
Context-aware Task Scheduling Algorithm for the Fog Paradigm

- A Model Proposal
Celestino Barros

Faculty of Science and Technology

University of Cape Verde

Praia, Cabo Verde

celestino.barros@docente.unicv.edu.cv

Vítor Rocio

INESC TEC and Open University of

Portugal

Vila Real, Portugal

vitor.rocio@uab.pt

André Sousa

Critical TechWorks

Porto, Portugal

asousa@roundstone.pt

Hugo Paredes

INESC TEC and University of

Trás-os-Montes and Alto Douro

Vila Real, Portugal

hparedes@utad.pt

Olavo Teixeira

Faculty of Science and Technology

University of Cape Verde

Praia, Cabo Verde

olavo.teixeira@docente.unicv.edu.cv

Abstract - Task scheduling in fog paradigm is very complex

and, in the literature, according to the author’s knowledge there

are still few studies. In the cloud architecture, it is widely studied,

and, in much research, it is approached from the perspective of

service providers. Trying to bring innovative contributions in

these areas, in this paper, we propose a solution to the context-

aware task-scheduling problem for fog paradigm. In our proposal,

different context parameters are normalized through Min-Max

normalization, requisition priorities are defined through the

application of the Multiple Linear Regression (MLR) technique

and scheduling is performed using Multi-Objective Non-Linear

Programming Optimization (MONLIP) technique. The results

obtained from simulations in the iFogSim toolkit, show that our

proposal performs better compared to the non-context-aware

proposals.

Keywords - Context awareness; fog computing paradigm; task

scheduling; scheduling in fog paradigm.

1. INTRODUCTION

The growth of mobile devices and the evolution of the
Internet of Things (IoT) has stimulated the growth of devices
connected to the Internet. This growth tends to increase
significantly. On the other hand, several of these devices run
applications that require part of the processing to run in large,
centralized datacenters known as cloud. However, due to
centralization and physical distance from end user´s devices, it
causes an increase in communication latencies and harms
applications that require real-time responses. Different
techniques that minimize cloud processing by adopting local
processing strategies and that allow solving cloud limitations
have been proposed. One such technique is the use of the fog
computing paradigm [1].

According to [2], many of the task scheduling algorithms in
the cloud architecture and fog paradigm found in the literature
do not describe how the priority is defined, do not explain the
method used to prioritize tasks, nor do they define the
prioritization of tasks based on context information, many
defend the perspective of service providers. Others are applied
in grouped tasks to decrease execution time. Some optimize only
QoS. Others explore only some contexts. They also claim that
they allow solving many problems. However, some aspects such
as the use of context in task scheduling, prioritization of context
sensitive tasks, consideration of energy restriction in task
scheduling, preservation of network signal strength, preservation

of QoS, reduction of average waiting time and QoE optimization
can be explored and/or improved.

This paper has as its main objective the conception of
context-aware task scheduling algorithms for fog computing
paradigm. Aiming to achieve the main objective, some specific
objectives were defined: to contextualize concepts such as fog
computing, task scheduling and context-aware; identify the main
contexts that can be considered in any mobile computing
environment; justify the choice of contexts for the domain of our
problem; standardize the different context parameters through
the use of Min-Max normalization; define the priorities of the
requests through the application of the MLR technique and
optimize the scheduling through the use of the MONLIP
technique.

As the main objective of this article is to design a proposal
that has as its scope the creation of knowledge in the form of
techniques, methods, models and theory, the most appropriate
methodology is Design Science Research. It is organized in five
sections: In the first section, we introduce the paper, in the
second, we deal with the contextualization of the subject, in the
third, we describe the contexts envisaged, the model, and the
proposed architecture. In the fourth, the performance of the
proposed model is evaluated, and comparison is made with non-
context aware proposals and in the fifth, the conclusion of the
paper is made.

2. THEORETICAL BACKGROUND

Mobile computing provides users with several utilities,
allows portability, supports applications of various interests, and
has several limitations such as scarcity of resources, reduced
battery life, among others. In recent years, several architectures
have been proposed to solve these limitations, being cloud
computing one of them. Despite the advantages, in some
situations it is not beneficial to use cloud. It is centralized and
consequently the processing is done in concentrated data centers,
for optimization of energy and communications costs. To solve
these inconveniences, several paradigms have been proposed.
Among them is fog computing, which aims to make the services
offered by the cloud available at the edge of the network [3].

In this section, we contextualize and discuss concepts such
as fog computing, context-aware and design of task scheduling
algorithms.

2.1. Fog computing

In the opinion of [3], fog computing is a new paradigm that
aims to overcome the limitations of cloud by providing services
at the edge of the network. In [4], it is broadly defined, and
emphasis is given to some characteristics such as geographical
distribution, predominance of wireless access, heterogeneity,
distributed environment, among others.

As reported in [5], fog has grown a lot since its adoption in
late 2012 by Cisco. It disappoints as an integrated solution to
extend the capabilities of the cloud to the edge of the network
and allow answers to the inconveniences of the classic
centralized model.

