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Abstract - Task scheduling in fog paradigm is very complex 

and, in the literature, according to the author’s knowledge there 

are still few studies. In the cloud architecture, it is widely studied, 

and, in much research, it is approached from the perspective of 

service providers. Trying to bring innovative contributions in 

these areas, in this paper, we propose a solution to the context-

aware task-scheduling problem for fog paradigm. In our proposal, 

different context parameters are normalized through Min-Max 

normalization, requisition priorities are defined through the 

application of the Multiple Linear Regression (MLR) technique 

and scheduling is performed using Multi-Objective Non-Linear 

Programming Optimization (MONLIP) technique. The results 

obtained from simulations in the iFogSim toolkit, show that our 

proposal performs better compared to the non-context-aware 

proposals. 

Keywords - Context awareness; fog computing paradigm; task 

scheduling; scheduling in fog paradigm. 

1.  INTRODUCTION 

The growth of mobile devices and the evolution of the 
Internet of Things (IoT) has stimulated the growth of devices 
connected to the Internet. This growth tends to increase 
significantly. On the other hand, several of these devices run 
applications that require part of the processing to run in large, 
centralized datacenters known as cloud. However, due to 
centralization and physical distance from end user´s devices, it 
causes an increase in communication latencies and harms 
applications that require real-time responses. Different 
techniques that minimize cloud processing by adopting local 
processing strategies and that allow solving cloud limitations 
have been proposed. One such technique is the use of the fog 
computing paradigm [1].  

According to [2], many of the task scheduling algorithms in 
the cloud architecture and fog paradigm found in the literature 
do not describe how the priority is defined, do not explain the 
method used to prioritize tasks, nor do they define the 
prioritization of tasks based on context information, many 
defend the perspective of service providers. Others are applied 
in grouped tasks to decrease execution time. Some optimize only 
QoS. Others explore only some contexts. They also claim that 
they allow solving many problems. However, some aspects such 
as the use of context in task scheduling, prioritization of context 
sensitive tasks, consideration of energy restriction in task 
scheduling, preservation of network signal strength, preservation 

of QoS, reduction of average waiting time and QoE optimization 
can be explored and/or improved. 

This paper has as its main objective the conception of 
context-aware task scheduling algorithms for fog computing 
paradigm. Aiming to achieve the main objective, some specific 
objectives were defined: to contextualize concepts such as fog 
computing, task scheduling and context-aware; identify the main 
contexts that can be considered in any mobile computing 
environment; justify the choice of contexts for the domain of our 
problem; standardize the different context parameters through 
the use of Min-Max normalization; define the priorities of the 
requests through the application of the MLR technique and 
optimize the scheduling through the use of the MONLIP 
technique. 

As the main objective of this article is to design a proposal 
that has as its scope the creation of knowledge in the form of 
techniques, methods, models and theory, the most appropriate 
methodology is Design Science Research. It is organized in five 
sections: In the first section, we introduce the paper, in the 
second, we deal with the contextualization of the subject, in the 
third, we describe the contexts envisaged, the model, and the 
proposed architecture. In the fourth, the performance of the 
proposed model is evaluated, and comparison is made with non-
context aware proposals and in the fifth, the conclusion of the 
paper is made.  

2. THEORETICAL BACKGROUND  

Mobile computing provides users with several utilities, 
allows portability, supports applications of various interests, and 
has several limitations such as scarcity of resources, reduced 
battery life, among others. In recent years, several architectures 
have been proposed to solve these limitations, being cloud 
computing one of them. Despite the advantages, in some 
situations it is not beneficial to use cloud. It is centralized and 
consequently the processing is done in concentrated data centers, 
for optimization of energy and communications costs. To solve 
these inconveniences, several paradigms have been proposed. 
Among them is fog computing, which aims to make the services 
offered by the cloud available at the edge of the network [3].  

In this section, we contextualize and discuss concepts such 
as fog computing, context-aware and design of task scheduling 
algorithms. 



2.1. Fog computing  

In the opinion of [3], fog computing is a new paradigm that 
aims to overcome the limitations of cloud by providing services 
at the edge of the network. In [4], it is broadly defined, and 
emphasis is given to some characteristics such as geographical 
distribution, predominance of wireless access, heterogeneity, 
distributed environment, among others. 

