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ABSTRACT

MACHINE LEARNING-BASED EVENT GENERATOR

Yasir Alanazi
Old Dominion University, 2022

Director: Dr. Yaohang Li

Monte Carlo-based event generators have been the primary source for simulating particle

collision experiments for the study of interesting physics scenarios. Monte Carlo generators

rely on theoretical assumptions, which limit their ability to capture the full range of possi-

ble correlations between particle’s momenta. In addition, the simulations of the complete

pipeline often take minutes to generate a single event even with the help of supercomputers.

In recent years, much attention has been devoted to the development of machine learning

event generators. They demonstrate attractive advantages, including fast simulations, data

compression, and being agnostic of theoretical assumptions. However, most of the efforts

ignore faithful reproductions, and detector effects due to their complexity and rely on the-

ories for detector simulations.

In this work, we present a new machine learning-based event generator framework free

of theoretical particle dynamics assumption. We first create a Feature-Augmented and

Transformed Generative Adversarial Network (FAT-GAN) that selects a set of transformed

features to faithfully reproduce simulated and experimental data. Then, we extend FAT-

GAN by conditioning the component neural networks according to the given reaction energy

and develop a Conditional FAT-GAN (cFAT-GAN) that can generate events at unrelated

beam energies.

Next, we implement a conditional folding model that learns the correlations between

vertex-level and detector-level events and simulates the distortions produced by the detector

machines. The folding model is then integrated into a generator to reconstruct vertex-level

events. This serves as a practical framework in a real experimental analysis where such

effects must be incorporated.

We finally evaluate different Neural Network architectures and use machine learning

techniques for model interpretation and evaluation. In addition, we analyze the GANs la-

tent variables to extract physics resonance regions, illustrating the ability of the developed

model to distinguish between the underlying physics mechanisms.

This framework has been validated on simulated inclusive deep-inelastic scattering data



along with the existing parametrizations for detector simulation. The generated results pro-

vide a realistic proof of concept for designing a machine learning-based event generator that

will be a valuable tool in nuclear and particle physics programs to facilitate the studies of

high-energy scattering reactions and understand different physical mechanisms.
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CHAPTER 1

INTRODUCTION

In high-energy nuclear and particle physics, accelerators are utilized to investigate the struc-

ture of the atomic nucleus. Particle accelerators also referred to as atom smashers, are

machines that use electromagnetic fields to charge particles with energy, such as protons

or electrons, to very high speeds, close to the speed of lights. Those particles are then

smashed onto a stationary target or against other particles circulating in the opposite direc-

tion. The reactions transform the incoming particles into a set of outgoing particles, referred

to as physics “events”. Detector machines then record the results generated by the colli-

sion/interaction, which can be afterward studied by theorists and experimentalists in several

scientific fields and applications. Existing particle accelerators include the Large Hadron

Collider (LHC) at CERN for proton-proton collisions, Continuous Electron Beam Accelera-

tor Facility (CEBAF) at Jefferson Lab for polarized electron-hadron scattering, Relativistic

Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) for proton (nucleus)–proton

(nucleus) collisions, as well as the future Electron-Ion Collider (EIC).

Besides particle accelerators, there exist software tools called event generators (EGs)

that simulate events similar to those produced in particle accelerator labs, and collision

experiments. Since the early 1970s, the simulation of EGs have mainly been implemented

using Monte Carlo (MC) methods [1]. MC-based event generators (MCEGs) [2] are software

libraries constructed by a combination of high-precision data from previous experiments and

theoretical inputs, with the help of programming languages, such as C++, and FORTRAN.

Recently, efforts have been made in high-energy physics to construct ML-based event

generators (MLEGs) as fast simulation and data compactification tools. MLEGs can be

significantly faster than existing MCEGs and can serve as compactified data storage utilities,

eliminating the need for maintaining MCEG event repositories. However, Most of these

efforts ignore detector effects due to their complexity and they focus on using MLEGs as

simulation tools to reproduce physics events with the absence of detector responses.

In this work we present a new strategy for constructing an ML-based event generator

using generative adversarial networks (GANs) [3], which have been increasingly utilized

recently in high-energy physics applications as a tool for fast simulations [4, 5, 6, 7, 8,

9]. There are several components that are essential to develop a realistic ML-based event
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generator. First, we create a Feature-Augmented and Transformed Generative Adversarial

Network (FAT-GAN) [10] that selects a set of transformed features from particle momenta

that can be generated easily by the generator, and uses these to produce a set of augmented

features that improve the sensitivity of the discriminator. The new FAT-GAN is able to

faithfully reproduce the distribution of final state electron momenta in inclusive electron

scattering, as well as the complex correlations between particle momenta, without the need

for input derived from domain-based theoretical assumptions. We validate the results using

inclusive electron-proton scattering events generated from MC-based simulation tool, as well

as real experimental data extracted from Jefferson Lab

We also extend the FAT-GAN methodology to a Conditional Feature-Augmented and

Transformed Generative Adversarial Network (cFAT-GAN) [11] that can generate events for

several energy beams including events of energy beams that are not presented in the training

data. This provides the flexibility to test different energy reaction scenarios without the

need to train the model multiple times. We test the degree of compatibility of the feature

distributions generated by the trained cFAT-GAN against the simulated training data, and

also explore the capability of cFAT-GAN to interpolate and extrapolate between various

energy beams. We finally analyze the hidden layers of the generator model to examine the

sensitivity of the trained architectures with different input energies.

Next, we incorporate smearing detector effects to have more realistic framework, where

in FAT-GAN and cFAT-GAN the simulations are performed with the absence of detector ef-

fects. For this purpose, we implement a conditional folding GAN that can learn the smearing

effects between the events at the interaction point (“vertex-level”) to the events measured by

the detector machines (“detector-level”). By conditioning the model on vertex-level event

features we can enforce learning the correlations between vertex-level and detector-level

events as opposed to learning a deterministic mapping between inputs and outputs. This

conditional folding GAN is validated on three different scenarios, including toy, inclusive

deep-inelastic scattering (DIS), and realistic examples.

The conditional folding procedure is integrated with another GAN model to build a

realizable ML-based event generator framework that can faithfully reproduce the phase

space of inclusive DIS. For the first time a closure-test for reconstructing vertex-level DIS

events, free of theoretical assumptions, is performed.

Finally, we study the effects of different model architectures, and parameters by vi-

sualizing the loss landscapes using filter normalization technique [12] for several NNs

architectures trained on realistic examples. This method helps in model selections and
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hyper-parameters tuning and can explain why certain architectures with a set of parame-

ters can perform and generalize better than others. We also analyse the hidden layers of

our developed tool to examine the model capability of extracting physics resonance regions

using non-linear transformation technique along with ML clustering algorithms.

Our results provide a new opportunity for experimental data analysis to use the GAN

approach to build theory-free event generators which mitigate biases induced in reconstruct-

ing physical observables from experimental data. This work will be valuable for nuclear and

particle physics programs, such as the Continuous Electron Beam Accelerator Facility (CE-

BAF) and the future Electron-Ion Collider (EIC).

1.1 MOTIVATION

ML-based event generators have been recently utilized in high-energy physics and have

the potential to become an alternative approach to existing MC-based event generators.

MLEGs present several advantages over existing MCEGs that motivate this work.

First, MLEGs can be significantly faster than MCEGs in generating events. MC simula-

tions of the complete pipeline of particle experiments, including detector effects, often take

minutes to generate a single event, even with the support from modern supercomputers [13]

and distributed high performance computing platforms. In fact, several accelerator labs,

such as LHC, rely on less accurate and simpler event generators because typical MCEGs

take a huge amount of time to produce events. In contrast, MLEGs, after proper training,

can generate millions of events per seconds. MLEGs can be great candidates to be used

for large experiments in particle accelerator labs because of the time they can reduce. For

example, at Jefferson Lab [14], they rely heavily on Pythia program to simulate events that

can take a significant amount of time to generate a large number of events. Pythia is a

MC-based software tool designed by a combination of experimental data and physics laws

to simulate the physics processes that can occur in particle collisions between electrons, pro-

tons, photons and heavy nuclei [15]. In Table 1., we conduct a simple exercise to compare

the events generation in minutes using Pythia that is installed in Jefferson Lab sever with a

ML generative model. The ML model is a vanilla GAN [3] that has four dense layers for the

generator and the same number of layers for the discriminator, implemented in Keras [16]

with TensorFlow backend [17]. As we can see in Table 1., Pythia event generator takes ap-

proximately 30 minutes to generate 1M events of inclusive electron-proton scattering events,

whereas the GAN needs about half a minute to generate the same number of events. In

fact, many physics applications require the generation of big data for the full analysis and



4

experiments; therefore, it is possible to generate millions or billions of events using MLEGs.

For this experiment, we use the same number of batch size = 1, 000 with the CPU spec-

ifications in Table 2. to have a reasonable comparison. It is important to mention that

this simple exercise can give an overall estimation to compare the time between GANs and

Pythia to generate events for a specific application, but more advanced and comprehensive

comparison techniques are needed for a fair comparison.

Number of events Pythia GAN

10,000 0.192 0.006

100,000 2.262 0.015

1,000,000 30.34 0.621

TABLE 1.: Compare Time in Minutes of Events Generation of Pythia and GAN

Architecture x86_64

CPU op-modes 32-bit, 64-bit

Threads per core 2

CPU family 6

Model name Intel(R) Xeon(R) CPU E5-2620

v4 @ 2.10GHz

CPU max MHz 3000.0000

CPU min MHz 1200.0000

TABLE 2.: CPU Specifications
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Second, MCEGs rely on theoretical assumptions such as factorization and statistical

models, which limit their ability to capture the full range of possible correlations existing

in nature between particles’ momenta. On the other hand, MLEGs are trained directly on

experimental data, and can explore the true underlying probability distributions governing

the spectra of particles produced in reactions.

Third, in particle accelerators we can only observe the collisions or interactions that the

detector machines can observe and produce, and those produced events are called (“detector-

level”) events; however, the momenta of final state particles that are produced at the inter-

action point (“vertex-level”), exist only on theory and the distributions of the events are not

known. This motivates us to explore the possibility of using ML techniques to reconstruct

theory-free vertex-level events.

Finally, most accelerators facilities deploy MCEGs to simulate events collisions, and they

invest a great amount of resources to support the full simulation processes. For instance,

[18] reports that disk storage is between 10s to 100s of PBs per experiment for LHC at

CERN. Hence, in some scenarios, those labs rely on simpler, and less accurate, event gener-

ators for their experiments [19]. This motivates machine learning researchers to investigate

the possibility of using MLEGs as a data compactification tool due to their capability of

significantly reducing the disk space usage. Indeed, a MLEG requires only the weights and

architecture of the generator model to be saved which then can be loaded using the model

dependency libraries and generate millions of events within seconds.

1.2 RESEARCH QUESTIONS

The research objective of this work is to first design a ML-based tool can faithfully

reproduce particle collision events. Second objective is to implement a folding procedure that

can fold vertex-level events and produce the corresponding detector-level events. Finally, we

aim at building a ML-based event generator framework that integrates the folding algorithm

with a ML generator to reconstruct vertex-level events free of any theoretical assumptions

about the underlying physical laws of the original system.

The specific research questions can be listed as follow:

RQ1: Can we build a ML-based generator to faithfully reproduce particle collision events?

RQ2: Can we simulate the smearing detector effects using ML tools?

RQ3: Can we build a ML-based event generator framework to reconstruct vertex-level

events?
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1.3 OUTLINE

The remainder of the dissertation is organized as follows.

Chapter 2 explains some fundamental topics and terminologies related to our research

questions, including particle accelerators, event generators, and detector machines.

Chapter 3 reviews the literature related to our research. We first review the ML gen-

erative models used to build ML-based event generators as a tool for fast simulation. We

then present the simulation of detector effects, and discuss the physics-related challenges in

these software tools.

Chapter 4 presents Feature-Augmented and Transformed Generative Adversarial Net-

work (FAT-GAN) model that can faithfully reproduce inclusive electron-proton scattering

events. This work addresses RQ1, and published in [10].

Chapter 5 extends FAT-GAN developed in the previous chapter to Conditional Feature-

Augmented and Transformed GAN that can be trained on multiple energy reactions. This

work is related to RQ1 and published in [11].

Chapter 6 presents our methodology to learn detector effects related to RQ2. We present

direct folding and its extension conditional folding model to have a folding procedure that

can generalize for several applications.

Having presented the folding procedure in the previous chapter, Chapter 7 integrates

the conditional folding with a ML-based generator to construct vertex-level events. This

chapter addresses RQ2 and published in [20].

Chapter 8 presents the hidden layers analysis using ML dimensionality reduction tech-

niques, and visualizes the loss landscapes of several GANs architectures to explain and

interpret the developed technology.

Finally, Chapter 9 concludes and summarizes our contributions and presents the poten-

tial future work.
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CHAPTER 2

BACKGROUND

In this chapter we explain some fundamental concepts and tools in particle physics related

to our research. We first describe particle accelerators and why they are beneficial. Then,

we describe event generators in particle physics which include, MC-based and ML-based

event generators. We also introduce detector machines and how they affect the produced

particle events, and what are the different detector effects on the pipeline of the collision

events reconstructions. Finally, we explain two important concepts which are folding and

unfolding.

2.1 PARTICLE ACCELERATORS

Particle accelerators or atom smashers, are machines that use electromagnetic fields to

charge particles with energy, such as protons or electrons, to very high speeds, close to

the speed of lights. Those particles are then smashed onto a stationary target or against

other particles circulating in the opposite direction. In particle accelerator facilities, such

as the Continuous Electron Beam Accelerator Facility (CEBAF), LHC, and the Relativistic

Heavy Ion Collider (RHI), physicists smash particles against each other to observe the

interactions between particles. By studying these collisions, scientists have advanced our

life in several scientific applications including modern healthcare, mobile phones, protecting

the environments, and many others. For instance, the atoms used in the Positron Emission

Tomography (PET) scanners, which is used in the detection and treatment of cancer, are

normally produced in a particle accelerator [21]. Another application of great importance

is the development of X-ray emitting Free Electron Lasers [22] which can be used to boost

security at ports and airports by scanning cargo to detect drugs, or explosives. The study

of particle collisions can also help discover new particles and answer questions like what is

all matter made of, and how the nature of our universe is structured.

2.2 EVENT GENERATORS

Event generators (EGs) are software tools/libraries that simulate high energy particle

physics events such those produced in particle accelerators labs. We can classify EGs into

two main categories: Monte Carlo-based event generators (MCEGs), and ML-based event
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generators (MLEGs). The first are widely used in high energy physics and they are still the

most accurate tools being used in particle physics studies. The latter is a current research

that emerged with the revolution of machine learning generative models. In fact, the use

of MLEGs are rabidly growing and they have the potential to be alternative methods to

existing MCEGs.

2.2.1 MONTE CARLO-BASED EVENT GENERATORS

MC-based event generators are designed using predefined physics rules and theories.

Since the early 1970s, the simulation of physics events has mainly been implemented by

MC methods, which transform random numbers into simulated physics events. MCEGs

are constructed by a combination of experimental data as well as theoretical inputs de-

fined by physics rules, such as the conservation of momentum, and the conservation of

energy. Most of the MCEGs were written in C++ and FORTRAN and other programming

languages. These software libraries have been valuable tools in facilitating the studies of

high-energy scattering reactions. Commonly used MCEGs include Pythia [15], Herwig [23],

and Sherpa [24] for hadronic events; MadGraph [25] and Whizard [26] for parton events;

GiBUU [27] and HIJING [28] for heavy-ion events; GENIE [29] and NuWro [30] for neu-

trino events, as well as specialized event generators such as AcerMC [31], ALPGEN [32],

and other software tools.

2.2.2 MACHINE LEARNING EVENT GENERATORS

Instead of simulating physics events from first principles as in MCEGs, MLEGs employ

a data-driven approach to learn from event samples. ML generative models, including

GAN [3], Variational Autoencoder (VAE) [33], and Normalizing Flows (NF) [34], have been

adopted to implement MLEGs.

While MLEGs are being investigated, there exist several obstacles and challenges. Here

we list some of the main challenges and they will be discussed in details in 3.3:

• How to correct data from detector effects?

• How to conserve physics laws and rules in the generated results?

• How to deal with sharp edges, spikes, and multiple peaks exist in the distributions?

• How to reproduce physics events with good agreement?
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2.3 DETECTOR MACHINES

Due to the invisibility of particles, scientists are limited to reconstruct the collision events

from the particles trajectory and the trace they leave after the smashing. This is possible

with the help of detector machines which are complex machines installed within the particle

accelerators that act as cameras to record the collisions. These detectors can measure the

momenta of particles, and how much energy each particle has, and identify the type of

particles as well as tracking their traces. There are several particle detectors around the

world, such as A Toroidal LHC ApparatuS (ATLAS) which is the largest detector at the

LHC, A Large Ion Collider Experiment (ALICE), and many other detectors.

