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ABSTRACT There is a growing interest in developing and implementing adaptive instructional systems to
improve, automate, and personalize student education. A necessary part of any such adaptive instructional
system is a student model used to predict or analyze learner behavior and inform adaptation. To help inform
researchers in this area, this paper presents a state-of-the-art review of 11 years of research (2010-2021)
in student modeling, focusing on learner characteristics, learning indicators, and foundational aspects of
dissimilar models.Wemainly emphasize increased prediction accuracywhen usingmultidimensional learner
data to create multimodal models in real-world adaptive instructional systems. In addition, we discuss
challenges inherent in real-world multimodal modeling, such as uncontrolled data collection environments
leading to noisy data and data sync issues. Finally, we reinforce our findings and conclusions through
an industry case study of an adaptive instructional system. In our study, we verify that adding multiple
data modalities increases our model prediction accuracy from 53.3% to 69%. At the same time, the
challenges encountered with our real-world case study, including uncontrolled data collection environment
with inevitably noisy data, calls for synchronization and noise control strategies for data quality and usability.

INDEX TERMS Adaptive instructional systems, student modeling, multimodal learning analytics.

I. INTRODUCTION
Education has become increasingly concerned with the effi-
ciency and effectiveness of the typical one-size-fits-all model
that offers a common, rather than individualized, set of
problem-solving instructions to every student in a class [1],
[2]. One-size-fits-all models are ineffective because unique
students have different educational factors, such as preferred
learning styles, personality types, and cognitive potential.
As such, a predominant issue emerging in learning technolo-
gies is how to best extract such personalized differences and
provide appropriate customized support.

Adaptive Instructional Systems (AIS) are computer pro-
grams built on artificial intelligence, data mining, and learn-
ing analytics. AISs are implemented in educational settings
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as intelligent tutoring systems (ITSs), adaptive simulation
systems, and serious games. These systems continue to be
explored as a solution to the issue of personalized student
education, with successful applications in schools, business,
and government [3]–[5]. Despite consistent evidence of their
effectiveness in improving student learning, AISs have as of
yet failed to achieve major, widespread adoption. This failure
can be attributed to high development costs [6], [7], as well
as additional system constraints in both aligning the system
to a curriculum and training instructors on proper use of the
system [6], [8]. Lack of existing digital infrastructure can
also limit both a researcher’s ability to collect data and a
student’s ability to access the system [8]. However, it is our
firm belief that recent and upcoming advances in technology
will continue to make AISs easier to use, develop, implement,
and modify for new curricula. Thus, the motivation for this
study is to survey recent technological developments in two
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research areas that strengthen the ability of AISs: student
modeling and analysis.

For any AIS to successfully mimic human tutors in pro-
viding ‘‘just-in-time’’ or ‘‘just-enough’’ instructional support
tailored to student needs, the AIS must acquire an accurate
understanding of learners through a student model [9]. Typi-
cally, student modeling is a systematic process of construct-
ing mathematical student models that represent, analyze, and
predict learner cognitive, behavioral, and/or affective states
by exploiting digital traces of learners and their interactions
with AISs. This process enables AISs to a) identify learner
prior knowledge, b) isolate underlying misconceptions, c)
predict learning goals and plans, and d) understand learner
personalities and emotions.

The selection of learner characteristics and their associated
learning indicators is critical for designing student models to
fit the desired adaptation. In fact, categorization of learners
can be based on static information that does not change during
the learning process, as well as dynamic information that
evolves with the process. The former is usually related to per-
sonal traits, such as age, gender, and cultural background. The
latter encompasses several dimensions that can be measured
directly or indirectly during learning. For instance, students
often encounter various experiences that fail to match their
expectations, such as encountering obstacles while working
toward a goal, choosing equivalent alternatives, and even
making mistakes. Consequently, learner emotions fluctuate
with learning and often reach a state of confusion or frustra-
tion [10].

A perusal of the current literature provides many student
modeling approaches, which can be categorized into two
major domains. The first line of work stems from the tradi-
tional overlay model [11], which presumes that the knowl-
edge/skills of students is a subset of that of domain experts.
The degree to which a learner knows a concept is often
measured quantitatively as a probability [12], or qualitatively
using fuzzy logic to address the high level of human uncer-
tainty [13]. Variations are also seen in a hybrid effort that
integrates overlay models with other methods, such as clus-
tering [14], stereotypes [15], and ontology [16]. This develop-
ment sought to overcome the inability of overlay models for
learners’ partial knowledge and/or incorrect knowledge.With
the advancement of artificial intelligence and sensor infor-
matics, data-driven approaches constitute a second domain in
student modeling. Rather than relying on expensive domain
knowledge as a prior, they collect a significant quantity of
measures about students before running computational meth-
ods to derive models. It is clear that many student modeling
methods vary in terms of the types of learner profiles and
learning indicators used, but most importantly, they vary in
terms of their limitations.

Although there are several reviews on similar aspects
of student modeling in adaptive learning environments
[17]–[19], more work continues to appear. Part of the reason
for so much interest in the field is due to the complexity of
the problem itself and many challenges associated with it.

