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Hyperbolic matrix factorization 
improves prediction of drug‑target 
associations
Aleksandar Poleksic 

Past research in computational systems biology has focused more on the development and 
applications of advanced statistical and numerical optimization techniques and much less on 
understanding the geometry of the biological space. By representing biological entities as points 
in a low dimensional Euclidean space, state‑of‑the‑art methods for drug‑target interaction (DTI) 
prediction implicitly assume the flat geometry of the biological space. In contrast, recent theoretical 
studies suggest that biological systems exhibit tree‑like topology with a high degree of clustering. As 
a consequence, embedding a biological system in a flat space leads to distortion of distances between 
biological objects. Here, we present a novel matrix factorization methodology for drug‑target 
interaction prediction that uses hyperbolic space as the latent biological space. When benchmarked 
against classical, Euclidean methods, hyperbolic matrix factorization exhibits superior accuracy while 
lowering embedding dimension by an order of magnitude. We see this as additional evidence that the 
hyperbolic geometry underpins large biological networks.

Computational methods for biological relationship inference use dimension reduction techniques to represent 
biological objects as points in a low-dimensional space. The underlying assumption is that biological systems 
have low intrinsic dimension. For instance, it has been well established that most variations in genomic databases 
can be explained by a small set of features, such as the cell state, the cell type, or a gene  program1. In a different 
example, the low dimensionality of databases of drugs’ adverse reactions is due to associations of side-effects to 
chemical substructures and their  combinations2,3. To put it differently, it is known that drugs sharing chemical 
substructures give rise to same adverse reactions.

The research on dimensionality reduction and associated relationship prediction has traditionally focused 
on the development and applications of advanced computational and statistical techniques while taking the 
Euclidean geometry of the native biological space for granted. However, recent theoretical studies challenge the 
flat geometry  assumption4–10. According to these studies, complex systems exhibit tree-like topology with high 
degree of clustering. Therefore, embedding those systems into the Euclidean space inevitably leads to distortion 
of distances between individual objects and, in turn, compromises the accuracy of relationship inference. In 
contrast, a negatively curved space can accommodate the exponential growth in the number of relevant network 
features since the area of a hyperbolic circle is an exponential function of its radius (Fig. 1).

Recent years have seen the development of practical algorithms that use hyperbolic geometry to model 
complex  networks11–18. Papadopoulos et al. developed the HyperMap method for mapping a complex network 
into a hyperbolic  space5. Muscoloni et al. address the same problem using a technique based on the angular 
coalescence  principle14. Monath et al. use a representation of tree structures in the Poincaré ball to design more 
accurate hierarchical clustering  methods15. Mirvakhabova et al. propose a hyperbolic autoencoder algorithm for 
the classical collaborative filtering  task16. Vinh Tran et al. propose a novel way of exploring metric learning for 
recommender systems in a hyperbolic  space17. Schmeier et al. use Poincaré embeddings of hierarchical entities 
to develop and prioritize playlists for users of digital music  services18. Hyperbolic distance learning has also been 
incorporated into artificial neural network models, for instance to encode the chemical structures of  drugs19.

In this paper, we show how hyperbolic latent space can be utilized to increase the accuracy of matrix factoriza-
tion. While our algorithm has been benchmarked on drug-target interaction datasets, the same technique can 
be applied to other relationship inference tasks (e.g., to predict drug-disease or drug-side effect associations, 
user preferences to movies or songs, etc.).

We emphasize that improving matrix factorization techniques is of particular importance in recommender 
systems, since a carefully designed matrix factorization method is known to outperform deep learning in many 
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collaborative filtering applications. Specifically, while deep learning can theoretically optimize any function, 
learning a simple Euclidean dot product (employed in matrix factorization) is shown to be a non-trivial  task20.

We incorporated hyperbolic latent space representation into the logistic matrix factorization framework, 
which is widely used in drug-target association prediction methods. We demonstrate that using the hyperbolic 
distance in place of the Euclidean distance results in significant accuracy improvements, while lowering the latent 
space dimension by more than an order of magnitude.

