PROTOCOL: New York State Race, Ethnicity, and Insurance Disparities in Follow-up Prostate Cancer Screening

Seth Greenspan
Mansi Chandra
Hyun Woo Joo
Netanel Sapir
Jonathan Gorman

See next page for additional authors

Follow this and additional works at: https://commons.library.stonybrook.edu/dou-articles
Part of the Health Policy Commons, Oncology Commons, Preventive Medicine Commons, Social Justice Commons, Surgery Commons, and the Urology Commons

Recommended Citation

Greenspan, Seth; Chandra, Mansi; Joo, Hyun Woo; Sapir, Netanel; Gorman, Jonathan; Yang, Jie; Li, Xiaoning; Cavale, Barghav; Fierro, Allegra; Shroyer, Annie Laurie Laurie; and Fitzgerald, John P., "PROTOCOL: New York State Race, Ethnicity, and Insurance Disparities in Follow-up Prostate Cancer Screening" (2023). Department of Urology Faculty Publications. 3.
https://commons.library.stonybrook.edu/dou-articles/3

This Article is brought to you for free and open access by the Department of Urology at Academic Commons. It has been accepted for inclusion in Department of Urology Faculty Publications by an authorized administrator of Academic Commons. For more information, please contact mona.ramonetti@stonybrook.edu, hu.wang.2@stonybrook.edu.

Authors

Seth Greenspan, Mansi Chandra, Hyun Woo Joo, Netanel Sapir, Jonathan Gorman, Jie Yang, Xiaoning Li,
Barghav Cavale, Allegra Fierro, Annie Laurie Laurie Shroyer, and John P. Fitzgerald

TITLE: New York State Race, Ethnicity, and Insurance Disparities in Follow-up Prostate Cancer Screening

Principal Investigator: Dr. John Fitzgerald, MD, MSCI, and Dr. A. Laurie Shroyer, PhD, MSHA

Co-Principal Investigators: Hyun Woo Joo, Seth Greenspan, Mansi Chandra and Netanel Sapir
Biostatistician: Jonathan Gorman

PURPOSE AND SPECIFIC AIMS:

Using de-identified reports from the Statewide Planning and Research Cooperative System (SPARCS) data, this descriptive study will identify the impact of socioeconomic status (SES) metrics on the follow-up prostate cancer screening care within 3 years of index prostate cancer screening test in NYS. The socioeconomic status metrics will be subclassified into race, insurance, and ethnicity and each of these sub-components will be evaluated for its impact on the follow-up cancer screening care. The exclusion criteria for this study includes patients records with unknown age, age <55 or >75, previous history of prostate cancer or radical prostatectomy, previous prostate biopsy, female sex, lives outside NYS, unknown or missing data on race, ethnicity, or insurance status, or multi-ethnic patients. For the included patients, initial prostate cancer screening, follow-up screening, characteristics (e.g., age, SES), and risk profiles will be evaluated. Moreover, patients diagnosed with prostate cancer or receiving prostatectomy will be reported.
Additionally, the following hypotheses will be tested:
$H(0)$: Among patients with a baseline PSA test, socioeconomic status (SES) metrics (i.e., vulnerability based upon race/insurance/ethnicity) may pose as barriers to follow-up prostate cancer screening care within 3 years of index prostate cancer screening test (e.g., Vulnerability $=$ $\mathrm{V}=$ Black, Hispanic, and Self-pay Insurance)

- $H(0)$: Among patients with a baseline PSA test, race does not impact the likelihood of follow-up prostate cancer screening care within 3 years of index prostate cancer screening test (e.g., R-FC)
- $\mathrm{H}(0)$: Among patients with a baseline PSA test, insurance does not impact the likelihood of follow-up prostate cancer screening care within 3 years of index prostate cancer screening test (e.g., I-FC)
- $\mathrm{H}(0)$: Among patients with a baseline PSA test, ethnicity does not impact the likelihood of follow-up prostate cancer screening care within 3 years of index prostate cancer screening test (e.g., E-FC)

Please note, the SPARCS database de-identified reports will be used. Additionally, a not human subject's research (NHSR) determination is requested.