Even so, the increasing interest has yet led to few efforts
to highlight multimodal learning analytics as a contributing
factor in adaptive instructional systems. As such, this paper
centers on student modeling and analysis developed in the
past decade and makes the following contributions. First, this
paper presents a state-of-the-art review, detailing how various
student models have been implemented in AISs with respect
to their pros, cons, and suitable learning contexts. Second, the
paper categorizes multimodal data inputs and overviews suc-
cessful implementations of multimodal data collection meth-
ods, ultimately leading to a discussion on the difficulty of
in-classroom multimodal learning analytics (MMLA) imple-
mentations. Last but not the least, the paper offers important
perspectives and promising future directions in the field with
empirical evidence of the benefits and challenges of MMLA
through an industry case. The rest of the paper is organized
as follows: Section II details our review of the emerging
student models; Section III discusses the importance of dif-
ferent types of data that leverage student models to analyze
learner behaviors. Our observations and discussions on the
limitations, challenges, and future directions are presented in
Section IV, followed by the conclusion in Section V.

II. EMERGING STUDENT MODELS
As stated in the introduction, student modeling is essential for
an AIS to provide students with adaptive and personalized
learning. The goal of student modeling is to represent and
trace an individual student’s knowledge state. Only with a
precise understanding of a student’s knowledge level and
accurate prediction of their future performance can the AIS
generate an optimal and individualized learning path. This
section focuses on the development of modeling techniques
for knowledge tracing over the past decade.

A. OVERLAY-BASED MODELING
The overlay model, invented by Carr and Goldstein [11], is a
classic approach to student modeling. It usually constitutes
a static domain model and a dynamic student knowledge
model. The former is built by a human expert, denoting expert
knowledge as individual concepts and topics, and the latter is
then superimposed on the top of the former. As reported in
two earlier survey articles [17], [20], the domain knowledge
model and the learner model employ a uniform construction
to represent knowledge as independent elements. A student’s
knowledge acquisition is simply a mastery of each knowl-
edge component. When the student interacts with the AIS,
the overlay model continuously tracks his knowledge state
and its evolution. Afterwards, the overlay model performs
diagnosis by comparing the represented student’s knowledge
with that of the domain/expert and recognizing the difference.
Therefore, the goal of the AIS is to eradicate this difference
in order for the student to reach the knowledge level of the
expert.

One of the most common types of overlay modeling is the
use of Bayesian networks (BN). Corbett andAnderson (2005)
[12] first introduced Bayesian knowledge tracing (BKT) to
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model and monitor a student’s knowledge state during learn-
ing. In particular, nodes in a BKT are domain concepts or
observation of students’ behaviors, each of which is assigned
a probability that a student has learned the knowledge or has
behaved correctly. A directional edge connecting a parent
node to a child node is associated with a conditional prob-
ability that reflects their conditional dependence. All prob-
ability relations of a discrete node with its parents are then
kept in a probability distribution table (CPT) associated with
the node. The probabilities and conditional probabilities are
continuously updated through Bayesian inference when more
evidence of a student mastering a node knowledge becomes
available.

In view of the capabilities of overlay models, such as BKT,
many AISs are still built upon this old technique with vari-
ations to mitigate their limitations. For instance, prediction
in the traditional BKT is performed using all observational
data (no discrimination). Presumably, all users share the same
initial knowledge when starting their learning sessions. This
assumption might work when the data pertaining to student
characteristics exhibits high uniformity. However, not all stu-
dents are alike. Because of such diversity in students, it is
highly possible for an AIS to initially offer study materi-
als that are incompatible with a student’s ability, and then
spend time exploring data and correcting this mistake. Taking
this into consideration, Nedungadi and Remya (2014) intro-
duced an enhanced personalized clustered BKT (PC-BKT)
model [14]. The method leverages a personalized model in
which students are first distinguished into groups of similar
knowledge levels at the beginning of the learning session.
In doing so, students are not assumed to be the same initially,
but are dynamically clustered by their skills into groups of
high, medium, and low knowledge levels. Following this,
predictions on their performances are conducted in individual
groups.

Similarly, the individualization issue was addressed in
the DEPTHS ITS system [15] through stereotype clustering,
where students are grouped into one of the three stereotypes:
beginner, intermediate, and advanced via a self-judgment of
learning abilities. Subsequently, each student is assigned a
learning session compatible with his initial stereotype until
he completes the first test, the result of which, along with the
initial knowledge of the student, contributes to the develop-
ment of an overlay model.

Grouping based solely on students’ knowledge test results
and/or self-judgment of abilities may not be sufficient to
characterize students, resulting in a system not being as
personalized and adaptive as desired. In fact, several other
factors, such as the difficulty levels of tests, the time a student
spent in solving the problem, and the learning material he
has visited, should be considered when judging a student’s
performance [15]. The use of the ontology technique is in
line with logical thinking, allowing for a more comprehensive
student clustering.

Ontology encompasses a representation of the con-
cepts/categories within a subject area and shows how they

are related. The purpose of ontology in student modeling
seeks to capture student characteristics from as many aspects
as possible. Such multidimensional information to be elabo-
rated in detail in Section III includes students’ profiles (e.g.,
learning styles [21], cultural and gender differences), learning
behaviors (e.g., responses to question prompts [14], [22], mis-
conceptions [23], and emotional states [9], [24]), and learning
environment (e.g., physical locations, contexts, and cultures
in which students learn [16]). Consequently, the merger of
an ontology technique guarantees a more accurate student
prediction of future performance based on the diverse and
abundant information classified and stored in an ontology.

