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Tübingen

2022



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.
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Abstract

Inductive bias describes the preference for solutions that a machine learning algorithm
holds before seeing any data. It is a necessary ingredient for the goal of machine
learning, which is to generalize from a set of examples to unseen data points. Yet, the
inductive bias of learning algorithms is often not specified explicitly in practice, which
prevents a theoretical understanding and undermines trust in machine learning. This
issue is most prominently visible in the contemporary case of deep learning, which is
widely successful in applications but relies on many poorly understood techniques and
heuristics. This thesis aims to uncover the hidden inductive biases of machine learning
algorithms.

In the first part of the thesis, we uncover the implicit inductive bias of NetGAN, a
complex graph generative model with seemingly no prior preferences. We find that the
root of its generalization properties does not lie in the GAN architecture but in an
inconspicuous low-rank approximation. We then use this insight to strip NetGAN of
all unnecessary parts, including the GAN, and obtain a highly simplified reformulation.

Next, we present a generic algorithm that reverse-engineers hidden inductive bias in
approximate Bayesian inference. While the inductive bias is completely described by
the prior distribution in full Bayesian inference, real-world applications often resort to
approximate techniques that can make uncontrollable errors. By reframing the problem
in terms of incompatible conditional distributions, we arrive at a generic algorithm
based on pseudo-Gibbs sampling that attributes the change in inductive bias to a
change in the prior distribution.

The last part of the thesis concerns a common inductive bias in causal learning, the
assumption of independent causal mechanisms. Under this assumption, we consider
estimators for confounding strength, which governs the generalization ability from ob-
servational distribution to the underlying causal model. We show that an existing
estimator is generally inconsistent and propose a consistent estimator based on tools
from random matrix theory.
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Zusammenfassung

Induktive Verzerrung beschreibt die Präferenz für Lösungen, welche ein Algorithmus
für maschinelles Lernen hat, bevor er Daten sieht. Sie ist notwendiger Bestandteil für
das Ziel des maschinellen Lernens, nämlich von einer Menge an Beispielen auf unge-
sehene Datenpunkte zu verallgemeinern. In der Praxis wird die induktive Verzerrung
jedoch oft nicht explizit spezifiziert, was theoretisches Verständnis verhindert und das
Vertrauen in maschinelles Lernen untergräbt. Am deutlichsten wird dieses Problem
am zeitgenössischen Beispiel von deep learning, das zwar in vielen Anwendungen er-
folgreich ist, aber auf einer Vielzahl schlecht verstandener Techniken und Heuristiken
beruht. Ziel dieser Dissertation ist es, die versteckten induktiven Verzerrungen von
Algorithmen des maschinellen Lernens aufzudecken.

Im ersten Teil der Dissertation decken wir die induktive Verzerrung von NetGAN auf,
einem komplexen generativen Graphenmodell, das scheinbar keine Präferenzen hat.
Wir stellen fest, dass die Ursache der Generalisierung nicht in der GAN-Architektur
liegt, sondern in einer unscheinbaren Approximation mit niedrigem Rang. Wir nutzen
diese Erkenntnis, um NetGAN von allen unnötigen Teilen, einschließlich des GAN, zu
befreien und eine stark vereinfachte Reformulierung zu erhalten.

Als Nächstes präsentieren wir einen generischen Algorithmus, der die versteckte induk-
tive Verzerrung in der approximativen Bayesschen Inferenz enthüllt. Während die in-
duktive Verzerrung bei der Bayesschen Inferenz vollständig durch den Prior beschrieben
wird, greifen reale Anwendungen oft auf approximative Techniken zurück, die unkon-
trollierbare Fehler machen können. Indem wir das Problem in Form von inkompatiblen
bedingten Verteilungen reformulieren, kommen wir zu einem generischen Algorithmus,
der auf Pseudo-Gibbs-Sampling basiert und die Änderung der induktiven Verzerrung
auf eine Änderung des Priors zurückführt.

Der letzte Teil der Dissertation betrifft eine häufige induktive Verzerrung beim kausalen
Lernen, die Annahme unabhängiger kausaler Mechanismen. Unter dieser Annahme
betrachten wir Schätzer für die Stärke von Störfaktoren, die die Generalisierung von
der Beobachtungsverteilung auf das zugrunde liegende kausale Modell bestimmt. Wir
zeigen, dass ein bestehender Schätzer im Allgemeinen inkonsistent ist und präsentieren
einen konsistenten Schätzer mit Werkzeugen aus der Theorie von Zufallsmatrizen.
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Chapter 1

Introduction

In the classical research cycle, the researcher starts by formulating a hypothesis based
on their expertise. They then design an experiment that tests how well the hypothesis
predicts real data. If there is a mismatch, the researcher carefully analyzes the data,
updates the hypothesis, and repeats the cycle. This process repeatedly applies two op-
posing principles, deduction and induction. Deduction starts with a general hypothesis
and uses logic to deduce exact conclusions for particular data points. For example,
Newton’s second law of motion Force = Mass × Acceleration can be rearranged to
predict how much a particular object accelerates if we know its mass and the applied
force. Reversely, induction starts with particular data points and aims to estimate a
general hypothesis. For example, we can apply various forces to objects with various
masses, observe their accelerations, and then use these data to derive a general rule
that governs their relationship.

In today’s information age, data are available in great abundance. While this facilitates
the task of inductive inference, it also makes its manual implementation challenging,
if not outright impossible. This is the case if there are too many data points to be
parsed manually or if the underlying rule is too complex to be captured by a simple
hypothesis. An example of the latter is digit recognition: people generally agree when
asked to classify a specific hand-written digit, that is, they share the same underlying
classification rule but find it hard to specify this rule explicitly.

Machine learning provides a remedy to these issues by automating the process of in-
ductive inference. Generically speaking, a machine learning algorithm A is fed with
a data set D and, without further intervention, returns a hypothesis H that tries to
solve a given learning task. This inductive inference step is called the training phase.
Once it is completed, the hypothesis can be used to make deductions. There are many
different instances of this abstract framework. To name just a few, the data set types
can include text in natural language processing, audio in speech recognition, images or
video in computer vision, categorical data such as gender or ethnicity, or continuous
data such as height or age. Learning tasks are commonly separated into the categories
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2 CHAPTER 1. INTRODUCTION

of supervised and unsupervised learning. In supervised learning, each data point is
associated with a label and the task is to learn a function that predicts those labels for
given data points. Depending on the type of labels, the task is called classification for
categorical labels and regression for continuous labels. In unsupervised learning, data
points have no labels and the task is to discover patterns in the data. This includes
clustering, in which the data set is partitioned into meaningful subgroups, ranking, in
which the data points are ordered according to some criterion, or dimensionality reduc-
tion, in which the data are transformed into a simpler lower-dimensional representation
without destroying their properties.

In the remainder of this paragraph, I introduce a specific formal learning problem
based on which I will discuss the general concept of inductive bias. Assume we are
given a set of labeled data points D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × R which are
sampled independently from a distribution PX,Y . The task is to predict the (random)
labels y of given data points x, a relationship which is fully described by the family
of conditional distributions PY |X . However, in practice, we often settle for the easier

task of learning the most reasonable deterministic predictor f : Rd → R from a set of
functions f ∈ F . In this context, “most reasonable” is specified by a loss function
l : R × R → R≥0. The loss l(y′, y) penalizes a prediction y′ that differs from the true
label y with the convention l(y, y) = 0 for exact predictions. Since the goal is to give
good predictions on unseen data points, the risk of a predictor f ∈ F is defined as the
average loss

R(f) = E(x,y)∼PX,Y
[l(f(x), y)]

over unseen test points (x, y) ∼ PX,Y sampled from the same distribution as the training
set. A predictor with minimal risk is called a Bayes classifier f∗ with corresponding
Bayes risk R∗. Formally, they are given by

f∗ ∈ argmin
f∈F

R(f) and R∗ = R(f∗) .

A learning algorithm successfully generalizes to unseen data if it returns a predictor
whose risk is lower than that of random guessing.

Thesis structure This thesis is structured as follows. I first discuss inductive bias
on a general level through the concepts of the no free lunch theorem (Section 1.1) and
Occam’s razor (Section 1.2). Next, I move to the more concrete example of inductive
bias in deep learning for which I discuss the ways in which this bias is encoded explicitly
(Section 1.3), why the success of deep learning relies on hidden, implicitly specified
inductive bias (Section 1.4), and recent efforts to uncover this hidden bias (Section 1.5).
Section 1.6 summarizes my original contributions, which also revolve around uncovering
hidden inductive bias. They are presented in Chapters 2, 3, and 4. Chapter 5 concludes
by discussing the necessity and the advantages of explicit inductive bias.
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1.1 The no free lunch theorem: inductive bias is necessary

The inductive inference task requires generalizing information from a particular data
set to unseen test points. This inverse problem is ill-posed since there are multiple
(usually infinitely many) predictors which can explain the observed data. There is no
unique candidate predictor and we have to make an arbitrary choice. For example,
assume we observe the binary sequence 0, 1, 0, 0 and are asked to predict the next
unseen element in {0, 1}. Is there any clever argument for why we should prefer one
option over the other? The no free lunch theorem (Duda et al., 2000; Wolpert, 1994)
tells us that this is not the case:

Theorem 1 (No free lunch, informal statement). Uniformly averaged over all
possible problem instances, all learning algorithms have the same generalization power.

In other words, no algorithm is inherently superior to any other and there is no fun-
damental reason to prefer any elaborate, complex algorithm to random guessing. Al-
gorithms can only differ in the way they distribute their generalization power over
problem instances. For example, compare random guessing with the constant algo-
rithm, which always returns some predictor f0 ∈ F independently of the data. The no
free lunch theorem tells us that, on average over all possible problem instances f∗ ∈ F ,
both algorithms have the same performance. But they strongly differ on particular
instances: the constant algorithm is exact for f∗ = f0 but always misses for f∗ ̸= f0,
whereas random guessing has the same (low) performance on every problem instance.
Does this now mean that learning is impossible and we could have just guessed instead
of developing powerful algorithms such as deep neural networks? Fortunately, this is
not the case, because the crux about learning lies in the clause “uniformly averaged
over all possible problem instances”. In real-world learning problems, we can often
exclude some solutions or express preferences of some solutions over others, even before
seeing any data. Formally, we can posit that the solution lies in some smaller sub-
set f∗ ∈ Fsub ⊂ F . This additional information allows us to obtain algorithms that
perform above average on the relevant set Fsub. This does not contradict the no free
lunch theorem, which only enforces that these algorithms perform below average on the
irrelevant set F \Fsub. As a trivial example, assume we already know that the solution
is f0. As discussed above, the algorithm that constantly returns f0 is not superior to
random guessing over all solutions because it performs suboptimally on F \ {f0}, but
restricted on {f0} it is optimal. We commonly refer to this a priori restriction of the
solution space as inductive bias, because it biases the inductive inference task towards
certain solutions, independently of any data. In the above sense, inductive bias is nec-
essary for generalization and any statement of the form “algorithm A is superior to
algorithm B” is ultimately a statement about their inductive biases. The word ‘bias’ is
often negatively connoted, for example in statistics it describes the average discrepancy
between a target parameter and an estimator. However here, inductive bias is not a
nuisance that we try to get rid of, but a necessary ingredient for successful learning.
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The bias-complexity tradeoff The success of learning depends on how well the
inductive bias of an algorithm matches the problem instance. To measure this match
and the related generalization power of an algorithm, consider the following error de-
composition. For a learning problem with Bayes classifier f∗ ∈ F and corresponding
Bayes risk R∗, the inductive bias of an algorithm is specified by learning from a re-
stricted hypothesis class Fsub ⊂ F . Given a dataset D, the output of the algorithm is
f̂(D) ∈ Fsub. Additionally, let f∗

sub ∈ Fsub be an optimal predictor in the restricted
hypothesis class, defined similarly to the Bayes classifier as f∗

sub ∈ argminf∈Fsub
R(f).

Then the difference between the risk of the learned predictor and the optimal risk can
be decomposed as

R(f̂(D))−R∗ = R(f̂(D))−R(f∗
sub)︸ ︷︷ ︸

estimation error

+ R(f∗
sub)−R∗︸ ︷︷ ︸

approximation error

.

The approximation error describes the mismatch between the inductive bias Fsub and
the problem instance f∗, which is independent of the observed data D. The estimation
error describes the hardness of the learning problem restricted on the hypothesis class
Fsub and is a random quantity over the dataset D. A stronger inductive bias (that is, a
less complex Fsub) reduces the estimation error because it reduces the variability of the
learning algorithm. At the same time, a stronger inductive bias can only increase the
approximation error when good predictors are removed from the hypothesis class. We
are therefore faced with a tradeoff in the complexity of the hypothesis class, called the
bias-complexity tradeoff. This is similar to the bias-variance tradeoff under the mean-
squared error. Predictors with bad generalization power are commonly distinguished
into two categories based on the strength of the inductive bias. A weak inductive
bias (large Fsub) has low approximation error, but large estimation error. The learned
predictor often fits the noise of the data set instead of extracting the underlying pattern.
This is called overfitting. On the other hand, a strong but mismatched inductive
bias has low estimation error, but large approximation error. The learned predictor
is not complex enough to capture the underlying pattern of the data, because it is
restricted to the wrong hypothesis class. This is called underfitting. Ideally, we impose
as much inductive bias as possible, as long as we can guarantee that this bias matches
the actual solution. This is easier said than done since our lack of prior knowledge
about the solution lies at the core of the learning problem. The next section discusses
what constitutes inductive bias and introduces a general guiding principle for choosing
reasonable biases in real-world problems.

1.2 Occam’s razor: a guiding principle for choosing the
inductive bias

Before we come to a general principle for choosing the inductive bias, let us take a look
at what else constitutes this bias besides a restriction of the hypothesis class Fsub ⊂ F
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that was discussed in the previous section. This already starts with the data set: in
theory it seems unambiguous to talk about Euclidean features x ∈ Rd with binary
labels y ∈ {0, 1}, but in practice we have to choose which features to include and which
to dismiss prior to any learning. For example if we want to predict what a customer
wants to buy next, it seems reasonable to exclude seemingly irrelevant input features
like ‘hair color’, but include others like ‘age’. The same choice has to be made for the
set of values that the label y can take. Missing practically relevant features and labels
or including too many irrelevant ones can significantly harm the performance of the
predictor. Other common practices include data pre-processing such as normalization
or dimensionality reduction and data cleaning, which refers to correctly formatting the
data and removing duplicates or incomplete data.

Another choice that fundamentally affects the inductive bias of an algorithm is the loss
function. In practice, many different losses have been introduced to solve different tasks
(Jadon, 2020; Wang et al., 2022). The loss is in fact related to two different kinds of
ill-posed problems. The first problem arises on the distribution level when we want to
learn a deterministic predictor instead of the full conditional distribution. Choosing a
loss resolves this issue by defining the Bayes classifier. Richardson (2022) proposes to
make this arbitrary choice not based on heuristics and instincts, but instead by choosing
a certain model, which is arguably a more objective way to describe the underlying bias.
The loss then arises naturally as an inconsistency of this model. The second ill-posed
problem that the loss can address is that of finite samples, which was discussed in the
previous section. Since the loss that defines the Bayes classifier is known, it seems
reasonable to use the same loss during training. A corresponding general framework is
empirical risk minimization (Vapnik, 1999), where the predictor f̂ based on a data set
D = {(x1, y1), . . . , (xn, yn)} is given by

f̂(D) ∈ argmin
f∈F

RD(f) , where RD(f) =
1

n

n∑
i=1

l(f(x), y) denotes the train risk.

The idea is that the train risk based on the observed data points serves as a proxy
for the test risk based on unseen test points, which is the actual target of learning.
More generally, the loss describes how compatible a predictor is with the observed
data. This general principle also includes other approaches that make distributional
assumptions about the data. For example, maximum likelihood estimation based on a
parametric family of distributions {pw(y|x) | w ∈ W} can be interpreted as empirical
risk minimization by rewriting

ŵ ∈ argmax
w∈W

n∏
i=1

pw(yi|xi) = argmin
w∈W

1

n

n∑
i=1

− log pw(yi|xi)︸ ︷︷ ︸
loss of w at (xi, yi)

.

To summarize, we can impose inductive bias by choosing the data set, the loss function
or a similar compatibility score between predictor and observed data, and by restricting
the hypothesis class. However, this inductive bias is often still not strong enough and
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results into overfitting. In extreme cases it is not even strong enough to uniquely specify
the output of the learning algorithm. For example in underdetermined linear regression,
there are infinitely many solutions that minimize the empirical risk. Therefore, we now
turn to the general principle of Occam’s razor.

Occam’s razor William of Ockham, an English scholastic philosopher and theologian
of the 14th century, is credited with the statement

“Entities should not be multiplied beyond necessity.”

This philosophical guiding principle for problem-solving is commonly referred to as
Occam’s razor. It states that when presented with competing explanations, the simplest
one should be preferred. Competing explanations is precisely the issue that we face
in machine learning: after specifying some way to assess the compatibility between a
predictor and the observed data, for example by a loss function, we are usually left
with infinitely many predictors that fit the data well. Some of those predictors may
generalize, but most do not and the question is how to distinguish them. In fact, a good
fit to the training data itself is a vacuous property, because any possible predictor can
be changed to memorize the training data to achieve a perfect fit. Only fitting the data
therefore often leads to overfitting. It is the combination with other principles that
enables generalization, and Occam’s razor is such a principle that tells us to choose
simple predictors. We have already encountered a direct way of implementing this
principle into a learning algorithm, namely restricting the hypothesis class to some
subset Fsub ⊂ F of simple functions. For example, linear regression can only return
linear functions, which are arguably simple. This hard restriction is a special instance
of the more general complexity measures. A complexity measure Ω: F → R≥0 penalizes
every predictor for being complex (that is, not simple), prior to seeing any data. This
complexity measure can be used to break ties between predictors that fit the data
equally well and therefore adhere to Occam’s razor of choosing the simplest explanation.
While this sounds good, the problem is that Occam’s razor does not tell us what ‘simple’
means. Another important caveat is that, under the light of the no free lunch theorem,
this principle is not guaranteed to produce good predictors. Only the combination of
being biased towards simple functions and the true explanation being simple in the same
sense leads to good predictors. In the remainder of this section, I discuss some common
implementations of Occam’s razor for various machine learning tasks and highlight one
natural choice for complexity measures, the Bayesian Occam factor.

Common implementations of Occam’s razor I only mention a small selection
of examples here since it is impossible to exhaustively cover the large variety in which
algorithms can impose assumptions. Two frameworks that organically incorporate the
idea of a complexity measure are empirical risk minimization and Bayesian inference.
Empirical risk minimization simply adds the complexity measure Ω as a regularizer to
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the train risk. The new objective function thus becomes RD(f) + λ · Ω(f), where the
factor λ ≥ 0 is used to trade off data fit with complexity of a predictor. This approach
is called regularized risk minimization. A similar framework is Bayesian inference, in
which the family of conditional distributions from maximum likelihood estimation is
augmented by a prior distribution over the solutions. The prior distribution acts as
a complexity measure because it, as the name suggests, describes our a priori prefer-
ence for solutions before seeing any data. Beyond frameworks, a central, but strong
simplifying assumption of many machine learning algorithms is that of independent
and identically distributed training data. Assuming that training and test data are
independent samples from the same distribution PX,Y greatly restricts the space of all
possible joint distributions. Generalizations of this assumption include time series data
and distribution shift problems. Another common assumption is that a function is
simple if it is smooth. As such, many learning algorithms have a preference for smooth
functions by restricting the hypothesis class directly, for example to linear functions, or
by penalizing non-smooth functions in the form of a complexity measure. The notion
of smoothness itself depends on the arbitrary choice of metric or a corresponding sim-
ilarity measure. Other hard restrictions of the hypothesis class include, for example, a
low rank assumption for matrices, or the manifold hypothesis. The latter assumes that
high-dimensional data lie on an (unknown) manifold of significantly lower dimension.

The Bayesian razor and the Occam factor The Occam factor is a particularly
natural complexity measure that arises from a Bayesian problem formulation. This
paragraph follows the discussion in MacKay (2002) at the example of two hypotheses
H1, H2 (for example H1 : Gaussian distributions vs. H2 : all continuous distributions)
with corresponding solutions hi ∈ Hi. Choosing a hypothesis simply based on the
best fit hML

i to the observed data D, that is, argmaxHi
P (D|hML

i , Hi), would lead
to overfitting, because more complex hypotheses allow for a better fit. The Bayesian
approach to this problem is to introduce prior distributions: one on the solution level
P (hi|Hi) to fit the data under a fixed hypothesis, and one on the hypothesis level P (Hi).
Applying Bayes’ theorem to the latter yields the posterior uncertainty over hypotheses
given the data P (Hi|D) ∝Hi P (Hi)P (D|Hi). The prior over hypotheses allows us to
impose inductive bias directly, but this approach yields a complexity measure even if
we stay agnostic with P (H1) = P (H2). This yields P (Hi|D) ∝Hi P (D|Hi), where
the second term is called the evidence in Bayesian inference and describes how likely
it is to observe the data D under the given hypothesis Hi. Contrary to the best fit,
the evidence naturally incorporates a notion of Occam’s razor and prefers the simpler
hypothesis. This is because the more complex hypotheses spread their mass over more
solutions, which leads to smaller evidence, even if there are particular solutions that fit
the data well. To understand this idea in more detail, we can further decompose the
evidence P (D|Hi) =

∫
hi
P (D|hi, Hi)P (hi|Hi) dhi by replacing the integrand with a flat

curve at the best fit hML
i over an appropriate volume σhi|D and further replacing the
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prior with a uniform distribution over another volume σhi
. This yields

P (D|Hi)︸ ︷︷ ︸
Evidence

≈ P (D|hML
i , Hi)︸ ︷︷ ︸

Best likelihood fit

×
σhi|D

σhi︸ ︷︷ ︸
Occam factor

The Occam factor describes the ratio of posterior to prior uncertainty and is ≤ 1. This
factor gets small for complex models with large prior support, because the model zeroes
in on the much smaller subset of solutions that fit the data, that is, σhi|D ≪ σhi

. For
simpler models, there is less reduction in uncertainty, which results in larger factors.
In this decomposition, we can therefore clearly see that a hypothesis is rewarded for its
ability to fit the data, but also punished for its complexity by the Occam factor.

1.3 Explicit inductive bias in deep learning

In the next three sections of the introduction, I discuss inductive bias at the example
of deep learning. I start with explicit ways in which inductive bias is encoded in this
section, then move to implicit inductive bias in Section 1.4, and conclude with attempts
of reverse-engineering this implicit bias in Section 1.5. Uncovering implicit bias is also
the goal of my work in Chapters 2 and 3; my contributions are reviewed in Section 1.6.

Deep learning has come a long way from Rosenblatt’s first perceptron (Rosenblatt,
1961) to powerful architectures such as transformers (Vaswani et al., 2017) and is now
state of the art in many machine learning tasks (LeCun et al., 2015). The main way
in which deep learning explicitly imposes inductive bias is through a structural prior
in the form of an architecture, which restricts the hypothesis class of representable
functions. The structural prior commonly follows the principle of compositionality, in
which complex objects are made up of simple objects and their interactions (Battaglia
et al., 2018). An additional hierarchical structure allows to process information on dif-
ferent levels of granularity. This resembles the way in which we humans understand the
world (McClelland and Rumelhart, 1981; Navon, 1977). For example, we do not simply
memorize every valid sentence in an unstructured manner. Instead, we only memorize
the significantly smaller set of valid words and some rules to combine them. We also
maintain the hierarchy that letters are part of words, words are part of sentences, and
sentences are parts of texts. In deep learning architectures, compositionality is real-
ized by individual neurons that interact with each other through a pre-defined set of
edges. Neurons are grouped into layers, which can be stacked hierarchically. As such,
the types of interactions are fixed as part of the structural prior, but their strengths
are learnable. An important structural prior in deep learning architectures is given by
invariances:

Inductive bias through invariances Formally, a neural network is a function
fθ : X → Y from some input space X to some output space Y with learnable weights
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θ ∈ Θ. We say that a function fθ is invariant under a group G that acts on the input
space X if fθ(g ◦ x) = fθ(x) for all g ∈ G, x ∈ X . Such an invariance can strongly
restrict the function fθ, because it equivalently states that fθ is constant on every set
{g ◦ x | g ∈ G} for x ∈ X . Network architectures that enforce invariances a priori
restrict the hypothesis class of learnable functions and as such impose inductive bias.
For example, assume we want to learn a function that labels an image as ‘cat’ or ‘dog’.
If we hold the prior belief that the label of an image does not depend on the position
of the object, we are formally saying that the true classifier is invariant to translations.
This already dismisses a vast amount of potential solutions. We can then impose this
bias by choosing a network architecture that only contains functions which respect this
invariance. A related concept to invariance is equivariance with similar implications.
Formally, if the group G also acts on the output space Y, a function fθ is equivariant
under a group G if fθ(g ◦ x) = g ◦ fθ(x) for all g ∈ G, x ∈ X . This means that a
shifted input produces a similarly shifted output. For example in image segmentation,
we expect that moving the object in an image should simultaneously move its outline.

In deep learning, different invariances can be enforced by certain types of architec-
tures. This is achieved by weight sharing and restricted connections between neurons.
Translation invariance is central to the field of computer vision for learning from image
or video data. It is realized by convolutional layers, one of the basic building blocks
in convolutional neural networks (Fukushima and Miyake, 1982; LeCun et al., 1989,
2010). After the large success of convolutions on Euclidean data, they are now also
translated to non-Euclidean domains such as manifold or graph data (Bronstein et al.,
2017). Temporal invariance in the form of the Markov property is enforced by recurrent
neural networks, which process a sequence of inputs (Elman, 1990; Lipton, 2015). In
the case of unstructured data such as a graph, which consists of a set of nodes and
edges, a common desideratum is permutation invariance. This means that the function
does not depend on the arbitrary ordering of the nodes and is a central property of
graph neural networks (Gori et al., 2005; Wu et al., 2021). It has been empirically
validated that structural priors alone already describe a useful inductive bias for real-
world problems. For example, Lempitsky et al. (2018) show that untrained, randomly
initialized convolutional networks capture low-level image statistics of natural images.

Beyond the invariances described above, there are many others that we might assume for
real-world problems, but for which no obvious architecture exists. In such cases, a com-
mon workaround is data augmentation (Shorten and Khoshgoftaar, 2019). Here, each
data point x in the training set is augmented by a set of new points {g1◦x, . . . , gj◦x} for
transformations g1, . . . , gj ∈ G, all of which get the same label as x. Instead of strictly
enforcing the invariance fθ(g ◦ x) = f(x) for all g ∈ G, this approach merely promotes
it. In return, it is directly applicable to any kind of transformation that can be simu-
lated. Common basic geometric transformations include flipping, cropping, rotations,
kernel filters (sharpen and blur), color space manipulations, and noise injections. But
also more elusive transformations such as the ‘style’ of an image can be implemented
with the help of a separate style transfer network (Gatys et al., 2015).
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Despite all the above structural priors in deep learning architectures, it is not clear
that they alone impose sufficiently strong inductive biases to explain the generalization
power. In fact, while past approaches had stronger restrictions in the form of hand-
crafted features, modern approaches rely on end-to-end architectures with minimal
restrictions. Why does the remarkable flexibility of architectures that can approximate
any function (Hornik et al., 1989) not immediately lead to overfitting? A possible
answer is that deep learning does not only impose inductive bias explicitly through its
architecture, but also implicitly through other aspects of the learning procedure. A
discussion of implicit biases in deep learning follows in the next section.

1.4 Implicit inductive bias in deep learning

Deep learning models are often trained to zero training error and even continue training
after. Yet, they successfully generalize to unseen test points instead of overfitting to
the data. In an influential work, Zhang et al. (2017, 2019) put a spotlight on this
disconnect between theory and practice by showing that neural networks can easily fit
pure noise. Belkin et al. (2018) reports similar results for kernel machines, which can
be viewed as a theoretically more tangible special instance of neural networks. These
results imply that common capacity measures such as the Rademacher complexity or
VC dimension are large, which makes their associated generalization bounds vacuous.
Classical learning theory can therefore not explain why neural networks generalize.
Other common regularization techniques can improve generalization, but are also not its
cause. This includes both direct techniques such as weight decay or dropout (Srivastava
et al., 2014) and more indirect techniques such as early stopping or batch and layer
normalization (Ba et al., 2016; Ioffe and Szegedy, 2015). There needs to be another
fundamental reason why neural networks generalize (Belkin, 2021).