As reported in [5], fog has grown a lot since its adoption in 
late 2012 by Cisco. It disappoints as an integrated solution to 
extend the capabilities of the cloud to the edge of the network 
and allow answers to the inconveniences of the classic 
centralized model. 

According to [6], is: “A horizontal, system-level architecture 
that distributes computing, storage, control and networking 
functions closer to the users along a cloud-to-thing continuum.”  

In the opinion of [7], it is a non-trivial extension of the cloud 
because it provides processing, storage, and networking services 
near the edge of an enterprise network. Its main characteristics 
are its proximity to end users, its dense geographic distribution, 
and its mobility support. 

As reported in [8], fog computing from the perspective of 
mobile computing, aims to provide a cloud-like facility. 
However, lighter, closer to the users of mobile devices, it can 
serve these users through direct connection, shorter, compared 
to the cloud connection. They also advance, that as fog can be 
implemented locally, it can provide personalized and location-
committed services, which are more desirable for mobile users 
[8]. 

From our perspective fog computing, converges in terms of 
approach as per definitions described in this section. That is, it 
combines data processing and storage in the cloud and/or at the 
edge of the network, it has the capacity to, when necessary, 
search for additional computational resources in the cloud, 
availability of services that allow greater geographical 
distribution of the system/application and low latency. It consists 
of three layers as illustrated in Figure 1.   

 
Figure 1. Fog architecture outlook 

2.2. Context-aware and Fog Computing  

In mobile computing, the context of a user is very dynamic. 
When using applications in that environment, the behavior of 
that application must be customized to the current situation of 
the user. To promote an effective use of context, many authors 
provide context settings and categorizations. In [9], a definition, 
the context categories and context sensitive applications are 
made available. Information and services, information marking 
with context and automatic service execution methodology are 

still presented as well as the survey of the state of the art 
regarding context-aware computing. 

Bazire and Brézillon in [10], reviewed 150 definitions of 
context, in different areas of research and concluded that the 
creation of a single definition is a hard and probably impossible 
effort since it varies with the scientific area and depends mainly 
on the field in which it is being applied. However, they define 
the context as a set of constraints that influence the behavior 
relating to a given task [10]. 

The context definition most used today, even in other fields, 
as in the operationalization was given by [11], [12]: 

“Context is any information that can be used to characterize 
the situation of an entity. An entity is a person, place, or object 
that is considered relevant to the interaction between user and an 
application, including the user and applications themselves” [12] 
(p. 45). 

In mobile computing, context refers to the processing 
environment, user environment, physical environment, relevant 
for the interaction between a user and an application, including 
the user and the applications themselves [1]. 

When mobile devices communicate with cloud, they face 
high network latency and high transmission power consumption 
[13]. They also advance that in fog paradigm, mobile devices 
send tasks to fog nodes to be processed and returned the result. 
This process reduces, among others, the transmission delay and 
power consumption of the mobile device. Due to the lower 
capacity of the fog nodes when compared to cloud, the tasks, 
which cannot be executed in the fog, are sent to be executed in 
cloud [13], as illustrated in the three-tier architecture shown in 
Figure 1. 

2.3. Design of scheduling algorithms 

 According to [14], scheduling is the allocation of resources 
needed to execute a task. It assumes as a fundamental process to 
improve the reliability and flexibility of the systems. It requires 
advanced algorithms capable of choosing the most appropriate 
resource to perform the task. It also advances that in its design, 
we must consider some constraints such as cost of tasks, 
dependencies between tasks and the location. It also guarantees 
that scheduling decisions can be static - where decisions about 
scheduling are made during the compilation. Or dynamic - where 
information about the state of the task flow is used at a given 
time during execution for the scheduling decisions. It is the best 
approach because it allows several problems to have solutions 
that can be represented by a search tree. However, these 
problems are computationally demanding, require a strategy of 
parallelization and dynamic load balancing [14]. 

3. PROPOSED MODEL AND ARCHITECTURE 

In the following subsections, we describe the envisaged 
contexts, we illustrate, and we discuss the model and architecture 
of the proposed solution.   

3.1. Contexts envisaged and assumptions   

We assume that an appropriate code offloading technique 
(e.g., MAUI defined in [15], COMET presented in [16], among 
others) is being run on mobile devices to make the best decision 
as to whether to offload codes and which fog nodes [17].    