Learning is a continuous process that involves many com-
plications. The measures during the process of student mas-
tery of a particular knowledge element often contain impre-
cise or incomplete information, which makes it difficult to
represent knowledge mastery as learned or not learned. Simi-
larly, human subjectivity exists in the process of predicting
student performance. The idea of augmenting an overlay
model with fuzzy logic [13], [25], [26] have focused on tack-
ling the uncertainty issue in inferring a student’s performance
[27]. Fuzzy logic is a rule-based reasoning technique that
provides a good way to represent vague input data. Instead
of using ‘‘Yes or No’’ Boolean logic, fuzzy logic transforms
a ‘‘crisp’’ input into one or more fuzzy sets through mem-
bership functions. The ‘‘degrees of truth’’ are then calculated
to specify the extent to which the input belongs to a given
fuzzy set [28]. One such example can be seen in [13], where
multi-valued fuzzy sets (Unknown, Unsatisfactory Known,
Known, Learned) and associated membership functions were
proposed and integrated with a traditional overlay model.
In doing so, the pure overlay model evolved into a qualitative
weighted model. The determination of a node weight was
then performed by mapping a test score for the student’s
knowledge level of a domain concept into the predefined
fuzzy sets with different truth degrees in the range (0, 1).
In addition to fuzzy logic, the work presented in [29] followed
a similar line of thinking, where a trisection partition of a
learning process as unlearned, learning, learned replaced the
original bisection one.

Another shortcoming of overlay models is the inability to
represent a student’s mistakes or misconceptions of domain
knowledge. To that end, many researchers have incorporated
constraint-based models (CBMs) to compensate for the defi-
ciency [30], [31]. The CBM is based on Ohlsson’s theory of
learning from errors [32], identifying learning as a process
by which mistakes are first detected and corrected. Thus,
constraint sets are first built with all possible correct answers.
When a student’s answer fails to match the condition, a con-
straint is violated, and a mistake is recognized. One example
of this approach is the work presented in [33], where a
comprehensive student model built on CBM, fuzzy logic, and
overlay was proposed. During the learning process, the CBM
in the student model detects student mistakes by evaluating
the words present in student answers. The detected mistakes
and the fuzzy logic decision system are then used to update

VOLUME 10, 2022 59361



J. Liang et al.: Student Modeling and Analysis in Adaptive Instructional Systems

and determine the mastery level of the knowledge component
in the overlay model.

While overlay models have been used broadly across a
variety of academic domains, more research efforts continue
to devote in the direction of improving their representa-
tional power and prediction accuracy. For instance, dynamic
Bayesian networks (DBNs) were proposed to model the hier-
archy and relationships of different learning domain skills
[34], [35]. Perceived as a composite model of multiple hidden
Markovmodels (HMM), aDBNnot only represents a specific
skill of a given learning domain similar to the traditional BKT,
but also models the dependencies between different skills
via conditional probabilities. In addition to the observed and
latent variables considered in the traditional BKT, the works
presented in [22], [36], [37] extended the original structure
of BKT by introducing different types of nodes or student-
specific parameters. To account for the influence of prob-
lem difficulty on student behaviors, Pardos and Heffernan
(2011) added item difficulty nodes connected to the question
nodes in the traditional BKT, conditioning the question’s
guess/slip upon the value of the item node [36]. Similarly,
Qiu et al., (2011) introduced a new type of time node to
model the time effects on students forgetting previously
learned materials and/or making mistakes [37]. In view of
the assumption applied to the traditional BKT that students
learn, guess or slip at constant rates, Yudelson et al. (2013)
proposed a gradient-based optimization to individualize those
speeds [22].

B. DATA-DRIVEN APPROACHES
While overlaymodels substantially contribute to the efforts of
knowledge tracing in adaptive instructional systems (AISs),
they demand human/experts to build a basic domain knowl-
edge model with a complete list of topics and concepts
to be learned by students. The necessity of prior domain
knowledge, potential uncertainty, and human subjectivity
involved in overlay models present practical limitations.
In contrast, data-driven models have become popular with
the advancement of artificial intelligence and sensor infor-
matics. In particular, the availability of increasingly large-
scale datasets collected from AISs and massive open online
courses (MOOCs) makes deep learning models more favor-
able [38]. One study in particular used deep learning to accu-
rately predict at-risk students using the dense data available
from virtual learning environments [39].