The rest of this article is organized as follows. "The theoretical foundation" section provides a short intro-
duction into the hyperbolic geometry. In “Computing the prior distribution” and "The loss function" sections, 
we derive a hyperbolic variant of the logistic loss function used in several state-of-the-art matrix factorization 
 method21–24. "Alternating gradient descent in hyperbolic space" section describes an alternating gradient descent 
procedure for minimizing the loss function. In “Hyperbolic neighborhood regularization and cold-start” section, 
we develop the hyperbolic versions of the neighborhood regularization and cold-start procedures. Finally, in the 
Results section we discuss the accuracy of hyperbolic and Euclidean matrix factorization algorithms on some 
widely used drug-target interaction test sets.

Methods
The theoretical foundation. Hyperbolic geometry can be modeled on the n-dimensional hyperboloid in 
the Lorentzian space Rn,1 (Fig. 1), where Rn,1 is a copy of Rn+1 equipped with a bilinear form �·, ·�L  defined as

Hyperbolic space is represented by one sheet of the two-sheeted hyperboloid

(which can be thought of as a sphere of radius i =
√
−1 ), namely,

It can be shown that the bilinear form �·, ·�L restricted on the tangent space TpH
n at a point p ∈ H

n , defined by

is positive definite, thereby providing a genuine Riemannian metric on Hn . The distance between two points x , 
y ∈ H

n is given by

An interesting (and in the biological context insightful) property of the hyperbolic space is that the shortest 
path between two random points in Hn that are far away from the vertex µ0 has almost the same length as the path 
through the vertex (Fig. 1). This resembles the property of the distance function on trees, where the shortest path 
between two randomly selected nodes deep in the tree is almost of the same length as the path through the root.

While the hyperbolic matrix factorization, outlined below, is applicable to different loss functions, we illustrate 
it in the framework of logistic matrix factorization. Logistic factorization technique is statistically sound, simple 
to present, and highly accurate in biological  applications21–28.

Let A =
{

ai
}m

i=1
 be the set of drugs and B =

{

bj
}n

j=1
 the set of targets (proteins). Denote by R =

(

ri,j
)

m×n
 

the matrix of relationships (edges) between the elements of A and B . Specifically, ri,j = 1 if ai interacts with bj 
and ri,j = 0 otherwise (no interaction or unknown). Let ui , vj ∈ H

d be the latent vector representations of ai and 
bj , respectively, where d ≪ max(m, n) . Denote by ei,j the event that ai interacts with bj . In line with the classical 

(1)�x, y�
L
= x1y1 + · · · + xnyn − xn+1yn+1.

(2)
{

x ∈ R
n,1|�x, x�L = −1

}

(3)H
n =

{

x ∈ R
n,1|�x, x�L = −1, xn+1 > 0

}

.

(4)TpH
n =

{

x ∈ R
n,1|�p, x�

L
= 0

}

.

(5)dHn

(

x, y
)

= arccosh
(

−�x, y�
L

)

.

Figure 1.  (a) Left: Hyperboloid model of H2 . The shortest path between points A and B is the line of 
intersection of the hyperboloid with the plane (blue) that passes through A, B and O. As A and B are moving 
away from the vertex µ0 , the length of this geodesic line (white) is almost the same as the length of the path 
through µ0 (orange). Right: Projection onto the Poincare disk. (b) Effective embedding of a tree into the 
hyperbolic space (all tree edges are of the same length).
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(Euclidean) logistic matrix factorization  technique21–33, we model the probability pij of ei,j as the logistic function 
in the Lorentz space Rd,1

where d2
L

(

x, y
)

 denotes the squared Lorentzian distance34 between the points x, y ∈ H
d , namely

Denote by W =
(

wi,j

)

m×n
 our confidence in the entries ri,j of the interaction matrix R . In many practical 

applications, wi,j = 1 if ri,j = 0 , and wi,j = c if ri,j = 1 , where c > 1 is a  constant21. In general, the idea is to assign 
higher weights to trustworthy pairs i.e., those for which we have higher confidence of interaction. Given the 
weights wi,j , the likelihood of ri,j given ui and vj is

Thus, assuming the independence of events ei,j , it follows that

where U  and V  represent the matrices of latent preferences of elements from A and B , respectively (in other 
words, the i th row of U  is the vector ui and i th row of V  is vi).

