ ∈ Rp that belongs to all hyperplanes

Ajϕ = fj.

It is clear that this problem might not always have a solution, so it is im-
portant also to characterize what happens with the application of Kaczmarz’s
method in that case. For the time being, we will define the method.

Definition 4.38 (Kaczmarz’s method).
X and Y1, Y2, . . . , Yp be Hilbert spaces and let Aj : X → Yj be surjective

operators. Let Qj be the orthogonal projection into the affine spaces

Uj = {ϕ ∈ X : Ajϕ = fj}ϕ ∈ X : Ajϕ = fjright}

for some given fj ∈ Yj, j = 1, 2, . . . , p. Let also

Qj,ω := (1− ω)I + ωQj

and
Qω = Qp,ωQp−1,ω . . . Q1,ω.

Then the iteration scheme
ϕn+1 = Qωϕn (4.40)

is called the Kaczmarz’s method with relaxation ω.
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Remark 4.39 (Relaxation). The use of a relaxation term ω is to try to speed up the
convergence of the method.

Theorem 4.40 (Computation of Kaczmarz’s method).
One iteration of the Kaczmarz’s method (4.40) has the form

ϕ(0) = ϕn,

ϕ(j) = ϕ(j−1) + ωA∗j
[
AjA

∗
j

]−1 [
fj − Ajϕ(j−1)

]
, j = 1, 2, . . . , p,

ϕn+1 = ϕ(p).

(4.41)

Proof. See [Kress, 2005].

The ART method comes from applying the Kaczmarz’s method in a very spe-
cific context of CT. One starts by considering the density f with compact sup-
port within a rectangular domain, that one discretizes in M pixels pk, k ∈ K

where K ⊂ Z is a set of pairs of indexes and M is the number of pairs in K, that
is, M = #K. Then, approximating f as piecewise constant, that is, the density f
restricted to the pixel pk is constant

f|pk(x) = fk, k ∈ K.

Therefore the Radon transform of f can be computed exactly as

(Rf)(θ, s) =

∫
Lθ,s

f(x)dx =
∑
k∈K

a(θ,s),kfk

where a(θ,s),k = |Lθ,s ∩ pk| is the length of the interception of the line Lθ,s with the
pixel pk. Therefore, if the available data is given by gj = g(θj, sj), j = 1, 2, . . . , N ,
that is, the Radon transform of f over the line Lj defined by (θj, sj), one can
consider the operators Aj : RM → R defined by

Ajf =
∑
k∈K

aj,kfk (4.42)

where aj,k = |Lj ∩ pk| and f = (f1, f2, . . . , fM) ∈ RM corresponds to the unknown
value of the density in each pixel. Therefore, one wants to solve

Ajf = gj, j = 1, 2, . . . , N, (4.43)

and the ART comes from applying the Kaczmarz’s method to the previous op-
erators. we note that in this case, the adjoint operator A∗j : R → RM is defined
by

A∗jα = αaj,., α ∈ R, (4.44)
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where aj,. = (aj,1, aj,2, . . . , aj,M) since In this way,

AjA
∗
jα = Aj(αaj,.) = α‖aj,.‖2

2.

Therefore, applying Kaczmarz’s method (4.41) to the operator (4.42) and equa-
tion (4.43), one gets the following method.

Theorem 4.41 (Algebraic Reconstruction Technique).
Given the CT data gj = g(θj, sj), j = 1, 2, . . . , N , that is, the Radon transform of f

over the line Lj defined by (θj, sj), the Algebraic Reconstruction Technique corre-
sponds to iteratively compute

f (0) = Fn,

f (j) = f (j−1) + ω
‖aj,.‖22

[
gj − Ajf (j−1)

]
aj,., j = 1, 2, . . . , N,

Fn+1 = f (N).

(4.45)

If the problem is solvable, the iterations Fn converge to the solution of minimal norm,
if ω ∈ [0, 2].

If the problem is unsolvable, the method converges to fω that, as ω → 0, converges to
the solution of the minimization of the cost function

N∑
j=1

1

‖aj,.‖2
2

∣∣∣∣∣
(

M∑
k=1

Fkaj,k

)
− gj

∣∣∣∣∣
2

.

Proof. See [Kress, 2005].





Chapter 5

Acoustic Scattering Theory

In this section we will introduce a simple model for another medical imaging
modality, namely ultrasound imaging. This modality is based on the emis-
sion of sound waves and the measurement of the echoes of the reflected waves
on the different organs inside the body. In this way in order to introduce this
topic, we will consider sound waves with fixed frequency ω, which leads to the
Helmholtz equation described in a few lines. Though we will focus on mathe-
matical models for wave propagation more than on the reconstruction method
for ultrasound imaging, it is important to mention that ultrasound uses more
than one frequency for image acquisition. The combination of more than one fre-
quency allows to distinguish the depth were each measured echo is coming from,
being this principle for ultrasound image acquisition [Ammari, 2011]. In this sec-
tion we will mostly focus on the propagation and inverse problems relates with
acoustic waves with single frequency, as a simple model for wave propagation.

We will now go back to some of the concepts already discussed in section 1.1,
in order to recall the context of inverse scattering problems.

5.1 Scattering theory revisited

Scattering theory has been a matter of interest for scientists over the last century.
There is a broad band of applications, such as radar and sonar and, to our special
interest, medical imaging. Roughly speaking, scattering theory studies the effect
that an obstacle or some inhomogeneity has on an incident wave or particle. Con-
sidering the total field u to be the sum of the incident field ui and the scattered
field us, then the direct problem consists of determining us from the knowledge
of the medium and the propagation of the field, or stated in mathematical terms
from the knowledge of the obstacle or inhomogeneity, including the boundary
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condition satisfied at the boundary of the obstacle, and the differential equation
that rules the propagation of the field. The inverse problem is however a much
more challenging and interesting problem: Given information on the scattered
field us one wants to find some unknown properties of the obstacle, such as its lo-
cation and shape, the boundary condition or some refractive index, for instance.
We refer to the monographs Lax and Philips [Lax and Philips, 1967] and Colton
and Kress [Colton and Kress, 1983, Colton and Kress, 2013] for further reading
on the basic theory of some of these problems.

Our main purpose in this chapter is to focus on the acoustic time-harmonic
obstacle scattering problem within an homogeneous background. This is not a
good model for ultrasound imaging by two main reasons: a) usually the back-
ground is inhomogeneous, since there are several different organs, tissues and
bones with different densities; b) we will assume that the obstacle is impenetra-
ble, with is also not the case in many human organs. However we will start by
this simpler problem, and say some words on how to extend the problem for
inhomogeneous mediums in section 5.7.

In this way we will motivate the Helmholtz equation as the model to the
inverse obstacle scattering problem in the next section. Then in the following
sections we will present classical theoretical results for the direct and inverse
obstacle scattering problems, including representation formulas and asymptotic
behaviours for the scattered field us and uniqueness and existence results for the
referred problems.

5.2 The Helmholtz Equation

We start by giving a motivation to the Helmholtz equation

∆u+ k2u = 0

for k > 0 as being a model to the space dependence of the limit state of a time har-
monic acoustic wave with a point source excitement. We refer to [Grinberg, 2004]
or the classical work of Lax and Philips [Lax and Philips, 1967] for details.

Consider the wave equation with a point source at y. This means that the
system is at rest and at t = 0 the harmonic excitement is started at the point y in
free space. In mathematical terms this can be formulated in terms of an acoustic
waveU i(x, t; y), depending on the space variable x ∈ R3 and the time variable t ≥
0, satisfying the wave equation

1

c2

∂2U(x, t)

∂t2
−∆xU(x, t) = e−iωtδ(x− y), x ∈ R3, t ≥ 0 (5.1)
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with initial conditions
U(x, 0) =

∂U(x, 0)

∂t
= 0,

where c is the speed of sound and ω is the frequency. We are interested in study-
ing the behaviour of the solution as t → ∞. Then one can show the asymptotic
behaviour

U i(x, t) ≈ e−iωtΦ(x− y), t→∞

where Φ is the fundamental solution to the Helmholtz equation in R3 given by

Φ(x) =
eik|x|

4π|x|
, x 6= 0 (5.2)

where |.| denotes the usual Euclidean norm and k = ω/c is the wave number.
Let us now consider a bounded and connected obstacle D ⊂ R3 and U i (the

solution in free space as) the incident wave. In the context of impenetrable ob-
stacle We then have an extra condition to be satisfied at the interface between the
obstacle and the exterior medium. Therefore we will consider either a Dirichlet,
Neumann or Robin boundary condition at the boundary Γ := ∂D. In any case,
ifD has no energy traps we expect the obstacle to give rise to a scattered wave U s

and therefore the asymptotic behaviour of the solution is given by

U(x, t) := U i(x, t) + U s(x, t) ≈ e−iωt (Φ(x− y) + us(x)) , t→∞, (5.3)

and the scattered field us behaves as an outgoing spherical wave, that is, it satis-
fies the Sommerfeld radiation condition (see [Lax and Philips, 1967])

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0. (5.4)

The physical meaning of this condition is that there are no energy sources at
infinity (see the classical work of Sommerfeld [Sommerfeld, 1967]). As the solu-
tion U satisfies the wave equation (5.1) in Rm\D we get that

∆us + k2us = 0, x ∈ Rm\D,

that is, the solution to the Helmholtz equation can be interpreted as the spatial
dependence of a time harmonic acoustic wave as t→∞. Mathematically, the ra-
diation condition will ensure uniqueness of solution to the Helmholtz equation.

We also note that if the point source y goes to infinity in the direction−d, then
from the asymptotic behaviour of the fundamental solutions we get

lim
r→∞

(
4πre−ikrΦ(x+ rd)

)
= eikx.d (5.5)
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so in this case it makes sense to approximate the point source by an incident
plane field ui(x) = eikx.d up to some multiplicative constant depending on the
distance r between the evaluation point x to the source point y. We also note that
defining the total field u = ui + us as the sum of the incident and scattered fields,
the boundary conditions on Γ carry over from the total wave U to the total field u.
This means that if for instance we consider a sound-soft obstacle D, that is, the
pressure of the total wave vanishes at the boundary Γ of D, then the boundary
condition imposed is

U(x, t) = 0, x ∈ Γ, t ≥ 0,

which implies the Dirichlet boundary condition for u given by

u(x) = 0, x ∈ Γ

since from (5.3)
U(x, t) ≈ u(x)e−iωt, t→∞

where again u = ui + us. In the same way, for sound-hard obstacles, the nor-
mal velocity vanishes on the boundary Γ and so we get the Neumann boundary
condition for u

∂u(x)

∂ν
= 0, x ∈ Γ

where ν is the exterior unit normal to D. Since there are no perfect sound-soft
or sound-hard obstacles in reality, a more realistic situation is the one where the
pressure and the normal velocity are proportional at the boundary, that is, an
impedance boundary condition

∂u(x)

∂ν
+ iλ(x)u(x) = 0, x ∈ Γ,

with λ ≥ 0. All these three cases will be addressed during this work.