BACKGROUND AND SIGNIFICANCE:

For the period from January 2010 to December 2018, this analysis will use the NYS SPARCS database trends to evaluate the influence of race and insurance on follow-up prostate cancer screening. Disparities in prostate cancer survival based on patient's race has been well documented by previous research. A 2018 retrospective propensity analysis of prostate cancer patients diagnosed between 2004-2010 found that white men had a greater overall survival than black men, and that this survival difference was eliminated when their model simulated equal access to prostate cancer care. ${ }^{2}$ A 2017 study found that African American and Hispanic men are less likely to receive definitive treatment for prostate cancer than white men, and the rates of treatment declined throughout their study period from 2004-2011. ${ }^{3}$ Additionally, while Black men have a greater lifetime incidence of prostate cancer, a recent study found that they are less likely to receive PSA-testing. ${ }^{4}$ Moreover, a 2013 post-hoc study of patients enrolled in the Prostate, Lung, Colorectal, and Ovarian (PLCO) trial found that among patients screened with a PSA test, Black patients were less likely than non-Hispanic Whites to receive follow-up PSA testing or prostate biopsies. ${ }^{5}$

In addition to the racial disparities in prostate cancer outcomes, previous research has exhibited that there are disparities in prostate cancer care based on the patient's insurance status. A 2018 study on the association between expanded insurance coverage and prostate cancer screening found that the gap in PSA test utilization between the higher and lower income male patients in Medicaid early expansion states was significantly reduced. ${ }^{6}$ A 2019 study conducted on patients diagnosed with prostate cancer in Florida found that patients without insurance or with Medicaid were more likely to be diagnosed with late-stage prostate cancer. ${ }^{7}$ Furthermore, a 2019 retrospective cohort study found that patients with private and public insurance were more likely to receive favorable treatment. ${ }^{8}$ Bledsoe et al. (2018) found that insurance has an effect on treatment modality, as patients with private insurance were more likely to receive minimally invasive surgery and less likely to receive external beam radiotherapy than patients without insurance. ${ }^{9}$

Our study intends to further explore the relationship between socioeconomic factors and access to prostate cancer care, by examining how race and insurance affects patient's access follow up prostate cancer screening with PSA or biopsy. While this disparity has been studied with respect to Black and White race, ${ }^{5}$ there are no previous studies examining the effect of insurance and ethnicity on follow-up screening. All results will be adjusted for patient comorbidities and age. Lastly, these variables will be stratified by year, so that trends over time can be evaluated.

RESEARCH DESIGN AND METHODS:

This retrospective observational cohort study will be done using the SPARCS Health Facts dataset. With the help of the SBU SOM Bioinformatics Department and Biostatistics Core Lab, the SPARCS database will be matched/merged to the enclosed coding listings to create a study-specific de-identified prostate cancer screening database. Furthermore, the Bioinformatics and Biostatistics team members will be responsible for providing the descriptive statistics listed below as well as providing a study-database for future analyses. For this study's primary hypothesis, a p-value of <0.001 will be used (however, all p-values will be reported by separate interpretation by readers). All secondary and tertiary analyses, as well as all exploratory analyses, will use a p-value of <0.01. SAS version 9.4 will be used to complete all the
necessary statistical tests. More detailed methods including ICD-10, ICD-9, and CPT codes used in this study are described in the protocol below.

REFERENCES

1. Fletcher SA, Marchese M, Cole AP, et al. Geographic Distribution of Racial Differences in Prostate Cancer Mortality. JAMA Network Open 2020;3:e201839-e.
2. Krimphove MJ, Cole AP, Fletcher SA, et al. Evaluation of the contribution of demographics, access to health care, treatment, and tumor characteristics to racial differences in survival of advanced prostate cancer. Prostate Cancer Prostatic Dis 2019;22:125-36.
3. Moses KA, Orom H, Brasel A, Gaddy J, Underwood W, 3rd. Racial/Ethnic Disparity in Treatment for Prostate Cancer: Does Cancer Severity Matter? Urology 2017;99:76-83. 4. Kearns JT, Adeyemi O, Anderson WE, et al. Contemporary racial disparities in PSA screening in a large, integrated health care system. Journal of Clinical Oncology 2020;38:308-.
4. Barocas DA, Grubb R, 3rd, Black A, et al. Association between race and follow-up diagnostic care after a positive prostate cancer screening test in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer 2013;119:2223-9.
5. Sammon JD, Serrell EC, Karabon P, et al. Prostate Cancer Screening in Early Medicaid Expansion States. J Urol 2018;199:81-8.
6. Ramirez E, Morano J, Beguiristain T, et al. Insurance status as a modifier of the association between race and stage of prostate cancer diagnosis in Florida during 1995 and 2013. Cancer Epidemiol 2019;59:104-8.
7. Awasthi S, Gerke T, Williams VL, et al. Interrelationship Between Health Insurance Status and Prostate Cancer Grade Can Have Critical Impact on Prostate Cancer Disease Control: A Retrospective Cohort Study. Cancer Control 2019;26:1073274819837184.
8. Bledsoe TJ, Park HS, Rutter CE, Aneja S, Nguyen PL, Yu JB. Impact of Health Insurance Status on Prostate Cancer Treatment Modality Selection in the United States. Am J Clin Oncol 2018;41:1062-8.