We consider that a discharged request includes the maximum 
delay allowed to execute the application, the battery level, and 
the values of the network signal strength of the device. We also 
assume, as in [8] that fog provides greater computing capabilities 



than mobile devices and can extract the contexts associated with 
the requests and make the scheduling decision accordingly. 

Musumba and Nyongesa in [1], is defined the main contexts 
that can be explored in any mobile computing environment as: 
network connection; available processors; battery level; 
location; network bandwidth; network traffic; leased of Virtual 
Machines (VM) and application QoS requirements. 

In our domain of the problem, the contexts of the service 
providers because we do not know them were ignored. In 
addition, after downloading the tasks in the fog nodes, it 
becomes unnecessary to consider the processors of the mobile 
device. The location of the device also does not affect the 
scheduling, as well as network traffic and bandwidth that are the 
same for all users. Based on these criteria we take into 
consideration three context parameters: battery level, signal-to-
noise network interference ratio (SIN) and application QoS. 

3.2. Proposed MODEL 

The fog nodes, with our proposal activated, consists of three 

units: Context Information Retrieval Unit, comprises an 

architecture, as defined in [18]. It retrieves context information 

(Ci) from each request ( 𝑟 ∈ 𝑅 ). The recovered context 

information is forwarded to the Context-Aware Task 

Prioritization Unit, which estimates the value of the context 

priority (Pr) for each individual request 𝑟 ∈ 𝑅 and routes it to 

the QoE and Context-Aware Scheduler Unit, which schedules 

tasks to be executed in VMs so that QoE is optimized. 

 
Figure 2: Proposed model. 

Figure 2 shows the different units of the proposed model. The 

relevant notations used in the different units are listed in Table1. 

Symbols Definition 

C Set of all context parameters 

αi 
Number of different types of abstract levels of a 

context parameter, 𝐶𝑖 ∈ 𝐶 

𝛾𝑖 Logical difference between two abstract levels 𝐶𝑖 ∈ 𝐶 

𝜂𝑖 Normalized range of values 𝐶𝑖 ∈ 𝐶 

Li Set of all concrete levels of 𝐶𝑖 ∈ 𝐶 at instant t 

𝜃𝑖  Set of biased values 𝐶𝑖 ∈ 𝐶 

F 
Set of all possible combinations of one element of 

each Li 

M Multi set of minimum values ∀𝜇 𝜖 𝐹 

R Set of request application execution at a given instant t 

V Set of virtual machines available at a given instant t 

β Set of multiple linear regression coefficients 

Pr Priority of any request 𝑟 𝜖 𝑅 

𝜓𝑟,𝑣 
Time required to execute a request 𝑟 𝜖 𝑅 in a virtual 

machine 𝑣 𝜖 𝑉 

Ir Number of interruptions of a request 𝑟 𝜖 𝑅  

Table 1: Notations and definitions of the proposed model. 

We assume that some VMs are already created with different 

configurations, which allows minimizing the overloads related 

to the processes of creation and elimination of VMs, as claimed 

in [19] and [20]. The optimal provision of VM for application 

requisitions and their energy-efficient allocations are outside 

the scope of this paper. However, they were further developed 

in [21] and [22]. 

3.3. Architecture of the proposed model 

The fact that the context parameters associated with a request 
are heterogeneous makes it difficult to explore the context 
information in the scheduling. To solve this problem, in Han, 
Kamber and Jian [23], a context heterogeneity resolver was 
proposed, which processes several parameters, in a normalized 
interval, through Min-Max normalization, where each request is 
prioritized based on its context values. 

The following subsections define the architecture of the 
proposed model, starting with the Context-Aware Task 
Prioritization Unit.  

3.3.1. Context-aware Task Prioritization Unit 

This unit is composed by: Context Repository, which stores 
context information of current and previously received tasks and 
Context Forecasting Unit, exploits the context information at a 
given time and feeds the Forecast Table. Thus, we manage to 
eliminate the heterogeneity of the context information in the 
feeding of the forecast table. 

The Forecast Table provides a data set for the MLR analysis 
that aims to define the priority of requests.  

 
Figure 3: Context-Aware Task Prioritization Unit architecture of the 

proposed model. 