Computing the prior distribution. Similar to the Euclidean  case21,31, our goal is to derive the probability 
p(U ,V |R) from (9) through the Bayesian inference.

Utilizing the recent work on wrapped normal distribution in hyperbolic  space35, we define the prior distribu-
tions as

where G(µ,�) is the pseudo-hyperbolic Gaussian distribution and µ0 = (0, . . . , 0, 1) is the vertex of the hyper-
boloid (the origin of the hyperbolic space).

The pseudo-hyperbolic Gaussian distribution extends the notion of Gaussian distribution to the hyperbolic 
space (Fig. 2). In short, for µ ∈ H

d and positive definite � , sampling from G(µ,�) can be thought of as a three 
step process: (a) Sample a vector x ∈ Tµ0H

d from N (0,�) , (b) Transport x along the geodesic joining the points 
µ0 ∈ H

d  and µ ∈ H
d  to y∈ TµH

d , and (c) Project y to z ∈ H
d.

The step (b) is carried out using the parallel transport gµ0→µ : Tµ0H
d → TµH

d (Fig. 3a), defined by

(6)pi,j = p
(

ri,j = 1|ui , vj
)

=
exp

(

−d2
L

(

ui , vj
))

1+ exp
(

−d2
L

(

ui , vj
)) ,

(7)d2L
(

x, y
)

= �x − y�2
L
= �x − y, x − y�

L
= −2− 2�x, y�

L
.

(8)p
(

ri,j|ui , vj
)

= p
wi,j ri,j
i,j

(

1− pi,j
)wi,j(1−ri,j).

(9)p(R|U ,V) =
∏

i,j

(

p
ri,j
i,j

(

1− pi,j
)1−ri,j

)wi,j

,

(10)

p
(

U |σ2U
)

=
m
∏

i=1

G
(

ui|µ0, σ
2
UI

)

,

p
(

V |σ 2
V

)

=
n
∏

j=1

G
(

vj|µ0, σ
2
V I

)

,

(11)gµ0→µ(x) = x +
�µ+ �µ0,µ�L·µ0, x�L

1− �µ0,µ�L
(µ0 + µ),

Figure 2.  100,000 samples from N (0,�) (blue) and the corresponding samples from G(µ0,�) (red), 
� = 0.1 · I2×2.
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while the step (c) uses the exponential map Expµ : TµH
d → H

d (Fig. 3b), defined by

where �y�
L
=

√

�y, y�
L

.
It is not difficult to show that the length of the geodesic joining µ to Expµ

(

y
)

 on Hd is equal to ‖y‖
L

 , i.e., 
d
Hd

(

µ,Expµ
(

y
))

= �y�
L

 . The relationship between the probability densities X ∼ N (0,�)  and Z ∼ G(µ,�)  is

where f = Expµ ◦ gµ0→µ and det
(

Jf
)

 denotes the determinant of the Jacobian Jf =
∣

∣

∣

∂f
∂x

∣

∣

∣

35. Finally, it can be shown 
that

where r = arccosh(−�µ, z�L)35.

The loss function. With the prior placed on U and V  , we return to calculating the posterior probability 
p(U ,V |R) through the Bayesian inference

Following the Euclidean matrix factorization, we take the logarithm of the posterior distribution (15) to arrive 
at the closed form expression for the loss function

In the expression above, p is the probability density function of the normal distribution N
(

0, σ2I
)

 in the 
tangent space Tµ0H

d at the vertex µ0 = (0, . . . , 0, 1) and, for x =
(

x1, . . . , xd , xd+1

)

∈ H
d,

Thus,

where C1 is a constant. Moreover, since

(12)Expµ
(

y
)

= cosh
(

�y�
L

)

µ+ sinh
(

�y�
L

) y

�y�
L

,

(13)p(x) = p(z)det
(

Jf
)

,

(14)lnp(z) = lnp(x)− (d − 1)ln
sinh(r)

r
,

(15)p(U ,V |R) ∝ p(R|U ,V)p
(

U |σ 2
)

p
(

V |σ 2
)

.

