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ABSTRACT 

 
EFFECTIVENESS OF SUSPENDED LEAD DAMPERS IN STEEL             

BUILDINGS UNDER LOCALIZED LATERAL IMPACT                                          
AND VERTICAL PULSATING LOAD 

 
Herish Abdullah Hussein 

Old Dominion University, 2022 
Director: Dr. Zia Razzaq 

 
Presented herein is a study of the effectiveness of suspended lead dampers for use 

in steel buildings under a localized impact load and a vertical pulsating load. A series of 

lead spheres mounted on a string are suspended inside the building columns or damping 

panels to absorb the energy of vibration through a collision between the lead dampers and 

internal surfaces of the members. Experiments are conducted on a three-story steel 

building model and a cantilever member with suspended lead dampers and subjected to 

localized impact loading. The cantilever under impact load is analyzed with a partial 

differential equation of dynamic equilibrium using a central finite-difference scheme. The 

numerical scheme is also used to unveil the dynamic stability characteristics of a typical 

building column under lateral impact and vertical pulsating load. The building model and 

a full-scale building frame with damping characteristics of the suspended lead dampers 

are then analyzed using SAP-2000 program with localized impact and a vertical pulsating 

load. The study shows a substantial reduction in building vibration when suspended lead 

dampers are used. The elastic-plastic transient dynamic analysis of the full-scale steel 

building reveals that the impacted column does not develop a plastic hinge at its top when 

bolted panels with suspended lead dampers are used. In the absence of such damping 
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panels, the impacted column develops three plastic hinges thereby turning into a collapse 

mechanism.    
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NOMENCLATURE 

a                      Acceleration           

b Width of column 

c Damping Coefficient  

cc Critical Damping Coefficient  

d Cross-sectional depth of column 

E Modulus of elasticity 

є Strain 

e Distance from neutral axis 

𝑓𝑓 Natural Frequency 

F(t) Forcing Function  

h Segment length 

I Moment of Inertia of the hollow section member 

K Stiffness 

L Length of Column 

M Moment [Do you mean bending moment? If so, please call say so]. 

m Member mass per unit length 

𝑛𝑛𝑖𝑖 Segment number 

T Time Period  

t Time 

Δt Time Interval 
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Ü𝑖𝑖,𝑗𝑗 Acceleration at time i, j 

𝑣𝑣 Displacement  

W Effective weight of the hollow section member 

𝜔𝜔𝑛𝑛 Natural Circular Frequency 

𝜔𝜔𝐷𝐷 Damped Circular Frequency 

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. Effective Experimental Natural Circular Frequency  

Z Member longitudinal axis 

ζ Damping Ratio 

𝑥𝑥 Shape Function 

σy Yielding Strength  

σult. Ultimate Strength 

δ Truncation error  

Š                        Shear Factor  
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CHAPTER I 

1.  INTRODUCTION 

1.1 Background 
 

The events of the past few decades resulting in collapse of buildings caused by a 

sudden loss of one or more column support at the ground level have made the need for 

investigating building structural response under such conditions an important research 

area. The 1995 terrorist attack on Murrah Federal building in Oklahoma resulted in 

building collapse due to the loss of support at the ground level, and several other similar 

events in the USA such as those of 9/11 and around the world are well-documented. Such 

events can also be caused by a vehicle hitting a building, or due to a gas explosion. A 

fundamental problem is that of the challenge of absorbing energy of impact on a typical 

column at the ground level of a building to circumvent the collapse of the structure.  A 

majority of the existing energy-absorbing devices include passive and active dampers 

developed primarily for applications in earthquake engineering.   

In an exploratory study related to passively damping the vibration of NASA’s 

space station structural members, Razzaq et al. [13-21] developed a damping system 

consisting of a series of lead dampers mounted on a string and suspended inside the 

hollow spaces of the structural members. The vibration was shown to be significantly 

damped due to the lead dampers colliding with the internal surfaces of the structural 

members.  Although the study involved both natural vibrations as well as those induced 

by harmonic forcing functions, the effectiveness of the suspended lead dampers under 

impact loading conditions was not studied in the presence or absence of pulsating axial 

loading.  

The research evaluates the effectiveness of the suspended lead dampers when 

installed in a steel building structure subjected to lateral impact loading combined with an 

axial pulsating load. Experimental investigations on a laboratory model steel building are 

conducted and the results are compared with theoretical predictions well as prototype 

structures.   
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1.2 Literature Review 
 

The published literature related to the use of passive damping devices mostly for 

applications in earthquake engineering is vast. Presented here is a brief overview of some 

of the important developments. 

The metallic-yielding damper is one of the most common passive damping 

systems. This system is a buckling restrained brace (BRB). This type is used in tall and 

intermediate buildings in locations where an earthquake is a threat [1]. This type is high 

in ductility and gives stable energy dissipation in the bracing members. By incorporating 

supplemental energy-dissipating devices, BRB reduces plastic formation in the structural 

members.  

Benavent [2] has researched a brace-type damping system on hollow structural 

sections. He used tube-in-tube assemblage, then he cut slits from the outer tube to weld 

the strips to the inner tube section, the cut-strips are used diagonally to dissipate energy 

through flexural and shear yielding. The results of this experimental study show that 

strength is increased by 1.25 times the yield strength, and this system shows stable 

hysteric response by 30 to 60 times yield displacement. However, the results do not show 

a significant difference between the proposed bracing system and the conventional steel-

plate system in dissipating energy. 

Ghabraie et al. [3] in their research on shape optimization of metallic yielding 

devices (slit damper) for passive mitigation of seismic energy have used bi-directional 

evolutionary structural optimization to optimize energy dissipation in structural steel 

buildings for earthquake risk mitigation. The results of their study show an increase in 
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energy dissipation and better-distributing stress during an earthquake. In their four 

different models, various tapered bars are used to optimize their results. They were able 

to record improvements in energy absorption capacity between 58% to 96%. Chan and 

Albermani [4] conducted an experimental study on steel slit dampers with different slit 

lengths cut from steel plates for passive energy dissipation, they ran nine tests subjecting 

the different slit dampers to inelastic cyclic deformation. The devices yielded a small 

angular distortion to dissipate energy during earthquake events. The results of their 

practical tests showed that the slit passive damping systems performed stable hysteretic 

behavior with significant capacity of dissipating energy up to 10.3 KJ. Part of their 

increase in energy dissipation was from strain-hardening that led the specimens’ ultimate 

strength to be higher than their yielding strength by a factor of 2. The results showed that 

the longer and wider slits performed higher flexibility, on the other hand, the shorter and 

the narrower slits showed more stiffness and more capability in dissipating energy.  

For reinforced concrete buildings, damping braces are used to retrofit RC 

buildings against earthquake shaking. Mazza and Vulcano [5] used a displacement-based 

design procedure to retrofit their six-story RC plane frame under seismic loads. The 

numerical results show that the stiffness ratio is based on the reduction in ductility in the 

RC frame. Also, damage in the frame is more in artificially generated ground motion 

rather than recorded ground motions.  

The friction damping system is among the most common passive damping 

systems for tall buildings. This system relies on utilizing a solid friction mechanism to 

dissipate energy [1]. Friction dampers provide both damping and stiffness. Compared to 

the viscus and metallic damping system, friction damper has the most effective in 
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dissipating energy. Both velocity and temperature are the two most effective factors in 

the efficiency and capacity of friction dampers. Low cost, high performance, no 

maintenance, and consistency of friction dampers have made the designers and builders 

show interest in using them in both strengthening and stiffening their buildings.  

Xu and Ng [6] ran an experimental study on using friction dampers in a 12-story 

building to strengthen it against seismic loads. They used a piezoelectric actuator to make 

three friction-damping controllers: a Viscous and Reid Friction controller, Modulated 

Homogenous Friction controller, and a Non-sticking Friction controller.  The results 

show a 15-17% reduction in inter-story drift in the building and a 16-20% reduction in 

peak acceleration. The maximum root-mean-square reductions in both drift and 

accelerations reached 31-54% and 35-53%, respectively.  

Perez et al. [7] in their research on reliability-based optimum design of passive 

friction dampers in buildings in seismic regions used a novel optimization technique to 

decrease the probability of failure in seismic regions buildings. The results show a 

significant decrease in failure probability in the 6-story reinforced concrete building 

model in 50 years the structure equipped with the optimal design of friction dampers by 

91% with a reduction in peak displacement by 50%.  

Friction dampers are widely used in different businesses; Ramaiah and Krishnaiah 

[8] have used friction dampers to control vibration in a gas-turbine blade. They have 

confirmed their theoretical results by doing experimental tests. They concluded that 

increasing energy dissipation in friction damping strongly depends on the coefficient of 

friction, normal load, damper stiffness, the elasticity of damper material, and force at the 
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damper end. In-band brake technology, Downey et al. [9] used friction dampers to 

mitigate the natural hazard. They showed that large damping forces can be obtained at 

lower applied forces. Their rotary friction device was able to amplify friction force by 

125-150 times the applied force.  

Due to the impacts of dynamic loads on building structures, a variety of damping 

systems have been invented. Viscoelastic dampers are among the developed damping 

systems used in tall and intermediate buildings to dissipate energy during impact loads 

and seismic loads. The rubbers/polymers used in viscoelastic dampers have both viscous 

and elastic characteristics [1]. This type of damping system has consisted of two steel 

plates and rubber between the two steel plates. The dampers are usually located in 

locations that experience relative motion during dynamic loads. Viscoelastic 

characteristics of the rubbers change with respect to the temperature that affects the 

deformation of the rubbers during dynamic loads. At higher temperatures, the rubbers 

dissipate energy less.  

Montgomery and Christopoulos [10] did an experimental study on using 

viscoelastic coupling dampers in high-rise buildings. They replaced coupling beams with 

viscoelastic dampers at certain locations, therefore, do not occupy any unstable 

architectural space. They tested five small scales and six full-scale viscoelastic dampers. 

The small-scale test results showed that ISD111H materials properties do not change, 

while viscoelastic materials properties change with respect to excitation frequency and 

temperature. The full-scale test results showed that temperature did not change in the 

rubbers drastically, i.e., no effect of temperature change on the rubber properties. During 

harmonic tests, no material properties were observed.  
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Gong et al. [11] used 112 viscoelastic dampers in Nanjing Dabaoen Temple, 

which is a tall irregular steel structure.  They ran the model of the temple in SAP-2000 

for both moderate and major earthquakes. The installed dampers improved both capacity 

and displacement in the temple structure. The results showed a decrease in drift by 9% 

and 34% under moderate earthquakes and major earthquakes, respectively.  

Both Yang and Lam, and Tebaldi [12, 13] used viscoelastic dampers in 

connecting adjacent buildings to observe dynamic behaviors. Yang and Lam connected 

three buildings, a 16-story, a 10-story, and a short building. They used three different 

mass eccentricities; 0, 10%, and -10% with respect to the dimensions of the buildings. 

Both top displacement and base shear were notably reduced in the symmetric buildings. 

In contrast, top displacement in asymmetric buildings is increased. Also, the dampers 

caused increasing base shear by 9%. In addition, bidirectional excitations caused an 

increase in base shear by up to 29%. Tebaldi used only two buildings in his study, a short 

and a tall building. The viscoelastic dampers were installed to connect the two buildings 

at the top of the short building. The maximum attained damping ratio depends on the 

mass ratio. In this study, the maximum damping ratio obtained was 0.14. Also, the study 

showed that the performance of the connected buildings did not change due to using 

viscoelastic or viscous dampers.  

In the industry of passive damping systems, fluid, such as viscous fluid, has been 

broadly used in dissipating energy and it is gaining worldwide acceptance. Through a 

piston, the generated dynamic load pushes the fluid in a cylinder orifice to produce a 

damping pressure to dissipate energy [1]. Since the damping force is 90 degrees out of 
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phase with the displacement response, the viscous fluid damping system does not add any 

stiffness to the building.  

Salvia et al. [14] used a viscous fluid damping system in a 39-story high-rise 

building to decrease the effects of wind on the building structure. In their study, they 

focused on the cost-effect approach as well. The results of dissipating energy compared 

to the total cost; it is shown that the viscous fluid damping system is among the most 

cost-effective approach in reducing the dynamic impact of wind on high-rise buildings. 

The total cost for this 39-story building was less than one million dollars even including 

the installation fee.  

Since concrete buildings are the most brittle structures, the researchers shed light 

on the most influential damping systems to be used in dissipating energy in RC buildings. 

Rofooei and Mohammadzadeh [15] have done research on using a viscous fluid damping 

system in a 3x4-bay 1-story concrete frame to decrease dynamic load impact on torsional 

behavior by focusing on the moment-resisting behavior of the building. For this purpose, 

they have considered different one-way stiffness and strength eccentricities. It is 

determined that in the linear range; stiffness eccentricity has a major role in finding the 

optimal center of the damping constant. On the other hand, it is found that in the 

nonlinear range, strength eccentricity has a major role in determining the optimal center 

of the damping constant. Despite the effects of the viscous fluid damping system on 

decreasing displacement and acceleration in the building, viscous fluid damping system is 

found that it is very effective in controlling torsional behavior.  
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Wang and Mahin [16] used a viscous fluid damping system in a 35-story high-rise 

steel moment-resisting frame to retrofit is against a seismic load. They did a two-level 

retrofit approach for the building that was designed in the early 1970s. The purpose of 

their study was to achieve a collapse prevention limit state under major earthquake 

events. The results showed that by using the viscous fluid damping system, they were 

able to achieve the retrofitting goals and decrease both collapse and economic losses by 

90% by improving the structural behavior of the building such as decreasing the top 

floor’s drift by 30%.   

Ras and Boumechra [17], in their research paper, have focused on seismic energy 

dissipation in a 12-story steel building using a viscous fluid damping system. They used 

Boumerdes earthquake data to study the building’s nonlinear time history analysis using 

SAP-2000. The results showed that they were able to achieve effective energy dissipation 

without increasing rigidity in the structure. Also, due to using the viscous fluid damping 

system, they needed much less steel to achieve stability as compared to the same frame 

without the damping system. The analysis results showed that they were able to decrease 

the fundamental period by 220%, maximum displacement by 32%, maximum 

acceleration by 37%, and both moment and base shear by 40%, and the difference 

between the floors’ accelerations is minimized.    

The Tuned-mass damping system (TMD) is one of the most common damping 

systems for both tall buildings and bridge structures. This system has different forms 

depending upon the application. Among the most common types of TMD, mass and coil 

spring, mass and flexure, and pendulum are used widely. TMD through its resonance out 

of phase absorbs energy and decreases vibration. The decay of motion in TMD is 
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considerably higher than decreasing acceleration. It is very effective in reducing wind 

excitations and impact loads on tall buildings.  Depending on the structure’s dominant 

mode, damping factor, mass, and spring stiffness must be tuned [1].  

Lucchini et al. [18] did research on the robust design of tuned damper systems for 

seismic protection of multistory buildings. They have used robustness as a multi-

objective optimization formula in designing the damping system to account for 

uncertainties. Their study concluded that the performance of the damping system is 

directly related to the total mass of the TMD system; with increasing total mass, there is 

an increase in performance. Also, the robustness of the damping system increases when 

uncertainty in the properties of the ground excitation reduces. However, with increasing 

uncertainty levels, the damping system’s period and damping increase.  