Inductive bias of overparameterized systems Overparameterization is a key
ingredient for explaining why deep learning generalizes. Consider the example of linear
regression under the square loss with d dimensions and n examples, for which the
design matrix is full rank. For d ≤ n the system is overdetermined and has a unique
solution, which means that the choice of hypothesis class (linear functions) and loss
uniquely determine the algorithm. For d < n, the system is underdetermined and has
infinitely many solutions that minimize the training loss. An algorithm is therefore not
well-defined by hypothesis class and loss alone. It has to additionally choose which of
these minimizing solutions it returns. This is precisely the situation in deep learning,
where vastly overparameterized architectures are trained to interpolate the data. Deep
learning procedures commonly do not specify explicitly which of the many possible
minimizers they return. Instead, the choice is governed implicitly by the architecture,
all employed learning techniques, and the optimization algorithm. I therefore refer to
the collection of these choices as implicit inductive bias in deep learning.
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Classical learning theory is concerned with the underparameterized setting. Here, the
training error simply decreases with model complexity, whereas the test error follows a
U-shape. This results from the typical bias-variance tradeoff, where too simple models
underfit due to large bias, too complex models overfit due to large variance, and a sweet
spot exists in between. Belkin et al. (2019) extend this curve to the overparameterized
setting in order to explain the puzzling generalization behavior of modern complex sys-
tems: while the training error stays zero when further increasing the model complexity
beyond the interpolation threshold, the test error can actually decrease again. This
phenomenon is referred to as double descent. The second descent happens only if the
additional inductive bias for choosing a minimizer is aligned with the true solution.
To continue the example of linear regression where there are multiple interpolators for
d > n, a common choice is the min-norm interpolator. This describes the additional
inductive bias of preferring smooth solutions, where smoothness is measured by the cor-
responding norm. At the interpolation threshold d = n, there is only one non-smooth
interpolator with bad generalization. But as d grows larger than n, the set of inter-
polators grows and includes smoother options, which allows the additional inductive
bias to kick in. In high dimensions, smoothness and interpolation become more com-
patible and the test risk descends for a second time. This was demonstrated by Belkin
et al. (2018) empirically for random Fourier feature models whose smoothness bias is
described by the norm of a corresponding kernel, deep neural networks optimized with
gradient descent, and several other overparameterized models.

Benign overfitting. The apparent contradiction of choosing interpolators with good
generalization properties is compactly described by the oxymoron benign overfitting.
After observing this phenomenon empirically in deep learning and other models such
as AdaBoost and random forests (Wyner et al., 2017), researchers have tried to re-
produce benign overfitting theoretically in simpler models with special focus on the
min-norm interpolator. Hastie et al. (2022) compute the risk of ridge regression solu-
tions and the min-norm interpolator in the proportional asymptotic regime, which also
produces a double descent curve. Muthukumar et al. (2020) give corresponding non-
asymptotic results and Bartlett et al. (2020) considers regression over general Hilbert
spaces. To understand under which conditions overfitting can be benign, Shamir (2022)
considers the min-norm interpolator and the max-margin classifier for different losses
and Bubeck and Sellke (2021) show that strong overparameterization is necessary for
the existence of smooth interpolators. A complementary line of work addresses the
question of whether overfitting can be not only benign, but also necessary for gener-
alization. Feldman (2020) postulates a heavy-tailed model in which memorization of
low frequency examples is necessary for generalization, which is empirically validated
for deep learning tasks by Feldman and Zhang (2020). Similarly, Brown et al. (2021)
construct examples of next-symbol prediction problems and multiclass classification
for which memorization is necessary in an information-theoretic sense. Kobak et al.
(2020) show that the optimal ridge regularization can be zero and Cheng et al. (2022)
investigate the cost of not interpolating.
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To summarize the situation from an inductive bias perspective, interpolation per se does
not fully specify a learning algorithm in overparameterized hypothesis classes such as
neural networks. The algorithm and its generalization ability depend on an additional
choice, which is often made only implicitly. The next section aims to understand this
implicit choice in deep learning and reformulate it in an explicit way.

1.5 Reverse-engineering inductive bias in deep learning

Ultimately, a deep learning model trained until interpolation is given a data set D and
returns a predictor f̂(D) from the set of all interpolating predictors Fint ⊂ F . But
for overparameterized models, Fint often contains more than one predictor, so which is
chosen by the algorithm? Ideally, we would like to understand the algorithm’s choice
as being guided by a complexity measure Ω(f) that describes its inductive bias. That
is, the goal is to find a function Ω: F → R≥0 for which the algorithm satisfies

f̂(D) = argmin
f∈Fint

Ω(f) .

A well-known example of implicit regularization is gradient descent on linear functions
under the square loss. There exist multiple solutions if the system is underdetermined,
but gradient descent (with appropriate initialization and step size) converges to the
specific solution with minimal norm. This means that the corresponding implicit com-
plexity measure is given by the ℓ2 norm, which motivates why the literature is often
concerned with the min-norm interpolator. To arrive at such a result, one needs to
analyze the specific update rule of the optimization procedure. In this simple case the
update rule preserves the property of lying in the row space of the design matrix, and
the min-norm interpolator is the unique solution with this property. In classification,
the chosen loss functions often do not have a unique root (such as the square loss), but
instead monotonically decrease to 0 in the limit (such as the logistic loss). This means
that no finite minimizer exists and optimizers necessarily diverge to reach 0 training
loss. However, Soudry et al. (2018) show that the direction of the linear predictor
converges to that of the max-margin solution for separable data, which is extended to
non-separable data by Ji and Telgarsky (2019).

The implicit bias of optimization does not only depend on the chosen optimization
procedure and hypothesis class, but also on its parameterization. This is illustrated
at the example of matrix factorization in underdetermined matrix regression. As dis-
cussed above, gradient descent on the space of matrices X ∈ Rn×n directly leads to
the implicit ℓ2 regularizer ∥X∥2. The reparameterization X = UUT with U ∈ Rn×d

for d ≥ n does not change the hypothesis class, but it does change the update rule for
gradient descent on U and therefore its inductive bias. Gunasekar et al. (2017) shows
that this can change the implicit regularization to the nuclear norm in certain settings
and conjectures that this holds in general. Arora et al. (2019) extends this result to
deep matrix factorizations, but refutes the conjecture in favor of implicit rank regular-
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ization, which is confirmed by Li et al. (2021). Gunasekar et al. (2018a) investigate
the implicit regularization of linear methods for different losses, different variants of
gradient descent, and different hyperparameters such as momentum and step size.

Optimization bias in neural networks To understand what complexity measure
drives the generalization in actual neural networks, Neyshabur et al. (2017) and Jiang
et al. (2020) conduct empirical studies in which they compare generalization perfor-
mance with several candidate measures for trained networks, but find no definite ex-
planation. One of these candidate measures is the sharpness of the minimum, for
which Keskar et al. (2017) empirically observe that stochastic gradient descent with
larger batch size leads to sharper minima. To make definite, provable statements about
the implicit complexity measure, strong assumptions are often necessary. These in-
clude simplified optimization procedures, for example infinitesimal step size because
the gradient flow is more amenable to analysis, or linear activations in neural networks,
which simply reparameterize linear predictors. In this sense, the previously discussed
results on (deep) matrix factorization can be viewed as results on fully connected neural
networks with linear activations. The training behavior of neural networks is hereby
broadly categorized into the kernel regime and the rich regime. The kernel regime is
characterized by an invariance of the optimization trajectory during training. In this
regime, training the neural network behaves like training a kernel machine with respect
to the neural tangent kernel (Jacot et al., 2018), which depends on the random ini-
tialization. The implicit complexity measure is therefore given by the ℓ2 norm of the
corresponding reproducing kernel Hilbert space. In contrast, many neural networks
have been shown to produce more sparsity-inducing solutions such as implicit rank reg-
ularization, which cannot be described by a kernel machine. This regime is described
as the rich regime. The transition between kernel and rich regime can be governed
by various hyperparameter choices for the deep learning architectures, for example the
layer width (Du et al., 2019) or the initialization scale (Chizat et al., 2019). In linear
diagonal neural networks, Woodworth et al. (2020) show for regression that the tran-
sition is controlled by an interaction of initialization scale, width, and training error.
Moroshko et al. (2020) extend these results to classification. Besides fully connected
and diagonal linear neural networks, Yun et al. (2021) give results for a generalized
tensor formulation that also includes other architectures such as linear convolutional
networks (Gunasekar et al., 2018b; Jagadeesan et al., 2022). Azulay et al. (2021) de-
scribe a general technique that encompasses many previous results by recasting the
gradient flow dynamics as infinitesimal mirror descent.

Negative results In some settings it is not only hard to find an implicitly minimized
complexity measure, but provably impossible. This suggests that the framework of
regularized risk minimization might be too restrictive to capture the inductive bias
of some algorithms. For matrix factorization, there exist learning problems for which
every (quasi-)norm diverges, hence no such norm can be implicitly minimized (Razin
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and Cohen, 2020). For stochastic gradient descent in convex optimization problems,
there exist learning problems for which no reasonable complexity measure explains
the generalization (Dauber et al., 2020). Even more dramatically, Vardi and Shamir
(2021) show that, already in the simple case of a single ReLU neuron, the implicit
regularization of gradient flow cannot be described by any explicit function of the
model parameters. They further show that the only generally valid inductive bias in
this setting is a balancedness condition (Du et al., 2018), which states that the layer
norms remain invariant throughout optimization. However, it is generally unclear how
this restriction on the parameter level translates to restrictions on the corresponding
functions.

1.6 Thesis contributions

In the introduction, I described that a crucial part of the inductive bias in deep learning
is specified only implicitly. The discussed works attempt to make this bias explicit by
showing that gradient-based optimization implicitly minimizes some complexity mea-
sure, which describes the inductive bias. My work has the same general goal of un-
covering implicit inductive bias and was created in collaborations, see Section 1.6.1.
Instead of analyzing bias from optimization as above, we investigate the bias of a spe-
cific algorithm that uses deep learning as an intermediate step. Next, we present a
generic algorithm to uncover the inductive bias that is incurred by approximations in
Bayesian inference. Specifically, the next three chapters are structured as follows.

In Chapter 2, we search for the hidden inductive bias of the particular graph generative
model NetGAN (Bojchevski et al., 2018). A graph generative model takes a graph as
input and is supposed to generate new graphs that “look like” the input graph. While
most classical models focus on few hand-selected graph statistics and are too simplistic
to reproduce real-world graphs, NetGAN recently emerged as an attractive alterna-
tive: by training a GAN to learn the random walk distribution of the input graph, the
algorithm is able to reproduce a large number of important network patterns simulta-
neously, without explicitly specifying any of them. We investigate the implicit bias of
NetGAN. We find that the root of its generalization properties does not lie in the GAN
architecture, but in an inconspicuous low-rank approximation of the logits random
walk transition matrix. Step by step we can strip NetGAN of all unnecessary parts,
including the GAN, and obtain a highly simplified reformulation that achieves com-
parable generalization results, but is orders of magnitudes faster and easier to adapt.
Being much simpler on the conceptual side, we reveal the implicit inductive bias of
the algorithm—an important step towards increasing the interpretability, transparency
and acceptance of machine learning systems.

In Chapter 3, we investigate the inductive bias of approximate Bayesian inference. This
is unnecessary in full Bayesian inference, where the bias is directly described by the
prior distribution. However, full Bayesian posteriors are rarely analytically tractable,
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which is why real-world Bayesian inference heavily relies on approximate techniques.
Approximations generally differ from the true posterior and require diagnostic tools to
assess whether the inference can still be trusted. We investigate a new approach to di-
agnosing approximate inference: the approximation mismatch is attributed to a change
in the inductive bias by treating the approximations as exact and reverse-engineering
the corresponding prior. We show that the problem is more complicated than it appears
to be at first glance, because the solution generally depends on the observation. By
reframing the problem in terms of incompatible conditional distributions we arrive at
a natural solution: the Gibbs prior. The resulting diagnostic is based on pseudo-Gibbs
sampling, which is widely applicable and easy to implement. We illustrate how the
Gibbs prior can be used to discover the inductive bias in a controlled Gaussian setting
and for a variety of Bayesian models and approximations.

The last work in Chapter 4 concerns the inductive bias of causal learning. The introduc-
tion discussed the inductive bias necessary to solve the inverse problem of generalizing
from finite samples to properties of the underlying distribution. Causal learning faces
the additional inverse problem of generalizing from the observational distribution to
the underlying causal model. This second step also requires inductive bias in the form
of additional assumptions. A common assumption and the focus of this thesis is the
independence of causal mechanisms (ICM). In our paper “Interpolation and Regular-
ization for Causal Learning”, which is not part of this thesis, we investigate whether
benign overfitting (see Section 1.4) also occurs for causal learning under the ICM. We
find that this is indeed possible and that the behavior is governed by the confounding
strength. The work presented in Chapter 4 is a technical follow-up on the above paper
that analyzes estimators for confounding strength from observational data under the
ICM. We find that existing estimators are generally biased and propose a consistent
estimator based on tools from random matrix theory.

1.6.1 Publications

This thesis is based on the following publications.

Chapter 2: Rendsburg, L., Heidrich, H., von Luxburg, U. (2020) NetGAN without
GAN: From random walks to low-rank approximations. In International Conference
on Machine Learning (ICML).

Chapter 3: Rendsburg, L., Kristiadi, A., Hennig, P., von Luxburg, U. (2022)
Discovering inductive bias with Gibbs priors: A diagnostic tool for approximate
Bayesian inference. In International Conference on Artificial Intelligence and
Statistics (AISTATS).
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Chapter 4: Rendsburg, L., Vankadara, L. C., Ghoshdastidar, D., von Luxburg,
U. (2022) A consistent estimator for confounding strength. arXiv preprint
arXiv:2211.01903 (under review).

During my PhD, I co-authored three other papers that do not appear in this thesis.

The first work compares centrality measures that are based only on ordinal triplet
comparisons. The project started during my internship prior to the PhD, during which
it was then completed.

Rendsburg, L., Garreau, D. (2021) Comparison-based centrality measures. In In-
ternational Journal of Data Science and Analytics.

I was one of the two main contributors to the following paper on benign overfitting in
causal learning.

Vankadara, L. C., Rendsburg, L., von Luxburg, U., Ghoshdastidar, D. (2022) Inter-
polation and Regularization for Causal Learning. In Neural Information Processing
Systems (NeurIPS).

The following work translates the graph-theoretic concept of tangles to a practical
clustering algorithm for machine learning. In the first version, Solveig Klepper and I
have been the main contributors. Solveig Klepper then took the lead for the latest
version.

Klepper, S., Elbracht, C., Fioravanti, D., Kneip, J., Rendsburg, L., Teegen, M., von
Luxburg, U. (2022) Clustering with Tangles: Algorithmic Framework and Theoret-
ical Guarantees. arXiv preprint arXiv:2006.14444 (under review).
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NetGAN without GAN: From
Random Walks to Low-Rank
Approximation
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Figure 2.1: Pipelines for NetGAN (upper path) and our proposed method CELL (lower
path). CELL is a condensed version of NetGAN that bypasses the expensive sampling
steps and replaces the GAN with an optimization problem.

A graph generative model is a mechanism to achieve the following task: for a given
input graph (or a set of input graphs), generate new graphs that have a similar structure
as the input graph. The mechanism is supposed to slightly perturb the graph, but
should not change its characteristic structure (such as the community structure, the
characteristic path lengths, etc). Being able to create perturbed copies of a graph is
useful in many different scenarios, for example: comparing a small sample of brain
networks for Alzheimer patients (just one, in the extreme case) to a large population
of healthy subjects, making robustness statements about a climate network by running
a sensitivity analysis on perturbed copies, or performing a generic bootstrap analysis.

A recent graph generative model that has received a lot of attention is NetGAN (Bo-
jchevski et al., 2018). First, it samples a set of random walks from the input graph
to train a GAN (Goodfellow et al., 2014), whose generator learns to produce node-
sequences that resemble random walks over the input graph. Generated graphs are

17
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then obtained as reconstructions based on these sequences. The inherent assumption
of this approach is that random walks describe graphs in a reasonably holistic way: lo-
cal statistics such as motifs are observable in the individual random walks, while global
statistics such as cluster structure and diameter are encoded in the distribution over
random walk sequences. As opposed to other approaches, NetGAN does not make any
explicit model assumptions; rather, it is supposed to implicitly learn many local and
global graph statistics simultaneously by reproducing random walk statistics. However,
if the goal is to generalize (perturb) the input graph, there has to be an implicit bias as
to which type of generalization (perturbation) is preferred (no free lunch). The goal of
our work is to characterize this bias of NetGAN, which we will achieve by reformulating
it in terms of a distance function between graphs. This formulation provides insights on
the influence of design choices and model parameters, such as the length of the random
walks. Scrutinizing the NetGAN architecture, we observe that many of its components
can be considerably simplified. Step by step we strip all the unnecessary parts until we
are left with the only crucial ingredient, a low-rank approximation of the logits random
walk transition matrix. Our main contributions are:

• Reformulation of NetGAN. We reformulate NetGAN as a low-rank approxima-
tion with respect to the Kullback-Leibler divergence between transition matrices,
which requires neither a GAN nor any sampling.

• Huge speedup. Our algorithm retains the generalization performance of NetGAN,
but runs in seconds instead of hours. See Table 2.1 for a comparison of training times.

• Transparency. Our algorithm is conceptually much simpler than NetGAN. This
opens the possibility to analyze it theoretically, and allows for application-specific
adaptions.

Table 2.1: Training time (in seconds) for NetGAN and our proposed method CELL on
a variety of networks. NetGAN requires a GPU for training, while CELL runs on a
CPU.

Data set (Nodes/ Edges) NetGAN CELL

CORA-ML (2,810/ 7,981) 7,478 21
Citeseer (2,110/ 3,668) 4,654 10
PolBlogs (1,222/ 16,779) 55,276 15
RT-GOP (4,687/ 5,529) 14,800 23
Web-EDU (3,031/ 6,474) 11,000 16
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2.1 Background: NetGAN

2.1.1 Graph and random walk notation

Like NetGAN, we consider an unweighted, undirected, and connected graph G = (V,E)
with nodes V = [N ] = {1, . . . , N}, edges E ⊆ V × V , and number of edges e(G) = |E|.
It has adjacency matrix A ∈ {0, 1}N×N , degree vector d ∈ RN , degree matrix D =
diag(d) ∈ RN×N , and the transition matrix for unbiased random walks on G is given
by P = D−1A ∈ RN×N . We additionally assume G to be non-bipartite so that the
random walk described by P has a unique stationary distribution π ∈ RN . A single
random walk of length T is an ordered tuple R = (v0, . . . , vT ) ∈ V T+1, and a set of n
random walks is denoted by R = {R1, . . . , Rn}. The score matrix S(R) ∈ RN×N counts
the transitions in R, that is, Sv,w equals the total number of times random walks in R
transition from v to w. If clear from the context, we drop the dependency on R and
write S instead of S(R). An edge-independent random graph model, sometimes also
called inhomogeneous Erdős-Rényi model, is a symmetric matrix A† ∈ [0, 1]N×N of edge
probabilities. Graphs on the same vertices [N ] are sampled from this model by drawing

e(G) edges {v, w} with probability A†
v,w independently and without replacement. We

use bold symbols, if we consider an object as a random variable (e. g. R instead of R).

2.1.2 NetGAN

In this section, we give a high-level overview of the NetGAN algorithm; for more details,
we refer the reader to Bojchevski et al. (2018). NetGAN is a graph generative model:
given a single input graphG, it returns graphsG′ on the same set of nodes by proceeding
in two main steps. First, it learns the distribution over random walks drawn from the
input graph in the learning step. It then reconstructs the graph based on “synthetic”
random walks sampled from this learned distribution in the reconstruction step. See
Figure 2.1 for a schematic overview.

Learning step. Given an input graph G, NetGAN samples a large set R of random
walks of fixed length T with randomly chosen start nodes. These random walks form the
training set for a GAN: the generator tries to produce node sequences of length T that
resemble the observed random walks in R, while the discriminator tries to distinguish
real from generated sequences. Both generator and discriminator use the Long short-
term memory architecture (LSTM) (Hochreiter and Schmidhuber, 1997), and they are
trained with the Wasserstein loss (Arjovsky et al., 2017). Training finishes once an
early stopping criterion is met, after which the generator is used to sample synthetic
random walks.

During and after training, the generator constructs each synthetic random walk
(v0, . . . , vT ) in a step-by-step procedure. First, random noise z is used to initialize the
memory state m0 of the LSTM architecture and the start node v0 of the sequence. A



20 CHAPTER 2. NETGAN WITHOUT GAN

function fθ with learnable parameters θ then repeatedly updates the two values: given
the current memory state mt and node vt, it outputs the next memory state mt+1 and
the distribution pt+1 over the next node vt+1 in form of logits. The next node vt+1 is
then obtained as a sample from this distribution. In equations, this update is described
by

(mt+1, pt+1) = fθ(mt, vt) ,

vt+1 ∼ Cat (σ(pt+1)) ,
(2.1)

where Cat denotes the categorical distribution and σ the softmax function, which con-
verts the logits into a probability distribution on [N ]. This procedure is repeated until
the sequence has the desired length T .

Reconstruction step. After training is finished, NetGAN uses the generator to gen-
erate a large set of n synthetic random walks. Their transitions are counted in a joint
score matrix S, which is then converted into an edge-independent random graph model
A† by symmetrizing and then normalizing it, that is,

A†
k,l =

max{Sk,l, Sl,k}∑N
k′,l′=1max{Sk′,l′ , Sl′,k′}

. (2.2)

To obtain the new graph G′, NetGAN samples e(G) edges independently and without
replacement from A† while preventing self-loops and isolated nodes.

2.2 What causes the generalization?

In this section, we identify those parts of NetGAN that we believe to be absolutely
necessary to achieve the two goals of producing new graphs that (i) resemble the input
graph by mimicking its graph statistics, but (ii) also generalize the input graph by
sharing only a certain amount of its edges. The complicated GAN- and LSTM-based
architecture used by NetGAN disguises its underlying bias and makes a direct analysis
difficult. Therefore, we examine all the individual steps of NetGAN, not in terms of
how they work, but what they aim to achieve.

The random walks? The intuition of NetGAN is that graphs with a similar random
walk distribution also share many of their topological properties. In fact, as we observe
in Section 2.4.4, learning the transition matrix of random walks by counting their
transitions is sufficient for perfectly reconstructing the input graph. This excludes the
possibility that by reducing graphs to their random walk statistics, we introduce an
irreversible systematic bias.

The GAN? The role of the GAN is to learn the random walk distribution of the input
graph. We prove in Section 2.4.4 that if the GAN perfectly learns the random walk
distribution, NetGAN will simply reproduce the input graph instead of generalizing it.
However, the results reported by Bojchevski et al. (2018) show that even if NetGAN is
trained for a long time, it produces graphs that are considerably different from the input
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graph as measured by edge overlap. Consequently, there has be be another mechanism
that prevents the GAN from memorizing the input graph.

The LSTM? As the authors of NetGAN pointed out themselves, the LSTM architec-
ture, which is supposed to capture long-term dependencies, seems to be an odd choice
for learning Markov sequences that by construction do not have any such dependen-
cies. It is possible that this architecture choice injects noise into the learning process,
which prevents memorization of the input graph. Yet, this type of noise seems to be
rather uncontrolled, and we consider it unlikely that this aspect of the LSTM cannot
be replaced by a simpler, more direct mechanism.

Computational trick: low-rank approximation. What is left? In our opinion,
the only component that explains why NetGAN successfully generalizes graphs is a
computational trick: the LSTM is not operating on the high-dimensional space RN

directly. In order to reduce computational complexity, it uses learnable down- and
up-projections Wdown ∈ RN×H and Wup ∈ RH×N with H ≪ N . As we derive in
Section 2.2.1, these projections force the update rule of a node and memory state pair
(vt,mt) with vt as one-hot vector to be of the form

pt+1 = vt
⊤W (mt) ,

vt+1 ∼ Cat (σ(pt+1)) ,
(2.3)

where W (mt) ∈ RN×N depends on mt and has rank at most H. Because W (mt) is the
transition matrix after applying σ, we refer to it as the logit transition matrix. NetGAN
forces this matrix to have low rank, which leads us the following conjecture:

Conjecture: The key ingredient of NetGAN is to learn the random walk
distribution by performing a low-rank approximation of the logit transi-
tion matrix.

To validate this conjecture, we derive a simplified method that applies this low-rank
approximation directly and demonstrate its comparable performance in experiments.

2.2.1 Replacing the GAN

In this section, we inspect the high-level structure of NetGAN. The learnable projection
matrices are given by Wdown ∈ RN×H and Wup ∈ RH×N with H ≪ N . Given the
current node vt as a one-hot vector and suppressing the next memory state mt+1 in
notation, the generator fθ can be written as

pt+1 = fθ (mt, vt) = gθ

(
mt, vt

⊤Wdown

)
Wup , (2.4)

where gθ : RH → RH is the part of fθ that operates on the low-dimensional space. We
collect the row vectors gθ

(
mt, vt

⊤Wdown

)
in a matrix W̃down(mt) ∈ RN×H and define

the product W (mt) := W̃down(mt)Wup ∈ RN×N to obtain

pt+1 = vt
⊤W̃down(mt)Wup = vt

⊤W (mt) . (2.5)
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Therefore, W (mt) simply serves as logit transition matrix for the random walks. Be-
cause of the factorization that defines W (mt), its rank is at most H.

To derive how exactly we can replace the GAN with a low-rank approximation, we first
simplify the update rule in Eq. (2.5) by dropping the LSTM and with it the dependency
on the memory state mt; this is justified by the Markov property of unbiased random
walks. What remains is a matrix W , whose learnable parameters are intertwined with
the low-dimensional part gθ of the generator:

pt+1 = vt
⊤W = gθ

(
vt

⊤Wdown

)
Wup . (2.6)

Motivated by the assumption that the identity function Id: RH → RH can be rep-
resented as gθ, we drop the structural restriction imposed by gθ, leaving us with
W = WdownWup and update rule

pt+1 = vt
⊤WdownWup . (2.7)

The new update of node vt is thereby realized by sampling from the categorical dis-
tribution of the corresponding row σ(Wvt), that is, vt+1 ∼ Cat(σ(Wvt)). In this form,
training the GAN is equivalent to learning the random walk transition matrix directly
from the parametric family P = {σrows(W ) ∈ RN×N : W ∈ RN×N , rank(W ) ≤ H},
where σrows denotes the function that applies σ to each row of a matrix. We then
proceed by learning the transition matrix from this parametric family directly with the
maximum likelihood approach.

2.3 Stripping NetGAN

We now gradually simplify NetGAN by stripping it of all unnecessary components in
Section 2.3.1. Additionally, we observe in Section 2.3.2 that sampling random walks
can be circumvented with a limit argument. This leads to our new, highly simplified
method called Cross-Entropy Low-rank Logits (CELL), see Section 2.3.3 for a summary
and Figure 2.1 for a schematic outline.

2.3.1 Low-rank approximation replaces the GAN

Motivated by the above conjecture, we now prune the update rule in Eq. (2.3) until we
arrive at a rank-constrained optimization problem. Justified by the Markov property
of unbiased random walks, we first drop the LSTM and the memory state mt. In
Section 2.2.1, we derived that the GAN learns the random walk distribution by choosing
its transition matrix directly from the parametric family P = {σrows(W ) ∈ RN×N : W ∈
RN×N , rank(W ) ≤ H}, where σrows denotes the function that applies the softmax σ to
each row of a matrix. The training set for this problem consists only of the transitions
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of random walks in R, and the noise random variable z plays the subordinate role
of choosing the first node. This parametric family formulation defeats the purpose of
using a GAN at all, which is why instead we revert to the classical maximum likelihood
approach (or, equivalently, the cross-entropy loss) on P: using the notation (k, l) ∈ R
to denote all transitions (with multiple counting) of random walks in R, the resulting
problem is given by

min
W∈RN×N

−
∑

(k,l)∈R

log σrows(W )k,l ,

s. t. rank(W ) ≤ H .

(2.8)

In short: instead of learning the random walk distribution by training a GAN, we
approximate its transition matrix directly by solving a rank-constrained optimization
problem.

2.3.2 Bypassing random walk sampling

There is another aspect of NetGAN that is somewhat puzzling: even to learn a graph of
moderate size, for example the graph CORA-ML with about 3,000 vertices and 8,000
edges, NetGAN needs to sample 7,500,000 random walks of length 15 from the input
graph, which are worth 112,500,000 edges. In other words, we see every edge of the
input graph about 14,000 times on average — with which any edge-frequency statistic
would be very close to its expected value. The same order of magnitude applies to
the sampling of random walks from the generator in the reconstruction step. With
that observation, a natural question is whether we can circumvent the random walk
sampling, and the answer is yes. Since the random walks are only used in form of the
score matrix that contains the frequency of node transitions, and this matrix converges
for a large number of random walks, we can substitute the actual score matrix with its
limit value. The remainder of this section formalizes this idea in Eq. (2.11) and applies
it to NetGAN at both sampling steps.