According to [6], is: “A horizontal, system-level architecture
that distributes computing, storage, control and networking
functions closer to the users along a cloud-to-thing continuum.”

In the opinion of [7], it is a non-trivial extension of the cloud
because it provides processing, storage, and networking services
near the edge of an enterprise network. Its main characteristics
are its proximity to end users, its dense geographic distribution,
and its mobility support.

As reported in [8], fog computing from the perspective of
mobile computing, aims to provide a cloud-like facility.
However, lighter, closer to the users of mobile devices, it can
serve these users through direct connection, shorter, compared
to the cloud connection. They also advance, that as fog can be
implemented locally, it can provide personalized and location-
committed services, which are more desirable for mobile users
[8].

From our perspective fog computing, converges in terms of
approach as per definitions described in this section. That is, it
combines data processing and storage in the cloud and/or at the
edge of the network, it has the capacity to, when necessary,
search for additional computational resources in the cloud,
availability of services that allow greater geographical
distribution of the system/application and low latency. It consists
of three layers as illustrated in Figure 1.

Figure 1. Fog architecture outlook

2.2. Context-aware and Fog Computing

In mobile computing, the context of a user is very dynamic.
When using applications in that environment, the behavior of
that application must be customized to the current situation of
the user. To promote an effective use of context, many authors
provide context settings and categorizations. In [9], a definition,
the context categories and context sensitive applications are
made available. Information and services, information marking
with context and automatic service execution methodology are

still presented as well as the survey of the state of the art
regarding context-aware computing.

Bazire and Brézillon in [10], reviewed 150 definitions of
context, in different areas of research and concluded that the
creation of a single definition is a hard and probably impossible
effort since it varies with the scientific area and depends mainly
on the field in which it is being applied. However, they define
the context as a set of constraints that influence the behavior
relating to a given task [10].

The context definition most used today, even in other fields,
as in the operationalization was given by [11], [12]:

“Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between user and an
application, including the user and applications themselves” [12]
(p. 45).

In mobile computing, context refers to the processing
environment, user environment, physical environment, relevant
for the interaction between a user and an application, including
the user and the applications themselves [1].

When mobile devices communicate with cloud, they face
high network latency and high transmission power consumption
[13]. They also advance that in fog paradigm, mobile devices
send tasks to fog nodes to be processed and returned the result.
This process reduces, among others, the transmission delay and
power consumption of the mobile device. Due to the lower
capacity of the fog nodes when compared to cloud, the tasks,
which cannot be executed in the fog, are sent to be executed in
cloud [13], as illustrated in the three-tier architecture shown in
Figure 1.

2.3. Design of scheduling algorithms

 According to [14], scheduling is the allocation of resources
needed to execute a task. It assumes as a fundamental process to
improve the reliability and flexibility of the systems. It requires
advanced algorithms capable of choosing the most appropriate
resource to perform the task. It also advances that in its design,
we must consider some constraints such as cost of tasks,
dependencies between tasks and the location. It also guarantees
that scheduling decisions can be static - where decisions about
scheduling are made during the compilation. Or dynamic - where
information about the state of the task flow is used at a given
time during execution for the scheduling decisions. It is the best
approach because it allows several problems to have solutions
that can be represented by a search tree. However, these
problems are computationally demanding, require a strategy of
parallelization and dynamic load balancing [14].

3. PROPOSED MODEL AND ARCHITECTURE

In the following subsections, we describe the envisaged
contexts, we illustrate, and we discuss the model and architecture
of the proposed solution.

3.1. Contexts envisaged and assumptions

We assume that an appropriate code offloading technique
(e.g., MAUI defined in [15], COMET presented in [16], among
others) is being run on mobile devices to make the best decision
as to whether to offload codes and which fog nodes [17].

We consider that a discharged request includes the maximum
delay allowed to execute the application, the battery level, and
the values of the network signal strength of the device. We also
assume, as in [8] that fog provides greater computing capabilities

than mobile devices and can extract the contexts associated with
the requests and make the scheduling decision accordingly.

Musumba and Nyongesa in [1], is defined the main contexts
that can be explored in any mobile computing environment as:
network connection; available processors; battery level;
location; network bandwidth; network traffic; leased of Virtual
Machines (VM) and application QoS requirements.

In our domain of the problem, the contexts of the service
providers because we do not know them were ignored. In
addition, after downloading the tasks in the fog nodes, it
becomes unnecessary to consider the processors of the mobile
device. The location of the device also does not affect the
scheduling, as well as network traffic and bandwidth that are the
same for all users. Based on these criteria we take into
consideration three context parameters: battery level, signal-to-
noise network interference ratio (SIN) and application QoS.

3.2. Proposed MODEL

The fog nodes, with our proposal activated, consists of three

units: Context Information Retrieval Unit, comprises an

architecture, as defined in [18]. It retrieves context information

(Ci) from each request (𝑟 ∈ 𝑅). The recovered context

information is forwarded to the Context-Aware Task

Prioritization Unit, which estimates the value of the context

priority (Pr) for each individual request 𝑟 ∈ 𝑅 and routes it to

the QoE and Context-Aware Scheduler Unit, which schedules

tasks to be executed in VMs so that QoE is optimized.