(16)

L =
m
�

i=1

n
�

j=1

wi,j

�

ln
�

1+ e−d2
L(u

i ,vj)
�

+ ri,jd
2
L

�

ui , vj
�

�

−
m
�

i=1



lnp
�

ui
�

− (d − 1)ln
sinh

�

�ui�L
�

�ui�L





−
n

�

j=1



lnp
�

vj
�

− (d − 1)ln
sinh

�

�vj�L
�

�vj�L



.

(17)x = Exp−1
µ0

x =
arccosh(−�µ0, x�L)
√

�µ0, x�2L − 1
(x + �µ0, x�L · µ0) =

arccosh
(

xd+1

)

√

x2d+1 − 1
(x1, . . . , xd , 0).

(18)lnp(x) = −
1

2σ2
arccosh2(xd+1)+ C1,

Figure 3.  (a) Parallel transport of x ∈ Tµ0
S to y ∈ TµS along the geodesic γ , where µ0 = γ (0) and µ = γ (1) . 

(b) The exponential map.
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It follows that

Hence, our loss function has the following form:

where αU = 1
2σ 2

U
 , αV = 1

2σ 2
V

 are trainable parameters and C is a constant.

Alternating gradient descent in hyperbolic space. Minimizing a real function defined in a d-dimen-
sional Euclidean space Rd is routinely accomplished using the gradient descent technique. We adopt a similar 
method for finding the point u ∈ H

d of a local minimum of any real valued function f : Hd → R
36,37. For this 

strategy to work, the function f  must be defined is in the ambient space Rd,1 of Hd , as well as on Hd . Specifically, 
given the initial value u = u(0) and a step size η , the gradient descent in hyperbolic space can be carried out by 
repeating the following steps:

1. Compute the gradient ∇R
d,1

u f
2. Project ∇R

d,1

u f  orthogonally to vector ∇H
d

u f ∈ TuH
d

3. Set unew = Expu

(

−η∇H
d

u f
)

The gradient ∇R
d,1

u f  in the ambient space Rd,1 is a vector of partial derivatives

(note the negative sign of the last vector’s component).
The above representation of the gradient follows directly from its definition:

The orthogonal projection from the ambient space onto the tangent space in (step 2 above) is given by

We use the “alternating gradient descent” method to minimize the error function LA,B given in (21). The 
partial derivatives of LA,B are

Figure 4 shows the pseudocode of our algorithm.

(19)�x�L = arccosh(−�µ0, x�L) = arccosh
(

xd+1

)

,

(20)sinh(�x�L)
�x�L

=

√

x2d+1 − 1

arccosh
(

xd+1

) .

(21)

L =
m
�

i=1

n
�

j=1

wi,j

�

ln
�

1+ e−d2
L(u

i ,vj)
�

+ ri,jd
2
L

�

ui , vj
�

�

+
m
�
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αUarccosh
2
�
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�

+ (d − 1)ln

�

�
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�
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�
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�
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2
�
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�
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�

�
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�2
− 1
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�
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�









+ C,

(22)∇R
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u f =
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∂L
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|
u
, . . . ,

∂L

∂xn
|
u
,−
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|
u

)

(23)∀v ∈ R
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L
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Hyperbolic neighborhood regularization and cold‑start. A standard way to increase the accuracy of 
relationship inference between the elements of two biological domains A and B is to employ the so-called neigh-
borhood regularization. The goal is to ensure that similar entities from A are in relationship with similar entities 
from B (e.g., similar drugs interact with similar genes). To achieve this, we extend the Euclidean neighborhood 
regularization  method21,38 to Hd by adding the following term to the loss function L(21):

where si,j (respectively ti,j ) is the value reflecting the similarity between ai and aj (respectively bi and bj ) and βU , 
βV are trainable (neighborhood regularization) parameters.

A separate procedure is needed to address the “cold-start” problem i.e., the arrival of a new node (a node with 
no known relationships to other nodes). In the setting of drug-target interaction prediction, this procedure is 
used to predict targets for new compounds (such as a chemical in pre-clinical studies) and vice versa.