5.3 The Direct Acoustic Scattering Problem

The main topic of this chapter is to discuss methods to numerically solve the
inverse acoustic scattering problem. Therefore, a solid knowledge on the direct
problem is needed. In this section we present the basic results on the solutions to
the Helmholtz equation and to the direct problem, that will be of crucial impor-
tance later on when studying the inverse problem.

We are interested in time harmonic acoustic obstacle scattering. Therefore, as
motivated in the previous section, we want to find a solution to the following
problem:
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Direct Problem 5.1 (Obstacle Scattering). Given an open obstacle D of class C2

with connected boundary Γ and an incident field ui we want to find the scattered
field us ∈ C2(Rm\D) ∩ C(Rm\D), for m = 2, 3 that satisfies

∆us + k2us = 0, x ∈ Rm\D, (5.6)
Bu = 0, x ∈ Γ := ∂D, (5.7)

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0, (5.8)

where the total field u is given by the sum of the incident field ui and the scattered
field us, that is, u = ui + us.

A solution satisfying the Sommerfeld radiation condition (5.8) is called a ra-
diating solution. Again we stress the notation Γ for the boundary of D, that will
be carried out throughout this work. The differential operator B represents one
of the already referred boundary conditions, that is,

Bu = u |Γ (Dirichlet); (5.9)

Bu =
(
∂u
∂ν

)
|Γ (Neumann); (5.10)

Bu =
(
∂u
∂ν

+ iλu
)
|Γ (Robin) (5.11)

where λ ≥ 0 is a continuous function defined on Γ and ν is the exterior unit
normal to D. All these boundary conditions are to be satisfied in the sense of
uniform convergence on Γ. We note that the Neumann case is a particular case
of the Robin case for λ = 0 and that the Dirichlet case can be seen as the limit of
the Robin case as λ→∞.

Most results presented in this section on the properties of the solutions to
the direct problem have as primary tools the following first and second Green’s
theorems.

Theorem 5.2 (Green’s Theorem). Let D be a domain of class C1. Then for u ∈ C1(D)

and v ∈ C2(D) we have the first Green’s theorem∫
D

(u∆v + gradu · grad v) dx =

∫
∂D

u
∂v

∂ν
ds.

Moreover if u, v ∈ C2(D) we have the second Green’s theorem∫
D

(u∆v − v∆u) dx =

∫
∂D

(
u
∂v

∂ν
− v ∂u

∂ν

)
ds.
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Proof. The first theorem is proved by applying the divergence theorem to the
vector field (u grad v) ∈ C1(D). The second is obtained by interchanging the
roles of u and v in the first and subtracting both equations.

Based on these theorems, a classical result for representing the solution can
be achieved. For its formulation we will need the fundamental solution to the
Helmholtz equation in Rm given by

Φ(x) =


i
4
H

(1)
0 (k|x|), m = 2

eik|x|

4π|x| , m = 3

where H(1)
0 is the Hankel function of first kind and order zero given by

H
(1)
0 (t) = J0(t) + iY0(t), t ∈ R,

where the Bessel function of order zero J0 is analytic for all t ∈ R and the Neu-
mann function of order zero has a logarithmic singularity at t = 0 (e.g [Colton and Kress, 2013,
Chap. 3.4.] for details). Therefore both the fundamental solutions have singular-
ities at zero, that will need to be taken care of for numerical purposes. We will
define

Φ(x, y) := Φ(|x− y|)

to simplify the notation.
We are now in position to present the classical Green’s representation formula

for exterior radiating solutions to the Helmholtz equation.

Theorem 5.3 (Green’s Representation Formula). Assume the bounded set D ⊂ Rm to
be the open complement of an unbounded domain of class C2.

Let us ∈ C2(Rm\D) ∩ C(Rm\D) be a radiating solution to the Helmholtz equa-
tion (5.6) which possesses a normal derivative on the boundary in the sense that the
limit

∂us

∂ν
(x) = lim

h→0+
ν(x) · gradus(x+ hν(x)), x ∈ Γ,

exists uniformly on Γ. Then we have Green’s representation formula

us(x) =

∫
Γ

(
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)

)
ds(y), x ∈ Rm\D. (5.12)

Proof. We will just state a sketch of the proof and refer for details to [Colton and Kress, 2013,
Sec. 3.4.] for the two-dimensional case m = 2 and [Colton and Kress, 2013, Thm.
2.4.] for the three-dimensional case m = 3.
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Denoting by B(x, r) the ball with center in x and radius r, let us then define
the set G∗ = B(0, R)\(D ∪B(x, r)) with x ∈ Rm\D and with R sufficiently large
and r sufficiently small such that D ⊂ B(0, R), B(x, r) ⊂ B(0, R) and B(x, r) ∩
D = ∅. As us and Φ satisfy the Helmholtz equation in G∗ we have that∫

G∗
(us(y)∆yΦ(x, y)− Φ(x, y)∆us(y)) dy = 0.

By the definition of the fundamental solution, we have

lim
r→0

∫
∂B(x,r)

(
us(y)

∂Φ(x, y)

∂ν(y)
− Φ(x, y)

∂us

∂ν(y)
(y)

)
ds(y) = us(x),

where ν is the exterior unit normal to G∗ and therefore the interior unit normal
to B(x, r). By the radiation condition one can also prove that

lim
R→∞

∫
∂B(0,R)

(
us(y)

∂Φ(x, y)

∂ν(y)
− Φ(x, y)

∂us

∂ν(y)
(y)

)
ds(y) = 0.

The proof is now complete by applying Green’s theorem to u = us and v = Φ(x, .)

on G∗ and let r → 0 and R→∞.

From the previous representation one can conclude that if u is a C2–solution
to the Helmholtz equation in Rm\D then u is analytic in Rm\D (see [Colton and Kress, 2013,
thm.2.2]).

Another important theorem for what follows is the following.

Theorem 5.4 (Holmgren’s Theorem). Let D be a bounded domain of class C2 and u ∈
C2(D) ∩ C1(D) be a solution of the Helmholtz equation in D such that

u =
∂u

∂ν
= 0 on Γ

for some open set Γ ⊂ ∂D. Then u = 0 in D.

Proof. Since u = ∂u
∂ν

= 0 on Γ, we can consider Green’s representation formula as

u(x) =

∫
∂D\Γ

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)

)
ds(y), x ∈ Rm\D.

Now, Green’s second theorem applied to u and the fundamental solution Φ tells
us that

u = 0 on Rm\D.
Now one consider an open bounded subset A of Rm\D such that ∂A ∩ Γ 6= ∅.
Now u = 0 in D by analytic continuation, since u solves the Helmholtz equation
in A ∪ Γ ∪D and vanishes in A.
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We now introduce the notation Ωm for the unit spherical surface in Rm, that
is,

Ωm = {x ∈ Rm : |x| = 1}
where as before |.| denotes the usual Euclidean norm.

From the previous theorem one can conclude the following asymptotic be-
haviour of the solution.

Theorem 5.5 (Far-field pattern). Every radiating solution us to the Helmholtz equation
in Rm\D has an asymptotic behaviour of an outgoing spherical wave

us(x) =
eik|x|

|x|m−1
2

(
u∞(x̂) +O

(
1

|x|

))
, |x| → ∞ (5.13)

uniformly in all directions x̂ = x/|x| ∈ Ωm where the function u∞ is called the far-field
pattern of u. Under the assumptions of theorem 5.3 we have

u∞(x̂) = %m

∫
Γ

(
us(y)

∂e−ikx̂·y

∂ν(y)
− ∂us

∂ν
(y)e−ikx̂·y

)
ds(y) (5.14)

where

%m =

{
eiπ/4√

8πk
, m = 2

1
4π
, m = 3.

(5.15)

Proof. Using the Taylor expansion of the square root function around 1, we get
that

|x− y| =
√
|x|2 − 2x · y + |y|2

= |x|

√
1− 2

x̂ · y
|x|

+
|y|2
|x|2

= |x| − x̂ · y +O

(
1

|x|

)
as |x| → ∞ uniformly for y ∈ Γ. Therefore we derive

eik|x−y|

|x− y|
=

eik|x|

|x|

(
e−ikx̂·y +O

(
1

|x|

))
∂

∂ν(y)

eik|x−y|

|x− y|
=

eik|x|

|x|

(
∂e−ikx̂·y

∂ν(y)
+O

(
1

|x|

))
as |x| → ∞ uniformly for y ∈ Γ. Replacing this in (5.12) we have the result
for m = 3. For m = 2, the procedure is similar (see [Colton and Kress, 2013, Sec.
3.4.]), using the asymptotics of the Hankel function.
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Remark 5.6. We have seen in section 5.2 that if the source point y is very far in
the direction −d from the obstacle, then the point source incident field can be
approximated (up to a multiplicative constant depending on the distance |x− y|)
by a plane wave ui(x) = eikx·d, with d ∈ Ωm. In other words, the asymptotic
behaviour (5.5) means that the far-field of a point source is a plane wave, that is,

Φ∞(x; y) = ρm e
ikx·d.

In the same way, by theorem 5.5 if one measures the scattered wave very far from
the obstacle, one can assume that the measured data is the far-field pattern (up
to the same multiplicative constant). Both this assumptions will be taken later on
for the inverse problem, where we will consider an incident plane wave and the
far-field pattern as data.

In this way we will present a few more properties of the far-field pattern, since
it will be important in the forthcoming chapters. From the representation (5.14)
we see that the far-field pattern u∞ is analytic on Ωm. The following result shows
us that having an incident field in the direction d and measuring the far-field pat-
tern in the direction x̂ is the same as having an incident field in the direction −x̂
and measuring the far-field pattern in the direction −d, that is, at large distances
from it, the obstacle as mirroring properties.

Theorem 5.7 (Reciprocity relation). For any of the boundary conditions previously
mentioned (5.9)–(5.11), we have that the far-field pattern satisfies

u∞(x̂; d) = u∞(−d;−x̂), x̂, d ∈ Ωm (5.16)

where u∞(.; d) denotes the far-field pattern obtained by scattering of a plane wave with
incident direction d ∈ Ωm.

Proof. Making use of the fact that the incident plane field ui(x; d) = eikx·d satisfies
the Helmholtz equation inside the obstacle D, by the second Green’s theorem
applied to u = ui(.; d) and v = ui(.;−x̂) we get∫

Γ

(
ui(.; d)

∂ui(.;−x̂)

∂ν
− ui(.;−x̂)

∂ui(.; d)

∂ν

)
ds = 0.

Applying the same tools and procedure for the scattered wave in the exterior
domain, making use of the radiation condition we get∫

Γ

(
us(.; d)

∂us(.;−x̂)

∂ν
− us(.;−x̂)

∂us(.; d)

∂ν

)
ds = 0.
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From (5.14) we get

1

%m
u∞(x̂; d) =

∫
Γ

(
us(.; d)

∂ui(.;−x̂)

∂ν
− ui(.;−x̂)

∂us(.; d)

∂ν

)
ds

and interchanging the roles of d and x̂

1

%m
u∞(−d;−x̂) =

∫
Γ

(
us(.;−x̂)

∂ui(.; d)

∂ν
− ui(.; d)

∂us(.;−x̂)

∂ν

)
ds.