Figure 2: Proposed model.

Figure 2 shows the different units of the proposed model. The

relevant notations used in the different units are listed in Table1.

Symbols Definition

C Set of all context parameters

αi
Number of different types of abstract levels of a

context parameter, 𝐶𝑖 ∈ 𝐶

𝛾𝑖 Logical difference between two abstract levels 𝐶𝑖 ∈ 𝐶

𝜂𝑖 Normalized range of values 𝐶𝑖 ∈ 𝐶

Li Set of all concrete levels of 𝐶𝑖 ∈ 𝐶 at instant t

𝜃𝑖 Set of biased values 𝐶𝑖 ∈ 𝐶

F
Set of all possible combinations of one element of

each Li

M Multi set of minimum values ∀𝜇 𝜖 𝐹

R Set of request application execution at a given instant t

V Set of virtual machines available at a given instant t

β Set of multiple linear regression coefficients

Pr Priority of any request 𝑟 𝜖 𝑅

𝜓𝑟,𝑣
Time required to execute a request 𝑟 𝜖 𝑅 in a virtual

machine 𝑣 𝜖 𝑉

Ir Number of interruptions of a request 𝑟 𝜖 𝑅

Table 1: Notations and definitions of the proposed model.

We assume that some VMs are already created with different

configurations, which allows minimizing the overloads related

to the processes of creation and elimination of VMs, as claimed

in [19] and [20]. The optimal provision of VM for application

requisitions and their energy-efficient allocations are outside

the scope of this paper. However, they were further developed

in [21] and [22].

3.3. Architecture of the proposed model

The fact that the context parameters associated with a request
are heterogeneous makes it difficult to explore the context
information in the scheduling. To solve this problem, in Han,
Kamber and Jian [23], a context heterogeneity resolver was
proposed, which processes several parameters, in a normalized
interval, through Min-Max normalization, where each request is
prioritized based on its context values.

The following subsections define the architecture of the
proposed model, starting with the Context-Aware Task
Prioritization Unit.

3.3.1. Context-aware Task Prioritization Unit

This unit is composed by: Context Repository, which stores
context information of current and previously received tasks and
Context Forecasting Unit, exploits the context information at a
given time and feeds the Forecast Table. Thus, we manage to
eliminate the heterogeneity of the context information in the
feeding of the forecast table.

The Forecast Table provides a data set for the MLR analysis
that aims to define the priority of requests.

Figure 3: Context-Aware Task Prioritization Unit architecture of the

proposed model.

Figure 3 shows the architecture of the Context-Aware Task

Prioritization Unit of the proposed model.

3.3.2. Creating the Context Priority Forecast Table

To solve problems of heterogeneity of context

information, based on Min-Max standardization, a model was

designed that feeds the forecast table. The context repository

provides context information from tasks previously received at

a given time t. ∀𝐶𝑖 ∈ 𝐶, all the context information is

normalized in relation to the extremes, the values are

concentrated in a range between 0 and 1. This approach allows

minimizing the heterogeneity of the different context

parameters in terms of values and units. We define the

normalized interval, 𝜂𝑖 for a context parameter, 𝐶𝑖 ∈ 𝐶 as:

𝜂𝑖 =
max(𝐶𝑖) − min(𝐶𝑖)

max(𝐶𝑖)
. (1)

Within this normalized range 𝐶𝑖 ∈ 𝐶 , we assume there

exist 𝛼𝑖 abstract levels. These abstract levels represent the

qualitative measurement of the corresponding context

parameter. They allow the variations of values of a given

context parameter to be classified internally. The logical

differences between two consecutive abstract levels, 𝛾𝑖 , of a

context 𝐶𝑖 ∈ 𝐶 are defined as:

𝛾𝑖 =
𝜂𝑖

𝛼𝑖
. (2)

The numerical representation of this abstraction comprises

a concrete set of levels, 𝐿𝑖 for any 𝐶𝑖 ∈ 𝐶 . This approach

transforms qualitative measurement into quantitative,

compatible for further calculations. 𝐿𝑖 set is defined as:

𝐿𝑖 = {𝑥: 𝑥 =
min (𝐶𝑖)

max (𝐶𝑖)
+ 𝑧𝛾𝑖} , ∀𝐶𝑖 ∈ 𝐶. (3)

 Where z = 0,1, 2,…,(𝛼𝑖 − 1).

Calculating the set of Cartesian products, the

combinatorial set of all context levels is defined from the

different context parameters. This Cartesian product is

formulated as indicated in equation 4.

F = ∏ Li

|C|

i=1

. (4)

All possible combinations of the different context

parameters of a request(𝑟 ∈ 𝑅) are determined.

A multi-set M is also created with the minimum values of

each combination of F, defined according to equation 5.

M = {q : q = min (μ)}, ∀μ ∈ F. (5)

It identifies the bottleneck of all possible combinations of

the context of a request 𝑟 ∈ 𝑅 . This bottleneck parameter

influences the prioritization of symbolic combinations.

In addition to the bottleneck parameters, the bias values,

associated with the different levels of the various context

parameters, used in the prioritization, also influence the

prioritization.