Inspired by deep learning, Piech [40] developed a deep
knowledge tracing (DKT) algorithm that utilizes recurrent
neural networks (RNNs) to track a student’s knowledge
states. RNN is good at processing sequential data for pre-
diction, where a looping mechanism is embedded that acts
as a bridge to allow information to flow from one step to
another [30]. In sequential computation, the sequence of
interaction encoding is mapped to a sequence of hidden
layers, and then to a sequence of vectors. In DKT, student
responses serve as inputs, latent knowledge states are hid-
den layers, and the predicted probabilities of correctness for

questions are outputs [40]. There are many variations of DKT
as reported in [41], some changed the network structure [42],
[43], while others include different faceted student infor-
mation [44]–[49]. In general, DKT substantially saves the
efforts of human experts, as it does not need to explicitly
construct a prior domain knowledge model. In addition, DKT
manages to handle large-scale datasets, permitting multiple
dependent variables as input vectors as long as they can be
vectorized [50]. In addition to DKT, factorization machines
are another popular method for knowledge tracing, many of
which [51]–[53] have been proven to match the performance
of DKT.

As mentioned earlier, the manual construction of an expert
model is strikingly challenging, time-consuming, and error
prone. The adoption of machine learning (ML) techniques
can automate this process in a more efficient and effective
manner. One such example of ML-based AIS authoring tools
is SimStudent [54], a system that allows a domain expert to
create an expert model by tutoring an AI-simulated student.
During interactions, the expert presents question prompts to
SimStudent and offers feedback on SimStudent’s responses
to questions or requests for hints. Throughout all interac-
tions, SimStudent induces underlying rules to create an expert
knowledge model. Similar works can be found in [55], where
a data mining technique was used to automatically induce a
partial knowledge model based on students’ responses.

In addition to discovering underlying knowledge models
for learningmaterials,ML has been broadly used to anticipate
student intentions, actions, and performance. For instance, a
two-stage supervised learningmethodwas proposed in [56] to
detect when and what a student just learned (i.e., the content
learned at a specific time step). The work in [57] used least
squares and ridge regression to automatically detect off-task
behaviors in ITS. Other efforts have been made in discover-
ing student misconceptions [58], [59], student behavior [60],
learning styles [61], [62], and emotions [63].

C. DISCUSSION
Modeling and predicting student behavior during learning
is a complicated process. Such complexity and associated
challenges have generated tremendous interest in student
modeling, resulting in many approaches varying in terms of
methods and, more importantly, limitations. Overlay-based
modeling leverages the benefits of expert knowledge to
enable adaptation. However, it is rarely applied to deal with
cold-start problems owing to the lack of sufficient prior infor-
mation. While many extensions tackled a distinct deficiency
of the traditional overlay model, their common underlying
idea was to implement more variants in inferring student
behavioral, cognitive and/or affective states. For instance,
student behaviors can be derived from examining features
associated with student interactions with an AIS during learn-
ing, as well as student static traits such as learning styles,
preferences, and personality traits. Similarly, a cognitive state
can be influenced by multiple factors, including motiva-
tion, emotion, and aptitude. Although additional elements in
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student modeling can potentially elevate an AIS’s likelihood
of providing accurate feedback to a student, the complexity
of student modeling increases significantly with an increase
in data dimensions. Therefore, overlay-based models func-
tion best when they can be implemented alongside extensive
feature extraction methods or multi-modal student data. Fur-
thermore, researchers must put heavy consideration into the
configuration of their overlay-based model to ensure desir-
able predictions. This consideration can make overlay-based
models very time- or cost-intensive to implement.

On the other hand, the emergence of data-driven models
overcomes the deficiencies of overlay-based models. First,
data-driven approaches derive a computational model from
observed data only, which avoids the uncertainty and subjec-
tivity existing in the human construction of an expert model.
Second, data-driven models are more equipped to automat-
ically deal with high dimensionality data. Finally, machine-
learning-basedmethods only require a large amount of data to
automatically learn inherent patterns, relations, and discover
hidden variables, while overlay-based models are difficult
to handle [50]. However, such demand in model training
inevitably gives rise to the issues of data collection, qual-
ity control and overfitting/underfitting. The lack of theories
around model creation for data-driven approaches introduces
mistrust issues in their outputs and applications [20]. Thus,
the integration of machine learning with model-based meth-
ods presents a promising research direction [64], [65].

III. MMLA BASIS
As clearly demonstrated in Section II, data are the key to
student modeling, regardless of overlay-based or data-driven
methods. While learners interact with AISs, many digital
traces are left behind to be recorded and used to analyze
their learning performance. As seen in [66], [67], the most
common data source used in AISs is students’ responses
to question prompts. However, there are many facets of
learner interactions with AISs, resulting in additional mea-
surements that can and should be used to infer learners’
performance. In fact, multi-modality data concerning sen-
sorimotor experiences in learning are also valuable for rep-
resenting learner attributes. As reported in [68], the use of
multidimensional data improves the accuracy of predicting
learning performance, resulting in AISs being more person-
alized and adaptive to individual learners. To this end, this
section overviews the key foundation of multimodal learn-
ing analytics (MMLA), with a focus on various data inputs,
collection contexts, and their relations to different learning
indicators.