Subtracting the last equation from the sum of the previous three, one gets

1

%m
(u∞(x̂; d)− u∞(−d;−x̂)) =

∫
Γ

(
u(.; d)

∂u(.;−x̂)

∂ν
− u(.;−x̂)

∂u(.; d)

∂ν

)
ds.

Making use of the boundary condition Bu(.; d) = Bu(.;−x̂) = 0, for any B de-
fined in (5.9)–(5.11), the left hand side of the previous equation vanishes and we
get the result.

The question whether the far-field pattern u∞ uniquely determines the scat-
tered field us is affirmatively answered by Rellich’s Lemma. We refer to [Colton and Kress, 2013,
thm.2.11] for the proof.

Lemma 5.8 (Rellich). Let D be as in theorem 5.3 and u ∈ C2(Rm\D) be a solution to
the Helmholtz equation satisfying

lim
r→∞

∫
{|x|=r}

|u|2ds = 0.

Then u = 0 in Rm\D.

We formulate now the result that establishes the promised unique relation be-
tween the far-field pattern and the scattered field as a corollary of the previous re-
sult and the asymptotic behaviour (5.13) of the scattered field (e.g. [Colton and Kress, 2013,
thm. 2.13]).

Corollary 5.9. Let D be as in theorem 5.3 and u ∈ C2(Rm\D), m = 2, 3, be a radiating
solution to the Helmholtz equation for which the far-field pattern u∞ vanishes on Ωm.
Then u = 0 in Rm\D.
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5.3.1 Layer Potentials

In this section we will present the layer potentials and basic results on their
properties. The layer potentials will be of crucial importance to represent the
solution to the direct problem and later on numerically solve the inverse problem
for methods requiring a forward solver.

Given an integrable function ϕ, the single-layer potential is defined by

w(x) =

∫
Γ

Φ(x, y)ϕ(y)ds(y), x ∈ Rm\D, (5.17)

while the double-layer potential is defined by

v(x) =

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Rm\D. (5.18)

Explicit computations show that both are solutions to the Helmholtz equation
in D and in Rm\D and that they satisfy the Sommerfeld radiation condition.
Green’s representation theorem 5.3 tells us that any solution to the Helmholtz
equation can be represented as a combination of single-and double-layer poten-
tials. We will now state the classical result on the jump relations of these po-
tentials, but similar results can also be shown for densities ϕ living in Sobolev
spaces (see [Kirsch, 1989]).

Theorem 5.10. Let Γ be of class C2 and let ϕ be continuous. Then the single-layer po-
tential w with density ϕ is continuous throughout Rm and satisfies the estimate in the
usual maximum norm

||w||∞,Rm ≤ C||ϕ||∞,Γ

for some constant C depending on Γ. On the boundary we have the representations

w(x) =

∫
Γ

Φ(x, y)ϕ(y)ds(y), x ∈ Γ,

∂w±
∂ν

(x) = ∓ϕ(x)

2
+

∫
Γ

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ Γ,

where
∂w±
∂ν

(x) := lim
h→0+

ν(x) · gradw(x± hν(x)), x ∈ Γ,

is to be understood in the sense of uniform convergence on Γ and where the integrals
exist as improper integrals.
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The double-layer potential v with density ϕ can be continuosly extended fromD toD
and from Rm\D to Rm\D with limiting values

v±(x) = ±ϕ(x)

2
+

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Γ,

where
v±(x) := lim

h→0+
v(x± hν(x)), x ∈ Γ

and the integral exists as an improper integral. We also have the estimate

||v||∞,D ≤ C||ϕ||∞,Γ, ||v||∞,Rm\D ≤ C||ϕ||∞,Γ,

for some constant C depending on Γ. The normal derivative has no jump in the sense
that

lim
h→0+

(
∂v

∂ν
(x+ hν(x))− ∂v

∂ν
(x− hν(x))

)
= 0, x ∈ Γ,

uniformly in Γ.

Proof. We refer to theorems 2.12, 2.16, 2.17, and 2.23 in ([Colton and Kress, 1983]).

Let us now introduce the single-layer operator S given by(
Sϕ
)
(x) :=

∫
Γ

Φ(x, y)ϕ(y)ds(y), x ∈ Γ (5.19)

and the double-layer operator K given by(
Kϕ
)
(x) :=

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Γ. (5.20)

as well as the normal derivative operators(
K∗ϕ

)
(x) :=

∫
Γ

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ Γ (5.21)

(
Tϕ
)
(x) :=

∂

∂ν(x)

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Γ. (5.22)

The previous jump relations can be given in terms of these operators, namely
through

w(x) = (Sϕ)(y),
∂w±
∂ν

(x) = ∓ϕ(x)

2
+ (K∗ϕ)(x),

v±(x) = ±ϕ(x)

2
+Kϕ(x),

∂v

∂ν
(x) = (Tϕ)(x)
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for x ∈ Γ. We will now state some results on the mapping properties of these
four operators. For proofs we refer to [Colton and Kress, 1983, thm. 2.31].

Theorem 5.11. Let Γ be of class C2. Then

(a) the operators S,K and K∗ are bounded from C(Γ) into C0,α(Γ),

(b) the operators S and K are also bounded from C0,α(Γ) into C1,α(Γ),

(c) the operator T is bounded from C1,α(Γ) into C0,α(Γ).

We also state the following theorem for weak solutions and refer to [Kirsch, 1989]
for the proof.

Theorem 5.12. Let p ∈ N ∩ {0} and α ∈ (0, 1).

(a) Let Γ be of class Cp+2,α. Then S and K are bounded from Hp(Γ) into Hp+1(Γ)

and T is bounded from Hp+1(Γ) into Hp(Γ).

(b) Let Γ be of class Cp+3,α. Then K∗ is bounded from Hp(Γ) into Hp+1(Γ).

Similar results can also be obtained in the case that Γ is notC2–smooth (see [McLean, 2000]).
We also introduce the far-field operators

(S∞ϕ)(x̂) := %m

∫
Γ

e−ikx̂·yϕ(y)ds(y), x̂ ∈ Ω (5.23)

(K∞ϕ)(x̂) := %m

∫
Γ

∂e−ikx̂·y

∂ν(y)
ϕ(y)ds(y), x̂ ∈ Ω. (5.24)

with %m given as in (5.15). Since their integral kernels are continuous, the previ-
ous operators are compact from the space of continuously k-differentiable func-
tionsCk(γ) intoCk(Ωm) and from the space of Hölder continuously k-differentiable
functions Ck,α(γ) for α > 0 into Ck,α(Ωm). By the asymptotics of the layer poten-
tials, one can also prove (see [Colton and Kress, 2013]) that the far-field pattern
of the single layer potential (5.17) is given by

w∞(x̂) = (S∞ϕ)(x̂), x̂ ∈ Ω,

and the far-field of the double-layer potential (5.18) is given by

v∞(x̂) = (K∞ϕ)(x̂), x̂ ∈ Ω.

For a combined single-and double-layer potential

u(x) =

∫
Γ

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(y)ds(y), x ∈ Rm\Γ

we would obviously get the far-field given by

u∞(x̂) =
(

(K∞ − iηS∞)ϕ
)

(x), x̂ ∈ Ω. (5.25)
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5.3.2 Uniqueness and Existence

We recall that the solution us must satisfy

∆us + k2us = 0, x ∈ Rm\D,
Bus = f, x ∈ Γ := ∂D,

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0.

We consider f := −Bui, where the incident field ui is considered to be analytic
up to the boundary of D.

We will state the uniqueness and existence results concerning the three bound-
ary conditions (5.9)–(5.11) but the proofs will only given for some of the cases.
We refer to [Colton and Kress, 1983, Colton and Kress, 2013] for the remaining
ones.

Theorem 5.13 (Uniqueness). The exterior Dirichlet, Neumann or Robin problems have
at most one solution.

Proof. We will just give a sketch of the proof for the Dirichlet and Neumann case.
For details see [Colton and Kress, 2013, Thm.3.7.]. For the Robin case we refer
to [Colton and Kress, 1983, Thm.3.37.].

One has to show that solutions to the homogeneous boundary value prob-
lem Bus = 0 vanish on the domain of definition. From the radiation condition
and applying Green’s theorem one concludes that

lim
r→∞

∫
Ωr

(∣∣∣∣∂us∂ν

∣∣∣∣2 + k2|u|2
)
ds = −2 k Im

∫
Γ

us
∂us

∂ν
ds

where Ωr = {x : |x| = r}. As us is just assumed to be continuous up to the
boundary, for the Dirichlet case the existence of the integral on the right-hand
side must be assured. We overcome the problem by considering Γ of class C2

and ui to be at least C1,α (see [Levine, 1964]). By the boundary conditions us = 0

or ∂us/∂ν = 0 on Γ we get that

lim
r→∞

∫
Ωr

|u|2ds = 0

and by Rellich’s lemma 5.8 one gets the result.

Theorem 5.14 (Existence). There exists a unique solution to the exterior Dirichlet, Neu-
mann or Robin problem.
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Proof. We first consider the Dirichlet boundary condition. We start by writing a
candidate for the solution as a combined single-and double-layer potential rep-
resentation, that is, let

v(x) :=
(
(K − iηS)ϕ

)
(x), x ∈ Rm\D. (5.26)

with some coupling parameter η > 0. By the properties of the layer potentials,
we conclude that v satisfies the Helmholtz equation and the radiation condition.
By the jump relations, in order to fulfil the boundary equation, we get that

ϕ

2
+ (K − iηS)ϕ = f

must be satisfied over Γ. The fact that S and K are compact operators from C(Γ)

into itself (thm. 5.11 combined with the compact embedding of C0,α(Γ) in C(Γ))
and the Fredholm-Riesz theory for equations of the second kind with a compact
operator show that the equation has a solution if the operator I + 2(K − iηS) is
injective. Let us then assume that ϕ is a solution to the homogeneous equation

ϕ+ 2(K − iηS)ϕ = 0.

Then the potential v given by (5.26) satisfies the exterior homogeneous boundary
condition and by uniqueness of this problem we conclude that v = 0 on Rm\D.
The jump relations from thm. 5.10 yield

v− = −ϕ, ∂v−
∂ν

= −iηϕ on Γ

and from the first Green’s theorem applied to v− and v− in D we get

iη

∫
Γ

|ϕ|2ds =

∫
Γ

v−
∂v−
∂ν

ds =

∫
D

(
| grad v|2 − k2|v|2

)
.

Taking the imaginary part of the previous equation we get ϕ = 0 and the exis-
tence proof is finished.

For the Neumann and Robin cases the proofs go in a similar way, choosing ap-
propriate combinations of layer potentials. We refer to [Colton and Kress, 2013,
thm.3.10] and [Colton and Kress, 1983, thm.3.38], respectively, for details.