This bias value allows emphasizing the other parameters.

It is a one-to-one mapping between the elements of 𝐿𝑖 and the

biased set, 𝜃𝑖 for a given context parameter, 𝐶𝑖 ∈ 𝐶.

Be, 𝜃𝑖,𝑗 refers to the minimum bias value of 𝐶𝑖, at its jth

level associated with a candidate combination in F. For

mapping, 𝜃𝑖 to Li, 𝜃𝑖,0, it is assumed, ∀𝐶𝑖 ∈ 𝐶.

∀𝐶𝑖 ∈ 𝐶, 𝜃𝑖,𝑗 must satisfy the following condition:

𝜃𝑖,𝑗 ∗ 𝑚𝑎𝑥(𝑞 ∈ 𝑀) < 𝜃𝑖,𝑗+1 ∗ 𝑚𝑖𝑛(𝑞 ∈ 𝑀). (6)

The priorities of these combinations are defined so that the

context information of any request can be mapped over itself to

predict the priority of that request.

The priority calculation is performed using the relevant

bias values ∀𝐶𝑖 ∈ 𝐶 and its bottleneck context parameter. We

assume that 𝛿𝑖 (𝜇𝑘) defines the context priority 𝜇𝑘 ∈ 𝐹 biased

in 𝐶𝑖 ∈ 𝐶. 𝛿𝑖 (𝜇𝑘) is represented according to equation 7.

𝛿𝑖 (𝜇𝑘) =
𝜃𝑖𝑗 ∗ 𝑞𝑘

∑ 𝑞
, ∀𝑞 ∈ 𝑀. (7)

Where, 0 ≤ 𝑘 ≤ (|𝐹| − 1) and 𝑞𝑘 ∈ 𝑀 is associated

with 𝜇𝑘.

The priority estimated, �̂�𝑖(𝜇𝑘) of 𝜇𝑘 is calculated using

equation 8.

�̂�𝑖(𝜇𝑘) = ∑ 𝛿𝑖 (𝜇𝑘)

𝐶𝑖∈ 𝐶

.
(8)

𝜇𝑘 and �̂�(𝜇𝑘), ∀𝜇𝑘 ∈ 𝐹 will feed the forecast table with a

set of data. This forecast table data works as hypothetical data

to predict the priority of any queued request.

3.3.3. Predicting Context Priority

MLR is one of the multivariate statistical methods whose

main concern is to establish the relationships between several

independent or predictor variables and a dependent variable or

criteria [24]. By identifying how these multiple independent

variables relate to the dependent variable, information about the

independent variables can be used to make accurate and

powerful forecasts [24]. Consider m observations of a set of p

number of the predictor variable Xs and a criterion variable Y

associated with them. The MLR model, which fits this scenario,

is defined according to equation 9.

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑥𝑖𝑗 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 ∈𝑖, (9)

Where, for the ith observation, 𝑦𝑖 = Y e 𝑥𝑗𝑖 =𝑋𝑗 ,∀𝑋𝑗 ∈ 𝑋.

The MLR coefficient, 𝛽0, is the interception of the population

and 𝛽𝑗, is the variation of Y in a unit of variation in 𝑋𝑗, ∀𝑋𝑗 ∈

𝑋 𝑒 1 ≤ 𝑗 ≤ 𝑝, keeping the other independent variables

constant, 𝜖𝑖 is the random or unexplainable error associated

with the ith observation. The estimated values of the MLR

coefficients are calculated using the known values in equation

(8) of each observation and solved algebraically. Estimating 𝛽

= {𝛽0, 𝛽1, …, 𝛽𝑝}, ∀𝛽0 ∈ 𝛽 and 𝜎𝜖
2 (error of the variance), the

adjusted regression line, which predicts Y for any unknown

observation, is expressed according to equation 10:

�̂�𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + ⋯ + 𝑏𝑥𝑖𝑗 + ⋯ + 𝑏𝑝𝑥𝑖𝑝 ∈𝑖
(10)

Where, �̂�𝑖 is the predicted value for any unknown

observation, 𝑏𝑗 is the sample estimate of 𝛽𝑗 ∀𝛽𝑗 ∈ 𝛽.

Instead of calculating regressions for each predictor

variable individually, MLR uses information from all

independent variables simultaneously to predict a single criteria

variable. As a result, it is naturally faster than other multivariate

analysis methods [25].

We map the context forecast table to the MLR model,

considering each tuple of the forecast table as an observation of

an MLR data set where, the set of independent variables, X =

Ci, ∀𝐶𝑖 ∈ 𝐶 of each combination 𝜇 ∈ 𝐹, the dependent variable,

Y = �̂�𝑖(𝜇𝑘) is the expected priority of any unknown request,,

𝑃𝑟 = �̂�𝑖.

For any request 𝑟 ∈ 𝑅, the lower the 𝑃𝑟 value, the higher

the priority. The context priority forecast table is created

through the quantitative values ∀𝐶𝑖 ∈ 𝐶 and the context

parameters that are independent from each other.

After the context priority is defined, the context information of

this task is saved in the context repository.