For the hyperbolic cold-start, we use a hyperbolic variant of the Euclidean weighted-profile  method21,31,33. 
Specifically, the latent vector ui ∈ R

d for a drug ai ∈ A that does not interact with any protein bj ∈ B (i.e., the ith 
row of R is empty) is computed as the weighted combination of the rows uj ∈ U  most similar to ui . Specifically,

where SM =
∑J

j=1 si,j and J is a pre-defined number of nearest neighbors. The hyperbolic center of mass ui is 
computed as in Law et al.39.

Results
Benchmarking experiments. We benchmarked the hyperbolic matrix factorization on four drug-target 
interaction test sets, specifically Nr, Gpcr, Ion, and  Enz40, using four traditional classification measures, namely 
the area under the receiver operating characteristics curve (AUC), the area under the precision-recall curve 

(27)βU

m
∑

i=1

m
∑

j=1

si,jd
2
L

(

ui , uj
)

+ βV

n
∑

i=1

n
∑

j=1

ti,jd
2
L

(

vi , vj
)

,

(28)ui =
1

SM

J
∑

j=1

si,ju
j ,

Figure 4.  Pseudocode of the hyperbolic gradient descent procedure.
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(AUPR), precision at top ten (PREC@10), and the average precision (AP). An extensive grid search is employed 
to train the parameters of each method (see the Supplementary Data).

In our first benchmark, we assessed the advantage of the basic logistic hyperbolic matrix factoriza-
tion over the classical Euclidean matrix factorization (as implemented in the popular NRLMF  method21), in 
absence of any side-information (i.e., the pairwise drug and the pairwise protein similarity). As described in 
the “Methods” section, the hyperbolic method is conceptually the same as the Euclidean method, but it uses 
−d2L

(

x, y
)

= 2+ 2�x, y�
L

 in place of 〈x, y〉 and uses the pseudo-hyperbolic Gaussian distribution (10) in place 
of the Gaussian prior.

We submit each method (Euclidean and hyperbolic) to ten rounds of the fivefold cross-validation (CV) test 
(also known as CVP  test22). In each CV round, the data set under consideration (i.e., the drug-target association 
matrix) is randomly split into 5 groups. Each group is used once as test data, while the remaining four groups 
represent training data. Hence, every (interacting and non-interacting) drug-target pair is scored once in each 
CV round. The final classification score (AUC, AUPR, PREC@10, AP) assigned to each DTI prediction method 
is computed by averaging classification scores obtained across different CV rounds.

As seen in Table 1, the bare-bone hyperbolic matrix factorization routinely outperforms the bare-bone Euclid-
ean factorization in identifying four types of drug targets (Nr, Gpcr, Ion, and Enz) and across fundamentally 
different classification measures (AUC, AUPR, PREC10, AP).

Interestingly, the hyperbolic matrix factorization achieves superior accuracy at latent dimensions that are by 
an order of magnitude smaller compared to dimensions needed for an optimal Euclidean embedding. Specifi-
cally, optimal Euclidean factorization is most often achieved at ranks exceeding 150. In contrast, most of the 
time, hyperbolic factorization needs only 5 or 10 latent features to achieve the same or better classification scores 
(Fig. 5). We view this as additional evidence that the hyperbolic space is the native space of biological networks.

In our second test, we allow both methodologies to use drug and protein homophily information to boost the 
prediction accuracy. In the classical (Euclidean) setting, we incorporate side-information precisely as done in the 
NRLMF  method21. The hyperbolic algorithm uses the same general formula (27), but employs the hyperbolic dis-
tances in place of the Euclidean distances. As seen in Table 2, the Euclidean factorization erases some head-start 

Table 1.  Comparison of the basic (no side-information or profile-weighting) Euclidean and hyperbolic 
logistic matrix factorization algorithm (as implemented in the NRLMF method). The results are obtained using 
ten rounds of fivefold cross-validation. Better results are shown in bold.