A. MULTIMODAL DATA INPUTS
MMLA is a process of analysis, apprehension, and opti-
mization of learners’ learning environment, processes, and
outcomes through multimodal data collected from learners,
their learning contexts, and their learning processes [69].
Some of the data are domain-independent whereas other
data are domain-specific. Some data are static while others

are dynamic. With the consideration of various affordable
devices in the market to measure human learning behaviors
and potential learning activities to be logged within AISs,
this paper categorizes data inputs to MMLA into four types:
learning data, physiological data, psychometric data, and
environmental data. A combination of some or all of the
aforementioned data sources is then used to interpret what
learners know and/or will do. The typical learning indicators
that have been widely utilized in literature are learning per-
formance [68], [70], learners’ attention levels [67], emotion
[71], [73], collaboration and interaction degrees [74], [75],
cognitive states [76], and engagement levels [77], [78].

1) LEARNING DATA
This set of data is usually related to learning content, pro-
cesses, and how learners interact with them. General infor-
mation on learning materials such as questionnaires, diffi-
culty levels, and tutorials, is set before learning processes
take place. Likewise, learner profiles regarding how learners
prefer to deal with learning, such as learning styles, culturally
dependent variables, and demographics, are also static and
remain unchanged throughout the learning sessions. On the
other hand, the learning data generated from student inter-
actions with learning platforms is dynamic and constantly
updated during the learning session, such as student test
scores, student learning actions, and their timestamps in
the learning process. These characteristics such as cognitive
states and engagement levels [77], are directly related to
student learning and are used to predict learning performance.
Due to the nature of learning data, it is often the most acces-
sible through simple means such as questionnaires, quizzes,
or actions taken by the student in the instructional system.

2) PHYSIOLOGICAL DATA
Learning often elicits emotional responses and bodily alter-
ations in learners which, in turn, may affect changes in a
learner’s physiology. Several theories have proven the link
between emotion, cognition, and complex learning. Thus,
monitoring such signals may assist in the synthesis of stu-
dent models. As such, various approaches to MMLA incor-
porate access to these modalities of learner inputs. Such
physiological signals are usually obtained through electroen-
cephalography (EEG) [68], wristband [68], skin pads [79],
pupillometry/eye tracking devices [70], and functional made
use of a pressure sensitive computer mouse to measure cog-
nitive load [80]. This type of data has been largely used to
measure learners’ affective states [73], attention [67], frustra-
tion [82], or boredom [83]. Some studies have also combined
these physiological signals with learning data to analyze
learner cognitive states [84] and learning performance [68],
[70]. Physiological data as a whole offers a much more
powerful modality for tracking engagement, focus, emo-
tion, or other useful physiological indicators. However, the
majority of physiological data measures uses some external
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hardware for data collection, which canmake implementation
more costly or inaccessible.

3) PSYCHOMETRIC DATA
This type of data is often collected through self-report ques-
tionnaires [68] and interviews [85] that measure psychomet-
ric factors of learners’ ability, personality, and motivation and
their relationships with academic performance. For instance,
an experiment was carried out in [86], where students’ brain
activities and physiological signals, together with their per-
ceived level of uncertainty, were recorded to predict their
internal state of learning. The study concluded that students’
uncertainty is associated with their mental and emotional
reactions. Psychometric data also may include interviews
with learners which can be used to detect the motives and
behavior patterns of students as discussed in [85]. Like physi-
ological data, psychometric data offers insight into a student’s
mental state at the time of learning. Unlike physiological data,
the majority of methods, such as surveys and interviews, are
more accessible for an intelligent tutoring system compared
to specialized hardware.

4) ENVIRONMENT DATA
Research has found that the surrounding context of learn-
ing can have social and educational impacts on students.
Realyvasquez-Vargas’ et al. (2020) recently studied the
impact of learning context on student performance in an
online class during the COVID-19 pandemic, and found that
lighting, noise, and temperature have significant direct effects
on student academic performance [87]. Environmental fac-
tors are rarely considered as a usable modality due to the
difficulty in controlling them in a real classroom setting.
As such, there has been little exploration into the use and
impact of environmental differences.

B. DATA COLLECTION SETTINGS
Data collection in MMLA studies is usually performed in
two different types of environments: lab settings and real-
classroom settings.

In a lab setting, data collection occurs in a fine-designed
environment where learning tasks and procedures are prede-
fined, with no exception. In doing so, it is much easier to
collect high-quality, low-noise data. As a result, better perfor-
mance in interpreting learner’s behaviors can be achieved. For
example, one study collected the click data of 17 participants
during their game playing, together with the physiological
data from sensors, such as EEG, eye tracker, camera and wrist
band [68]. In predicting a player’s ability to master complex
tasks, LASSO regression was then utilized for feature selec-
tion, achieving an error rate of 18% [68]. Similar works can be
found in [72], [86] with prediction rates of 72% and 65.08%-
83.25% (varying with different models), respectively. Appar-
ently, in the lab setting, the final dataset is relatively small,
raising scalability and generalizability issues. One potential
solution is the use of transfer learning, as exemplified in [88],

where the model was first built on the existing large datasets
and then tested using the collected data. It is assumed that
the training sets were similar to the collected sets. On the
other hand, since data collection is fully controlled in the lab
setting, there is not much constraint in terms of sensor setup
and deployment as long as the lab can afford [89].