Convergence of the score matrix S. First, we consider a single random walk
R = (v0, . . . ,vT ) of length T as a random variable, whose distribution depends on
the distribution q0 ∈ RN of the first node v0 and the transition matrix P . For t ∈
{1, . . . , T}, let Qt ∈ RN×N denote the distribution of the t-th transition (vt−1, vt)
in R. Its marginal vt−1 is distributed as qt−1 ∈ RN and its conditional vt|vt−1 is
distributed as P , which yields the matrix decomposition

Qt = diag(qt−1)P . (2.9)

From this perspective, counting the transitions of a single random walk R in a score
matrix S(R) ∈ RN×N can be expressed as S(R) =

∑T
t=1 Q̂t(R), where Q̂t(R) is the

empirical version ofQt based on one sample. The score matrix S = S(R1, . . . , Rn) based
on n random walks R1, . . . , Rn decomposes into S =

∑n
j=1 S(Rj), and with the above

considerations we have S =
∑n

j=1

∑T
t=1 Q̂t(Rj). By the Glivenko-Cantelli theorem for
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empirical distributions, we can compute the limit of S/n for n→∞ as

S

n
=

T∑
t=1

1

n

n∑
j=1

Q̂t(Rj)
a. s.−−−→

n→∞

T∑
t=1

Qt . (2.10)

Using Eq. (2.9), the normalized right-hand side is given by
∑T

t=1Qt/T = diag(ρT )P ,

where ρT =
∑T

t=1 qt−1/T . In that sense, using a large number of random walks reduces
to node weights ρT . Since the underlying graph is by assumption connected and non-
bipartite, the stationary distribution π of P exists and is unique, that is, π = limt→∞ qt.
Hence the Cesàro mean ρT also converges to π as T →∞. Or, in other words: for any
initial distribution q0, the node weights induced by sufficiently long random walks are
given by π. In conjunction with Eq. (2.10), we obtain the limit of the normalized score
matrix

S

nT

a. s.−−−−−→
n,T→∞

diag(π)P . (2.11)

Note that we take two limits to approximate S. We take the first limit with respect to
the amount of random walks n, because NetGAN samples many random walks. The
second limit with respect to the length T dilutes the influence of the initial distribution
(ρ1 = q0) in favor of the stationary distribution (limT→∞ ρT = π). This is appropriate
because most real-world networks have small diameter, and the length T = 15 used
in NetGAN already ensures that ρT is close to its limit distribution. Furthermore,
the authors of NetGAN already observed that taking longer random walks increases
performance. Finally, in Section 2.4.5 we will see that the information encoded in the
start distribution of the random walk can be more directly incorporated by the node
weights.

Replacing random walks from the input graph. The objective in Eq. (2.8) sums
over all node transitions in R. We count the transitions in a corresponding score matrix
S = S(R) to rewrite the objective function as

−
N∑

k,l=1

Sk,l log σrows(W )k,l . (2.12)

Normalizing S does not change the minimum, and allows us to approximate it with
the limit diag(π)P in Eq. (2.11). Since we consider unbiased random walks according
to P = D−1A, the stationary distribution π is proportional to the degrees d, hence
diag(π)P ∝ diag(d)D−1A = A. This means that we observe every edge in every
direction with the same frequency, see Lovász et al. (1993) for a survey on random
walks on graphs. We use this new weighting A to define our final objective function

F (W ) = −
N∑

k,l=1

Ak,l log σrows(W )k,l (2.13)
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and our final objective

min
W∈RN×N

F (W ) ,

s. t. rank(W ) ≤ H ,
(2.14)

whose solution is denoted as W ∗. Note that the sum in Eq. (2.13) grows only as
O(e(G)), and we can enforce the rank-constraint in Eq. (2.14) with the factorization
W = WdownWup, where Wdown ∈ RN×H ,Wup ∈ RH×N , resulting in O(NH) trainable
parameters and a non-convex optimization problem.

Replacing random walks from the generator. In principle, we could use the syn-
thetic transition matrix P ∗ = σrows(W

∗) defined with the solution W ∗ of Eq. (2.14) in
place of the generator: we produce synthetic random walks of length T , with transition
matrix P ∗, and with the same distribution over the first node as in the training set,
and then count their transitions in a score matrix. But since the score matrix is needed
only up to proportionality for the edge-independent model, we can use the limit in
Eq. (2.11) instead, which replaces sampling random walks with solving the eigenvec-
tor problem π∗⊤P ∗ = π∗⊤. That is, we skip sampling random walks and simply set
S = diag(π∗)P ∗.

2.3.3 Our algorithm: Cross-Entropy Low-rank Logits (CELL)

In the previous section, we have shown how to (i) replace the LSTM and GAN archi-
tecture with a low-rank approximation of the logit transition matrix with respect to
the cross-entropy loss, (ii) replace sampling random walks from the input graph with
using its adjacency matrix directly, and (iii) replace sampling random walks from the
generator with solving an eigenvector problem. The result of this analysis is our sim-
plified algorithm Cross-Entropy Low-rank Logits (CELL), summarized in Algorithm 1.
It takes the adjacency matrix A of a graph G as input and returns a symmetric ma-
trix A† of edge probabilities, from which new graphs G′ can be sampled. For solving
optimization problem (2.14), we factorize W = WdownWup with Wdown ∈ RN×H and
Wup ∈ RH×N to satisfy the rank constraint, and optimize with Adam (Kingma and
Ba, 2014). Training continues until a stopping criterion is met, for which we pause
at regular intervals and generate new graphs to evaluate the stopping criterion. In
this work, we consider the criterion of reaching a predefined edge overlap of generated
graphs and input graph, see Section 2.5.1.

2.4 Conceptual analysis

Our simple reformulation of NetGAN now opens the possibility to formally analyze the
inductive bias associated with its components and allows for user-specific adaptations.

1Code available at https://github.com/hheidrich/CELL

https://github.com/hheidrich/CELL
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Algorithm 1 Cross-Entropy Low-rank Logits (CELL)1

input adjacency matrix A ∈ {0, 1}N×N , rank H ≪ N
output matrix of edge probabilities A† ∈ [0, 1]N×N

1: Solve optimization problem (2.14) for W ∗

2: Compute transition matrix: P ∗ ← σrows(W
∗)

3: Solve eigenvalue problem π∗⊤P ∗ = π∗⊤ for π∗

4: Compute score matrix: S ← diag(π∗)P ∗

5: Convert score matrix S to edge-independent model A†:
S† ← max{S, S⊤}; A† ← S†/sum(S†)

return A†

0 1500 2810
0

1 P
P
W Figure 2.2: Portion of absolute eigenvalues

(sorted and rescaled) for CORA-ML with
CELL trained to 50% edge overlap for H = 9.

2.4.1 Inductive bias of NetGAN

Our analysis has shown that the graphs produced by NetGAN come from the class of
graphs whose logit transition matrix has a low rank. Note that this does not imply
that the transition matrix itself has low rank. Even if W ∗ is trained to have low rank,
the corresponding synthetic transition matrix P ∗ = σrows(W

∗) can have full rank, as
is visualized by the eigenvalues in Figure 2.2. Additionally, our experiments in Sec-
tion 2.5.2 suggest that approximating the transition matrix with a low rank matrix and
the Frobenius norm as loss function does not achieve good generalization performance.
However, minimizing the cross-entropy loss for approximation instead yields generaliza-
tion performance comparable to the one of NetGAN and CELL. Since the cross-entropy
corresponds to the Kullback-Leibler (KL) divergence (see Section 2.4.2), this suggests
that using the KL divergence as distance measure for approximating tran-
sition matrices is the reason for the good generalization performance. On
a high level, NetGAN generalizes a graph by choosing new graphs, whose
transition matrix is similar in terms of KL-divergence, from a restricted set
of graphs. Whether this restriction is realized by a low-rank assumption on the logits
or on the transition matrices itself is not essential, although the former is computation-
ally more feasible.
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2.4.2 Information-theoretic representation of objective function F

When considering distributions in this section, we let any matrix with positive entries
refer to the uniquely determined distribution that is obtained after normalization. We
can reformulate our objective F , defined in Eq. (2.13), in terms of information-theoretic
quantities to determine its minimum irrespective of the rank constraint. To do so, we
consider node transitions as a random variable (v,w) on [N ] × [N ]. As derived for
Eq. (2.13) in case of node transitions on the input graph, (v,w) is distributed according
to the adjacency matrix A, wherefore the corresponding conditional distribution of w|v
is given by P . The synthetic transition matrix σrows(W ) represents another conditional
distribution for w|v. From this perspective, we can reformulate F as

F (W ) =−
N∑

v,w=1

Av,w log σrows(W )v,w

∝− E(v,w)∼A [log σrows(W )v,w]

=− E(v,w)∼A [logAv,w] + E(v,w)∼A

[
log

(
Av,w

σrows(W )v,w

)]
=HA(w|v) + KL (A(w|v) || σrows(W )(w|v)) .

The first term on the right-hand side is the conditional entropy of the true underlying
node transition distribution A and does not depend onW . The second is the conditional
relative entropy between the true node transition distribution A, whose conditional is
given by P , and the learned conditional σrows(W ). This shows that F is minimized
by any W satisfying σrows(W ) = P , which makes the low-rank constraint necessary for
generalization in the learning step.

2.4.3 Bias of the optimization objective and resulting hard examples

We optimize the objective function in Eq. (2.13) to learn the random walk distribution
in form of its transition matrix. By inspecting the objective, we can understand how this
is achieved: the synthetic transition matrix σrows(W ) is rewarded directly for putting
mass on edges of the input graph (Ak,l = 1). But because the total mass is limited
(
∑

l σrows(W )k,l = 1), it is only penalized indirectly for wasting mass on non-edges
(Ak,l = 0). In particular, there is no distinction between different non-edges. This
hints towards poor performance for graphs with strong restrictions on the set
of edges we deem realistic, because there is no notion of “bad” edges that could
prevent their generation; a possible remedy to this problem is extending the objective
function with such a notion.

We illustrate this effect with the example of ε-neighborhood graphs in Figure 2.3.
Here, we want to avoid the generation of edges between nodes with large distance in
the Euclidean space, which is not taken into account by NetGAN and CELL. However,
a simple adaptation of our method, denoted as “Local CELL”, can prevent long edges
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Figure 2.3: Comparison of an ε-neighborhood graph (top left) with graphs generated
by Local CELL, a version of our method biased towards short edges, NetGAN, and our
method CELL. Only Local CELL does not generate edges between distant points.

without loss of generalization performance. The corresponding experiment is provided
in Section 2.6.4.

2.4.4 No bias in the reconstruction step

A natural question is whether our method might be able to generalize even without the
rank constraint in the learning step. Or, phrased differently, whether the reconstruction
step introduces a generalization bias. This is not the case. We derived in Section 2.4.2
that without any rank constraint, we exactly recover the input transition matrix as
P ∗ = P . Because of diag(π)P ∝ A, this also holds for the score matrix

S = diag(π∗)P ∗ ∝ A . (2.15)

Since A is already symmetric, the edge-independent model is given by A† ∝ A. This
model is equivalent to uniformly sampling edges from the input graph G, and sampling
e(G) edges from this model without replacement means sampling all of them. Hence
it simply returns the input graph with zero variance. Therefore, reconstructing the
graph with an edge-independent model does not contribute to generaliza-
tion. Another interpretation of this observation is that random walks are sufficient to
learn a graph in principle.
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2.4.5 Influence of the random walk parameters

For NetGAN it is still unclear how the length T and the start distribution for the first
node q0 of the random walks influence the generated graphs. We derived in Section 2.3.2
that it does not exploit any complicated patterns in the random walk paths, but simply
counts the transitions, which comes down to a weighting of the nodes. When translating
NetGAN to our approach, we observe that the random walk length controls how
much influence the start distribution has on the node weights: instead of
taking the limit T →∞ in the derivation of Section 2.3.2, we could have completed the
analysis with the node weights ρ =

∑T
t=1 qt−1/T to arrive at the parametrized objective

function

Fρ(W ) = −
N∑

k,l=1

ρk
dk

Ak,l log σrows(W )k,l . (2.16)

This allows for further interpretation and adaption:

Random walks of length one are sufficient. The random walk parameters T and
q0 are relevant for Eq. (2.16) only because they determine the node weights ρ. On the
other hand, all possible node weights ω can be realized by choosing q0 = ω and T = 1.
This implies for NetGAN that only using random walks of length one imposes
no restriction, if the distribution of the start node is considered as a hyperparameter
instead.

An example that is now readily explained is the setting in Jalilifard et al. (2019). They
observe empirically that using short random walks in NetGAN reduces the performance,
and propose to counteract by choosing the start distribution as the density function
described in Zhou et al. (2009). Within our framework, this is explained by the node
weights: for short random walks, they are close to the uniform distribution (the start
distribution of NetGAN), which overemphasizes nodes with low degree and results in
bad performance. Choosing the start distribution closer to the stationary distribution
instead has the same effect on the node weights as using long random walks.

Node weights ρ as a hyperparameter. Instead of indirectly setting the node weights
ρ through the random walk parameters q0 and T as is done in NetGAN, we can treat ρ
as a hyperparameter directly to incorporate beliefs about the graph. Weighting nodes
according to the stationary distribution assigns equal weight to all edges in Eq. (2.16).
In general, increasing the weight of a node encourages generated graphs to include its
adjacent edges. This enables us, for example, to “protect” a certain set of nodes in
the sense of preserving their neighborhoods in the generated graphs by increasing their
weight.
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Figure 2.4: Mean and standard deviation for five trials on CORA-ML, plotted against
edge overlap with the input graph. Aside from different initializations, NetGAN and
CELL display similar behavior. Additional experiments are provided in Section 2.6.6.

2.5 Experiments

The purpose of this section is to (i) verify that CELL has performance comparable to
NetGAN while being much faster, and (ii) demonstrate the importance of the cross-
entropy loss and benefit of the logit-transformation by comparing with other low-rank
approximation baselines.

2.5.1 Setup of the experiments

Data sets and preprocessing. We experiment on a variety of graph data sets: the
citation networks CORA-ML (McCallum et al., 2000) and Citeseer (Sen et al., 2008),
the political blogs network PolBlogs (Adamic and Glance, 2005), the retweet network
RT-GOP, and the web graph Web-EDU (Gleich et al., 2004). All graphs except for
CORA-ML are taken from Rossi and Ahmed (2015). For CORA-ML, we use the
same preprocessed version as Bojchevski et al. (2018), an overview of the data sets is
given in Table 2.3. We preprocess the graphs by removing loops, edge weights, and
edge directions. We then restrict them to their largest connected component to ensure
that they are connected. For evaluating the link prediction performance during and
after training, we split each graph into training-, validation-, and test-set by taking
out 10% of the edges for validaton and another 5% for testing, while ensuring that
the remaining graph stays connected. The validation set is only used for the VAL-
criterion, an alternative stopping criterion based on link prediction performance that
is described in Section 2.6.3.

Baselines. We compare our model CELL to NetGAN (Bojchevski et al., 2018) and
a number of non-parametric baselines: the configuration model, which simply rewires
some randomly chosen edges (Molloy and Reed, 1995), and low-rank approximations
of the adjacency matrix (LR-Adj), the random walk transition matrix (LR-Trans), the
symmetric normalized Laplacian (LR-Lap), and the modularity matrix (LR-Mod), in a
similar framework as described by Baldesi et al. (2018). To investigate the contribution
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Table 2.2: Graph statistics and link prediction performance on CORA-ML for gener-
ated graphs from NetGAN, our method CELL, and baselines, averaged over five trials.
Statistics that are matched by model design for the configuration model are indicated
as ∗, and cases that are not applicable as −. CELL produces statistics comparable to
NetGAN, but is orders of magnitudes faster. This experiment is repeated for all other
data sets in Section 2.6.5.

Graph
Max.

degree
Assort-
ativity

Triangle
count

Square
count

Power
law exp.

Cluster-
ing coeff.

Charac.
path len.

ROC-AUC
score

Time
(in s)

CORA-ML 238 -0.076 2,802 14,268 1.86 8.26e-2 5.63 1 −

Conf. model ∗ -0.053 623 3111 ∗ 1.96e-2 4.43 − 1
LR-Adj 121 -0.042 444 1,128 1.72 2.78e-2 5.17 0.561 32
LR-Trans 139 -0.058 558 1,617 1.77 2.94e-2 5.07 0.709 33
LR-Lap 167 -0.084 691 1942 1.79 2.79e-2 4.76 0.800 38
LR-Mod 122 -0.043 437 1,135 1.72 2.75e-2 5.17 0.557 48
LR-CE 193 -0.068 1,388 6,284 1.79 5.68e-2 5.37 0.950 73

NetGAN 219 -0.071 1,461 5,555 1.80 5.23e-2 5.13 0.950 7,478
CELL 204 -0.070 1,396 6,880 1.82 5.07e-2 5.26 0.938 21

Table 2.3: Data sets used. Nodes and edges refer to the largest connected component.

Name Nodes Edges

CORA-ML 2,810 7,981
Citeseer 2,110 3,668
PolBlogs 1,222 16,779
RT-GOP 4,687 5,529
Web-EDU 3,031 6,474

of the logit transformation for CELL, we additionally consider a low-rank approxima-
tion of the transition matrix with respect to the cross-entropy loss instead of using the
Frobenius norm (LR-CE). The original paper by Bojchevski et al. (2018) also compared
to a number of parametric baselines, which have the purpose of explicitly fitting some
hand-selected graph parameters, but fail to reproduce others. For brevity we do not
report the results of these parametric baselines.

Setup and evaluation metrics. To make the results comparable, we train CELL
and NetGAN until the same stopping criterion of 52% edge overlap with the input
graph is satisfied. This is done by pausing the training at regular intervals, generating
a single graph, and calculating the ratio of shared edges to input edges. While NetGAN
is trained on a GPU, only a CPU is required for training CELL.
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Our first evaluation metric is a set of common graph statistics for input and generated
graphs, whose purpose is to measure the extent to which the newly generated graphs
reproduce network patterns of the input graph. Since memorizing the input graph
trivially reproduces all of its graph statistics, we additionally evaluate the generalization
properties in a link prediction task. To do so, we use the edges in the test set and an
equal amount of randomly chosen non-edges from the original graph. After training,
these are presented to the generative models, which try to classify them as existent or
non-existent in the original graph on the basis of the score matrix (or, equivalently,
the edge-independent model A†). This matrix is produced by all considered models
except for the configuration model. A high value in the score matrix suggests the
existence of the corresponding edge, while a low value suggests that the edge did not
exist in the original graph. The performance is measured by the ROC-AUC score (Area
Under Curve for Receiver Operating Characteristic curve), applied to the score matrix
evaluated at the edges in question.

2.5.2 Evaluation

CELL vs. NetGAN. The results for graphs generated on CORA-ML are presented in
Table 2.2. Compared to the other baselines,CELL generates graphs with statistics
close to those of NetGAN and has similar link prediction performance; some of their
small differences might be attributed to the noise of the LSTM used by NetGAN, and to
the different optimization procedures. The latter can be observed in Figure 2.4, which
shows the evolution of generated graph statistics during training: NetGAN starts off
with a different initialization, but as training continues, the generated graph statistics
get close to the target well before memorizing the input graph. Further confirmation of
this behavior is given in Sections 2.6.6 and 2.6.7. However, the most striking difference
is the training time, for which our method is orders of magnitudes faster, see
Table 2.1.

CELL vs. baselines. Almost all baselines fail to reproduce most of the graph
statistics, while CELL is reasonably close to all of them. Only LR-CE, the version of
our method without the logit space, has performance very similar to CELL. This hints
towards the importance of the cross-entropy loss rather than the logit space for
successfully generalizing a graph. However, using the logit space still has the advantage
of requiring only a small rank (H = 9 for CELL as compared to H = 950 for LR-CE),
which results in less trainable parameters and shorter training time.



2.6. EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS 33

2.6 Experimental details and additional experiments

2.6.1 Graph statistics

Definition of various graph statistics used in this work. Part of the table is extracted
from Bojchevski et al. (2018).

Table 2.4: Graph statistics for a graph G = (V,E) with N = |V | nodes and m = |E|
edges.

Graph statistic Computation Description

Assortativity cov(X,Y )
σXσY

Pearson correlation of degrees
of connected nodes, where the
(xi, yi) pairs are the degrees of
connected nodes.

Power law exponent 1 + n
(∑

v∈V log d(v)
dmin

)−1

Exponent of the power law dis-
tribution, where dmin denotes
the minimum degree in a net-
work.

Relative edge
distribution entropy

− 1
logN

∑
v∈V

d(v)
2m log d(v)

2m Normalized entropy of the de-
gree distribution, 1 means uni-
form, 0 means a single node is
connected to all others.

Gini coefficient
2
∑N

i=1 id̂i

N
∑N

i=1 d̂i
− N+1

N Common measure for inequality
in a distribution, where d̂ is the
sorted list of degrees in the
graph.

Characteristic
path length

1
N(N−1)

∑
u ̸=v d(u, v) Average shortest path length,

where d(u, v) is the shortest
path length between nodes u
and v.

Spectral gap λ1(L) Smallest non-zero eigenvalue λ1

of the graph Laplacian L = D −
A.

Motif count − Number of copies of H con-
tained in G as a subgraph. Con-
sidered motifs are wedges, tri-
angles, and squares.
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2.6.2 Baselines

• Configuration model. We randomly sample a fraction of the edges in the
input graph (fraction stated in brackets), and then rewire the remaining edges
by severing them and randomly matching the stubs. This yields a graph with
the same degree distribution as in the input graph. Because the resulting graph
is not simple in general, we then remove all loops and multiple edges (with high
probability, there are only few of them).

• Low-rank approximations with respect to Frobenius norm. A class of
graph generative models similar in spirit to our method is the Spectral Graph
Forge framework, which is based on performing low-rank approximations of ma-
trices derived from the input adjacency matrix A. The pipeline consists of the
following steps:

1. Transform A into any derived matrix M = M(A).

2. Perform a low-rank approximation of M to obtain M̃ .

3. Back-transform M̃ to Ã by applying the inverse of the transformation.

4. Obtain edge-independent model A† by making Ã symmetric and then nor-
malizing it.

5. Sample the new adjacency matrix A′ ∼ A†.

We apply this framework to the adjacency matrix A (no transformation), the
random walk transition matrix P = D−1A, the symmetric normalized Laplacian
Lsym = I − D− 1

2A− 1
2 , and the modularity matrix B = A − dd⊤/(2e(G)). The

rank of the approximation is chosen so that the desired edge overlap with the
input graph is reached: on CORA-ML, we use rank 1600 for M ∈ {A,P,B}
and rank 2520 for M = Lsym. For the transition matrix, we choose the same
back-transformation Ã = diag(π̃)P̃ as in our method instead of Ã = DP̃ , which
uses the degree matrix of the input graph. Given Ã, we proceed like NetGAN
and our method with S = Ã. For link prediction, we also use the score matrix.

• Low-rank approximation with respect to cross-entropy loss. This base-
line is a version of our method CELL, but without the logit space. That is, we
solve the optimization problem

min
P̃∈RN×N

−
N∑

k,l=1

Ak,l log P̃k,l ,

s. t. rank(P̃ ) ≤ H and P̃ ∈ P ,

(2.17)

where P is the set of stochastic matrices on RN×N . Similar to how we proceed
in CELL, we enforce this constraint with the parametrization

P̃ = D(eCeD)−1eCeD , (2.18)
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where C ∈ RN×H , D ∈ RH×N , the exponential function is taken element-wise,
and D(eCeD) denotes the diagonal matrix of row sums for eCeD. We then opti-
mize the objective in Eq. (2.17) over C and D with Adam.

2.6.3 Stopping criteria

In addition to the rank constraint, CELL and NetGAN both use an early stopping
criterion for learning the random walk distribution.

EO-criterion. The EO-criterion is the stopping criterion used in this work and by
NetGAN, and generates graphs with a predefined edge overlap with the input graph
(e. g. 50%). To employ it, training is stopped during regular intervals, the edge-
independent model is constructed, and a single graph G′ is generated. If the fraction
of edges e(G∩G′)/e(G) is smaller than the predefined threshold, training is continued,
otherwise it is stopped.

VAL-criterion. The VAL-criterion is a stopping criterion proposed by NetGAN and
represents an alternative to the edge overlap (EO) criterion used in this work. It is
employed by evaluating the link prediction performance on the validation set during
training of the optimization problem, and then stopping the training as soon as the link
prediction performance does not improve for a predefined amount of training iterations.
For evaluation after training, the test set is used instead of the validation set.

2.6.4 Example of a bias of NetGAN and CELL: ε-neighborhood
graphs

This section demonstrates the concepts discussed in Section 2.4.3 on ε-neighborhood
graphs. These graphs arise by choosing the nodes as points in a metric space, and
connecting those pairs of points by an unweighted, undirected edge whose distance is
smaller than a constant ε > 0 (see Figure 2.3 for an illustration). Given an ε-graph as
input, there is one major property that a graph generative model should keep intact:
edges should occur between points with a small distance in the underlying space, but
not for points with a large distance. Figure 2.3 shows that NetGAN and CELL do not
comply with this desired tendency: both algorithms generate long edges. We can easily
counteract this mismatch in inductive bias for CELL by extending our loss function
with an additional term that penalizes long edges. Because the underlying distances
of the metric space are not directly represented in the ε-neighborhood graph anymore,
we use its shortest path distances D ∈ RN×N as a proxy (which is sensible as one can
prove that the shortest path distances in ε-graphs converge to the underlying metric
distances (Orlitsky, 2005; Tenenbaum et al., 2000)). We refer to the resulting method
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as “Local CELL”, whose loss function is given by

F (W ) =−
N∑

k,l=1

Ak,l log σrows(W )k,l −
N∑

k,l=1

Ak,l [Dk,l ≤ k] log σrows(W )k,l , (2.19)

where [A] = 1, if statement A is true, and 0 otherwise. A comparison of NetGAN,
CELL, and Local CELL is given in Table 2.5, see also Figure 2.3 for an illustration.
As expected, NetGAN and CELL generate graphs with long edges, resulting in a large
average edge length and small characteristic path length. Local CELL on the other hand
is significantly closer to the input graph in this regard without a loss in performance
for other statistics. It even improves on some other statistics, because the objective
function is more appropriate for this type of graph.

Table 2.5: Statistics of ε-neighborhood graph and generated graphs from three gener-
ative models, averaged over five trials. For the generated graphs, “avg. edge len.” is
computed only from generated edges that are not present in the input graph.

Graph
Charac.
path len.

Avg.
edge len.

Spectral
gap

Assort-
ativity

Power
law exp.

Triangle
count

Wedge
count

ε-neighborhood 8.97 0.10 2.04e-3 0.75 1.51 2,319 11,557

NetGAN 3.54 0.41 4.49e-2 0.09 1.50 895 10,638

CELL 4.01 0.50 3.57e-2 0.38 1.50 1,144 11,030

Local CELL 5.92 0.21 5.13e-3 0.47 1.51 1,088 11,377

2.6.5 Additional baseline experiments

Graph statistics and link prediction performance on all data sets described in Section 2.5
for generated graphs from NetGAN, our method CELL, and baselines, averaged over
five trials. Statistics that are matched by model design for the configuration model
are indicated as ∗, and cases that are not applicable as −. For a visualization and
interpretation of the results, see Section 2.6.7.
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Table 2.6: CORA-ML (2,810 nodes, 7,981 edges).

Graph
Max.

degree
Assort-
ativity

Triangle
count

Square
count

Power
law exp.

Cluster-
ing coeff.

Charac.
path len.

ROC-AUC
score

Time
(in s)

CORA-ML 238 -0.076 2,802 14,268 1.86 8.26e-2 5.63 1 −

Conf. model ∗ -0.053 623 3111 ∗ 1.96e-2 4.43 − 1

LR-Adj 121 -0.042 444 1,128 1.72 2.78e-2 5.17 0.561 32

LR-Trans 139 -0.058 558 1,617 1.77 2.94e-2 5.07 0.709 33

LR-Lap 167 -0.084 691 1942 1.79 2.79e-2 4.76 0.800 38

LR-Mod 122 -0.043 437 1,135 1.72 2.75e-2 5.17 0.557 48

LR-CE 193 -0.068 1,388 6,284 1.79 5.68e-2 5.37 0.950 73

NetGAN 219 -0.071 1,461 5,555 1.80 5.23e-2 5.13 0.950 7,478

CELL 204 -0.070 1,396 6,880 1.82 5.07e-2 5.26 0.938 21

Table 2.7: Citeseer (2,110 nodes, 3,668 edges).

Graph
Max.

degree
Assort-
ativity

Triangle
count

Square
count

Power
law exp.

Cluster-
ing coeff.

Charac.
path len.

ROC-AUC
score

Time
(in s)

Citeseer 72 -0.015 483 1,866 2.24 8.70e-2 10.68 1 −

Conf. model ∗ -0.014 108 282 ∗ 1.95e-2 6.33 − 1

LR-Adj 34 4.75e-2 89 188 2.09 2.62e-2 8.17 0.608 12

LR-Trans 36 -0.022 119 364 2.15 3.20e-2 8.58 0.825 8

LR-Lap 48 0.019 108 161 2.18 2.45e-2 7.82 0.362 12

LR-Mod 32 5.33e-4 87 162 2.09 2.67e-2 8.17 0.603 108

LR-CE 47 -0.076 138 549 2.13 3.50e-2 8.57 0.903 19

NetGAN 52 -0.074 361 478 2.15 8.50e-2 9.03 0.951 4,654

CELL 44 -0.093 106 318 2.17 2.54e-2 7.36 0.858 10
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Table 2.8: PolBlogs (1,222 nodes, 16,779 edges).

Graph
Max.

degree
Assort-
ativity

Triangle
count

Square
count

Power
law exp.

Cluster-
ing coeff.

Charac.
path len.