AUC AUPR PREC10 AP

Nr

 Euc 0.771 ± 0.009 0.340 ± 0.015 0.551 ± 0.010 0.461 ± 0.020

 Hyp 0.850 ± 0.007 0.433 ± 0.023 0.647 ± 0.020 0.567 ± 0.028

Gpcr

 Euc 0.884 ± 0.006 0.571 ± 0.011 0.983 ± 0.021 0.987 ± 0.024

 Hyp 0.904 ± 0.002 0.612 ± 0.007 1.000 ± 0.000 1.000 ± 0.000

Ion

 Euc 0.968 ± 0.002 0.842 ± 0.005 1.000 ± 0.000 1.000 ± 0.000

 Hyp 0.975 ± 0.003 0.861 ± 0.001 1.000 ± 0.000 1.000 ± 0.000

Enz

 Euc 0.951 ± 0.001 0.770 ± 0.002 1.000 ± 0.000 1.000 ± 0.000

 Hyp 0.966 ± 0.001 0.809 ± 0.003 1.000 ± 0.000 1.000 ± 0.000

Figure 5.  Optimal Euclidean rank (gray) and the hyperbolic rank (red) yielding the same or better AUC and 
the AUPR scores. Similar results were obtained using the PREC10 metric and the AP metric.
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advantage of hyperbolic factorization in the fivefold CVP test, albeit at much higher latent dimensions. This is 
somewhat expected, as the side information enables the Euclidean method to approach the theoretical limits on 
the accuracy that can be achieved on the four noisy, sparse, and biased test sets used in our study.

For a more thorough analysis, we also carried out the above benchmarks using tenfold cross validation. The 
results of our tenfold CV tests are shown in the Supplementary Tables 1 and 2. Depending on a test set under 
consideration, tenfold cross validation might be a more meaningful experiment as removing only 10% of the 
existing network links (as opposed to 20% in a fivefold CV) preserves important structural features of the target 
 network41,42.

While the first two benchmarks help gain insight into the value added by different components of the loss-
function, our final benchmark compares the two techniques in the most important and the most difficult cold-
start setting. In this experiment, known as Leave-One-Out Cross-Validation (LOOCV), we hide (zero out) and 
then try to recover all interactions of every drug under consideration. Specifically, for each drug d, we hide (zero 
out) and then try to recover all interactions (known and unknown) of d with all proteins in the data set. Thus, 
LOOCV can be viewed as a (non-stochastic) variant of a (single round) m-cross validation procedure, where m 
is the number of drugs.

To better assess the performance of hyperbolic embedding, we include in the LOOCV benchmark two addi-
tional state-of-the-arts methods, namely,  DNILMF22, and  NGN24. The DNILMF method is like NRLMF, but it 
incorporates drug and protein homophily directly into the formula for pi,j (6). Moreover, it employs a nonlinear 
diffusion technique to construct pairwise drug and protein similarity  matrices22. The NGN method is also simi-
lar in spirit to NRLMF, but it builds a neighborhood-based global network model instead of learning drug and 
target features  separately24.

We constructed a hyperbolic variant of each technique by simply replacing the Euclidean dot product with 
the negative Lorentzian distance and by replacing the Gaussian prior by the wrapped normal distribution in the 
hyperbolic space (as discussed in the “Methods” section).

As seen in Table 3, the hyperbolic matrix factorization improves the accuracy of current techniques in pre-
dicting protein targets for new compounds, such as the chemicals in preclinical studies or clinical trials. In addi-
tion, the Supplementary Table 3 shows that our method improves DTI predictions on isolated samples, namely 
drug-target pairs (d, t) , where d does not have interacting targets (other than t  ) and t  does not have interacting 
drugs (other than d).

Table 2.  Accuracy of the full-blown Euclidean and hyperbolic logistic matrix factorizations in predicting 
drug-target interactions (10 rounds of fivefold CV test). Both methods are allowed to take advantage of the 
side-information and profile weighting. Significantly better values are shown in bold.