Figure 3 shows the architecture of the Context-Aware Task 

Prioritization Unit of the proposed model. 

 

3.3.2. Creating the Context Priority Forecast Table 

To solve problems of heterogeneity of context 

information, based on Min-Max standardization, a model was 

designed that feeds the forecast table. The context repository 

provides context information from tasks previously received at 

a given time t. ∀𝐶𝑖 ∈ 𝐶,  all the context information is 

normalized in relation to the extremes, the values are 

concentrated in a range between 0 and 1. This approach allows 

minimizing the heterogeneity of the different context 



parameters in terms of values and units. We define the 

normalized interval, 𝜂𝑖 for a context parameter, 𝐶𝑖 ∈ 𝐶 as: 

𝜂𝑖 =
max(𝐶𝑖) − min(𝐶𝑖)

max(𝐶𝑖)
. (1) 

Within this normalized range 𝐶𝑖 ∈ 𝐶 , we assume there 

exist 𝛼𝑖  abstract levels. These abstract levels represent the 

qualitative measurement of the corresponding context 

parameter. They allow the variations of values of a given 

context parameter to be classified internally. The logical 

differences between two consecutive abstract levels, 𝛾𝑖 , of a 

context 𝐶𝑖 ∈ 𝐶 are defined as: 

𝛾𝑖 =
𝜂𝑖

𝛼𝑖
. (2) 

The numerical representation of this abstraction comprises 

a concrete set of levels,  𝐿𝑖  for any  𝐶𝑖 ∈ 𝐶 . This approach 

transforms qualitative measurement into quantitative, 

compatible for further calculations. 𝐿𝑖  set is defined as:  

𝐿𝑖 = {𝑥: 𝑥 =
min (𝐶𝑖)

max (𝐶𝑖)
+ 𝑧𝛾𝑖} , ∀𝐶𝑖 ∈ 𝐶. (3) 

 Where z = 0,1, 2,…,(𝛼𝑖 − 1). 

Calculating the set of Cartesian products, the 

combinatorial set of all context levels is defined from the 

different context parameters. This Cartesian product is 

formulated as indicated in equation 4. 

F = ∏ Li

|C|

i=1

. (4) 

All possible combinations of the different context 

parameters of a request(𝑟 ∈  𝑅) are determined.  

A multi-set M is also created with the minimum values of 

each combination of F, defined according to equation 5. 

M = {q : q = min (μ)},  ∀μ ∈ F. (5) 

It identifies the bottleneck of all possible combinations of 

the context of a request 𝑟 ∈ 𝑅 . This bottleneck parameter 

influences the prioritization of symbolic combinations. 

In addition to the bottleneck parameters, the bias values, 

associated with the different levels of the various context 

parameters, used in the prioritization, also influence the 

prioritization.   

This bias value allows emphasizing the other parameters. 

It is a one-to-one mapping between the elements of 𝐿𝑖 and the 

biased set, 𝜃𝑖  for a given context parameter, 𝐶𝑖 ∈ 𝐶. 

Be, 𝜃𝑖,𝑗 refers to the minimum bias value of 𝐶𝑖, at its jth 

level associated with a candidate combination in F. For 

mapping, 𝜃𝑖 to Li, 𝜃𝑖,0, it is assumed, ∀𝐶𝑖 ∈ 𝐶. 

∀𝐶𝑖 ∈ 𝐶, 𝜃𝑖,𝑗 must satisfy the following condition: 

𝜃𝑖,𝑗 ∗ 𝑚𝑎𝑥(𝑞 ∈ 𝑀) <  𝜃𝑖,𝑗+1 ∗ 𝑚𝑖𝑛(𝑞 ∈ 𝑀). (6) 

The priorities of these combinations are defined so that the 

context information of any request can be mapped over itself to 

predict the priority of that request.  

The priority calculation is performed using the relevant 

bias values ∀𝐶𝑖 ∈ 𝐶 and its bottleneck context parameter. We 

assume that 𝛿𝑖 (𝜇𝑘) defines the context priority 𝜇𝑘 ∈ 𝐹 biased 

in 𝐶𝑖 ∈ 𝐶. 𝛿𝑖 (𝜇𝑘) is represented according to equation 7. 