Remark 5.15. The estimates of theorem 5.10, along with the continuous depen-
dence of the density ϕ on the boundary data f contained in the previous proof
as a consequence of the Fredholm-Riesz theory, show continuous dependence of
the solution us on the boundary data f .
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5.4 The Inverse Acoustic Scattering Problem

The inverse problem is a much harder and more exciting problem to solve. It
has been studied for the last decades but there are still many rather fundamental
open problems, namely uniqueness proofs for a finite number of incident waves.
In this section we will give an overview of the results for the time-harmonic
acoustic obstacle scattering problem under consideration.

The formulation of the inverse problem we want to solve is the following:

Inverse Problem 5.16. Let ui be an incident field, usually considered to be a plane
wave ui(x) = eikx·d, with incident direction d such that |d| = 1.

Given a far-field pattern u∞ corresponding to a scattered field us satisfying

∆us + k2us = 0, x ∈ Rm\D, (5.27)
B(ui + us) = 0, x ∈ Γ := ∂D, (5.28)

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0, (5.29)

where B is known and is one of the operators (5.9)–(5.11) corresponding to a
Dirichlet, Neumann or Robin boundary condition, find the position and shape of
the obstacleD of classC2. In the case of the impedance boundary condition (5.11)
we also want to find the unknown impedance λ.

Remark 5.17. The latter case is equivalent to recovering the obstacle and the bound-
ary condition, since we recover also the unknown impedance λ. As referred be-
fore, both the Dirichlet and Neumann are particular cases of the Robin one. If λ is
close to zero we recover the information that the obstacle is sound-hard and if λ
is large that it is sound-soft. A coated-obstacle can also be reconstructed though
we assume λ to be a continuous function.

The problem 5.16 is ill-posed in the sense of Hadamard [Hadamard, 1952] and
is also non-linear. The ill-posedness comes from the fact that the determination
of D does not depend continuously on the far-field pattern u∞. In the procedure
of decomposition methods (as explained later on in section 5.6.2), this is illus-
trated in the reconstruction of us from the knowledge of u∞, since it can be seen
as the inversion of the integral operator (5.25) which is a compact operator due
to its continuous kernel. The non-linearity comes from the fact that the scattered
wave does not depend linearly on the obstacle. This can be illustrated as finding
the position of the obstacle as the location of the zero level set of Bu not being a
linear problem. Moreover, scattering by two different obstacles is different from
the sum of scattering by each one of them separately.
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5.4.1 Uniqueness

The first and only issue that needs to be addressed is uniqueness. Note that
existence is a wrong issue to study since we assume that the given far-field u∞
corresponds to scattering by the unknown obstacle D. In this sense, existence is
settled. In fact, if the far-field data contains noise then existence is not a matter
to ask for, since the problem is severely ill-posed and a solution to the noisy data
could be very far from the true solution. Moreover, if one actually wanted to
proof existence of a solution for a general given far-field pattern u∞, it would
imply that one would be able to characterize whether the zero level set of the
scattered field corresponding to the given far-field u∞ is a close curve, which
is now-a-days way beyond the capabilities of the available theory. Therefore
we will proceed by presenting some classical results on the uniqueness of this
inverse problem and sketch the proofs. We start by the classical result presented
in [Lax and Philips, 1967] based on the ideas of Schiffer.

Theorem 5.18. Assume that D1 and D2 are two sound-soft scatterers such that the far-
field patterns coincide for an infinite number of incident plane waves with distinct direc-
tions and one fixed wave number. Then D1 = D2.

Proof. Let usj(., d), j = 1, 2, be the scattered field corresponding to scattering by
the obstacle Dj with incident direction d and let uj(., d), j = 1, 2, be the corre-
sponding total field. By thm. 5.9 we know that the far-field pattern uniquely
determines the scattered wave and so we have that us1(x, d) = us2(x, d) for x ∈ G
where G is the unbounded component of Rm\(D1 ∪ D2). Consequently, we get
that u1(x, d) = u2(x, d) for x ∈ G and by the boundary condition and continuity
of the total fields we get that u1(x, d) = u2(x, d) = 0 for x ∈ ∂G. We now assume
thatD1 6= D2 in order to obtain a contradiction. Without loss of generality we can
assume that D∗ = (Rm\G)\D2 is non-empty. Then us2(., d) is defined in D∗ since
it is describes scattering by D2. Therefore u2(., d) satisfies the Helmholtz equa-
tion in D∗ as well as the homogeneous Dirichlet boundary condition on ∂D∗.

Therefore u2(., d) is a Dirichlet eigenfunction of the negative Laplacian in D∗

with eigenvalue k2. In this way, considering an infinite number of incident direc-
tions {dn}, n ∈ N,we have an infinite number of Dirichlet eigenfunctions u2(., dn)

in D∗ for the same eigenvalue k2. The proof is now finished by showing that
the u2(., dn) ∈ H1

0 (D∗) (e.g. [Colton and Kress, 2013, Lem.3.8]) are linearly inde-
pendent and that for a fixed eigenvalue there exists only finitely many linearly
independent Dirichlet eigenvalues inH1

0 (D∗) (e.g. [Colton and Kress, 2013, proof
of thm.5.1]). In this way we get the desired contradiction and the proof is fin-
ished.
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For practical reason, one should be also interested in methods to solve the
inverse obstacle scattering problem considering as data the far-field pattern for
just one incident field, or, at most, a finite number of incident fields. In this
way, we will proceed by presenting uniqueness results considering just a finite
number of incident directions, namely using some a priori bound on the size
of the obstacle. The bound on the size of the obstacle was initially proposed
by Colton and Sleeman [Colton and Sleeman, 1983] and recently improved by
Gintides [Gintides, 2005].

Theorem 5.19. Let D1, D2 ∈ R3 be two scatterers which are contained in a ball of ra-
dius R, let

N :=
∑
tnl<kR

(2n+ 1)

where tnl, l ∈ N are the positive zeros of the spherical Bessel function jn, n ∈ N and let

M :=

{
N/2 + 1, N is even
(N + 1)/2, N is odd.

Assume also that the far-field patterns for both obstacles coincide for one fixed wave
number k and forM different incident directions dn, n = 1, . . . ,M , such that dn 6= ±dn′
for n 6= n′. Then D1 = D2.

Proof. We use the same definition of D∗ as used in the previous proof. The
Courant maximum-minimum principle for compact symmetric operators im-
plies that the negative Laplacian Dirichlet eigenvalues have the following prop-
erty (see [Leis, 1986, thm.4.7]): The n–th eigenvalue λn ordered by magnitude
taking into account its multiplicity for a ballB containing the domainsD1 andD2

is always smaller than the n–th eigenvalue µn for the sub-domain D∗ ⊂ B.

In particular, for λn = k2, the multiplicity of λn must be less than or equal
to the sum of multiplicities of the eigenvalues of the ball B that are smaller
than k2. It is known that the eigenvalues of the ball B are given by µnl = t2nl/R

2

(e.g. [Colton and Kress, 2013, pp.57]) and one can show that each has multiplic-
ity 2n+1 (e.g. [Colton and Kress, 2013, thm.2.6]). Therefore the multiplicity of λn
must be smaller or equal to N , by definition of N . Assuming D∗ is non-empty,
that is, that D1 6= D2, in the same way as in the previous proof we will be led to a
contradition. We have that M incident directions {dn}, n = 1, . . . ,M, would lead
to M linearly independent eigenfunctions u2(., dn), n = 1, . . . ,M with the same
eigenvalue k2. Moreover, under the assumptions on the incident directions, the
conjugate complex total fields ū2(., dn), n = 1, . . . ,M would be also linearly inde-
pendent from the previous and would also satisfy the Laplace equation inD∗ and
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the homogeneous Dirichlet boundary condition on ∂D∗ (see[Gintides, 2005]). There-
fore we would have 2M linearly independent eigenfunctions related with the
eigenvalue λn and so the multiplicity of λn is greater or equal to 2M , which leads
to a contradiction because 2M > N . Therefore D1 = D2.

Corollary 5.20. Let D1, D2 ∈ R3 be two scatterers which are contained in a ball of ra-
dius R such that kR < t10 ≈ 4.4939. Assume also that the far-field patterns coincide for
one incident direction. Then D1 = D2.

Proof. From kR < t10 and the fact that t00 is the only positive zero tnl of a Bessel
spherical function jn satisfying tnl < t10, we conclude that N ≤ 1 and so by the
previous theorem one incident direction is enough to uniquely determine the
obstacle.

Remark 5.21. A similar result can be obtained in R2 with the restriction kR < z10,

where znl are the positive zeros of the Bessel functions Jn. The proof is identi-
cal and relies on the fact that Jn(kr)e±ikφ is an entire solution to the Helmholtz
equation in R2 and therefore µnl = z2

nl/R
2 are Dirichlet eigenvalues on a circle of

radius R. Everything then follows in a similar way.

Note that for the previous uniqueness results no regularity assumption was
made on the domains.

For the Neumann and Robin boundary conditions, the same procedure of
proof can not be carried out. This is due to the fact that the domainD∗ defined as
in the previous proofs might have corners or even cusps and the finiteness of the
dimensions of the eigenspaces of the Laplace operator with boundary conditions
requires the boundary to be sufficiently smooth. This cannot be overcome with
requiring more regularity or even analyticity on D1 and D2 since this does not
preventD∗ to have corners or cusps. A new idea of proof that could be applicable
to these two boundary conditions was suggested by Isakov (e.g. [Isakov, 1998]),
who obtained a contradiction on the value of an integral over some appropri-
ate contour when its length went to zero. A much simpler approach was pre-
sented by Kirsch and Kress [Kirsch and Kress, 1993], where this contradiction
was achieved in a pointwise sense. Moreover, this procedure of proof can be
carried out for any of the referred boundary conditions, as mentioned in re-
mark 5.23. It is the following result.

Theorem 5.22. Assume that D1 and D2 are two sound-hard scatterers such that the far-
field patterns coincide for all incident plane waves with incident directions within an
open non-empty subset of Ωm and one fixed wave number. Then D1 = D2.
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Proof. By reciprocity (5.16) and analyticity of the far-field pattern, we first con-
clude that the far-field patterns must coincide for all incident directions. Then, as
in thm 5.18 we conclude that u1(., d) = u2(., d) on the unbounded component G
of Rm\(D1 ∪D2). Let x0 ∈ G be fixed and consider the two Neumann problems

∆wsj + k2wsj = 0 in Rm\Dj, (5.30)
∂wsj
∂ν

= −∂Φ( . , x0)

∂ν
on ∂Dj (5.31)

for j = 1, 2. Our first goal is to prove that ws1 = ws2 in G.
To this end, we choose a bounded C2–domain B such that Rm\B is con-

nected, the set (D1 ∪ D2) ⊂ B, x0 /∈ B and k2 is not an interior Dirichlet eigen-
value for B, which is possible to achieve with a proper choice of B due to the
strong monotonicity properties of the eigenvalues. Then, from the completeness
of {ui(.; d) |∂B : d ∈ Ωm} in L2(∂B) (e.g. [Colton and Kress, 2013, thm.5.5]), there
exists a sequence {vn} in span{ui(.; d) : d ∈ Ωm} such that

||vn − Φ( . , x0)||L2(∂B) → 0, n→∞.