2.3.1 THE EFFECTS OF DETECTORS

Detectors machines have a significant impact on the collision events. We classify detector

effects into three categories: acceptance, smearing, and misidentification related.

Smearing Effects

An intrinsic inability of detectors to measure physics quantities with an infinite accuracy,

referred to as finite resolution, contributes to measurement uncertainty. The smearing rep-

resents the difference between the reconstructed four-momentum of a particle and that at

the vertex. It not only depends on the resolution of the detector, but also the materials in

the trajectory and the magnetic field. Multiple scattering, which occurs during the passage

of particles through different media from which the experimental apparatus is made, also

affects the physics quantities’ distributions by changing trajectory directions to the point

that they may go out of the acceptance and not be observed at all. The materials and the

magnetic field in the trajectory of a particle may trigger radiations, which will cause energy

loss of the particle, and multiple scatterings, which will significantly alter the particle’s mo-

mentum and may produced secondary particles that have nothing to do with the physics at

the vertex. Although these effects will change the momentum of the particle produced at

the vertex, the information collected by detectors still inherits a major part at the vertex.

It is possible to reconstruct the four-momentum at the vertex with some uncertainty once

these effects are properly taken into account.



11

Acceptance Effects

The experimental setup itself introduces a detection volume and acceptance, which is usually

quite complicated. The acceptance describes whether a particle produced at the vertex with

certain four-momentum is detected by the detector system. Sometimes the detection does

not require all detectors in the system have signals, but collected information must be enough

to reconstruct the four-momentum within the required accuracy as well as the particle type.

Since detectors in high-energy experiments only cover part of the phase space, one can never

observe all particles produced at the vertex, and information about undetected particles will

be missing.

Misidentification Effects

This effect, which arises from the finite resolution, means some information collected by the

detector could be wrong. One example is to identify the particle type, which depends on

the efficiency of the separation of different type of particles. One can never be 100% sure

about the particle type if only based on the detection of a particle.

2.3.2 FOLDING AND UNFOLDING

According to [35], the true distribution f(t) of a physics variable t (vertex-level) to

be measured in particle physics is not directly accessible. Because of finite resolution of

the detector machines, the distribution g(d) of the measured variable d is related to the

unknown distribution f(t) by distortions and transformations. Using MC methods the

direct process (“folding”) from an assumption f(t)model on the true distribution f(t) to the

expected measured distribution g(d) can be simulated. However, the inverse process from

the actually measured distribution g(d) to the related true distribution f(t) is difficult and

ill-posed. In particle physics this problem is usually called (“unfolding”).

folding process (MC) : true/MC dist. f(t) −→ g(d) measured dist.

unfolding process (inverse) : measured dist. g(d) −→ f(t) true dist.

Similar to deconvolution or restoration [36], which are used to solve the inverse problem[37],

in particle physics unfolding represents the process to infer an unknown distribution from

the measured data, using knowledge and assumptions of the distortions. Therefore, un-

folding is to recover vertex-level data given detector-level data, and folding is to use MC

f(t)model to simulate the detector distortions.
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CHAPTER 3

RELATED WORK

In this chapter we first review the ML efforts using several generative models to build ML-

based event generators as a tool for fast simulation. Then we describe the simulation of

detector effects, and discuss the physics-related challenges in these software tools as well

as methods of incorporating physics into ML models. Most of our literature review can be

found in our published paper in [38].

3.1 MACHINE LEARNING-BASED EVENT GENERATORS

In this section, we review the state-of-the-art of ML efforts at building physics event

generators. We review different ML generative models used in MLEGs and their specific

challenges, and discuss various approaches of incorporating physics into the ML model

designs to overcome these challenges.

Instead of simulating physics events from first principles as in MCEGs, MLEGs em-

ploy a data-driven approach to learn from event samples. ML generative models, including

Generative Adversarial Networks (GANs) [3], Variational Autoencoders (VAEs) [33], and

Normalizing Flows (NFs) [34], have been adopted to implement MLEGs, and these algo-

rithims will be discussed in details in the next subsections.

3.1.1 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) are the most popularly used generative models

in MLEGs. The regular GAN event generator is composed of two neural networks: a

generator G and a discriminator D. The former is trained to generate fake event samples,

and the latter is a binary classifier to distinguish the events of the generated distribution PG

from the true events with distribution PT . G and D are trained under the value function

V (D,G)

min
G

max
D

V (D,G) = ⟨logD(x)⟩x∼PT

+ ⟨log(1−D(x̃))⟩x̃∼PG
.

(1)
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MLEGs Data Source Detector Effect Reaction/Experiment ML Model

[8] Pythia8 DELPHES +

pile-up effects

Z → µ+µ− regular

GAN

[39] MadGraph5

aMC@NLO

DELPHES3 e+e− → Z → l+l−,

pp → tt̄

VAE

[9] MadGraph5

aMC@NLO

pp → tt̄ →
(bqq̄′)(b̄q̄q′)

MMD-GAN

[19] MadGraph5,

Pythia8

DELPHES +

FASTJET

2 → 2 parton scat-

tering

GAN+CNN

[40] Pythia8 +

GEANT4

Search for Hidden

Particles (SHiP) ex-

periment

regular

GAN

[10] [11] Pythia8 electron-proton

scattering

MMD-

WGAN-GP,

cGAN

[41] Pythia8 DELPHES

particle-flow

proton collision GAN,

cGAN

[42] Sherpa pp → W/Z + n jets NF

[43] MadGraph5 +

Pythia8

DELPHES Z → e+e− SWAE

[44] MadGraph5 +

Pythia8

DELPHES pp → bb̄γγ WGAN-GP

TABLE 3.: List of Existing MLEGs
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As shown in the original GAN paper [3], given an optimal discriminatorD∗ = PT (x)/(PT (x)+

PG(x)), training G becomes identical to minimizing the Jensen-Shannon divergence (JSD)

min
G

V (D∗, G) = −2 log 2 + JSD(PG||PT ). (2)

If JSD becomes 0, then PG = PT .

Although GANs have demonstrated success in many applications, training a successful

GAN model is known to be notoriously difficult [45]. Many GAN models suffer from major

problems including mode collapse, non-convergence, model parameter oscillation, instability,

vanishing gradient, and overfitting due to unbalanced generator/discriminator combinations.

Studies [39, 8] also reported a less satisfactory performance when a regular GAN is used for

event generation.

Several improved GAN architectures have been employed in MLEGs to enhance GAN

training:

• Least Squares GAN (LS-GAN): LS-GAN [46] replaces the cross entropy loss func-

tion in the discriminator of a regular GAN with a least square term

min
D

V (D) =
1

2
⟨(D(x)− b)2⟩x∼PT

+
1

2
⟨(D(G(x̃))− a)2⟩x̃∼PG

,

min
G

V (G) =
1

2
⟨(D(G(x))− c)2⟩x∼PG

.

(3)

As a result, by setting b − a = 2 and b − c = 1, minimizing the loss function of LS-

GAN yields minimizing the Pearson χ2 divergence. The main advantage of LS-GAN

is that, by penalizing the samples far away from the decision boundary, the generator

is pushed to generate samples closer to the manifold of the true samples.

• Wasserstein GAN (WGAN): WGAN [47] used Wasserstein or Earth-Mover’s dis-

tance [48] to replace JSD in the regular GAN. Under Kantorovich-Rubinstein duality,

the Wasserstein distance is defined as

W (PG, PT ) = max
w∈W

⟨fw(x)⟩x∼PT
− ⟨fw(G(x̃))⟩x̃∼PG

, (4)

where f is a family of K-Lipschitz continuous functions, fw, parameterized by w in

parameter space W . Instead of directly telling fake events from the true ones, the

discriminator or (critic) in WGAN is trained to learn a K-Lipschitz continuous func-

tion to minimize the Wasserstein distance. Compared to JSD, Wasserstein distance
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provides a meaningful and continuous measure of the distance between the event dis-

tribution from the generator and the true event distribution, even when they have

no overlaps, which helps guide the training of the generator toward the true event

distribution and reduce the likeliness of mode collapse.

• Wesserstein GAN Gradient Penalty (WGAN-GP): A problem in WGAN is to

use weight clipping to maintain K-Lipschitz continuity of fw during training, which

still results in unstable training, slow convergence, and gradient vanishing. WGAN-

GP [49] replaces weight clipping with gradient penalty to ensureK-Lipschitz continuity

and thus further improve WGAN stability. The gradient penalty is calculated as

λ⟨(||∇x̂fw(x̂)||2 − 1)2⟩x̂∈px̂ , (5)

where parameter λ balances the Wasserstein distance and gradient penalty, and px̂ is

uniformly sampled along lines between event pairs from PT and PG.

• Maximum Mean Discrepancy GAN (MMD-GAN): MLEGs are particularly

concerned about the precise matching between the generated and the true event dis-

tributions, where MMD-GAN [50] can be used to enhance the matching precision.

MMD-GAN incorporates an MMD term to the generator loss function:

MMD2(PG, PT ) = ⟨k(x, x′)⟩x,x′∼PG

+ ⟨k(y, y′)⟩y,y′∼PT
− 2⟨k(x, y)⟩x∼PG,y∼PT

,
(6)

where k(.) is a kernel function. MMD typically works well in low dimension; however,

the power of MMD degrades with dimension polynomially [51].

3.1.2 AUTOENCODER

Another generative model used in MLEGs is VAE, in this section we give a brief back-

ground of Autoencoder (AE) to get more insights of the origin of VAEs and how we can

generalize AE to be a class of generative models. AE is an unsupervised machine learning

algorithm learns how to encode original input data into lower dimensional space using a

NN called encoder, denoted by Ψ, then learns how to reconstruct the original data from

the lower dimensional space to a representation that is similar to the original input data

using another NN called decoder, denoted by Φ. The goal of the AE is to select Ψ and Φ

functions that have the minimal error to reconstruct the training data. The loss function
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used to train an AE is called reconstruction loss, that is a comparison of how well the

output has been reconstructed from the original input. The reconstruction loss of a typical

AE can be defined as,

LAE = ∥x− Φ(Ψ(x))∥2 (7)

which takes the difference between the original training data and the reconstructed one, and

there are many metrics can be used, such as MSE or any other functions depending on the

input and output of the training data.

Variational Autoencoders

While AE learns a function to map each input from the training data to a number and then

learns the reverse mapping, Variational Autoencoder (VAE) learns probability distribution

of the input data by adding a layer that estimates a mean and a standard deviation of the

hidden (bottleneck) layer, and then sample from the estimated parameters to reconstruct the

input data. VAE generalize the AE idea by not only learning the embeddings, but also how

to generate new samples by sampling from the estimated parameters A VAE, composed of

an encoder network Ψ and a decoder network Φ, is an alternative generative model employed

in MLEGs. In MLEGs using a VAE, Ψ projects the events onto latent variables z, and Φ

reconstructs the events from z, while z is forced to follow a standard normal distribution.

Then, the loss function of the VAE is motivated by variational inference [52] via minimizing

the Kullback–Leibler divergence (KLD) between the posterior p(z|x) and the encoded prior

distribution q(z) = N (0, 1):

LVAE = ∥x− Φ(Ψ(x))∥2 + ηKLD(q(z)||p(z|x)), (8)

where the first term is the reconstruction error, the second term computes KLD, and η is

the harmonic parameter to balance the two.

The VAE can be further improved as a Wasserstein Autoencoder (WAE) [53] by replacing

the KLD term with Wasserstein distance in the loss function, for a similar reason as for the

GAN:

LWAE = ∥x− Φ(Ψ(x))∥2 + η′W (q(z), p(z|x)), (9)

where η′ is the harmonic parameter. [43] adopted a Sliced Wasserstein Autoencoder (SWAE)

[54] for their MLEG, using a sliced Wasserstein distance to approximate W (q(z), p(z|x)).
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Conditional Variational Autoencoder

For structured output predictions, Conditional VAE (CVAE) was proposed by [55] to make

diverse predictions for different input samples. The objective function of the VAE can be

modified by adding the variable c,

LCVAE = ∥x− Φ(Ψ(x))∥2 + ηKLD(q(z, c)||p(z|x, c)) (10)

where we just conditioned all of the distributions with c. CVAE is an extension of VAE by

adding the conditional part in the encoder and decoder to associate the input samples with

labels, so at inference time we have more control to generate samples that belong to specific

labels in contrast to VAE that does not have control over the generated samples.

3.1.3 NORMALIZING FLOWS

Without adopting adversarial learning, the NF is another generative model that has

been used in MLEGs. The fundamental idea underlying NFs is the change of variables in

probability functions. Under some mild conditions, the transformation can lead to complex

probability distributions of the transformed variables. NFs use an invertible mapping (bi-

jection) function f , often implemented as a neural network, to transform a distribution of

x ∈ RD into y ∈ RD. The transformed probability density function q(y) becomes

q(y) = p(x)

∣∣∣∣ det{∂f

∂x

}∣∣∣∣−1

. (11)

With a series of mappings f1 . . . fk, an NF is obtained:

xk = fk ◦ · · · ◦ f1(x0), x0 ∼ q0(x0). (12)

The NF is able to transform a simple distribution into a complex multi-modal distribution,

and has demonstrated success in collider physics simulations [42].

3.1.4 EXISTING MACHINE LEARNING EVENT GENERATORS

Table 3. lists the existing MLEGs. In the literature, GANs, VAEs, NFs, and their

various improved architectures have been used to simulate physics events from different

reactions and training datasets. Both [39] and [56] reported that the LS-GAN yields better

performance than other generative models, not only in terms of better precision, but also

that in the explored scenarios they were faster. However, at this point, it is too early to
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rule out the optimal generative model architecture for general MLEGs, which requires not

only computational verification, but also rigorous theoretical justifications.

3.2 DATA CORRECTION FROM DETECTOR EFFECTS

Any event generator, whether an MCEG or MLEG, that attempts to faithfully reproduce

a specific reaction channel must take into account not only the primary interaction at

its vertex but also the interactions of the emergent particles with materials and with the

devices detecting them. The former should take into account energy losses, decay, new

particle production, as well as multiple scattering effects, while the latter should carefully

model detector responses to particles being detected. The experimental setup introduces a

detection volume, or acceptance, which is usually quite complicated. The acceptance covers

only a portion of the phase space of the reaction, and has to be modeled employing MC

packages, such as GEANT4 [57], DELPHES [58], FLUKA [59], or similar.

We classify detector effects into three categories: acceptance, smearing, and misiden-

tification related. All these effects are mitigated in the MLEGs by using well designed

procedures that allow either to remove or to introduce these effects into the synthetic data.

The former is known as “unfolding”, and the latter as “folding.” These procedures usually

involve training GANs with additional information introduced by modifying loss functions

to improve stability and convergence [7], using fully conditional GAN (FCGAN), where the

conditioning is done on the detector response [60], or employing Wasserstein distance based

loss function in a conditional GAN (WGAN) framework [61].

3.3 PHYSICS-RELATED CHALLENGES

Compared to many applications employing machine learning generative models to pro-

duce images, music, and arts, using MLEGs to simulate events from particle reactions poses

new additional physics-related challenges for machine learning:

i Events generated by MLEGs should not violate physical laws, such as energy and

momentum conservation;

ii MLEGs for generating particle physics events are required to model the distributions

of event features and their correlations sufficiently precisely for the nature of particle

reactions to be correctly replicated;

iii The distributions of events exhibit natural, physics driven patterns, such as discrete

attributes, prominent and narrow peaks, or symmetric behavior of certain physical



19

quantities. On top of that they also exhibit artificial, detector-related, patterns, such

as acceptance induced holes and gaps, and efficiency based regions of lower particle

occupancy, which complicate MLEGs;

iv The outgoing particles, with increasing incident energy, will yield increased dimen-

sionality of the emergent products.
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Fig. 2.: Distributions, where Sharp Peaks, Holes, and Steep Edges are Observed.

It is important to note that all existing MLEGs listed in Table 3. are trained using simu-

lated data generated from MCEGs, such as Pythia, MadGraph, and Sherpa. When learning

from real experimental data, it adds an additional level of complications to the MLEGs.

Figure 2. shows the momenta plots of experimental data from an electron scattering exper-

iment with the CEBAF Large Acceptance Spectrometer (CLAS) detector at Jefferson Lab.

Due to the configuration of superconducting coils of the torus magnet, spaced by angles of

60◦, the detector packages [62] shown in Fig. 3. are accordingly divided into six sectors,

so that events which fall into the coils are not detected, leaving six gaps in any particle

transverse momentum components plot, px and py, as in Fig. 4.. As a result, the 1D plots of

px, py, and the remaining longitudinal component, pz, as shown in Fig. 2., yield spikes, deep

holes, and sharp edges, which pose difficulty for MLEGs to precisely learn their inherent

physical laws as well as the detector patterns.