𝛿𝑖 (𝜇𝑘) =  
𝜃𝑖𝑗 ∗ 𝑞𝑘

∑ 𝑞
, ∀𝑞 ∈ 𝑀. (7) 

Where, 0 ≤ 𝑘 ≤ (|𝐹| − 1)  and 𝑞𝑘 ∈ 𝑀  is associated 

with 𝜇𝑘.  

The priority estimated, �̂�𝑖(𝜇𝑘)  of 𝜇𝑘  is calculated using 

equation 8. 

�̂�𝑖(𝜇𝑘) =  ∑ 𝛿𝑖  (𝜇𝑘)

𝐶𝑖∈ 𝐶

. 
(8) 

𝜇𝑘 and �̂�(𝜇𝑘), ∀𝜇𝑘 ∈ 𝐹 will feed the forecast table with a 

set of data. This forecast table data works as hypothetical data 

to predict the priority of any queued request. 

3.3.3. Predicting Context Priority 

MLR is one of the multivariate statistical methods whose 

main concern is to establish the relationships between several 

independent or predictor variables and a dependent variable or 

criteria [24]. By identifying how these multiple independent 

variables relate to the dependent variable, information about the 

independent variables can be used to make accurate and 

powerful forecasts [24]. Consider m observations of a set of p 

number of the predictor variable Xs and a criterion variable Y 

associated with them. The MLR model, which fits this scenario, 

is defined according to equation 9. 

𝑦𝑖 =  𝛽0 +  𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑥𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 ∈𝑖, (9) 

Where, for the ith observation, 𝑦𝑖 = Y e 𝑥𝑗𝑖 =𝑋𝑗 ,∀𝑋𝑗 ∈ 𝑋. 

The MLR coefficient, 𝛽0, is the interception of the population 

and 𝛽𝑗, is the variation of Y in a unit of variation in 𝑋𝑗, ∀𝑋𝑗 ∈

𝑋 𝑒 1 ≤ 𝑗 ≤ 𝑝,  keeping the other independent variables 

constant, 𝜖𝑖  is the random or unexplainable error associated 

with the ith observation. The estimated values of the MLR 

coefficients are calculated using the known values in equation 

(8) of each observation and solved algebraically. Estimating 𝛽 

= {𝛽0, 𝛽1, …, 𝛽𝑝}, ∀𝛽0 ∈ 𝛽 and 𝜎𝜖
2 (error of the variance), the 

adjusted regression line, which predicts Y for any unknown 

observation, is expressed according to equation 10: 

�̂�𝑖 =  𝑏0 +  𝑏1𝑥𝑖1 + ⋯ + 𝑏𝑥𝑖𝑗 + ⋯ + 𝑏𝑝𝑥𝑖𝑝 ∈𝑖     
(10) 

Where, �̂�𝑖  is the predicted value for any unknown 

observation, 𝑏𝑗  is the sample estimate of 𝛽𝑗 ∀𝛽𝑗 ∈  𝛽. 

Instead of calculating regressions for each predictor 

variable individually, MLR uses information from all 

independent variables simultaneously to predict a single criteria 

variable. As a result, it is naturally faster than other multivariate 

analysis methods [25]. 

We map the context forecast table to the MLR model, 

considering each tuple of the forecast table as an observation of 

an MLR data set where, the set of independent variables, X = 

Ci, ∀𝐶𝑖 ∈ 𝐶 of each combination 𝜇 ∈ 𝐹, the dependent variable, 

Y = �̂�𝑖(𝜇𝑘) is the expected priority of any unknown request,, 

𝑃𝑟 = �̂�𝑖. 

For any request 𝑟 ∈ 𝑅, the lower the 𝑃𝑟  value, the higher 

the priority. The context priority forecast table is created 

through the quantitative values ∀𝐶𝑖 ∈ 𝐶 and the context 

parameters that are independent from each other.  

After the context priority is defined, the context information of 

this task is saved in the context repository. 

3.4. Optimization of application scheduling  

In order to optimize QoE, the proposed scheduler explores 

the context priority (Pr) of the request 𝑟 ∈ 𝑅 and its estimated 



execution time duration (Tr,v) to define the scheduling of this 

request 𝑟 ∈ 𝑅 in an VM, 𝑣 ∈ 𝑉. If due to the limited number of 

VM's and the low priority, a request 𝑟 ∈ 𝑅 cannot be scaled in 

a scheduling interval, it must be scaled in the next intervals. In 

our proposal, the execution of tasks with lower priority is 

interrupted due to the arrival of tasks with higher priority. 