Then as each vn is a solution to the Helmholtz equation and by the assumption
that k2 is not an eigenvalue for B, we can conclude (e.g. [Colton and Kress, 2013,
thm.5.4]) that

grad vn → grad Φ( . , x0), n→∞ (5.32)

uniformly on compact sets of B, in particular, in D1 ∪D2. Since the vn are combi-
nations of plane waves, from the first paragraph of this proof, the corresponding
scattered fields vsn,j for the obstacles Dj, j = 1, 2 must coincide in G. This implies
also that

∂vsn,j
∂ν

= −∂vn
∂ν

on ∂Dj, j = 1, 2

so the convergence (5.32) along with the uniqueness and well-posedness of the
solution to the exterior Neumann problem show us that

vsn,j → wsj , n→∞

uniformly in compact sets of Rm\Dj, j = 1, 2. Therefore ws1 = ws2 in G, since as
already mentioned the fields vsn,j, j = 1, 2 coincide in G.

We now assume that D1 6= D2 in order to get a contradiction. Without loss
of generality, there exists x∗ ∈ ∂D1\D2. We choose h > 0 sufficiently small such
that the sequence

xn := x∗ +
h

n
ν(x∗), n ∈ N,
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is contained inG. We now consider wsn,j as the solutions to the exterior Neumann
problems (5.30)–(5.31) with x0 replaced by xn. We recall that wsn,1 = wsn,2 = wsn
in G. On the one hand we have that the Neumann boundary data over ∂D2 is
uniformly bounded with respect to the maximum norm and along with the well-
posedness of the exterior Neumann problem we have that∣∣∣∣∂wsn∂ν

(x∗)

∣∣∣∣ ≤ C

for some positive constant C and all n ∈ N. On the other hand, the scattered field
corresponding to D1 must satisfy the boundary condition and so∣∣∣∣∂wsj∂ν

(x∗)

∣∣∣∣ =

∣∣∣∣∂Φ(x∗, xn)

∂ν

∣∣∣∣→∞, n→∞

This contradiction shows that D1 = D2.

Remark 5.23. Note that with proper changes in (5.31) and in the following bound-
ary conditions, this proof works for all boundary conditions (5.9)–(5.11). The
only requirement is that

|BΦ(x∗, xn)| → ∞, n→∞

in order to get the contradiction at the end. In particular, it is not needed that the
boundary condition imposed is the same for both obstacles D1 and D2.

A similar result can also be proved for the Robin or impedance boundary
condition, where the uniqueness is guaranteed not only for the obstacle, but also
for the impedance function λ.

Theorem 5.24. Assume that D1 and D2 are two scatterers with impedances λ1 and λ2

such that the far-field patterns coincide for all incident plane waves with incident direc-
tions within an open non-empty subset of Ωm and one fixed wave number. ThenD1 = D2

and λ1 = λ2.

Proof. As referred in remark 5.23, with a similar proof to the one of thm 5.22
one shows that D1 = D2. Let us assume that λ1 6= λ2. By Rellich’s lemma we
have that the total fields u1 and u2, corresponding to scattering by D = D1 = D2

with impedances λ1 and λ2, respectively, coincide outside D and therefore by
continuity, one finds that

∂u

∂ν
+ iλ1u =

∂u

∂ν
+ iλ2u = 0, on ∂D
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where u = u1 = u2. Hence (λ1 − λ2)u = 0. If the total field would vanish on
an open set of ∂D, then by the boundary condition the Cauchy data of u would
vanish on the same set of ∂D and by Holmgren’s theorem and analyticity of the
solution u, the total field uwould vanish in Rm\D. Therefore, this cannot happen
and λ1 = λ2 in a L2-sense. By the continuity of λ1 and λ2 we have the result.

The previous result can also be extended to the case of a point source incident
field instead of plane incidence (e.g. [Kress and Rundell, 2001]).

A uniqueness result for both sound-hard or impedance obstacle considering
just a finite number of incident directions is still open, even with a priori knowl-
edge on the size of the obstacleD (analogous to thm. 5.19 for the sound-soft case).
Uniqueness results for a finite number of incident directions with no a priori
knowledge on the size of the obstacle for the Dirichlet case are also an open prob-
lem. However, some work as also been developed in this direction with geomet-
rical restrictions such as the case of balls [Liu, 1997] and, more recently, polygonal
obstacles [Alessandrini and Rondi, 2005, Cheng and Yamamoto, 2003]. Unique-
ness results for phaseless data (that is, with knowledge of the only the absolute
value of the far-field pattern) can also be established in some contexts [Sun et al., 2019].
Also, uniqueness for the transmission problem can be found in [Elschner and Hu, 2011].

In section 5.6 we will be interested in recovering star-shaped obstacles, that
is, with boundary of the form

Γ = {r(x̂) x̂ : x̂ ∈ Ωm} (5.33)

with r ∈ C2(Ωm). In this way, by a formal argument, given a complex val-
ued function u∞ on Ωm it makes sense to try to reconstruct one real function r

over Ωm, getting a formally overdetermined problem. In the same way, for
a star-shaped domain the impedance λ defined on the boundary can be seen
as λ = λ(x̂), x̂ ∈ Ωm. Therefore, even for the impedance case it would make
sense to try to reconstruct both real functions r and λ from the knowledge of
one complex valued function u∞ over Ω. Having this formal argument in mind,
we will proceed in the next chapter by suggesting methods to numerically solve
the inverse scattering problem 5.16 having as data the far-field pattern u∞ corre-
sponding to one single incident field.

5.5 Numerical methods for the Direct Problem

Usually one needs a deep knowledge of the direct problem, in order to attack
the inverse problem. In this way, we will focus on the numerical solution of the
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direct problem in the following lines, concentrating on the solution in 2D. There
are many ways to do it, but we will focus on two methods: The numerical ap-
proximation of the integral layer representation and the method of fundamental
solutions.

5.5.1 Layer Potential Representation

In this section we will present the numerical procedure to solve the inverse prob-
lem 5.16 by the hybrid method in R2. For simplicity, in this section we will denote
the unit sphere by Ω := Ω2. We will briefly present the direct problem in order
to introduce the quadrature rule to deal with the logarithmic singularities of the
fundamental solution in R2. In this way we present how the direct problem can
be solved in order to generate far-field data for the inverse problem.

We will start by briefly explaining how we obtained the synthetical data,
solving the direct problem. The goal is to compute the far-field pattern u∞ cor-
responding to scattering by a given obstacle D with boundary Γ with a given
incident field ui. We represented the scattered field as a combined single-and
double-layer potential over Γ

us(x) =

∫
Γ

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(y)ds(y), x ∈ Rm\Γ

with η > 0, which is possible to do requiring enough regularity on Γ and on the
incident field ui over the boundary (see [Colton and Kress, 1983]). For each of
the boundary conditions (5.9)–(5.11), the scattered field us must satisfy

Bus = −Bui on Γ.

Considering the layer operators given in section 5.3.1, one is lead to the following
integral equation for the Dirichlet boundary condition (5.9)

ϕ

2
+ (K − iηS)ϕ = −ui on Γ, (5.34)

making use of the jump relations. Considering ϕ in the appropriate smooth
space, the previous integral equation is of the second kind (e.g. [Colton and Kress, 2013]).
Assuming to have the boundary Γ in a parametric form, that is,

Γ = {z(t) : t ∈ [0, 2π]}

where z is a C2-smooth 2π−periodic and counter-clockwise oriented parameteri-
zation, the next step is to parameterize the previous integral equations. Then, by
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the Nyström method, one just needs to straightforwardly approximate the inte-
grals by appropriate quadrature rules, and collocate the equation in the quadra-
ture points in order to obtain a linear system.

For the operators S, K and K∗ we simply apply the quadrature rules for
smooth functions and logharithmic singularities in [Colton and Kress, 2013, sec. 3.5.],
which are exponentially convergent for analytic boundaries Γ.

First we consider the Dirichlet case, that is, we write (5.34) in the parametric
form

ψ(s) + 2

∫ 2π

0

M(s, t)ψ(t)dt = 2g(s), s ∈ [0, 2π], (5.35)

where ψ(s) = ϕ(z(s)) and g(s) = −ui(z(s)) and

M(s, t) = MK(s, t)− iηMS(s, t), s, t ∈ [0, 2π], (5.36)

where MS and MK are respectively the parametric kernels of the single-and
double-layer operators that will be defined in a few lines. The goal is to de-
compose the parameterized kernel M in the form

M(s, t) = M1(s, t) ln

(
4 sin2 s− t

2

)
+M2(s, t), s 6= t (5.37)

for s, t ∈ [0, 2π], where M1 and M2 are analytic. This can be done by expanding
the fundamental solutionH(1)

0 = J0+iN0 in its power series (e.g. [Colton and Kress, 2013]).
The idea is to apply this decomposition to the parametric kernel MS of the single
layer operator S and to the parametric kernel MK of the double layer operator K
and then make use of (5.36) to obtain the decomposition (5.37).

Therefore, following the ideas of [Kussmaul, 1969, Martensen, 1963] described
in [Colton and Kress, 2013, sec.3.5], we have that the parametric kernelMS of the
single layer operator S, such that

(Sϕ)(z(s)) =

∫ 2π

0

MS(s, t)ψ(t)dt, s ∈ [0, 2π]

can be decomposed as

MS(s, t) :=
i

4
H

(1)
0 (k|z(s)− z(t)|)|z′(t)|

= MS
1 (s, t) ln

(
4 sin2 s− t

2

)
+MS

2 (s, t)
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where

MS
1 (s, t) := − 1

4π
J0(k|z(s)− z(t)|)|z′(t)|, (5.38)

MS
2 (s, t) := MS(s, t)−MS

1 (s, t) ln

(
4 sin2 s− t

2

)
(5.39)

are analytic and MS
2 has a diagonal term given by

MS
2 (t, t) =

(
i

4
− C

2π
− 1

4π
ln

(
k2

4
|z′(t)|2

))
|z′(t)|

where C = 0.5772156649 . . . is Euler’s constant.
In a similar way the parametric kernel MK of the double-layer operator K

can be decomposed as

MK(s, t) :=
ik

4

[(z(s)− z(t)) · ν(z(t))]

|z(s)− z(t)|
H

(1)
1 (k|z(s)− z(t)|)|z′(t)|

= MK
1 (s, t) ln

(
4 sin2 s− t

2

)
+MK

2 (s, t)

where

MK
1 (s, t) := − k

4π

[(z(s)− z(t)) · ν(z(t))]

|z(s)− z(t)|
J1(k|z(s)− z(t)|)|z′(t)| (5.40)

MK
2 (s, t) := MK(s, t)−MK

1 (s, t) ln

(
4 sin2 s− t

2

)
(5.41)

are also analytic with diagonal term

MK
2 (t, t) =

1

4π

z′′(t) · ν(z(t))

|z′(t)|
.