Protocol:

Population: The population of this study is NYS males from the ages of 55-75 who received a prostate cancer screening test from 2010-2018 as defined in Table 1. Each patient will be sorted by the year of the initial screening test performed, in order to track trends over time.
Table 1: Prostate Cancer Screening Test Codes

Inclusion Criteria:

-PSA test, elevated PSA test, or prostate biopsy between 2010-2018
-Male sex
-Age 55-75
-NYS Resident

Exclusion Criteria:

-In-hospital death in initial record
-With prostate cancer diagnosis prior to or at the time of initial encounter (Table 2a or $\mathbf{2 b}$ codes)
-With prostatectomy or prostatectomy prior to or at the time of initial encounter (Table 3 codes)
-With prostate biopsy prior to or at the time of initial encounter
-With unknown or missing data on race, ethnicity, or insurance or multi-ethnic patients

Step 1: The population will be divided into three groups based on the first screening test recorded in SPARCS. They are listed in order of priority below (Group $1=$ highest priority)

Group 1: Elevated PSA test from diagnostic code
Group 2: Prostate Specific Antigen (PSA) test, results unspecified (outpatient data only) Group 3: Prostate biopsy

Table 2a: Prostate Cancer Diagnosis Codes:

Diagnosis	ICD-9	ICD-10	Notes
Prostate Cancer	185	C61	
Carcinoma in situ of prostate	233.4	D07.5	

Table 2b: Prostate Cancer Metastasis Codes

Diagnosis	ICD-9	ICD-10	Notes
Prostate Cancer	198.5	C79.51 C79.82	
Metastasis	198.82	C77.2 C77.5	
	196.2		
	196.6		

Table 3: Radical Prostatectomy Codes

Procedure	ICD-9	ICD-10	CPT	Notes
Radical	$60.3,60.4$,	OVTOOZZ,	55810,55812,	Any ONE ICD-9, ICD-10,
Prostatectomy	60.5,	OVTO4ZZ,	55815,55840,	or CPT satisfies criteria
(Laparoscopic/robotic or open)	60.62, or	OVT07ZZ,	55842,55845,	
60.69	or OVT08ZZ	55866		

Table 4: Radiation Procedure Codes

Procedure	ICD-9	ICD-10 PCS	CPT	Notes
Radiation (Stereotactic Radiosurgery, Brachytherapy, IMRT, Beam Radiation)	$\begin{aligned} & \hline 92.30,92.31, \\ & 92.32,92.33, \\ & 92.39,92.20, \\ & 92,23,92.28, \\ & 92.27,92.22, \\ & 92.24,92.25, \\ & 92.26,92.21, \\ & 99.85,92.29, \\ & 17.69,92.41 \end{aligned}$	DV20DZZ, DV20HZZ, DV2OJZZ, DV1097Z, DV1098Z, DV1099Z, DV109BZ, DV109CZ, DV109YZ, DV10B7Z, DV10B8Z, DV10B9Z, DV10BBZ,	77373, 77385, 77386, 77424, 77425, 77520, 77522, 77523, 77525,77600, 77605, 77610, 77615, 77620, 77770, 77771, 77772, 77778, 77371, 77372, 77373, 7740177402, 77403, 77404, 77406, 77407, 77408, 77409, 77411, 77412, 77413, 77414, 77416, 77418, 77423, 77424, 77425, 77520, 77522, 77523,	Any ONE ICD-9, ICD10 , or CPT satisfies criteria

		DV10BB1, DV10BCZ, DV10BYZ, 3EON304, 3EON704, 3EON804, DV000ZZ, DV001ZZ, DV002ZZ, DV003ZO, DV003ZZ, DV004ZZ, DV005ZZ, DV006ZZ, DVY07ZZ, DVY08ZZ, DVYOCZZ, DVYOFZZ, DVYOKZZ	77525, 77781, 77782, 77783, 77784, 77785,77786, 77787 0395T, G0173, G0251, G0339, G0340, G6003, G6004, G6005, G6006, G6007, G6008, G6009, G6010, G6011, G6012, G6013, G6014, G6015, G6016	

Step 2: For each group of patients, the number/percentage that had each of the following follow-up scenarios will be recorded as outcomes.

Screening Outcomes:

Outcome 1A: Repeat/Follow-up PSA, results unspecified, within 3 years
Outcome 1B: Repeat/Follow-up elevated PSA within 3 years
Outcome 1C: Follow up biopsy (Table 2) within 3 years

No follow-up

Outcome 2: No repeat screening tests within 3 years
Step 3: Initially, a univariate analysis will be performed to determine the marginal association between the following variables/exposures and the above outcomes using either Chi-Square tests and/or other statistical tests. Additionally, the specific vulnerable groups listed below will be compared to others who are outside that group.