Considering that this preemption can provide indefinite waiting 

for the execution of a request 𝑟 ∈ 𝑅, we also explore the number 

of scheduling intervals (Ir), in which a scheduling request is 

postponed since its arrival, to avoid the starvation condition. 

To optimize QoE, the MONLP technique was used to 

schedule the requisitions. 

According to [26], the MONLP technique is generally 

applied to optimization problems where there are more than one 

nonlinear and conflicting objective function (OF) to be 

optimized simultaneously. It has some elements: set of 

nonlinear objective functions that must be optimized; decision 

variables that constitute the domain in which each OF must 

operate; restrictions that delimit the search space. 

In sections 3.4.1 and 3.4.2, the objective functions and 

restrictions for optimized application scheduling are defined. 

3.4.1. Definition of the objective function 

One of the objectives of this paper consists of scheduling 

requisitions, 𝑟 ∈ 𝑅 in VM, 𝑣 ∈ 𝑉, to optimize the QoE for all 

the requisitions in a certain scheduling interval. 

If the execution of all requisitions, 𝑟 ∈ 𝑅  are not 

preemptive and that all VMs, 𝑣 ∈ 𝑉 are created in the fog, the 

OF is defined according to equation 11. 

𝑚𝑖𝑛𝑟,𝑣 ∑ ∑
𝑃𝑟 ∗ 𝜓𝑟,𝑣

𝐼𝑟
𝑣∈𝑉𝑟∈𝑅

    (11) 

And it is subjected to some restrictions, (inequation (12) 

to (17)). 

This equation indicates that the QoE of all user application 

requests can be optimized by minimizing the sum of their 

execution times. It also considers the priority execution of the 

tasks with higher priorities by minimizing the sum of the 

priorities of all requests, since the lower the result, the higher 

the priority obtained. Moreover, the sum of the inverse values 

of (Ir),  ∀𝑟 ∈ 𝑅  shows that the requisitions, in which their 

scheduling has been postponed in each interval, will have higher 

priority to be scaled in the current intervals, thus mitigating the 

starvation situation. 

3.4.2. Definition of restrictions 

For the optimized scheduling, we defined the following 

restrictions: 

▪ Capacity restriction, is presented as the inequation 12 

∑ 𝜂𝑣

𝑣∈𝑉

≤  𝜂    (12) 

Where, 𝜂𝑣 represents the size of the virtual machine and 𝜂 

is the total capacity of the fog node. 

▪ Restriction of VM allocation is presented according to 

inequation 13. 

∑ 𝑲𝒗,𝒓

𝒗∈𝑽

≤  𝟏, ∀𝒗 ∈ 𝑽, ∀𝒓 ∈ 𝑹  (13) 

Where, Κ𝑣,𝑟 is a Boolean variable, which is equal to one, 

if a VM 𝑣 ∈ 𝑉 is affected to a request 𝑟 ∈ 𝑅; otherwise, it is 

zero. 

▪ Restriction of scheduling of requisitions is written 

according to the inequation 14. 

∑ 𝝌𝒓,𝒗

𝒓∈𝑹

≤  𝟏, ∀𝒓 ∈ 𝑹, ∀𝒗 ∈ 𝑽. (14) 

Where, χ𝑟,𝑣 is a Boolean variable, is equal to one if a 

request 𝑟 ∈ 𝑅 is scheduled in a VM 𝑣 ∈ 𝑉; otherwise, it is zero. 

▪ QoS restriction is represented according to inequation 15. 

𝝍𝒓,𝒗 + 𝑸𝒓 ≤  𝑻𝒓, ∀𝒓 ∈ 𝑹. (15) 

Where, 𝜓𝑟,𝑣 represents the time needed to execute a 

request 𝑟 ∈ 𝑅  in a VM 𝑣 ∈ 𝑉 , Qr is the waiting time in the 

requisition queue r. e Tr corresponds to the QoS of the 

application. 

▪ Restriction of energy consumption, is presented according 

to the inequation 16: 

𝑩𝒓 ≥  𝑩𝒕𝒉. (16) 
Where, Br represents the battery level of the end-user 

device associated with a request, 𝑟 ∈ 𝑅  and Bth indicates the 

minimum battery level, so that the requesting device remains on 

until the end of the execution. 