As mentioned before, the TMD system is also widely used in retrofitting bridges 

as well. Latifi and Razani [19] showed a reduction in the vibration of a railway bridge 

located in Iran by installing a TMD system in it. They also studied a seismic behavior of 

a 10-story building structure after installing TMD in it. After severe damage in the 

longest span of the bridge (72 meters), this span was replaced with a steel deck. Because 

the railway is curved and the replacing deck is straight, the bridge has excessive vibration 

due to the eccentricity issue in the deck. After using TMD in the bridge, they found that 

with the damping system with an optimum parameter, an excessive reduction in vibration 

can be achieved. They also found that the bridge’s natural modes are close to the resonant 

speed of the train at speeds of 32 and 40 kilometers per hour. For the high-rise building, 

they conclude that for telecom towers, TMD seems to have the best effect on reducing 
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vibrations caused by both earthquake and wind loads, especially for those towers where 

their concentrated mass is located at a high altitude.  

Johnson et al. [20] used a nonlinear tuned mass damper coupled with a buckling 

restrained brace in retrofitting a three-story existing building structure after installing the 

damping system on the top roof of the building. The results showed excessive energy 

dissipation in the building after installing TMD and buckling restrained bracing in the 

building. The numerical results showed that a 40% reduction in spectral acceleration in 

the period of the first second of excitation and a 13% reduction in top roof displacement 

can be obtained. It is also mentioned that the building is improved in self-centering 

ability after being retrofitted against seismic loads.  

In retrofitting lightweight superstructures, Erdle et al. [21] have studied the 

effectiveness of base isolation TMD in decreasing lateral motion during earthquake and 

wind loads. The TMD system they used in testing their model-scale structure added only 

1.3 and 2% to the gravitational mass of the building. The results showed a considerably 

large reduction in lateral motion and acceleration in the model building. Also, broad-

spectrum damping was achieved without adding considerable load to the structure. 

The summary of the above and other studies shows that both passive and active 

damping systems have a big role in dissipating energy during dynamic loads and 

decreasing both vibration and lateral displacement in the structures. Also, they reduce the 

construction limitations of high-rise buildings [22]. In this study, the pendulum TMD 

damper is focused on. The main focus of the study is to decrease vibration in tall 

buildings during wind load, low earthquake, or impact load. A sample of using the 
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pendulum TMD system is used in Tapyh Tower (101-story) in Taiwan. This pendulum 

damper is the largest and heaviest damper ever installed in buildings [23]. This 

pendulum’s steel damper with a diameter of 18-foot weighing 1605-pound is installed at 

the top stories of the building at an elevation of 1640-foot. This pendulum system reduces 

vibration in the building by 30 to 40% [23].  

Arsava et al. [24] have developed numerical models to investigate the response of 

a beam model against impact load. They have installed magnetorheological dampers in 

the models to decrease the influence of impact load on building structures. They have 

proposed a time-delayed adaptive neuro-fuzzy inference system (TANFIS) used to 

predict the nonlinear behavior of the models. The results showed that TANFIS is very 

effective in investigating structural members under effective impact loads.  

Zhang et al. [25] presented a study on the control system of magnetorheological 

dampers under impact load with and without a PI control system. The results showed that 

to control the optimum damping force in a magnetorheological damping system, PI 

control helps decrease the damping force in the system by 21.7%. decreasing the 

damping force in the damping system helps the structures to resist bigger impact loads.  

Uzair Magbool [26] in his thesis, has focused on the effectiveness of passive 

dampers in decreasing the impacts of quasi-static and impact loading on steel structures. 

This study showed the response of the dissipative joints to accidental conditions. His 

developed comprehensive model shows that using slip resistance connections helps the 

joint fasteners during impact loads and decreases the chance of collapse in buildings.  
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In 1982, Robinson [27] reported that a total of 92 lead-rubber bearings had been 

used in New Zealand to base-isolate one building and three bridges. In 1994, he 

summarized [28] the characteristics of the lead devices and applications of hysteretic 

dampers to seismic isolation in Italy, the USA, Japan, and New Zealand.  In 1995, he 

published a summary [29] of research and applications of seismic isolation in New 

Zealand.  In that paper, he reported that out of the ten hospitals affected by the 1994 

Northridge earthquake in Los Angeles, only the hospital seismically isolated by a lead-

rubber bearing system was able to continue to operate. He also referred to the excellent 

behavior of two isolated buildings in the 1995 Hyogo Ken-Nanbu earthquake. In 1998, 

Robinson summarized [30] New Zealand’s experience in passive control of structures 

including sliding bearings or flexible piles with steel or dead dampers providing the 

damping and the lead rubber bearing which, in one unit, provides both the isolation and 

the damping. He reported that more than fifty bridges and ten buildings have been 

isolated with most structures being isolated with lead rubber bearing systems.    

Ribakov and Gluck [31] presented a design method for a passive control system 

for multistory structures using optimal Adding Damping and Stiffness (ADAS) dampers. 

Since Optimal Control Theory (OCT) is commonly used to obtain the levels of viscous 

damping at each story, the optimization itself leads to different levels of damping at each 

story. Therefore, a solution with viscous dampers is inconvenient and can be expensive. 

The authors proposed a method that enables the use of relatively less expensive optimal 

ADAS devices dissipating energy that is equivalent to that of viscous dampers. The 

method is examined in a numerical analysis of a seven‐story shear-framed structure. 
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Significant improvement was obtained in the behavior of the ADAS-damped structure 

compared to the uncontrolled one. 

Jankowski, Kujawa, and Czeslawszymczak [32] investigated the effectiveness of 

a pendulum damper in reducing wind-induced vibrations of a steel chimney. A two-

degree-of-freedom non-linear model is used to simulate the behavior of the structure 

equipped with a damper. The results showed that the use of a pendulum with tuned 

frequency leads to a significant reduction in structural response 

 Nakashima, Pan, Zamfirescu, and Weitzmannl [33] summarized design and 

construction statistical data with respect to the common usage of base-isolated buildings 

in Japan since the 1995 Hyogoken-Nanbu (Kobe) earthquake including new 

developments and refinements made in the material, device, design, and construction of 

these structures. 

Curadelli and Riera [34] summarized the development of efficient, low-cost, and 

reliable structural dampers, suitable for use in structures subjected to wind, seismic, and 

other dynamic excitations. Different from similar dampers described in the literature, the 

energy dissipation device described works by plastic shear deformation of a set of lead 

rings. On account of its almost perfectly rigid-plastic behavior, with little rate 

dependence, the device proved in laboratory tests to be able to absorb a large amount of 

energy during 103 cycles with no sign of shakedown. This article presented the basic 

design of the damper and the experimental determination of its mechanical characteristics 

by means of a set of cyclic tests, for frequencies ranging between 0.1 and 3 Hz and 
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displacement amplitudes ranging from 1 to 12 mm. They also presented a simplified 

design procedure using a finite-element model. 

Sajjadi, Keyhani, and Pourmohammadl [35] investigated the behavior and 

performance of steel structures equipped with Added Damping and Stiffness (ADAS) and 

Triangular Added Damping and Stiffness (TADAS) metallic dampers and compared 

them with conventional earthquake-resisting steel structures such as CBF, CHEVRON 

and EBF systems. In this study, ground acceleration records of the El Centro, Hachinohe, 

San Fernando, and Taft earthquakes were used as the disturbing ground motion in a series 

of numerical simulations of a multi-story steel building. The numerical simulations were 

carried out by using the DRAIN-2DX program and the nonlinear dynamical behavior of 

the different systems was compared with each other. Results showed suitable behavior of 

systems equipped with ADAS and TADAS metallic dampers in that the main damage 

occurred in dampers while keeping the main structure safe. 

Bayat and Abdollahzade [36] have presented a study of the seismic behavior of 

structures with metallic dampers in the so-called ADAS (Added Damping and Stiffness) 

category.  The paper compared the ratio of the hysteretic energy to input energy for five, 

ten, and fifteen-story three-bay Concentric Braced Frames (CBF) with and without 

ADAS. The PERFORM 3D.V4 software along with three earthquake records 

(Northridge, Imperial Valley, and Tabas) is used for nonlinear time history analysis and 

the conclusions are drawn upon energy criterion. It was found that with a higher 

earthquake energy absorption capacity and a larger ratio of the plastic energy to input 

energy, the ADAS system has generally a superior vibration performance compared to 

that of the CBF structural system. The authors have also presented a fairly comprehensive 
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summary world-wide application of various types of passive damping methodologies 

including bituminous rubber viscoelastic and other types of viscoelastic dampers, friction 

dampers, bending type honeycomb dampers, slit dampers and shear panel type dampers. 

Warn and Ryan [37] summarized seismic isolation practices including widely 

used hardware and chronicled the history and development of modern seismic isolation 

through shake table testing of isolated buildings including past efforts to achieve three-

dimensional seismic isolation. The review of current practices and past research are 

synthesized with recent developments from full-scale shake table testing to highlight 

areas where research is needed to achieve full seismic damage protection of buildings. 

The emphasis of this paper is on the application of passive seismic isolation for buildings 

primarily as practiced in the United States, though systems used in other countries are 

also discussed. 

Soydan Yuksel, and Irtem [38] studied the seismic behavior of a steel connection 

equipped with the lead extrusion damper (LED) with a spherical type bulge and without a 

lubricant layer. Cyclic force-displacement relations of the connections with and without 

LED were recorded. Measures of dissipated energy, equivalent damping ratio, and 

effective stiffness are obtained from the experimental study. The total energy dissipated 

by the connection with the LED was found to be about 175% greater than the total energy 

dissipated by the bare connection. Nonlinear dynamic time history analyses performed 

for the selected earthquakes and mass conditions using the analytical models for the 

connections with LED showed a 50% reduction in maximum top displacement compared 

with that without it for the considered earthquakes.  
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Razzaq et al. [39-45] developed various types of passive damping devices in 

exploratory studies related to NASA’s space station applications. These included 

suspended dampers filled with viscous oil, brush friction dampers, and suspended lead 

dampers.  The studies were focused on reducing structural natural vibrations as well as 

those caused by harmonic flexural forcing functions in the presence of constant axial 

loads.  

To the best of the author’s knowledge, the proposed research has not previously 

been published in the literature.  

1.3 Problem Statement 
 

This dissertation studies the effectiveness of suspended lead dampers when used 

in rectangular steel buildings subjected to localized lateral impact load in the presence of 

a pulsating vertical load as shown in Figure 1(a). The focus of this study is to determine 

the effectiveness of the suspended lead dampers when used inside existing building 

columns, and/or use of bolted or welded damping panels constructed from a series of 

hollow steel tubes containing suspended lead dampers. Figure 1(b) shows a typical 

damping panel. The problem also includes first validating the transient dynamic analysis 

process by a comparison to the experimental behavior of a model building frame, and 

then applying the analysis to determine the performance of a full-scale steel building. In 

addition, impact tests and analysis are conducted on a full-scale isolated steel cantilever 

member to determine the effectiveness of the suspended lead dampers. Figure 2 shows 

the cantilever member with suspended lead dampers. Both dynamic stability phenomenon 

as well as sequential plastic hinge formation in a ground-level building column under 

impact are investigated.  
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(a) Building frame with HVAC system and impact load  

 

(b) Typical damping panel with suspended lead dampers 

Figure 1.  Building frame and typical damping panel 
 

Nylon string 

Typical          
lead dampers 
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Figure 2.  Full-scale damping member modeled as a cantilever under impact load   
 

Figure 3 shows a schematic of the ground-level column AB with the bottom end 

A initially fixed, and the top end B partially restrained. At joint B, k is rotational stiffness 

and K is lateral stiffness. The column shown in Figure 3 has an axial constant load, 𝑃𝑃0, 

combined with a pulsating load, 𝑄𝑄0 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, induced by an air compressor system installed 

on the top of the building as shown in Figure 1(a).  
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Figure 3.  Schematic of ground-level column  
 

1.4 Objectives and Scope 

The specific objectives and scope of the study are:  

1. Build a three-story steel building laboratory model and an apparatus for applying a 

localized impact load at the mid-height of one ground-level column, and a separate 

full-scale cantilever test setup, for experimental studies both with and without 

suspended lead dampers.  

2. Conduct an experimental study of the influence of suspended lead dampers on the 

building model and the isolated cantilever under natural vibration condition, and 

when subjected to a localized impact in the absence of an axial pulsating load.                             
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3. Develop a finite-difference algorithm to solve the governing partial differential 

equation of dynamic equilibrium for the individual member studies including the 

effect of suspended lead dampers.           

4. Investigate the theoretical dynamic stability characteristics of a typical ground-level 

column including the influence of lateral impact load both with and without lead 

dampers.  

5. Predict the effectiveness of the degree of damping provided by suspended lead 

dampers for the building laboratory model as well as a prototype three-story steel 

building under localized impact load both with and without a vertical pulsating load 

and vertical service loads.  

Use is made of wireless accelerometers to establish the forcing function generated 

by the impact load, and the dynamic response of the test specimens.   

The primary goal of the experimental and theoretical study is to determine the 

effectiveness of suspended lead dampers for use in building frame subjected to a 

localized impact load. 

1.5 Assumptions and Conditions  

1. The normal stress-strain relationship for steel members is elastic-perfectly-plastic.   

2. Shear deformations and axial shortening are negligible. 

3. Small deflection theory is adopted. 

4. Structural members do not develop any local buckling.  

5. The impact load is applied at only a single location.  
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6. The axial loads are of such magnitude that the vertical traveling waves are considered 

negligible. 
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CHAPTER II 

2.  EXPERIMENTAL STUDY 

The outcome of the experimental part of the study is presented in this chapter. In 

addition to characterization of material properties, results are documented for impact tests 

on a three-story steel building model, and a full-scale cantilever specimen with and 

without suspended lead dampers. 

2.1 Material Properties 

The material of the structural member and frames tested is steel. The mechanical 

steel properties are determined following the ASTM procedure [46]. The specimens are 

cut following the standard dimensions required by ASTM as shown in Figure 4.  

 

 

Figure 4.  Tension test specimen dimensions 
 
 

2.1.1 Steel Mechanical Properties 

The model steel frame shown in Figure 1(a) was fabricated using 0.5x0.5x0.0625 

in. hollow steel sections. The tension test result for this material is shown in Figure 5(a). 

The stress-strain relationship is slightly curved beyond the elastic range and exhibits a 
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small amount of strain-hardening. Using a 0.1 percent strain offset method, the yield 

stress, σy, is found to be 62.0 ksi. Based on this yield stress and to the Young’s modulus, 

E, of 28,000 ksi, the idealized elastic-perfectly-plastic stress-strain (σ-Є) relationship is 

shown in Figure 5(b), and is used in this study. Both E and σy are needed for the transient 

dynamic analysis portion of the study. 

  Figure 6 shows stress-strain relationship for the hollow circular section steel used 

in the cantilever specimen shown in Figure 3. Only the Young’s modulus, E = 28,261 ksi, 

is needed for the cantilever study for determining the effectiveness of the suspended lead 

dampers.  

 

 

 

(a) Experimental stress-strain relationship 
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(b) Idealized stress-strain relationship 

Figure 5.  Stress-strain relationships 
 

 

Figure 6.  Stress-strain relationship for steel used in cantilever specimen 
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2.1.2 Lead Dampers 

 Figure 7 shows the dimensions of the lead dampers used for the cantilever tests 

and are spherical in shape with a narrow slot used for attachment to a string. The string 

with the lead dampers is then suspended inside the steel member. The lead dampers used 

in the model test frame had diameters of 0.15-in. for the exterior columns, and 0.20-in. 

for the damping panels in the model frame.  