3.4. Optimization of application scheduling

In order to optimize QoE, the proposed scheduler explores

the context priority (Pr) of the request 𝑟 ∈ 𝑅 and its estimated

execution time duration (Tr,v) to define the scheduling of this

request 𝑟 ∈ 𝑅 in an VM, 𝑣 ∈ 𝑉. If due to the limited number of

VM's and the low priority, a request 𝑟 ∈ 𝑅 cannot be scaled in

a scheduling interval, it must be scaled in the next intervals. In

our proposal, the execution of tasks with lower priority is

interrupted due to the arrival of tasks with higher priority.

Considering that this preemption can provide indefinite waiting

for the execution of a request 𝑟 ∈ 𝑅, we also explore the number

of scheduling intervals (Ir), in which a scheduling request is

postponed since its arrival, to avoid the starvation condition.

To optimize QoE, the MONLP technique was used to

schedule the requisitions.

According to [26], the MONLP technique is generally

applied to optimization problems where there are more than one

nonlinear and conflicting objective function (OF) to be

optimized simultaneously. It has some elements: set of

nonlinear objective functions that must be optimized; decision

variables that constitute the domain in which each OF must

operate; restrictions that delimit the search space.

In sections 3.4.1 and 3.4.2, the objective functions and

restrictions for optimized application scheduling are defined.

3.4.1. Definition of the objective function

One of the objectives of this paper consists of scheduling

requisitions, 𝑟 ∈ 𝑅 in VM, 𝑣 ∈ 𝑉, to optimize the QoE for all

the requisitions in a certain scheduling interval.

If the execution of all requisitions, 𝑟 ∈ 𝑅 are not

preemptive and that all VMs, 𝑣 ∈ 𝑉 are created in the fog, the

OF is defined according to equation 11.

𝑚𝑖𝑛𝑟,𝑣 ∑ ∑
𝑃𝑟 ∗ 𝜓𝑟,𝑣

𝐼𝑟
𝑣∈𝑉𝑟∈𝑅

 (11)

And it is subjected to some restrictions, (inequation (12)

to (17)).

This equation indicates that the QoE of all user application

requests can be optimized by minimizing the sum of their

execution times. It also considers the priority execution of the

tasks with higher priorities by minimizing the sum of the

priorities of all requests, since the lower the result, the higher

the priority obtained. Moreover, the sum of the inverse values

of (Ir), ∀𝑟 ∈ 𝑅 shows that the requisitions, in which their

scheduling has been postponed in each interval, will have higher

priority to be scaled in the current intervals, thus mitigating the

starvation situation.

3.4.2. Definition of restrictions

For the optimized scheduling, we defined the following

restrictions:

▪ Capacity restriction, is presented as the inequation 12

∑ 𝜂𝑣

𝑣∈𝑉

≤ 𝜂 (12)

Where, 𝜂𝑣 represents the size of the virtual machine and 𝜂

is the total capacity of the fog node.

▪ Restriction of VM allocation is presented according to

inequation 13.

∑ 𝑲𝒗,𝒓

𝒗∈𝑽

≤ 𝟏, ∀𝒗 ∈ 𝑽, ∀𝒓 ∈ 𝑹 (13)

Where, Κ𝑣,𝑟 is a Boolean variable, which is equal to one,

if a VM 𝑣 ∈ 𝑉 is affected to a request 𝑟 ∈ 𝑅; otherwise, it is

zero.

▪ Restriction of scheduling of requisitions is written

according to the inequation 14.

∑ 𝝌𝒓,𝒗

𝒓∈𝑹

≤ 𝟏, ∀𝒓 ∈ 𝑹, ∀𝒗 ∈ 𝑽. (14)

Where, χ𝑟,𝑣 is a Boolean variable, is equal to one if a

request 𝑟 ∈ 𝑅 is scheduled in a VM 𝑣 ∈ 𝑉; otherwise, it is zero.

▪ QoS restriction is represented according to inequation 15.

𝝍𝒓,𝒗 + 𝑸𝒓 ≤ 𝑻𝒓, ∀𝒓 ∈ 𝑹. (15)

Where, 𝜓𝑟,𝑣 represents the time needed to execute a

request 𝑟 ∈ 𝑅 in a VM 𝑣 ∈ 𝑉 , Qr is the waiting time in the

requisition queue r. e Tr corresponds to the QoS of the

application.

▪ Restriction of energy consumption, is presented according

to the inequation 16:

𝑩𝒓 ≥ 𝑩𝒕𝒉. (16)
Where, Br represents the battery level of the end-user

device associated with a request, 𝑟 ∈ 𝑅 and Bth indicates the

minimum battery level, so that the requesting device remains on

until the end of the execution.

▪ Restriction of the quality of the signal, is written according

to the inequation 17:

𝑺𝑰𝑵𝒓 ≥ 𝑺𝑰𝑵𝒕𝒉, (17)
Where, SINr represents the signal strength associated with

a request 𝑟 ∈ 𝑅 and SINth specifies the minimum signal

strength required for submitting a request.