3.4 INCORPORATING PHYSICS INTO ML MODELS
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Fig. 3.: CLAS Detector (Downstream View).
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Fig. 5.: Comparison of the pz distributions generated by the GAN with the transformed

features (red), and the direct simulation GAN (green), and the true distribution from Pythia

(black).

To address the above physics-related challenges, an important approach is to incorporate

physical laws into the generative models. Appropriately encoding physical laws into the

models can reduce the degrees of freedom of the problem and improve the performance of

MLEGs. One way to incorporate a physical law into the generative models is via feature

engineering. In our work of simulating inclusive scattering of electrons [10], we found that

a direct simulation GAN generates unphysical events that violate energy conservation. As

shown in Fig. 5., a sharp edge in the particle energy E distribution arises from energy

conservation, which restricts E to be less than the input beam energy, Eb. This sharp edge

is difficult to learn for the inclusive GAN, whose output is the electron momentum 3-vector

(px, py, pz), as unphysical events can be generated with E > Eb, which the discriminator

is not sensitive enough to differentiate from the eligible physics events, particularly when

Eb −E is small. In Chapter 4 we elaborate more on this and show how to prevent the ML

model from generating unphysical events.

Another approach to incorporate physics into generative models is to make the latent

variables physically meaningful. Typically, the noise fed to GAN or the latent variables in

VAE follow certain well-known, easy-to-generate distributions such as Gaussian or uniform
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without physics meanings. [43] expressed the latent distributions in SWAE with quantum

field theory and thus sampling the latent space became efficient and was able to infer physics.

3.5 DISCUSSION

Compared to MCEGs that have been developed for over 50 years, MLEGs are still in

their infant stage, bringing a lot of anticipation as well as many challenges and questions

currently without clear answers. In this section, we discuss two questions regarding the

applications of MLEGs.

3.5.1 CAN MLEGS FAITHFULLY REPRODUCE PHYSICS?

Whether MLEGs can fully represent the underlying physics of a reaction and faithfully

reproduce physical events is critical to many applications where MLEGs are proposed. In

the existing MLEGs listed in Table 3., the agreement between the events generated by

MLEGs and the sample events is mostly measured in 1D using χ2 or other statistical metrics.

In practice, one is often interested in the correlations among event feature distributions.

Another issue is related to the rare events occurring in the reaction, which are often precisely

those of significant physics interest. Such rare events pose a difficult challenge to MLEGs,

however, which often bias to more frequent events during their training.

The methods of incorporating physics into MLEGs, as described in Sec. 3.4, help improve

the precision of MLEGs. Augmenting the generated features of MLEGs to other important

physics properties of interest, as described in [20], also increases the sensitivity of the dis-

criminator in the GAN event generator, and thus enhances the quality of the generated

events. Nevertheless, at this point, there is lack of a comprehensive evaluation framework

to thoroughly evaluate the quality of MLEG events in comparison with those from MCEGs

or from experiment, particularly in quantifying the correlation among event features with

physics meaning, as well as measuring the quality of the rare events.

3.5.2 CAN MLEGS PROVIDE NEW PHYSICS INSIGHTS?

Can an MLEG go beyond the manifold of its training event data and bring physical

insight into regions without any training (experimental) data? We start the discussion of

this question from the extrapolation capability of neural networks. A major drawback of

a neural network is its difficulty with extrapolation. The theoretical explanation is rooted

in the “universal approximation property” of a feed-forward neural network [63], i.e., a
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neural network can approximate any continuous function and many discontinuous functions

by adjusting its parameters with respect to its training samples. Therefore, for the space

outside of the range of the training samples, the output of a neural network is not reliable.

MLEGs trained using GANs, VAEs or NFs are fundamentally neural networks, which thus

inherit the extrapolation problem. [11] showed that an MLEG based on cGAN yields good

agreement for interpolating events between training beam energy levels, but not as good

agreement for extrapolating events beyond training beam energy levels, particularly for

those related to beam energies further from the training beam energies.

There are two potential ways to extend MLEGs to generate correct events in unknown

regions. One way is to apply regularization, forcing the generator to adopt a simple model

to limit the degrees of freedom of its neural network and avoid overfitting. More specifically,

incorporating known physical laws into the regularizers helps generalize the neural networks

and reduce their variation to explore the unknown physical laws and theories. The other

way is to generate artificial data samples within the unknown region by either physics theory

or simulation to correct the behavior of MLEGs. Both approaches can also be combined to

allow MLEGs, at least at some extent, to extrapolate.

3.6 CONCLUSION

In this literature review section, we review ML generative models used in existing

MLEGs, including GANs, VAEs, NFs, and their enhanced architectures. Some studies

reported that LS-GAN yields better event quality over other generative architectures, but

these lack theoretical justifications. MLEGs, as practical tools to simulate physical events,

pose additional challenges related to physics, and we review methods of incorporating physics

into MLEGs to address these challenges. We further explore the two questions on the ca-

pability of MLEGs on faithful reproduction of physics, and extrapolation. Answers to these

open questions will have significant impact on the applications of MLEGs.

Unlike many generative model applications, such as producing sharp looking images or

fancy objects, where the distribution agreement between the generated samples and the

truths is often not strictly enforced, the general requirements underlying MLEGs are to pre-

cisely reproduce a specific target distribution. The generative models developed in MLEGs,

which incorporate domain knowledge into the machine learning algorithms to faithfully gen-

erate samples mimicking complex target distributions, have the potential to be applied to

broader applications, such as bioinformatics [64] and cosmology [65].
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CHAPTER 4

FEATURE-AUGMENTED AND TRANSFORMED GAN

In this chapter we present our Feature-Augmented and Transformed Generative Adversar-

ial Network (FAT-GAN) that was published in [10]. In this work we intentionally ignore

the detector effects and investigate the possibility of faithfully reproducing simulated and

experimental events with the absence of detector effects. The major contribution of the

FAT-GAN is to incorporate physics into the ML model that significantly improves the re-

sults. We begin the discussion in Sec 4.1 with an overview of FAT-GAN. Then, we describe

the data used to validate this work, and explain the model architectures. After that, we dis-

cuss the problem of generating nonphysical events when we directly use the training features

as inputs and demonstrate our approach to solve this issue. Finally, we show the results on

simulated and experimental events, and investigate how the generated results can capture

complex correlations between the training features. This chapter addresses RQ1: Can we

build a ML-based generator to faithfully reproduce particle collision events?.

4.1 INTRODUCTION

We apply a Wasserstein GAN (WGAN) [49] to build a MLEG that simulates particle

production in electron-proton scattering that is free of theoretical assumptions about un-

derlying particle dynamics. The difficulty of efficiently training a MLEG lies in learning the

complicated patterns of the distributions of the particles physical properties. Our model

selects a set of transformed features from particle momenta that can be generated easily

by the generator, and uses these to produce a set of augmented features that improve the

sensitivity of the discriminator. The implemented FAT-GAN model is able to faithfully

reproduce the distribution of final state electron momenta in inclusive electron scattering,

without the need for input derived from domain-based theoretical assumptions.

4.2 DATA DESCRIPTIONS

We use GANs to mimic two samples of inclusive electron-proton scattering events: the

first is generated from the Pythia MCEG [15] at a center-of-mass energy of 100 GeV, and the

second is experimental data from CLAS [66] at Jefferson Lab with beam energy of 5.5 GeV.

In our initial analysis, we train the GAN only on the scattered electron momenta. Events
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are represented as an array of the electron four-momenta pµ = (E;p), where in Cartesian

coordinates the three-momentum is given by p = (px, py, pz), and the energy is given by

E =
√
p2x + p2y + p2z +m2, where m is the electron mass. Throughout this paper we will

work in units of GeV for all momentum and energy variables.

4.3 MODEL ARCHITECTURE

The generator produces both generated features and augmented features. The three

generated features describe the three degrees of freedom of the scattered electron (compo-

nents of the momentum p), while the augmented features, such as energy E, transverse

momentum pT =
√

p2x + p2y, and the longitudinal to transverse momentum ratio pz/pT , can

be calculated from the generated features to represent other physical characteristics of the

particle. The augmented features are used to improve the sensitivity of the discriminator.

The input to the generator “G” is a 100-dimensional white noise array centered at 0

with unit standard deviation. The generator network consists of 5 hidden dense layers,

each with 512 neurons, activated by a leaky Rectified Linear Unit (LReLU) function. The

last hidden layer is fully connected to a three-neuron output, activated by a linear function

representing the generated features. A customized Lambda layer is then incorporated to

calculate the augmented features from the generated features. Inspired by the idea of

importance sampling [67], the augmented features are carefully selected to improve the

sensitivity of the discriminator in distinguishing the GAN-generated events from the Pythia

input. These augmented features, together with the generated features from the generator,

are concatenated and fed to the discriminator as input. As for the generator, the neural

network in the discriminator “D” also consists of 5 hidden dense layers, each with 512

neurons, activated by a LReLU function. To avoid overfitting in classification, a 10% dropout

rate is applied to each hidden layer. The last hidden layer is fully connected to a single-

neuron output, activated by a linear function, where “1” indicates a true event and “0” is

a fake event. The overall architecture of the inclusive GAN event generator is illustrated in

Fig. 6..

4.3.1 LOSS FUNCTION

The discriminator D is trained to give D(p) = 1 for each sample p generated by Pythia,

and D(p̃) = 0 for each sample p̃ produced by the generator. The discriminator is optimized

against the Wasserstein loss with gradient penalty [49] to improve training stability and

reduce the likeliness of mode collapse. The loss function LD of the discriminator is defined
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as
LD =

(
E[D(p̃))]− E[D(p)]

)
+ λEp̂∼Pp̂

[
(∥∇p̂D(p̂)∥2 − 1)2

]
,

(13)

where E denotes the expectation value. The first term in LD measures the Wasserstein

distance [47]. The second term is the gradient penalty, where p̂ is a random sample from

Pp̂, defined by a uniform distribution along the straight lines between pairs of samples from

the true Pythia event data and the generator’s output. The coefficient λ is a harmonic

parameter to balance the Wasserstein distance and the gradient penalty.

To ensure that the distributions of the event features created by the generator match

well with those of Pythia, we incorporate a two-sample test based on kernel MMD in our

inclusive GAN event generator. To compare two distributions, the MMD employs a kernel-

based statistical test methods to determine if the two samples are drawn from different

distributions. As a result, the loss function LG of the generator G includes a Wasserstein

distance term from the discriminator D and an MMD term [50],

LG = −E[D(p̃))] + ηMMD2(p, p̃), (14)

where η is the balancing hyperparameter. The MMD term is defined as

MMD2(p, p̃) = Epa,pa′∼Pp [k(pa,pa′)]

+ Epb,pb′∼Pp̃
[k(pb,pb′)]

− 2Epa∼Pp,pb∼Pp̃
[k(pa,pb)],

(15)

where k(pa,pb) is a positive definite kernel function. Here we select a Gaussian kernel such

that k(pa,pb) = exp[−(pa − pb)
2/2σ2], where σ is the hyperparameter determining the

MMD resolution, tuned to the same order of magnitude as the width of the event features.

4.4 FEATURES REPRESENTATIONS

The physical observables characterizing the scattered electron properties are illustrated

in Fig. 7., including the momentum and energy components of the electron four-vector pµ

[Fig. 7.(a)–(e)], scattering angles [Fig. 7.(f)–(g)], and derived quantities xbj and Q2 (see

Sec. 4.5.2 below). The energy and momentum distributions generated by Pythia exhibit

rather large variations, with the ratio between the most populated regions and those with

rare events reaching up to ∼ 104.

More seriously, a sharp edge in the E distribution arises from energy conservation, which

restricts E to be less than the incident beam energy, Eb. This sharp edge is very difficult
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Fig. 7.: The distributions of the physical properties px, py, pz, E, pT , θ, ϕ, xbj and Q2 of

the scattered electron (see text) generated by Pythia (black lines), FAT-GAN (Cart) (red

lines and yellow bands), FAT-GAN (Spher) (blue lines), and DS-GAN (green lines). The

FAT-GAN (Cart) is in good agreement with Pythia. All momentum and energy variables

are in units of GeV, and the angles θ and ϕ are in radians.
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Fig. 8.: Distribution of the Transformed Feature T (pz).

for the inclusive GAN to learn, as unphysical events can be generated with E > Eb, which

the discriminator is not sensitive enough to differentiate from the eligible physical events,

particularly when Eb−E is small. The sharp edge in the E distribution also leads to sharp

edges in the pz and θ distributions. The difficulty of learning sharp edge distributions has

also been reported in [8].

To address the problem of learning sharp edge distributions, we transform the momen-

tum properties to specific generated features that allow their distributions to be gener-

ated more easily, while avoiding production of unphysical particles. For the pz distribu-

tion, instead of directly using pz as a generated feature, we use the transformed variable

T (pz) = log[(Eb−pz)/(1 GeV)] in the generator. The original distribution with a sharp edge

is now converted to a distribution that is more like a Gaussian, with significantly reduced

variation, as illustrated in Fig. 8..

Although T (pz) does not have actual physical meaning, the transformation ensures that
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the GAN will not generate events with unphysical pz values. As well as making it easier

for the generator to produce, the transformed distribution T (pz) improves the sensitivity of

the discriminator as a classifier. As a result, the generator learns to generate (px, py, T (pz)),

and pz = exp[(Eb − T (pz))/(1 GeV)] is later calculated by the customized Lambda layer as

one of the augmented features.

In addition to pz, the variables pT , E, and pz/pT are also calculated in the customized

Lambda layer as augmented features in order to improve the sensitivity of the discrimina-

tor. The generated features and augmented features are concatenated as the input to the

discriminator.

4.5 RESULTS

In this section we compare the event feature distributions from the FAT-GAN and the

Direct-Simulation GAN (“DS-GAN”) that directly simulates the momenta (px, py, pz).

We also compare the efficiency of the FAT-GAN implementation in Cartesian coordinates

(“FAT-GAN (Cart)”) with the FAT-GAN in spherical coordinates (“FAT-GAN (Spher)”).

The latter is an alternative representation to describe a particle in terms of the variables

(E, θ, ϕ), where θ = arctan(pz/pT ) is the polar angle between pz and the transverse plane,

and ϕ = arctan(py/px) is the azimuthal angle. The FAT-GAN (Spher) generates (T (E),

T (θ), ϕ) in spherical coordinates as the generated features, and then px, py, pz, pT , E, and

pz/pT as the augmented features. The features T (E) and T (θ) are converted from E and θ

using a logarithmic transformation similar to that applied to pz to remove the sharp edges

in the distribution.

4.5.1 FEATURE DISTRIBUTIONS

The event feature distributions from the DS-GAN, FAT-GAN (Cart), and FAT-GAN

(Spher) are compared in Fig. 7. with those generated from Pythia. In general the DS-GAN

results do not match as well with Pythia compared to FAT-GAN (Cart) and FAT-GAN

(Spher). Moreover, the tails beyond the sharp edges in Fig. 7.(c) and (d) indicate that

some unphysical events are generated with E > 50 GeV. The FAT-GAN (Cart) yields

match better with Pythia than do the FAT-GAN (Spher) yields, particularly for the ϕ

distribution. The four momentum components (E; px, py, pz), as well as pT , θ and ϕ, are

also well reproduced relative to Pythia, and have a minimal number of unphysical events.

Compared to the reaction events simulated in [9] and [19], where the typical ratio between

the peak and tail events is up to 10, the ratio in our scattering electron features can be up to
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104. Nevertheless, even for the rare events that are 10−3 of the number of the peak events,

the FAT-GAN (Cart) agrees well with Pythia in their distributions, including the symmetry

of ϕ shown in Fig. 7..

4.5.2 FEATURES INTER-CORRELATIONS

101
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Fig. 9.: Joint distributions of Q2 and xbj for FAT-GAN (Cart), FAT-GAN (Spher) and

DS-GAN compared to Pythia. The χ2 values per number of bins are indicated in the GAN-

generated panels.

In addition to the electron momentum and energy, we examine two additional physical

quantities that are typically used to characterize electron scattering, namely the squared

four-momentum of the exchanged virtual photon Q2 and the Bjorken scaling variable xbj,
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Fig. 10.: Joint distributions of PT and Z, and xbj and Z for FAT-GAN (Cart) (lower row),

compared to Pythia (top row).

neither of which are explicitly generated as features in the FAT-GAN. In terms of the beam

and scattered electron momenta and energies, the photon virtuality can be written as

−Q2 = q · q ≡ q20 − q2, (16)

where q0 = Eb−E and q = (−px,−py,
√

E2
b −m2−pz) are the energy and three-momentum

transfer, respectively, and the “ · ” symbol denotes the dot product operation in Minkowski

spacetime. The Bjorken variable is defined to be the dimensionless ratio

xbj =
Q2

2P · q , (17)

and kinematically ranges from 0 to 1. As shown in Fig. 7.(h) and (i), the xbj and Q2

distributions from the DS-GAN deviate significantly from those generated by Pythia. In
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contrast, the FAT-GAN (Cart) yields match better than those from the DS-GAN and the

FAT-GAN (Spher).