In a real classroom setting, a much larger number of
students are usually engaged in the learning process where
students learn at their own pace in a non-judgmental man-
ner. On the other hand, the control of learners in terms of
learning environment, tasks, and procedures is often relaxed
in comparison to lab settings. Consequently, there is a higher
chance that some data modalities may be interrupted while
learning for various reasons such as sensor battery capacity
or learners out of a sensor’s scope, making it challenging to
synchronize data from different channels [72], [90]. Manual
alignment is often needed in such cases, inevitably bringing
some synchronization errors [91]. The costs, setup complex-
ity, and intrusiveness are the major factors in the choice of
sensors for large-scale pilots in real classroom settings.

While major efforts of MMLA remain in lab settings, it is
expected that MMLA studies can radically transform our
education. Therefore, further efforts to implement MMLA in
real classroom settings is a significant and necessary research
area. With the technological advancement of AI, data mining,
and sensor informatics, more work is foreseen to tackle the
aforementioned challenges in real classroom settings.

IV. OBSERVATIONS AND PERSPECTIVES
This section summarizes the state-of-the-art developments in
student modeling and analysis in the past decade and offers
perspectives and future research directions in these areas. For
this reason, our observations of current research tendencies
are first presented in Section IV-A, followed by an industry
case in Section IV-B that supports our findings and future
directions.

A. FINDINGS
Over the past decade, various models have been developed to
accomplish the student modeling task, with the shared goal
of maximizing prediction accuracy and optimizing learner
adaptivity. They encompass, but are not limited to, overlay-
based modeling and data-driven approaches for knowledge
tracing. Based on the classic overlay model, enhanced mod-
els address limitations of the classic model by integrating
other specific modeling techniques. For instance, fuzzy logic
handles uncertainty and subjectivity in student prediction,
CBM records student mistakes, stereotype clusters students
based on similar traits, and ontology stores multiple dimen-
sions of students’ attributes. With the development of AI,
sensor informatics, and data mining, state-of-the-art data-
driven approaches, such as DKT and its variants, significantly
outperform overlay-based models in knowledge tracing.

As elaborated in Section II, various student modeling
methods continue to appear, and several deficiencies exist
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in their evolution. Consequently, the selection of appro-
priate student models needs to be investigated further.
Based on our examination, we recommend considering three
parameters.

First and foremost is the total volume of available datasets.
As proved in [38], DKT is only valuable when large datasets
are available. The consideration of overlay-based models
over deep-learning-based models is valid when there is insuf-
ficient data to be gathered. One key thing to note is that even
with a large-scale dataset, data could have insufficient qual-
ity, which would likely diminish the interpretability of the
models. Second is the necessity and practicality of the prior
domain knowledge model. Building such a model requires
the effort of human experts. It is highly demanding that they
do not make errors, and their inputs should be as objective
as possible. Additionally, when the knowledge domain is
inherently convoluted as containing complex concept patterns
or latent concepts in learning materials, it would be chal-
lenging to build a model that embodies all interrelationships
within the domain. The last is the dimension of the data
input to a student model. As mentioned earlier, the increase
in the types of data poses a complexity issue as well as
data collection difficulty. In summary, the decisions regarding
what data about a student to gather, how to collect, and how
it is related to student learning are essential in designing
a student model. In view of the advantages and disadvan-
tages of overlay-based and data-driven methods, the hybrid
effort of integrating both is envisioned as a future research
direction [64], [65].

There are several student characteristics and learning fea-
tures that can be used in student modeling and MMLA. Their
selection is highly dependent on the intended functions of
AISs, where student models and MMLA studies are used.
In addition, special attention should be paid to non-intrusive
sensors that do not interfere with learning while collecting
data. Research has found that when people know they are
being monitored and studied, they may act differently than
they normally would. While the need, importance, and poten-
tial benefits of multi-modality data are hardly overstated,
we have to realize that the challenges are doubled with the
increase in data dimensions. Thus, methods such as princi-
pal component analysis (PCA), linear discriminant analysis
(LDA), and many others should be explored for feature selec-
tion [92] and dimensionality reduction [93].

Research in a laboratory setting is often conducted in a
confined environment with quality control of data collection,
resulting in much more accurate data. This kind of research
is still valuable for validating hypotheses and reinforcing
our theoretical foundation, with the hope of bringing some
of them into practice and reshaping our education. In view
of transformative research in education, more MMLA stud-
ies in real-classroom settings are needed, regardless of the
number of challenges we face. Technologies such as auto-
sync systems [91] and advanced filtering techniques [94],
should be considered to ensure the utility and usability of the
data.

FIGURE 1. Three-stage learning session in the industry case.

FIGURE 2. Example exercise from the pre-assessment.

B. AN INDUSTRY CASE
This section presents empirical evidence of an MMLA study
in a real classroom setting to support our observations.
An AIS called Squirrel AI Learning (SAIL) developed by
Squirrel AI was deployed at two after-school centers, while
multimodal data were collected and analyzed. In our empiri-
cal case study, we focused on exploring the effectiveness of an
AIS system in a real classroom setting. As such, experimental
conditions were not carefully controlled or set to specific
parameters to ensure that our data accurately reflected a real
classroom environment. However, all students interacted with
the same system in the same manner described below:

1) SAIL
SAIL is an adaptive instructional system that offers after-
school tutoring services in six subjects, including Chinese,
math, English reading, English grammar, chemistry, and
physics. Each learning session in SAIL takes approximately
2 hours with a focus on a particular knowledge component of
a given subject domain. Such a knowledge component can be
a unit of facts, concepts, or problem-solving skills.