AUC AUPR PREC10 AP

Nr

 Euc 0.954 ± 0.002 0.642 ± 0.013 0.808 ± 0.044 0.755 ± 0.006

 Hyp 0.970 ± 0.004 0.697 ± 0.019 0.874 ± 0.010 0.848 ± 0.028

Gpcr

 Euc 0.962 ± 0.002 0.677 ± 0.010 0.913 ± 0.056 0.872 ± 0.078

 Hyp 0.976 ± 0.002 0.710 ± 0.017 0.989 ± 0.010 0.984 ± 0.014

Ion

 Euc 0.984 ± 0.002 0.868 ± 0.005 0.948 ± 0.017 0.890 ± 0.018

 Hyp 0.991 ± 0.001 0.890 ± 0.010 1.000 ± 0.000 1.000 ± 0.000

Enz

 Euc 0.983 ± 0.001 0.879 ± 0.006 1.000 ± 0.000 1.000 ± 0.000

 Hyp 0.991 ± 0.001 0.899 ± 0.001 1.000 ± 0.000 1.000 ± 0.000

Table 3.  The accuracy of the Euclidean vs. hyperbolic variants of different matrix factorization methods in the 
Leave-One-Out Cross-Validation (LOOCV) benchmark. Significantly better values are shown in bold.

AUC AUPR PREC10 AP

NRLMF

 Euc 0.905 0.243 0.495 0.549

 Hyp 0.926 0.258 0.557 0.612

DNILMF

 Euc 0.895 0.239 0.489 0.546

 Hyp 0.923 0.262 0.562 0.622

NGN

 Euc 0.895 0.243 0.506 0.554

 Hyp 0.925 0.263 0.558 0.614
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Additional tests. Recent years have seen the developments of machine learning algorithms for different 
biological relationship inference  tasks43–46. While many of those methods can be tailored to provide predictions 
of drug-target interactions, it would be unrealistic to benchmark them all against the methodology presented in 
this article. Supplementary Table 4 provides the comparison of our technique against the SVM-based algorithm 
 BLM47 and the GRGMF—a matrix factorization  algorithm48.

We were also interested in how our method fares against the Cannistraci’s  methods49 based on the local-
community-paradigm (LCP). These methods are simple to interpret as they use a combination of node similar-
ity metrics (directly observable in a bipartite drug-target network), such as the number of common neighbors 
(CN) and the number of links between those neighbors (LCL). Aside from exhibiting the accuracy superior to 
that of other unsupervised drug-target link prediction algorithms (and comparable to accuracies of supervised 
algorithms), Cannistraci’s methods are extremely fast (Supplementary Fig. 1) and thus ideally suited for the task 
of link prediction in large networks. The results of our comparison with the LCP-based methods are shown in 
the Supplementary Tables 5 and 6.

While our project was, in part, inspired by the recent studies on hyperbolic network embedding, most of 
those methods, such as Coalescent Embedding (CE)14, were not specifically tailored for the DTI prediction task. 
To make a meaningful comparison with CE, we had to first place the two algorithms on the same ground. More 
precisely, in our tests the inference by CE was conducted based upon the hyperbolic distances between drugs and 
targets (closer objects are more likely to interact) computed from the coalescent embedding of the drug-target 
interaction network in the Poincaré disk. We also restricted the embedding dimension in our method to 2 since 
CE preferably uses the Poincaré disk as the latent space. The classification scores achieved by the two techniques 
are presented in the Supplementary Tables 7 and 8. We emphasize that, due to the methods’ modifications men-
tioned above, the benchmarking results shown in the supplementary material should be interpreted with caution.

In a quest for high accuracy, some algorithms for DTI prediction utilize biomedical knowledge beyond the 
protein amino-acid sequences and drug chemical structures, including the information on adverse drug reac-
tions, drug-disease and protein-disease associations, drug-induced gene expression profiles, protein–protein 
interactions, etc. Such a rich input often leads to information leak, presenting a challenge in evaluating these 
methods in a classical drug discovery setting where (typically) only a chemical structure of the drug and the 
primary sequence of the gene is known upfront.

Recent years have also seen the development of methods for drug-target affinity (DTA)  prediction50–53. In 
contrast to DTI prediction methods, DTA algorithms utilize drug-target binding affinity scores and treat DTI as 
a regression (rather than a binary classification) problem. Moreover, unlike DTI methods, DTA algorithms are 
typically evaluated on  Davis54 and  KIBA55 datasets using Concordance Index (CI), Mean Squared Error (MSE), 
and similar metrics for regression classification tasks. In fact, aside from  KronRLS56, very few DTA methods 
have been assessed in standard DTI benchmarks. While the direct comparison with DTA methods is beyond 
the scope of this paper, a quick look at the AUPR values in a cross-validation test published by KronRLS authors 
(Nr: 0.528, Gpcr: 0.602, Ion: 0.765, Enz: 0.829) and the corresponding values computed in our benchmark (Nr: 
0.697, Gpcr: 0.710, Ion: 0.890, Enz: 0.899) provide some insight (albeit indirect) into potential benefits of utiliz-
ing hyperbolic space to predict drug-target binding affinities.