Note that though MK is continuous, this decomposition brings advantages since
its derivatives are not continuous at s = t. We also note that H(1)

1 = −H(1)′

0 de-
notes the Hankel function of first kind and order one and J1 = −J ′0 denotes the
Bessel function of order one. For K∗ everything follows in a very similar way
(see [Kress, 1995]), getting

MK∗(s, t) := −ik
4

[(z(s)− z(t)) · ν(z(s))]

|z(s)− z(t)|
H

(1)
1 (k|z(s)− z(t)|)|z′(t)|

= MK∗

1 (s, t) ln

(
4 sin2 s− t

2

)
+MK∗

2 (s, t)
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where

MK∗

1 (s, t) :=
k

4π

[(z(s)− z(t)) · ν(z(s))]

|z(s)− z(t)|
J1(k|z(s)− z(t)|)|z′(t)| (5.42)

MK∗

2 (s, t) := MK(s, t)−MK∗

1 (s, t) ln

(
4 sin2 s− t

2

)
(5.43)

are also analytic with diagonal term

MK∗

2 (t, t) =
1

4π

z′′(t) · ν(z(t))

|z′(t)|
.

In this way the logarithmic singularity of these kernels is exposed explicitly.
Having equation (5.35) in mind, one can proceed using the quadrature rule

for the equidistant points tj := πj/N, j = 0, . . . , 2N − 1 given by∫ 2π

0

ln

(
4 sin2 s− t

2

)
f(t)dt ≈

2N−1∑
j=0

R
(N)
j (s)f(tj) (5.44)

with weights

R
(N)
j (s) := −2π

N

N−1∑
l=1

1

l
cos l(s− tj)−

π

N2
cosN(s− tj)

and the trapezoidal rule ∫ 2π

0

f(t)dt ≈ π

N

2N−1∑
j=0

f(tj), (5.45)

both obtained by replacing the integrand f by its trigonometric interpolation
polynomial and then integrating exactly. We end up with an approximated equa-
tion of the form

ψ(s) + 2
2N−1∑
j=0

(
R

(N)
j (s)M1(s, tj) +

π

N
M2(s, tj)

)
ψ(tj) = 2g(s), s ∈ [0, 2π].

In particular, by the Nyström method, for ψi = ψ(ti), i = 0, . . . , 2N −1 we get the
linear system

ψi + 2
2N−1∑
j=0

(
R

(N)
|i−j|M1(ti, tj) +

π

N
M2(ti, tj)

)
ψj = 2g(ti), i = 0, . . . , 2N − 1 (5.46)
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where the quadrature weights can be simplified to the form

R
(N)
j = −2π

N

N−1∑
l=1

1

l
cos

l j π

N
− (−1)Nπ

N2
. (5.47)

In this way one obtains a reconstruction of the density ψ that can be used to
obtain the far-field u∞ from the integral far-field representation of the combined
single-and double-layer potential. We will refer to that at the end of this section,
after showing how to reconstruct the density for the Neumann and Robin cases.
As the far-field pattern of a combined single-and double-layer potential is given
by

u∞(x̂) =
(

(K∞ − iηS∞)ϕ
)

(x), x̂ ∈ Ω

and both S∞ and K∞ given by (5.23) and (5.24), respectively, have a continuous
kernel, we simply use the trapezoidal rule (5.45) to compute the far-field pattern
by

u∞(x̂) ≈ π

N

2N−1∑
j=0

M∞(x̂, tj)ψj, x̂ ∈ Ω

whereM∞(x̂, t) is the parametric kernel of the combined single-and double-layer
far-field operator given by

M∞(x̂, t) =
e−iπ/4√

8πk
(k x̂ · ν(z(t)) + η) e−ikx̂·z(t)|z′(t)|.

UsingN = 100, we computed the far-field pattern for one incident direction at
100 equidistant points on the unit circle Ω and considered it as the given data for
the inverse scattering problem. As suggested in [Kress, 1985] we choose η = k.

5.5.2 Method of Fundamental Solutions

The method of fundamental solutions (MFS) is much easier to implement nu-
merically then the previous representation, but it not always presents the same
exponential convergence. It is based on density results in L2(Γ) of a family of
fundamental solutions

{Φ(., s) : s ∈ γ}

where γ is an appropriate curve (or surface) inside of the obstacle D. For details
on this method we refer for instance to [Antï¿½nio et al., 2008, Barnett and Betcke, 2008,
Fairweather et al., 2003, Smyrlis and Karageorghis, 2009, Smyrlis, 2009]. One way
that is usually used to determine γ is to define consider the boundary parametrized
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by z̃ = βz where z is the parameterization of the exact boundary Γ and β ≤ 1.
Therefore, the idea is to approximate the scattered field by a sum of the form

ũs(x) =
n∑
i=1

aiΦ(x, si) (5.48)

where si ∈ γ are the so called source points. An approximation of the previ-
ous form satisfies the helmoltz equation in Rm\D and the Sommerfeld radiation
condition, so one wants to find the weigths ai such that the boundatu condition
is satisfied. For the Dirichlet boundary condition and given the incident field ui

one way to do this is to use a collocation method, that is, to make that

ũs(xj) = −ui(xj), j = 1, 2, . . . , p

and solve the previous equation in terms of the ai in a least square sense with p ≥
n. This can be done by considering the matrix

A =


Φ(x1, s1) Φ(x1, s2) . . . Φ(x1, sn)

Φ(x2, s1) Φ(x2, s2) . . . Φ(x2, sn)
...

...
...

Φ(xp, s1) Φ(xp, s2) . . . Φ(xp, sn)


and the second member vector

b =


−ui(x1)

−ui(xn)
...

−ui(xp)

 .
If p = n, the solution of the linear system Ax = b determines the weights ai, i =

1, 2, . . . , n. If p > n, the solution of the linear system A∗Ax = A∗b determines the
weights ai, i = 1, 2, . . . , n that best fit (5.48) in a least square sense. For a proper
choice of the source points we refer to [Alves, 2009]. It should be noticed that
the choice of the points si are related with the accuracy of the approximation of
the scattered field and condition of the system. Usually one cannot have both
so a compromise between conditioning and quality of the approximation must
be obtained. For ill-conditioned system, one should consider regularization. For
Tikhonov regularization the previous systems should be replaced by

(αI + A∗A)x = A∗b.
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From the far-field behaviour Φ∞ of the fundamental solution, one can then
reconstruct from the weight’s ai both the scattered field (5.48) and the far-field
pattern

ũ∞(x̂) =
n∑
i=1

aiΦ∞(x̂, si), (5.49)

where the far-field pattern of the fundamental solution Φ is given in Rm, m =

2, 3, by
Φ∞(x̂, y) = %me

−ikx̂.y,

where %m is defined in (5.15). The MFS is clearly easier to implement numerically,
since no quadrature rule is considered. However, there are still some gaps to be
filled concerning convergence results and the best choice of source points.

5.6 Numerical methods for the Inverse Problem

We recall that we aim to solve the inverse problem 5.16. For simplicity, we will
consider in this section that the obstacle is sound-soft, that is, the boundary con-
dition is that the total field u vanishes in the boundary of D, that is

us = −ui, in ∂D. (5.50)

However the methods can be extended for other types of boundary conditions.
We will also consider the domain to be star-shaped, that is, the boundary of the
obstacle is of the form (5.33). Again, the methods can be easily extended for more
general parametrizations

z : Ωm 7→ Γ.

5.6.1 Newton-type methods

Newton-type methods appeared in the decade of 1980. They usually consider
the far-field operator

F : ∂D 7→ u∞

that maps the boundary of the obstacle to far-field pattern u∞ generated by that
obstacle, considering that the incident field is fixed. In this way, given the far-
field pattern, one wants to find the solution D to

F (D) = u∞.

As mentioned before, the previous equation is ill-posed and nonlinear. In this
way, one approach is to linearized the previous equation by Newton’s method,
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and then solve a regularized version of this linear equation iteratively. Therefore,
at the n th step one has a domain Dn that is parametrized by the function zn. In
this way, we consider the far-field operator for the parametrization’s space

F (z) = u∞,

and linearize the previous equation in z around zn by the Newton’s method

F (zn) + F ′(zn)h = u∞

which is equivalent to
F ′(zn)h = u∞ − F (zn) (5.51)

and update the new approximation for the parametrization of the boundary of
the domain D by zn+1 = zn + h. However, this equation is severelly ill-posed,
so one should consider a regularized version of it, for instance, by Tikhonov
regularization, and solve

(αI + F ′(zn)∗F ′(zn))h = F ′(zn)∗(u∞ − F (zn)).

Moreover, one also needs to characterize the Fréchet derivative of the opera-
tor F , which by definition is the operator A that satisfies

lim
h→0

‖F (z)− F (z + h)− Ah‖
‖h‖

= 0.

It can be shown that the Fréchet derivative of F is given by

F ′(z)h = u′∞

where u′∞ is the far-field pattern of u′, which is a radiating solution of the Helmholtz
equation with boundary condition

u′ = −(h · ν)
∂u

∂ν
on γ, (5.52)

where γ is parametrized by z. This means that is the parametrization space is of
dimension n, one has that

h =
n∑
i=1

βiψi

which means that for each iteration of Newton’s method one needs to solve n
direct problem, one for each ψi in the place of h in equation (5.52). In this way,
Newton’s method requires a forward solver as described in section 5.5.
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Though Newton’s methods usually is able to get good reconstructions of
the obstacle, the main drawback of this method is that it requires a forward
solver to be used at each iteration step, which is costly in terms of computa-
tions. A reasonable initial guess is also needed to start the iterations. As for
the theoretical background, the convergence proofs for these methods are not
yet completely satisfactory, though there has been some progress in that matter
(see [Hohage, 1997, Hohage, 1998, Hohage, 1999, Potthast, 2001]).

For more details on the Fréchet differentiability of the operator F we re-
fer to [Hettlich, 1998, Hettlich, 1999, Potthast, 1996]), where there are also ap-
proaches for types of boundary conditions other than Dirichlet. The generaliza-
tion of this Newton method for recovering both the shape of the unknown ob-
stacle and the unknown impedance was also made in [Kress and Rundell, 2001].

5.6.2 Decomposition methods

As an alternative approach appearing on the second half of the 80’s, are the de-
composition methods. These take care of the ill-posedness and the nonlinearity
of the inverse scattering problem separately. Their idea is the following: In a
first step the total field u is reconstructed from the given far-field pattern u∞,
which is an ill-posed problem. For example, by representing the scattered field
us as a layer potential over an approximate boundary γ, usually considered to be
inside D (see Kirsch and Kress [Kirsch and Kress, 1986, Kirsch and Kress, 1987a,
Kirsch and Kress, 1987b]).

We will now state an assumption that will be of crucial importance through-
out this method.

Assumption 5.25 (Analytic Continuation Principle). The solution us to the direct
problem of scattering by D can be analytically extended as a solution to the Helmholtz
equation in a neighbourhood of the boundary Γ of D.

Remark 5.26. If the boundary Γ is analytic, then assumption 5.25 holds, by a com-
bination of thm.6.19 and lemma 6.37 in [Gilbarg and Trudinger, 1998].