 
 

 

Figure 7.  Dimension of lead dampers used for cantilever tests 
 

2.2 Test Specimens  

Two different structural models are studied in this research. The first model is a 

three-dimensional 3-story 3x2-bay steel building frame. As shown and mentioned before, 

this frame is made of hollow square section steel members. The second model is a 107-in. 

long, 1.745-in. diameter, hollow circular section steel cantilever. Each of the two models 

and the testing procedures are explained in the following sections.   

2.2.1 Steel Building Frame Model 

A three-story three-bay by two-bay frame is used for both natural vibration and 

impact tests. The columns and the beams have the same cross-section and are made of 
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hollow square 0.5x0.5x0.0625 in. tubes. A shown in Figure 8(a), the impact load is 

applied at the mid-height of the ground-level column by means of a swinging steel 

pendulum from distance of q from the tip of the hammer head to the mid-height of the 

ground-column. The weight of the ‘hammer head’ is 38-lb and its stem weighing 24-lb.    

As shown in Figure 8(a), Six accelerometers numbered 1 through 6 are installed 

on the frame to measure acceleration versus time relations on the three floors as shown. 

Accelerometers are mounted on the steel pendulum; one on the hammer head and the 

other one at the mid-height of the stem. These accelerometers provided acceleration-time 

relations later used to generate the forcing function F(L/2,t). It was found that the 

acceleration on the hammer head gave the same acceleration-time relation as that on the 

stem. Thus, it was decided to use the output from the accelerometer on the hammer head 

to generate F(L/2,t).  
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(a)                                                                      (b) 

Figure 8.  (a) Steel frame subjected to impact load,    (b) Schematic of column AB at 
a distance q from pendulum hammer head 

 

2.2.1.1 Lead dampers in all exterior columns 

The following three different lead damper configurations were used for the frame 

model tests on the x-axis direction: 

1. Twelve 0.15-in. diameter lead dampers with a center-to-center spacing of 4.0-in. 

2. Twenty-four 0.15-in. diameter lead dampers with a center-to-center spacing of 2.0-in. 

3. Forty-eight 0.15-in. diameter lead dampers with a center-to-center spacing of 1.0-in. 

q 
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The building frame model is tested again, but this time on the y-axis for the same 

impact load intensity hitting the two middle ground-columns simultaneously to observe 

the impact of suspended lead dampers on the y-axis as shown in Figure 9.  

2.2.1.2 Panels with welded or bolted damping panels 

 Figure 10 shows the welded cold-formed steel panels mounted in frame bents J1-

J2-J3-J4 and J5-J6-J7-J8 identified in Figure 1(a). Each panel is made of five thin-wall 

(0.05 in. thick) pipes with an inner diameter of 0.60 in., the pipes have 0.38 in. hole sizes 

at the top part as shown in Figure 11. The holes are to insert the 0.2 in. diameter lead 

dampers into the damping panel members. The frame is tested once when the exterior 

columns have the 1-inch spaced 0.15 in. lead dampers (48 lead dampers in each exterior 

column) and the empty welded steel damping panels are installed (tac-welded) to the 

frame. Then, the frame is tested again to the same impact load when 15 0.2 in. lead 

dampers with one-inch spacing are inserted into the welded panel pipes, the 15 lead 

dampers are attached to the strings and tightened to the top and freed at the bottom. The 

same procedure is repeated with the same sets of panels with the only difference of 

instead of welding the 15 in. pipes to the top and bottom of the panel flange, they are 

bolted as shown in Figure 12 and each panel member has fourteen lead dampers each 

with a diameter of 0.2 in.  
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Figure 9.  Steel frame subjected to impact load along y-axis 
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Figure 10.  Frame with welded damping panels in bents J1-J2-J3-J4 and J5-J6-J7-
J8 
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Figure 11.  Details of a typical welded steel damping panel  
 

Cotton 
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Figure 12.  Details of a typical bolted steel damping panel 
 

2.2.2 Steel Cantilever with Lead Dampers 

Figure 13 shows a full-scale steel cantilever made of a 107-in. long hollow 

circular member with an outer diameter of 1.745 in. and a wall thickness is 0.0625 in. 

The cantilever is welded at the top and free at the bottom. Three wireless accelerometers 

are installed at 1/5L, 1/2L, and at L (free end). The cantilever is excited by a pendulum 

weighing 10.5 lb. The pendulum is installed to a 50 inches long cotton robe and released 

19 inches away from the free end of the cantilever.  

For the cantilever, two different lead damper sizes are used, separately, 0.5 in. 

diameter and 0.6 in. diameter lead dampers. The first case is attaching the 0.5 in. diameter 
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lead dampers to a cotton string every 4 inches (27 lead dampers in total) along the 107-in. 

long cantilever, then changing the lead damper spacings to 2 in. (53 lead dampers), 

respectively. For each case, the cantilever is excited by the pendulum shown in Figure 14. 

The same procedure is repeated to the 0.6 in. diameter lead dampers, the same 

distribution, and the same applied impact load. 

 

 

Figure 13.  Schematic of cantilever test setup 
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Figure 14.  Apparatus for cantilever test 
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2.3 Test Setups and Procedures  

 The three-story steel building frame model and the fixed-end steel cantilever are 

tested under impact loads generated by pendulum dynamic loads. The test setups and the 

procedures are explained in the following: 

2.3.1 Steel Building Frame Model 

The steel building frame model is subjected to a dynamic load generated by a 38-

pound pendulum released seven inches away from the frame, also, the stem has a weight 

of 24 lb. The generated dynamic force hits the ground-level middle ground-column of the 

frontside of the frame. The generated impact load from the pendulum is calculated after 

investigating the acceleration of the pendulum from the installed accelerometers on the 

weight and the lever arm. It is observed that the weight and stem of the cantilever had the 

same excitement response (acceleration vs time) when the pendulum hit the frame. In the 

forcing function calculations, both weights, the main weight and the steel elver arm’s 

weight, are summed and included. The acceleration versus time graph of the pendulum 

weight is shown in Figure 15. Using the MS Excel program, the acceleration-time data is 

curve fitted to the second-order to define the forcing function 𝑓𝑓(𝐶𝐶) for each pendulum 

impact load. For the building frame, it is determined that the impact load duration is 

0.02122 seconds from initial time, ti = 0.24959 sec. to time, td = 0.27028 sec. the applied 

dynamic forcing function curve is shown in the load-time Figure 16. The applied forcing 

function given in Equation 1 is shifted to start at t = 0 sec. to t = 0.02069 sec.  

𝐹𝐹 �𝐿𝐿
2

, 𝐶𝐶� = (-45300t2 + 937.2t ) x 62                                                                                (1) 

For t = 0.01 sec., this equation gives the applied force amplitude, Fmax, as Fmax = 300 lb. 
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Figure 15. Hammer head accelerometer output for frame model test with q = 7.0-in. 
 

 

 

Figure 16.  Impact forcing function for frame model with q = 7.0-in. 
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2.3.2 Steel Cantilever  

 For the steel cantilever, the pendulum shown in Figure 14 is used, the pendulum 

has a weight of 10.5 lb. The weight is released from 19 inches away from the free end of 

the cantilever. The generated acceleration versus time after hitting the end tip of the 

cantilever is shown in Figure 17 for two trials, the generated acceleration versus time 

relations is simplified to fit both trials. The impact force curve is shown in Figure 18, 

where ti = 0.00 second and td = 0.03 second.  The applied forcing function is given by:  

𝐹𝐹(𝐿𝐿, 𝐶𝐶) = 100 × 𝑄𝑄 × td × �sin 𝜋𝜋𝜋𝜋
td
�                                                                                       (2) 

In this equation, Q is the impact load shown in Figure 13, and is equal to 10.5 lb, td =  

0.03 sec. from Figure 17. 

 

 

Figure 17.  Impact load acceleration-time relations for cantilever 
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Figure 18.  Impact forcing function for cantilever 
 

2.4 Measurement of Acceleration 

 Wireless accelerometers used in the research are manufactured by “Parker Lord”. 

The wireless accelerometers are 10G and 40G range [47]. Both accelerometers run on the 

same computer program, Node Commander. The adjustable ranges are 2/4/8/10/20/40G. 

They are extremely low noise, 25-80 µg/√𝐻𝐻𝐻𝐻. They can be set up on various frequencies. 

The accelerometers are triaxial, they have the capability of collecting data on three 

different axes, simultaneously. The 40G accelerometer has a wireless range as far as 6600 

ft. Operating temperature range is -40 to +185 F°. The sensitivity range is ±0.01%/°C. 

The accelerometers are wirelessly connected to a base station, model WSDA-Base, the 

base station is connected to the computer to transfer received data to the computer 

program. The base station can receive up to four data from four different accelerometers 

at the same time.  
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 For the building frame, six wireless accelerometers are installed, at each floor, 

two wireless accelerometers are installed; one on the front side of the building, and 

another one on the back of the building. The wireless accelerometers are named node 1 

through node 6 as shown in Figure 9. The steel cantilever has three wireless 

accelerometers each at locations 1/5L, 1/2L, and at the free end (L). 

2.5 Natural Frequency Tests  

 For each of the testing models, natural frequency of each model is calculated after 

pulling the model and releasing it for free vibration. The natural frequency results 

obtained from the lab are also compared with the natural frequencies obtained from the 

theoretical analysis of FDM and SAP-2000.  

2.5.1 Steel Building Frame Model 

 The building frame is pulled at two different locations at different times to check 

for vibration at the first and top floor. First, the top floor is pulled by 0.25 inches on the 

x-axis direction and then released to obtain the acceleration vs time of the model. Figure 

19 and 20 show free vibration of the top floor (Node 3) and the first floor (Node 1), 

respectively. Using the collected data shown in Figure 19 the natural frequency is 

calculated as the following:  

 From Figures 19, it is found that at the top floor (Node 3), and the first floor 

(Node 1), the Time Period, Tn, is 0.0464 seconds, and the natural frequency, 𝑓𝑓 = 1
𝑇𝑇
 = 

1
0.0464

 = 21.57 Hz. 

 The natural frequency of the model is found using the computer program SAP-

2000 on the x-axis which is 21.08 Hz on the x-axis, and it is 20.62 Hz on the y-axis. The 
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x-axis natural frequency found on the SAP-2000 is very close to the natural frequency 

calculated from the collected data on the x-axis direction.  

 

Figure 19.  Node 3 acceleration-time relation at top floor for natural vibration test 
 

 

Figure 20.  Node 1 acceleration-time relation at first floor for natural vibration test 
 

 The second set of natural vibration is observed when the first floor of the building 

frame (Node 1) is pulled by 0.039 inch (1mm) and released for free vibration. Figure 21 
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shows data collected on the first floor (Node 1). From Figure 21, it is found that the Time 

Period, Tn, is 0.0145175 seconds, and the natural frequency is 𝑓𝑓 = 68.88 Hz. 

 

 

Figure 21 Node 1 acceleration-time relation at top floor for natural vibration test 
 

 Figures 19 and 21 show the difference in the building’s vibration when the 

building is pulled at different locations. In the theoretical analysis, the building is excited 

on the first floor. The natural frequency calculated from Figure 19 is compared to the 

natural frequency obtained from SAP-2000 and used in the analysis calculations of the 

building frame, and the natural frequency calculated from Figure 21 is compared to the 

natural frequencies obtained from both the theoretical analysis of FDM and SAP-2000 for 

the isolated ground-column AB.  

2.5.2 Steel Cantilever 
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 The free end of the cantilever is pulled by 0.25 inches and then released. From the 

attached three wireless accelerometers along with the member, acceleration vs time data 

is obtained. The collected data at 1/5L, 1/2L, and at the free end (L) is shown in Figures 

22, 23, and 24, respectively. From the following graphs, it is found that the Time Period, 

T, is 0.199 seconds, and the natural frequency is 5.03 Hz. Using the computer program, 

SAP-2000, the Time period is 0.187 seconds, and the natural frequency is 5.34 Hz. 

 

 

Figure 22.  Acceleration-time relation of cantilever at 1/5L 
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Figure 23.  Acceleration-time relation of cantilever at 1/2L 
 

 

Figure 24.  Acceleration-time relation of cantilever at L  
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2.6 Impact Tests 

 After the building frame model is excited by the impact load, the data is collected 

for each of the various lead dampers’ schemes through the wireless accelerometers 

installed at various locations. Then, the frame is rotated 90 degrees to repeat the same 

procedure on the y-axis. 

 The steel cantilever is also excited by an impact load at the free end. Excitation of 

the member is observed at the free end.   

2.6.1 Steel Building Frame  

 The building frame is tested on both x-axis and y-axis with and without the 

presence of various lead dampers in the exterior columns. At each set of the tests, it is 

obvious that the top floor was vibrating the most. Because of that, for both axes, the focus 

is on Node 3 which is located at the top floor of the frame. The building frame is also 

tested on both directions when the welded or bolted damping panels are installed. 

 The second test is hitting the middle column on the x-axis with an impact load to 

form three plastic hinges in the column at the supports and the middle of the column. An 

approximate estimation is used to estimate the failure impact load by relying on various 

impact loads and both bending moment and maximum generated force from each impact 

load at the three locations.  

2.6.1.1 Lead dampers in all exterior columns 

 The building frame is first impacted at the absence of the lead dampers to use the 

collected data as a reference, Figures 25 and 26 show the building’s response at the top 

floor, Node 3, that are used as reference data for each x-axis and y-axis, respectively. The 
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same intensity of impact load is applied to the frame for each of the various schemes 

when lead dampers are installed in the building. Figures 27, 28, and 29 show the 

building’s response when 12, 24, or 48 lead dampers are installed in each of the exterior 

columns and the building is excited on the x-axis direction, respectively. Figure 30 shows 

the building response when 48 lead dampers are installed in each of the exterior columns 

and the building frame is excited on the y-axis.  

 

 

Figure 25.  Node 3 acceleration-time relation of frame model along x-axis without 
lead dampers 
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Figure 26.  Node 3 acceleration-time relation of frame model along y-axis without 
lead dampers 

 

 

Figure 27.  Node 3 acceleration-time relation of frame model along x-axis with 12 
lead dampers 
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Figure 28.  Node 3 acceleration-time relation of frame model along x-axis with 24 
lead dampers 

 

 

Figure 29.  Node 3 acceleration-time relation of frame model along x-axis with 48 
lead dampers 
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Figure 30.  Node 3 acceleration-time relation of frame model along y-axis with 48 
lead dampers 

 

2.6.1.2 Welded damping panel along x-axis 

The second scheme is installing tac-welded steel panels mounted in frame bents 

J1-J2-J3-J4 and J5-J6-J7-J8 with the 48 lead dampers in each of the exterior columns. 

The frame is tested before and after installing 15 lead dampers of diameter 0.2-in. to 

nylon strings and tightened to the top and freed at the bottom. Figures 31 show the 

building’s response when the empty panels are added, and Figure 32 show the building’s 

response when the lead dampers are added to the damping panels. 



49 
 

 

Figure 31.  Node 3 acceleration-time relation of frame model along x-axis with 
empty welded panels and 48 lead dampers in the exterior columns 

 

 

Figure 32.  Node 3 acceleration-time relation of frame model along x-axis with 
welded panels including 15 lead dampers in each and 48 lead dampers in the 

exterior columns  
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2.6.1.3 Bolted damping panel along x-axis 

 The same procedure explained in the previous section, section 26.1.2, is repeated 

in this section, except, this time, the panels are bolted, instead. Details of the bolted 

panels are shown in Figure 14. Figures 33 and 34 show the impact of both the empty 

bolted panels and the bolted panels with 14 0.2-in diameter lead dampers in each panel 

column, respectively, on decreasing vibration in the frame significantly. 