Discussion and conclusion
Matrix factorization is one of the main techniques used in computational systems biology to uncover relation-
ships between the elements from a pair of biological domains. The technique works by representing the biological 
objects as points in a low dimensional (latent) space in a way that best explains the input set of known interac-
tions. More precisely, the input matrix of know associations is completed by approximating it as a product of 
two lower dimensional matrices.

Past research in computational systems biology, including matrix factorization techniques, has taken the 
Euclidean geometry of the biological space for granted. This has been convenient due to the availability of 
advanced analytic, numerical, statistical and machine learning procedures in the Euclidean space. However, 
recent theoretical studies suggest that the hyperbolic geometry, rather than Euclidean, underpins all complex 
networks in general and the biological networks in particular. Therefore, a radical shift in data representation is 
necessary to obtain an undistorted view of the biological space and, in turn, ensure further progress in systems 
biology and related fields.

We have developed and benchmarked a technique for a probabilistic hyperbolic matrix factorization and 
applied it to predict drug-target interactions. We demonstrate that the Lorentzian model of hyperbolic space 
allows for a closed form expression of the key transformations and techniques required for latent space dimen-
sionality reduction. Our method builds upon recent advances in the development of probabilistic models and 
numerical optimization in hyperbolic space to learn an optimal embedding and to compute the probabilities of 
drug-target interactions. Our benchmarking tests demonstrate a significant increase in accuracy and a drastic 
reduction in latent space dimensionality of hyperbolic embedding compared to Euclidean embedding. These 
findings reaffirm the negative curvature of the native biological space.

Although a (bipartite drug-target) hyperbolic network embedding arises as a byproduct of hyperbolic matrix 
factorization, our focus is on prioritizing targets for a given drug (and vice versa). To better assisting structure-
based drug discovery, DTI prediction methods focus more on identifying a handful of targets with strong binding 
affinities and much less on prioritizing many remaining targets with weak interactions (this also explains why 
the AUPR-like metrics are preferred in computational systems biology). To achieve this goal, DTI prediction 
methods are willing to distort the network structure away from the immediate neighbors of each drug in order to 
better model the network in the vicinities of drugs. In our methods, the distortion occurs each time a weighted 
profile is constructed to address the cold-start problem.
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There are several aspects of hyperbolic matrix factorization that this study has not explored in detail, includ-
ing optimal procedure for gradient descent in hyperbolic space. In contrast to decades of research on Euclidean 
numerical analysis techniques, the methods for numerical optimization in the hyperbolic space are few and far 
between. The main difficulty is the numerical instability of the hyperbolic gradient descent in vicinity of  cliffs57. In 
this study, we applied a simple heuristic intervention to combat the explosion in the magnitude of the hyperbolic 
gradient. For our optimization method to converge to a local minimum, we carried out three iterations of the 
gradient descent procedure, lowering the learning rate on the fly and clipping the gradient if necessary. We believe 
that further research in this area will add significant value to hyperbolic embedding and inference methods.

Our model uses the same hyperbolic space to represent both drugs and proteins. This widely used 
 approach58–60 is applied in our study due to simplicity of algorithm design and the fact that heterogeneous 
networks are shown to have a metric structure with an effective hyperbolic geometry  underneath61. However, 
alternative approaches are also worthwhile considering. Viewing biomedical entities (in our case drugs and 
proteins) as objects residing in spaces of different dimension and curvature, the bipartite graph of their relation-
ships can be realized in the hyperbolic product  space62. Finding the proper dimension and the curvature of the 
space that underlines each biological domain is expected to result in a more accurate latent representation and, 
in turn, more accurate relationship prediction.

Data availability
The code and test sets are available in the github repository https:// github. com/ polek sic/ Hyper bolic_ MF.
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