▪ Restriction of the quality of the signal, is written according 

to the inequation 17: 

𝑺𝑰𝑵𝒓 ≥  𝑺𝑰𝑵𝒕𝒉, (17) 
Where, SINr represents the signal strength associated with 

a request 𝑟 ∈  𝑅  and SINth specifies the minimum signal 

strength required for submitting a request. 

4. PERFORMANCE EVALUATION OF THE PROPOSED MODEL 

The simulation environment of the proposed model was 

developed in the iFogSim simulation toolkit and models a fog 

consisting of three hosts with parameters as shown in Table 2. 
Parameters Values 

Amount of MV 1 ~ 15 
Disk capacity of each VM 10,000 MB 

Memory of each VM 512 MB 
Application QoS 6 ~ 15 s 

Request size 1000 ~ 2000 MI 
Bth 15% 

SINth 15 dB 
𝛼𝐵𝑎𝑡𝑒𝑟𝑖𝑎 3 

𝛼𝑠𝑖𝑛 2 
𝛼𝑄𝑜𝑆 4 

Simulation Duration 500 s 

Table 2: Simulation parameters 

4.1. Proposed model analysis performance metrics 

The following performance metrics have been used to 

compare our scheduling proposal (with static and dynamic 

Escalation Interval (IE)) with non-context-aware scheduling 

approaches such as: FCFS, SJF and QoS-based: 

• Percentage of successful request execution: is 

calculated by the ratio between the number of tasks that 

preserve the different context parameters and the total 

number of requested tasks. The higher this percentage 

is, the greater the quantity of tasks that preserve the 

different context parameters. 

• Average waiting time for a task: it is the time elapsed 

from its arrival to its availability in a VM. Qr indicates 

the waiting time of a request 𝑟 ∈ 𝑅.  The average 

waiting time of a task is calculated according to 

equation 18. 

𝑸 ̂ =
𝟏

|𝑹|
∑(𝑸𝒓)

𝒓∈𝑹

 (18) 



where R represents all requests received during the 

simulation period. The lower value of �̂�  the better the 

performance. 

Quality of Experience (QoE): is the degree of overall 

satisfaction of users with the use of a product or service. It can 

be improved through the difference between the maximum time 

allowed to obtain the response (QoS requirement of the 

application), Tr and the response time of a request.  

We calculate the average QoE of all requests R issued 

during the simulation as shown in equation 19. 

 
𝑸𝒐𝑬 =

𝟏

|𝑹|
∑ ∑(𝑻𝒓 − (𝝍𝒓,𝒗 + 𝑸𝒓))

𝒗∈𝑽𝒓∈𝑹

 
(19) 

The higher this value, the better the system's ability to 

optimize user QoE. 

4.2. Results and discussions 

A detailed analysis of the simulation file allows us to 

conclude that the success rate in the context-aware scheduling 

is higher in comparison to the non-context-aware scheduling. 

In the following, we present and discuss the variation of 

successfully executed requests in relation to the increase in 

requests, VMs and QoS requirements of the application. 

4.2.1. Impacts of increased requests 

The percentages of successfully executed requests 

preserving the different context parameters (keeping constant 

the amount of VMs), are presented in graphs 1, 2 and 3. And 

shows that by as you increase the average number of requests 

received, decrease the successful requests that preserve the 

different context parameters. 

 
 

Graph 2: Successfully executed 

tasks preserving battery level in 

relation to increasing requests. 

Graph 3: Tasks successfully 

executed preserving the signal 

level in relation to the increase 

requests. 

 
Graph 4: Successfully executed tasks preserving the QoS level in 

relation to the increase in the number of requests. 

In relation to average waiting time and QoE of users we 

may conclude that as they increase the average number of 

requests received, they increase the average waiting time 

(Graph 4). As they increase the average number of requests 

received, they decrease the QoE of users (Graph 5). 

  

Graph 5: Average waiting time 

in relation to the increase in the 

number of requests. 

Graph 6: Users' QoE in relation 

to the increase in the number of 

requests. 

4.2.2. Impacts of the increase of VMs 

As the average number of VMs increases, so do the successful 

requests that preserve the different context parameters 

  
Graph 7: Requests executed 
preserving the battery level in 
relation to the increase of VMs. 