 

 

Figure 33.  Node 3 acceleration-time relation of frame model along x-axis with 
empty bolted panels and 48 lead dampers in the exterior columns 
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Figure 34.  Node 3 acceleration-time relation of frame model along x-axis with 
bolted panels including 14 lead dampers in each and 48 lead dampers in the exterior 

columns 
 

2.6.1.4 Bolted damping panel along y-axis  

 On the y-axis, steel panels mounted in frame bents J1-J2-J6-J5 and J4-J3-J7-J8 

with the 48 lead dampers in each of the exterior columns. The same panel size and 

number of lead dampers are used on the y-axis. Figures 35 and 36 show the impact of 

both the empty bolted panels and the bolted panels with 14 0.2-in diameter lead dampers 

in each panel column, respectively.  

2.6.2 Steel Cantilever Test with Lead Dampers 

Two different lead damper sizes, 0.5 in.-diameter and 0.6 in. diameter lead 

dampers, are installed in the steel cantilever. The first scheme is attaching the 0.5 in. 

diameter lead dampers to a string at every 4 inches (27 lead dampers in total) along the 

107-in. long cantilever, then changing the lead damper spacings to 2 in. (53 lead 
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dampers). For each case, the cantilever is excited by the pendulum’s generated forcing 

function shown in Figure 15. The same procedure is repeated with the second lead 

damper, 0.6 in. diameter. 

 The cantilever is first impacted by the 10.5-lb pendulum to collect data at the free 

end to use it as a reference, then, the same intensity of impact load is applied to the 

cantilever for each of the various schemes. Figures 37 and 38 show the cantilevers 

response when 27 or 53 0.5 inches dead dampers are installed, respectively. Furthermore, 

Figures 39 and 40 show the cantilevers response when 27 or 53 0.6 inches dead dampers 

are installed in the cantilever.  

 

 

Figure 35.  Node 3 acceleration-time relation of frame model along y-axis with 
empty bolted panels and 48 lead dampers in the exterior columns 
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Figure 36.  Node 3 acceleration-time relation of frame model along y-axis with 
bolted panels with 14 lead dampers in each and 48 lead dampers in exterior columns 
 

 

Figure 37.  Cantilever acceleration-time relations with 27 lead dampers each of 0.5-
in. dia. 
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Figure 38.  Cantilever acceleration-time relations with 53 lead dampers each of 0.5-
in. dia. 

 

 

Figure 39.  Cantilever acceleration-time relations with 27 lead dampers each of 0.6-
in. dia. 
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Figure 40.  Cantilever acceleration-time relations with 53 lead dampers each of 0.6-
in. dia. 

 

2.6.3 Steel Building Frame Plastic Hinges 

 Ground-column AB of the steel building frame model is impacted under multiple 

impact loads shown in Figure 41 to predict the required impact load that forms three 

plastic hinges in the building column. First, three impact loads are applied to the ground-

column’s mid-height by swinging the pendulum from different distances, q = 5, 7, and 9 

inches. The first predicted impact load at q = 16 inches is subjected to the ground-

column, but no plastic hinges predicted in the column. Then, the column is impacted 

again at q = 18 inches, this time, the column had 0.1 inches permanent deformation with 

two plastic hinges at the ground joint and the mid-height. Then the column is impacted 

again at q = 25 inches, this time, three plastic hinges were formed at the ground joint, top 

joint, ant the middle of the column with 0.44 inches of permanent deformation. Figures 

42 and 43 show acceleration versus time at the top floor at Node 3 when the ground-

column is impacted by the pendulum at q = 18 inches and 25 inches. 
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Figure 41.  Applied impact forcing functions 
  

 

Figure 42.  Node 3 acceleration-time relation of frame model along x-axis with q = 
18-in. 
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Figure 43.  Node 3 acceleration-time relation of frame model along x-axis with q = 
25-in. 

 

2.7 Damping Properties 

 In this section, the damping properties for the model frame and the cantilever are 

presented both without and with lead dampers.  

2.7.1 Model Frame Damping Properties without Lead Dampers  

 For the steel frame model, damping coefficient is calculated from Figure 19 

which shows acceleration vs time at the top floor when the building is pulled by 0.25-in. 

at the top floor and released for free vibration. Also, using SAP-2000, the frame is pushed 

by a lateral point load at the top floor by a 150 lb, the lateral displacement was 0.227 

inches. From that, lateral stiffness is calculated to be 660.8 lb/in.  

 From Figure 19, it is found that the time period, Tn, for the building at Node 3 is 

0.0464 seconds and frequency is 21.57 Hz. From the figure; from acceleration 
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Ü𝑖𝑖=1.76118g to Ü𝑗𝑗=1.75123g, number of complete periods, j, is 15. Damping ratio, ζ, is 

calculated using the logarithmic decrement method [48].  

ζ =
ln Ü𝑖𝑖

Ü𝑖𝑖+𝑗𝑗

2𝜋𝜋𝑗𝑗
                                                                                                                         (3) 

in Equation 3, Ü𝑖𝑖 is the acceleration at time 𝑖𝑖, and Ü𝑗𝑗 is the acceleration at time 𝑗𝑗.  

ζ = 
𝑙𝑙𝑛𝑛1.76118𝑔𝑔

1.75123𝑔𝑔

2𝜋𝜋×15
 = 0.00006 = 0.006% 

 Then, natural circular frequency, 𝜔𝜔𝑛𝑛, and damping natural circular frequency, 𝜔𝜔𝐷𝐷, 

of the frame is calculated as follows: 

𝜔𝜔𝑛𝑛 = 2𝜋𝜋
𝑇𝑇𝑛𝑛

                                                                                                                            (4) 

𝜔𝜔𝑛𝑛 = 2𝜋𝜋
0.0464

= 135.55 rads/sec.    

 Also, the damping natural circular frequency, 𝜔𝜔𝐷𝐷, is found as the following:  

𝜔𝜔𝐷𝐷 = 𝜔𝜔𝑛𝑛�1 −  ζ2                                                                                                             (5) 

𝜔𝜔𝐷𝐷 = 135.55 √1 −  0.000062  = 135.55 rads/sec.    

 Because the damping ratio is small, the experimental natural circular 

frequency found in equation 4 is the same as the damping natural circular frequency, 𝜔𝜔𝐷𝐷, 

found in equation 5.     
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 Using the experimentally found natural circular frequency, 𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒., and the 

calculated stiffness, the experimental effective mass, 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒., of the cantilever is 

calculated as the following:  

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. = �
𝐾𝐾

𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
                                                                                                                (6) 

135.55= �
660.8
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

   

𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. = 0.03596 lb-Sec2/in. 

The critical damping coefficient, cc and damping coefficient, c, are calculated as the 

following:  

cc = 2 m 𝜔𝜔𝑛𝑛                                                                                                                       (7) 

cc = 2 × 0.03596× 135.55= 9.75 

From damping ratio, one gets: 

ζ = 𝑐𝑐
𝑐𝑐𝑐𝑐

                                                                                                                                  (8) 

0.00006 = 
c

9.75
   

c = 0.000586 lb-sec./in. 

   The above calculated damping coefficient is used in the theoretical analysis of the 

steel frame model in Chapter 3. 
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2.7.2 Ground-Level Column Damping Properties without Lead Dampers  

 From Figure 21, it is found that the time period, Tn, for the building at Node 1 is 

0.0145175 seconds and frequency is 68.88 Hz. From the figure, from acceleration 

Ü𝑖𝑖=0.4456g to Ü𝑗𝑗=0.4348g, number of complete periods, j, is 47. Damping ratio, ζ, is 

calculated using the logarithmic decrement method used in the above section: 

ζ = 
𝑙𝑙𝑛𝑛0.4456𝑔𝑔

0.4348𝑔𝑔

2𝜋𝜋×34
 = 0.000083 = 0.0083% 

𝜔𝜔𝑛𝑛 = 2𝜋𝜋
0.0145175

= 432.80 ads/sec.    

 Based on the experimental studies, 𝜔𝜔𝑛𝑛 = 432.80 rad/sec. This frequency value 

embodies the influence of the mass of the entire building model and is used to estimate an 

effective mass per unit length, 𝑚𝑚𝑒𝑒𝑒𝑒, needed for isolated ground-level column. Using an 

iterative process, 𝑚𝑚𝑒𝑒𝑒𝑒 is found to be 0.0016311 lb-sec2/in./in. 

 The critical damping coefficient, cc and damping coefficient, c, are calculated using 

Equations 7 and 8:  

cc = 2 m 𝜔𝜔𝑛𝑛                                                                                                                        

cc = 2 × 0.0016311 ×16.25× 66= 3.50 

ζ = 𝑐𝑐
𝑐𝑐𝑐𝑐

                                                                                                                                   

0.000083 = 
c

3.50
   

c = 0.00029 lb-sec./in. 
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   The above calculated damping coefficient is used in the theoretical analysis of 

ground-level Column AB in Chapter 3.                                                                                                                                                                           

2.7.3 Cantilever Damping Properties without Lead Dampers  

From Figure 24, it is calculated that using the logarithmic decrement method, the 

Tn = 0.199 Sec., 𝑓𝑓 = 5.03 Hz, ζ𝑎𝑎𝑎𝑎𝑎𝑎. = 0.0825%, 𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. = 31.57 rads/sec. From the 

computer program, SAP-2000; Tn = 0.187 Sec., 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 = 5.34 Hz, 𝜔𝜔𝑛𝑛 = 33.55 rads/sec. 

Meaning; there is around 6% difference between the SAP-2000 model and the 

experimental natural frequency.  

 To calculate the effective mass of the cantilever, the stiffness of the material 

needs to be calculated. For that, the material properties of the cantilever are needed. The 

moment of inertia, I is found to be 0.1155 in.4, and from the stress-strain material 

properties of the cantilever, yielding stress, σy, is 42,000 psi, and Young`s Modulus, E, 

28,261,000 psi.  First, stiffness of the cantilever is calculated, 

𝐾𝐾 = 3𝐸𝐸𝐸𝐸
𝐿𝐿3

                                                                                                                              (9) 

𝐾𝐾 =  
3 × 28261000 × 0.1155

1073
 = 7.9935 lb/in. 

In Equation 9, L is the total length of the cantilever.  

 Using the experimentally found natural circular frequency, 𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒., and the 

calculated stiffness, the experimental effective mass, 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒., of the cantilever is 

calculated using Equation 6:  
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𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. = �
𝐾𝐾

𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
                                                                                                                 

31.57= �
7.9935
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

   

𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. = 0.00802 lb-Sec2/in. 

The critical damping coefficient, cc and damping coefficient, c, are calculated from 

Equations 7 and 8:  

cc = 2 m 𝜔𝜔𝑛𝑛                                                                                                                         

cc = 2 × 0.00802 × 31.57= 0.5064 

ζ = 𝑐𝑐
𝑐𝑐𝑐𝑐

                                                                                                                                   

0.000825 = 𝑐𝑐
0.5064

   

c = 0.000418 lb-sec./in. 

 The above camping coefficient is the damping coefficient and damping ratio for 

the cantilever.  

 Using the Figures 22, 23, and 24, damping coefficient for the cantilever is found 

along the member with time. the generated damping coefficients at each node for each 

time increment are shown in Figure 44 and Table 1. The following damping coefficient 

values are used in the analytical calculations of the cantilever in Chapter 3. 
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Figure 44.  Damping coefficient versus time at each node of cantilever 
 

Table 1.  Damping coefficient values along cantilever length 

 

Node No. 
2 3 4  and 5 6 7 and 8 9 and 10 11 

 

Time, sec. 

0 -0.188 0.00144 0.0013 0.00108 0.00088 0.00068 0.00048 0.00032 

0.188 -1 0.00036 0.000318 0.000279 0.000252 0.000234 0.000204 0.000189 

1 - 4 0.000042 0.000042 0.000042 0.000042 0.000042 0.000042 0.000042 

4 - 10 0.0000252 0.0000252 0.0000252 0.0000252 0.0000252 0.0000252 0.0000252 

10 - 50 0.0000105 0.0000105 0.0000105 0.0000105 0.0000105 0.0000105 0.0000105 

 

2.7.4 Summary of Damping Properties  

 In this section, damping coefficient, c, for each of the experimental tests are 

calculated as shown in the following Table 2. Percentage of increase in damping 

, l
b-

se
c.

/in
. 
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coefficient for each system is calculated based on the reference damping value of the 

specimens at the same time slot.  

Table 2.  Damping coefficients for model frame  

Event Time (sec.) c (lb-sec./in.) c increase (%) 

No Lead Dampers 
29.0-29.8 0.000586 - 

1-1.5 

0.019 - 
12 Lead Dampers 0.044 56.59 
24 Lead Dampers 0.045 57.56 
48 Lead Dampers 0.050 61.80 
        
No Lead Dampers 

0-0.5 

0.034 - 

Empty Welded Damping Panels, x-axis 0.069 50.72 

Welded Damping Panels with 15 0.2-in. 
Lead Dampers, x-axis 

0.093 63.44 

Empty Bolted Damping Panels, x-axis 0.500 93.20 
Bolted Damping Panels with 14 0.2-in. 
Lead Dampers, x-axis 

0.586 94.20 

No Lead Dampers 0.032   
48 Lead Dampers, y-axis 0.047 31.91 
Empty Bolted Damping Panels, y-axis 0.348 90.80 
Bolted Damping Panels with 14 0.2-in. 
Lead Dampers, y-axis 

0.438 92.69 

 

Table 3.  Damping coefficients for cantilever  

Event Time (sec.) c (lb-sec./in.) c increase (%) 

No Lead Dampers 
18.0-20.0 0.000418 - 

0.0-2.0 

0.012 - 
27 0.5-in. Lead Dampers 0.032 62.50 
53 0.5-in. Lead Dampers 0.043 72.09 
27 0.6-in. Lead Dampers 0.042 71.43 
53 0.6-in. Lead Dampers 0.052 76.92 

 

 Tables 2 and 3 show that with increasing the number of lead dampers, damping 

coefficient value increases in the structure. It is found that for the frame model, the most 

effective damping system is the bolted system.  
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CHAPTER III 

3.  THEORETICAL ANALYSIS 

3.1 Introduction  

 This chapter presents the outcome of a rigorous transient dynamic analysis of the 

cantilever, isolated ground-level column, the building model frame, and a full-scale 

building. Both vertical pulsating and lateral impact loads are considered. For the full-

scale building, both service dead and live loads are included in addition to the vertical 

pulsating load and the vertical impact load on the ground-level column. The dynamic 

stability characteristics for both the isolated ground-level column, the model frame, and 

the full-scale building are also investigated. These studies utilized damping 

characteristics based on the experimental data from Chapter 2.  

3.2 Finite-Difference Solution for Cantilever Under Impact  

 Including the influence of the damping coefficient c and localized impact forcing 

function F(L, t), the governing differential equation for the dynamic equilibrium of the 

cantilever becomes: 

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
= F(L, t)                                                                                      (10)                                                                    

Finite-difference-method is used to calculate the above equation of motion, Equation 10. 