We further examine the Q2–xbj joint distributions, as shown in Fig. 9.. The FAT-

GAN (Cart) yields a good match with the Pythia Q2-xbj joint distribution, as indicated

by the contour lines, with a χ2 value per number of bins of 1.58. In contrast, somewhat

worse agreement is observed for the FAT-GAN (Spher), with χ2 = 19.54, and very poor

agreement for the DS-GAN, with χ2 = 82.41. This indicates that our FAT-GAN model in

Cartesian coordinates not only learns the four-momentum vector accurately, but also their

inter-correlations. Similarly, we examine the xbj–Pz and Pt–Pz. We can see the FAT-GAN

(Cart) (lower row) shows a good agreement with the Pythia (top row).

4.5.3 COMPARISON OF COORDINATE REPRESENTATIONS

The Cartesian representation and the spherical representation of a particle are equivalent

physically. However, the Cartesian and spherical representations exhibit different learning

efficiencies in the FAT-GAN. As shown in Figs. 7. and 9., the FAT-GAN (Cart) demonstrates

better agreement in the distributions of physical properties than the FAT-GAN (Spher).

In Fig. 11. the convergence of the FAT-GAN (Cart), FAT-GAN (Spher) and DS-GAN

is compared, as measured by the χ2 values for the xbj distributions of Pythia and GAN-

generated events along training epochs. Although both FAT-GANs yield better convergence

than the DS-GAN, the FAT-GAN (Cart) demonstrates better efficiency and generally lower

χ2 values that are close to 1 than the FAT-GAN (Spher).

Overall, the FAT-GAN (Spher) is found to have a degraded performance compared

to the FAT-GAN (Cart). The main reason is that the physical properties in spherical

coordinates are less favorable than those in Cartesian coordinates for training the FAT-

GAN. In particular, both the distributions of E and θ in spherical coordinates exhibit sharp

edges (see Fig. 7.(d) and (f)). Moreover, the ϕ distribution has shape boundaries at both

ends, which poses additional complications for the GAN to learn.

4.5.4 FAT-GAN ON EXPERIMENTAL DATA

Having studied the performance of the FAT-GAN on synthetic Pythia data, we now

compare the results of the FAT-GAN (Cart) simulations with inclusive scattering data for a

5.5 GeV electron beam impinging on a liquid hydrogen target in CLAS at Jefferson Lab [?].

A clean event sample of 100k reconstructed electron events was used for the comparison with

the trained FAT-GAN, illustrated in Fig. 12., which shows that the distributions of the events
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Fig. 11.: Comparison of χ2 values for xbj distributions of Pythia events and those generated

by the FAT-GAN (Cart), FAT-GAN (Spher) and DS-GAN, with respect to the number of

training epochs.

generated by FAT-GAN match well with those of the experimental data. Note, however,

that in contrast to the smooth distributions from the Pythia MCEG in Fig. 7., the CLAS

data here have not been corrected for detector effects, and therefore display artifacts such

as the shoulder in the xbj distribution. Nevertheless, the comparison in Fig. 12. indicates

that the physical properties pT , θ, xbj, and Q2, which are not directly used in the training,

are correctly captured by the FAT-GAN trained on the experimental event data.

4.6 CONCLUSION

In this work we investigate the use of GANs to simulate electrons in the final state of

high-energy inclusive electron-proton collisions. We report that selecting the appropriate
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features as generated features or augmented features plays a critical role in building a suc-

cessful GAN event generator. While the physical properties of the particles often exhibit

challenging distribution patterns for a GAN to learn, using transformed features enables the

generator to more easily generate and avoid unphysical events. Augmenting in addition the

feature space for the discriminator to become more sensitive, our FAT-GAN demonstrates

good agreement with simulated as well as experimental data in mimicking event feature

distributions and their inter-correlations. We also find that the selection of the appropri-

ate coordinate representations impacts the GAN performance. Although the FAT-GANs

presented are specific to electron-proton scattering, the feature selections and transforma-

tion strategy can be generalized to GANs for simulating other reactions under different

conditions, as well as learning exclusive events.

The FAT-GAN package is available at https://github.com/ijcai2021/FAT-GAN.

https://github.com/ijcai2021/FAT-GAN
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CHAPTER 5

CONDITIONAL FEATURE-AUGMENTED AND TRANSFORMED GAN

In this chapter, we extend the FAT-GANmodel to develop a Conditional Feature-Augmented

and Transformed Generative Adversarial Network (cFAT-GAN) that was published in [11].

The Major contribution of cFAT-GAN is to allow the model to generate events for different

energy beams including events of the energy beams that are not part of the training data.

We begin the discussion in Sec 5.1 with the motivation behind extending the FAT-GAN.

Then, we give a brief background of conditional GAN prior work. Aftter that, we explain

the model architecture and the feature representations. Finally, we present the results and

examine the cFAT-GAN ability to interpolate and extrapolate between different energy

beams. This chapter is related to RQ1: Can we build a ML-based generator to faithfully

reproduce particle collision events?.

5.1 INTRODUCTION

One constraint of FAT-GAN is that the model depends on a given collision energy,

which can only generate events corresponds to that energy. To generate events at unrelated

collision energies, the model must be retrained to capture the new phase-space dataset.

However, many practical applications require the event generator to have the flexibility

of allowing users to specify the reaction energy as an input to produce the corresponding

synthetic events. To overcome this limitation, we extend the FAT-GAN framework by

conditioning the component neural networks according to the given reaction energy. We

demonstrate that cFAT-GAN, can reliably produce inclusive event feature distributions and

correlations for a continuous range of reaction energies by automatically interpolating and

extrapolating from a set of trained energies. As a proof of concept, we train on events

generated by the Pythia MCEG [15] as a proxy for experimental data and we restrict the

GAN’s task to generate a specific final-state particle (electron) as in [10], which is referred

to as an inclusive event generator.

The cFAT-GAN implementation can be found at: https://github.com/AnonymousICMLA/

cFAT-GAN.

5.2 CONDITIONAL GAN PRIOR WORK

https://github.com/AnonymousICMLA/cFAT-GAN
https://github.com/AnonymousICMLA/cFAT-GAN
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MCEGs have been vital tools for the analysis and design of high energy scattering ex-

periments and phenomenological investigations since their conception in the 1970s. General

generator models such as Pythia [15], HERWIG [23], and Sherpa [24] function to simulate

the theoretical physics processes that occur in high-energy lepton-lepton, lepton-hadron,

and hadron-hadron collisions to a user’s specifications. Recently, GANs [3] have been used

in different applications in the high-energy field, such as simulating energy deposits of par-

ticles [68, 5] and jets [6, 7], where they focus on feature representations of the experimental

data in contrast to event based samples. Hashemi et al. [8] have trained GAN at the event

level in which they generate the four-momentum in Z → µ+µ− events generated by Pythia.

In addition, Butter et al. [9] incorporated maximum mean discrepancy (MMD) [69] on their

event generator in order to resolve features that have spiky and sharp distributions. To the

best of our knowledge, there have not been any prior works that condition GAN on the

reaction energy.

cGANs have shown large improvements in computer vision applications, for example,

Image-to-Image Translation [70], convolutional face generation [71], and video generation

[72]. There are also current efforts that aim to improve speech system performance in noisy

environment [73] where the model is conditioned on the noisy spectrogram. cGANS have

also been used in natural language processing like [74], which is conditioned on the context of

the sentences. In cFAT-GAN, we condition the FAT-GAN networks on the beam energy and

we show that cFAT-GAN can successfully generate events from continuous range of beam

energies, both interpolatively and extrapolatively, expanding the scope of the GAN-based

event generators.

5.3 MODEL ARCHITECTURE

We extend the FAT-GAN framework to a conditional model in which the generator and

discriminator are conditioned on the collision beam energy, E, as shown in Fig. 14.. Similar

to FAT-GAN, our GAN framework adopts the architecture of WGAN developed in [49].

We consider a data sample consisting of inclusive electron-proton scattering events at

five beam energies, E = 10, 20, 30, 40, and 50 GeV in equal parts.

The inputs to the generator, G, is a 100-dimensional white noise vector and the incident

lepton energy, E. The two inputs for G are concatenated and passed through the generator

network consisting of 8 fully connected hidden layers, each with 512 nodes and activated by

leaky Rectified Linear Unit (ReLU) function. The final hidden layer is fully connected to

a 3-node output activated by a linear function representing the generated features. These
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Event Features k′
x k′

y T (k′
z) k′

z k′
T E ′ k′

z/k
′
T

True Samples ✓ ✓ ✓

FAT (True Samples) ✓ ✓ ✓ ✓

Generator ✓ ✓ ✓

FAT (Generator) ✓ ✓ ✓ ✓

Discriminator ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE 4.: Generated features from the generator and Pythia. The augmented and trans-

formed features calculated from these generated features.

generated features and E are passed to a customized lambda layer to calculate the aug-

mented features. The augmented features and E are concatenated to the generated features

and fed to the discriminator as input.

Mirroring the generator, the discriminator network, D, consists of 8 fully-connected

hidden layers, each with 512 nodes, activated by a leaky ReLU function. To avoid overfitting

in classification, a 10% dropout rate is applied to each hidden layer. The last hidden layer is

fully connected to a single-neuron output, activated by a linear function, where “1” indicates

a true event and “0” indicates a fake event. In the discriminator network, E acts as an input

feature, serving to differentiate event distributions according to the given beam energy. The

generator loss function, LG, and the discriminator loss function, LD, are respectively defined

as:

LG = −E[D(
√
s, F̃ ))] (18)

LD =
(
E[D(

√
s, F̃ ))]− E[D(

√
s,F )]

)
+ λ EF̂∼P

F̂

[
(∥∇F̂D(

√
s, F̂ )∥2 − 1)2

]
(19)

where E signifies the expectation value, F̃ is a synthetic feature vector including generated

and augmented features, and F is a true feature vector.

5.4 AUGMENTED FEATURES
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Fig. 14.: Architecture of the cFAT-GAN event generator The red arrows represent the flow

of the incident energy, E; the dotted arrows represent the back propagation of the loss. The

blue and orange arrows indicate the flow of the synthetic and true samples in cFAT-GAN

framework, respectively.
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Our previously devolved FAT-GAN [10] introduced a new machine learning approach to

constructing MCEGs tailored to the specific challenges that accompany the qualifications of

current event generators. Such qualifications require the GAN-based generator to operate

within the laws of physics and model the distributions of event features and their correlations

to a much higher degree of precision than what is required in other applications.

To improve GAN training in FAT-GAN, feature transformations were used to simplify

the distributions that the generator must learn and, more importantly, to prevent the gen-

eration of non-physical events. Additionally, a set of augmented features calculated from

the generated features is included in the training set and generator output to enhance the

sensitivity of the discriminator.

Inclusive electron-proton scattering refers to the process e(k)+p(P ) → e(k′)+X, where

k and P are the momenta of the incident electron and target proton, respectively, and k′

is the momentum of the final state detected electron. The state X represents the sum of

particles that are produced in the reaction, but not detected, other than the electron. In

the c.m. frame of the initial state electron and proton, we can approximate the electron and

proton 4-momentum vectors by k ≈ (
√
s/2)(1; 0, 0, 1) and P ≈ (

√
s/2)(1; 0, 0,−1), with the

invariant c.m. energy squared s = (k + P )2.

Energy conservation requires that the scattered electron energy E ′ ≡ k′
0 is less than the

incident energy, E ≡ √
s/2. A typical feature in the reaction is that the distribution of E ′

has a sharp edge at the end of the phase space that is rather difficult for the GAN to learn,

as the discriminator lacks the sensitivity to identify the non-physical events where E ′ > E,

particularly when E ′ − E is very small. Such sharp edge in the phase space also occurs for

the the scattered electron’s longitudinal momentum distribution, k′
z.

To address the problem of learning sharp edge distributions, a variable transformation

T (k′
z) = log(E − k′

z) is chosen to replace the k′
z as a generator feature. Thus, the generator

produces the 3 features corresponding to k′
x, k

′
y, T (k′

z). The T (k′
z) distribution turns to be

closer to a normal distribution, making it easier for the generator to learn, and the same

time prevents the generation of non-physical values E ′ > E. To enhance the sensitivity

of the discriminator, additional features, including E ′, k′
T =

√
k′
x
2 + k′

y
2, and k′

z/k
′
T , are

computed as augmented features to be used as inputs fro the discriminator. The generated,

augmented, and transformed features are listed in Table 4..

5.4.1 BEAM ENERGY REPRESENTATION

In the original implementation of conditional GAN [75], and many other conditional
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applications, the generator and discriminator networks are conditioned on categorical labels

that are often one-hot encoded. Common image generation applications are well suited

to this discrete representation, allowing the user to specify the type of image to generate

from a trained set of distinct classes. Unlike image classification, scattering events from

collisions at different c.m. energies are not suited for sorting into distinct classes, as the

feature distributions changes subtly but non-trivially as a function of the reaction energy.

To encode the c.m. energy
√
s as a continuous input feature to the cFAT-GAN, we

calculate the mean and standard deviation of the incident beam energies (≡ √
s/2) repre-

sented in the training set, and then apply a standard normalization. The normalized beam

energies serve as a continuous representation and the same normalization is applied to an

untrained energy, placing it in reference to the trained energies in the generator’s latent

space. Thus, the fully trained generator, when passed the normalized untrained energy,

is able to automatically interpolate between different training energies or even extrapolate

beyond.

The normalized beam energy passed as an input feature in the GAN is also used in the

custom Lambda layer in which the augmented features are calculated and concatenated to

the generator output. The augmented feature, k′
z, calculated from the generated feature

T (k′
z), requires the incident beam energy E. Thus, the normalized energy is passed to the

Lambda layer, un-normalized, and used to calculate k′
z = exp[E − T (k′

z)]. The transfor-

mation of k′
z at different beam energy levels is illustrated in Fig. 15.. By incorporating E

into the transformation of k′
z, the cFAT-GAN inherits an important property from the FAT-

GAN, which eliminates the chance of generating non-physical events under varying beam

energies which is easier for the generator to mimic.

5.5 RESULTS

In this section, we examine the trained generator and test its ability to produce the

true underlying event distributions. More importantly, we analyze the interpolation and

extrapolation capability of the trained cFAT-GAN on five different training energy samples

and test its predictability to generate samples for near by energy of the training energies

as well as energies away from the training set. Finally, we analyze the sensitivity of the

generator and discriminator networks to the conditional beam energy by visualizing the

latent variables in the hidden layers of each network for various input energies.

5.5.1 EVENT FEATURE DISTRIBUTIONS
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Fig. 15.: The distributions in k′
z and T (k′

z) for the 5 beam energies: E = 10, 20, 30, 40 and

50 GeV. The transformation prevents the cFAT-GAN from generating non-physical events

with respect to its given beam energy input. The transformation also converts distributions

with sharp edges into smooth distributions that are easy for the generator to mimic.
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Fig. 16.: Kullback-Leibler (KL) divergence calculated between the synthetic and true E ′,

k′
x, k

′
y, and k′

z distributions at each energy represented in Fig. 17.a and 17.b.

We directly examine the cFAT-GAN’s ability to generate key event features for which

the reaction energy is a significant variable. To further analyze the generator’s performance,

we consider the invariant mass squared of the unobserved hadronic final state, W 2, which

is defined as

W 2 = (q + P )2, (20)

where q = k − k′ is the 4-momentum transfer from the electron to the proton. The E ′,W 2,

and k′
z distributions from the cFAT-GAN are compared with the corresponding true dis-

tributions, for the five trained energies and eight untrained energies used in Figs. 17.a and

17.b.

In addition, we employ the Kullback-Leibler Divergence statistic to quantify the distance

between the synthetic and true distributions in Fig. 16. at different energies.