As shown in Fig. 1, a student entering each SAIL session
will go through a three-stage learning process. The student
will first take a pretest to identify knowns and unknowns
present in his knowledge. He then enters into learning mode
in which the system adaptively assigns exercises (as shown in
Fig. 2) and tutorial videos (as shown in Fig. 3). As the system
continuously measure his performance, the difficulty level
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FIGURE 3. Example tutorial videos from system testing.

of the corresponding exercise is automatically updated. The
process then repeats, keeping the student in learning mode
until the measured performance exceeds a predefined profi-
ciency threshold. In other words, SAIL continuously adapts
to student performance and continues to provide appropriate
content until the student has mastered the relevant material.

2) EMPIRICAL SETTING
This study involved 155 students from School N and 52 stu-
dents from School G on the 8th grade (15-16 years old) math
subject only. Each participant wore a ‘‘brainwave’’ headset
(manufactured by BrainCo1) while working on a personal
computer with a webcam turned on for a SAIL session.
As shown in Fig. 4, three data sources were collected for
each student’s learning: (i) user records from SAIL regard-
ing student responses to questions; (ii) brainwave data from
the student headset stored by the FocusEDU platform; and
(iii) student facial data captured by the webcam and stored
by Debut video capture software. The full dataset is available
at this link.2

a: USER RECORDS
User records are compilations of information recorded
throughout the study. Entries are recorded whenever a student
answers a practice question. Each entry in the user records
contains a student’s unique ID, as well as the subject and
module they are working on at that moment. Entries also con-
tain the question ID, correct answer, chosen answer, a marker
indicating if the answer was correct, and time stamps for both
the start of the question and the time taken to answer.

b: BRAINWAVE DATA
Brainwave data is measured from the BrainCo brainwave
headset. Data are output in 3 files: attention, EEG, and events.
Attention logs a student’s attention value, which is derived
directly by the BrainCo headset and output as a timestamp
followed by a value in the range (0-100). The EEG file
contains raw EEG data in the array form, showing the raw
electrical signal measurements from each of 160 points at a

1https://brainco.tech
2https://github.com/RyanH98/SAILData

given time. The events file contains raw events data recording
if, at a given time, the device is connected or not.

c: WEBCAM DATA
Video data of learning sessions was also captured via a web-
cam attached to the computer used for each tutoring session.
This video data captures each student’s upper body and face,
and each video is timestamped for easy synchronization.
Video data were processed to obtain low-level features of face
tracking and facial expression extraction. In the final data set,
this data is available as a set of facial landmarks from each
video. There are 51 landmarks per face including 10 eyebrows
landmark, 12 eye landmarks, 9 nose landmarks and 20 mouth
landmarks as shown in Fig. 5.

d: DATA SYNCHRONIZATION AND PROCESSING
Owing to the uncontrollability of the real classroom setting,
a series of synchronization procedures were implemented to
ensure the utility of the collected data. First, there were 149
(126 and 23 fromN and G schools, respectively) facial videos
out of 207 participants that could match a valid user ID.
Second, each valid video stream was segmented by questions
based on timestamps, such as each EEG stream. In doing so,
the facial reaction and EEG data of a student were correlated,
as shown in Fig. 6, with the student’s responses to a question
prompt in each knowledge component with the specified
difficulty level. Finally, all filtered video clips were validated
by checking the percentage of frames with a detected face.
Clips with less than 30% frames with no face detection were
then removed from the dataset. With the systematic clean-
up, a final dataset was compiled from the three modalities,
resulting in 720 question segments from 50 students with both
facial landmarks and the corresponding EEG-based attention
series. Note that the usable dataset is much smaller than the
original data volume.

Features retrieved from the user records, such as difficulty
levels of questions, student answers to the questions, the time
taken to answer the questions, and student actions in visiting
answer sheets and requesting hints, etc., were first used to
classify the students into two groups by K-means (K = 2)
clustering. For the facial data, special attention was paid to
the movement of a student’s head, eye, and mouth. Our study
hypothesized that the movement of a student’s head towards
the computer screen is correlated with his increased attention
level, while the movement of his head away from the screen
is an indicator of relaxation or boredom.

In order to derive the eye features, we used the approach
introduced by Soukupova and Cech (2016) [97] named the
eye aspect ratio (EAR). EAR has been used for blink detec-
tion. We used Equation 1 as shown below to calculate EAR
by using the 2-dimensional coordinates of 6 points landmarks
of each eye region as shown in Fig. 7, where points p2, p6, p3
and p5 measure the distance of the upper eyelid and the lower
eyelid, and p1 and p4 are the two corners of the eye. A low
eye blink rate is also expected when engaging in computer
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FIGURE 4. Setup of the learning session, showing the sensors and data format.

FIGURE 5. Facial landmark points.

activities [95].