ROC-AUC
score

Time
(in s)

PolBlogs 298 -0.222 60,873 2,631,731 1.44 0.189 2.82 1 −

Conf. model ∗ -0.140 31,364 1,263,826 ∗ 0.118 2.72 − 1

LR-Adj 171 -0.022 15,497 430,846 1.36 0.082 2.66 0.63 1

LR-Trans 200 -0.114 27,428 918,543 1.40 0.114 2.73 0.861 1

LR-Lap 234 -0.214 19,593 511,781 1.36 0.086 2.55 0.745 2

LR-Mod 170 -0.028 15,528 433,669 1.36 0.082 2.66 0.624 16

LR-CE 248 -0.226 34,942 1,303,305 1.40 0.126 2.66 0.943 17

NetGAN 261 -0.244 37,849 1,438,174 1.41 0.132 2.70 0.950 55,276

CELL 268 -0.243 49,366 2,043,407 1.43 0.160 2.78 0.949 15

Table 2.9: RT-GOP (4,687 nodes, 5,529 edges).

Graph
Max.

degree
Assort-
ativity

Triangle
count

Square
count

Power
law exp.

Cluster-
ing coeff.

Charac.
path len.

ROC-AUC
score

Time
(in s)

RT-GOP 270 -0.135 0 2 4.29 0 14.01 1 −

Conf. model ∗ -0.092 56 241 ∗ 1.89e-3 5.68 − 1

LR-Adj 239 -0.117 0 87 3.74 0 12.05 0.559 7

LR-Trans 328 -0.111 0 139 4.53 0 6.18 0.676 19

LR-Lap 162 -0.070 5 1 3.09 5.15e-4 14.61 0.466 164

LR-Mod 192 -0.101 0 34 3.41 0 21.10 0.550 84

LR-CE 233 -0.122 0 29 3.74 0 20.08 0.874 129

NetGAN 221 -0.112 14 15 3.64 6.74e-4 16.33 0.738 14,800

CELL 253 -0.142 0 6 4.11 0 16.90 0.704 23
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Table 2.10: Web-EDU (3,031 nodes, 6,547 edges).

Graph
Max.

degree
Assort-
ativity

Triangle
count

Square
count

Power
law exp.

Cluster-
ing coeff.

Charac.
path len.

ROC-AUC
score

Time
(in s)

Web-EDU 99 -0.183 4491 35,423 2.11 0.167 4.56 1 −

Conf. model ∗ -0.109 873 4,913 ∗ 0.032 4.59 − 1

LR-Adj 58 -0.114 1,096 3,932 1.97 0.081 6.66 0.579 18

LR-Trans 166 -0.034 2,692 20,424 2.13 0.120 5.13 0.862 12

LR-Lap 103 -0.098 514 1,637 2.01 0.028 5.25 0.360 30

LR-Mod 58 -0.121 989 3,292 1.97 0.075 6.44 0.595 97

LR-CE 74 -0.136 1,194 4,330 1.99 0.080 6.41 0.994 72

NetGAN 92 -0.174 1,244 3,022 2.02 0.064 5.51 0.992 11,000

CELL 63 -0.234 1,176 4,710 2.03 0.069 6.67 0.977 16
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2.6.6 Evolution of graph statistics during training

To compare the generated graphs of CELL and NetGAN for different edge overlaps,
we fix all hyperparameters and stop training at regular intervals to compute the graph
statistics of the generated graphs. Since we fix the ranks for the low-rank constraint,
the generated graphs will not converge to 100% edge overlap. But this area of high edge
overlap is of little interest anyway, because the shared edges alone force the generated
graphs to reproduce many graph statistics. Note that in order to reduce computational
complexity, NetGAN uses less random walks to compute statistics during training (for
example to evaluate the stopping criteria): instead of sampling many random walks
from the generator, it keeps track of the random walks generated in the last 1,000
iterations during training to build the score matrix. For our method CELL there is no
such distinction, we complete our pipeline as described in Section 2.5.

Aside from few exceptions, for example the triangle count and the related clustering
coefficient on Citeseer, we observe the same behavior as described in Section 2.5.2:
after a short initialization phase, CELL and NetGAN display comparable behavior.
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Figure 2.5: Graph statistics during training for NetGAN and CELL on CORA-ML,
plotted against edge overlap.
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Figure 2.6: Graph statistics during training for NetGAN and CELL on Citeseer,
plotted against edge overlap.

2.6.7 Comparison of relative errors

For a graph statistic s on the input graph, let sM = (s
(1)
M , . . . , s

(K)
M ) denote the es-

timates of model M for s in K trials. The average relative error is then defined by

srel(M) = 1/K
∑K

k=1|s − s
(k)
M |/|s|. In Figure 2.7, we depict the relative errors for Net-

GAN, CELL, and baselines on a variety of data sets and graph statistics. Small relative
errors indicate good performance in the sense that the generated graphs are close to the
input graph. Over all data sets, a general trend can be observed: on most instances, the
three models NetGAN, CELL, and LR-CE behave similarly and better as compared to
the other baselines. Occasional deviations of this behavior might be attributed to the
different optimization procedures and the early stopping. For some networks, for ex-
ample Citeseer, NetGAN seems to outperform CELL, but for others like PolBlogs,
CELL performs better; this reflects that their different optimization procedures might
or might not contribute to the goal of learning the network at hand.
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2.6.8 Hyperparameters

For all our considered models except the configuration model and NetGAN, we choose
the rank parameter H such that the generated graphs achieve the predefined edge
overlap with the input graph. For example on CORA-ML with 2,810 nodes, we choose
H = 1600 for LR-Adj, LR-Trans, and LR-Mod, H = 2520 for LR-Lap, H = 950 for
LR-CE, and only H = 9 for our method CELL. In general, a higher rank increases the
ability of the model to generate graphs with a high edge overlap. For NetGAN, we only
consider unbiased random walks (p = q = 1) with batch size 128 and length 16. The
dimensions Hg and Hd for the low-rank projection for generator and discriminator are
both 128. Both generator and discriminator have a single hidden layer with 40 hidden
units for the generator and 30 hidden units for the discriminator. The temperature τ
is annealed from τ = 5 to τ = 0.5 with a multiplicative decay of 1− 10−5 every step.

We optimize the methods LR-CE, NetGAN and CELL using Adam. For LR-CE and
CELL, we use a learning rate of 0.1 and weight decay of 10−7, and for NetGAN the
learning rate is 0.0003 with L2-regularization of 10−7 for the generator and 5 · 10−5 for
the discriminator. The Wasserstein gradient penalty is set to 10.
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Figure 2.7: Relative errors of NetGAN, CELL and baselines, trained until the EO-
stopping criterion given in brackets, and averaged over five trials. Rows represent the
input graphs, columns represent the graph statistics. The y-axis ranges from 0 to 1 in
every cell; values that exceed 1 are capped and indicated with an arrow. For the Conf.
model, statistics that are matched exactly (0 relative error) are indicated by ⋆, and the
non-existent ROC-AUC score is indicated by a −. The three statistics triangle count,
square count and clustering coefficient for the extremely sparse network RT-GOP are
omitted, because their value is zero and the relative errors are not defined (triangle
count, clustering coefficient), or it is too small to be produce a meaningful relative
error (square count is 2). For the actual graph statistics of generated and input graphs,
see Section 2.6.5.
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2.7 Discussion and future work

We derived a condensed version of NetGAN by identifying its essential steps and per-
forming them directly. We verified experimentally that it retains the generalization
performance of NetGAN, but is much faster. Additionally, our simple formulation of
the algorithm makes it more accessible for analysis and application-specific extensions.

Analysis. In essence, we revealed the initial random-walk-based approach to be a
low-rank approximation of the random walk transition matrix in the logit space. More
naive low-rank approximations of matrices related to the input graph do not achieve
competitive performance when approximating with respect to the Frobenius norm, but
do so for the cross-entropy loss — a curious fact that we plan to investigate in future
work. Based on our new, simplified methods we could analyze the inductive biases of
the different components and the role of the parameters of NetGAN. For example, we
discover that length and choice of start node of the random walks amount to a weighting
of the nodes, which controls their importance in the graph generation process. Based on
our better understanding of the bias, we can construct examples which both NetGAN
and our algorithm cannot treat in a satisfactory manner.

Extensions. We demonstrated that our method is easily extendable by manipulating
the loss function. An additional loss term can prevent the generation of edges we deem
undesired, and node weights can emphasize user-specified nodes. Because learning step
and reconstruction step are independent, each of them could be replaced by a different
procedure. For example, instead of sampling from an edge-independent model, a more
general method would sample independent paths to further emphasize locality.

Conclusion. Beyond the particular case of NetGAN, our work is part of a more high-
level agenda. Machine learning is used in diverse applications, often not by machine
learning experts, and the outcome of algorithms might have considerable impact in
science and society. In such a context it is particularly important that our community
actively attempts to understand the inherent inductive biases, strengths, and also the
weaknesses of algorithms. Finding examples where an algorithm works is important
— but maybe even more important is to understand under which circumstances the
algorithm produces misleading results. For graph generative models, this might concern
medical studies on brain graphs or geoscience studies on climate graphs. We should
work hard to make our algorithms as transparent and interpretable as possible. This
work is a small step in that direction.



Chapter 3

Discovering Inductive Bias with
Gibbs Priors: A Diagnostic Tool
for Approximate Bayesian
Inference

Bayesian inference is based on the posterior distribution p(θ|y) over latent variables θ
given an observation y. Bayes’ theorem gives an explicit formula for computing the
posterior, but is often infeasible in practice because the latent space is too large to
work with, the appearing integrals are intractable, or the likelihood function cannot be
evaluated. In these cases, practitioners revert to approximating the posterior instead.
This approach comprises a cornucopia of methods, which can be divided into two
groups. The first group consists of deterministic approximation methods that compute
a feasible approximating distribution 1 q(θ|y) to the exact posterior p(θ|y) and includes
methods such as variational inference (Blei et al., 2017; Hinton and van Camp, 1993;
Hoffman et al., 2013; Jordan et al., 1999; Kucukelbir et al., 2017; Ranganath et al.,
2014), Laplace approximations (Daxberger et al., 2021; MacKay, 1992; Rue et al., 2009,
2017; Spiegelhalter and Lauritzen, 1990), and expectation propagation (Minka, 2001).
The second group consists of stochastic sampling methods that generate samples from
(an approximation to) the posterior and includes methods such as Markov chain Monte
Carlo (Bardenet et al., 2017; Casella and George, 1992; Hoffman and Gelman, 2014) and
approximate Bayesian computation (Beaumont, 2019; Diggle and Gratton, 1984; Sisson
et al., 2018). For a general introduction to approximate methods in Bayesian inference
see Bishop (2006). While approximate methods make Bayesian inference feasible, they
come at the cost of a distortion in the posterior. The resulting approximate inference
can deviate significantly from exact Bayesian inference. This calls for diagnostic tools

1While standard notation for the approximation is q(θ), it will be useful in the context of this work
to think of it as a conditional distribution.

45
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to assess whether the result can still be trusted. Most existing diagnostics suffer from
one or more of the following weaknesses: they are specific to a particular setting, they
require evaluating the density of the approximation, which is unavailable for sampling-
based methods, or they are restricted to the marginal distributions of a multivariate
posterior. An overview of diagnostic tools is given in Section 3.1.

Existing diagnostics describe the difference to exact Bayesian inference by assessing
the mismatch between approximation and true posterior. In contrast, we investigate
a new perspective for diagnostic tools: we describe the approximate inference directly
by attributing this mismatch to a change in the inductive bias. In a fully Bayesian
setting, the inductive bias is specified explicitly by the model, which consists of the
prior (a priori preference for solutions) and the likelihood (data generating process).
Approximating the posterior can introduce additional bias that is not reflected in the
model specification. We fix the likelihood and only allow the prior to change. The
main idea of this work is to treat the approximation as an exact posterior to the same
likelihood and reverse-engineer the corresponding implicitly used prior:

Explicitly
chosen prior

& Likelihood
Exact

posterior

Implicitly
used prior

& Likelihood
Approximate
posterior

exact

inference

exact

inference

reverse-engineer

This implicit prior describes the inductive bias of the approximation in terms of an
a priori preference for solutions. Figure 3.1 shows an example of inference based on
posterior approximations that are biased towards solutions of small norm. This corre-
sponds to effectively using a different prior with more mass on solutions of small norm
than the explicitly chosen prior.

Let (f(·|θ))θ be the likelihood and (q(·|y))y the approximations to the posteriors
(p(·|y))y. It is reasonable to define the implicit prior to the approximations by fix-

ing an observation y and simply reverting Bayes’ theorem2 πy(θ) ∝θ q(θ|y)/f(y|θ).
Unfortunately, πy generally depends on the observation y. This means that the ap-
proximations to different observations can correspond to different implicit priors, in
which case no single distribution π̃ satisfies q(θ|y) ∝θ π̃(θ)f(y|θ). We only have the
following weaker interpretation:

Inference based on the approximate posteriors (q(·|y))y is exact Bayesian inference
with the same likelihood (f(·|θ))θ, but the prior is chosen from the family (πy)y
depending on the observation y.

2Note that πy can be improper, that is, not integrable.
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Figure 3.1: Left: a posterior approximation is biased towards solutions of small norm.
Right: the approximation corresponds to the exact posterior under another implicitly
defined prior, which is itself biased towards solutions of small norm.

Of course, the prior should not depend on the observation if we want to interpret it
as the a priori preference for solutions. To understand the inductive bias of the ap-
proximations, we need an observation-independent distribution to compromise between
this family of priors. We look at this problem through the lens of incompatible condi-
tional distributions (Arnold and Press, 1989). This yields a natural solution based on
pseudo-Gibbs sampling, which we call the Gibbs prior. An introduction to incompatible
conditionals and pseudo-Gibbs sampling is given in Section 3.1.1.

Observation-(in)dependent diagnostics A diagnostic can either treat an approx-
imation under a fixed observation q(·|y) or assess the average behavior of the approxi-
mation method across observations (q(·|y))y. These different tasks can show opposing
behavior because an approximation can be good on specific instances but bad in gen-
eral, or vice versa. Diagnosing a single approximation helps to understand and improve
the inference under the fixed observation, but does not inform about how the approx-
imation method performs in other cases. In our setting, this task is performed by the
distributions πy. However, we are interested in the systematic bias of the whole approx-
imation method, which is why we search for an observation-independent compromise
between the πy. This kind of diagnostic does not guarantee the same behavior on any
fixed observation, but helps to understand the method itself.

Contributions

• We investigate the novel approach of diagnosing approximate Bayesian inference
methods in terms of their inductive bias. We show that this requires a compromise
and reframe it as a problem of incompatible conditional distributions.
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• We propose the Gibbs prior as a natural solution to the above problem (Sec-
tion 3.2) and as a diagnostic tool. It is based on pseudo-Gibbs sampling, which
is widely applicable and easy to implement.

• We demonstrate how the Gibbs prior can be used to discover the inductive bias of
approximate Bayesian inference methods in a Gaussian toy example (Section 3.3)
and two intractable Bayesian models (Section 3.7).

3.1 Related work

We divide the literature for diagnostics into two broad categories, depending on how
they assess an approximation mismatch. Diagnostics in the first category compute a di-
vergence between (quantities related to) the posterior and its approximation. Gorham
and Mackey (2015, 2017) compute Stein discrepancies between the posterior and its ap-
proximation. Cusumano-Towner and Mansinghka (2017) compute the symmetric KL
divergence between the approximation and another baseline approximation. Domke
(2021) computes the symmetric KL divergence between the true joint distribution
p(y)p(θ|y) and its approximation p(y)q(θ|y). Huggins et al. (2020) use the Wasserstein
distance to bound the error of posterior point estimates. Diagnostics in the second
category consider derived quantities that are known exactly under the true posterior
and test whether they deviate under the approximations. Xing et al. (2020) compare
a distortion map for posterior cumulative distribution functions to the identity. Yu
et al. (2021) compare average posterior means and covariances to prior means and co-
variances. Cook et al. (2006) initiate another line of work based on the distribution
of posterior quantiles, which is tested for uniformity; a corrected implemenation is
presented by Talts et al. (2018). Yao et al. (2018) relax the uniformity test of Cook
et al. (2006) and only test for symmetry. They also present another diagnostic based
on Pareto-smoothed importance sampling. Prangle et al. (2014) test for uniformity of
p-values related to the coverage property; this method is extended by Rodrigues et al.
(2018). Our diagnostic also falls into this category where the Gibbs prior is compared
to the original prior. The above diagnostics can also be divided by whether they ana-
lyze approximation methods for fixed or general observations. Our goal of diagnosing
average approximation behavior is shared by Cook et al. (2006); Domke (2021); Talts
et al. (2018); Yao et al. (2018); Yu et al. (2021).

Our diagnostic is based on sampling alternatingly from likelihood and approximation.
The same technique was originally used by Geweke (2004) under the name successive-
conditional simulator with the same goal of diagnosing approximations. Although both
diagnostics are based on the same technique, they apply it differently: Geweke (2004)
uses the simulator without reference to compatibility for generating tuples (θ̃i, ỹi)i,
which are tested against samples from the Bayesian model (θi, yi)i to assess whether
the approximations are exact; we focus on the marginal values (θ̃i)i that describe the
implicitly used prior to assess the inductive bias. Our diagnostic is also similar in spirit
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to Joshi and Ruggeri (2020) who link distortions in the likelihood to distortions in the
prior.

3.1.1 Incompatible conditionals and pseudo-Gibbs sampling

When treating approximations as exact posteriors we inevitably face the problem of
compatibility, which we shortly introduce in this paragraph. A bivariate model can
be specified explicitly through its joint distribution p(θ, y), for example as in Bayesian
models with a marginal p(θ) (prior) and a conditional distribution p(y|θ) (likelihood).
Alternatively, the model can be specified implicitly through its conditional distributions
p(θ|y) and p(y|θ). Joint modeling simplifies theoretical analysis because closed-form
expressions are available, whereas conditional modeling is less accessible, but more
flexible and interpretable. However, an arbitrary pair of conditional distributions can
be incompatible, meaning that there exists no joint distribution which produces these
conditionals, and if it exists it does not have to be unique (Arnold and Press, 1989).
Arnold et al. (2001) argues that “in general, reasonable-seeming conditional models
will not be compatible with any single joint distribution”. For example, consider the
following Bayesian model with real-valued latent variables θ and observations y: for an
improper prior π(θ) = 1 and a Gaussian likelihood f(y|θ) = N (y|θ, 1) Bayes’ theorem
yields the posterior p(θ|y) = N (θ|y, 1). Even though both conditional distributions—
the likelihood and the posterior—are proper distributions, there exists no proper joint
distribution because the corresponding marginal π is improper. Hence, the conditionals
f and p are incompatible. But incompatibility is no all-or-nothing property: even if
there exists no joint distribution, one might still look for the joint distribution that is
“most” compatible with the given conditionals, which leads to notions such as near-
compatibility and ε-compatibility (Arnold et al., 2002). There exist algorithms for
assessing the compatibility of conditional distributions (Kuo and Wang, 2011; Kuo
et al., 2017) based on fractions of conditional densities, but most of this theory is
restricted to discrete settings.

Gibbs sampling is one of the most natural ways of accessing the joint distribution of a
conditionally specified model. It works by using the conditional distributions to define
a time-reversible Markov chain whose stationary distribution is the joint distribution
(Geman and Geman, 1984; Hastings, 1970). Gibbs sampling is well-understood and
theoretically sound if the conditionals are compatible, but what happens if they are
incompatible? Despite the fact that no joint distribution exists, the Markov chain
defined by the conditionals can still converge to a unique stationary distribution, which
represents a compromise between the incompatible conditionals (Muré, 2019). In this
case, Gibbs sampling is called pseudo-Gibbs sampling. Pseudo-Gibbs samplers are
widely used, for example in dependency networks (Heckerman et al., 2001) and missing
data imputation (Hughes et al., 2014; Van Buuren et al., 2006). Characterizing the
stationary distribution of a pseudo-Gibbs sampler is ongoing research (Chen and Ip,
2014; Kuo and Wang, 2019; Muré, 2019).
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3.2 Method

3.2.1 Preliminaries

Let π(θ) be a proper prior distribution on a space of latent variables θ ∈ Θ and
f(y|θ) a positive likelihood on a space of observations y ∈ Y. The corresponding
posterior distribution is denoted by p(θ|y). For every fixed y let q(θ|y) denote the
approximation to the posterior given by the approximate method in question. For
sampling-based methods this distribution cannot be evaluated because it is specified
only implicitly through samples, which suffices for our diagnostic. We denote the
families of distributions as F := (f(·|θ))θ∈Θ, P := (p(·|y))y∈Y , and Q := (q(·|y))y∈Y .
The families F and Q are called compatible if there exists a joint distribution on Θ×Y
which has F and Q as conditionals. They are called incompatible if they are not
compatible (Arnold and Press, 1989).

Our goal is to understand the inductive bias of inference based on the approximations
q(θ|y) in terms of an a priori preference for solutions. The bias is fully encoded in the
original prior π(θ) if the approximation is perfect. However, a mismatch q(θ|y) ̸= p(θ|y)
can introduce additional bias, which is not captured by the original prior. The main
idea of this work is to treat the approximation as an exact posterior and look for the
corresponding prior distribution π̃(θ). This new prior describes the combination of
explicitly encoded bias π(θ) and implicitly incurred bias because of approximation mis-
match. We can then compare those priors to gain insights into how the approximation
changes the inductive bias.

3.2.2 Assessing the inductive bias of posterior approximations with
Gibbs priors

This section describes the problem of finding a prior to the approximations from the
perspective of incompatible conditionals. We first motivate the problem by considering
fixed observations and then propose a solution based on pseudo-Gibbs sampling.

For a fixed observation y ∈ Y, the implicit pointwise prior πy corresponding to q(·|y)
is defined via

πy(θ) ∝θ
q(θ|y)
f(y|θ)

. (3.1)

This describes the inductive bias of the approximation q(·|y) for a fixed observation, but
it is not necessarily the same across different observations. The pointwise prior πy will
depend on y if and only if the conditional families F and Q are incompatible, which is a
simple consequence of the definition. Informally, the scatter of the family (πy)y∈Y is an
indicator for the degree of compatibility: in the compatible case, all πy are concentrated
at some distribution πy ≡ π̃, which is the implicit prior to the approximations. As the
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θ1 θ2 θ∞ ∼ πG

y1 · · ·f(·|θ1)

r(·|θ1)

q(·|y1)

Figure 3.2: Schematic diagram of samples from the Gibbs chain (Definition 2) with
auxiliary variables yt. The distribution of θt converges to the Gibbs prior πG.

compatibility decreases, (πy)y∈Y gets more scattered (see Figure 3.3a). One possible
measure of incompatibility is discussed in Section 3.6. As a sanity check, observe that
a perfect approximation Q = P recovers the original prior π = πy for every y.

Ideally, the inductive bias of approximate inference could be explained by a single prior
independent from the observation, like a prior in fully Bayesian inference. But as the
above considerations show, this is not possible if the family (πy)y∈Y contains different
members who offer conflicting explanations. Therefore, we search for a compromise
that reasonably represents the different πy. We do so by looking at the situation from
the perspective of conditional distributions: a joint distribution on Θ × Y (Bayesian
model) is specified indirectly through the conditionals F (likelihood) and Q (posterior
approximations). We want to obtain the corresponding Θ-marginal (prior). A standard
way to access the joint distribution via its conditionals is Gibbs sampling (Casella and
George, 1992; Geman and Geman, 1984). Gibbs sampling starts with any initial point
(θ0, y0) in the joint space and alternatingly updates θ given y and then y given θ.
Under some assumptions, this vector converges to a sample from the joint distribution.
Although Gibbs sampling assumes that the involved conditionals are compatible, it can
be used the same way if they are incompatible. In this case it is referred to as pseudo-
Gibbs sampling, a term coined by Heckerman et al. (2001). Pseudo-Gibbs sampling
leads us to the following candidate prior:

Definition 2 (Gibbs prior). For two families of distributions (f(·|θ))θ∈Θ on Y and
(q(·|y))y∈Y on Θ consider the discrete-time Markov chain on Θ whose transition function
is given by

r(θ′|θ) = EY∼f(·|θ)
[
q(θ′|Y )

]
. (3.2)

This chain is called the Gibbs chain. Any stationary distribution of this Markov chain
is called a Gibbs prior and denoted by πG.

The Gibbs chain is illustrated in Figure 3.2. A single step of the chain according to
Eq. (3.2) can be simulated with an auxiliary variable y: first sample from the likeli-
hood y ∼ f(·|θ) and then from the approximation θ′ ∼ q(·|y). Under the caveat of
incompatibility, we have the following intuition for the Gibbs prior:

The Gibbs prior describes the a priori preference for solutions of the approximate
inference method.
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A simple reformulation of the stationarity condition for πG offers two alternative rep-
resentations

πG(θ) =

∫
Y
g(y)q(θ|y) dy (3.3)

=

∫
Y
g̃(y)f(y|θ)πy(θ) dy , (3.4)

where g(y) =
∫
Θ πG(θ̃)f(y|θ̃) dθ̃ and g̃(y) = g(y)/

∫
Θ πy(θ̃)f(y|θ̃) dθ̃ are weighting func-

tions and Eq. (3.4) requires all πy to be proper. Eq. (3.3) shows that the Gibbs prior is a
mixture of the pointwise approximations. This suggests that consistent trends between
approximations and posteriors are reflected in the Gibbs prior, for example underesti-
mation of the norm as in Figure 3.1. Eq. (3.4) relates back to our original motivation
of a compromise between (πy)y∈Y and shows that the Gibbs prior is a mixture of these
distributions, reweighted by the likelihood.

Proposition 3 (Existence and uniqueness of Gibbs priors). Consider two fam-
ilies of distributions F = (f(·|θ))θ∈Θ on Y and Q = (q(·|y))y∈Y on Θ. Let M be the
corresponding Gibbs chain from Definition 2.

(i) If F and Q are compatible with joint distribution p(θ, y), then the marginal p(θ)
is a Gibbs prior. If M is additionally irreducible, then it is the only Gibbs prior.

(ii) If Θ and Y are finite, then there exists a Gibbs prior. If additionally F or Q are
positive, then the Gibbs prior is unique.

Proof (sketch). The first statement of part (i) is a standard Gibbs sampling result; it
can be proven by verifying the detailed balance equation for p(θ), which implies that M
is a reversible Markov chain and p(θ) a stationary distribution. The statement about
uniqueness is trivial, because Gibbs priors are defined as stationary distributions of M .
A list of sufficient criteria in different settings is given in Arnold and Press (1989). Part
(ii) concerns the existence of a (unique) stationary distribution. This condition is a
standard result for finite Markov chains, for more general cases see Norris and Norris
(1998).

Proposition 3 admits additional interpretations in our Bayesian setting, where F is the
likelihood and Q some approximation to the posterior. Part (i) states that if Q is the
exact posterior under some other prior π̃, then this prior is recovered by the Gibbs
prior πG = π̃. Part (ii) shows that Gibbs priors exist under much weaker assumptions
than compatibility of F and Q. There are only few other results about the Gibbs
chain and its Gibbs priors in the general incompatible case. Muré (2019) shows that
Gibbs priors are an optimal compromise between incompatible conditionals among a
restricted set of distributions. For discrete distributions, Kuo and Wang (2019) show
that the transitions of the Gibbs chain can be interpreted as iterative projections with
respect to the KL divergence.
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3.2.3 Sampling from the Gibbs prior

Algorithm 2 Simulating the Gibbs chain3

input Likelihood f , approximate inference method q, number of steps T
output Correlated samples (θ1, . . . , θT ) from πG
1: θ0 ← Arbitrary initialization, e. g. sample from π(·)
2: for t← 0 to T − 1 do
3: yt ← Randomly sample from f(·|θt)
4: q(·|yt)← Approximation to p(·|yt)
5: θt+1 ← Randomly sample from q(·|yt)
6: end for

Algorithm 2 describes how to obtain a sequence of correlated samples from the Gibbs
prior. Since it is defined as the stationary distribution of the Gibbs chain, this is
achieved by simply simulating the chain as in Figure 3.2. This approach is very gen-
erally applicable because it only requires sampling from the approximate posteriors,
but not evaluating their density. The complexity depends largely on the complexity
of computing the approximations to the posterior, which has to be redone every step
for a different observation. The number of steps needed to assure convergence depends
on the mixing speed of the Markov chain. Under the exact posterior, the Gibbs chain
mixes fast if there are few observations. Informally, the posterior p(θ|y) ∝ π(θ)f(y|θ)
relies heavily on the the prior π (the stationary distribution) which ensures that the
chain converges to its stationary distribution quickly. When there are many obser-
vations, the posterior concentrates and the high correlation between parameters and
observations leads to slow mixing. In that sense, Algorithm 2 is more practical under
few observations; this case is arguably more interesting because posterior inference gets
easier as the number of observations increases. To ensure that the resulting samples
actually correspond to the Gibbs prior, we recommend to monitor convergence of the
Gibbs chain (Roy, 2020).