As shown in Fig. 17.a, one can find that the cFAT-GAN generated feature distributions

of E ′, W 2, and k′
z at the five trained energies—10, 20, 30, 40, and 50 GeV—are shown in to

match well with the corresponding true distribution with KL-divergence values around or

less than 10−2 (Fig. 16.). This indicates that cFAT-GAN inherits FAT-GAN’s capability of

reproducing event distributions of the trained beam energies. From Fig. 17.a, one can find
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Fig. 18.: Comparison of Q2 and xbj variables between Pythia and cFAT-GAN for several

energy reactions.

that the synthetic event distributions of E ′, W 2, and k′
z at the interpolated energies—15, 25,

35, and 45 GeV— also show good agreement with their true counterparts, similar to those

of the trained energies. The good agreement is confirmed in the KL-divergence plot shown

in Fig. 16.. This indicates that the generator has learned the general relationship between

the event distributions and the beam energy in the training process. Thus, cFAT-GAN is

able to interpolate automatically when it is fed the appropriate energy to produce reliable

physical events at energies between those trained. Our results indicates that for our current

ML architecture, 10 GeV is an effective trained energy level gap, across which cFAT-GAN

can accurately interpolate at event level in electron-proton scattering. We also investigate

the extrapolation capability of the cFAT-GAN, whose results are shown in Fig. 17.b. For

the event distributions at energies not far from the maximum trained energy level, such

as 60 GeV, relatively good agreement between the synthetic and true distributions is still

found, but with KL-divergence values higher than those within the scope of the trained

energies. The disagreement continues to enlarge at higher extrapolated beam energies, as

shown in Fig. 16.. This is as expected, since higher beam energies move farther away from
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Fig. 19.: Synthetic and true joint distributions of Q2 and xbj for trained energies: E = 10,

20, 30, and 40 GeV

the closest well-known point, 50 GeV.

5.5.2 PREDICTABILITY FOR NEW ENERGY BEAMS

We next examine the degree of predictability of new features that were not included

as part of the feature set. To that end we consider two variables typically encountered in

electron-proton reactions: Q2 = −q2, the square of the invariant mass of the exchanged

virtual photon, and xbj = Q2/2P · q, the Bjorken scaling variable.

In Fig. 19., we plot the joint distributions of Q2 and xbj, calculated from the generated

and true events at each trained energy. We define χ2 = 1
n

∑n
i (gi − ti)

2/ti, where n is the

total number of bins, and gi and ti are the numbers of points falling in a given bin for the

generated and true distributions, respectively, in order to statically measure the agreement

between the two distributions at each beam energy.

By inspecting the iso-contour lines, one finds that the cFAT-GAN joint distributions

generally match well with the corresponding true joint distributions across all the trained
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Fig. 20.: Synthetic and true joint distributions of Q2 and xbj for interpolated energies: E =

15, 25, 35, and 45 GeV

energies, with χ2 values ranging from ≈ 2 to ≈ 5. Moreover, the joint Q2–xbj distributions

for interpolated beam energies in Fig. 20. also demonstrates good agreement with those

generated by Pythia, with similar χ2 values as events at the trained energies. Our results

indicate that the cFAT-GAN framework not only learns the distributions of the observables

within the range of the trained beam energies correctly, but also learns the correlation among

predicted features not included in the training feature set.

5.5.3 LATENT VARIABLES ANALYSIS

The results present so far have tested the degree of compatibility of the feature distri-

butions generated by the trained cFAT-GAN against those from the true samples. In this

section, we examine the latent variables within the hidden layers of the neural networks in

cFAT-GAN in order to examine the sensitivity of the trained architectures with different in-

put energies. To extract the generator’s latent variables, the generator network was fed with

a batch of 10,000 noise vectors, each concatenated with a beam energy at either 10, 20, 30,

40, or 50 GeV, and the output was adjusted to include the second, fifth, and eighth hidden
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Fig. 21.: 2-D t-SNE visualization of the latent variables in the second, fifth, and final hidden

layers of the generator for the five beam energies E =10, 20, 30, 40, and 50 GeV, and one

extrapolated energy of 60 GeV.

layers. Repeating this process for each trained energy and one extrapolated energy, 60 GeV,

with the corresponding labels, we employ t-Distributed Stochastic Neighbor Embedding
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(t-SNE) [76] for dimensionality reduction of the latent variables from 512 dimensions to 2

dimensions to facilitate visualization. Fig. 21. shows the two principal 2-D projection from

the three selected hidden layers for each energy. One can clearly find the spectrum of the

event distributions at different beam energies on the low-dimensional manifold of the hidden

layers. One can also find that the latent variables for the extrapolated energy, 60 GeV, fit

into the progression of the pattern within the generator hidden layers, as would be expected

if it had been a trained energy, appearing closest to the 50 GeV projection. This illus-

trates the network’s ability to learn the relationships between trained energies that enable

the cFAT-GAN to perform well at interpolated and close extrapolated energies. Similar

to many deep learning applications, in the final hidden layer, the neural networks extract

highly abstract patterns, where the events with respect to different reaction energy levels

are mixed up and the extracted patterns are not quite explainable.

Since the discriminator in cFAT-GAN acts as a classifier, trained to distinguishing the

“true” and the generated events, we compare the latent variables in the discriminator neural

networks when fed samples of cFAT-GAN and Pythia generated events. The trained cFAT-

GAN discriminator was fed with 100,000 sample events from either Pythia or the generator

at each of four selected beam energies—10, 50, 35 and 60 GeV—and the output was adjusted

to include the eighth hidden layer. To reduce the dimensionality of the latent variables,

we employed Principal Component Analysis (PCA), fitting to the principle components

from the latent variables corresponding to the “true” input, and then transforming the

hidden layer activation values, with respect to the Pythia and synthetic samples, from

512 dimensions to 2 dimensions. As shown in Fig. 22., the latent variables from the eighth

hidden layer corresponding to Pythia and synthetic events are projected to a two-dimensional

space spanned by the first and second principle components. The Pythia events (contours)

and generator events (heat map) demonstrate good agreement, indicating that the trained

discriminator considers the GAN generated samples very close to Pythia generated samples

at 10 and 50 GeV trained energies, as well as the untrained energies including 35 GeV

(interpolated) and 60 GeV (extrapolated).

5.6 CONCLUSION

In this work we describe the implementation of a cFAT-GAN framework by incorporat-

ing the conditional beam energy as an input feature. The cFAT-GAN not only demonstrates

faithful reproduction of events at the trained beam energies, but also correctly generates
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Fig. 22.: 2-D PCA visualization of the latent variables of the final hidden layer of the

discriminator when feeding Pythia samples (contours) and generated samples (heatmap) for

E = 10 and 50 GeV trained energies, as well as 35 and 60 GeV untrained energies.

events for interpolated energies. Moreover, the cFAT-GAN can extrapolate events for un-

trained energies with good agreement, provided the extrapolated energy is not too far from

the trained energy level. The range and the number of energies selected for training are

critical parameters that can be tuned to improve the model’s ability to interpolate and ex-

trapolate to untrained energies, and expand the energy spectrum for which the cFAT-GAN

can correctly reproduce physics events. While the conditional beam energy presented in

this paper is specific to inclusive electron-proton scattering, the cFAT-GAN methods can

be applied to GANs simulating exclusive scattering reactions or other types of collision

reactions.
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CHAPTER 6

SIMULATION OF DETECTOR EFFECTS

In this chapter we present the simulation of smearing detector effects that is called (“fold-

ing”). This chapter mainly addresses RQ2: Can we simulate the smearing detector effects

using ML tools?. As discussed in 2.3.2, folding is the process to simulate detector effects by

distorting vertex-level events to generate detector-level events. Unfolding is to reconstruct

vertex-level events. We begin the discussion in Sec 6.1 with a background of the detector

effects. Then, in Sec 6.2 we discuss some of the challenges to develop a folding procedure

that satisfies physics constraints. In sec 6.3 we describe the dataset used to test this work.

After that, in Sec 6.4 we introduce our direct folding model to simulate the smearing de-

tector effects of toy and realistic examples and discuss its limitations. Then, we extend

the direct folding to conditional folding model to solve some of the limitations discussed

in 6.2. Finally, we show the results of the conditional folding model using several examples.

6.1 INTRODUCTION

After the particle collisions or interactions happen, we observe the collision data or

”events”, and that is where particle detectors come in. A particle detector, as discussed

in 2, is a machine installed within the accelerator that acts as a camera to detect and

track particles, and can measure the particle energy, momentum, spin, and other attributes.

Hence, experimentalists can only observe the data that the detectors detect, which is called

(“detector-level”) events. Detector machines have limited resolutions, and can significantly

alter the true events (“vertex-level”). The difference between vertex-level and detector-level

events called (“detector-effects”). More details of detector effects can be found in section 2.

6.2 FOLDING CONSTRAINTS AND CHALLENGES

To implement a ML folding procedure, one needs to address not only ML obstacles, but

also physics constraints and laws. There are several challenges need to be taken into account

when implementing a folding procedure:

• The physical intuition indicates that the entire mapping between vertex-level to detector-

level is statistical in nature. Therefore, a simple ML function, such as a neural network,
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that maps vertex-level events to detector-level events will be deterministic where each

vertex-level event will always be mapped to a detector-level event, and this violates

the physical intuition.

• The folding algorithm needs to fold events that are not the same as the training data.

In other words, the training data might be events that cover the full phase space,

and then we need to fold events that cover part of the detector-level space. This is

an important aspect of the folding because true-vertex events are unknown, hence we

need an algorithm that can learn the behaviour of folding instead of directly mapping

from one space to another as in other GAN applications, such as (image-to-image

translation).

• Small changes in the detector-level distribution can cause large changes in the re-

constructed true distribution, so one needs to develop an accurate folding that can

simulate detector effects with high accuracy.

• The folding algorithm needs to reproduce the training features as well as their corre-

lations precisely to be correctly measured and analyzed.

6.3 DATA DESCRIPTIONS

For this work, we define three sets of data that will be used to test our methodology:

the first is a toy example generated from random Gaussian and uniform distributions. The

second data set is inclusive deep-inelastic scattering (DIS) reaction. The third is a realistic

MC data that is generated based on real experimental data from CLAS collaboration [66]

at Jefferson Lab.

For the toy data, we generate two sets of files for training and validation. For the

training, we define a toy example called toy1, which is a random normal distribution defined

as, X ∼ N (µ, σ2) , where X is the training vertex-level events that are sampled from

a Gaussian distribution centered at 0 with unit standard deviation. We also define the

training detector-level events as, Y = (X + ϵ) where Y is detector-level events, which can

be obtained by shuffling vertex-level with 0.05 random normal noise to have a proxy for

detector smearing effects. For the test set, we define another example called toy2 sampled

from an uniform distribution, and we can define toy2 such that, X1 ∼ U(a, b) where X1

is the test vertex-level events sampled from a uniform distribution. We also define the test
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detector-level Y1 by shuffling the vertex-level with random noise, so Y1 = (X1 + ϵ) and

similarly we define the noise value to be 5%.

For the DIS data, we generate inclusive electron-scattering events in the resonance region

by MC sampling of an existing parametrization [77] that is known to describe well the

data at these low-energy kinematics. We also use models for the pure resonance behavior

[78, 79] to explore the effects seen in the cross sections stemming from the nucleon resonance

contributions separated from the remaining resonant and nonresonant channels. The DIS

data contains training and validation datasets, where each file is represented as electron

three momenta (l′x, l′y, l′z).

Realistic example is based on CLAS [66] data, which has two particles: proton and

pion in which they have been measured in high-statistics experiments at Jefferson Lab and

extensively analysed within traditional approaches[80, 81, 82, 83]. This realistic data is

generated from MC simulations that can be a very good proxy to CLAS experimental data.

6.4 DIRECT FOLDING GAN

We implemented a folding GAN which we call (“direct folding”) to investigate the

possibility of solving detector effects. The direct mapping model folds vertex-level into

detector-level events. The model is based on LSGAN architecture, discussed in Chapter 3,

which contains a generator that takes vertex-level inputs and a discriminator that supervises

on detctor-level events. As shown in Fig. 23., the input to the generator “G” is a n-

dimensional vector array represents vertex-level events. The generator network consists of

5 hidden dense layers, each with 512 neurons, activated by a leaky Rectified Linear Unit

(LReLU) function. The last hidden layer is fully connected to a n-dimensional output,

activated by a linear function representing the generated detector-level events. The output

of the generator is fed to the discriminator as input.

As for the generator, the neural network in the discriminator “D” also consists of 5

hidden dense layers, each with 512 neurons, activated by a LReLU function. To avoid

overfitting in classification, a 10% dropout rate is applied to each hidden layer. The last

hidden layer is fully connected to a single-neuron output, activated by a linear function,

where “1” indicates a true detector-level events and “0” is a fake detector-level events.

6.4.1 RESULTS

To test this methodology we start with a minimal toy example and validate that this

approach can at least work for a simple scenario before we proceed to more realistic and



56

Generator

Discriminator

Backpropagation

vertex level 
events

detector level 
events

Fig. 23.: Direct Folding Setup: The input to the generator is vertex-level events that

produces the corresponding detector-level events. The discriminator supervises only on

detector-level events to assure the generated event by the generator match the true samples.
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Fig. 24.: Smearing Effect on Toy Examples. The first row shows the agreement between

the training detector-level data (red histograms) and the generated data by GAN (green

shaded histograms). The bottom row shows how the GAN fails to agree with the validation

detector data (red histograms) and the model always generates events similar to the training

samples. Left and right columns are two different features.
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complex scenarios. For this we use two statistically independent examples toy1 and toy2

that are used for training and validation respectively.

We first show the results of our direct folding approach by training on toy1 example

and test on the same example to make sure this technique fold events coming from the same

distribution. As shown in Fig. 24. (a) and (b), the direct folding results (green shaded

histogram) are in a good agreement with detector-level data (red histogram) when we train

and test on toy1 example, where (a) and (b) are two different features. In addition, we

have also trained and tested the model on several other distributions and we can report

that this simple approach with proper training and architecture designs can overall map

any distribution to another as long as the test data is part of the training data.

To have a realistic and generic approach we need a framework that can learn the detector

effects and is independent of the training data to satisfy the detector effects constraints. To

test this, we feed toy2 example to the model at inference time and see how the model can fold

events that did not see in the training. We can see in Fig. 24. (c) and (d), the model results

(green shaded histograms) generated results in a way similar to the folding behaviors exist

in the training samples, and the obtained results are more like a Gaussian than a uniform

distribution.

6.4.2 DIRECT FOLDING LIMITATIONS

After the evaluation of our direct folding architecture, we can see that this approach

learns a deterministic link between inputs (vertex-level) and outputs (detector-level), and

works very well as a distribution mapper when we map from one distribution to another

and test on samples coming from the same distributions; however, direct folding fails to

fold events that are not part of the training data. This simple approach can perform very

well if the training and testing data are statistically equivalent as shown in Fig. 24. (a)

and (b) where the folding GAN results are in a good agreement with detector-level data;

however, this direct mapping approach failed to fold events that are not similar to the

training samples. As shown in Fig. 24. (c) and (d) when we feed uniform distributions to

the model trained on Gaussians, the folding GAN will always generate results similar to the

training data which is in this case Gaussians distributions.

6.5 CONDITIONAL FOLDING GAN

To address the limitations of the direct folding approach and satisfy the physics folding

constraints discussed in 6.2, we implemented a generic conditionalfolding GAN architecture
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Fig. 25.: Conditional Folding GAN setup: The input to the generator is white noise and

vertex-level events. The generator produces the detector-level events which is concatenated

with the vertex-level events and passed to the discriminator.
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that can fold events that are not part of the training samples. As shown in Fig. 25., we have

a generator that receives vertex-level as input in addition to a 100-dimensional white noise

centered at 0 with unit standard deviation. The generator will learn to fold the inputs and

produce detector-level events that mimic the detector response. By conditioning the model

on vertex-level event features we can enforce learning the correlations between vertex and

detector level events as opposed to learning a deterministic mapping between inputs and

outputs.

The idea behind the conditional folding model is not to learn a deterministic mapping

between input and output samples as in the previous direct folding model, instead we will

use a customized layer to concatenate predicted detector-level with vertex-level events to

enforce learning the correlations and exploit the fact that vertex-level and detector-level

events are paired.

If the discriminator D in a GAN model is defined as:

LD = ⟨− logD(x)⟩x∼PT
+ ⟨− log(1−D(x))⟩x∼PG

(21)

where PG is the generated distribution, and PT is the true events distribution. Then we

condition the discriminator on vertex-level events, and we modify the loss to,

LD → L
(C)
D = ⟨− logD(x, y)⟩x∼PT ,y∼Pv + ⟨− log(1−D(x, y))⟩x∼PG,y∼Pv

(22)

where Pv denotes vertex-level events, hence, the generator G loss now will take the form,

LG → L
(C)
G = ⟨− logD(x, y)⟩x∼PG,y∼Pv

(23)

6.5.1 RESULTS

For the conditional folding model we first test on toy example, then proceed to more

realistic examples.

6.5.2 TOY EXAMPLE

To test the devolved conditional folding, we start with the same toy examples used

to evaluate the direct folding approach. We train the model on toy1 example which is a

Gaussian distribution, then evaluate the model at inference time with uniform distributions.