4. PERFORMANCE EVALUATION OF THE PROPOSED MODEL

The simulation environment of the proposed model was

developed in the iFogSim simulation toolkit and models a fog

consisting of three hosts with parameters as shown in Table 2.
Parameters Values

Amount of MV 1 ~ 15
Disk capacity of each VM 10,000 MB

Memory of each VM 512 MB
Application QoS 6 ~ 15 s

Request size 1000 ~ 2000 MI
Bth 15%

SINth 15 dB
𝛼𝐵𝑎𝑡𝑒𝑟𝑖𝑎 3

𝛼𝑠𝑖𝑛 2
𝛼𝑄𝑜𝑆 4

Simulation Duration 500 s

Table 2: Simulation parameters

4.1. Proposed model analysis performance metrics

The following performance metrics have been used to

compare our scheduling proposal (with static and dynamic

Escalation Interval (IE)) with non-context-aware scheduling

approaches such as: FCFS, SJF and QoS-based:

• Percentage of successful request execution: is

calculated by the ratio between the number of tasks that

preserve the different context parameters and the total

number of requested tasks. The higher this percentage

is, the greater the quantity of tasks that preserve the

different context parameters.

• Average waiting time for a task: it is the time elapsed

from its arrival to its availability in a VM. Qr indicates

the waiting time of a request 𝑟 ∈ 𝑅. The average

waiting time of a task is calculated according to

equation 18.

𝑸 ̂ =
𝟏

|𝑹|
∑(𝑸𝒓)

𝒓∈𝑹

 (18)

where R represents all requests received during the

simulation period. The lower value of �̂� the better the

performance.

Quality of Experience (QoE): is the degree of overall

satisfaction of users with the use of a product or service. It can

be improved through the difference between the maximum time

allowed to obtain the response (QoS requirement of the

application), Tr and the response time of a request.

We calculate the average QoE of all requests R issued

during the simulation as shown in equation 19.

𝑸𝒐𝑬 =

𝟏

|𝑹|
∑ ∑(𝑻𝒓 − (𝝍𝒓,𝒗 + 𝑸𝒓))

𝒗∈𝑽𝒓∈𝑹

(19)

The higher this value, the better the system's ability to

optimize user QoE.

4.2. Results and discussions

A detailed analysis of the simulation file allows us to

conclude that the success rate in the context-aware scheduling

is higher in comparison to the non-context-aware scheduling.

In the following, we present and discuss the variation of

successfully executed requests in relation to the increase in

requests, VMs and QoS requirements of the application.

4.2.1. Impacts of increased requests

The percentages of successfully executed requests

preserving the different context parameters (keeping constant

the amount of VMs), are presented in graphs 1, 2 and 3. And

shows that by as you increase the average number of requests

received, decrease the successful requests that preserve the

different context parameters.

Graph 2: Successfully executed

tasks preserving battery level in

relation to increasing requests.

Graph 3: Tasks successfully

executed preserving the signal

level in relation to the increase

requests.

Graph 4: Successfully executed tasks preserving the QoS level in

relation to the increase in the number of requests.

In relation to average waiting time and QoE of users we

may conclude that as they increase the average number of

requests received, they increase the average waiting time

(Graph 4). As they increase the average number of requests

received, they decrease the QoE of users (Graph 5).

Graph 5: Average waiting time

in relation to the increase in the

number of requests.

Graph 6: Users' QoE in relation

to the increase in the number of

requests.

4.2.2. Impacts of the increase of VMs

As the average number of VMs increases, so do the successful

requests that preserve the different context parameters

Graph 7: Requests executed
preserving the battery level in
relation to the increase of VMs.

Graph 8: Requests executed
preserving the SIN level in
relation to the VM increase.

Graph 9: Executed requests preserving the QoS in relation to
the VM increase.

As for the waiting time and QoE in relation to the VM increase,
according to graphs 9 and 10, they present theoretically proven
scenarios:

• increase average number of VMs, decrease average
waiting time (graphs 9).

• increase average VMs, increase users' QoE (graphs 10)

Graph 10: Average waiting
time in relation to the VM
increase.

Graph 11: User QoE in relation to
VM increase.

4.2.3. Impacts of increasing the average of the application's

QoS requirement

In graphs 11 and 12 the impact of the QoS requirement of

requests on the performance of the proposed model is

illustrated.

In graph 11 we can observe that INCREASE the average of

application QoS of a request, INCREASE the executed requests

while preserving QoS.

In graph 12 we can observe that INCREASE the average QoS

of a request application, INCREASE the QoE of users.

Graph 12: Executed requests

regarding the increase of QoS of

the application.

Graph 13: User QoE in relation
to increased application QoS.

In conclusion to this experience, we state without a doubt that
the proposed context-aware scheduling strategy is efficient in
terms of the number of tasks that are scheduled and that satisfy
QoS, reduction of response time, optimization of QoE, reduction
of average waiting time, among others, in comparison with non-
context-aware scheduling approaches. Considering the reasoned
observations presented, we can state that our scheduling
proposal has conditions to be implemented in practical
environments.