Graph 8: Requests executed 
preserving the SIN level in 
relation to the VM increase. 

 

Graph 9: Executed requests preserving the QoS in relation to 
the VM increase. 

As for the waiting time and QoE in relation to the VM increase, 
according to graphs 9 and 10, they present theoretically proven 
scenarios: 

• increase average number of VMs, decrease average 
waiting time (graphs 9). 

• increase average VMs, increase users' QoE (graphs 10) 

  
Graph 10: Average waiting 
time in relation to the VM 
increase. 

Graph 11: User QoE in relation to 
VM increase. 

 



4.2.3. Impacts of increasing the average of the application's 

QoS requirement 

In graphs 11 and 12 the impact of the QoS requirement of 

requests on the performance of the proposed model is 

illustrated. 

In graph 11 we can observe that INCREASE the average of 

application QoS of a request, INCREASE the executed requests 

while preserving QoS. 

In graph 12 we can observe that INCREASE the average QoS 

of a request application, INCREASE the QoE of users. 

  

Graph 12: Executed requests 

regarding the increase of QoS of 

the application. 

Graph 13: User QoE in relation 
to increased application QoS. 

In conclusion to this experience, we state without a doubt that 
the proposed context-aware scheduling strategy is efficient in 
terms of the number of tasks that are scheduled and that satisfy 
QoS, reduction of response time, optimization of QoE, reduction 
of average waiting time, among others, in comparison with non-
context-aware scheduling approaches. Considering the reasoned 
observations presented, we can state that our scheduling 
proposal has conditions to be implemented in practical 
environments. 

5. CONCLUSIONS 

The main objective of this paper is to define a context-aware 
task scheduling architecture for the fog computing paradigm. As 
presented, the proposed architecture is efficient enough to 
prioritize tasks regardless of the heterogeneity of their contextual 
information. In addition, it can optimize the QoE of end users 
and enable win-win situations in terms of resource utilization 
and runtime.  

To achieve the main objective, the following piecemeal 
objectives were achieved: 

• We defined some concepts such as: fog computing 

paradigm; context-aware and task scheduling. We 

intend to contextualize the main theories and concepts 

related to this paper. 

• We have identified the different categories and types of 

context in mobile computing as such: Context of the 

user's device, where the types of contexts are 

highlighted: battery level; available processors, 

location; Network context is another categories, where 

the types of contexts are highlighted such as: network 

connectivity, bandwidth, network traffic; another is 

application runtime context, where we indicate the type 

of context: QoS of the application; Service provider 

context, where we indicate the type of context leased 

virtual machines. 

• In our domain of the problem, we take into 

consideration three context parameters: battery level, 

signal-to-noise network interference ratio (SIN) and 

application QoS. 

• We propose a context-aware mobile application task 

scheduler architecture for fog computing paradigm, and 

we present an illustrative example that helps visualize 

the functionalities of the proposed architecture. The 

proposed architecture uses Min-Max normalization, to 

normalize the different context parameters and solve 

the problem of heterogeneity of device and application 

contexts. To define the priority of the context of the 

requests, the MLR analysis was used, which allows the 

availability of a set of hypothetical data. The optimal 

scheduling of requests to optimize QoE, considering the 

various constraints at the application and service levels 

was solved by using the MONLP technique.  

• The validation of the model and the proposed 

architecture was done based on simulations performed 

in the iFogSim toolkit, which enabled us to make 

experimental and theoretical comparisons of our 

context aware proposal for both static and dynamic 

scheduling intervals with non-context aware schedulers 

(FCFS, SJF, QoS-based) based on the following 

metrics: request success rate; average waiting time and 

users' QoE. 
All proposed objectives were achieved. We consider several 

context parameters. However, others can still be pondered to 
analyze their influences on the scheduling. In addition, we plan 
to implement our proposal in real fog environment or in the 
iFogSim simulator, analyze the performance and compare the 
results with the other proposals of escalation not context-aware 
like: First Come First Served, Shortest Job First and QoS based 
Priority Scheduling. Based on some metrics of the evaluation 
such as: percentage of successful requests execution, average 
waiting time and QoE of users in relation to the increase of 
requests, VMs and QoS requirements of the application. 
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