After training of our folding GAN for 100,000 epochs, we can see that in Fig. 26. the folding

model (red lines) can fold vertex-level data (black lines) and have a good agreement with
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Fig. 26.: As in 24., but using the conditional folding model where the model can agree

well with the training and validation samples.
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Fig. 27.: Top: 1D projections of toy PMDs generated using Gaussian distributions (training

data, green) with corresponding synthetic events generated by GAN (red). Bottom: 1D

projections of true detector events (validation data, gray) with synthetic events generated

by the GAN (red).

detector-level data (green histograms). Similarly to what we did in acceptance effect, we

also defined a uniformly distributed data that is not equivalent to the training data to test

the model. The results in Fig. 26. (c) and (d) shows that the model can also fold the

uniform vertex-level and match the detector-level data although the original training data

was normally distributed, which indicates the model is learning that the inputs and outputs

are paired.

6.5.3 INCLUSIVE DIS

We also apply our conditional folding methodology to the inclusive deep-inelastic scat-

tering (DIS) reaction l+N → l′ +X, where l and l′ are the incoming and outgoing lepton,

N is the initial nucleon, and X are unobserved hadrons in the final state. So the training
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data contains the three momentum of electron: l′x, l′y, and l′z. The purpose here is to test

our conditional folding capability to fold events that are not part of the training data, to

simulate their corresponding detector effects, and to verify that the model produces a faith-

ful reconstruction of detector effect particle momentum distributions (PMDs). We simulate

DIS events at HERA kinematics by MC sampling the theoretical cross section computed in

collinear factorization at next-to-leading order in perturbative QCD. The theoretical cross

section depends on nonperturbative parton distribution functions, which are extracted from

the JAM global QCD analysis. The simulated DIS events are then passed to a detector

simulator [84] that smears the events.

We train our model using toy vertex-level events and their associated detector-level

events. In Fig. 27. (top row) we present 1D projections for the toy DIS PMDs showing

the smearing effects induced by the detector simulator that distorts the vertex-level distri-

butions. The folding GAN is able to reproduce correctly the smearing effects as expected,

since the folding GAN was trained on these event. A more stringent test for the folding

is to utilize different samples for the vertex-level events and demonstrate that the result-

ing detector-level distributions are correctly reproduced by the folding GAN. The resulting

detector-level distributions in Fig 27. (bottom row) using the folding GAN agree with the

true detector distributions, confirming that the folding GAN mimics accurately the detector

simulator independently of the nature of the input vertex-level events.

6.5.4 REALISTIC EXAMPLE

This section will be updated upon receiving the permission from Jefferson Lab to publish

the experimental data.

6.6 CONCLUSION

In this chapter we describe two techniques to simulate detector effects: direct folding

and conditional folding GANs, and we discuss the limitations of the first model and how

the second one can be more generic and overcome and satisfy some of the physics folding

constraints. In the next chapter, we integrate the conditional folding procedure with a

ML-based generator model to reconstruct vertex-level events (unfolding).
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CHAPTER 7

VERTEX-LEVEL EVENTS CONSTRUCTION

In this chapter we integrate the conditional folding procedure developed in 6 with a GAN

model to reconstruct vertex-level events. This work addresses RQ3: Can we build a ML-

based event generator framework to reconstruct vertex-level events?, and will be published

in Physical Review D [20]. We begin the discussion in Sec. 7.2 with a schematic overview of

the MLEG training with our GAN-based model. This is followed in Sec. 7.3 by a description

of the ML conditional folding that we use in order to simulate the effects of real particle

detectors. The application to inclusive electron-proton DIS is discussed in Sec. 7.4, where

we examine GAN training both with and without detector effects. We finally, summarize

our findings in Sec. 7.5.

7.1 INTRODUCTION

In this work we integrate the conditional folding with a GAN model to present an

ML-based event generator (MLEG) using generative adversarial networks, which have been

increasingly utilized recently in high-energy physics applications as a tool for fast Monte

Carlo simulations [68, 5, 6, 7, 8, 9, 69]. A crucial feature of GANs (as well as generative

models in general) is their ability to generate synthetic data by learning from real samples

without explicitly knowing the underlying physical laws of the original system. We present

a case study for inclusive deep-inelastic scattering (DIS) with realistic pseudodata generated

from phenomenological models. We first train the MLEG that can faithfully reproduce the

phase space of inclusive DIS along with uncertainty quantification (UQ) stemming from

finite statistics and model architectures. Subsequently, we implement detector effects using

an effective parametrization of detectors and train the MLEG folding models to simulated

detector-level DIS events. For the first time a closure test for reconstructing vertex-level

DIS events, free of theoretical assumptions, is performed.

The results provide a new opportunity for experimental data analysis to use the GAN ap-

proach to build theory-free event generators which mitigate biases induced in reconstructing

physical observables from experimental data.

7.2 GAN-BASED EVENT-LEVEL CONSTRUCTION
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Fig. 28.: Schematic view of the MLEG GAN training framework. The MLEG (dashed

box) uses a generator which transforms noise into event-level features. The generator is

concatenated with a detector simulator to mimic synthetic detector-level event features. The

deep neural network based discriminator compares detector-level event features in order to

build gradients to update the generator of the MLEG.

A schematic view of the training workflow of our MLEG GAN is illustrated in 28., where,

as usual, the GAN model is composed of a generator and a discriminator. The generator

converts noise through a deep neural network into event-level features, which is customized

by a given reaction. The generated event features are then passed into a detector simulator

to convert them as “trial” detector-level events. The discriminator learns through another

deep neural network to differentiate the true detector-level event samples from the ones

produced by the generator and the detector simulator. The GAN training evolves as the

generator and discriminator compete adversarially, each updating their parameters during

the training process. Eventually, the generator is able to produce synthetic samples that the

discriminator can no longer distinguish from the real samples, at which point the training

of the MLEG is complete.

Although GANs have demonstrated impressive results in various applications, including

generating near-realistic images [85], music [86], and videos [87], training a successful GAN

model is known to be notoriously difficult. Many GAN models suffer from major prob-

lems, such as mode collapse, non-convergence, model parameter oscillation, destabilization,
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vanishing gradient, and over-fitting due to unbalanced training of the generator and discrim-

inator. Approaches and techniques to address these general problems have been proposed

and discussed recently in the literature [45, 88, 89, 90, 91].

Unlike common GAN applications, such as the generation of realistic high resolution

images, the success of our GAN application as nuclear and high-energy physics event gener-

ators relies on its ability to faithfully reproduce correlations among the particles’ momenta,

which are increasingly difficult in higher (greater than one or two) dimensions. At the same

time, the corresponding multidimensional momentum distributions or histograms display

rapid changes in the phase space that spans several orders of magnitude. The challenge

is then to design suitable GAN architectures capable of reproducing all of the correlations

among the particles, along with a faithful reproduction of the multidimensional histograms

across the phase space. In Sec. 7.4 we will discuss in detail about how to customize this for

our specific application of inclusive DIS.

7.3 INTEGRATION OF THE CONDITIONAL FOLDING

PROCEDURE

Experimental data, provided in the form of final state particle momenta, are affected

by distortions introduced by experimental detectors. A correction procedure is usually

necessary to extract the true information from the measured cross sections and provide the

vertex-level distributions used in physics analysis. Such detector effects have multiple causes,

including limited acceptance, finite resolution, efficiency distortion, and bin migrations due

to radiation and rescattering. Corrections are commonly taken into account using unfolding

procedures that attempt to correct for the detector effects at the histogram level, requiring

ad hoc corrections for each type of observable.

In order to demonstrate that our framework is realizable in a real experimental analysis,

such detector effects must be taken into consideration. For this purpose, we use the “eic-

smear” software package [84], which was developed at Brookhaven National Laboratory as

a fast simulation tool for the future Electron-Ion Collider [92], and provides a simplified

parametrization of the response of the detectors. The eic-smear is an open source package

providing smearing capability in quantities like momentum, energy, polar and azimuthal

angles. Initially, to enhance the smearing effects so they can be readily perceptible, the

parameters were considerably increased. This resulted in unsatisfactory results. Reducing

the smear parameters to their nominal values proved consequential in converging to the

desired result.
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Fig. 29.: Schematic view of the ML detector surrogate, where a generator converts input

vertex-level event features and noise to detector-level event features. The training samples

are obtained from guess vertex-level samples and the corresponding detector-level samples

using a detector simulator. The discriminator (right hand side of the figure) is trained

simultaneously with vertex-level and detector-level event features in order to minimize the

dependence of the generator on the input vertex-level guess samples.

We combine the conditional folding model, as illustrated in Fig. 29.. The idea is to

train a conditional generator simulating the smearing effect of the detector by converting

input vertex-level event features and noise into detector-level event features, as dictated by

eic-smear. To do this we build training samples using trial vertex-level guess event samples

and the associated eic-smear detector-level samples to train the conditional folding. Once

the conditional folding is trained, the ML detector surrogate (represented by the dashed

box in 29.) can be integrated as the detector simulator in 28.. It is worth noting that

for a more realistic description of detector effects, the eic-smear parametrization should be

replaced by a full GEANT-based [57] detector model. However, its integration within our
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MLEG models using standard ML libraries is beyond the scope of the present analysis, and

will be the subject of future work.

7.4 APPLICATION TO INCLUSIVE ELECTRON-PROTON

SCATTERING

In this section we describe the application of our MLEG strategy to the inclusive unpo-

larized DIS of electrons (four-momentum k) from protons (four-momentum P ). Our goal

is solely to produce the scattered electron phase space, labeled by the four-momentum k′.

As a surrogate for real experimental data, we use pseudodata generated from the Jefferson

Lab Angular Momentum (JAM) Collaboration’s QCD global analysis framework [93] that

has been tuned to describe world data on inclusive DIS and other high-energy scattering

processes.

The inclusive electron DIS samples are generated at a center of mass energy of 318.2 GeV,

compatible with HERA kinematics, by integrating the 2-dimensional differential cross sec-

tion dσ / dx dQ2, computed at next-to-leading order in perturbative QCD using importance

sampling, and unweighting events over a very dense binning in (x,Q2)-space. Each event is

transformed into an outgoing electron momentum in the HERA laboratory frame by gen-

erating an azimuthal angle relative to the beam axis sampled from a uniform distribution.

While our ultimate goal is to apply this approach to real data, this case study provides

unique insights of our ML workflow and allows us to identify challenges in formulating a

suitable feature space to be learned by the model.

When training the GAN solely using the electron momentum in the laboratory frame as

event features, the generator was found to create electron samples that violate momentum

conservation near the edge of the phase space, and the model was not sensitive enough to

prevent the production of these samples [10]. To alleviate this problem and aid the training,

we use a change of variables that enhances the discriminator awareness in these difficult

regions. Specifically, we define the scaled variables

ν1 = ln
(
(k′

0 − k′
z)/1GeV

)
, (24a)

ν2 = ln
(
(2Ee − k′

0 − k′
z)/1GeV

)
, (24b)

where Ee is the incident electron energy, k′
0 and k′

z are scattered electron energy and longi-

tudinal momentum, respectively. In Eqs. (24) the energies and momenta in the arguments

of the log are implicitly in units of GeV. These variables can be easily inverted into the

original momentum space. In particular, the variable ν2 changes rapidly as the energy of
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the outgoing electron approaches its limit, allowing the discriminator to be aware of such

region.

In the following, we present details of our chosen ML architecture used for the event-level

construction and the ML detector surrogate.

• MLEG: The input to the generator in 28. is a 100-dimensional white noise array

centered at 0 with unit standard deviation. The generator network consists of 5

hidden dense layers, with 512 neurons per layer, activated by a leaky Rectified Linear

Unit (ReLU) function. The number of layers and neurons are optimized to balance

execution time and convergence. The last hidden layer is fully connected to a 2-

neuron output corresponding to the variables ν1 and ν2, activated by a linear function

representing the generated features. The corresponding discriminator also consists

of 5 hidden dense layers with 512 neurons per layer, optimized as for the generator,

and activated by a leaky ReLU function. To avoid overfitting, a 10% dropout rate is

applied to each hidden layer. The last hidden layer is fully connected to a single-neuron

output, where “1” indicates a true event and “0” a fake event. The discriminator D is

trained to give D(F ) = 1 for each training sample F , and D(F̃ ) = 0 for each sample

F̃ produced by the generator.

• conditional folding: This model is described in chapter 6. As shown in 29. we have

a generator that receives vertex-level as input in addition to a 100-dimensional white

noise centered at 0 with unit standard deviation. The generator will learn to fold the

inputs and produce detector-level events that mimic the detector response dictated

by eic-smear. By conditioning the model on vertex-level event features we can en-

force learning the correlations between vertex- and detector-level events as opposed to

learning a deterministic mapping between inputs and outputs. As for the MLEG, the

generator will produce a 2-neuron output corresponding to the detector-level variables

ν1 and ν2, activated by a linear function representing the generated features, and the

discriminator will similarly produce “0” or “1” for training and generated samples,

respectively. In both the generator and discriminator architectures of the ML detec-

tor surrogate, we use the same number of hidden layers, neurons, dropout rates, and

activation functions as in our MLEG. A similar idea of using GAN for detector effects

has been proposed by [60], where in contrast to our folding procedure, parton-level

data is mapped to detector-level data using a conditional GAN model.

For both of our GAN architectures we adopt the Least Squares GAN (LSGAN) [46],
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which replaces the cross entropy loss function in the discriminator of a regular GAN by a

least squares term,

min
D

V (D) =
1

2
⟨(D(x)− b)2⟩x∼PT

+
1

2
⟨(D(G(x̃))− a)2⟩x̃∼PG

,

(25)

min
G

V (G) =
1

2
⟨(D(G(x))− c)2⟩x∼PG

, (26)

where PG denotes the distribution of the generated samples and PT the distribution of the

training samples. As a result, by setting b−a = 2 and b−c = 1, minimizing the loss function

of LSGAN implies minimizing the Pearson χ2 divergence. For the conditional model, the

objective functions can be defined as

min
D

V (D) =
1

2

〈
(D(x|y)− b)2

〉
x∼PT , y∼Pv

+
1

2

〈
(D(G(x̃|y))− a)2

〉
x̃∼PG, y∼Pv

,

(27)

min
G

V (G) =
1

2

〈
(D(G(x|y))− c)2

〉
x∼PG, y∼Pv

, (28)

where Pv denotes the conditioned vertex-level samples that are fed as inputs to the ML

detector surrogate. The main advantage of the LSGAN is that by penalizing the samples

that are far from the decision boundary, the generator is prompted to generate samples

closer to the manifold of the true samples.

Our networks are trained adversarially for 100,000 epochs, where an epoch is defined

as one pass through the training data set. For the optimizer, in both cases we use Adam

[94] with a 10−4 learning rate, β1 = 0.5, and β2 = 0.9. To balance the generator and

discriminator training, the training ratio is set to 5.

7.4.1 GAN TRAINING WITHOUT DETECTOR EFFECTS

As a first step in our numerical analysis, we train the MLEG using the DIS pseudo-

data samples without detector effects in order to establish the baseline agreement between

training and synthetic data, without the complications introduced by the detector folding.

In Fig. 30. we compare the training and synthetic normalized inclusive ep phase space

distributions for the scattered electron in the variables ν1 and ν2.

The uncertainty bands are generated by taking the standard deviation of 10 indepen-

dently trained GANs, where for each case the training samples are prepared using the

bootstrapping procedure (taking random samples with replacement). It is useful here to
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Fig. 30.: Comparison of distributions of training and derived variables from JAM training

samples (black circles) and GAN-generated synthetic data (yellow bands) for the case of

no detector effects; the band size reflects the uncertainty evaluated using the bootstrap

procedure (see text). The bottom of each panel shows the pull distributions (red circles)

defined in 29, with the two horizontal dotted lines corresponding to ±1σ.

define the “pull” metric between the training (JAM) and synthetic (GAN) data by

pull =
E
[
P(O|bin)

]
GAN

− E
[
P(O|bin)

]
JAM√

V
[
P(O|bin)

]
GAN

+V
[
P(O|bin)

]
JAM

, (29)

where E[P(O|bin)] and V[P(O|bin)] are the expectation values and variances of the discrete

probability density P of an observable O. As expected, the synthetic distributions for ν1 and

ν2 match well with the distributions from the training samples, within the statistical uncer-

tainties, since for these variables the deviation from the training set is explicitly disfavored

by the discriminator. Also shown in Fig. 30. are distributions of derived quantities that
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are physically relevant for the DIS process, namely, the four-momentum transfer squared,

Q2 = −(k − k′)2, and the Bjorken scaling variable x = Q2/2P ·(k − k′). While these ob-

servables are obtained by nonlinear transformations of the original variables ν1 and ν2, the

result accurately reconstructs the matching, within uncertainties, with the corresponding

spectra from the training data.