5. CONCLUSIONS

The main objective of this paper is to define a context-aware
task scheduling architecture for the fog computing paradigm. As
presented, the proposed architecture is efficient enough to
prioritize tasks regardless of the heterogeneity of their contextual
information. In addition, it can optimize the QoE of end users
and enable win-win situations in terms of resource utilization
and runtime.

To achieve the main objective, the following piecemeal
objectives were achieved:

• We defined some concepts such as: fog computing

paradigm; context-aware and task scheduling. We

intend to contextualize the main theories and concepts

related to this paper.

• We have identified the different categories and types of

context in mobile computing as such: Context of the

user's device, where the types of contexts are

highlighted: battery level; available processors,

location; Network context is another categories, where

the types of contexts are highlighted such as: network

connectivity, bandwidth, network traffic; another is

application runtime context, where we indicate the type

of context: QoS of the application; Service provider

context, where we indicate the type of context leased

virtual machines.

• In our domain of the problem, we take into

consideration three context parameters: battery level,

signal-to-noise network interference ratio (SIN) and

application QoS.

• We propose a context-aware mobile application task

scheduler architecture for fog computing paradigm, and

we present an illustrative example that helps visualize

the functionalities of the proposed architecture. The

proposed architecture uses Min-Max normalization, to

normalize the different context parameters and solve

the problem of heterogeneity of device and application

contexts. To define the priority of the context of the

requests, the MLR analysis was used, which allows the

availability of a set of hypothetical data. The optimal

scheduling of requests to optimize QoE, considering the

various constraints at the application and service levels

was solved by using the MONLP technique.

• The validation of the model and the proposed

architecture was done based on simulations performed

in the iFogSim toolkit, which enabled us to make

experimental and theoretical comparisons of our

context aware proposal for both static and dynamic

scheduling intervals with non-context aware schedulers

(FCFS, SJF, QoS-based) based on the following

metrics: request success rate; average waiting time and

users' QoE.
All proposed objectives were achieved. We consider several

context parameters. However, others can still be pondered to
analyze their influences on the scheduling. In addition, we plan
to implement our proposal in real fog environment or in the
iFogSim simulator, analyze the performance and compare the
results with the other proposals of escalation not context-aware
like: First Come First Served, Shortest Job First and QoS based
Priority Scheduling. Based on some metrics of the evaluation
such as: percentage of successful requests execution, average
waiting time and QoE of users in relation to the increase of
requests, VMs and QoS requirements of the application.

REFERENCES

[1] G. W. Musumba and H. O. Nyongesa, “Context awareness in

mobile computing: A review,” Int. J. Mach. Learn. Appl., vol.

2, no. 1, May 2013. DOI: 10.4102/ijmla.v2i1.5. URL:

https://ijmla.net/index.php/ijmla/article/view/5.

[2] C. Barros, V. Rocio, A. Sousa, and H. Paredes, “Survey on

Job Scheduling in Cloud-Fog Architecture,” in 2020 15th

Iberian Conference on Information Systems and Technologies

(CISTI), 2020, pp. 1–7.

[3] I. Stojmenovic, “Fog computing: A cloud to the ground

support for smart things and machine-to-machine networks,”

in 2014 Australasian Telecommunication Networks and

Applications Conference (ATNAC), Nov. 2014, pp. 117–122.

DOI: 10.1109/ATNAC.2014.7020884. URL:

http://ieeexplore.ieee.org/document/7020884/.

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M.

Lindner, “A break in the clouds,” ACM SIGCOMM Comput.

Commun. Rev., vol. 39, no. 1, pp. 50–55, Dec. 2008. DOI:

10.1145/1496091.1496100. URL:

https://doi.org/10.1145/1496091.1496100.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog

Computing and Its Role in the Internet of Things,” in

Proceedings of the First Edition of the MCC Workshop on

Mobile Cloud Computing, 2012, pp. 13–16. DOI:

10.1145/2342509.2342513. URL:

https://doi.org/10.1145/2342509.2342513.

[6] OpenFog, “OpenFog Reference Architecture for Fog

Computing,” OpenFog, 2017.

https://www.iiconsortium.org/pdf/OpenFog_Reference_Arch

itecture_2_09_17.pdf (accessed Feb. 24, 2020). URL:

https://www.iiconsortium.org/pdf/OpenFog_Reference_Arch

itecture_2_09_17.pdf.

[7] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,

“iFogSim: A toolkit for modeling and simulation of resource

management techniques in the Internet of Things, Edge and

Fog computing environments,” Softw. Pract. Exp., vol. 47, no.

9, pp. 1275–1296, Sep. 2017. DOI: 10.1002/spe.2509. URL:

http://doi.wiley.com/10.1002/spe.2509.

[8] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. We, and L. Sun, “A

View of Fog Computing from Networking Perspective,” Feb.

2016, [Online]. Available: http://arxiv.org/abs/1602.01509.

URL: http://arxiv.org/abs/1602.01509.

[9] A. K. Dey, D. Salber, G. D. Abowd, and M. Futakawa, “The

Conference Assistant: combining context-awareness with

wearable computing,” in Digest of Papers. Third

International Symposium on Wearable Computers, 1999, pp.