The following approximations of the finite-difference-method [52] are used: 

(𝑑𝑑𝑎𝑎
𝑑𝑑𝑧𝑧

)i =  𝑉𝑉𝑖𝑖+1
𝑘𝑘 −𝑉𝑉𝑖𝑖−1

𝑘𝑘

2ℎ
 + δ                                                                                       (11) 

𝑑𝑑2𝑎𝑎
𝑑𝑑𝑧𝑧2

  ≈ 𝑉𝑉𝑖𝑖−1
𝑘𝑘 −2𝑉𝑉𝑖𝑖

𝑘𝑘+𝑉𝑉𝑖𝑖+1
𝑘𝑘

ℎ2
 + δ                                                                                                    (12) 
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𝑑𝑑3𝑎𝑎
𝑑𝑑𝑧𝑧3

  ≈ −𝑉𝑉𝑖𝑖−2
𝑘𝑘 +2𝑉𝑉𝑖𝑖−1

𝑘𝑘 −2𝑉𝑉𝑖𝑖+1
𝑘𝑘 +𝑉𝑉𝑖𝑖+2

𝑘𝑘

2 × ℎ3
 + δ                                                                                       (13) 

𝑑𝑑4𝑎𝑎
𝑑𝑑𝑧𝑧4

  ≈ 𝑉𝑉𝑖𝑖−2
𝑘𝑘 − 4𝑉𝑉𝑖𝑖−1

𝑘𝑘 + 6𝑉𝑉𝑖𝑖
𝑘𝑘− 4𝑉𝑉𝑖𝑖+1

𝑘𝑘 +𝑉𝑉𝑖𝑖+2
𝑘𝑘  

ℎ4
 + δ                                                                               (14)  

𝑑𝑑𝑎𝑎
𝑑𝑑𝜋𝜋

=
𝑉𝑉𝑖𝑖
𝑘𝑘+1 −  𝑉𝑉𝑖𝑖

𝑘𝑘−1
 

2Δ𝜋𝜋
 + δ                                                                                                        (15) 

𝑑𝑑2𝑎𝑎
𝑑𝑑𝜋𝜋2

=  
𝑉𝑉𝑖𝑖
𝑘𝑘−1 −  2𝑉𝑉𝑖𝑖

𝑘𝑘  +  𝑉𝑉𝑖𝑖
𝑘𝑘+1

 
Δ𝜋𝜋2

 + δ                                                                                            (16) 

δ = truncation error ≈ 0 

where: 

𝑣𝑣  = Displacement at any point 

h  = Length of each segment 

t = time 

Δ𝐶𝐶 = time increment 

 From Figure 45, it is shown that the tangent of the displacement curve for three 

points (two segments) can be used to find the slope of the curve by taking derivation to 

the tangent line as shown in Equation 11. After taking the second derivation of the 

tangent line, the curvature of the displacement curve can be obtained as expressed in 

Equation 12. The cantilever should be divided into equal segments (h). With increasing 

segment numbers, the accuracy of finding displacement to the beam increases.  
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 Since the FDM is used for the equation of motion, the FDM is used for a two-

domain region. For the fixed end steel pipe cantilever, the length is 107 inches along Z-

axis. The total length is divided into ten segments, each segment is h = 10.7 inches. 

 

 

Figure 45.  Finite-Difference nodes and nodal displacements  
 

 Equations 15 and 16 are applied to solve for velocity and acceleration in the 

partial differential equation of motion.  As shown in Figure 46, the cantilever is divided 

into ten segments, eleven nodes, with three extra nodal points which are out of the 

boundary of the beam called the Phantom points or Imaginary points. For this case, 

eleven equations are needed. Then the matrix equation will be generated, having forcing 

function, 𝑓𝑓(𝐿𝐿, 𝐶𝐶), segment length, h, mass per unit length, m, damping coefficient, c, time 

increment, Δ𝐶𝐶, and displacement, 𝑣𝑣. The generated matrix equation is solved for each 

time increment, 𝐶𝐶 + Δ𝐶𝐶, starting from  𝐶𝐶 = 0  second to 𝐶𝐶 = 50 seconds. Time increment, 

Δ𝐶𝐶 is 0.0005 seconds per run. In order to have a stable calculation, the time increment 

must be equal to or smaller than 0.0005 seconds, Δ𝐶𝐶 ≤ 0.0005 seconds. From the 
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boundary condition, it is found that displacement at the support is zero (𝑣𝑣1𝑘𝑘= 0). After 

specifying segment length and time, the displacement of each segment can be found [49-

53]. In this study, only the free end displacement (𝑣𝑣11𝑘𝑘 ) has been taken into consideration. 

Finally, repeat this procedure for each time interval, Δt, the cantilever’s time history, 

displacement vs time, velocity vs time, and acceleration vs time can be found. The 

boundary conditions are: 

 𝑣𝑣1𝑘𝑘 = 0 

(𝑑𝑑𝑎𝑎
𝑑𝑑𝑧𝑧

)1 =  𝑎𝑎2𝑘𝑘−𝑎𝑎0𝑘𝑘
2ℎ

 = 0  ,  𝑣𝑣2𝑘𝑘 = 𝑣𝑣0𝑘𝑘 

Also, based on symmetry, 𝑣𝑣3𝑘𝑘 = 𝑣𝑣−1𝑘𝑘  

Also, at the free end, the bending moment and shear are zero [39]. Thus, at Node 11: 

𝐸𝐸𝐸𝐸 (𝑑𝑑
2𝑎𝑎

𝑑𝑑𝑧𝑧2
)11  ≈ 𝐸𝐸𝐸𝐸 (𝑎𝑎10

𝑘𝑘 −2𝑎𝑎11𝑘𝑘 +𝑎𝑎12𝑘𝑘

ℎ2
)11    

𝐸𝐸𝐸𝐸 (𝑑𝑑
3𝑎𝑎

𝑑𝑑𝑧𝑧3
)11  ≈ 𝐸𝐸𝐸𝐸 (−𝑎𝑎9

𝑘𝑘+2𝑎𝑎10𝑘𝑘 −2𝑎𝑎12𝑘𝑘 +𝑎𝑎13𝑘𝑘

2 × ℎ3
)11    

The above two expressions resulted in: 

𝑣𝑣12𝑘𝑘 =  −𝑣𝑣10𝑘𝑘 + 2𝑣𝑣11𝑘𝑘                                                                                                         (17) 

𝑣𝑣13𝑘𝑘 =  𝑣𝑣9𝑘𝑘 − 2𝑣𝑣10𝑘𝑘 + 2𝑣𝑣12𝑘𝑘                                                                                                 (18) 

From Equations 17 and 18: 

𝑣𝑣13𝑘𝑘 = 𝑣𝑣9𝑘𝑘 − 4𝑣𝑣10𝑘𝑘 + 4𝑣𝑣11𝑘𝑘                                                                                                  (19) 
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Figure 46.  Finite-Difference nodal scheme for cantilever 
  

   

Applying the finite-difference method to Equation 16, one gets: 

EI
𝑣𝑣𝑖𝑖−2
𝑘𝑘 − 4𝑣𝑣𝑖𝑖−1

𝑘𝑘 + 6𝑣𝑣𝑖𝑖
𝑘𝑘− 4𝑣𝑣𝑖𝑖+1

𝑘𝑘 +𝑣𝑣𝑖𝑖+2
𝑘𝑘

 

ℎ4  + 𝑚𝑚𝑣𝑣𝑖𝑖
𝑘𝑘−1  –  2𝑣𝑣𝑖𝑖𝑘𝑘  +  𝑉𝑉𝑖𝑖𝑘𝑘+1

 
Δ𝐶𝐶2 + 𝑐𝑐𝑖𝑖𝑘𝑘  𝑣𝑣𝑖𝑖

𝑘𝑘+1  –  𝑣𝑣𝑖𝑖𝑘𝑘−1
 

2Δ𝐶𝐶 = 𝐹𝐹(𝐿𝐿, 𝐶𝐶)               (20) 

F(L,t) 

13 
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Equation 20 is rearranged to calculate displacement at time t+ Δ𝐶𝐶, i.e. at time 𝑘𝑘 + 1: 

𝑣𝑣𝑖𝑖𝑘𝑘+1 = ��−(𝛾𝛾)𝑣𝑣𝑖𝑖−2𝑘𝑘 + (4𝛾𝛾)𝑣𝑣𝑖𝑖−1𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣𝑖𝑖𝑘𝑘 + (4𝛾𝛾)𝑣𝑣𝑖𝑖+1𝑘𝑘 − (𝛾𝛾)𝑣𝑣𝑖𝑖+2𝑘𝑘 − (𝛽𝛽 −

𝛼𝛼)𝑣𝑣𝑖𝑖𝑘𝑘−1 � + 𝐹𝐹(𝐿𝐿, 𝐶𝐶)�/(𝛽𝛽 + 𝛼𝛼)                                                                                           (21)                                                                                                            

Where 

𝛾𝛾 = 𝐸𝐸𝐸𝐸
ℎ4

 ,  

𝛽𝛽= 𝑚𝑚
Δ𝜋𝜋2

 , and 

𝛼𝛼 = 𝑐𝑐𝑖𝑖
𝑘𝑘

2 Δ𝜋𝜋
  

 In Equation 21, the subscript i represents nodal place along the cantilever, and 

subscript k represents the time increment. 

3.2.1 Steel Cantilever Natural Frequency Using FDM 

 To solve Equation 21 for the natural frequency of the cantilever, the forcing 

function is eliminated from the equation. Furthermore, to predict lateral displacement at 

each node, 𝑣𝑣𝑖𝑖𝑘𝑘+1, it is needed to know/pre-find displacement in time k-1 for each node.  

 For the first time interval solution, shape function (ϰ) is merged with the first time 

interval for forwarding difference approximation, as shown in the following [54]:  

ϰ = 
𝑆𝑆𝑍𝑍2

6𝐸𝐸𝐸𝐸    (3𝐿𝐿 − 𝑍𝑍)                                                                                                          (22) 

𝑣𝑣𝑖𝑖
𝑘𝑘=1  –  𝑣𝑣𝑖𝑖𝑘𝑘=0

 
Δ𝜋𝜋

=
𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
 ( 𝑍𝑍𝑖𝑖, 0) +  

Δ𝜋𝜋
2

 
𝜕𝜕2𝑣𝑣

𝜕𝜕𝐶𝐶2  ( 𝑍𝑍𝑖𝑖, 0)                                                                    (23)                                                                           
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 Where P is an imaginary applied load (2.038 lb) at the free end of the cantilever to 

displace it by 0.255 inches.  

 Then, Equation 23, is substituted into equation 10,  

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

= −𝐸𝐸𝐸𝐸
𝑚𝑚

𝜕𝜕4𝑎𝑎
𝜕𝜕𝑥𝑥4

− 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

                                                                                               

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖, 0) = −𝐸𝐸𝐸𝐸
𝑚𝑚

𝜕𝜕4𝑎𝑎
𝜕𝜕𝑥𝑥4

( 𝑍𝑍𝑖𝑖, 0) − 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

( 𝑍𝑍𝑖𝑖, 0)                                                                                               

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖, 0) = −𝐸𝐸𝐸𝐸
𝑚𝑚

𝑑𝑑4

𝑑𝑑𝑥𝑥4
Φ(𝑍𝑍𝑖𝑖) −

𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝑑𝑑
𝑑𝑑𝜋𝜋
Φ(𝑍𝑍𝑖𝑖)                                                                    (24) 

 

Finite-Difference method is applied to Equation 24 to get the following equation:                                                                       

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖 , 0) = − 𝐸𝐸𝐸𝐸
𝑚𝑚ℎ4

(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) − 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

( 𝑍𝑍𝑖𝑖 , 0)                           (25)                                                                            

 

Finally, Equation 25 is substituted in Equation 23. From boundary conditions, 

velocity is zero, 𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

 ( 𝑍𝑍𝑖𝑖, 0) = 0, at time = 0 seconds, just before releasing the cantilever 

to vibrate freely.  

𝑣𝑣𝑖𝑖
𝑘𝑘=1  –  𝑣𝑣𝑖𝑖𝑘𝑘=0

 
Δ𝜋𝜋

=
𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
 ( 𝑍𝑍𝑖𝑖, 0) +  

Δ𝜋𝜋
2

 (−
𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4 (ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) −

𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚

𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
( 𝑍𝑍𝑖𝑖, 0))                                                                                                                    (26)       

𝑣𝑣𝑖𝑖1  = 𝑣𝑣𝑖𝑖0 +  Δ𝐶𝐶
2

2
�−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2)�                                     

𝑣𝑣𝑖𝑖1  = ϰ𝑖𝑖  +  Δ𝐶𝐶
2

2
(−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2))                                   (27)  



72 
 

 In order to solve for Equation 27, the shape function is applied to each node at 

time 0, the values are given in the following; also, Young’s modulus, E, Moment of 

Inertia, I, mass per unit length, m, and node displacement, h, is needed.  

E = 28,261,000 psi 

I = 0.1155 𝑖𝑖𝑛𝑛.4 

m  = 9.92÷386.0886 
107

 = 0.00024 (lb-Sec2/in.)/in. 

h = 10.7 in., and 

 After solving for the first time-interval, t+ Δ𝐶𝐶, the following equations are applied 

to each node. The boundary equations are embedded in the following nodal equations. 

The following nodal equations are run for each time interval, Δ𝐶𝐶. In order to have a stable 

calculation, Δ𝐶𝐶, must not be bigger than 0.0005 seconds. Also, the damping coefficient 

values, 𝑐𝑐𝑖𝑖𝑘𝑘, shown in Table 1 is used.  

Equation 21 is applied at each node to calculate displacement versus time for each node 

as the following:  

𝑣𝑣1𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣−1𝑘𝑘 + (4𝛾𝛾)𝑣𝑣0𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣1𝑘𝑘 + (4𝛾𝛾)𝑣𝑣2𝑘𝑘 − (𝛾𝛾)𝑣𝑣3𝑘𝑘 − (𝛽𝛽 −
𝛼𝛼)𝑣𝑣1𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼) 

(8𝛾𝛾)𝑣𝑣2𝑘𝑘 − (2𝛾𝛾)𝑣𝑣3𝑘𝑘 = 0                                                                                        (28-a) 

𝑣𝑣2𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣0𝑘𝑘 + (4𝛾𝛾)𝑣𝑣1𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣2𝑘𝑘 + (4𝛾𝛾)𝑣𝑣3𝑘𝑘 − (𝛾𝛾)𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣2𝑘𝑘+1 = �−(7𝛾𝛾 − 2𝛽𝛽)𝑣𝑣2𝑘𝑘 + (4𝛾𝛾)𝑣𝑣3𝑘𝑘 − (𝛾𝛾)𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼)         (28-b) 

 𝑣𝑣3𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣1𝑘𝑘 + (4𝛾𝛾)𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣3𝑘𝑘 + (4𝛾𝛾)𝑣𝑣4𝑘𝑘 − (𝛾𝛾)𝑣𝑣5𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣3𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (28-c) 

1 

2 

3 
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 𝑣𝑣4𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣2𝑘𝑘 + (4𝛾𝛾)𝑣𝑣3𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣4𝑘𝑘 + (4𝛾𝛾)𝑣𝑣5𝑘𝑘 − (𝛾𝛾)𝑣𝑣6𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣4𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                             (28-d) 

 𝑣𝑣5𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣3𝑘𝑘 + (4𝛾𝛾)𝑣𝑣4𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣5𝑘𝑘 + (4𝛾𝛾)𝑣𝑣6𝑘𝑘 − (𝛾𝛾)𝑣𝑣7𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣5𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                             (28-e) 

 𝑣𝑣6𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣4𝑘𝑘 + (4𝛾𝛾)𝑣𝑣5𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣6𝑘𝑘 + (4𝛾𝛾)𝑣𝑣7𝑘𝑘 − (𝛾𝛾)𝑣𝑣8𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣6𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                             (28-f) 

 𝑣𝑣7𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣5𝑘𝑘 + (4𝛾𝛾)𝑣𝑣6𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣7𝑘𝑘 + (4𝛾𝛾)𝑣𝑣8𝑘𝑘 − (𝛾𝛾)𝑣𝑣9𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣7𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (28-g) 