In Fig. 31. we illustrate the reduced inclusive ep DIS cross section, σep
r (in practice the

reaction involved positrons scattering from protons), as a function of Q2 in multiple bins

of x for the HERA data [95] and for the parametrization of the data from the JAM global

QCD analysis [93]. These are compared with the reduced cross sections reconstructed by

the GAN. Within the statistical uncertainties, the empirical results are well reproduced by

the MLEG simulation in most of the regions of the phase space. Note that the agreement

between the JAM fit and the HERA data deteriorates at the largest Q2 values for each

fixed-x spectrum due to the vanishing of the phase space.

Nonetheless, the GAN is able to follow the pattern of the phase space distribution, such

as the approximate scaling behavior, as well as the drop around the edges of the phase

space. This result is quite nontrivial since the relationship between the variables that are

learned (ν1, ν2) and the DIS variables (x, Q2) is nonlinear, and demonstrates the ability of

the GAN to learn accurately the underlying probability distribution of the phase space.

7.4.2 GAN TRAINING WITH DETECTOR EFFECTS

Having established a baseline agreement for our MLEG framework, we proceed to include

detector effects, as would be in actual experimental situations, which inevitably increases

the complexity of the analysis. As discussed above, we train separately an ML detector

surrogate using a detector parametrization provided by the eic-smear software. For the

trial vertex-level event samples we use directly the samples from the JAM global QCD

analysis instead of the flat phase space so as to optimize the GAN training. However, we

stress that in principle the model architecture for the detector surrogate can be trained with

any samples.

In Fig. 32. we show the vertex- and detector-level distributions for ν1 and ν2, where

significant distortions are observed for the latter. An issue regarding the change of variables

in Eqs. (24) is that after smearing the detector-level k′
z variable can exceed the physical

limit given by the incident beam energy Ee, rendering the transformation singular for those

unphysical cases. However, since the change of variables, in particular for ν2, is solely

designed to increase the detector awareness in the difficult regions, we can replace Ee in
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Fig. 31.: Comparison of the reduced inclusive ep cross section σep
r versus Q2 at fixed values

of Bjorken-x from the HERA collider [95] (red circles) with data generated from the JAM

global QCD analysis (black solid lines) and the trained GAN (yellow bands). No detector

effects are included, and for clarity the cross sections are scaled by a factor 2i, with i ranging

from i = 0 for the highest-x value to i = 17 for the lowest-x value.
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Eqs. (24) by the maximum energy found for the detector-level samples to achieve the same

goal, and avoid the singularity of the variable transform. This disparity, however, creates

an impression of higher levels of distortion in the ν2 variable compared to ν1. We also

illustrate the smearing effects by focusing on small intervals in ν1 and ν2, as shown in the

Fig. 32. insets, to indicate the nontrivial distortion that is taking place across the phase

space. Included in Fig. 32. are the corresponding predictions from the detector-level GAN

output, which shows very good agreement with the training samples. Note that there are

regions where GANs do not match precisely with eic-smear, namely, the tail regions at small

and large ν2, which correspond to the edges of the reaction phase space. For the scope of

this study, the GAN output represents a reasonable true detector proxy, allowing us to carry

out the vertex-level learning closure test and validate the proof of principle of our MLEG

framework.

With the ML detector surrogate we proceed with training the MLEG with detector

effects. In Fig. 33. we show similar results as in Fig. 30., but this time with detector effects

included. As expected, the variables ν1 and ν2 are well reproduced, since the discriminator

supervises on these variables during the training. Similarly, the predicted DIS variables x

and Q2 at the detector level are well reproduced within the uncertainties. We also inverte

ν1 and ν2 into the original momentum space and plot the 2D correlation plot between k′
x

and k′
y. As shown in Fig. 35. these two inverted variables are well reproduced since they

are inverted directly from the training variables.

As the final step, we examine the quality of the MLEG at the vertex level by analysing

the direct output of its generator, and plot in Fig. 34. the corresponding vertex-level distri-

butions. Relative to the detector level, the vertex-level distributions are observed to have,

on average, larger values for the pull than those in Fig. 33.. This is expected since we do

not directly supervise at the vertex level, but instead these are inferred quantities. A more

detailed examination of this is shown in Fig. 38., where we plot the reduced cross sections

as in Fig. 31., but in the presence of detector effects. As expected, the uncertainties increase

due to the detector effects. We also invert the corresponding vertex-level distributions of ν1

and ν2 into the original momentum space and plot the 2D correlation plot between k′
x and

k′
y.

One particular region where the deviations from the true result becomes larger compared

to Fig. 31. are those at low Q2 and high x (see, for instance, the low-Q2 region for the

x = 0.01 and 0.02 bins). The difficulty in accurately inferring this region can be traced

back to the accuracy in reproducing ν2 in Fig. 34. around ν2 ∼ 0. To see this more clearly,
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Fig. 32.: Comparison of training features at the vertex-level (generated, blue histograms)

and detector level (smeared, green histograms) with the MLEG generated synthetic data

(red histograms). The insets illustrate the local smearing effect at the points indicated by

the green vertical dashed lines.

in Fig. 37. we plot ν2 as a function of Q2 at various fixed values of x. As x increases, the

range of ν2 increases covering the negative ν2 regions for lower values of Q2. The observed

deviations in Fig. 34. around ν2 ∼ 0 can be understood by observing the corresponding

regions in Fig. 33. where the detector-level distribution is compatible with zero. In this

case, the inference of the underlying vertex-level distribution is ill-defined.

We can understand such effect by considering the extreme scenario where the detector

does not observe a particle at all, or converts the vertex-level samples into flat noise. Clearly,

in such a situation the vertex-level distribution is not recoverable. In the present situation,

some regions of the phase space are subjected to some degree to such extreme effects, while
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Fig. 33.: As in Fig. 30., but with Detector Effects Present

other regions are not. Other than those ill-defined regions, one can see that within the

uncertainties the synthetic reduced cross sections are in agreement with the true vertex-

level cross sections. This can be seen as confirmation that our MLEG training passes the

closure test in the presence of detector effects.

7.5 CONCLUSION

We have presented a new approach based on generative adversarial networks to extract

physics observables from pseudodata in a physics agnostic manner. To illustrate the strategy,

we developed a GAN-based MLEG capable of generating synthetic data that mimic inclusive
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Fig. 34.: As in Fig. 30., but with All the Variables Inferred by the Unfolding procedure

deep-inelastic ep scattering pseudodata generated in the kinematics of the ZEUS and H1

experiments at HERA. To demonstrate the veracity of our approach we performed a closure

test, extracting the original phase space distributions from synthetic particle four-momenta.

To simulate real experimental scenarios, we introduced distortions into the analysis that

would be induced by a real detector, implementing a resolution smearing function, and after

repeating the test obtained good agreement between original and extracted phase space

distributions. Pulls quantified the uncertainty associated with the unfolding procedure,

showing not only that we were able to extract the desired physics observables, but providing

an uncertainty quantification for the unfolding procedure. To our knowledge this is the first

time that detector effects were unfolded from pseudodata on an event basis.
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    JAM + eic-smear                               MLEG

Fig. 35.: Comparison of distributions of inverted variables from JAM training samples and

GAN-generated synthetic data.

The present analysis is a necessary and important proof of concept that demonstrates the

viability of applying ML techniques to mitigate theoretical bias in experimental data anal-

ysis. Despite the fact that in our analysis we have effectively utilized only two-dimensional

degrees of freedom to be reproduced by the MLEG, our main result is that it is possible to

unfold detector effects at the event level. From the ML point of view, a larger number of

particles in the final state amounts to a larger feature space. It is expected, therefore, that

an extension of our proposed idea to include additional particles in the final state is feasible,

provided that the number of particles in the final state remains moderate. This is case, for

example, in semi-inclusive and exclusive electron-nucleon scattering.
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        JAM data                                       MLEG

Fig. 36.: As in Fig. 35., but with All the Variables Inferred by the Unfolding Procedure
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including detector effects and unfolding.
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CHAPTER 8

EVALUATION AND INTERPRETATION

In this chapter we apply some machine learning techniques, include hidden layers analysis,

dimensionality reduction, and loss landscape visualization to interpret our devolved tools.

We start by exploring a non-linear dimensionality reduction transformation to understand

how the hidden layers of our NNs can learn different physics reaction mechanisms. We also

explore loss landscape visualization technique on toy and realistic examples and see how the

loss landscape of given NNs react to different hyper-parameters and use this tool to aid in

model selection and have a stable framework that generalizes well to several applications.

8.1 INTRODUCTION

ML algorithms have been defined for many years as black boxes for their complexity,

and not straightforwardly interpretable to humans. In recent years, there have been ef-

forts to produce explainable machine learning techniques that can provide more disruptive

approach to ML algorithms. Several techniques are used for such interpretations, such as

Local Interpretable Model-agnostic Explanations (LIME) [96], which is an explainable tech-

nique that explains the predictions of any ML classifiers. LIME tests what happens to

the predictions when we provide variations of the data into the ML algorithm, it supports

several data categories, including tabular and image data sets. There is also SHapley Ad-

ditive exPlanations (SHAP) [97], which is another explainable technique that can explain

the predictions of given ML algorithm by calculating the contribution of each feature to the

prediction. SHAP can also determine the importance of of all features and their impact

on the model prediction that has better consistency with human intuition than previous

approaches according to the authors.

Hidden layers visualizations is another technique used to interpret NNs by visualizing the

weights and output of the hidden layers and understand what information and features are

being captured in each layer. Because the hidden layers outputs live in a high-dimensional

space and we can only visualize 2D or 3D dimensional space, several non-linear dimension-

ality reduction techniques exist to bridge the gab, such as t-distributed stochastic neighbor

embedding (tSNE) [76] and Uniform Manifold Approximation and Projection (UMAP) [98].
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Loss visualizations is another tool used to interpret the training of different NNs. Many

argue that visualizing the (1D line) loss that computes the loss value at each step (epoch)

is not enough to understand how the loss surface looks like during the training and to have

side-by-side comparisons with several NNs architectures; therefore, efforts have been made

to visualize loss landscape of NNs by reducing the high-dimensional space of loss surface

into 2D, and explain why certain NNs architectures perform better than others, such as [12].

In this work, we explore the hidden layers of our MLEG framework using t-SNE algorithm

applied on the discriminator, and we also explore several NNs architectures and hyper-

parameters and visualize the loss landscape using the technique developed in [12].

8.2 LAYER ANALYSIS USING T-SNE

Hidden variables in ML algorithms, such as NNs are usually not interpretable, but they

interact with the observed variables. This makes it challenging for hyper-parameter tunning

and model selection, and leads to incomprehension of the domain. In this section we explore

our NNs hidden variables using t-distributed stochastic neighbor embedding (t-SNE) [76].

We first give a brief background of t-SNE then we show results when apply t-SNE directly

on the training set and our MLEG framework.

8.2.1 T-SNE BACKGROUND

In 2008, Geoffrey Hinton and Laurens van der Maaten developed one of the well-known

dimensionality reduction algorithm called t-distributed stochastic neighbor embedding (t-

SNE). This algorithm is an extension of stochastic neighbor embedding (SNE) [99], where

the later solves the crowd points problem by presenting the student’s t-distribution instead

of Gaussians which makes it easier to optimize, and to produce better visualizations. t-SNE

is a non-linear dimensionality reduction technique that visualizes high-dimensional space by

giving each data point a location in a lower dimensional space.

The algorithm calculates a similarity measure between pairs of points in the high and

low dimensional spaces. Then t-SNE uses a cost function to optimize the similarity. As

shown in Fig. 39., the left plot represents a high-dimensional space which has scattered

points. For each data point, for example xi, we center a Gaussian distribution over that

point, then we measure the density of all other points under that Gaussian xj. The circle or

Gaussian distribution width can be adjusted using a hyper-parameter called perplexity. This

will produce a set of probabilities Pj|i for all points that represent the similarities between

points. Similarly, in the lower space we measure the similarities between data points, but
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Fig. 39.: t-distributed Stochastic Neighbor Embedding (t-SNE)

instead of using a Gaussian distribution, we use a Student t-distribution that will give us

another set of probabilities qj|i. The idea of incorporating t-distribution is because it has

heavier and longer tails than Gaussian distribution which can solve the crowd problems

exist in [99]. The t-SNE paper suggested a perplexity values between 5 and 30. After

we compute the probabilities of low- and high-dimensional space, we want them to be as

close as possible and we measure the difference between the two sets of probabilities using

Kullback-Liebler divergence (KLD). Then we use gradient decent algorithm to minimize the

KLD cost function, as smaller loss values generally means more preservation of the global

and local structures of the data points.

8.2.2 T-SNE ON HIDDEN LAYERS

Latent variables in several ML applications show that they carry useful and interesting

properties of the training data. By projecting the data into a high-dimensional space in

a given NN, one might find correlations and more separations that are not observed in

the actual data. Exploring the hidden layers can assist in model selection, and building a
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Fig. 40.: Overview of NN Hidden lLayer

successful ML event generator, which will improve our understanding of the domain.

We use MC and center-of-mass (CM) CLAS data [66] to perform t-SNE analysis on our

model’s hidden layers to explore different physics mechanisms. The idea of using t-SNE on

the NNs hidden layers is straightforward. As shown in Fig. 40., an NN contains multiple

inputs (green circles) x1, x2, x3, ....xn, corresponding to CM CLASS data, then the inputs go

through the first hidden layer (grey circles) that contains nodes or unites h1, h2, h3, ....hn.

The weights of this hidden layer is multiplied by the inputs, then activated by an activation

function, such as LReLU before it moves froward to the next layer. For simplicity we only

show one hidden layer in this figure. Finally, the last hidden layer is connected to the output

layer (red circle) that produces the estimated outputs of the original inputs. In this work,

we extract the hidden layers outputs of our discriminator that was trained on CM CLASS

data. Each layer has 512, so we apply t-SNE to project this high-dimensional space into

2D, and perform the analysis. Projecting the last hidden layer of the discriminator into 2D

We are specifically interested in the (resonance regions) that are not known and cannot not

be separated from the experimental CLAS data, but we can see an approximation of those

regions by visualizing 2D of π+p mass and π+π− mass, where these two variables can be

calculated by taking the square root of the dot product between the momentum of proton

and pion particles. In particle physics, a resonance refers to the peak located around a

certain energy found in differential cross sections of a given scattering experiment. Particle

physicists often use the appearance of those regions to detect new particles in scattering data.

The approximated resonance regions of the CLAS data include three dominant reaction

channels: π−∆++, ρ (770)p, and a diffuse background indicated by pπ+π− that effectively
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Fig. 41.: Projecting the Last Hidden Layer of the Discriminator into 2D using t-SNE

accounts for other sub-leading contributions to the reaction. Because this data was generated

based on theories and assumptions, we have full control of the data and those regions are

accessible and can be isolated into three different regions. Having this MC data with the

corresponding labels for the resonance regions can help to tune the t-SNE algorithm and

have a validation set to test our methodology.

In Fig. 41., we show the results we obtained after projecting the last hidden layer of

the discriminator (512 nodes) of our MLEG into 2D using t-SNE, and color the map by

the resonance labels. The hidden layer was extracted after training the model for 100,000

epochs on realistic MC data. We can see pπ+π− (purple color) is clustered on the top left

of the scatter plot which indicates this region can be separated by extracting those t-SNE

islands. For the ρ (770)p region (black color) there is also clusterization where some islands

are dominated by black with minor contamination from other regions, and similarly with

π−∆++ (orange color) which has more contamination as we expect because this region does

overlap with other regions.

Because t-SNE is stochastic and the embedding is initialized randomly, the layout in the

projected lower dimensional space is likely to vary from one run to another and produces
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Fig. 42.: DBSCAN Clusters Correspond to Different Regions in t-SNE Map

different results, but local structures and correlations tend to be robust across multiple runs.

After extensive studies and exploring several hyper-parameters, we found the algorithm to

produce the similar global shapes and patterns using simulated and CLAS data for several

runs with the following configurations: perplexity = 100, learning rate = 200, number

of iterations = 5000, indicating the stability of the generated results. The hidden layers

analysis was investigated at the discriminator level because in our case the generator hidden

layers do not carry the information of the augmented features as the FAT layer, discussed

in 4, is concatenated with the outputs layer of the generator. Therefore, the discriminator

is more sensitive to these features. The analysis and hyper-parameters tuning were based

on GPU-Accelerated t-SNE [100] for faster computational time.
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t-SNE on Non-Labeled Data

In the previous section, we provided an example of performing t-SNE on the discriminator’s

hidden layers and we were able to validate the results. This is because MC data was used and

we know the exact locations of the resonances were known. In real experimental data like

CLAS the resonance regions that are not known so we will not be able to use labels to color

the regions. Ideally we want to take the t-SNE map to isolate the islands on the map and

then check the corresponding events. To do this we use Density Based Spatial Clustering

of Applications with Noise (DBSCAN) [101], which is a ML clustering algorithm that does

not require domain knowledge to determine the input parameters. The DBSCAN algorithm

groups data points that are close to each other based on Euclidean distance and a minimum

number of points to form a cluster. There are two main parameters need to be tuned: the

first is ϵ which is the distance between two data points to be considered as neighbors, and

the second is min−sample which is the minimum number of samples to form a dense region.