Assuming that γ is sufficiently close to Γ in a way that the solution us to the
direct problem of scattering by D can be analytically extended up to γ and as-
suming that k2 is not an interior Dirichlet eigenvalue of the negative Laplacian
for the interior of γ, we can represent the scattered field us as a single layer po-
tential over γ (see [Colton and Kress, 1983, thm. 3.30]), that is

us(x) =

∫
γ

Φ(x, y)ϕ(y)ds(y), x ∈ Rm\γ (5.53)
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with density ϕ ∈ C(γ).

Remark 5.27. We choose a single-layer representation because it leads to less com-
plexity later on in the implementation. However, the condition on the wave
number k is needed.

Due to analyticity of the single layer potential in Rm\γ, it is clear that if the
analytic continuation principle 5.25 does not hold, then the previous representa-
tion would not make sense for the cases where γ ∩ D 6= ∅. One knows that the
exterior trace to the boundary of the previous potential is given by

us(x) =
(
Sγϕ

)
(x), x ∈ γ

where Sγ : C(γ)→ C(γ) is the single-layer operator (5.19). By the asymptotics of
the single layer potential the far-field must satisfy the equation

Sγ,∞ ϕ = u∞ in Ωm (5.54)

with the far-field operator Sγ,∞ : C(γ)→ C(Ωm) given by

Sγ,∞ ϕ = %m

∫
γ

e−ikx̂·y ϕ(y)ds(y), x̂ ∈ Ωm, (5.55)

with %m given as in (5.15). As mentioned before, the previous operator is compact
(since it has a continuous kernel) so (5.54) must be replaced by a regularized
equation. In order to show that a regularization scheme is applicable one needs
to show that the operator Sγ,∞ is injective.

Theorem 5.28. Assume that k2 is not an interior Dirichlet eigenvalue of the negative
Laplacian with respect to the open bounded domain Dγ with boundary γ. Then the
operator Sγ,∞ : L2(γ)→ L2(Ωm) is injective and has dense range.

Proof. Assume that ψ ∈ L2(γ) satisfies Sγ,∞ψ = 0. Then the single-layer potential

v(x) =

∫
γ

Φ(x, y)ψ(y)ds(y), x ∈ Rm\γ

has a vanishing far-field. By Rellich’s lemma and analyticity we conclude that v
vanishes in Rm\Dγ . By continuity up to the boundary we conclude that Sγψ = 0

over γ. As k2 is not an interior Dirichlet eigenvalue with respect to the open
bounded domain Dγ we know that Sγ is injective (see [Colton and Kress, 1983,
thm.3.30]) and so we conclude that ψ = 0, proving injectivity of Sγ .

To prove denseness one shows by a similar argument that the adjoint oper-
ator S∗γ is injective and concludes that Sγ is therefore dense, since for a linear
bounded operator A the closure of the range of A is the orthogonal complement
of the nullspace of A∗ (for details see [Colton and Kress, 2013, thm.5.17]).
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Using Tikhonov regularization, we need to replace (5.54) by(
αI + S∗γ,∞Sγ,∞

)
ϕ(n) = S∗γ,∞u∞ (5.56)

solving it with respect to ϕ for some regularization parameter α > 0 decreasing
with n. The scattered field us can now be approximated by

us(x) =

∫
γ

Φ(x, y)ϕds(y), x ∈ Rm\γ. (5.57)

and using the jump relations we also get the approximations to us and its exterior
normal derivative ∂us/∂ν on γn given by

us(x) = (Sγϕ)(x), x ∈ γ, (5.58)

∂us

∂ν
(x) = −1

2
ϕ+ (K∗γϕ)(x), x ∈ γ, (5.59)

respectively.
Now, in the second step of the method, one tries to locate the obstacle as the

position where the boundary condition holds, that is, for the Dirichlet boundary
condition, the position where the total field u = ui + us vanishes, where us is
calculated by (5.57). This step is clearly nonlinear, but it is well-posed. This can
be done in a least squares sense (by a iterative method) or in the Dirichlet case
just by plotting |u|.

Summarizing, in the Kirsch and Kress decomposition method, the require-
ment that the far-field of the potential coincides with the given far-field u∞ leads
to an ill-posed linear integral equation that can be approximately solved via
Tikhonov regularization. In the point source method an ill-posed integral equa-
tion needing regularization also arises. Then, in a second step, one tries to find
the boundary Γ as the location where the boundary condition (5.7) is satisfied.
This second step is clearly non-linear.

The point source method was afterwards adapted in [Potthast and Schulz, 2007]
to reconstruct the obstacle without knowing its boundary condition.

Though these methods do not need the solution to the direct problem, the
reconstructions obtained are not as accurate as those obtained by Newton’s iter-
ations. As for the theoretical background, these methods are usually compared
with a minimization problem (see[Colton and Kress, 2013, sec.5.4]), but there is
a gap between the theory and the implementation of the methods.

5.6.3 Hybrid methods

Several hybrid methods have arised in between, combining the ideas of decom-
position methods and Newton-type-methods. The idea is to take advantages
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of both of them by getting good reconstructions without the need of a forward
solver at each step. These methods can be revised in [Ivanyshyn et al., 2010] and
were motivated by the work [Kress, 2003], which related the connection between
the least squares method and the iterative methods for inverse scattering prob-
lems.

The hybrid method developed in the series of papers [Kress and Serranho, 2005,
Kress and Serranho, 2007, Serranho, 2006, Serranho, 2007b] consists basically in
iterating the Kirsch and Kress decomposition in the following way.

Suppose that at iteration n we have the approximation γn (parameterized
by zn) for the the boundary Γ (parameterized by z∗) of the obstacle. Then, each
iteration of the method is divided in two steps. In the first step, one represents
the solution over the boundary γ by a layer potential as in (5.53) by

usn(x) =

∫
γn

Φ(x, y)ϕn(y)ds(y), x ∈ Rm\γn. (5.60)

In this way, as in (5.54), we solve the far-field equation over γn

Sγn,∞ ϕn = u∞ in Ωm

with respect to ϕn, with Sγ,∞ defined in (5.55).
In a second step at each iteration, we now update the position of the approx-

imation γn in the following way. For a fixed analytic field u, we now define the
operatorGD that maps the parametrization z of the contour γ to the exterior trace
of the Dirichlet boundary condition of that field u over γ, that is,

GD : z 7→ u ◦ z.

If the field u is the total field, then in order to find the position of the boundary
of the obstacle D as the location where the boundary condition is satisfied, we
want to find the solution to

GD(z) = 0.

In the spirit of a Newton method we now linearize the previous equation around zn
(wihch is the paramterization for ht ecurrent approximation γn and solve the lin-
earized equation

GD(zn) +G′D(zn)h = 0 in X (5.61)

with respect to the shift h. In the next theorem we characterize the Fréchet deriva-
tive of GD.

Theorem 5.29. The operator GD : C2(X) → C(X) is Fréchet differentiable and the
Fréchet derivative is given by

G′D(z)h = (gradu ◦ z) · h.
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Proof. By the Taylor formula, the Fréchet differentiability of GD is a direct conse-
quence of the analyticity of u and the C2–smoothness of z. Moreover, from the
Taylor formula for u one gets for each t ∈ X that

u
(
z(t) + h(t)

)
= u

(
z(t)

)
+ gradu

(
z(t)

)
· h(t) +O

(
|h(t)|2

)
,

as ||h||∞ → 0. Therefore by definition of GD we have

||GD(z + h)−GD(z)− (gradu ◦ z) · h||∞ = O(||h||2∞)

as ||h||∞ → 0 and by definition of the Fréchet derivative one has the result.

With this characterization, equation (5.61) can be rewritten in the following
way

(grad u ◦ zn) · h = −u ◦ zn in X. (5.62)

In this way, at each iteration n we approximate us by usn given by (5.60) obtained
in the first step of the iteration and solve(

(grad usn + grad ui) ◦ zn
)
· h = −

(
usn + ui

)
◦ zn in X

with respect to h in a least squares sense, obtaining the new approximation γn+1

parameterized by zn+1 = zn + h. Note that we use the jump relations (5.58)
and (5.59) to compute the terms involved, through the decomposition

gradu|γn = ν
∂u

∂ν

∣∣∣∣
γn

+∇t u, (5.63)

where ∇tu represents the surface gradient of u, which in R2 reduces itself to
the tangential derivative times the tangential unit vector. We now repeat the
two steps until some stopping criteria is fulfilled. The details on the numerical
implementation can be checked in [Serranho, 2007a].

Remark 5.30. Note that to show solvability of (5.61) we would need to show
that G′D(zn) is injective. However this can only be done if we are over the correct
boundary Γ, if u is considered to be the exact total field and if there exists an open
set of Γ where h · ν 6= 0. In this case, by the boundary condition we have that if

0 = G′D(z∗)h = h · gradu ◦ z∗ = h · ν ∂u
∂ν

then h = 0 everywhere. By contradiction, assume that this is not the case. Then,
as there exists an open subset of Γ where h · ν 6= 0, the normal derivative of u
would need to vanish on that open subset of Γ. By the boundary condition and
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Holmgren’s theorem we conclude that the total field u = 0 in Rm\D, which can
not happen since the scattered field goes to zero at infinity and the incident field
does not. A similar result can be shown for the Neumann and Robin boundary
condition (see [Serranho, 2006, thm.5]).

This hybrid method is able to compete with Newton-type methods in terms
of the quality of the reconstruction, without needing a forward solver in each
step and therefore having less computational cost. In the spirit of decomposition
methods, it separates the ill-posedness in the first step from the non-linearity in
the second step. This method can also be extended for other types of boundary
conditions, namely for the Neumann condition [Kress and Serranho, 2007] an to
recover both the shape the obstacle and impedance function [Serranho, 2006].
For details on the hybrid method for reconstructions in three-dimensions, we
refer to [Serranho, 2007b].

Numerical Implementation of the Hybrid method in 2D

We will now detail the numerical implementation of the Hybrid method, since
from this one can easily adapt to implement the Kirsch and Kress decomposition
method described in section refsec:DecMethod as a simpler case where the first
(ill-posed) step is made just once and the second (non-linear step) is repeated
until a good approximation is found.

Also, we are now in a position to present the numerical method for the in-
verse problem, since all the quadrature rules and its ideas have been already
mentioned in the previous paragraphs concerning the direct problem.

For the inverse problem that we will now discuss, we consider star-shaped
obstacles, that is, the boundary of the obstacle is given by

γr = {z(t) = r(x̂(t)) x̂(t) | r : Ω→ R2, t ∈ [0, 2π]} (5.64)

where x̂(t) is defined in R2 by

x̂(t) = (cos t, sin t), t ∈ X = [0, 2π].