𝑣𝑣8𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣6𝑘𝑘 + (4𝛾𝛾)𝑣𝑣7𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣8𝑘𝑘 + (4𝛾𝛾)𝑣𝑣9𝑘𝑘 − (𝛾𝛾)𝑣𝑣10𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣8𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                             (28-h) 

 𝑣𝑣9𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣7𝑘𝑘 + (4𝛾𝛾)𝑣𝑣8𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣9𝑘𝑘 + (4𝛾𝛾)𝑣𝑣10𝑘𝑘 − (𝛾𝛾)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 −

𝛼𝛼)𝑣𝑣9𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼)                                                                                             (28-i) 

 𝑣𝑣10𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣8𝑘𝑘 + (4𝛾𝛾)𝑣𝑣9𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣10𝑘𝑘 + (4𝛾𝛾)𝑣𝑣11𝑘𝑘 − (𝛾𝛾)𝑣𝑣12𝑘𝑘 −
(𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣10𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣8𝑘𝑘 + (4𝛾𝛾)𝑣𝑣9𝑘𝑘 − (5𝛾𝛾 − 2𝛽𝛽)𝑣𝑣10𝑘𝑘 + (2𝛾𝛾)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼)                                                                                                                                             
(28-j) 

 𝑣𝑣11𝑘𝑘+1 = {[−(𝛾𝛾)𝑣𝑣9𝑘𝑘 + (4𝛾𝛾)𝑣𝑣10𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣11𝑘𝑘 + (4𝛾𝛾)𝑣𝑣12𝑘𝑘 − (𝛾𝛾)𝑣𝑣13𝑘𝑘 −
(𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1] }/(𝛽𝛽 + 𝛼𝛼) 

 𝑣𝑣11𝑘𝑘+1 = ��−(2𝛾𝛾)𝑣𝑣9𝑘𝑘 +(4𝛾𝛾)𝑣𝑣10𝑘𝑘 − (2𝛾𝛾 − 2𝛽𝛽)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1 ��/(𝛽𝛽 + 𝛼𝛼)             (28-k) 

 For each Δt, starting from 0 seconds, 𝑣𝑣11 is calculated to generate displacement-

time relations, shown in Figure 47, velocity-time relations, shown in Figure 48, and 

acceleration-time relations, shown in Figure 49 for the cantilever at free vibration when 

the free end is pulled by 0.255 inches and released to vibrate freely. Figure 50 is a 

comparison between the experimental and theoretical acceleration-time data. The figure 

shows that the experimental response is in a good agreement with the theory.  

 Velocity and acceleration at Node 11 are calculated at each time increment using 

Equations 15 and 16. 
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Figure 47.  Displacement-time relation at cantilever free end 
 

 

Figure 48.  Velocity-time relation at cantilever free end 
 



75 
 

 

Figure 49.  Acceleration-time relation at cantilever free end 

 

 

 

 

Figure 50.  Experimental and FDM acceleration-time relations at cantilever free end 
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3.2.2 Steel Cantilever Under Impact Load  

 The Cantilever is subjected to a 10.5-lb impact load at its free end. This resulted 

in the forcing function shown in Figure 18.  

Equation 16 can be expressed in the following finite-difference form: 

𝑣𝑣𝑖𝑖1  = ϰ𝑖𝑖  +  Δ𝐶𝐶
2

2
((−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2)) + 1

𝑚𝑚
𝐹𝐹(𝐿𝐿, 𝐶𝐶))             (29)  

In this equation, F(L,t) is given by Equation 2.  

 It is assumed that the cantilever has an imperfection at the free end by 0.005 in. In 

order to solve for Equation 29, the initial condition for each node is found using Equation 

28 with an applied load of 0.0396 lb. Also, Young’s modulus, E, Moment of Inertia, I, 

mass per unit length, m, and node displacement, h, are used like the following:  

E = 28,261,000 psi 

I = 0.1155 𝑖𝑖𝑛𝑛.4 

m  = 9.92÷386.0886 
107

 = 0.00024 (lb-Sec2/in.)/in. 

h = 10.7 in. 

 After solving for the first time-interval, t+ Δ𝐶𝐶, the following equations are applied 

to each node. The boundary equations are embedded in the following nodal equations. 

The following nodal equations are run for each time interval, Δ𝐶𝐶. In order to have a stable 

calculation, Δ𝐶𝐶, must be equal or smaller than 0.0005 seconds.  
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𝑣𝑣1𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣−1𝑘𝑘 + (4𝛾𝛾)𝑣𝑣0𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣1𝑘𝑘 + (4𝛾𝛾)𝑣𝑣2𝑘𝑘 − (𝛾𝛾)𝑣𝑣3𝑘𝑘 − (𝛽𝛽 −
𝛼𝛼)𝑣𝑣1𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼) 

(8𝛾𝛾)𝑣𝑣2𝑘𝑘 − (2𝛾𝛾)𝑣𝑣3𝑘𝑘 = 0                                                                                       (30-a) 

𝑣𝑣2𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣0𝑘𝑘 + (4𝛾𝛾)𝑣𝑣1𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣2𝑘𝑘 + (4𝛾𝛾)𝑣𝑣3𝑘𝑘 − (𝛾𝛾)𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣2𝑘𝑘+1 = �−(7𝛾𝛾 − 2𝛽𝛽)𝑣𝑣2𝑘𝑘 + (4𝛾𝛾)𝑣𝑣3𝑘𝑘 − (𝛾𝛾)𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼)         (30-b) 

 𝑣𝑣3𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣1𝑘𝑘 + (4𝛾𝛾)𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣3𝑘𝑘 + (4𝛾𝛾)𝑣𝑣4𝑘𝑘 − (𝛾𝛾)𝑣𝑣5𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣3𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (30-c) 

 𝑣𝑣4𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣2𝑘𝑘 + (4𝛾𝛾)𝑣𝑣3𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣4𝑘𝑘 + (4𝛾𝛾)𝑣𝑣5𝑘𝑘 − (𝛾𝛾)𝑣𝑣6𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣4𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (30-d) 

 𝑣𝑣5𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣3𝑘𝑘 + (4𝛾𝛾)𝑣𝑣4𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣5𝑘𝑘 + (4𝛾𝛾)𝑣𝑣6𝑘𝑘 − (𝛾𝛾)𝑣𝑣7𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣5𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (30-e) 

 𝑣𝑣6𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣4𝑘𝑘 + (4𝛾𝛾)𝑣𝑣5𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣6𝑘𝑘 + (4𝛾𝛾)𝑣𝑣7𝑘𝑘 − (𝛾𝛾)𝑣𝑣8𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣6𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (30-f) 

 𝑣𝑣7𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣5𝑘𝑘 + (4𝛾𝛾)𝑣𝑣6𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣7𝑘𝑘 + (4𝛾𝛾)𝑣𝑣8𝑘𝑘 − (𝛾𝛾)𝑣𝑣9𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣7𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (30-g) 

𝑣𝑣8𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣6𝑘𝑘 + (4𝛾𝛾)𝑣𝑣7𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣8𝑘𝑘 + (4𝛾𝛾)𝑣𝑣9𝑘𝑘 − (𝛾𝛾)𝑣𝑣10𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣8𝑘𝑘−1 �/
(𝛽𝛽 + 𝛼𝛼)                                                                                                              (30-h) 

 𝑣𝑣9𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣7𝑘𝑘 + (4𝛾𝛾)𝑣𝑣8𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣9𝑘𝑘 + (4𝛾𝛾)𝑣𝑣10𝑘𝑘 − (𝛾𝛾)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 −

𝛼𝛼)𝑣𝑣9𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼)                                                                                              (30-
i) 

 𝑣𝑣10𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣8𝑘𝑘 + (4𝛾𝛾)𝑣𝑣9𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣10𝑘𝑘 + (4𝛾𝛾)𝑣𝑣11𝑘𝑘 − (𝛾𝛾)𝑣𝑣12𝑘𝑘 −
(𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣10𝑘𝑘+1 = �−(𝛾𝛾)𝑣𝑣8𝑘𝑘 + (4𝛾𝛾)𝑣𝑣9𝑘𝑘 − (5𝛾𝛾 − 2𝛽𝛽)𝑣𝑣10𝑘𝑘 + (2𝛾𝛾)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 �/(𝛽𝛽 + 𝛼𝛼)                                                                                                                                  
(30-j) 

 𝑣𝑣11𝑘𝑘+1 = {[−(𝛾𝛾)𝑣𝑣9𝑘𝑘 + (4𝛾𝛾)𝑣𝑣10𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣11𝑘𝑘 + (4𝛾𝛾)𝑣𝑣12𝑘𝑘 − (𝛾𝛾)𝑣𝑣13𝑘𝑘 −
(𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1] + 𝐹𝐹(𝐿𝐿, 𝐶𝐶) }/(𝛽𝛽 + 𝛼𝛼) 

 𝑣𝑣11𝑘𝑘+1 = ��−(2𝛾𝛾)𝑣𝑣9𝑘𝑘 +(4𝛾𝛾)𝑣𝑣10𝑘𝑘 − (2𝛾𝛾 − 2𝛽𝛽)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1 � + 𝐹𝐹(𝐿𝐿, 𝐶𝐶)�/(𝛽𝛽 + 𝛼𝛼)                                                                                                                                                  
(30-k) 
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 For each Δt, starting from 0 seconds, 𝑣𝑣11 is calculated to generate displacement-

time relations, shown in Figure 51, velocity-time relations, shown in Figure 52, and 

acceleration-time relations, shown in Figure 53 for the cantilever. Figure 54 is a 

comparison between the experimental and theoretical acceleration-time data. The graph 

shows that both the experimental and theoretical results are acceptably similar and the 

difference is negligible.  

 Velocity and acceleration at Node 11 (the free end) are calculated at each time 

increment using equations 15 and 16. 

 

 

Figure 51.  Displacement-time relation at cantilever free end 
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Figure 52.  Velocity-time relations at cantilever free end 

 

 

Figure 53.  Acceleration-time relations at cantilever free end 
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Figure 54.  Experimental and FDM acceleration-time relations at free end 
 

3.2.3 Ground-Level Column Natural Vibration Analysis Using FDM 

 Natural frequency of the ground-column A-B is obtained from the equation of 

motion when the column is initially displaced by laterally by an amount of a 1 mm or 

0.039 inches at the top and then released to vibrate freely.  

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
= 0                                                                                               (31)                                                                    

 After applying the finite-difference method to Equation 31, the dynamic equation 

of motion becomes; 

EI
𝑣𝑣𝑖𝑖−2
𝑘𝑘 − 4𝑣𝑣𝑖𝑖−1

𝑘𝑘 + 6𝑣𝑣𝑖𝑖
𝑘𝑘− 4𝑣𝑣𝑖𝑖+1

𝑘𝑘 +𝑣𝑣𝑖𝑖+2
𝑘𝑘

 

ℎ4  + 𝑚𝑚𝑣𝑣𝑖𝑖
𝑘𝑘−1  –  2𝑣𝑣𝑖𝑖𝑘𝑘  +  𝑉𝑉𝑖𝑖𝑘𝑘+1

 
Δ𝐶𝐶2 + 𝑐𝑐 𝑣𝑣𝑖𝑖

𝑘𝑘+1  –  𝑣𝑣𝑖𝑖𝑘𝑘−1
 

2Δ𝐶𝐶 =  0                        (32) 

Equation 32 is rearranged to calculate displacement at time t+ Δ𝐶𝐶, i.e. at time 𝑘𝑘 + 1: 

𝑣𝑣𝑖𝑖𝑘𝑘+1 = �−γvi−2k + 4γvi−1k − (6γ − 2β)vik + 4γvi+1k − 𝛾𝛾vi+2k − (β − α)vik−1 �/(β+ α)    (33)  
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Where 

𝛾𝛾 = 𝐸𝐸𝐸𝐸
ℎ4

 ,  

𝛽𝛽= 𝑚𝑚
Δ𝜋𝜋2

 , and 

𝛼𝛼 = 𝑐𝑐
2 Δ𝜋𝜋

 ,  

 In Equation 33, the subscript i represents nodal place along the column, and 

subscript 𝑘𝑘 represents the time increment.                                                         

 Both, rotational, k, and lateral stiffness, K, as shown in Figure 55, are determined 

for the structural members. The rotational stiffness, k=M/ϴ, is determined after applying 

multiple unit moments (50 lb.in., 200 lb.in.) at joint B, and rotations, ϴ = 0.00051 Rad, 

and 0.00205 Rad, respectively, are obtained using SAP-2000. The lateral stiffness, 

K=P/𝑣𝑣, determined after applying multiple lateral unit loads (100 lb, 150 lb) at joint B 

and then lateral displacements, 𝑣𝑣 = 0.0391 in., 0.0587 in., are obtained using SAP-2000.  

Rotational stiffness, k = M/ϴ = 200−50
0.00205−0.00051

= 97,402 Rad/lb.in. 

Lateral stiffness, K = P/ 𝑣𝑣 = 150−100
0.0587−0.0391

 = 2,551 lb/in. 
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Figure 55.  Model used for ground-level column AB  
 

 The moment of inertia of the column- section is, I = 0.00356 in4. The boundary 

conditions are as follows: 

𝑣𝑣1𝑘𝑘 = 0                                                                                                                               

(𝑑𝑑𝑎𝑎
𝑑𝑑𝑧𝑧

)1 =  𝑎𝑎2𝑘𝑘−𝑎𝑎0𝑘𝑘
2ℎ

 = 0                                                                                                             (33) 

 Joint A is at the ground level and is fixed to the ground, displacement at the 

imaginary nodes 0 and -1 are zero, but, since FDM is based on sloped/curved line, it is 

assumed that 𝑣𝑣0𝑘𝑘 has an imaginary value. 