In Fig. 42. we show the results from DBSCAN clustering applied on the t-SNE map in Fig.

41.. For this we use ϵ = 0.5, and min−samples = 25 that produced 70 clusters. We can

see the regions (islands) are now colored by their corresponding clusters so we can easily

extract each region and perform the analysis. To verify if the regions correspond to different

physics mechanisms, we extracted the largest two clusters from Fig. 42. which are the

blue and red islands located in the middle of the figure, and extracted the corresponding

events to see where those events are located. We find that the events correspond to the

(red) cluster map to ρ (770)p resonance and the events correspond to the (blue) cluster

map to π−∆++ resonance with some contaminations from other events. This concludes

that the hidden layers of our GAN model carry interesting information and can separate

between resonance regions when they are projected into high-dimensional space. Studying

the locations of resonance regions and the ability to extract those events is a valuable

contribution in particle physics as physicists often use the appearance of the resonances to

detect new particles in scattering data. This also improves our understanding of the trained

model and we can use this analysis to help in hyper-parameters tuning and model selection.

8.3 LOSS LANDSCAPE VISUALIZATION

The performance of NNs can be impacted by several factors, such as variable initializa-

tion, optimizer, network architecture, batch size, and other hyper-parameters. Studying the
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Fig. 43.: 1D Loss Curve Generated from the MLEG Trained on CLAS Data

effects of various hyper-parameters is challenging because their loss values live in a high-

dimensional space. Several scientific applications rely on a simple (1D line) loss curve which

is basically computing the mean/sum of the loss value for each epoch which produces a

scalar for each iteration, and then plot the loss values as a function of epochs as shown in

Fig. 43.. While this method is beneficial to give an overview of the model performance,

it only shows a small range of gradients of the parameters, and it does not show the con-

vexity of the function, and why certain NNs architectures generalize better than others.

Recently, [12] devolved filter normalization technique to visualize the loss landscape of

NNs that can show how convex/non-convex an NN function is, and explain why certain

NN architectures generalize well while others suffer from high generalization errors. As

part of hyper-parameter tuning and model selection, we applied filter normalization tech-

nique, devolved in [12] to visualize the loss landscape and have side-by-side comparisons for

different NNs architectures and parameters.

8.3.1 FILTER NORMALIZATION

In a simple ML problem, NNs are trained on feature vectors xi, and corresponding labels

yi, and number of data samples m, with model parameters/weights θ, and the objective
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function can be defined as,

Lθ =
1

m

m∑
i=1

l(xi, yi, θ) (30)

where the function l(xi, yi, θ) measures how well the NN can predict yi given xi with the

model weights θ. NNs mostly contain large number of parameters and their loss functions

live in a high-dimensional space. Several techniques have been proposed to reduce the loss

space into 1D line or 2D surface plots, such as [102].

In this work, we use filter normalization technique to visualize the loss landscape

of GAN NNs that can show how convex/non-convex a NN function is, and explain why

certain NNs architectures with a set of parameters perform better than others. To use this

approach, we choose a center point in the loss surface θ∗ and choose two random direction

vectors γ and ν and plot 2D surface of the form f(α, β) = L(θ∗ + αγ + βν). Because the

plots are sensitive to the scale of the model weights, as suggested in [12], we rescale the

random directions using the filter normalization to have the same Frobenius norm of the

corresponding filter (or weights in Dense layers) in θ. This technique has been used to study

the effects of different NNs architectures (e.g skip connections) and to investigate sharp

verses flat minimizers and how they correlate with generalization error.

Loss Surface Using Several Architectures for GANs

We apply filter normalization technique on several GANs architectures to understand the

effects of different parameters and help in tunning the model. We are mainly interested in the

GANs loss landscapes when trained using residual blocks as in Fig. 48. verses feedforward

NNs (no residual blocks) as shown in Fig. 47.. One problem with GANs in general is

that there is no clear correlation between the loss values and the performance of the model.

Because the generator and discriminator play a min-max game and compete with each other,

the loss values can have different non-intuitive patterns for multiple runs. For example, in

Fig. 44. we see three different GANs model trained on CLAS data. The first model (a) was

trained using 10 residual blocks layers in the generator and discriminator, and 15 residual

blocks layers in the second model (b), and 15 feed-forward layers (no residual blocks) in the

last model (c). An example of a residual block is shown in Fig. 46.. We can see by looking

at these three models (a), (b), and (c), one cannot choose which model will perform better

and generate more stable results. However, when we plot the corresponding loss surface in

Fig. 45., we clearly can see different behaviours where (a) and (b) that use residual blocks

seem to have very smooth loss surface, while (c) that does not have residual blocks has very
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(a) 10 residual blocks layers (b) 15 residual blocks layers

(c) 15 Feed-forward Dense layers

Fig. 44.: 1D Loss from Generator and Discriminator using Several NNs Architectures

chaotic behaviour which can explain why deep NN layers with residual blocks are easier to

train.

8.4 CONCLUSION

In this chapter we apply t-SNE with DBSCAN clustering algorithm to analyze the hidden

layers of our GAN models to explore the possibility of extracting physics mechanisms. The

results on MC and CLAS data show that when projecting the training data into high-

dimensional space in the hidden layers, we can find more correlations and separations that

allow for extracting the resonance regions. We also use loss landscape visualization to

investigate why certain architectures and optimization algorithms perform and generalize

better than others. This helps to fine-tune the model and to have a better interpretation of

the devolved tools.
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(a) Loss Surface, 10 Residual Blocks (b) Loss Surface, 15 Residual Blocks

(c) Loss Surface, 15 Feed-forward Layers

Fig. 45.: Discriminator Loss Landscape using Several NNs Architectures
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Fig. 46.: Two Residual Blocks Example
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Fig. 47.: Simple GAN diagram that uses feed-forward NNs in both: the generator 
and discriminator.
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Fig. 48.: As in 47., but Using Residual Blocks in the Generator and Discriminator
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CHAPTER 9

CONTRIBUTIONS, CONCLUSIONS, AND FUTURE WORK

In this chapter, we summarize the major contributions of several components for the de-

velopment of a ML-based event generator framework. We expect some of our developed

software to be further utilized in the future while some tools have been already utilized by

Jefferson Lab experimental groups.

9.1 CONTRIBUTIONS

Our contributions include several components discussed in chapters: 4, 5, 6, 7, and 8 that

are essential for devolving a successful ML-based event generator framework. The major

contributions for each chapter will be summarized in the following subsections.

9.1.1 FAT-GAN

We develop a Feature-Augmented and Transformed GAN (FAT-GAN) that is able to

faithfully reproduce the distribution of final state electron momenta in inclusive electron

scattering. The major contribution of FAT-GAN is to incorporate physical laws into the

model architecture. For this purpose, instead of directly simulating the event features, we

derive a set of transformed variables from particle momenta that significantly improves the

agreement of the generated results and avoids the production of unphysical events. We also

modify the GAN architecture to satisfy physics constraints, including energy conservation.

The FAT-GAN work was published in [10] and addresses RQ1: Can we build a ML-based

generator to faithfully reproduce particle collision events?.

9.1.2 CFAT-GAN

We extend the FAT-GANmodel to develop a Conditional Feature-Augmented and Trans-

formed Generative Adversarial Network (cFAT-GAN) that can generate events with respect

to different energy beams, even events of the energy beam are not presented in the train-

ing data. This gives the flexibility of allowing users to specify the reaction energy beam

as an input to produce the corresponding synthetic events without the need to retrain the

model for multiple scenarios. The cFAT-GAN not only demonstrates faithful reproduction
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of events at the trained beam energies, but also correctly generates events for interpolated

energies. We also analyse the generator and discriminator hidden layers to examine the

sensitivity of the trained architectures with different input energies. The cFAT-GAN work

was published in [11], and related to RQ1.

9.1.3 SIMULATION DETECTOR EFFECTS

The Major contribution of this chapter is to develop a conditional folding algorithm that

can learn the smearing detector effects and converts vertex-level events to the corresponding

detector-level events. The idea of the conditional folding is to concatenate vertex- and

detector-level events through a customized layer to enforce learning the correlations and

exploit the fact that two sets of events are paired instead of learning a deterministic mapping

between vertex- and detector-level events. The folding procedure can be trained on events

covering the full phase space and then tested on events covering a subset of the phase space

indicating that the folding procedure generalizes better than using a direct distribution

mapper. This conditional folding algorithm addressesRQ2: Can we simulate the smearing

detector effects using ML tools?.

9.1.4 VERTEX-LEVEL EVENTS CONSTRUCTION

In this work, we build a new ML-based event generator framework to construct vertex-

level events. The novel idea is to combine a conditional folding algorithm with a generator

model that takes white noise as inputs and generate for the first time a closure test for recon-

structing vertex-level events, free of theoretical assumptions. The framework is validated

using simulated inclusive deep-inelastic scattering data, and we estimate the uncertainty

of the generated results using a statistical bootstrapping technique. This work was pub-

lished in [20], add addresses RQ3: Can we build a ML-based event generator framework to

reconstruct vertex-level events?.

9.1.5 EVALUATION AND INTERPRETATION

In this work, we evaluate several architectures of the GAN models and explain why cer-

tain choice of NNs designs are easier to train and can generalize better. For this purpose,

we apply filter normalization technique to visualize the GANs loss landscapes that can

present some of the properties of the ML models in understandable and interpretable forms.

This method can explore the loss surface of different models and help to justify our choice
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of NNs parameters and architectures. We also analyze the GANs hidden layers by reduc-

ing the dimensionality of the layers outputs using t-SNE and use DBSCAN to cluster the

t-SNE map space into several regions that we find to correspond to different physics reso-

nances illustrating the ability of our model to differentiate between the underlying physics

mechanisms.

9.2 CONCLUSIONS

Along with advances in ML methods, MLEGs are emerging as an alternative approach to

MCEGs for generating simulated physical events that mimic those produced in high-energy

physics accelerators. Compared to MCEGs, MLEGs demonstrate clear advantages, includ-

ing fast event generation and being agnostic of theoretical assumptions. The development

of MLEGs is still in its relatively early stages and most of the current efforts focus on using

MLEGs as fast simulation tools with less attention to other properties, such as folding and

unfolding and faithful reproductions. This motivates us to investigate several aspects of the

MLEGs and examine their accurate simulations as well as examine their ability to fold and

unfold particle events.

In this work, we present FAT-GAN model that incorporates physics into the GAN model.

This contribution can significantly improve the ability of the model to accurately mimic

simulated and experimental data and capture comblex correlations in the training features.

We then extend the model to cFAT-GAN that can generate events at unrelated collision

energies, and we examine the ability of the model to interpolate and extrapolate between

different energy beams. We also develop a conditional folding procedure that takes vertex-

level as inputs and correctly produces the corresponding detector-level events. The folding

model can be trained on the full phase space and tested on any part of the phase space.

The model is validated on several datasets including toy and realistic examples. After

that, we integrate the folding procedure with a ML generator model based on GAN to

reconstruct theory-free vertex-level events eliminating the biases introduced using existing

event generator tools.

The results show a realistic proof of concept to use MLEG to simulate particle collision

events. We expect that the use of our framework in data scattering will be a valuable com-

plementary tool for nuclear and particle physics programs at current and planned facilities,

such as Jefferson Lab [14] and the Electron-Ion Collider [103]. It is important to note that

MLEGs are not likely to replace MCEGs, but can be a complementary tool to verify the

underlying theory when compared with experimental data.
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9.3 FUTURE WORK

One of the very attractive properties of generative models is super-resolution [104, 105,

106], or generating samples going beyond the resolution of its training samples. Correspond-

ingly, in physics event generation a question that has been debated in literature is whether

the generated events can add statistics beyond that of the training sample or not. That

is, can the MLEG generate data that does not only reproduce the examples seen in the

training data, but produces additional, diverse, and realistic samples that are more useful

for downstream tasks than the original training data?

It has been claimed in [107] that, since the network does not add any physics knowledge,

one can only achieve as much statistical precision as in the training sample. The main reason

for this statement was that an MLEG does not learn to mimic the true event generator of

the training sample, but rather the data of the sample it was trained on. This would imply

that one cannot improve the model or parameter discrimination by increasing statistics with

the MLEG. In addition, the statistical uncertainty of the training samples would enter the

MLEG as systematic uncertainty, thus creating an even more stringent overall uncertainty

than in the original data. It is stated, nevertheless, that the MLEG could still offer a better

relation between accuracy and computational and storage resources than MCEGs or real

experimental data.

The findings of [108] show empirically that the claim of [107] is neither well-founded

nor fulfilled, thus declaring MLEG as a promising venue for the amplification of training

statistics. Moreover, this work quantifies the extent to which the events can be amplified

before being limited by the statistics of the training samples. The argument in favor of

augmentation feasibility relies on the fact that MLEGs are powerful interpolation tools even

in high-dimensional spaces. Despite being model-agnostic interpolators, the interpolation

functions do fulfill basic properties such as smoothness, and therefore can add to the discrete

data sets in a reliable fashion, by enabling denser binning, or higher resolution. In fact, it

was shown that an MLEG can achieve the same precision as the minimal precision of a fit

with a known functional form, saturating when the number of generated events becomes

orders of magnitude larger than the size of the original training set. While this means that

the MLEG cannot outperform the precision of a functional fit, it reassures us that in those

cases where the functional form of the fitting curve is unknown (which represents most

realistic physics scenarios), the MLEG becomes a powerful tool for precision augmentation.

We plan to further investigate the capability of GANs and other ML generative models

to produce Super-Resolution in physics events.
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         JAM data                                   MLEG

Fig. 49.: As in Fig. 36., but with ten times more samples generated by our folding procedure.

Is this super-resolution?
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network (fat-gan)”. Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, IJCAI-21

Published
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Zhang, “Introducing hijing++: the heavy ion monte carlo generator for the high-

luminosity lhc era,” arXiv, vol. 1901.04220, 2019.



104

[29] C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. In-

strum. Meth. A, vol. 614, pp. 87–104, 2010.

[30] C. Juszczak, “Running nuwro,” arXiv, vol. 0909.1492, 2009.

[31] B. P. Kersevan and E. Richter, “The monte carlo event generator acermc versions 2.0

to 3.8 with interfaces to pythia 6.4, herwig 6.5 and ariadne 4.1,” Computer Physics

Communications, vol. 184, p. 919–985, Mar 2013.

[32] M. L. Mangano, F. Piccinini, A. D. Polosa, M. Moretti, and R. Pittau, “Alpgen,

a generator for hard multiparton processes in hadronic collisions,” Journal of High

Energy Physics, vol. 2003, p. 001–001, Jul 2003.

[33] D. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International

Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-

16, 2014, Conference Track Proceedings, 2014.

[34] I. Kobyzev, S. Prince, and M. Brubaker, “Normalizing flows: An introduction and

review of current methods,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, p. 1–1, 2020.

[35] V. Blobel, “Unfolding Methods in Particle Physics,” pp. 240–251. 12 p, Jan 2011.

[36] Hunt, “Bayesian methods in nonlinear digital image restoration,” IEEE Transactions

on Computers, vol. C-26, no. 3, pp. 219–229, 1977.

[37] M. Almaeen, Y. Alanazi, N. Sato, W. Melnitchouk, M. P. Kuchera, and Y. Li, “Vari-

ational autoencoder inverse mapper: An end-to-end deep learning framework for in-

verse problems,” in 2021 International Joint Conference on Neural Networks (IJCNN),

pp. 1–8, 2021.

[38] Y. Alanazi, N. Sato, P. Ambrozewicz, A. Hiller-Blin, W. Melnitchouk, M. Battaglieri,

T. Liu, and Y. Li, “A survey of machine learning-based physics event generation,”

in Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-

gence, IJCAI-21 (Z.-H. Zhou, ed.), pp. 4286–4293, International Joint Conferences on

Artificial Intelligence Organization, 8 2021. Survey Track.

[39] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen,

D. Podareanu, R. R. de Austri, and R. Verheyen, “Event generation and statistical



105

sampling for physics with deep generative models and a density information buffer,”

arXiv, vol. 1901.00875, 2019.

[40] C. Ahdida, R. Albanese, A. Alexandrov, A. Anokhina, S. Aoki, G. Arduini, E. Atkin,

N. Azorskiy, J. Back, A. Bagulya, and et al., “Fast simulation of muons produced at

the ship experiment using generative adversarial networks,” arXiv, vol. 1909.04451,

2019.

[41] J. A. Mart́ınez, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R. V, “Particle gener-

ative adversarial networks for full-event simulation at the lhc and their application to

pileup description,” Journal of Physics: Conference Series, vol. 1525, p. 012081, Apr

2020.
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