3.2.4 How to use the Gibbs prior

There are two principled ways of using the Gibbs prior to diagnose an approximate
inference method. The first way is to assess the quality of the approximation by quan-
tifying the distance to the original prior π with some divergence measure D (πG, π), or
testing the hypothesis H0 : πG = π. A large discrepancy between πG and π indicates a
bad approximation, because a perfect approximation would yield πG = π. The second
way is to understand the inductive bias that the approximation imposes by examin-
ing the shift in mass from π to πG. A direct comparison might not be enlightening
if the latent space Θ is large; instead, one could visualize their differences (Lloyd and
Ghahramani, 2015) or compare the distribution of summary statistics g : Θ→ R.

3Code available at https://github.com/tml-tuebingen/gibbs-prior-diagnostic

https://github.com/tml-tuebingen/gibbs-prior-diagnostic
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Note that there are caveats to this interpretation of the Gibbs prior due to incompati-
bility of likelihood and approximations. Thinking of the Gibbs prior as the effectively
used prior for approximate inference becomes less valid for stronger incompatibility,
because the family of pointwise priors (πy)y∈Y requires a stronger compromise. This is
also demonstrated in the next section.

Summary We conclude this section by summarizing the three broad cases that can
occur when comparing the Gibbs prior πG with the original prior π:

1. πG ≈ π: the Gibbs prior is close to the original prior, which suggests that the
approximations do not introduce additional bias. In particular, this is the case
when the approximations are close to the true posterior. The reverse implication
is not necessarily true (Section 3.5.1).

2. πG ̸= π: the Gibbs prior differs from the original prior, which implies that the
approximations differ from the true posterior. This means that the approxima-
tions introduce additional bias, which can be assessed by interpreting the Gibbs
prior as the effectively used prior. The validity of this interpretation depends on
the compatibility between likelihood and approximations.

3. The Gibbs chain in Algorithm 2 does not converge. This can have multiple
reasons: the approximations are good but the prior π is improper, the approxi-
mations are bad, or the chain was not run long enough. We recommend to use the
diagnostic conservatively and dismiss it in these cases to avoid falsely rejecting
a good approximation. To exclude the last case of running the Gibbs chain not
long enough, the convergence of the chain should be monitored.

3.3 Illustrative toy example

We now give a simple example to demonstrate the concepts from the previous section.

3.3.1 Gaussian toy model

Consider the problem of estimating the mean θ ∈ Rd of a d-dimensional Gaussian
distribution with known covariance matrix based on n independent samples y1, . . . , yn ∈
Rd. Placing a Gaussian prior on θ yields the Bayesian model

θ ∼ N (µ0,Σ0) ,

yi|θ
indep.∼ N (θ,Σ) , i = 1, . . . , n ,

(3.5)

where µ0 ∈ Rd and Σ0,Σ ∈ Rd×d are positive definite. The observations are collected in
a matrix y = (y1, . . . , yn)

⊤ ∈ Rn×d. We consider four different settings for variational
inference in this model, which are determined by the following two choices:
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Figure 3.3: Distributions of interest for the variational inference settings described in
Section 3.3.1 with d = 2 and n = 1. The setting correlated prior uses Σ0 = I and
a Σ which is strongly correlated along (1 1)⊤. For correlated likelihood Σ0 and
Σ are interchanged. Colored areas show superlevel density sets with mass 0.3.

Correlated posterior We choose the prior and likelihood covariance matrices such
that the posterior distribution has correlated components. This can be achieved by
either a correlated prior and isotropic likelihood (referred to as correlated prior) or
an isotropic prior and a correlated likelihood (referred to as correlated likelihood).

Variational approximation We consider the mean field variational approximation
(Bishop, 2006). This method approximates the posterior with the variational family
QMF, which consists of all distributions on Rd with independent components. For the
objective we consider the commonly used reverse KL divergence

q(·|y) := argmin
q∈QMF

KL (q || p(·|y)) (3.6)

(referred to as reverse) or the forward KL divergence

q(·|y) := argmin
q∈QMF

KL (p(·|y) || q) (3.7)

(referred to as forward).

These settings are simple enough so that all distributions of interest are Gaussians and
can be computed in closed form. This includes the posteriors p(·|y), the approximations
q(·|y), the pointwise priors πy, and the Gibbs prior πG. For details see Section 3.4,
which also provides numerical justifications for the following arguments about biases.
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3.3.2 Bias discovery using the Gibbs prior

Both approximations reverse and forward have two known biases, compactness and
loss of correlation (Turner and Sahani, 2011). These biases can now also be discovered
with the Gibbs prior. Figure 3.3a shows the priors and Gibbs priors and Figure 3.3b
shows the corresponding posteriors and approximations.

Bias: compactness One known bias of mean field variational inference is the com-
pactness of the approximations as measured by the entropy (Turner and Sahani, 2011):
comparing the approximations to the true posterior in Figure 3.3b shows that they are
too compact for reverse and not compact enough for forward. The same behavior
can be observed on the prior level: the Gibbs prior is more compact than the prior for
reverse and less compact for forward.

Bias: loss of correlation The variational approximations cannot capture any corre-
lation between the coordinates by definition of the variational family QMF. This bias is
easily understood on the posterior level, but it is less obvious what this means in terms
of an a priori preference for solutions. In fact, this corresponding preference depends on
the source of the posterior correlation and cannot be explained by the posterior alone.
For correlated prior, the posterior correlation is caused by the prior correlation. Un-
correlated approximations therefore correspond to an uncorrelated prior. The Gibbs
priors confirm this intuition by being less correlated than the prior. For correlated
likelihood, the posterior correlation is caused by the likelihood correlation. Here,
the Gibbs priors show that the approximations correspond to a prior whose correlation
is orthogonal to the likelihood correlation. Intuitively, the orthogonal correlations of
prior and likelihood “cancel out” to produce uncorrelated posteriors.

3.3.3 Is the Gibbs prior a prior?

The approximations are exact posteriors under the Gibbs prior if and only if the ap-
proximations are compatible to the likelihood. Equivalently, this is the case when the
family of pointwise priors (πy)y∈Y concentrates at a single distribution. Figure 3.3a
shows πy for various y. For correlated prior they differ strongly and for correlated
likelihood they are improper and therefore not shown. In both settings, this implies
that the conditionals are incompatible as is typically the case. This is confirmed by
Figure 3.3b, which shows that the posteriors under the Gibbs prior do not exactly coin-
cide with the approximations. Despite these incompatibilities, this example shows that
the Gibbs prior can discover inductive biases of the approximate methods. The Gibbs
prior should therefore be thought of as a summary statistic for the inductive bias (see
Section 3.5 for more details).
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3.4 Results and proofs for the Gaussian toy example

3.4.1 Distributions in the Gaussian toy example

This section computes the distributions of interest for the Bayesian model defined in
Eq. (3.5) from Section 3.3. This includes the posterior, the approximations, and the
pointwise prior in Proposition 4, as well as the Gibbs prior in Theorem 5.

Proposition 4 (Posterior, approximations, and pointwise priors). Consider
the Bayesian model defined in Eq. (3.5) and let θ ∈ Θ and y = (y1, . . . , yn) ∈ Y.

(i) The posterior distribution is given by

p(θ|y) = N (θ|µn,Σn) , (3.8)

where Σn =
(
Σ−1
0 + nΣ−1

)−1
, µn = Σn

(
Σ−1
0 µ0 + nΣ−1y

)
, and y = 1/n

∑n
j=1 yj.

(ii) The mean field variational approximation is given by

q(θ|y) = N (θ|µn,Λn) , (3.9)

where

Λn =

{
diag

(
Σ−1
n

)−1
, for q defined via Eq. (3.6) (reverse)

diag (Σn) , for q defined via Eq. (3.7) (forward)
. (3.10)

Hereby, the diag operator keeps the diagonal entries of a matrix and sets all off-
diagonal entries to 0.

(iii) Whether the pointwise prior πy is a proper distribution depends on the matrix
Λ−1
n − nΣ−1. If it is positive definite, then

πy(θ) ∝ N
(
θ
∣∣∣µy, Σ̃

)
,

where Σ̃ =
(
Λ−1
n − nΣ−1

)−1
and µy = Σ̃

(
Λ−1
n µn − nΣ−1y

)
. Otherwise, πy is

improper. In particular, πy is always proper in the setting correlated prior.

Theorem 5 (Gibbs prior). The Gibbs marginal πG to the Bayesian model defined in
Eq. (3.5) is given by

πG(θ) = N (θ|µ0,ΣG) . (3.11)

Hereby, µ0 is the mean of the prior distribution π and ΣG satisfies the Lyapunov equa-
tion

AΣGA
⊤ − ΣG +B = 0 (3.12)

where A = nΣnΣ
−1 and B = Λn + nΣnΣ

−1Σn with Σn and Λn defined as in Proposi-
tion 4.
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Proof of Proposition 4. Recall the density function of a multivariate normal distribu-
tion N (θ|µ,Σ), which is given by

N (θ|µ,Σ) = (2π)−
d
2 det(Σ)−

1
2 exp

(
−1

2
(θ − µ)⊤Σ−1(θ − µ)

)
∝θ exp

(
−1

2

[
θ⊤Σ−1θ − 2θ⊤Σ−1µ

])
.

Proof of (i). First observe that up to proportionality the likelihood f(y|θ) as a
function of θ depends only on the average observation y = 1/n

∑n
j=1 yj

f(y|θ) =
n∏

j=1

N (yj |θ,Σ) ∝θ

n∏
j=1

exp

(
−1

2

[
θ⊤Σ−1θ − 2θ⊤Σ−1yj

])

= exp

(
−1

2

[
θ⊤nΣ−1θ − 2θ⊤nΣ−1y

])
∝θ N (y|θ, 1/nΣ) . (3.13)

Together with π(θ) = N (θ|µ0,Σ0), Bayes’ theorem yields

p(θ|y) ∝θ π(θ)f(y|θ)

∝θ exp

(
−1

2

[
θ⊤Σ−1

0 θ − 2θ⊤Σ−1
0 µ0

])
exp

(
−1

2

[
θ⊤nΣ−1θ − 2θ⊤nΣ−1y

])
= exp

(
−1

2

[
θ⊤
(
Σ−1
0 + nΣ−1

)
θ − 2θ⊤

(
Σ−1
0 µ0 + nΣ−1y

)])
= exp

(
−1

2

[
θ⊤Σ−1

n θ − 2θ⊤Σ−1
n µn

])
∝ N (θ|µn,Σn) .

Note that Σ−1
0 + nΣ−1 is positive definite as the sum of two positive definite matrices,

and therefore Σn =
(
Σ−1
0 + nΣ−1

)−1
is positive definite as well.

Proof of (ii). By definition of the mean-field variational family, every variational
density factorizes as q(θ|y) =

∏m
j=1 qj(θj). For the setting forward we refer to (Bishop,

2006, Section 10.1.2), where it is shown that the optimal qj simply coincide with the

marginal densities of the posterior qj(θj) = p(θj |y) = N
(
θj

∣∣∣(µn)j , (Σn)j,j

)
.

For the other setting reverse let E−j denote the expectation over all latent variables
θi except θj with respect to the factorized distribution

∏
i ̸=j qi(θi). To simplify the

following computation, we abbreviate Σ−1
n =: Γ and µn =: µ (now µk refers to the k-th
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component of µn). We use that the optimal solution satisfies the recursive update rule

qj(θj) ∝θj exp (E−j log p(θ,y)) (Bishop (2006))

∝θj exp (E−j log p(θ|y))

∝θj exp

(
−1

2
E−j

[
(θ − µ)⊤ Γ (θ − µ)

])
(p(θ|y) = N

(
θ
∣∣µ,Γ−1

)
by Eq. (3.8))

∝θj exp

−1

2

Γj,j (θj − µj)
2 + 2 (θj − µj)

∑
k ̸=j

Γj,k (mk − µk)


(mk := Eqkθk)

∝θj exp

− 1

2Γ−1
j,j

θj − µj +
1

Γj,j

∑
k ̸=j

Γj,k(mk − µk)

2
∝θj N

θj

∣∣∣∣∣∣µj −
1

Γj,j

∑
k ̸=j

Γj,k(mk − µk),Γ
−1
j,j


= N

(
θj

∣∣∣mj ,Γ
−1
j,j

)
. (Definition of mj)

This shows that the solutions qj are normally distributed and have the claimed variance

Γ−1
j,j =

(
Σ−1
n

)−1

j,j
. However, their means mj are only recursively determined and to

conclude the proof, we need to show that mj = µj . The last equation in the previous
computation gives the recursive relation

mj = µj −
1

Γj,j

∑
k ̸=j

Γj,k(mk − µk) ∀j = 1, . . . ,m

⇔ 1

Γj,j

m∑
k=1

Γj,kmk =
1

Γj,j

m∑
k=1

Γj,kµk ∀j = 1, . . . ,m

⇔ ⟨Γj ,m⟩ = ⟨Γj , µ⟩ ∀j = 1, . . . ,m

⇔ Γm = Γµ ,

where Γj denotes the j-th row of Γ and m is the vector containing all mk. Since Γ is
positive definite, the last equality implies m = µ and concludes the proof.

Proof of (iii). We can compute the pointwise prior πy(θ) with its definition in Eq. (3.1)
with Eq. (3.9) for q(θ|y) and Eq. (3.13) for f(y|θ) as

πy(θ) ∝θ
q(θ|y)
f(y|θ)

∝θ
N (θ|µn,Λn)

N (y|θ, 1/nΣ)
(3.14)

∝θ
exp

(
−1

2

[
θ⊤Λ−1

n θ − 2θ⊤Λ−1
n µn

])
exp

(
−1

2 [θ
⊤nΣ−1θ − 2θ⊤nΣ−1y]

)
= exp

(
−1

2

[
θ⊤
(
Λ−1
n − nΣ−1

)
θ − 2θ⊤

(
Λ−1
n µn − nΣ−1y

)])
. (3.15)
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If Λ−1
n − nΣ−1 is positive definite, we can continue the computation

πy(θ) ∝θ exp

(
−1

2

[
θ⊤
(
Λ−1
n − nΣ−1

)
θ − 2θ⊤

(
Λ−1
n µn − nΣ−1y

)])
∝θ exp

(
−1

2

[
θ⊤Σ̃−1θ − 2θ⊤Σ̃−1µy

])
∝θ N

(
θ
∣∣∣µy, Σ̃

)
.

If Λ−1
n − nΣ−1 =: S is not positive definite, then we can show that πy is improper.

In this case, S has an eigenvalue λ ≤ 0 and corresponding eigenvector v ∈ Rd with
∥v∥ = 1. Consider the hypercylinder A of points whose distance to the axis Rv is at
most 1, formally defined as

A := {θ ∈ Rd | θ = tv + w, where t ∈ R, w ∈ v⊥, ∥w∥ = 1} ,

where v⊥ = {w ∈ Rd : ⟨v, w⟩ = 0}. Abbreviate γ := Λ−1
n µn − nΣ−1y and collect all

constants in C > 0 (can change at different steps). Then we can lower bound the right
hand side of Eq. (3.14) on A via

q(θ|y)
f(y|θ)

= C exp

(
−1

2
θ⊤Sθ + ⟨θ, γ⟩

)
= C exp

(
−1

2
(tv + w)⊤S(tv + w) + ⟨tv + w, γ⟩

)
(θ = tv + w ∈ A)

= C exp

(
−1

2
λt2︸ ︷︷ ︸

≥0

+⟨v, γ⟩t+ ⟨w, γ⟩ − 1

2
w⊤Sw

)
(Sv = λv, ∥v∥ = 1, ⟨v, w⟩ = 0)

≥ C exp

(
⟨v, γ⟩t+ ⟨w, γ⟩ − 1

2
w⊤Sw

)
≥ C exp (⟨v, γ⟩t) . (⟨w, γ⟩ − 1

2w
⊤Sw is bounded for ∥w∥ ≤ 1)

Using this lower bound, we can lower bound the integral over A through∫
A

q(θ|y)
f(y|θ)

dθ ≥ C

∫
R
exp (⟨v, γ⟩t) dt =∞ .

Hence πy is improper.

The last statement is that πy is always proper in the setting correlated prior (Σ =
I), which means we need to show that S has strictly positive eigenvalues.

We treat the cases reverse and forward separately. For reverse, it is

S = Λ−1
n − nΣ−1 = diag

(
Σ−1
0 + nI

)
− nI = diag

(
Σ−1
0

)
. (diag is a linear operator)
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The diagonal entries of the symmetric positive definite matrix Σ−1
0 are lower bounded by

its smallest eigenvalue λmin

(
Σ−1
0

)
> 0, which follows from the Courant–Fischer–Weyl

min-max principle. Since these diagonal entries are the eigenvalues of S, this implies
that S is positive definite. For the other case forward, we have

S = Λ−1
n − nΣ−1 = diag

((
Σ−1
0 + n

)−1
)−1
− n .

We again need to bound the diagonal elements of
(
Σ−1
0 + n

)−1
with its eigenvalues. A

similar argument as above yields

λmax

(
diag

((
Σ−1
0 + n

)−1
))
≤ λmax

((
Σ−1
0 + n

)−1
)
=

1

λmin

(
Σ−1
0

)
+ n

. (3.16)

With this, the eigenvalues of S are bouded by

λmin(S) = λmin

(
diag

((
Σ−1
0 + n

)−1
)−1
− n

)
=

1

λmax

(
diag

((
Σ−1
0 + n

)−1
)) − n

≥ 1
1

λmin(Σ−1
0 )+n

− n (Eq. (3.16))

= λmin

(
Σ−1
0

)
> 0 .

To prove Theorem 5 we require some general properties of Gaussian densities in
Lemma 6 and Lemma 7 because the proofs consist mainly of rearranging Gaussian
densities. Next we compute the transition function of the Markov chain from Defini-
tion 2 in Proposition 8. We then prove Theorem 5 by guessing that the stationary
distribution is Gaussian and verifying the stationary equation.

Lemma 6 (Some properties of Gaussians). Let N (x|µ,Σ) denote the density of a
Gaussian distribution N (µ,Σ) on Rd at x ∈ Rd with mean µ ∈ Rd and positive definite
covariance Σ ∈ Rd×d. Then the following equalities hold

(i) N (x+ y|µ,Σ) = N (x|µ− y,Σ) and N (x|µ,Σ) = N (µ|x,Σ) for x, y ∈ Rd.

(ii) Let A ∈ Rd×d be non-singular. Then N (Ax|µ,Σ) = CA,ΣN
(
x
∣∣A−1µ,A−1ΣA−T

)
,

where CA,Σ ∈ R is a constant that depends only on A and Σ.

(iii) Let µ1, µ2 ∈ Rd and Σ1,Σ2 ∈ Rd×d positive definite. Then the convolution of two
Gaussian densities corresponds to the sum of two independent Gaussians, i.e., for
z ∈ Rd it holds∫

Rd

N (z − x|µ1,Σ1)N (x|µ2,Σ2) dx = [N (·|µ1,Σ1) ∗ N (·|µ2,Σ2)] (z)

= N (z|µ1 + µ2,Σ1 +Σ2) .
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Proof. Points (i) and (iii) are trivial. For (ii), we compute

N (Ax|µ,Σ) = CΣ exp

(
−1

2
(Ax− µ)⊤Σ−1(Ax− µ)

)
= CΣ exp

(
−1

2
(x−A−1µ)⊤A⊤Σ−1A(x−A−1µ)

)
= CA,ΣN

(
x
∣∣A−1µ,A−1ΣA−T

)
.

Note that A−1ΣA−T is positive definite as well: symmetry is obvious and it holds

x⊤A−1ΣA−Tx = (A−Tx)⊤Σ(A−Tx) > 0

for x ̸= 0 because A is non-singular and Σ is positive definite.

The next lemma computes an integral that appears both in computing the transition
function of the Gibbs chain and in computing its stationary distribution.

Lemma 7. Let θ′, a, µ2 ∈ Rd, A ∈ Rd×d non-singular, and Σ1,Σ2 ∈ Rd×d positive
definite. Then it is∫

Rd

N
(
θ′
∣∣a+Ax,Σ1

)
N (x|µ2,Σ2) dx = N

(
θ′
∣∣∣a+Aµ2,Σ1 +AΣ2A

⊤
)
.

Proof. We start by rephrasing the first density

N
(
θ′
∣∣a+Ax,Σ1

)
= N

(
Ax
∣∣θ′ − a,Σ1

)
(Lemma 6, (i))

= CA,Σ1N
(
x
∣∣A−1(θ′ − a), A−1Σ1A

−T
)

(Lemma 6, (ii))

= CA,Σ1N
(
A−1θ′ − x

∣∣A−1a,A−1Σ1A
−T
)
. (Lemma 6, (i))

This yields ∫
Rd

N
(
θ′
∣∣a+Ax,Σ1

)
N (x|µ2,Σ2) dx

∝′
θ

∫
Rd

N
(
A−1θ′ − x

∣∣A−1a,A−1Σ1A
−T
)
N (x|µ2,Σ2) dx

= N
(
A−1θ′

∣∣A−1a+ µ2, A
−1Σ1A

−T +Σ2

)
(Lemma 6, (iii))

∝′
θ N

(
θ′
∣∣∣a+Aµ2,Σ1 +AΣ2A

⊤
)
. (Lemma 6, (ii))

We can now compute the transition function of the Gibbs chain from Definition 2.

Proposition 8. The transition function of the Gibbs chain is given by Gaussian dis-
tributions

r(θ′|θ) = N
(
θ′
∣∣a+Aθ,B

)
, (3.17)

where θ, θ′ ∈ Rd, a = ΣnΣ
−1
0 µ0, A = nΣnΣ

−1, and B = Λn + nΣnΣ
−1Σn.
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Proof. Let θ, θ′ ∈ Rd. By definition, the transition function of the Gibbs chain is given
by

r(θ′|θ) =
∫
Rn×d

q(θ′|y)f(y|θ) dy =

∫
Rd

q(θ′|y)f(y|θ) dy ,

where we have transformed the integral to the mean y, because q only depends
on y through y. The corresponding push-forward measure is given by f(y|θ) =
N (y|θ, 1/nΣ). Using Proposition 4 and expressing µn with a and A, we have that
q(θ′|y) = N (θ′|µn,Λn) = N (θ′|a+Ay,Λn). Putting everything together, we get

r(θ′|θ) =
∫
Rd

N
(
θ′
∣∣a+Ay,Λn

)
N
(
y

∣∣∣∣θ, 1nΣ
)
dy

= N
(
θ′
∣∣∣∣a+Aθ,Λn +A

1

n
ΣA⊤

)
. (Lemma 7)

The equality A 1
nΣA

⊤ = nΣnΣ
−1Σn concludes the proof.

We are now ready to prove Theorem 5.

Proof of Theorem 5. The proof is based on guessing that the stationary distribution is
Gaussian. We first show that Gaussian distributions are closed under taking a step with
the transition function and then derive the parameters of the stationary distribution
based on the stationary equation.

Let p(θ) = N (θ|m,M) with m ∈ Rd and M ∈ Rd×d positive definite. Using Lemma 7
and Proposition 8, the distribution after one step Rp is given by

Rp(θ′) =

∫
Rd

r(θ′|θ)p(θ) dθ =

∫
Rd

N
(
θ′
∣∣a+Aθ,B

)
N (θ|m,M) dθ

= N
(
θ′
∣∣∣a+Am,B +AMA⊤

)
.

(3.18)

If a p satisfies the stationary equation p = Rp, then it is the stationary distribution
p = πG. Using that Rp is again Gaussian, Eq. (3.18) shows that this is satisfied if and
only if

m = a+Am and M = B +AMA⊤ .

The solution for the mean equation is obtained by rearranging and plugging in the
definitions of a,A and Σn:

m = (I −A)−1 a =
(
I − nΣnΣ

−1
)−1

ΣnΣ
−1
0 µ0 =

(
Σ−1
n − nΣ−1

)
Σ−1
0 µ0

=
(
Σ−1
0 + nΣ−1 − nΣ−1

)−1
Σ−1
0 µ0

= µ0 .
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The stationary equation for the covariance matrix M is equivalent to the Lyapunov
equation

AMA⊤ −M +B = 0 ,

which has a unique solution. This concludes the proof.

3.4.2 Numerical evaluation of the biases in the Gaussian toy example

This section presents numerical values that back up the statements about the biases
from Section 3.3.2.

The first bias is the compactness of the mean-field approximations. Table 3.1 shows the
compactness of all relevant distributions as measured by the entropy, which is given by
d/2(1 + ln(2π)) + 1/2 ln(detΣ) for a Gaussian distribution N (µ,Σ). Under the setting
forward approximations q are less compact than the exact posterior p. This is reflected
by the priors as the Gibbs prior πG is less compact than the exact prior π. Under the
setting reverse, this trend is reversed: approximations are more compact than the
exact posterior, and the Gibbs prior is more compact than the exact prior.

The second bias is the loss of correlation under the mean-field approximations. Table 3.2
shows the correlation between different components θ1 and θ2 of the 2-dimensional
latent variable θ = (θ1, θ2) only for the prior distributions, because the components
of the approximations are by definition uncorrelated. Recall that the exact posterior
distribution was the same in both settings, but under correlated prior the posterior
correlation was due to prior correlation, whereas under correlated likelihood it
was due to likelihood correlation. In the setting correlated prior, the Gibbs prior
is less correlated than the prior. In the setting correlated likelihood, the prior is
uncorrelated, but the Gibbs prior is negatively correlated to “cancel out” the positive
correlation of the likelihood covariance.

Table 3.1: Compactness of various distributions across settings as measured by the en-
tropy. First value is under the setting correlated prior and second value is under the
setting correlated likelihood. Note that the covariance of exact and approximate
posterior does not depend on the observation.

Entropy forward reverse

Prior π 2.24 / 2.84 2.24 / 2.84

Gibbs prior πG 2.82 / 3.15 2.21 / 2.52

Exact posterior p 1.50 / 1.50 1.50 / 1.50

Approximate posterior q 1.97 / 1.97 1.02 / 1.02
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Table 3.2: Correlation of prior distributions across settings as measured by the covari-
ance Cov(θ1, θ2) between the components of θ = (θ1, θ2) ∈ R2. First value is under the
prior distribution π and second value is under the corresponding Gibbs prior πG.

Covariance Cov(θ1, θ2) forward reverse

correlated prior 1.45 / 0.91 1.45 / 0.74

correlated likelihood 0 / -1.13 0 / -0.52

3.5 The Gibbs prior is a summary statistic

3.5.1 Different approximations can have the same Gibbs prior

This section shows that there are fewer Gibbs priors than conditional distributions be-
cause different conditionals can define the same Gibbs chain. For the sake of simplicity,
we consider the finite setting with latent space Θ = [n] = {1, . . . , n} and observation
space Y = [m] with n,m ∈ N. Here the likelihood is given by the stochastic matrix
F ∈ Rn×m and the approximation by another stochastic matrix Q ∈ Rm×n, that is,
F and Q have non-negative entries and their rows sum to 1. The Gibbs chain from
Definition 2 is defined via the transition matrix P = FQ ∈ Rn×n, which is again a
stochastic matrix, and the Gibbs prior is a probability vector πG ∈ Rn.

The next proposition shows that different approximations Q ̸= Q̃ can define the same
Gibbs chain. In particular, they define the same Gibbs prior.

Proposition 9. For n ≥ 2 let F ∈ Rn×m, Q ∈ Rm×n be stochastic matrices with entries
in (0, 1) and kerF ̸= {0}. Then there exists a stochastic matrix Q̃ ∈ Rm×n with Q ̸= Q̃
that satisfies

FQ = FQ̃ . (3.19)

In particular, both Markov chains have the same stationary distribution.

Proof. The main idea is to define a suitable perturbation W such that Q̃ = Q+W is
a stochastic matrix that satisfies Eq. (3.19).

Let 0 ̸= x0 ∈ kerF and 0 ̸= w ∈ 1⊥ = {x ∈ Rn | x⊤1 = 0}, where 1 ∈ Rn denotes the
vector whose entries are all 1. The vectors x0 and w can be chosen non-zero by the
assumptions kerF ̸= {0} and n ≥ 2. With these vectors, we define the perturbation
matrix W := x0w

⊤ ∈ Rm×n and Q̃ := Q + W ∈ Rm×n. First observe that Q ̸= Q̃,
because x0, w ̸= 0 implies W ̸= 0. Using x0 ∈ kerF , we verify Eq. (3.19) by computing

FQ̃ = F (Q+W ) = FQ+ Fx0︸︷︷︸
=0

w⊤ = FQ .
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It remains to show that Q̃ is a stochastic matrix. We may assume that w was chosen
such that the first condition 0 ≤ Q̃ = Q+W = Q+ x0w

⊤ holds; otherwise, w can be
scaled by an arbitrarily small constant such that this inequality is satisfied, which is
always possible because Q > 0 by assumption. The other condition is that the rows
of Q̃ sum to 1, which we verify with Q1 = 1 (because Q is a stochastic matrix) and
w ∈ 1⊥ by computing

Q̃1 = Q1︸︷︷︸
=1

+x0w
⊤1︸︷︷︸
=0

= 1 .

For the second statement we only need to verify that the stationary distribution of the
Markov chain defined with the transition matrix P = FQ indeed uniquely exists. This
is the case because the assumptions F,Q > 0 imply P > 0, hence the corresponding
Markov chain is positive recurrent with finite state space. This implies the existence of
a unique stationary distribution.