Variables/Exposures:

Age: Yearly
Race: Black, Non-Hispanic White, other races
Ethnicity: Hispanic, Non-Hispanic
Insurance: Medicare, Medicaid, Commercial, Self-pay
Vulnerable groups: Black race, Hispanic ethnicity, Self-pay insurance status

Additional note: The following variables will be adjusted for in the analysis including comorbidities, risk factors for prostate cancer, and subsequent prostate cancer diagnosis/treatment after initial treatment. To clarify, our study will exclude patients who are diagnosed/treated with prostate cancer before their initial PSA test or biopsy but will adjust for patients in the analysis who received a prostate cancer diagnosis or treatment after their initial screening test but before their subsequent screening test.

Comorbidities: Charlson or Elixhauser Comorbidity Score
Risk Factors: Smoking/Tobacco, Morbid Obesity, Family History of Prostate Cancer, Personal History of Irradiation
Prostate Cancer Diagnosis or Treatment w/ prostatectomy or radiation (Tables 2a, 2b, 3, and 4)

SAMPLE TABLES

Table 1: Descriptive table of patients' characteristics, risk factors, comorbidity score, index of comorbidities and outcomes by vulnerability status

Variable	Level	Total $(\mathbf{N}=)$	$\mathbf{V}(\mathbf{N}=)$	NOT V $(\mathbf{N}$ $=)$	P-value*

Patients' characteristics at the time of Initial PC Screening

Abnormal PSA					
Age	Yearly				
Age Categories	$40-55$				
	$55-69$				
	$70-75$				
Year of prostate cancer screening	2011				
	2012				
	2013				
	2014				

| | Yes | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

AIDS/HIV	No				
Coronary Artery Disease	No				
	Yes				
Connective Tissue Disorder	No				
	Yes				

*: For categorical variables, p -values were based on Chi-squared test with exact p -value from Monte Carlo simulation; for continuous variable, p -value was based on Wilcoxon rank sum test.

Note: For continuous variable, median+/-IQR were reported.

Table 2: Descriptive table of patients' characteristics, risk factors, comorbidity score, index of comorbidities and outcomes by race

Variable	Level	Total $(\mathbf{N}=)$	Black $(\mathbf{N}=)$	NOT Black $(\mathbf{N}=)$	P-value*

Patients' characteristics at the time of Initial PC Screening

Abnormal PSA					
Age	Yearly				
Age Categories	$40-55$				
	$55-69$				
	$70-75$				
Year of prostate cancer screening	2011				
	2012				
	2013				
	2014				
	2015				
Risk factors at the time of Initial PC Screening					

Table 3: Descriptive table of patients' characteristics, risk factors, comorbidity score, index of comorbidities and outcomes by insurance status

Variable	Level	Total $(\mathbf{N}=)$	Self-Pay (N $=)$	NOT Self- Pay (N =)	P-value*
Patients' characteristics at the time of Initial PC Screening					
Abnormal PSA					

Comorbidities' score at the time of Initial PC Screening

Elixhauser Score					
Charlson Score					

Elixhauser Comorbidities at the time of Initial PC Screening

| Any malignancy w
 lymphoma and
 leukemia w/o
 malignant
 neoplasm of skin |
| :--- | Ye

Follow-up Abnormal PSA	Yes				
	No				
Follow-up PSA/ PC Screening (not abnormal PSA) NEW CODES+ CPT CODE	Yes				

Table 4: Descriptive table of patients' characteristics, risk factors, comorbidity score, index of comorbidities and outcomes by ethnicity

Variable	Level	Total $(\mathbf{N}=)$	$\begin{aligned} & \text { Hispanic (} \mathbf{N} \\ & =) \end{aligned}$	$\begin{aligned} & \text { NOT } \\ & \text { Hispanic (N } \\ & =\text {) } \end{aligned}$	P-value*
Patients' characteristics at the time of Initial PC Screening					
Abnormal PSA					
Age	Yearly				
Age Categories	40-55				
	55-69				
	70-75				
Year of prostate cancer screening	2011				
	2012				
	2013				

Diabetes w/o chronic complications
Diabetes w/ chronic complications No Yes
Hypothyroidism

AIDS/HIV	No				
Coronary Artery Disease	No				
	Yes				
Connective Tissue Disorder	No				
	Yes				

[^0]Note: For continuous variable, median+/-IQR were reported.

[^0]: *: For categorical variables, p-values were based on Chi-squared test with exact p-value from Monte Carlo simulation; for continuous variable, p -value was based on Wilcoxon rank sum test.