𝑣𝑣0𝑘𝑘 = 𝑣𝑣2𝑘𝑘                                                                                                                           
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Also, from bending moment [39], M=kϴ, and shear [55], P=K 𝑣𝑣 at joint B (Node 11), 

one gets: 

𝐸𝐸𝐸𝐸 �𝑑𝑑
2𝑎𝑎

𝑑𝑑𝑧𝑧2
�
11

  ≈ −(kϴ)11                                                                                                    (34) 

EI 𝑎𝑎10
𝑘𝑘 −2𝑎𝑎11𝑘𝑘 +𝑎𝑎12𝑘𝑘

ℎ2
 = -k 𝑎𝑎12

𝑘𝑘 −𝑎𝑎10𝑘𝑘

2ℎ
                                                                                              (35) 

𝐸𝐸𝐸𝐸 𝑑𝑑
3𝑎𝑎

𝑑𝑑𝑧𝑧3
  ≈ K𝑣𝑣11𝑘𝑘                                                                                                                                (36) 

EI  −𝑎𝑎9
𝑘𝑘+2𝑎𝑎10𝑘𝑘 −2𝑎𝑎12𝑘𝑘 +𝑎𝑎13𝑘𝑘

2 × ℎ3
  = K 𝑣𝑣11𝑘𝑘                                                                                        (37) 

The above expressions result in: 

𝑣𝑣12𝑘𝑘 = −(𝜓𝜓+𝜑𝜑)𝑎𝑎10𝑘𝑘 +2𝜓𝜓𝑎𝑎11𝑘𝑘

𝜓𝜓−𝜑𝜑
                                                                                                     

𝑣𝑣13𝑘𝑘 = 𝑣𝑣9𝑘𝑘 − (2 + 2(𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑) )𝑣𝑣10𝑘𝑘 + ( 4𝜓𝜓

(𝜓𝜓−𝜑𝜑) + 𝜑𝜑`)𝑣𝑣11𝑘𝑘                                                              

where; 

𝜓𝜓 =  
𝐸𝐸𝐸𝐸
ℎ2

   

𝜑𝜑 =  
−𝑘𝑘
2ℎ

 

𝜑𝜑` =  
2ℎ3𝐾𝐾
𝐸𝐸𝐸𝐸
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 From the initial conditions, For the first time interval solution, shape function (ϰ) 

is merged with the first time interval for forwarding difference approximation, as shown 

in the following [54]:  

ϰ = (�0.5 (1 + cos 𝜋𝜋𝑧𝑧
𝐿𝐿
�)-1)×(-𝑣𝑣11)                                                                                 (38)                                                                            

where in Equation 42, 𝑣𝑣11 = 0.039 in., and, 

𝑣𝑣𝑖𝑖
𝑘𝑘=1  –  𝑣𝑣𝑖𝑖𝑘𝑘=0

 
Δ𝜋𝜋

=
𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
 ( 𝑍𝑍𝑖𝑖, 0) +  

Δ𝜋𝜋
2

 
𝜕𝜕2𝑣𝑣

𝜕𝜕𝐶𝐶2  ( 𝑍𝑍𝑖𝑖, 0)                                                                    (39)                                                                            

Shape function, (ϰ), is merged into the equation of motion as the following: 

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
= 0                                                                               

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

= −𝐸𝐸𝐸𝐸
𝑚𝑚
𝜕𝜕4𝑎𝑎
𝜕𝜕𝑧𝑧4

− 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

                                                                                               

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖, 0) = −𝐸𝐸𝐸𝐸
𝑚𝑚

𝜕𝜕4𝑎𝑎
𝜕𝜕𝑥𝑥4

( 𝑍𝑍𝑖𝑖, 0) − 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

( 𝑍𝑍𝑖𝑖, 0)                                                                                               

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖, 0) = −𝐸𝐸𝐸𝐸
𝑚𝑚

𝑑𝑑4

𝑑𝑑𝑥𝑥4
ϰ(𝑍𝑍𝑖𝑖) −

𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝑑𝑑
𝑑𝑑𝜋𝜋
ϰ(𝑍𝑍𝑖𝑖)                                                                       (40)     

 Finite-Difference method is applied to Equation 40 to get the following equation:                                                                       

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖 , 0) = − 𝐸𝐸𝐸𝐸
𝑚𝑚ℎ4

(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) − 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

( 𝑍𝑍𝑖𝑖 , 0)                           (41)                                                                            

Finally, Equation 41 is substituted in Equation 39. From boundary conditions, 

velocity is zero, 𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

 ( 𝑍𝑍𝑖𝑖, 0) = 0, at time = 0 seconds. 

𝑣𝑣𝑖𝑖
𝑘𝑘=1  –  𝑣𝑣𝑖𝑖𝑘𝑘=0

 
Δ𝜋𝜋

=
𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
 ( 𝑍𝑍𝑖𝑖, 0) +  

Δ𝜋𝜋
2

 (−
𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4 (ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) −

𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚

𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
( 𝑍𝑍𝑖𝑖, 0))                                                                     
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𝑣𝑣𝑖𝑖1  = 𝑣𝑣𝑖𝑖0 +  Δ𝐶𝐶
2

2
�−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2)�                                     

𝑣𝑣𝑖𝑖1  = ϰ𝑖𝑖  +  Δ𝐶𝐶
2

2
�−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2)�                                  (42)  

 In order to solve for Equation 42, the shape function is applied to each node at 

time 0, also, Youngs Modulus, E, Moment of Inertia, I, mass per unit length, m, and node 

displacement, h= 1.625 in., is needed. Then, the initial displacement at each node is found 

using Equation 42. 

 After solving for the first time-interval, t+ Δ𝐶𝐶, the following equations are applied 

to each node. The boundary equations are embedded in the following nodal equations. 

The following nodal equations are run for each time interval, Δ𝐶𝐶. To have a stable 

calculation, Δ𝐶𝐶, must not be bigger than 0.0005 seconds. Also, the damping coefficient 

value, 𝑐𝑐𝑖𝑖𝑘𝑘= 0.00029.  

 

𝑣𝑣1𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣−1𝑘𝑘 + 4𝛾𝛾𝑣𝑣0𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣1𝑘𝑘 + 4𝛾𝛾𝑣𝑣2𝑘𝑘 − 𝛾𝛾𝑣𝑣3𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣1𝑘𝑘−1 ��/(𝛽𝛽 +
𝛼𝛼)                                                                                                                     (43-a) 

𝑣𝑣2𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣0𝑘𝑘 + 4𝛾𝛾𝑣𝑣1𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣2𝑘𝑘4𝛾𝛾𝑣𝑣3𝑘𝑘 − 𝛾𝛾𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 ��/(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣2𝑘𝑘+1 = ��−(7𝛾𝛾 − 2𝛽𝛽)𝑣𝑣2𝑘𝑘 + 4𝛾𝛾𝑣𝑣3𝑘𝑘 − 𝛾𝛾𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 ��/(𝛽𝛽 + 𝛼𝛼)           (43-b) 

 𝑣𝑣3𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣1𝑘𝑘 + 4𝛾𝛾𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣3𝑘𝑘 + 4𝛾𝛾𝑣𝑣4𝑘𝑘 − 𝛾𝛾𝑣𝑣5𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣3𝑘𝑘−1 ��/(𝛽𝛽 +
𝛼𝛼)                                                                                               

𝑣𝑣3𝑘𝑘+1 = ��4𝛾𝛾𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣3𝑘𝑘 + 4𝛾𝛾𝑣𝑣4𝑘𝑘 − 𝛾𝛾𝑣𝑣5𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣3𝑘𝑘−1 ��/(𝛽𝛽 + 𝛼𝛼)   (43-c) 

 𝑣𝑣4𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣2𝑘𝑘 + 4𝛾𝛾𝑣𝑣3𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣4𝑘𝑘 + 4𝛾𝛾𝑣𝑣5𝑘𝑘 − 𝛾𝛾𝑣𝑣6𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣4𝑘𝑘−1 ��/(𝛽𝛽 +
𝛼𝛼)                                                                                                                       (43-d) 

 𝑣𝑣5𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣3𝑘𝑘 + 4𝛾𝛾𝑣𝑣4𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣5𝑘𝑘 + 4𝛾𝛾𝑣𝑣6𝑘𝑘 − 𝛾𝛾𝑣𝑣7𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣5𝑘𝑘−1 ��/(𝛽𝛽 +

1 

2 

3 

4 

5 
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𝛼𝛼)                                                                                                                        (43-e) 

 𝑣𝑣6𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣4𝑘𝑘 + 4𝛾𝛾𝑣𝑣5𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣6𝑘𝑘 + 4𝛾𝛾𝑣𝑣7𝑘𝑘 − 𝛾𝛾𝑣𝑣8𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣6𝑘𝑘−1 ��/(𝛽𝛽 +
𝛼𝛼)                                                                                                                        (43-f) 

 𝑣𝑣7𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣5𝑘𝑘 + 4𝛾𝛾𝑣𝑣6𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣7𝑘𝑘 + 4𝛾𝛾𝑣𝑣8𝑘𝑘 − 𝛾𝛾𝑣𝑣9𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣7𝑘𝑘−1 ��/(𝛽𝛽 +
𝛼𝛼)                                                                                                                       (43-g) 

𝑣𝑣8𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣6𝑘𝑘 + 4𝛾𝛾𝑣𝑣7𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣8𝑘𝑘 + 4𝛾𝛾𝑣𝑣9𝑘𝑘 − 𝛾𝛾𝑣𝑣10𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣8𝑘𝑘−1 ��/(𝛽𝛽 +
𝛼𝛼)                                                                                                                       (43-h) 

 𝑣𝑣9𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣7𝑘𝑘 + 4𝛾𝛾𝑣𝑣8𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣9𝑘𝑘 + 4𝛾𝛾𝑣𝑣10𝑘𝑘 − 𝛾𝛾𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣9𝑘𝑘−1 ��/(𝛽𝛽 +
𝛼𝛼)                                                                                                                      (43-i) 

 𝑣𝑣10𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣8𝑘𝑘 + 4𝛾𝛾𝑣𝑣9𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣10𝑘𝑘 + 4𝛾𝛾𝑣𝑣11𝑘𝑘 − 𝛾𝛾𝑣𝑣12𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 ��/
(𝛽𝛽 + 𝛼𝛼) 

 𝑣𝑣10𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣8𝑘𝑘 + 4𝛾𝛾𝑣𝑣9𝑘𝑘 − ((6𝛾𝛾 − 2𝛽𝛽) − 𝛾𝛾((𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑)))𝑣𝑣10𝑘𝑘 − (−4𝛾𝛾+2𝛾𝛾( 𝜓𝜓

(𝜓𝜓−𝜑𝜑)))𝑣𝑣11𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 �� /(𝛽𝛽 + 𝛼𝛼)                                                                                  (43-j) 

 𝑣𝑣11𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣9𝑘𝑘 + 4𝛾𝛾𝑣𝑣10𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽)𝑣𝑣11𝑘𝑘 + 4𝛾𝛾𝑣𝑣12𝑘𝑘 − 𝛾𝛾𝑣𝑣13𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1 ��/
(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣11𝑘𝑘+1 = �−2𝛾𝛾𝑣𝑣9𝑘𝑘 + �6𝛾𝛾 + �(−2𝛾𝛾) (𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑)��𝑣𝑣10

𝑘𝑘 + ((−6𝛾𝛾 + 2𝛽𝛽 − 𝛾𝛾𝜑𝜑′) +

�(4𝛾𝛾) (𝜓𝜓)
(𝜓𝜓−𝜑𝜑)�)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1

 
� /(𝛽𝛽 + 𝛼𝛼)                                                            (43-k) 

 

 For each Δt, starting from 0 seconds, displacement-time relation, 𝑣𝑣11 (top of the 

column), is calculated as shown in Figures 56 and 57.  
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Figure 56.  Displacement-time relation for ground-column AB at top  
 

 

Figure 57.  Displacement-time relation for ground-column AB at top, 0<t<0.1 sec. 
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3.2.4 Ground-Level Column Dynamic Response without Impact Load 

 In this section, the building frame is analyzed to observe the dynamic stability of 

the ground floor’s middle column, Column AB. The column shown in Figure 58, is 

analyzed with and without the presence of lead dampers in the member while the 

structural member has only the time-dependent pulsating axial load, P(t), from the HVAC 

system. The equation of motion has the pulsating axial load with a specific frequency to 

add the second-order effect to the equation of motion. The pulsating axial load’s 

frequency is changed incrementally until resonance phenomena are formed to find the 

frequency causing dynamic instability in the column. Then, the lead dampers are installed 

in the member to decrease the possibility of failure due to structural instability in the 

member.  

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
+ P(t) 𝜕𝜕

2𝑎𝑎∗

𝜕𝜕𝑧𝑧2
= 0                                                                            (44)                                                                    

P(t) = P0 + Q0 𝐶𝐶𝐶𝐶𝐶𝐶 Ω 𝐶𝐶                                                                                                 (45)           

P`(t) = P`0 +  Q`0 𝐶𝐶𝐶𝐶𝐶𝐶 Ω` 𝐶𝐶                                                                                            (46)   

  

 Where Equation 44 is the equation of motion to the column, and in Equations 45 

and 46, 𝑃𝑃0 is the axial dead and live load on the column, and 𝑄𝑄0, is a pulsating axial load 

on the column from the HVAC system with a frequency of Ω. Also, 𝑃𝑃`0 is the axial dead 

and live load on the building, and 𝑄𝑄`0, is a pulsating axial load on the building coming 

from the HVAC system with a frequency of Ω`. Total operating load, 𝑄𝑄`0, of one unit of a 

cooling tower of HVAC system is 7780 lb (operating weight) for a 29-Ton capacity unit 

(model: FXV-0806A-12D-G) manufactured by Baltimore Inc. [56]. For this study, it is 

assumed that one closed circuit cooling tower (Length=7.50 ft, Width=8.50 ft, 
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height=12.50 ft) is installed on the full-scale building with RPM = 505, or frequency = 

505/60=8.416 Hz, Ω = 8.416 × 2ᴨ =52.88 Rad/Sec.  

 Time displacement for the mid-point of column AB is plotted for various 

frequencies, Ω, until resonance phenomena happens. Then the results are compared to the 

same results with the installation of lead dampers in the column.  

 

 

Figure 58.  Applied pulsating axial load on Column AB 
 

8 in. 

L = 16.25 in. 
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 Since the right side of Equation 44 is equal to zero, this equation becomes an 

Eigenvalue problem. In order to solve for Equation 36, it is assumed that member AB has 

an imperfection of L/10,000 at joint B.                                                         

Meaning; 𝑣𝑣∗ is the summation of initial imperfection, 𝑣𝑣𝑖𝑖, and actual deflection, 𝑣𝑣.  

Equation 44 becomes; 

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
+ P(t) 𝜕𝜕

2𝑎𝑎
𝜕𝜕𝑧𝑧2

= − P(t) 𝜕𝜕
2𝑎𝑎𝑖𝑖
𝜕𝜕𝑧𝑧2

                                                               (47)                                                                    

Equation 47 which represents Equation 44 is not an Eigenvalue problem equation 

anymore. SAP-2000 is used to calculate the static load of the building frame (P0) and the 

static load from the HVAC system (Q0) at the top of column AB when 10% of the total 

load of the cooling tower is applied to the top of the lab frame model, the results are; P0 = 

2.49 lb, and Q0 = 11.00 lb, respectively.  

As mentioned before, it is assumed that the column has an initial imperfection, 𝑣𝑣𝑖𝑖, equal 

to L/10,000. It is assumed that the column has maximum imperfection value of 0.001625 

in. at L (joint B or Node 11).   