21–28. DOI: 10.1109/ISWC.1999.806639. URL:

http://ieeexplore.ieee.org/document/806639/.

[10] M. Bazire and P. Brézillon, “Understanding Context Before

Using It,” in Modeling and Using Context, A. Dey, B.

Kokinov, D. Leake, and R. Turner, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 29–40. DOI:

10.1007/11508373_3. URL:

http://link.springer.com/10.1007/11508373_3.

[11] A. K. Dey, “Understanding and Using Context, Personal and

Ubiquitous Computing, Vol. 5,” vol. 5, pp. 4–7, 2001.

[12] A. K. Dey, “Understanding and Using Context,” Pers.

Ubiquitous Comput., vol. 5, no. 1, pp. 4–7, Feb. 2001. DOI:

10.1007/s007790170019. URL:

https://doi.org/10.1007/s007790170019.

[13] Y. Jararweh, L. Tawalbeh, F. Ababneh, and F. Dosari,

“Resource Efficient Mobile Computing Using Cloudlet

Infrastructure,” in 2013 IEEE 9th International Conference

on Mobile Ad-hoc and Sensor Networks, Dec. 2013, pp. 373–

377. DOI: 10.1109/MSN.2013.75. URL:

http://ieeexplore.ieee.org/document/6726359/.

[14] P. Swaroop, “Cost Based Job Scheduling in Fog Computing,”

(Ph.D), Delhi Technological University, 2019. URL:

http://dspace.dtu.ac.in:8080/jspui/handle/repository/16722.

[15] E. Cuervo et al., “MAUI: Making Smartphones Last Longer

with Code Offload,” in Proceedings of the 8th International

Conference on Mobile Systems, Applications, and Services,

2010, pp. 49–62. DOI: 10.1145/1814433.1814441. URL:

https://doi.org/10.1145/1814433.1814441.

[16] M. Gordon, D. Jamshidi, S. Mahlke, Z. Mao, and X. Chen,

“COMET: code offload by migrating execution

transparently,” in Proceedings of the 10th USENIX

Conference on Operating Systems Design and

Implementation, 2012, pp. 93–106.

[17] F. Berg, F. Dürr, and K. Rothermel, “Increasing the Efficiency

and Responsiveness of Mobile Applications with Preemptable

Code Offloading,” in 2014 IEEE International Conference on

Mobile Services, 2014, pp. 76–83. DOI:

10.1109/MobServ.2014.20.

[18] H. J. La and S. D. Kim, “A Conceptual Framework for

Provisioning Context-aware Mobile Cloud Services,” in 2010

IEEE 3rd International Conference on Cloud Computing, Jul.

2010, pp. 466–473. DOI: 10.1109/CLOUD.2010.78. URL:

http://ieeexplore.ieee.org/document/5557960/.

[19] A. K. Das, T. Adhikary, M. A. Razzaque, and Choong Seon

Hong, “An intelligent approach for virtual machine and QoS

provisioning in cloud computing,” in The International

Conference on Information Networking 2013 (ICOIN), Jan.

2013, pp. 462–467. DOI: 10.1109/ICOIN.2013.6496423.

URL: http://ieeexplore.ieee.org/document/6496423/.

[20] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards

QoS-Aware Fog Service Placement,” in 2017 IEEE 1st

International Conference on Fog and Edge Computing

(ICFEC), May 2017, pp. 89–96. DOI:

10.1109/ICFEC.2017.12. URL:

http://ieeexplore.ieee.org/document/8014364/.

[21] T. Li, Y. Liu, L. Gao, and A. Liu, “A Cooperative-Based

Model for Smart-Sensing Tasks in Fog Computing,” IEEE

Access, vol. 5, pp. 21296–21311, 2017. DOI:

10.1109/ACCESS.2017.2756826. URL:

http://ieeexplore.ieee.org/document/8049440/.

[22] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang,

“DEBTS: Delay Energy Balanced Task Scheduling in

Homogeneous Fog Networks,” IEEE Internet Things J., vol.

5, no. 3, pp. 2094–2106, Jun. 2018. DOI:

10.1109/JIOT.2018.2823000. URL:

https://ieeexplore.ieee.org/document/8331084/.

[23] J. Han, M. Kamber, and P. Jian, Data Mining: Concepts and

Techniques. Elsevier, 2012. DOI: 10.1016/C2009-0-61819-5.

URL:

https://linkinghub.elsevier.com/retrieve/pii/C20090618195.

[24] G. P. Quinn and M. J. Keough, Experimental Design and Data

Analysis for Biologists. Cambridge University Press, 2002.

DOI: 10.1017/CBO9780511806384. URL:

https://www.cambridge.org/core/product/identifier/9780511

806384/type/book.

[25] C. Mertler, Advanced and Multivariate Statistical Methods:

Practical Application and Interpretation, 4th Editio. Pyrczak

Publishing, 2009.

[26] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12.

Boston, MA: Springer, Boston, MA, 1998. DOI:

10.1007/978-1-4615-5563-6. URL:

http://link.springer.com/10.1007/978-1-4615-5563-6.