EAR =
‖ P2− P6 ‖ + ‖ P3− P5 ‖

2 ‖ P1− P4 ‖
(1)

Similarly, mouth movement is an indication of positive
emotions, such as joy, which positively correlates with stu-
dents’ self-efficacy and overall achievement [96]. To that
end, the first 150 frames of each video clip were used as the
baseline. Then, the changes in nose length, eye aspect ratio
(EAR) [97], and the distance between lip width, lip center,
and lip left/right corner were then calculated for the head, eye
blink, and mouth features, respectively.

e: RESULTS
Understanding of student learning performance is critical to
steering adaptation in SAIL. Here, student performance is
measured as the correctness of student answers. All features

TABLE 1. Prediction performance.

extracted from multimodal data can then be used to pre-
dict such performance. To demonstrate the advantages of
MMLA, our study fitted a binary random forest model with
5-fold random split cross-validation to predict students’ per-
formance using different combinations of feature sets. The
area under curve (AUC) was then adopted as prediction accu-
racy measurement.

As shown in Table 1, the addition of other modalities led
to a noticeable increase in prediction accuracy. When only
students’ facial landmarks were used, the AUC was 0.593.
If both the student clustering results and the facial landmarks
were used to train the model, the prediction performance was
slightly higher (0.63). In the last step, three modalities of data
were used to fit our model, and the prediction performance
was further improved by 0.06 to 0.69. The increased predic-
tion performance can be directly attributed to the addition of
more modalities in the training data set. The effect is also
expected to be more pronounced with the addition of further
modalities.

The use of additional modalities provided an overall
increase in prediction accuracy from 59.3% with only facial
landmarks to 69.0% with group ID and attention added.
We did not measure a massive difference in classification
accuracy when adding each modality. This could be due to
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FIGURE 6. Data Segmentation.

FIGURE 7. Open eye with landmarks.

the modalities chosen; For example, facial landmark data
and attention data could be correlated as we hypothesized,
which would overall lessen the impact of attention data when
facial landmark data is also used. Even with this marginal
increase however, our study serves as a proof-of-concept to
demonstrate the impact that additional data modalities can
have on student classification accuracy. With the addition of
more modalities or different modalities, it is expected that
prediction accuracy would increase further.

Overall prediction performance of 69.0% is not indicative
of state-of-the-art accuracy, and prediction performance was
likely affected by the real-world data collection environment
used in the industry case study. Since student participation
was not tightly controlled, data recording was prone to noise,
significantly so in the webcam and EEG data. Lighting con-
ditions, player behavior, player appearance, and EEG headset
alignment could all lead to affectations in the data. Fur-

thermore, the real-world environment led to syncing issues
between different modalities since different collection mea-
sures were started and stopped at different intervals. These
syncing issues had to be resolved manually. Through the
combination of syncing issues and noise, the overall volume
of usable data obtained from the study was small relative to
the total volume of data recorded. However, enough usable
data was obtained to draw significant conclusions from the
case study.

The case study results demonstrated here show the effect
of additional modalities in an adaptive instructional system.
More significantly, however, these results serve to demon-
strate the challenges inherent in real-world AIS implemen-
tation, as discussed in Section III. Due to syncing issues,
lighting changes, and other uncontrolled variables such as
player movement, our data volume and quality were both
heavily affected. This type of uncontrolled collection envi-
ronment is reflective of what a researcher might encounter
when developing and testing real-world AISs. Thus, addi-
tional research in this area is needed to combat the effects of
real-world environments. To enable more accurate AISs for
use in real classrooms, additional research is needed to cover
in-classroom testing, automatic data syncing methods, addi-
tional data modalities, and methods like noise reduction [98]
to help improve prediction accuracy. Additionally, new and
evolving data processing and machine learning methods will
also serve to solve the issues presented here, improving AIS
performance throughout the field.

V. CONCLUSION
Adaptive instructional systems have been heavily explored
in educational settings to provide instructional support
that is closely aligned with individual student needs.
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To successfully provide instructional support, AISs must gain
a precise understanding of students with the technological
assistance of student modeling. By dynamically representing
a learner’s characteristics, the student model can address
several cognitive learning issues, such as identifying prior
knowledge, isolating the underlying misconceptions, analyz-
ing learning performance, and recognizing learning plans.
Considering the importance of and many challenges asso-
ciated with the construction of an effective student model,
this paper presents the state-of-the-art development of student
modeling in the past decade.

Many different models have been designed to represent and
trace student knowledge, each of which has its own benefits
and limitations. Our overview of the evidence pertaining
to these developments reveals two major research trends in
student modeling. First, stemming from the early efforts of
using single-faced data sources (i.e., student responses to
question prompts) to construct models, more studies have
been conducted to consider student cognitive and affective
patterns. Second, hybrid models, which take advantage of
both expert knowledge and data power, have been created to
strengthen overlay-based and machine-learning-based mod-
els. The increase in data dimensions not only enhances the
forecasting capabilities of student models, but also brings
many challenges to MMLA. This issue is further magnified
when data are collected in real classroom settings.Manymore
research efforts should be devoted to feature selection, feature
extraction, dimensionality, and complexity reduction. While
the studies of AISs in real classroom settings, as exemplified
in our industry case, are limited, the continued improvement,
readiness, and flexibility of AISs will make them a compet-
itive alternative for human teachers in offering personalized
learning.
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