Example 10. An example for Proposition 9 with n = 2 and m = 3 is given by the
matrices

F =

.1 .4 .5

.3 .2 .5

 , Q =


.2 .8

.4 .6

.5 .5

 , Q̃ =


.1 .9

.3 .7

.6 .4

 ,

which satisfy Q ̸= Q̃ and

FQ =

.43 .57

.39 .61

 = FQ̃ .

3.5.2 A weaker notion of compatibility between conditional distribu-
tions is sufficient

In this section, we argue that the notion of compatibility between conditional distribu-
tions is actually stricter than necessary for assessing whether the Gibbs prior provides
a useful explanation. We do so by introducing a weaker notion of compatibility under
which the Gibbs prior retains a strong interpretation. First, we recap the setting as
presented in Section 3.2. For a Bayesian model with likelihood F we are given approx-
imations Q to the true posterior, and our goal is to assess their inductive bias in terms
of an a priori preference for solutions. We propose to consider another fully Bayesian
model MG, specified with the same likelihood F and the Gibbs prior πG. The Gibbs
prior πG can then be used to reason about the inductive bias of Q if the conditional
distributions F and Q are compatible, because then the posteriors underMG coincide
with Q.



3.6. MEASURING THE DEGREE OF COMPATIBILITY 67

However, even when they are different, the Bayesian modelMG can accurately describe
inference based on Q. This is achieved by considering the whole pipeline of inference
instead of inference based on a fixed observation: starting with an unknown true latent
parameter θ, we observe some data through the likelihood y ∼ f(·|θ), based on which
we use the approximations to estimate the latent parameter θ′ ∼ q(·|y). This process
is summarized in the probabilities of estimating θ′ if the true parameter is θ, which are
precisely the transition probabilities of the Gibbs chain. Defining the same Gibbs chain
as the approximations is therefore sufficient for the Bayesian modelMG to qualify as an
interpretable reformulation. This leads to the following weaker notion of compatibility
between conditional distributions:

Definition 11 (Weak compatibility of conditional distributions). For two fam-
ilies of conditional distributions F = (f(·|θ))θ∈Θ on Y and Q = (q(·|y))y∈Y on Θ, let πG
denote the corresponding Gibbs prior from Definition 2. Let PG = (pG(·|y))y∈Y denote
the posteriors under to the Bayesian model specified by πG and F . Then F and Q are
called weakly compatible, if the Gibbs chain of F and Q coincides with the Gibbs chain
of F and PG, that is,

EY∼f(·|θ)
[
q(θ′|Y )

]
= EY∼f(·|θ)

[
pG(θ

′|Y )
]
∀θ ∈ Θ .

As the naming suggests, weak compatibility of two conditional distributions is strictly
weaker than compatibility: compatibility trivially implies weak compatibility, whereas
Proposition 9 shows that the converse is not true. Since the Gibbs prior can be used to
reason about conditionals that are only weakly compatible, this means that it is useful
in more situations than what compatibility suggests. In particular, there exist different
conditional distributions Q which justifiably get assigned the same Gibbs prior, because
they yield the same Gibbs chain.

3.6 Measuring the degree of compatibility

Most existing literature focuses on the question whether families of conditional distribu-
tions are exactly compatible (Kuo and Wang, 2011; Kuo et al., 2017). However, in the
context of this work, the more relevant question is how incompatible they are, requiring
a practical way to measure the degree of compatibility. This leads to notions such as
near-compatibility and ε-compatibility (Arnold et al., 2002) and is based on computing
some distance between joint distributions, which involve the conditional distributions
(Ghosh and Balakrishnan, 2015).

In this section, we present a practical way of measuring the degree of compatibility
between likelihood and approximations. Recall that the Gibbs chain from Definition 2
is based on alternate sampling from likelihood and approximation as depicted in Fig-
ure 3.2. A sequence of this chain has the form (θ1, y1, θ2, y1, . . . ) with θt ∈ Θ and
yt ∈ Y. We then defined the Gibbs prior πG as the limiting distribution of the θt, but
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(θ1, y1) (θ2, y2) (θ∞, y∞)

(θ1, y2) · · ·f(·|θ1)

r(·|(θ1,y1))

q(·|y1)

Figure 3.4: Schematic diagram of samples from the Gibbs chain from Definition 12,
where one step first updates y with f and then θ with q. The distribution of θt converges
to the Gibbs prior πG and the distribution of yt converges to pG.

we can analogously consider the limiting distribution of the Y-components yt. To this
end, we generalize Definition 2 by looking viewing the Gibbs chain as a Markov chain
on Θ× Y:

Definition 12 (Gibbs chain (extension to Definition 2)). For two families of
distributions (f(·|θ))θ∈Θ on Y and (q(·|y))y∈Y on Θ consider the discrete-time Markov
chain on Θ× Y whose transition function is given by

r((θ′, y′)|(θ, y)) = f(y′|θ)q(θ′|y′) .

This chain is called the Gibbs chain. The projection onto the Θ-components is a Markov
chain on Θ, any stationary distribution of which is called a Gibbs prior and denoted
by πG. The projection onto the Y-components is a Markov chain on Y, any stationary
distribution of which is and denoted by pG.

Kuo and Wang (2019) also studied this Gibbs chain for discrete distributions. We
specified a joint distribution on Θ×Y with the Gibbs prior πG as the Θ-marginal and the
likelihood F as the corresponding conditional. The main observation for measuring the
degree of compatibility between F and Q is that we can also specify a joint distribution
from the other direction, that is, with pG as the Y-marginal and Q as the corresponding
conditional. We abbreviate those two joint distributions with πGF and pGQ. They
coincide if and only if F and Q are compatible. It is therefore natural to measure the
degree of compatibility via some divergence between them.

A practical algorithm We can obtain (correlated) samples from the two joint dis-
tributions πGF and pGQ with the same Gibbs chain used for obtaining samples from
the Gibbs prior πG. Simulating the Gibbs chain is described by Figure 3.4. It yields
a sequence (θ1, y1, θ2, y1, . . . ), where the marginal distributions of θt and yt converge
to πG and pG, respectively. Since the components are updated alternatingly with the
conditional distributions, we can pair the entries to obtain samples from the joint dis-
tributions. However, the order of the pairing is important:

• (θt, yt) ∼ πGF , because θt ∼ πG (for large t) and yt ∼ f(·|θt)

• (θt+1, yt) ∼ pGQ, because yt ∼ pG (for large t) and θt+1 ∼ q(·|yt)
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This leads to basically the same algorithm as Algorithm 2, except that the auxiliary
variables yt are stored as well and paired accordingly with no computational overhead:

Algorithm 3 Simulating the Gibbs chain (samples from the joint distributions πGF
and pGQ)

input Likelihood f , approximate inference method q, number of steps T
output Correlated samples (θt, yt)

T−1
t=0 from πG and (θt+1, yt)

T−1
t=0 from pG

1: θ0 ← Arbitrary initialization, e. g. sample from π(·)
2: for t← 0 to T − 1 do
3: yt ← Randomly sample from f(·|θt)
4: q(·|yt)← Approximation to p(·|yt)
5: θt+1 ← Randomly sample from q(·|yt)
6: end for

Example 13 (Gaussian conditional distributions). We demonstrate Algorithm 3
for two pairs of Gaussian conditional distributions with Θ = Y = R, one compatible
and one incompatible. The first example is taken from Arnold et al. (2001) and given
by the conditional distributions

f(y|θ) = N
(
y

∣∣∣∣ 4

1 + θ2
,

1

1 + θ2

)
and q(θ|y) = N

(
θ

∣∣∣∣ 4

1 + y2
,

1

1 + y2

)
.

These conditionals are compatible with the bivariate joint density

p(θ, y) = exp

(1, θ, θ2)


c 4 −1/2

4 0 0

−1/2 0 −1/2




1

y

y2


 ,

where c ∈ R plays the role of the normalizing constant. The corresponding samples
from Algorithm 3 are shown in Figure 3.5a together with a contour plot of the true
joint density p(θ, y). All three joint densities πGF , pGQ, and p overlap, confirming the
compatibility of these conditional distributions.

The other example is given by the conditional densities

f(y|θ) = N
(
y

∣∣∣∣θ2 , 1

1 + θ2

)
and q(θ|y) = N

(
θ

∣∣∣∣y2 , 1

1 + y2

)
.

These conditional distributions are incompatible (Arnold et al. (2001) gives a full char-
acterization of compatible Gaussian conditional distributions). Therefore the joint
distributions πGF and pGQ cannot coincide exactly. This is confirmed by Figure 3.5b,
which shows samples from the two joint distributions. Based on these samples we could
now measure some kind of divergence between the two distributions to assess the degree
of compatibility.
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to all three joint distributions coinciding.
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those two joint distributions being different.

Figure 3.5: Samples from Algorithm 3 for the Gaussian conditional distributions of
Example 13.

3.7 Experiments

We experiment with the Gibbs prior as a diagnostic tool for various approximations in
two Bayesian models. For more details and convergence monitoring of the Gibbs chains
see Section 3.7.3.

Baseline We compare our findings to the diagnostic Talts et al. (2018). This diag-
nostic is based on the stationarity equation of the prior π under the Gibbs chain, but
only considers 1-step transitions with some test statistics f : Θ → R. Under random
samples θ̃ ∼ π, ỹ ∼ f(·|θ̃), and θ1, . . . θL ∼ q(·|ỹ), the rank of f(θ̃) in {f(θ1), . . . , f(θL)}
is computed. This is repeated over multiple draws of (θ̃, ỹ), which gives a histogram
of the ranks. Since the histogram is uniform under the exact posterior, any deviations
from uniformity indicate an approximation mismatch. We allocate this method the
same computational resources in terms of posterior draws as our Gibbs chain.
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Figure 3.6: Marginal distributions of prior and Gibbs prior for the sum of log-normals
model. A comparison shows that the approximation overestimates µ and puts more
mass on extreme values for σ2.

3.7.1 Sum of log-normals

Setup Our first model describes the sum of L = 10 independent samples from a
log-normal distribution and is given by

µ ∼ N (0, 1), σ2 ∼ Gamma(1, 1) ,

xl|θ = (µ, σ2)
indep.∼ LogNormal(µ, σ2), y =

L∑
l=1

xl .

Since the corresponding likelihood is infeasible we approximate the posterior in a two-
step procedure: first, we replace the likelihood by its Fenton-Wilkinson approximation
(Fenton, 1960), which is another log-normal distribution with matching first two mo-
ments, and then we use a Laplace approximation to the posterior of this new model.

Bias discovery To discover the bias of this approximation we simulate the Gibbs
prior based on 10,000 iterations of Algorithm 2 and show it alongside the original prior
in Figure 3.6. The first observation is that the Gibbs prior does not coincide with
the original prior, which implies that the approximation is not exact. Furthermore,
the deviation between the two distributions is systematic. For the mean µ, the Gibbs
prior has a similar shape as the original prior, but is shifted to the right. This implies
that the approximations systematically overestimate µ. For the variance σ2, the Gibbs
prior puts more mass on extreme values, which means that there is no systematic under-
or overestimation. Compare these findings to Rodrigues et al. (2018) who consider a
fixed approximation to an observation y drawn from θ = (0, 1). They confirm that
µ is overestimated, but also find that σ2 is underestimated. This does not contradict
our findings, because they analyze the approximation to a fixed observation, while we
analyze the approximations across observations. The other baseline Talts et al. (2018)
is shown in the first two histograms of Figure 3.8 for the coordinates of θ = (µ, σ2)
as summary statistics, that is, fi(θ) = θi. The histogram for µ exceeds the confidence
region at the smallest rank, which also suggests overestimation. For σ2, the deviation
from uniformity is not strong enough to deduce a systematic approximation mismatch.
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Figure 3.7: Top row: Samples of θ ∈ R100 from original prior (blue) and Gibbs
priors (red) under various approximations. Bottom row: Histograms of the summary
statistic θ 7→ 1/100

∑100
i=1 θi, which is the mean value of a time series. Methods that are

closer to the prior introduce less bias.

3.7.2 Stochastic volatility

Setup Stochastic volatility models are used in mathematical finance for time series
to describe the latent variation of trading price (called the returns). We consider a
model similar to Hoffman and Gelman (2014):

θi|θi−1 ∼ N (θi, σ
2), i = 1, . . . , T ,

yi
indep.∼ StudentT(ν, 0, exp θi), i = 1, . . . , T ,

where θ0 = 0, σ = .09, ν = 12, and T = 100. The latent parameters θ = (θ1, . . . , θT )
follow a Gaussian random walk and describe the log volatility of the returns y =
(y1, . . . , yT ), which are independent given θ. As posterior inference methods, we inves-
tigate the Hamiltonian Monte Carlo method NUTS (Hoffman and Gelman, 2014) with
different number of steps (10 for NUTS-short and 40 for NUTS-long) and the varia-
tional inference method ADVI (Kucukelbir et al., 2017), which comes in a less powerful
mean-field (ADVI-mf) and more powerful full-rank (ADVI-fr) variant.

Bias discovery For each approximation method, we can again use the corresponding
Gibbs prior in two ways: we test whether it deviates from the original prior to assess
exactness of the approximation, and if it does, we inspect how it deviates to assess
the systematic bias. Figure 3.7 shows samples from original prior and Gibbs priors
under the approximations alongside the distribution of means for each time series as
a summary statistic. Each Gibbs chain was simulated for 10,000 steps, which took 13
hours for ADVI-fr and roughly 5 hours for the other methods on a GPU. We observe
that the Gibbs prior for the long MCMC chain is almost identical to the prior, which
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Figure 3.8: Histograms of rank statistics for the baseline Talts et al. (2018). First
two histograms are for Section 3.7.1 with coordinates as summary statistics, other
histograms are for Section 3.7.2 with the mean. Gray band shows a 99% confidence
interval under the exact posterior. Deviations from uniformity indicate approximation
mismatch.

confirms that this method is accurate; the Gibbs prior for the corresponding short
chain is further away from the prior and closer to the initialization of the chain because
it has not fully converged. The method ADVI-mf shows a strong deviation from the
prior by concentrating on less extreme values of the latent variables. This indicates
that the approximation is overly compact compared to the true posterior. The same
phenomenon was already observed for mean field variational inference in Section 3.3. It
can also be observed for ADVI-fr, but is less pronounced because the method is strictly
more powerful. The baseline Talts et al. (2018) is shown in the last four histograms
of Figure 3.8 for the same summary statistic as in Figure 3.7, the mean value of θ.
For NUTS-long, the histogram stays within the confidence region, which confirms that
this method is accurate. The other three methods show a ∪-shape, which is most
pronounced for ADVI-mf. This indicates that the methods are overly compact and is
in line with our findings. While this baseline can in principle also discover systematic
approximation mismatches in terms of over-/underestimation and compactness, the
Gibbs prior provides a more complete and nuanced picture.

3.7.3 Experimental details

In this section, we give more details on the Bayesian models and approximations to their
posteriors which are considered in Section 3.7. We used the python library numpyro
(Phan et al., 2019) for the posterior approximation methods Laplace, NUTS, and ADVI.

Baseline Talts et al. (2018) We allocate this baseline the same resources as the
corresponding Gibbs chain in terms of draws from the posterior. That is, if our Gibbs
chain runs for M steps, the baseline repeats N draws (θ̃, ỹ) with θ1, . . . , θL ∼ q(·|ỹ)
such that N ·L ≈M . Specifically, we choose N = 323 and L = 31. For the histograms
in Figure 3.8, we re-binned once to reduce noise.
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Figure 3.9: Gelman-Rubin diagnostic R̂ (top row) and lag-k autocorrelation (bottom
row) for the Gibbs chains from Section 3.7 with one curve per dimension. Section 3.7.1
(first column) has d = 2 dimensions and Section 3.7.2 (other columns) have d = 100
dimensions. Values R̂ ≈ 1 or lag-k autocorrelation ≈ 0 indicate convergence of the
Gibbs chain.

Convergence monitoring Wemonitor the convergence of our Gibbs chains with two
standard measures, the Gelman-Rubin diagnostic R̂ (Gelman and Rubin, 1992) and the
lag-k autocorrelation. Both are shown in Figure 3.9 for all experiments from Section 3.7.
The Gelman-Rubin diagnostic R̂ uses multiple chains to compute the ratio of between-
chain variance to within-chain variance. A ratio R̂ ≈ 1 indicates convergence. The top
row of Figure 3.9 shows that this value is reached quickly in all cases except for NUTS-
long, which takes longer to converge. Potential explanations are that convergence is
generally slower in the high-dimensional setting (d = 100 for NUTS-long compared to
d = 2 for Log-normals) and that the other less accurate methods introduce additional
bias that promotes faster convergence. The lag-k autocorrelation is defined as the
correlation of a sequence with its shifted version by k steps. A high autocorrelation of
a Markov chain indicates slow mixing and thus slower convergence. The bottom row
of Figure 3.9 shows the autocorrelation for the Gibbs chains, which eventually oscillate
around 0 due to finite sample noise. The autocorrelation gets close to 0 quickly for
the low-dimensional setting log-normals and for the less accurate methods NUTS-short
and ADVI-mf in the high-dimensional setting. Only the more accurate methods in
the high-dimensional setting NUTS-long and ADVI-fr take longer to reach 0. This
hints towards slower convergence and is in line with Talts et al. (2018), who predict
slow convergence of the Gibbs chain when the parameters are strongly correlated to
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the observations. In particular, we expect this to be the case for a large number of
observations.

3.7.4 Sum of log-normals

The Bayesian model has latent parameters θ = (µ, σ2) ∈ R×R>0, on which we place a
prior π(θ) with independent marginal distributions µ ∼ N (0, 1) and σ2 ∼ Gamma(1, 1).
The likelihood f(y|θ) for an observation y > 0 is given by an L-fold convolution of a
log-normal distribution, that is, y|θ ∼ LogNormal∗L(µ, σ2).

To obtain the approximation q(θ|y) to the true posterior p(θ|y) of this model, we employ
the following two-step procedure:

1. Define an approximate likelihood f̃(y|θ) as the Fenton-Wilkinson approxima-
tion to the true likelihood f , which is another log-normal distribution with
matching first two moments. Specifically, f̃(·|θ) describes the distribution
LogNormal(α, β2), where

α = µ+ logL+ 0.5
(
σ2 − β2

)
,

β2 = log

[
expσ2 − 1

L
+ 1

]
.

2. Define q(θ|y) as the Laplace-approximation to the posterior of this new model
p̃(θ|y) ∝θ π(θ)f̃(y|θ). This means that q(·|y) describes a bivariate normal distri-
bution N (θ∗y,Σy) with

θ∗y = argmax
θ

π(θ)f̃(y|θ)

Σy = −H−1
log p̃ ,

where Hlog p̃ describes the Hessian matrix of θ 7→ log
(
π(θ)f̃(y|θ)

)
.

3.7.5 Stochastic volatility

This model is a simplified model of the one described in Hoffman and Gelman (2014),
who place additional prior distributions on the parameters σ, ν, and θ0. We made the
simplifying choice θ0 = 0. The other hyperparameters σ = .09 and ν = 12 were chosen
by taking the posterior means under S&P500 dataset. The posterior was approximated
with NUTS where the priors were σ ∼ Exp(50) and ν ∼ Exp(0.1), following Hoffman
and Gelman (2014).
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Measuring compactness and divergence Table 3.3 supplements our statements
about the bias of the approximation methods in Section 3.7.2. Regarding compactness,
we can confirm that the methods NUTS-short, ADVI-fr, and ADVI-mf are overly com-
pact compared to the original prior. Regarding divergence, we see that the method
NUTS-long is closest to the original prior and the restrictive method ADVI-mf is far-
thest. The more powerful versions yield Gibbs priors that are closer to the original prior,
that is, NUTS-long is closer than NUTS-short and ADVI-fr is closer than ADVI-mf.

Table 3.3: Compactness and distance to original prior for the approximation methods
of Section 3.7.2. Compactness is measured by the Frobenius norm of the empirical
covariance matrix and distance to the original prior is measured by the maximum
mean discrepancy under the Gaussian kernel k(x, y) = exp(−∥x− y∥2 /2).

Original prior NUTS-long NUTS-short ADVI-fr ADVI-mf

Compactness 34.18 23.81 3.37 6.09 1.21

Distance to original prior 0 0.014 0.035 0.021 0.179

3.8 Conclusion and future work

Conclusion We describe a novel diagnostic approach for assessing the inductive bias
of approximate Bayesian inference methods. A reformulation of this problem leads to
a natural solution, which we call the Gibbs prior. We demonstrate how it can be used
to discover the inductive bias in various examples.

Future work The Gibbs prior compromises between many pointwise priors. The
precise nature of this compromise is intricate, offering several avenues for future anal-
ysis. While we introduced the Gibbs prior in the context of approximate Bayesian
methods, it can be defined for any generative method returning a distribution over
latent variables given an observation. Another direction is using the pointwise priors
as observation-dependent diagnostics. They do not suffer from incompatibility, but can
be more challenging to sample from if the approximation density is unknown.

Broader impact Recently, there has been a surge of interest in interpretable and
explainable machine learning algorithms. One principled way of explaining an algorithm
is to inspect its inductive bias, which describes the preferred solutions independent of
the data. While the inductive bias is specified only implicitly for most algorithms, it is
made explicit in Bayesian inference through prior and likelihood. Unfortunately, this
transparency is concealed for approximate Bayesian inference, because approximations
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introduce additional hidden bias. We present a method to uncover this inductive bias
again, which opens up a new paradigm for the practical evaluation of approximate
inference.
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Chapter 4

A consistent estimator for
confounding strength

A common machine learning task is to learn the influence of features x on a target
variable y from a set of observations {(xi, yi)}ni=1. In many applications, we are not
only interested in the statistical problem of predicting y after observing x; instead,
we ask the causal question of how y changes after intervening on x. Unfortunately,
the causal dependence structure between x and y is in general not identifiable from
their statistical dependencies (Pearl, 2009b). Simply regressing y on x attributes all
dependencies to direct causal influence and is therefore only appropriate when x causes
y without hidden confounders. However, this solution can be grossly misleading in the
other possible cases where y causes x or both are caused by a common confounder
(Reichenbach, 1956).

For example, assume we want to predict how increasing a person’s education x affects
their income y. It could be that a higher education is a requirement for well-paying
jobs (education causes income), in which case increasing the education directly increases
the income. However, even if we rule out the possibility that income causes education,
education and income could both be affected by some hidden confounders such as the
socioeconomic status of the parents. A priori, it is unclear to what extent the observed
statistical dependence between x and y is due to direct causal influence or due to such
confounding factors.

This fundamental non-identifiability issue of causal from observational structure can
be addressed in different ways. One way is access to additional data such as data from
different environments (Heinze-Deml et al., 2018; Peters et al., 2016) or instrumental
variables (Bowden and Turkington, 1990; Imbens and Angrist, 1994), which reduces
the causal learning problem to a statistical one. Alternatively, one can assume that
the underlying causal model follows a certain data-generating process such as additive
noise models (Hoyer et al., 2008a; Kano et al., 2003; Zhang and Hyvärinen, 2009). This
reduces the number of causal models which can explain a given observational structure

79
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and therefore mitigates the non-identifiability. A more abstract approach to choose a
causal model among those compatible with an observational structure is to postulate
certain information-theoretic properties of the causal model. For example, the causal
directions are those that maximize conditional entropies or the causal factorization of
the joint distribution is the one with minimal Kolmogorov complexity (Bloebaum et al.,
2018; Janzing and Schölkopf, 2010; Marx and Vreeken, 2019; Sun et al., 2006).

In this work, we theoretically analyze the confounding strength estimator by Janzing
and Schölkopf (2018). This estimator assumes that x causes y and aims to estimate the
strength of unobserved confounding based on observational data {(xi, yi)}ni=1. Here, the
confounding strength is defined as the discrepancy between the causal effect of x on y
and the statistical regression vector. To mitigate the non-identifiability, the estimator
considers a linear Gaussian causal model under the assumption of independent causal
mechanisms, a common assumption in causal learning (Janzing and Schölkopf, 2010;
Lemeire and Janzing, 2013; Peters et al., 2017). Abstractly, this principle states that
the different causal mechanisms share no information. While the task of confounding
strength estimation remains ill-posed in finite dimensions, it becomes solvable in the
high-dimensional limit due to concentration of measure phenomena. Crucially, this
approach therefore requires large dimension d to reduce the non-identifiability error,
but at the same time requires an even larger number of samples n ≫ d to reduce
the finite-sample error. This is because it uses the empirical covariance matrix and
regression vector in an intermediate step to estimate the corresponding population
quantities, which is only consistent for n ≫ d. It is therefore not guaranteed that
this estimator is consistent in the high-dimensional regime. We address this issue
by analyzing this estimator, from here on referred to as the plug-in estimator, in the
proportional asymptotic regime n, d→∞ with d/n→ γ ∈ [0, 1) and make the following
contributions:

• We derive the asymptotic behavior of the plug-in estimator for confounding
strength from Janzing and Schölkopf (2018) in the proportional asymptotic regime
and show that it is not generally consistent. We also show that the approach based
on population instead of finite-sample quantities is consistent.

• We derive a consistent estimator for confounding strength by correcting the above
estimator with tools from random matrix theory.

• We demonstrate the improvement experimentally on finite-dimensional data from
our causal model.

This work is structured as follows. Section 4.1 gives an overview of related work on
causal inference under unobserved confounding. Section 4.2 introduces the confounded
causal model, the measure of confounding strength, and basic notions from random
matrix theory which are needed for the analysis. Section 4.3 describes the general
approach of Janzing and Schölkopf (2018) and shows that it is consistent based on
population quantities in Section 4.3.1, but generally biased based on plug-in quantities
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in Section 4.3.2. A corrected, consistent estimator for confounding strength is then
derived in Section 4.4. Section 4.8 concludes with a discussion.

4.1 Related work

Learning causal relationships under the presence of unobserved confounding has been
investigated by multiple works. Hoyer et al. (2008b) detect the causal direction in
linear non-Gaussian models based on the structure of the mixing matrix and Janzing
et al. (2009) do so for non-linear additive noise models. Janzing et al. (2011) detect
low-complexity confounding based on a purity criterion for conditional distributions.
Kaltenpoth and Vreeken (2019) decide whether a causal model is confounded based
on the algorithmic Markov condition. Chen et al. (2022) consider the stability of the
regression vectors under different environments as an indication for causal influence.

Our work falls into another line of work that detects confounding based on the assump-
tion of independent causal mechanisms. This assumption induces certain non-generic
alignments between the coefficients of the observational distribution, which can be used
to identify confounding. Bellot and van der Schaar (2021) use this assumption to learn
a sparse causal DAG under dense confounding. Janzing and Schölkopf (2017) introduce
the notion of confounding strength and estimate it under scalar confounding. Their
method is based on the observation that a weighted spectral measure of the covariance
matrix concentrates in high dimensions. Liu and Chan (2018) build on this idea by
moving from the spectral measure to its first moment. Janzing and Schölkopf (2018)
extend this setting to multivariate confounding, which is the setting of our work. Janz-
ing (2019) considers a subsequent task of learning a causal model with ridge regression.
It uses an estimate of confounding strength to choose an appropriate regularization pa-
rameter, which is motivated by an analogy between finite sample error and confounding.
Vankadara et al. (2022) generalize the notion of confounding strength beyond indepen-
dent causal mechanisms and characterize the relationship between confounding strength
and the causal risk of ridge regression in the high-dimensional limit.

Another related field is sensitivity analysis for treatment-effect studies based on obser-
vational data. Sensitivity analysis aims to quantify how sensitive causal conclusions
are to potential unobserved confounding (Cornfield et al., 2009). Since this task suffers
from the same non-identifiability issue as described above, early work relies on assump-
tions about the unobserved confounder (Flanders and Khoury, 1990; VanderWeele and
Arah, 2011). A more recent, popular approach without assumptions gives bounds
based on two (unknown) sensitivity parameters for how strong confounding would need
to be in order to explain away any observed statistical associations between treatment
and effect (Ding and VanderWeele, 2016; Peña, 2022; Sjölander, 2020). The region of
sensitivity parameters that explain away associations can be condensed into a single
E-value, which acts as a measure of confounding strength and can be computed from
observational data (VanderWeele and Ding, 2017; VanderWeele et al., 2019).
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Figure 4.1: Left: DAG corresponding to the causal model (4.1). Right: corresponding
observational model as in Proposition 14 with ε̃ ∼ N (0, σ̃2). Unobserved variables are
dashed.

4.2 Preliminaries

This preliminary section introduces our confounded causal and a notion of confounding
strength in Section 4.2.1, as well as basic tools from random matrix theory needed for
analysis in Section 4.2.2.

4.2.1 The confounded causal model

We first describe the problem setup and introduce basic quantities. We consider a con-
founded causal model with linear conditionals and Gaussian distributions. Specifically,
we define the causal model in terms of its structural equations

z ∼ N (0, Il) ,

ε ∼ N (0, σ2) ,

x = Mz ,

y = xTβ + zTα+ ε .

(4.1)

Figure 4.1 shows the corresponding directed acyclic graph (DAG). The model depends
on a set of hyperparameters α ∈ Rl, β ∈ Rd,M ∈ Rd×l with l ≥ d and the noise
σ2 ≥ 0. All variables x, y, z have mean 0 and the covariance of the features is given by
Σ := Cov(x) = MMT ∈ Rd×d. We additionally assume that M has full rank d such
that Σ is invertible. We use the notation ∥x∥2Σ := xTΣx for the generalized norm, M+

for the pseudo-inverse of M , and M+T := (M+)T as shorthand.