As for parameterization space for r we choose trigonometric polynomials, since
they are dense in L2[0, 2π] (see [Kress, 1998]). In this way, we consider radial
functions r that are linear combinations of trigonometric polynomials of order
less than or equal to Nz, that is,

r(t) = a0 +
Nz∑
j=1

aj cos jt+
Nz∑
j=1

bj sin jt (5.65)
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with aj, bj ∈ R, j = 1, . . . , Nz.
Consider γn, parameterized by zn, to be the current approximation to the so-

lution Γ of the inverse problem.
In a first step, the total-field u is reconstructed from the given far-field data u∞,

by representing the scattered field us by a single-layer potential over γn, that is,

us(x) =

∫
γn

Φ(x, y)ϕ(y)dy.

This representation leads to less complexity in the implementation than a com-
bined single-and double-layer potential and can be taken under the assumptions
discussed in section 5.5.1. In this way, as referred in section 5.5.1, we have to
solve the regularized far-field equation(

αnI + S∗γn,∞Sγn,∞
)
ϕ(n) = S∗γn,∞u∞ (5.66)

where

(Sγ,∞ ϕ)(x̂) =
eiπ/4√
8πk

∫
γ

e−ikx̂·y ϕ(y)ds(y), x̂ ∈ Ω.

By the relation (e.g. [Spanier and Oldham, 1987, Ch.53])

πJ0(|y|) =

∫ π

0

cos(|y| cos t)dt =
1

2

∫
Ω

eix̂·ydx̂, y ∈ R2

one can write (5.66) in the parameterized form

αnψ
(n)(s) +

1

4k

∫ 2π

0

J0(k|zn(s)− zn(t)|)|z′n(t)|ψ(n)(t)dt =

=
e−iπ/4√

8πk

∫ 2π

0

eikx̂(t)·zn(s)u∞(x̂(t))dt

where ψ(n)(t) = ϕ(n)(zn(t)). Since all the integral kernels involved in the previous
equation are continuous, by the Nyström method associated with the trapezoidal
rule (5.45) one gets the linear system

αnψ
(n)
i +

π

4kN

2N−1∑
j=0

J0(k|zn(ti)− zn(tj)|)|z′n(tj)|ψ(n)
j =

=
e−iπ/4√

8Nk

2N−1∑
j=0

eikx̂(tj)·zn(ti)u∞(x̂(tj))
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for i = 0, . . . , 2N − 1, which is solved in order to obtain the ψ(n)
i = ψ(n)(ti).

By the jump relations for the single layer operator (see thm. 5.10)

us(x) = Sγnϕ,

∂us

∂ν
(x) = −ϕ

2
+K∗γnϕ,

following the same procedure mentioned in the forward problem (that is, the
quadrature rule (5.44) to deal with the logarithmic singularity of the kernels in-
volved and the trapezoidal rule (5.45) to deal with the smooth part), one gets the
approximations

us(zn(ti)) ≈ usn(zn(ti)) :=
2N−1∑
j=0

(
R

(N)
|i−j|M

S
1 (ti, tj) +

π

N
MS

2 (ti, tj)
)
ψ

(n)
j ,

∂us

∂ν
(zn(ti)) ≈ ∂usn

∂ν
(zn(ti))

:= −ψ
(n)
i

2
+

2N−1∑
j=0

(
R

(N)
|i−j|M

K∗

1 (ti, tj) +
π

N
MK∗

2 (ti, tj)
)
ψ

(n)
j ,

for i = 0, . . . , 2N − 1, where the kernels MS
1 ,M

S
2 and MK∗

1 ,MK∗
2 are given re-

spectively by (5.38)–(5.39) and (5.42)–(5.43) and the quadrature weights are given
by (5.47). One now computes the tangential derivative of the total field u over γn
by trigonometric interpolation, that is, one takes the tangential derivative of the
trigonometric interpolation polynomial of un as an approximation to the tangen-
tial derivative of the total field u. In this way, one can find an approximation to
the gradient of the total field using the decomposition

gradu|γn ≈ ν
∂un
∂ν

∣∣∣
γn

+ τ
∂un
∂τ

∣∣∣
γn

where un = ui+usn and the last term on the right hand side is, as already referred,
computed by trigonometric differentiation.

From the linearized equation (5.62) and the approximation space for the ap-
proximation given by (5.64) and (5.65) one gets(
a

(h)
0 +

Nz∑
j=1

a
(h)
j cos jti +

Nz∑
j=1

b
(h)
j sin jti

)
gradun(zn(ti)) · (cos ti, sin ti)=−un

(
zn(ti)

)
for i = 0, . . . , 2N − 1 and so one now fits the coefficients a(h)

j , b
(h)
j , j = 0, . . . , Nz

by a Levenberg-Marquardt step (note that one must have Nz < N ) in order to
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establish the shift

h(t) =

(
a

(h)
0 +

Nz∑
j=1

a
(h)
j cos jt+

Nz∑
j=1

b
(h)
j sin jt

)
(cos t, sin t), t ∈ [0, 2π]

and get a new approximation γn+1 parameterized by zn+1 = zn + h. We then
repeat the process while ||un||L2(γn) is decreasing.

For numerical results of the hybrid method we refer to [Serranho, 2007a], both
in 2D and 3D.

5.6.4 Sampling methods

When the previuous classes of methods first appeared, they required the a pri-
ori knowledge of some physical properties of the obstacle, namely the bound-
ary condition imposed at its boundary and an initial guess for the position and
shape of the obstacle. An alternative method for recovering scatterers without
this a priori knowledge was needed. In the second half of the 90’s, a new fam-
ily of methods arose - the sampling or probe methods - that could deal with this
problem (e.g. the linear sampling method [Colton and Kirsch, 1996], the factor-
ization method [Kirsch, 1998], the probe algorithm [Ikehata, 1998] and the sin-
gular source method [Potthast, 1998]). Their idea is to establish a criterion to
distinguish whether a point is inside or outside D based on the range of some
appropriate operator, and then apply it to a grid of sampling points. Though
these methods do not need a priori knowledge on the boundary condition, they
usually just reconstruct the obstacle and not the boundary condition. Recently
in [Cakoni and Colton, 2004], after reconstructing the obstacle by the linear sam-
pling method, a procedure was suggested to reconstruct also the unknown impe-
dance λ on the boundary of this reconstructed obstacle. However a big drawback
arises, in general, for this class of methods: they require a huge amount of data,
namely the far-field data for many incident directions, in order to get meaningful
reconstructions.

Since then several other methods were suggested to solve the inverse scatter-
ing problem (see, for instance, [Cakoni and Colton, 2006, Colton and Kress, 2013,
Colton and Kress, 2006, Kress, 2007, Potthast, 2005] ), always trying to get good
reconstructions with small computational cost and needing only as few as pos-
sible input data. Recently a sampling method was proposed need only one inci-
dent directions [Ma and Hu, 2021].
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5.6.5 Machine Learning approaches

Due to the development of machine learning (in particular, deep learning) there
have been recent developments in using this technique for inverse scattering
problems. The idea is to feed the training of the neural network with the mea-
sured or synthetic scattering data as input and a representation of the obstacle
as output. In this section we will just briefly review the main possibilities of this
approach without going into detail.

There are different approaches to inverse scattering problems using neural
networks. The first is to consider direct learning, where no structure of the prob-
lem or solution is embedded in the network. In this ways one finds a proper
neural network architecture such that it maps the given input format of the scat-
tering data to the predict obstacle representation in the output format, training it
with existing data [Yang and Liu, 2020, Xu et al., 2020]. Specific neural network
architectures have also been developed for inverse scattering problems, as the
SwitchNet [Khoo and Ying, 2019]. Another approach is to consider an objective
function that needs to be minimized. In our context, this could, for instance, be
made by considering the optimal parameters of the representation of the obsta-
cle that minimize the difference between the measured and the corresponding
scattering data of that obstacle [Meng et al., 2020]. In this way, information on
the form of the solution must be embedded in the neural network. Other pos-
sibilities include iterating the neural network procedure using a cost function
towards the global minimum and avoiding local minima [Sanghvi et al., 2020].
Finally, Physics-informed neural networks are networks that embed the physics
of the problem in an internal layer, forcing the solution to satisfy the govern-
ing equations. One example is [Guo et al., 2022], where a forward solver using
Green’s function is embedded in the layers of the neural network.

For further details in review of deep learning in inverse scattering problems
we address to [Rocca, 2020].

5.7 Models for inhomogeneous mediums

Until now, we considered the inverse scattering problem for an impenetrable
obstacle. Another interesting problem is to try to recover properties of an in-
homogeneopus medium, instead of an obstacle. We will now write some lines
concerning this problem, leaving numerical methods and theoretical results out
of this text.
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We consider the Helmholtz equation in a inhomogeneous medium, that is,

∆u(x) + k2n(x)u(x) = 0, n ∈ Rm (5.67)

where the refractive index n(x) at a point x ∈ Rm is defined by square of the ratio
between the speed of sound c0 in the background and the at the point x, that is

n(x) =
c2

0

c(x)
.

and we assume that 1 − n has compact support. In the case that n is piecewise
continuous and the scattered field us satisfies the Sommerfeld radiation condi-
tion (5.4), then the model for the total field u = ui+us is given by the Lippmann-
Schwinger equation

u(x) = ui(x)− k2

∫
Rm

Φ(x, y)(1− n(y))u(y)dy. (5.68)

For more details on this problem we refer to [Colton and Kress, 2013, Cha.8].
If, on the other hand, the inhomogeneous medium is due to a different homo-

geneous medium inside the domain D with wave number k1, then the problem
might be modelled by a transmission boundary condition as

∆u+ k2u = 0 in Rm\D
∆u1 + k2

1u1 = 0 in D
Bu = Bu1 in ∂D

where B is an appropriate differential operator related with the boundary con-
dition, the exterior total field u is defined by u = ui + us and us satisfies the
Sommerfeld radiation condition (5.4). Note that in this case there are two un-
known fields, namely us and u1. More details on this topic can be checked for
instance in [Yan, 2002].
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single, 83

Lippmann-Schwinger
equation, 113

low-pass filter, 61

Mellin transform, 57
Method of fundamental solutions, 99

Neumann function, 78
Newton’s method, 102
norm, 9
Nyquist condition, 61

obstacle
impenetrable, 4
penetrable, 5
sound-hard, 4
sound-soft, 4

Operator
continuous, 12

operator
adjoint, 18
bounded, 11
identity, 13
inverse, 13
linear, 11
norm, 11

Parseval’s formulas, 50
Poisson summation formula, 51
Projection theorem, 51

radiating solution, 77
Radon transform, 43
Radon’s

inversion Formula, 53

refractive index, 113
Regularization

singular values decomposition, 34
Tikhonov, 35

Rellich’s lemma, 82

Scattering theory, 73
sequence

bounded, 14
convergent, 14

set
relatively compact, 18

Shannon’s Sampling theorem, 60
singular

system, 33
values, 33

Sommerfeld radiation condition, 75
source points, 100
Space

Lp, 21
Banach, 22
complete, 22
Hilbert, 22
Sobolev, 21

space
Banach, 10
complete, 10
Hilbert, 17
normed, 9
pre-Hilbert, 16
Schwarz, 43

spectral radius, 26
support, 59

Triangular inequality, 9

ultrasound, 73

wave equation, 74
well-posed, 3
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