By construction, β describes the causal influence of x on y. This is formally captured
by the interventional distribution of the do-calculus (Pearl, 2009a) under which y =
xT0 β + zTα + ε is only a random variable in z, ε and therefore Ey|do(x=x0)y = xT0 β.
However, we do not assume access to interventional data; instead, we only observe
values values (x, y). The corresponding statistical dependencies between x and y are
captured by the usual conditional distribution:

Lemma 14 (Observational distribution). For the causal model (4.1), the obser-
vational distribution of y given x is y|x ∼ N (xT β̃, σ̃2), where β̃ = β + M+Tα and
σ̃2 = σ2 + ∥α∥2Il−M+M .
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Proof. Since z ∼ N (0, Il) is Gaussian and x = Mz is a linear map, it is a standard
result that zT |x is Gaussian again with parameters zT |x ∼ N (xTM+T , I −M+M).
Subsequently, we have zTα|x ∼ N (xTM+Tα, ∥α∥2I−M+M ). With y = xTβ + zTα + ε,
we arrive at

y|x ∼ N (xT (β +M+Tα), σ2 + ∥α∥2I−M+M ) = N (xT β̃, σ̃2) .

The statistical parameter β̃ can also be viewed as the result of regressing y on x on
the population level, that is, β̃ = Cov(x)+Cov(x, y). Notice that β̃ is equal to the
causal parameter β up to an error term M+Tα, which results from the influence of the
confounder z on y. This error term cannot be identified even if we have access to the
full joint distribution P(x,y), which demonstrates the fundamental non-identifiability

issue of causal learning. To quantify the error of incorrectly treating β̃ as the causal
parameter, Janzing and Schölkopf (2017) propose the following measure of confounding
strength:

Definition 15 (Measure of confounding strength, (Janzing and Schölkopf,
2017)). The confounding strength ζ for the causal model (4.1) is defined as the relative
error between statistical parameter β̃ and causal parameter β via

ζ :=
∥β̃ − β∥2

∥β∥2 + ∥β̃ − β∥2
. (4.2)

The confounding strength ζ takes values in [0, 1], where ζ = 0 describes the uncon-
founded case α = 0 for which β̃ = β and ζ = 1 describes the purely confounded case
β = 0. A larger confounding strength implies that the statistical parameter is further
away from the causal parameter.

The goal of this work is to estimate the confounding strength based on finite samples
{(xi, yi)}ni=1 ⊂ Rd × R from the observational distribution P(x,y), which we compactly

write as X ∈ Rd×n and Y ∈ Rn. We define two quantities which are central to the
following estimators, namely the sample covariance matrix Σ̂ := 1

nXXT and the result

of regressing Y on X, β̂ := ( 1nXXT )+ 1
nXY .

4.2.2 Basic tools from random matrix theory

We briefly recap some standard tools and results from random matrix theory to analyze
the following estimators for confounding strength in the high-dimensional regime. The
analysis is based on the following two objects, which capture the spectrum of a matrix:

Definition 16 (Empirical spectral distribution and Stieltjes transform). Let
Σ ∈ Rd×d be a symmetric matrix with eigenvalues λ1, . . . , λd. The empirical spectral
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distribution of Σ is defined as the normalized counting measure of its eigenvalues µΣ :=
1
d

∑d
i=1 δλi

. The corresponding Stieltjes transform of this measure is defined as the

function mΣ(z) :=
∑d

i=1
1

λi−z for z ∈ C \ {λ1, . . . , λd}.

We need to characterize the spectral behavior of the empirical covariance matrix Σ̂ =
1
nXXT ∈ Rd×d and the closely related empirical kernel matrix K̂ = 1

nX
TX ∈ Rn×n.

The following standard result relates their limiting spectra to the spectrum of the
population covariance in terms of Stieltjes transforms:

Theorem 17 (Asymptotics of the sample covariance matrix, (Silverstein and
Bai, 1995)). Let n, d→∞ such that d/n→ γ ∈ (0,∞) and assume that the empirical
spectral distribution of the covariance Σ converges, that is, µΣ

a.s.−−→ ν with corresponding
Stieltjes transform mν . Then it holds that µΣ̂

a.s.−−→ µ and µK̂

a.s.−−→ µ̃ as d → ∞, where
µ, µ̃ are the unique measures having Stieltjes transforms m(z) and m̃(z), respectively.
For z ∈ C \ R+, they satisfy

m(z) =
1

γ
m̃(z) +

1− γ

γz
, (4.3)

mν

(
− 1

m̃(z)

)
= −zm(z)m̃(z) . (4.4)

A corresponding version of Eq. (4.3) holds in finite dimensions and simply reflects the
fact that Σ̂ and K̂ share the same eigenvalues up to the eigenvalue 0 with multiplicity
|n − d|. Eq. (4.4) is the main result that connects the limiting Stieltjes transforms of
the empirical matrices Σ̂ and K̂ to the limiting Stieltjes transform of the population
covariance Σ. The solution m to this equation remains implicitly defined in all but
the simplest case Σ = Id, where m is the Stieltjes transform of a Marc̆enko-Pastur
distribution.

4.3 Asymptotic behavior of the population and plug-in
estimators for confounding strength

In this section, we describe the general approach for estimating confounding strength
based on the assumption of independent causal mechanisms (Janzing and Schölkopf,
2018). We show that the estimator is consistent based on population quantities in
Section 4.3.1, but is generally biased for n ̸≫ d based on sample (plug-in) quantities in
Section 4.3.2.

The main ingredient to tackle the non-identifiability of the causal model is the as-
sumption of independent causal mechanisms, a common assumption in causal learning
(Janzing and Schölkopf, 2010). This abstract principle states that the physical mecha-
nisms of a causal model that transfers causes to effect share no information. A possible
translation for the causal model (4.1) is the assumption that the mechanisms α and
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β are drawn from independent rotationally invariant distributions. Specifically, we
assume that α and β are independent with α ∼ N (0, σ2

αIl) and β ∼ N (0, σ2
βId) for un-

known hyperparameters σ2
α, σ

2
β ≥ 0. Intuitively, this assumption facilitates estimation

because it implies a certain alignment between the covariance matrix Σ = MMT and
the regression vector β̃ = β+M+Tα: for large confounding α, the error term M+Tα is
aligned with small singular value directions of M . Correspondingly, β̃ is aligned with
small eigendirections of Σ.

Assumption 18. We make the following assumptions about the (sequence) of causal
models:

(A1) The parameters α, β of model (4.1) are independently sampled with α ∼
N (0, σ2

αIl) and β ∼ N (0, σ2
βId) for hyperparameters σ2

α, σ
2
β ≥ 0.

(A2) The number of samples n, data dimension d, and latent confounder dimension
l are in the proportional asymptotic regime, that is, n, d, l → ∞ such that
d/n→ γ ∈ (0, 1) and l/d→ γ̃ ≥ 1.

(A3) The empirical spectral distribution µΣ of the population covariance Σ converges
almost surely as d → ∞ to a distribution ν with bounded support, that is,
supp(ν) ⊆ [h1, h2] with 0 < h1 ≤ h2 <∞.

Assumption (A1) is the assumption of independent causal mechanisms. Assump-
tion (A2) captures that this approach to confounding strength estimation requires high
dimensions so that concentration effects can mitigate the non-identifiability issue. We
exclude the case γ ≥ 1, because there estimation of the term 1

d Tr(Σ
−1) (which later

turns out to be relevant) is hard, see Couillet and Liao (2022, Remark 2.11) for a dis-
cussion. The restriction on the latent dimensions γ̃ ≥ 1 ensures that l ≥ d so that the
population covariance Σ = MMT with M ∈ Rd×l can be full rank. This is necessary
for Assumption (A3) because we require the limiting support to be bounded away from
zero.

Remark 19. The assumption of independent causal mechanisms alone does not resolve
the non-identifiability issue and it also does not enable estimation of the multivariate
vectors α or β. However, scalar functions of these parameters can concentrate in high
dimensions. In particular, this happens for confounding strength.

The following key lemma states that random quadratic forms can concentrate around
their trace.

Lemma 20 (Quadratic-form-close-to-the-trace, (Bai and Silverstein, 2010,
Lemma B.26)). Let x = (x1, . . . , xd) ∈ Rd have independent entries xi of zero mean,
unit variance and E[|xi|K ] ≤ νK for some K ≥ 1. Then for A ∈ Rd×d and k ≥ 1,

E
[
|xTAx− TrA|k

]
≤ Ck

[(
ν4Tr

(
AAT

))k/2
+ ν2k Tr

(
AAT

)k/2]
,
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for some constant Ck > 0 independent of d. In particular, if the operator norm of A
satisfies ∥A∥ ≤ 1 and the entries of x have bounded eigth-order moment,

E
[(
xTAx− TrA

)4] ≤ Cd2 ,

for some C > 0 independent of d, and consequently

1

d
xTAx− 1

d
TrA

a.s.−−−→
d→∞

0 .

Using this lemma, we directly obtain concentration of the confounding strength.

Corollary 21 (Confounding strength concentrates). Under Assumption 18,

ζ − τpop · θ∗

1 + τpop · θ∗
a.s.−−→ 0 , (4.5)

where τpop := 1
d Tr(Σ

−1) and θ∗ := σ2
α/σ

2
β.

Proof. By rewriting the confounding strength from Eq. (4.2) in terms of the hyper-
parameters α, β,M , we see that it consists only of quadratic forms. These can be
controlled by Lemma 20, which yields

ζ =
1
dα

TM+M+Tα
1
dβ

T Idβ + 1
dα

TM+M+Tα

a.s.
≈

1
d Tr(M

+M+T )σ2
α

1
d Tr(Id)σ

2
β + 1

d Tr(M
+M+T )σ2

α

=
τpop · θ∗

1 + τpop · θ∗
.

It only remains to estimate the trace term τpop and the ratio θ∗. In the following, we
distinguish between three different kinds of estimators for various quantities: estimators
based on the population quantities Σ, β̃, based on the plug-in quantities Σ̂, β̂, and
consistent estimators derived by random matrix theory. For example, we write τpop,
τplg, or τRMT.

4.3.1 The population estimator for confounding strength is consistent

First, we consider estimation based on the population quantities Σ and β̃, which ba-
sically assumes that there are no finite-sample issues. In this case, τpop = 1

d Tr(Σ
−1)

is known and does not need to be estimated. To estimate θ∗ = σ2
α/σ

2
β observe that

Assumption 18(A1) on α and β implies β̃ = β + M+Tα ∼ N (0, σ2
β + σ2

αΣ
−1). With

respect to the uniform distribution on the sphere Sd−1, the distribution of the normal-
ized vector β̃/∥β̃∥ has the log density log pθ∗(v) = −.5(log det(Σ+ θ∗) + d log⟨v,Σ(Σ+
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θ∗)−1v⟩ − log detΣ), where v ∈ Sd−1. Correspondingly, θ∗ can then be estimated via
maximum likelihood estimation as1

θpop = argmin
θ≥0

fpop(θ), where fpop(θ) =
1

d
log det(Σ + θ) + log⟨ β̃

∥β̃∥
,Σ(Σ + θ)−1 β̃

∥β̃∥
⟩ .

(4.6)

In summary, we consider the following population estimator for confounding strength.

Definition 22 (Population estimator for confounding strength). Given Σ and
β̃, the population estimator for confounding strength ζpop is defined as

ζpop =
τpop · θpop

1 + τpop · θpop
, (4.7)

where τpop = 1
d Tr(Σ

−1) and θpop is given by Eq. (4.6).

We now analyze this estimator by analyzing the asymptotic behavior of θpop from
Eq. (4.6). Since θpop is implicitly defined as the minimizer of the function fpop, we
first derive its asymptotic behavior as an intermediate step. Specifically, we consider
its derivative, which is given by

∂θf
pop(θ) = mΣ(−θ)−

⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−2 β̃

∥β̃∥⟩

⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩
. (4.8)

This idea is realized in the next theorem, which shows that the confounding strength
estimator based on population quantities is consistent as n, d→∞, d/n→ γ ∈ (0, 1).

Theorem 23 (Population estimator is consistent). Under Assumption 18 with
θ∗ > 0,

1. For every θ ≥ 0, the derivative of the function from Eqs. (4.6) satisfies

∂θf
pop
d (θ)

a.s.−−→ (θ − θ∗)Varλ∼ν

[
1

λ+ θ

]
Eλ∼ν

[
λ+ θ∗

λ+ θ

]−1

, (4.9)

2. For some C > θ∗ and every d ∈ N, let θpopd be a root of ∂θf
pop
d in [0, C] if it exists

or 0 otherwise. Additionally, assume that ν is not degenerate. Then the sequence
{θpopd } converges to θ∗ almost surely.

1Maximum likelihood estimation on the density of β̃ directly leads to the same optimality condition
for θpop.
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Proof. We just present a proof sketch here, the full proof is deferred to Section 4.5.
For the first statement about the population function ∂θf

pop
d we treat the three terms

in Eq. (4.8) separately. The first term mΣ(−θ) converges to mν(−θ) by Assump-
tion 18(A3). The two quadratic forms are handled by Lemma 20 after rewriting

β̃ = β + M+Tα =
(
σαM

+T σβId

)
u for some u ∼ N (0, Il+d). Plugging everything

together and simplifying yields the result.

We prove the second statement by first upgrading the convergence of Eq. (4.9) to
uniform convergence on [0, C] using Vitali’s convergence theorem (Titchmarsh et al.,
1939), and then conclude that the roots converge to the unique root θ∗ of the limiting
function using Hurwitz’s theorem (Titchmarsh et al., 1939).

This theorem shows that the approach of minimizing the log probability based on pop-
ulation quantities in Eq. (4.6) correctly estimates θ∗ in the limit. Therefore, Eq. (4.7)
leads to a consistent estimator for confounding strength. For the second statement, it
is necessary to assume that the limiting spectral distribution ν of Σ is not degenerate,
because otherwise Varλ∼ν [1/(λ+ θ)] = 0. In this case, Eq. (4.9) states that the deriva-
tive ∂θf

pop converges to the constant 0 function, which contains no information about
θ∗. This is perfectly in line with the intuition presented for this approach: estimation
of confounding strength is made possible by an alignment of β̃ with small eigendirec-
tions of Σ, but if Σ is a multiple of the identity (or, equivalently, the distribution of
eigenvalues ν is degenerate), there is no particular small eigendirection.

4.3.2 The plug-in estimator for confounding strength is generally bi-
ased

The population estimator considered above crucially relies on the population quanti-
ties Σ and β̃, which are not directly available. In practice, we only have access to the
corresponding empirical quantities Σ̂ and β̂ based on samples X,Y . This section con-
siders the resulting plug-in estimator for confounding strength as introduced by Janzing
and Schölkopf (2018) and shows in a similar asymptotic analysis that this estimator is
generally biased. Formally, the plug-in estimator follows the same structure as Defini-
tion 22, but replaces the population quantities Σ, β̃ with the empirical quantities Σ̂, β̂.

Definition 24 (Plug-in estimator for confounding strength, (Janzing and
Schölkopf, 2018)). The plug-in estimator for confounding strength ζplg is defined as

ζplg =
τplg · θplg

1 + τplg · θplg
, (4.10)
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where τplg = 1
d Tr(Σ̂

−1) and θplg is given by

θplg = argmin
θ≥0

fplg(θ), where fplg(θ) =
1

d
log det(Σ̂ + θ) + log⟨ β̂

∥β̂∥
, (Σ̂(Σ̂ + θ)−1)

β̂

∥β̂∥
⟩ .

(4.11)

The main issue with the plug-in estimator in the proportional asymptotic regime is
that Σ̂ and β̂ are not consistent estimators for Σ and β̃. Any subsequent estimators
are therefore also not guaranteed to be consistent. The first example of such behavior
is given by the plug-in estimator τplg = 1

d Tr(Σ̂
−1) for τpop = 1

d Tr(Σ
−1), one of the two

quantities which need to be estimated in Eq. (4.5).

Proposition 25 (Asymptotic trace of inverse covariance). Under Assump-
tion 18, it holds

τplg − (1− γ)−1τpop
a.s.−−−→

d→∞
0 .

Proof. In terms of Stieltjes transforms, the statement reads (1−γ)mΣ̂(0)−mΣ(0)
a.s.−−−→

d→∞
0. The limiting empirical and population Stieltjes transforms are given by mΣ̂(z)

a.s.−−→
m(z) and mΣ(z)

a.s.−−→ mν(z) as d → ∞, so it remains to relate m(0) to mν(0). By
combining equations (4.3) and (4.4) from Theorem 17, we get

mν

(
− 1

m̃(z)

)
= (1− γ − zm(z))m(z) .

Taking z → 0, it is 1/m̃(z) → 0 and therefore we get by continuity that mν(0) =
(1− γ)m(0).

This result shows that the plug-in estimator for the trace of the inverse covariance
matrix is off by a factor of (1 − γ). This factor is negligible in the case n ≫ d where
γ = d/n ≈ 0, but becomes increasingly relevant as γ grows.

Next, we treat the plug-in estimator θplg similarly as θpop in Theorem 23 and show
that it is generally biased. Here, ∂θf

plg is given analogously to Eq. (4.8).

Theorem 26 (Plug-in estimator is generally biased). Under Assumption 18 with
θ∗ > 0,

1. For all θ ≥ 0, the derivative of the function from Eq. (4.11) satisfies

∂θf
plg
d (θ)

a.s.−−→
[
θ − (1 + γγ̃)θ∗ + γθ∗(1− θm(−θ))

(
1 +

M(−θ)
M(−θ)−m(−θ)2

)]
h(θ) ,

(4.12)

with h(θ) = (M(−θ) − m(−θ)2)(1 − θm(−θ) + (1 − 2γ + γγ̃)θ∗m(−θ) +
γθθ∗m(−θ)2)−1, where m(−θ) = Eλ∼µ [1/(λ+ θ)], and M(−θ) =
Eλ∼µ

[
1/(λ+ θ)2

]
.
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2. For every d ∈ N, let θplgd be a root of ∂θf
plg
d if it exists or 0 otherwise. Additionally,

assume that γ̃ does not satisfy

γ̃ = (1− θ∗m(−θ∗))
(
1 +

M(−θ∗)
M(−θ∗)−m(−θ∗)2

)
. (4.13)

Then the sequence {θplgd } almost surely does not converge to θ∗.

Proof. We again only sketch the proof here, the full proof is deferred to Sec-
tion 4.6. The proof for the first statement follows the same strategy as in The-
orem 23, but now deals with the sample quantities Σ̂, β̂ in place of the popula-
tion quantities Σ, β̃. Similarly as for β̃, we treat β̂ by combining the equations
β̂ = (XXT )+XY , Y = XT β̃ + E for E ∼ N (0, σ̃2In), and β̃ = β + M+Tα to ob-

tain β̂ =
(
σαM

+T σβId σ̃(XXT )+X
)
v for some v ∼ N (0, Il+d+n). Additional

complications arise because β̂ depends on both the population term M and the em-
pirical quantities. This produces mixed terms Tr[(Σ̂ + θ)−1Σ̂Σ+] for k ∈ {1, 2}, which
need to be treated with a separate result by Ledoit and Péché (2011) in Lemma 34.

For the second statement, we use similar arguments as in the proof of Theorem 23 to
show that the convergence θplgd → θ∗ implies that θ∗ is a root of the right hand side in
Eq. (4.12). This is equivalent to Eq. (4.13), which does not hold by assumption.

The limiting derivative for the plug-in estimator in Eq. (4.12) is phrased in terms of the
limiting sample distribution µ instead of the limiting population distribution ν. The
main structural difference to Eq. (4.9) is the existence of an additional term γθ∗(1 −
θm(−θ))(1+M(−θ)/(M(−θ)−m(−θ)2)), which prevents a closed-form expression for
the corresponding roots θplg of this function. We therefore cannot directly exclude the
possibility that θ∗ is a root, in which case the plug-in estimator would be consistent.
However, by simply plugging in θ∗ in the limiting derivative, we see that θ∗ being a root
is equivalent to the condition in Eq. (4.13). This condition generally does not hold,
because the limiting ratio of dimensions γ̃ = limd,l→∞ l/d on the left hand side stands
in no special relationship to the terms on the right hand side. Therefore, the plug-in
estimator θplg is generally a biased estimator for θ∗. This means that the resulting
plug-in estimator for confounding strength ζplg is generally a biased estimator for the
true confounding strength ζ.

4.4 A consistent estimator for confounding strength

In this section, we derive a novel estimator for confounding strength using tools from
random matrix theory. We show that this estimator consistently recovers the true
confounding strength in the high-dimensional asymptotic limit (n, d → ∞, d/n → γ ∈
(0, 1)). To this end, we can derive a consistent estimator of θRMT by first consis-
tently estimating fpop(θ) and then finding the minimizer of this function. While this
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procedure indeed yields a consistent estimator, it is stochastic, which can adversely
affect the optimization algorithm at finite d. Therefore, we also provide a consistent
estimator based on finding the zeros of ∂θf

pop(θ) which is deterministic given a fixed
sample. Coupled with the consistent estimator for τpop in Proposition 25, we arrive at
a consistent estimator for confounding strength.

4.4.1 A consistent estimator for fpop(θ).

Recall from Eq. (4.6) that maximum likelihood estimation of θ∗ is equivalent to the
optimization problem

θpop := argmin
θ≥0

fpop(θ), where fpop(θ) =
1

d
log det(Σ + θ) + log

〈
β̃

∥β̃∥
,Σ(Σ + θ)−1 β̃

∥β̃∥

〉
.

To consistently estimate fpop(θ), it suffices to consistently estimate the two quantities
1
d log det(Σ + θ) and log⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩. We derive such estimators in Theorems

27 and 28 using tools from random matrix theory. The main results are included here
and we defer the proofs to Section 4.7.

Theorem 27 (A consistent estimator for log determinant, (Kammoun et al.,
2011)). For any θ ∈ R+, let W = X+

√
θE, where E ∈ Rd×n is a random matrix with

standard normal entries. Then, as d, n→∞ such that d/n→ γ ∈ (0, 1),

log θ +
1

d
log det

1

nθ
WW T + (1− γ) log

γ − 1

γ
+ 1− 1

d
log det(Σ + θ)

a.s.−−→ 0 .

In other words, the function g1(θ) = log θ+ 1
d log det

1
nθWW T +(1−γ) log((γ−1)/γ)+1

is a consistent estimator of log det(Σ + θ).

Proposition 28 (A consistent estimator for the quadform). Under Assump-
tion 18, for any θ ∈ R+, let η be the unique solution in R− satisfying m̃(η) = 1/θ.
Then, as d, n→∞ such that d/n→ γ ∈ (0, 1),

1
d⟨β̂, Σ̂(Σ̂− η)−1β̂⟩ − S

θ −
S(1−γ)

η

1
d∥β̂∥2 − Sγm(0)

−

〈
β̃

∥β̃∥
,Σ(Σ + θ)−1 β̃

∥β̃∥

〉
a.s.−−→ 0,

where S = (1− γ)−1∥Y ∥2I−X+X/(nd).

In other words, the function g2(θ) = log
1
d
⟨β̂,Σ̂(Σ̂−η)−1β̂⟩−S

θ
−S(1−γ)

η
1
d
∥β̂∥2−Sγm(0)

is a consistent es-

timator of log⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩. Thereby, for every θ ∈ R+, as n, d → ∞ as

d/n→ γ ∈ (0, 1),
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g1(θ) + g2(θ)− fpop(θ)
a.s.−−→ 0 (4.14)

In other words, a consistent estimator of fpop(θ) is be given by fRMT(θ) := g1(θ)+g2(θ).

Stochasticity of the estimation. Observe that the estimator for the log determinant
given by g1(θ) is not a deterministic function of a given sample X,Y since the matrix
W is stochastic. Following arguments similar to the proof of Theorems 23 and 262,
we can indeed obtain an asymptotically consistent estimator for confounding strength.
However, at finite d our experiments suggest that the stochasticity can adversely affect
the optimization step. Furthermore, the dependence of g1(θ) on θ is highly non-linear.
Iterative optimization procedures require multiple evaluations (and therefore estima-
tion of) g1(θ) which considerably increases the computation complexity. To overcome
these limitations, we also provide a deterministic and consistent estimator of θ by first
consistently estimating the function ∂θf

pop(θ) for any θ ∈ R+ and showing that the
roots of the estimating function asymptotically converges to θ∗.

4.4.2 A consistent estiator for ∂θf
pop(θ).

As derived in Eq. (4.8), the derivative of the lop probability function fpop(θ) is given
by

∂θf
pop(θ) =

⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩ ·mΣ(−θ)− ⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−2 β̃

∥β̃∥⟩

⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩
.

In order to consistently estimate ∂θf
pop(θ), it suffices to consistently estimate the three

quantities mΣ(−θ), ⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩, and ⟨
β̃

∥β̃∥ ,Σ(Σ + θ)−2 β̃

∥β̃∥⟩. Proposition 28

provides us with a consistent estimator for the quantity ⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩. In

Propositions 29 and 30, we derive estimators for the remaining quantities.

Proposition 29 (Estimation of Stieltjes transform). Under the assumptions of
Theorem 17, for any θ ∈ R+, let η be the unique solution in R− satisfying m̃(η) = 1/θ.
Then, as d, n→∞ such that d/n→ γ ∈ (0, 1),

− 1

γθ

(η
θ
− γ + 1

)
−mΣ(−θ)

a.s.−−→ 0 .

Proof. From Theorem 17, we have that for any z ∈ C/R+, mν(− 1
m̃(z)) =

(1− γ − zm(z))m(z). Letting η ∈ R− such that m̃(η) = 1/θ, we arrive at the esti-
mator.

2with an additional argument to deal with the stochasticity of the log det estimator.
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Now, we present a consistent estimator of the quadratic form ⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−2 β̃

∥β̃∥⟩.
From Proposition 28, we know that for any θ ∈ R+, g2(θ) is a consistent estimator of

⟨ β̃

∥β̃∥ ,Σ(Σ+θ)−1 β̃

∥β̃∥⟩. To derive an estimator of the quadratic form ⟨ β̃

∥β̃∥ ,Σ(Σ+θ)−2 β̃

∥β̃∥⟩,
we utilize the so-called derivative trick (Dobriban and Wager, 2018; Hastie et al., 2022).
First observe that

⟨β̃,Σ(Σ + θ)−2β̃⟩ = −∂θ
(
⟨β̃,Σ(Σ + θ)−1β̃⟩

)
.

Furthermore, for every fixed θ ∈ R+, we know that as n, d→∞ and d/n→ γ ∈ (0, 1),

g2(θ)−

〈
β̃

∥β̃∥
,Σ(Σ + θ)−1 β̃

∥β̃∥

〉
a.s.−−→ 0

It is also easy to verify that g2(θ) − ⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−1 β̃

∥β̃∥⟩ is analytic and uniformly

bounded in θ in the domain R+. Therefore, we can apply Vitali’s convergence theo-
rem to show that the limit of the derivatives converges to the derivative of the limit.

Therefore a consistent estimator for the quadratic form ⟨ β̃

∥β̃∥ ,Σ(Σ + θ)−2 β̃

∥β̃∥⟩ is given

by −∂θg2(θ) and is formally presented in Theorem 30.

Proposition 30 (Consistent estimator for quadratic form). For any θ ∈ R+,
let η be the unique solution in R− satisfying m̃(η) = 1/θ and let η′ = 1/(θ2m̃′(η)). As
d, n→∞ such that d/n→ γ ∈ (0, 1),

η′

d ⟨β̂, Σ̂(Σ̂ + θ)−2β̂⟩ − S
θ2

+ Sη′(1−γ)
η2

1
d∥β̂∥2 − Sγm(0)

−

〈
β̃

∥β̃∥
,Σ(Σ + θ)−2 β̃

∥β̃∥

〉
a.s.−−→ 0,

where S = 1
(1−γ)nd∥Y ∥

2
I−X+X/(nd).

From Propositions 28, 29, and 30, for any θ ∈ R+, a consistent estimator of ∂θf
pop(θ)

is given by

hRMT(θ) :=

g2(θ)
γθ (γ − 1− η

θ )− ∂θg2(θ)

g2(θ)
.

The RMT estimator for confounding strength is then naturally defined via the roots of
hRMT(θ) and RMT-corrected estimate of τpop as is formally presented in Definition 31
which consistently estimates the the true confounding strength ζ.

Definition 31 (RMT estimator for confounding strength). The RMT estimator
for confounding strength ζRMT can then be defined as

ζRMT =
τRMT · θRMT

1 + τRMT · θRMT
, (4.15)

where τRMT = (1− γ)τplg and θRMT is a root of hRMT(θ) if it exists and 0 otherwise.



94 CHAPTER 4. ESTIMATING CONFOUNDING STRENGTH

Theorem 32 (RMT estimator is consistent). Let θRMT
d be defined as a root of

hRMT(θ) in some [0, C] for some C < ∞ if it exists or 0 otherwise. Additionally,
assume that ν is not degenerate. Then, under Assumption 18 with θ∗ > 0, the sequence
{θRMT

d } converges a.s to θ∗.

4.5 Proof of Theorem 23

This section gives the full proof of Theorem 23 for the asymptotic behavior of the
population estimator for confounding strength. We state the theorem here again for
reference.

Theorem 23 (Population estimator is consistent). Under Assumption 18 with
θ∗ > 0,

1. For every θ ≥ 0, the derivative of the function from Eqs. (4.6) satisfies

∂θf
pop
d (θ)

a.s.−−→ (θ − θ∗)Varλ∼ν

[
1

λ+ θ

]
Eλ∼ν

[
λ+ θ∗

λ+ θ

]−1

, (4.9)

2. For some C > θ∗ and every d ∈ N, let θpopd be a root of ∂θf
pop
d in [0, C] if it exists

or 0 otherwise. Additionally, assume that ν is not degenerate. Then the sequence
{θpopd } converges to θ∗ almost surely.

Proof. We first show Eq. (4.9). According to Eq. (4.8), the function is given by
∂θf

pop(θ) = mΣ(−θ)− 1
d β̃

TΣ(Σ+θ)−2β̃/1
d β̃

TΣ(Σ+θ)−1β̃. The first term mΣ(−θ) con-
verges to mν(−θ) by assumption. The two quadratic forms are handled by Lemma 20

after rewriting β̃ = β +M+Tα =
(
σαM

+T σβId

)
u for some u ∼ N (0, Il+d), which is

possible because by assumption α ∼ N (0, σ2
αIl) and β ∼ N (0, σ2

βId) are independent.
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1

d
β̃TΣ(Σ + θ)−1β̃ =

1

d
uT

σαM
+

σβId

Σ(Σ + θ)−1
(
σαM

+T σβId

)
u

a.s.
≈ 1

d
Tr

σαM
+

σβId

Σ(Σ + θ)−1
(
σαM

+T σβId

) (Lemma 20)

=
1

d
Tr

Σ(Σ + θ)−1
(
σαM

+T σβId

)σαM
+

σβId

 (Trace cyclic)

=
1

d
Tr
[
Σ(Σ + θ)−1(σ2

αΣ
−1 + σ2

βId)
]

(Σ = MMT )

=
σ2
β

d
Tr
[
(Σ + θ)−1(Σ + θ∗)

]
(θ∗ = σ2

α/σ
2
β)

a.s.−−−→
d→∞

σ2
βEλ∼ν

[
λ+ θ∗

λ+ θ

]
. (µΣ → ν)

Similarly, we get 1
d β̃

TΣ(Σ+θ)−2β̃
a.s.−−−→

d→∞
σ2
βEλ∼ν

[
λ+θ∗

(λ+θ)2

]
. Plugging everything together

yields

∂θf
pop(θ)

a.s.−−−→
d→∞

mν(−θ)−
Eλ∼ν

[
λ+θ∗

(λ+θ)2

]
Eλ∼ν

[
λ+θ∗

λ+θ

]
=

(
mν(−θ) · Eλ∼ν

[
λ+ θ∗

λ+ θ

]
− Eλ∼ν

[
λ+ θ∗

(λ+ θ)2

])
Eλ∼ν

[
λ+ θ∗

λ+ θ

]−1

.

Using mν(−θ) = Eλ∼ν

[
1

λ+θ

]
and the identity λ+θ∗

λ+θ = 1− (θ − θ∗) 1
1+λ , we can simplify

the first factor

mν(−θ) · Eλ∼ν

[
λ+ θ∗

λ+ θ

]
− Eλ∼ν

[
λ+ θ∗

(λ+ θ)2

]
=Eλ∼ν

[
1

λ+ θ

](
1− (θ − θ∗)Eλ∼ν

[
1

λ+ θ

])
− Eλ∼ν

[
1

λ+ θ

]
+ (θ − θ∗)Eλ∼ν

[
1

(λ+ θ)2

]
=(θ − θ∗)

(
Eλ∼ν

[
1

(λ+ θ)2

]
− Eλ∼ν

[
1

λ+ θ

]2)

=(θ − θ∗)Varλ∼ν

[
1

λ+ θ

]
.

This concludes the first part of the proof.

For the second statement, first observe that the almost sure convergence in Eq. (4.9)
for each θ ≥ 0 implies that this convergence also holds almost surely on a countable set
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such as [0, C]∩Q. Since each function ∂θf
pop
d is analytic and bounded on [0, C], we can

further upgrade Eq. (4.9) to almost surely uniform convergence on [0, C] by Vitali’s
convergence theorem. Now let (θpopd )d∈N be a sequence of roots as described in the
theorem and let F pop(θ) denote the function on the right hand side of Eq. (4.9). First
note that the functions ∂θf

pop
d eventually have a root θpopd in [0, C] with probability 1:

since θ∗ < C, there exist θ−, θ+ with 0 < θ− < θ∗ < θ+ < C with F pop(θ−) < 0 and
F pop(θ+) > 0. The convergence of the functions ∂θf

pop
d then implies that ∂θf

pop
d (θ−) <

0 and ∂θf
pop
d (θ+) > 0 eventually. Since ∂θf

pop
d is continuous, the intermediate value

theorem then implies the existence of a root in (θ−, θ+) ⊂ [0, C]. The proof is concluded
with Hurwitz’s theorem, which states that the sequence of roots (θpopd )d∈N of analytic
functions converges to the unique root θ∗ of the limiting function.

4.6 Proof of Theorem 26

For the proof of Theorem 26 about the asymptotic behavior of the plug-in estimator, we
require additional technical statements. The first characterizes the asymptotic behavior
of the statistical noise for our causal model.

Lemma 33 (Asymptotics of the statistical noise). Under Assumption 18, the
statistical noise σ̃2 concentrates as

σ̃2

d
− (γ̃ − 1)σ2

α
a.s.−−−→

d→∞
0 .

Proof. According to Proposition 14, the statistical noise is given by σ̃2 = σ2 +
∥α∥2Il−M+M . The term σ2 is assumed to be constant, but the quadratic form

∥α∥2Il−M+M grows with d and is controlled by Lemma 20 as

σ̃2

d
=

σ2

d
+

1

d
αT (Il −M+M)α

a.s.
≈ Tr(Il −M+M)

d
σ2
α =

(l − Tr(MM+))

d
σ2
α

=
l − d

d
σ2
α

= (γ̃ − 1)σ2
α .

The second technical lemma covers the asymptotic behavior of traces that involve both
the sample covariance matrix Σ̂ and the population covariance matrix Σ:

Lemma 34 (Asymptotics of mixed terms). Under Assumption 18, it holds for
any θ ≥ 0 that

1

d
Tr

[(
Σ̂ + θ

)−1
Σ̂Σ+

]
a.s.−−−→

d→∞
γθm(−θ)2 + (1− γ)m(−θ)
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and

1

d
Tr

[(
Σ̂ + θ

)−2
Σ̂Σ+

]
a.s.−−−→

d→∞
−γm(−θ)2 + 2γθm(−θ)M(−θ) + (1− γ)M(−θ) ,

where m(−θ) = Eλ∼µ

[
1

λ+θ

]
and M(−θ) = Eλ∼µ

[
1

(λ+θ)2

]
.

Proof. The asymptotic behavior of these quadratic forms is not covered by Theorem 17,
because the dependencies between Σ̂ and Σ create complications. To treat these we
require an additional result by Ledoit and Péché (2011) combined with Vitali’s conver-
gence theorem which, in our notation, states that

1

d
Tr
(
(Σ̂− z)−1g(Σ)

)
a.s.−−−→

d→∞
−1

z
Eλ∼ν

[
g(λ)

m̃(z)λ+ 1

]
.

We first use this result to obtain the limit for 1
d Tr

(
(Σ̂− z)−1Σ+

)
by considering g(λ) =

1/λ and the identity

− 1

zλ

1

m̃(z)λ+ 1
=

1

z

 1

λ−
(
− 1

m̃(z)

) − 1

λ

 ,

which yields

1

d
Tr
(
(Σ̂− z)−1Σ+

)
a.s.−−−→

d→∞
Eλ∼ν

[
− 1

zλ

1

m̃(z)λ+ 1

]
=

1

z
mν

(
− 1

m̃(z)

)
− 1

z
mν(0) ,

where we recall that mν(z) = Eλ∼ν [
1

λ−z ]. To relate the population Stieltjes transform
mν back to the sample Stieltjes transforms m and m̃, we can use the identities from
Theorem 17 to obtain

1

d
Tr
(
(Σ̂− z)−1Σ+

)
a.s.−−−→

d→∞
− γm(z)m̃(z)− 1

z
mν(0) (Eq. (4.4))

=− γm(z)2 +
1− γ

z
m(z)− 1

z
mν(0) . (Eq. (4.3))

Evaluating the above expression at z = −θ then yields

1

d
Tr
(
(Σ̂ + θ)−1Σ+

)
a.s.−−−→

d→∞
−γm(−θ)2 − 1− γ

θ
m(−θ) + 1

θ
mν(0) .

All that remains is to relate (Σ̂ + θ)−1Σ+ to the terms we are interested in. Using the
identity (Σ̂ + θ)−1Σ̂ = I − θ(Σ̂ + θ)−1, we get the first statement of this lemma

1

d
Tr

[(
Σ̂ + θ

)−1
Σ̂Σ+

]
=
1

d
Tr
[
Σ+
]
− θ

1

d
Tr

[(
Σ̂ + θ

)−1
Σ+

]
a.s.−−−→

d→∞
mν(0)− θ

(
−γm(−θ)2 − 1− γ

θ
m(−θ) + 1

θ
mν(0)

)
=γθm(−θ)2 + (1− γ)m(−θ) .
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The second statement of this lemma also follows directly by taking the derivative, which
can be exchanged with the limit d→∞ using similar arguments as after Proposition 29,
to obtain

1

d
Tr

[(
Σ̂ + θ

)−2
Σ̂Σ+

]
=− ∂θ

1

d
Tr

[(
Σ̂ + θ

)−1
Σ̂Σ+

]
a.s.−−−→

d→∞
− ∂θ

(
γθm(−θ)2 + (1− γ)m(−θ)

)
=− γm(−θ)2 + 2γθm(−θ)M(−θ) + (1− γ)M(−θ) ,

where the last step used ∂θm(−θ) = M(−θ).

We are now ready to give the full proof of Theorem 26.

Theorem 26 (Plug-in estimator is generally biased). Under Assumption 18 with
θ∗ > 0,

1. For all θ ≥ 0, the derivative of the function from Eq. (4.11) satisfies

∂θf
plg
d (θ)

a.s.−−→
[
θ − (1 + γγ̃)θ∗ + γθ∗(1− θm(−θ))

(
1 +

M(−θ)
M(−θ)−m(−θ)2

)]
h(θ) ,

(4.12)

with h(θ) = (M(−θ) − m(−θ)2)(1 − θm(−θ) + (1 − 2γ + γγ̃)θ∗m(−θ) +
γθθ∗m(−θ)2)−1, where m(−θ) = Eλ∼µ [1/(λ+ θ)], and M(−θ) =
Eλ∼µ

[
1/(λ+ θ)2

]
.

2. For every d ∈ N, let θplgd be a root of ∂θf
plg
d if it exists or 0 otherwise. Additionally,

assume that γ̃ does not satisfy

γ̃ = (1− θ∗m(−θ∗))
(
1 +

M(−θ∗)
M(−θ∗)−m(−θ∗)2

)
. (4.13)

Then the sequence {θplgd } almost surely does not converge to θ∗.

Proof. We first show Eq. (4.12). This proof for the plug-in quantities Σ̂, β̂ follows the
same strategy as the proof of Theorem 23 for Σ, β̃, but additional complications arise
because β̂ asymptotically depends on both the population term M and the empirical
quantities. Similarly as for β̃, we treat β̂ by combining the equations β̂ = (XXT )+XY ,
Y = XT β̃ + E for E ∼ N (0, σ̃2In), and β̃ = β +M+Tα to obtain

β̂ =
(
σαM

+T σβId σ̃(XXT )+X
)
v for some v ∼ N (0, Il+d+n) .

As before, we get for k ∈ {1, 2} that
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1

d
β̂T Σ̂(Σ̂ + θ)−kβ̂

=
1

d
vT


σαM

+

σβId

σ̃XT (XXT )+

 Σ̂(Σ̂ + θ)−k
(
σαM

+T σβId σ̃(XXT )+X
)
v

a.s.
≈ 1

d
Tr




σαM
+

σβId

σ̃XT (XXT )+

 Σ̂(Σ̂ + θ)−k
(
σαM

+T σβId σ̃(XXT )+X
)

(Lemma 20)

=
1

d
Tr

Σ̂(Σ̂ + θ)−k
(
σαM

+T σβId σ̃(XXT )+X
)

σαM
+

σβId

σ̃XT (XXT )+




(Trace cyclic)

=
1

d
Tr

[
Σ̂(Σ̂ + θ)−k

(
σ2
αΣ

+ + σ2
βId +

σ̃2

n
Σ̂−1

)]
=

1

d
Tr
[
Σ̂(Σ̂ + θ)−k

(
σ2
αΣ

+ + σ2
βId + γ(γ̃ − 1)σ2

αΣ̂
−1
)]

(Lemma 33)

=
σ2
β

d
Tr
[
(Σ̂ + θ)−k(Σ̂ + γ(γ̃ − 1)θ∗)

]
+ θ∗

σ2
β

d
Tr
[
(Σ̂ + θ)−kΣ̂Σ+

]
.

The second term contains both the population term Σ and the sample term Σ̂, which
is treated separately in Lemma 34. For readability, we use the shorthand notation

m = Eλ∼µ

[
1

λ+θ

]
and M = Eλ∼µ

[
1

(λ+θ)2

]
, under which the limit for the first term is

given by

1

d
Tr
[
(Σ̂ + θ)−k(Σ̂ + γ(γ̃ − 1)θ∗)

]
a.s.−−−→

d→∞

{
1− θm+ γ(γ̃ − 1)θ∗m, for k = 1

m− θM + γ(γ̃ − 1)θ∗M, for k = 2
.

Combined with Lemma 34, this yields

1

d
β̂T Σ̂(Σ̂ + θ)−kβ̂

a.s.−−−→
d→∞

{
1− θm+ θ∗(γθm2 + (1− 2γ + γγ̃)m), for k = 1

m− θM + θ∗(−γm2 + 2γθmM + (1− 2γ + γγ̃)M), for k = 2
.

Together with mΣ̂(−θ)
a.s.−−−→

d→∞
m, this covers the individual components of ∂θf

plg(θ) =

mΣ̂(−θ)−
1
d β̂

T Σ̂(Σ̂ + θ)−2β̂/1
d β̂

T Σ̂(Σ̂ + θ)−1β̂. It remains to plug everything in, which
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we do after factoring out the denominator 1
d β̂

T Σ̂(Σ̂ + θ)−1β̂ to obtain

mΣ̂(−θ) ·
1

d
β̂T Σ̂(Σ̂ + θ)−1β̂ − 1

d
β̂T Σ̂(Σ̂ + θ)−2β̂

a.s.−−−→
d→∞

m ·
[
1− θm+ θ∗(γθm2 + (1− 2γ + γγ̃)m)

]
−
[
m− θM + θ∗(−γm2 + 2γθmM + (1− 2γ + γγ̃)M)

]
=(θ − (1− 2γ + γγ̃)θ∗) · (M −m2) + γθ∗

(
θm3 +m2 − 2θmM

)
=(θ − (1− 2γ + γγ̃)θ∗) · (M −m2) + γθ∗(2m2 − 2M − (1− θm)m2 + 2(1− θm)M)

=(θ − (1 + γγ̃)θ∗) · (M −m2) + γθ∗(1− θm)(2M −m2)

=

[
θ − (1 + γγ̃)θ∗ + γθ∗(1− θm)(1 +

M

M −m2
)

]
· (M −m2) ,

which concludes the first part of the proof.

For the second statement, observe that Eq. (4.13) is equivalent to F plg(θ∗) = 0, where
F plg is the function on the right hand side of Eq. (4.12). The assumption in this

theorem therefore states that F plg(θ∗) ̸= 0. Let (θplgd )d∈N be the sequence described in

the theorem. In the case where ∂θf
plg
d does not have a root infinitely often, we have

θplgd = 0 infinitely often and therefore θplgd ̸→ θ∗ as d → ∞ since θ∗ ̸= 0. Therefore,

now assume that θplgd is a root of ∂θf
plg
d eventually. Assume that the claim is false, that

is, θplgd −−−→
d→∞

θ∗ with positive probability. Similarly to the proof of Theorem 23, we

get that the convergence in Eq. (4.12) holds almost surely uniformly on [0, C] for some

C > θ∗. The convergence θplgd → θ∗ also implies that θplgd ∈ [0, C] eventually. Putting
everything together, we get for sufficiently large d that

|F plg(θ∗)| = |F plg(θ∗)− ∂θf
plg
d (θplgd )| (∂θf

plg
d (θplgd ) = 0)

≤ |∂θfplg
d (θplgd )− F plg(θplgd )|+ |F plg(θplgd )− F plg(θ∗)|

≤ sup
θ∈[0,C]

|∂θfplg
d (θ)− F plg(θ)|+ |F plg(θplgd )− F plg(θ∗)|

−−−→
d→∞

0 ,

where the first summand goes to 0 by uniform convergence and the second summand
goes to 0 by continuity of F plg and θplgd → θ∗. This implies F plg(θ∗) = 0, which is a
contradiction.
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4.7 RMT consistent estimators for quantitites of interest

Theorem 35 (Consistent estimation of statistical noise). Under the model in
Eq. (4.1),

1

1− γ

∥Y ∥2I−X+X

nd
− σ̃2

d

a.s−→ 0 .

Proof.

1

nd
∥Y ∥2 = 1

nd
∥Xβ̃ + E∥2 = 1

nd
β̃TXTXβ̃ +

1

nd
ETE +

2

nd
β̃TXTE.

We know that the minimum l2 norm estimator admits a following closed form solution

given by β̂ = (XTX)+XTY = (XTX)+XT (Xβ̃ + E)
w.h.p
= β̃ + (XTX)+XTE, where

we used the fact that rank(XTX) = d w.h.p to arrive at the last equality. Letting
κ = (XTX)+XTE, we have

1

nd
β̂TXTXβ̂ =

1

nd
(β̃ + κ)TXTX(β̃ + κ),

=
1

nd
β̃TXTXβ̃ +

1

nd
κTXTXκ+

2

nd
β̃TXTXκ.

From the closed form expression for β̂,

1

nd
β̂TXTXβ̂ =

1

nd
Y TX(XTX)+XTX(XTX)+XTY,

=
1

nd
Y TX(XTX)+XTY,

=
1

nd
Y TXX+Y.

Similarly substituting κ = (XTX)+XTE, we have

1

nd
κTXTXκ =

1

nd
ETX(XTX)+XTX(XTX)+XTE,

=
1

nd
ETX(XTX)+XTE,

=
1

nd
ETXX+E,

=
γσ̃2

d
+O(1/

√
d).
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To derive the last equality, we first apply Lemma 20 to show that 1
ndE

TXX+E =
σ̃2

nd Tr[XX+] + O(1/√p). The equality follows using Tr[AA+] = rank(A) for any A ∈
Rn×d and

1

nd
ETXX+E =

γσ̃2

d
+O(1/

√
d).

Now let us consider the term 2
nd β̃

TXTXκ.

2

nd
β̃TXTXκ =

2

nd
β̃TXTX(XTX)+XTE,

=
2

nd
β̃TXTE → 0 as d→∞ (Hoeffding’s inequality)

Following similar arguments, we have

1

nd
ETE =

σ̃2

d
+O( 1

d
√
n
)

Putting everything together, we have

1

nd
∥Y ∥2 = 1

nd
Y TXX+Y − γσ̃2

d
+

σ̃2

d
+O(1/

√
d)

σ̃2

d
=

1

(1− γ)nd
∥Y ∥2I−XX+ +O(1/

√
d).

Lemma 36 (Asymptotics of quadratic form with a deterministic sequence).
For any θ ∈ R+, let η be the unique solution in R− satisfying m̃(η) = 1/θ. Then, for
any deterministic sequence of vectors {vd} with uniformly bounded (Euclidean) norm,
as d, n→∞ such that d/n→ γ ∈ (0, 1) ,

⟨vd, Σ̂(Σ̂− η)−1vd⟩ − ⟨vd,Σ(Σ + θ)−1vd⟩ −→ 0.

Proof. Observe that for any η < 0,

⟨vd, Σ̂(Σ̂− η)−1vd⟩ = ∥vd∥2 − ⟨vd, (Σ̂− η)−1vd⟩.

The result follows from the Generalized Marchenko Pastur Theorem (Silverstein and
Bai, 1995), which states that for any θ ∈ R+,

⟨vd, (Σ̂− η)−1vd⟩ − ⟨vd, (Σ + θ)−1vd⟩ −→ 0.
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Proposition 28 (A consistent estimator for the quadform). Under Assump-
tion 18, for any θ ∈ R+, let η be the unique solution in R− satisfying m̃(η) = 1/θ.
Then, as d, n→∞ such that d/n→ γ ∈ (0, 1),

1
d⟨β̂, Σ̂(Σ̂− η)−1β̂⟩ − S

θ −
S(1−γ)

η

1
d∥β̂∥2 − Sγm(0)

−

〈
β̃

∥β̃∥
,Σ(Σ + θ)−1 β̃

∥β̃∥

〉
a.s.−−→ 0,

where S = (1− γ)−1∥Y ∥2I−X+X/(nd).

Proof. Let η be the unique solution in R− satisfying m̃(η) = 1/θ. From Lemma 36, we
have for any θ ∈ R+, as n, d→∞ such that d/n→ γ ∈ (0, 1),

⟨ β̃

∥β̃∥
, Σ̂(Σ̂− η)−1 β̃

∥β̃∥
⟩ − ⟨ β̃

∥β̃∥
,Σ(Σ + θ)−1 β̃

∥β̃∥
⟩ a.s−→ 0 (4.16)

Therefore, it suffices to consistently estimate ⟨ β̃

∥β̃∥ , Σ̂(Σ̂ − η)−1 β̃

∥β̃∥⟩. First, we charac-

terize the asymptotic behavior of 1
d⟨β̂, Σ̂(Σ̂ − η)−1β̂⟩, where β̂ = β̃ + σ̃2(XXT )+XE,

where E ∼ N0In.

1

d
⟨β̂, Σ̂(Σ̂− η)−1β̂⟩ = 1

d
⟨β̃, Σ̂(Σ̂− η)−1β̃⟩+ 2σ̃2

d
β̃T Σ̂(Σ̂− η)−1(XXT )+XE+

σ̃2

d
ETXT (XXT )+Σ̂(Σ̂− η)−1(XXT )+XE .

The first term in the expansion resembles the quantity of interest.

For the second term, notice that, since E ∼ N0In,

2σ̃2

d
β̃T Σ̂(Σ̂− η)−1(XXT )+XE ∼ N (0, ∥2σ̃

2

d
XT (XXT )+Σ̂(Σ̂− η)−1β̃∥2),

where

∥∥∥∥2σ̃2

d
XT (XXT )+Σ̂(Σ̂− η)−1β̃

∥∥∥∥2 = 4σ̃2

d2
β̃T Σ̂(Σ̂− η)−1(XXT )+XXT (XXT )+Σ̂(Σ̂− η)−1β̃

=
4σ̃2

d2n
β̃T Σ̂(Σ̂− η)−1Σ̂+Σ̂(Σ̂− η)−1β̃

a.s−→ 0 .
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Therefore, the second term vanishes. For the last expression,

σ̃2

d
ETXT (XXT )+Σ̂(Σ̂− η)−1(XXT )+XE

=
σ̃2

d

1

n2
ETXT Σ̂+Σ̂(Σ̂− η)−1Σ̂+XE

a.s−→ σ̃2

d

1

n
tr
(
Σ̂+Σ̂(Σ̂− η)−1

)
(Trace Lemma, conditioned on X)

a.s−→γ
σ̃2

d
m(η).

From Theorem 17, we know that

m(η) =
1

γ

(
m̃(η) +

1− γ

η

)
=

1

γ

(
1

θ
+

1− γ

η

)
.

Therefore,

σ̃2

d
ETXT (XXT )+Σ̂(Σ̂− η)−1(XXT )+XE − σ̃2

d

(
1

θ
+

1− γ

η

)
a.s−→ 0.

Following the same arguments, it is easy to verify that

1

d
∥β̂∥2 − σ̃2

d
γm(0)− 1

d
∥β̃∥2 a.s−→ 0 .

Combining the estimators with the result from Theorem 35, we have the desired result.

Theorem 32 (RMT estimator is consistent). Let θRMT
d be defined as a root of

hRMT(θ) in some [0, C] for some C < ∞ if it exists or 0 otherwise. Additionally,
assume that ν is not degenerate. Then, under Assumption 18 with θ∗ > 0, the sequence
{θRMT

d } converges a.s to θ∗.

Proof. The proof follows following the same arguments as in the proof of 23.

4.8 Discussion

We analyze the asymptotic behavior of the confounding strength estimator by Janzing
and Schölkopf (2018) in the high-dimensional proportional regime. While the approach
is consistent under population quantities, the corresponding plug-in estimator is gen-
erally biased. We correct for this bias and present a consistent estimator using tools
from random matrix theory. More generally, high dimensions can help to identify the
causal model, but they also warrant adapted estimators if the number of samples does
not grow even faster than the dimensions.
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In this work, we focus on obtaining estimators that consistently estimate the true
confounding strength in the proportional asymptotic regime. An important direction
for future work is to obtain non-asymptotic guarantees of convergence of the RMT
estimator ζRMT. Obtaining convergence rates would further enhance the applicability
of the RMT estimator. We leave this for future work.

Faithful estimation of confounding strength can indeed facilitate causal learning from
observational data, for instance, via regularization. This has been empirically demon-
strated in Janzing (2019) and under the same model setting as ours, precisely char-
acterized in Vankadara et al. (2022). However, it is important to practice caution in
applying such techniques more generally since causal learning or even estimation of
confounding strength is a very hard problem and does require strong assumptions.
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Chapter 5

Discussion

In this thesis, I discussed the general concept of inductive bias for machine learning,
which describes the a priori preference for solutions that is necessary to generalize. As a
specific application, I outlined the search for implicit inductive bias at the contemporary
example of deep learning. My work aims to uncover hidden implicit bias and ranges
from inductive bias in a specific deep learning algorithm to a generic diagnostic tool
for inductive bias in Bayesian inference.

Is it useful to know the inductive bias of an algorithm? It could be argued
that the goal of learning is generalization, which evidently can be achieved without fully
understanding the inductive bias of the machine learning algorithm. But nowadays we
do not only care about the performance, but also about making our algorithms trust-
worthy and interpretable, which is something that black boxes cannot provide. While
notions such as interpretability address the learned predictor, inductive bias addresses
the learning algorithm itself. As discussed in the no free lunch theorem, no algorithm
is inherently superior to another in general, only on specific problem instances. The
inductive bias of an algorithm informs us about the real-world applications in which
we can expect it to work. Even more importantly, inductive bias tells us when we can
expect the algorithm to fail, which is essential in safety-critical applications. Reversely,
the success of an algorithm can inform us about properties of the specific problem in-
stance, because successful generalization implies that the problem instance is aligned
with the inductive bias. As demonstrated in Chapter 2, a more immediate advantage
of knowing the inductive bias is the ability to simplify an algorithm in presentation,
implementation, and execution. This is achieved by removing every component that
complicates the learning procedure without changing its bias.

How do we express inductive bias? Technically, the inductive bias of an algo-
rithm is trivially available: if an algorithm learns the predictor f̂ given a data set D, we
can simply define the data-dependent complexity measure ΩD(f̂) = 0 and ΩD(f) =∞
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for f ̸= f̂ . It is then clearly true that the algorithm uses this complexity measure to
resolve ambiguities, for example when multiple candidate solutions have the same loss.
However, such tautological explanations à la “it is what it is” do not help us understand
the inductive bias. This raises the question of what we consider a good explanation,
that is, in what form do we want to represent the inductive bias? The framework of
regularized risk minimization answers that question with data-independent complex-
ity measures, or data-dependent measures with special properties such as convexity.
In Bayesian inference, the inductive bias is described by the data-independent prior
distribution. Unfortunately, both these frameworks can be too restrictive to describe
the actual inductive bias of an algorithm as discussed for complexity measures in Sec-
tion 1.5 and for prior distributions in Chapter 3. As in the original learning problem,
we have to trade off the clarity of an explanation with its flexibility to capture the bias
of complex algorithms. Additionally, it might be useful to find other formulations of
inductive bias that are a better fit for the algorithms we use in practice.

Should we avoid black box algorithms? The discussion above seems to indicate
that black boxes such as deep learning with unclear inductive bias should be avoided.
Machine learning practices that are based on heuristics and built through trial and
error are compared to alchemy, because it is not clearly understood why they work.
On the other hand, the success of deep learning showed that such practices can drive
innovation faster than rigorous theory, which still struggles to explain deep learning and
only started to catch up (Sections 1.4 and 1.5). I believe that the best way to progress is
through joint efforts of exploration through practice and explanation through theory.
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