𝑣𝑣𝑖𝑖 = ϰ = 𝐿𝐿
10,000

𝑆𝑆𝑖𝑖𝑛𝑛 (𝜋𝜋 𝑍𝑍
𝐿𝐿

)                                                                                                 (48) 

Equation 48 is inserted into equation 47 after being differentiated twice: 

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
+ P(t) 𝜕𝜕

2𝑎𝑎
𝜕𝜕𝑧𝑧2

= − P(t)(−� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��)                               (49)   

where in Equation 49, E = 28,000,000 psi, I = 0.00356 in4, m𝑝𝑝𝑒𝑒𝑝𝑝 𝑖𝑖𝑛𝑛. = W
L × g

 = 

0.504
16.25 × 386.0886

 = 0.00008 lb-Sec2/in./in., and c = 0.001. 
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After applying the finite-difference method to Equation 49, the equation of motion, one 

gets: 

EI
𝑣𝑣𝑖𝑖−2
𝑘𝑘 − 4𝑣𝑣𝑖𝑖−1

𝑘𝑘 + 6𝑣𝑣𝑖𝑖
𝑘𝑘− 4𝑣𝑣𝑖𝑖+1

𝑘𝑘 +𝑣𝑣𝑖𝑖+2
𝑘𝑘

 

ℎ4  + 𝑚𝑚𝑣𝑣𝑖𝑖
𝑘𝑘−1  –  2𝑣𝑣𝑖𝑖𝑘𝑘  +  𝑉𝑉𝑖𝑖𝑘𝑘+1

 
Δ𝐶𝐶2 + 𝑐𝑐 𝑣𝑣𝑖𝑖

𝑘𝑘+1  –  𝑣𝑣𝑖𝑖𝑘𝑘−1
 

2Δ𝐶𝐶 + P(t) 𝑣𝑣𝑖𝑖−1
𝑘𝑘 −2𝑣𝑣𝑖𝑖

𝑘𝑘+𝑣𝑣𝑖𝑖+1
𝑘𝑘

ℎ2 =

 P(t)� 𝜋𝜋2

10,000 𝐿𝐿 𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍
𝐿𝐿 ��                                                                                                           (50) 

Equation 50 is rearranged to calculate displacement at time t+ Δ𝐶𝐶, i.e. at time 𝑘𝑘 + 1: 

𝑣𝑣𝑖𝑖𝑘𝑘+1 = ��−γvi−2k − (−4γ + λ)vi−1k − (6γ − 2β − 2λ)vik − (−4γ + λ)vi+1k − 𝛾𝛾vi+2k −

(β − α)vik−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(β + α)                                                    (51)                                                                                                            

where: 

𝛾𝛾 = 𝐸𝐸𝐸𝐸
ℎ4

 ,  

𝛽𝛽= 𝑚𝑚
Δ𝜋𝜋2

 ,  

𝛼𝛼 = 𝑐𝑐
2 Δ𝜋𝜋

 , and 

𝜆𝜆= P(t)
ℎ2

 

 In Equation 51, the subscript i represents nodal place along the column, and, 

subscript 𝑘𝑘 represents the time increment.                                                         

Boundary conditions: 

From the previous section, sec. 3.4.3, the following boundary conditions are 

found for Column AB shown in Figure 59: 
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𝑣𝑣1𝑘𝑘 = 0                                                                                                                               

𝑣𝑣0𝑘𝑘 = 𝑣𝑣2𝑘𝑘                                                                                                                           

𝑣𝑣12𝑘𝑘 = −(𝜓𝜓+𝜑𝜑)𝑎𝑎10𝑘𝑘 +2𝜓𝜓𝑎𝑎11𝑘𝑘

𝜓𝜓−𝜑𝜑
                                                                                                     

Including shear due to P(t) and the top being inclined [55], P=K𝑣𝑣 ‐ P(t) ϴ at 

joint B (Node 11), 𝑣𝑣13𝑘𝑘  is found as the following: 

and, 𝐸𝐸𝐸𝐸 𝑑𝑑
3𝑎𝑎

𝑑𝑑𝑧𝑧3
  ≈ K𝑣𝑣11𝑘𝑘    ‐ P(t) ϴ                                                                                                 (52) 

EI  −𝑎𝑎9
𝑘𝑘+2𝑎𝑎10𝑘𝑘 −2𝑎𝑎12𝑘𝑘 +𝑎𝑎13𝑘𝑘

2 × ℎ3
  = K 𝑣𝑣11𝑘𝑘  - P(t) 𝑎𝑎12

𝑘𝑘 −𝑎𝑎10𝑘𝑘

2ℎ
                                                               (53) 

From Equations 52 and 53, displacement at Node 13 is found as shown below: 

𝑣𝑣13𝑘𝑘 = 𝑣𝑣9𝑘𝑘 − (2 + 2(𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑) −

𝑆𝑆(𝜋𝜋)
𝜓𝜓
− 𝑆𝑆(𝜋𝜋)(𝜓𝜓+𝜑𝜑)

𝜓𝜓(𝜓𝜓−𝜑𝜑) )𝑣𝑣10𝑘𝑘 + ( 4𝜓𝜓
(𝜓𝜓−𝜑𝜑) + 𝜑𝜑` − 2𝑆𝑆(𝜋𝜋)𝜓𝜓

𝜓𝜓(𝜓𝜓−𝜑𝜑))𝑣𝑣11
𝑘𝑘                                                             

𝑣𝑣13𝑘𝑘 = 𝑣𝑣9𝑘𝑘 − (2 + 2(𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑) − Š − Š (𝜓𝜓+𝜑𝜑)

(𝜓𝜓−𝜑𝜑))𝑣𝑣10
𝑘𝑘 + ( 4𝜓𝜓

(𝜓𝜓−𝜑𝜑) + 𝜑𝜑` − Š 2𝜓𝜓
(𝜓𝜓−𝜑𝜑))𝑣𝑣11

𝑘𝑘                    

Where  

𝜓𝜓 =  
𝐸𝐸𝐸𝐸
ℎ2

   

𝜑𝜑 =  
−𝑘𝑘
2ℎ

 

𝜑𝜑` =  
2ℎ3𝐾𝐾
𝐸𝐸𝐸𝐸

 

Š =  𝑆𝑆(𝜋𝜋)
𝜓𝜓
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Figure 59.  Column AB with FDM nodes and pulsating vertical load   
 

 For the first time interval solution, shape function (ϰ), Equation is merged with 

the first time interval for forwarding difference approximation, as shown in the following 

[54]:  

𝑣𝑣𝑖𝑖
𝑘𝑘=1  –  𝑣𝑣𝑖𝑖𝑘𝑘=0

 
Δ𝜋𝜋

=
𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
 ( 𝑍𝑍𝑖𝑖, 0) +  

Δ𝜋𝜋
2

 
𝜕𝜕2𝑣𝑣

𝜕𝜕𝐶𝐶2  ( 𝑍𝑍𝑖𝑖, 0)                                                                    (54)                                                                            

Equation 54 is the equation of velocity for the column, and the equation of motion is; 

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
+ P(t) 𝜕𝜕

2𝑎𝑎
𝜕𝜕𝑧𝑧2

= 0                                                                               

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

= −𝐸𝐸𝐸𝐸
𝑚𝑚
𝜕𝜕4𝑎𝑎
𝜕𝜕𝑧𝑧4

− 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋
− 1

𝑚𝑚
P(t) 𝜕𝜕

2𝑎𝑎
𝜕𝜕𝑧𝑧2

                                                                                 (55)                                                                            
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𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖, 0) = −𝐸𝐸𝐸𝐸
𝑚𝑚

𝜕𝜕4𝑎𝑎
𝜕𝜕𝑥𝑥4

( 𝑍𝑍𝑖𝑖, 0) − 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

( 𝑍𝑍𝑖𝑖, 0) − P(t)
𝑚𝑚

𝜕𝜕2𝑎𝑎
𝜕𝜕𝑧𝑧2

              

 
The shape function is merged into the equation of motion (Equation 55),                                                                                  

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖, 0) = −𝐸𝐸𝐸𝐸
𝑚𝑚

𝑑𝑑4

𝑑𝑑𝑥𝑥4
ϰ(𝑍𝑍𝑖𝑖) −

𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝑑𝑑
𝑑𝑑𝜋𝜋
ϰ(𝑍𝑍𝑖𝑖) −

P(t)
𝑚𝑚

𝜕𝜕2𝑎𝑎
𝜕𝜕𝑧𝑧2

                                                       (56)     

 
The finite-difference method is applied to Equation 56 to get the following equation:                                                                       

𝜕𝜕2𝑎𝑎
𝜕𝜕𝜋𝜋2

( 𝑍𝑍𝑖𝑖 , 0) = − 𝐸𝐸𝐸𝐸
𝑚𝑚ℎ4

(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) − 𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚
𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

( 𝑍𝑍𝑖𝑖 , 0) − P(t)
𝑚𝑚

𝜕𝜕2𝑣𝑣
𝜕𝜕𝐻𝐻2            (57)                                                                            

 
Equation 57 is substituted in Equation 54, to get.  

𝑣𝑣𝑖𝑖
𝑘𝑘=1  –  𝑣𝑣𝑖𝑖𝑘𝑘=0

 
Δ𝜋𝜋

=
𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
 ( 𝑍𝑍𝑖𝑖, 0) +  

Δ𝜋𝜋
2

 (−
𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4 (ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) −

𝑐𝑐𝑖𝑖
𝑘𝑘

𝑚𝑚

𝜕𝜕𝑣𝑣

𝜕𝜕𝐶𝐶
( 𝑍𝑍𝑖𝑖, 0) − P(t)

𝑚𝑚ℎ2 (ϰ𝑖𝑖−1 − 2ϰ𝑖𝑖 + ϰ𝑖𝑖+1))           

From boundary conditions, velocity is zero, 𝜕𝜕𝑎𝑎
𝜕𝜕𝜋𝜋

 ( 𝑍𝑍𝑖𝑖, 0) = 0, at time = 0 seconds.                                                

𝑣𝑣𝑖𝑖1  = 𝑣𝑣𝑖𝑖0 +  Δ𝐶𝐶
2

2
�−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) − P(t)

𝑚𝑚ℎ2
(ϰ𝑖𝑖−1 − 2ϰ𝑖𝑖 +

ϰ𝑖𝑖+1)�                                     

𝑣𝑣𝑖𝑖1  = ϰ𝑖𝑖  +  Δ𝐶𝐶
2

2
�−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) − P(t)

𝑚𝑚ℎ2
(ϰ𝑖𝑖−1 − 2ϰ𝑖𝑖 +

ϰ𝑖𝑖+1)�                                                                                                                              (58)  

 In order to solve for Equation 58, the shape function is applied to each node at 

time 0, also, Youngs Modulus, E, Moment of Inertia, I, mass per unit length, m, and node 
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displacement, h= 1.625 in., is needed. Then, the initial displacement at each node is found 

using Equation 58. 

 After solving for the first time-interval, t+ Δ𝐶𝐶, the following equations are applied 

to each node. The boundary equations are embedded in the following nodal equations. 

The following nodal equations are run for each time interval, Δ𝐶𝐶. In order to have a stable 

calculation, Δ𝐶𝐶, must not be bigger than 0.0005 seconds.  

𝑣𝑣1𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣−1𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣0𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣1𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣2𝑘𝑘 − 𝛾𝛾𝑣𝑣3𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣1𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                       (59-a) 

𝑣𝑣2𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣0𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣1𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣2𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣3𝑘𝑘 − 𝛾𝛾𝑣𝑣4𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣2𝑘𝑘+1 = ��−(7𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣2𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣3𝑘𝑘 − 𝛾𝛾𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 � +

P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                                                          

(59-b) 

 𝑣𝑣3𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣1𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣3𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣4𝑘𝑘 − 𝛾𝛾𝑣𝑣5𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣3𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                                                                               

𝑣𝑣3𝑘𝑘+1 = ��−(−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣3𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣4𝑘𝑘 − 𝛾𝛾𝑣𝑣5𝑘𝑘 − (𝛽𝛽 −

𝛼𝛼)𝑣𝑣3𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                               (59-c) 

 𝑣𝑣4𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣2𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣3𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣4𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣5𝑘𝑘 − 𝛾𝛾𝑣𝑣6𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣4𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                      (59-d) 

1 

2 

3 

4 
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 𝑣𝑣5𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣3𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣4𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣5𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣6𝑘𝑘 − 𝛾𝛾𝑣𝑣7𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣5𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                      (59-e) 

 𝑣𝑣6𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣4𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣5𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣6𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣7𝑘𝑘 − 𝛾𝛾𝑣𝑣8𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣6𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                       (59-f) 

 𝑣𝑣7𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣5𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣6𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣7𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣8𝑘𝑘 − 𝛾𝛾𝑣𝑣9𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣7𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                      (59-g) 

𝑣𝑣8𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣6𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣7𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣8𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣9𝑘𝑘 − 𝛾𝛾𝑣𝑣10𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣8𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                      (59-h) 

 𝑣𝑣9𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣7𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣8𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣9𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣10𝑘𝑘 − 𝛾𝛾𝑣𝑣11𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣9𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                     (59-i) 

 𝑣𝑣10𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣8𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣9𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣10𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣11𝑘𝑘 −

𝛾𝛾𝑣𝑣12𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣10𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣8𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣9𝑘𝑘 − ((6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆) − 𝛾𝛾((𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑)))𝑣𝑣10𝑘𝑘 − ((−4𝛾𝛾 +

𝜆𝜆)+2𝛾𝛾( 𝜓𝜓
(𝜓𝜓−𝜑𝜑)))𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1

 
� + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)           (59-j) 

 𝑣𝑣11𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣9𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣10𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣11𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣12𝑘𝑘 −

𝛾𝛾𝑣𝑣13𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼) 

5 

6 

7 

8 

9 

10 

11 
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𝑣𝑣11𝑘𝑘+1 = �−2𝛾𝛾𝑣𝑣9𝑘𝑘 + �6𝛾𝛾 − 𝜆𝜆 − 𝛾𝛾Š + ��𝜆𝜆 − 2𝛾𝛾 − 𝛾𝛾Š� (𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑)��𝑣𝑣10

𝑘𝑘 + ((−6𝛾𝛾 + 2𝛽𝛽 + 2𝜆𝜆 −

𝛾𝛾𝜑𝜑′) + ��4𝛾𝛾 − 2𝜆𝜆 + 2𝛾𝛾Š� (𝜓𝜓)
(𝜓𝜓−𝜑𝜑)�)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1

 
+ P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /

(𝛽𝛽 + 𝛼𝛼)                                                                                                                        (59-k) 

  

 For each Δt, starting from 0 seconds, mid-point displacement, 𝑣𝑣6, is calculated to 

generate displacement-time relations for column AB.  

 Figures 60 and 61 show lateral displacement on the x-axis at the middle of the 

column, 𝑣𝑣6, and at the top of the column, 𝑣𝑣11, simultaneously, when the actual natural 

circular frequency of the cooling tower is included in the pulsating axial load equation, Ω 

=52.88 Rad/Sec. The damping coefficient for the following figures is 0.00029. The 

figures, also, show the difference in the calculation results obtained in both FDM and 

SAP-2000. The differences are from the initial condition difference in the FDM and the 

SAP2000 as well as the different approaches that are used in both sets of calculations; 

consistent mass is used for the FDM, while SAP-2000 is based on lumped mass.  

 The Figures 62 and 63 show that the column response when the natural frequency 

of the pulsating axial load, Ω, is the same as the natural frequency of the column, 

𝜔𝜔𝑛𝑛=432.80 Rad/Sec with a damping coefficient of 0.00029. Figure 64 shows the resonant 

response of the column at the top end, 𝑣𝑣11, for zero damping, and the column’s response 

at various damping ratios. The damping coefficient, c = 0.000586 is calculated from the 

frame model as explained in Chapter 2, the damping increase ratios 61.8% and 94.2% are 

also calculated in Chapter 2. This figure shows the significance of installing lead dampers 

and damping panels in the frame model in reducing vibration.    
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Figure 60.  Displacement-time relations at mid-height, with c = 0.00029 
 

 

Figure 61.  Displacement-time for top Column AB, with c = 0.00029 
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Figure 62.  Displacement-time relation for Column AB mid-height, with c = 0.00029 
and 𝛀𝛀 = 432.8 rad/sec. 

 

 

Figure 63.  Displacement-time relation for Column AB mid-height, with c = 0.00029 
and 𝛀𝛀 = 432.8 rad/sec, 0<t<1 sec. 
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Figure 64.  Ground-level top end displacement versus frequency ratio 𝛀𝛀/𝝎𝝎𝝎𝝎 
 

 Figures 65 and 66 show a comparison between the calculation results from FDM 

and SAP-2000 for the column analysis at the middle of column AB, Node 6, when the 

damping coefficient is 0, and 0.00029, respectively.  
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Figure 65.  Displacement-time relations for Column AB mid-height, with c = 0       
and 𝛀𝛀 = 432.8 rad/sec  

 

 

Figure 66.  Displacement-time relations for Column AB mid-height, with c = 0.00029 
and 𝛀𝛀 = 432.8 rad/sec 
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3.2.5 Ground-Level Column Dynamic Response with Impact Load 

 In this section, dynamic stability of ground-column AB shown in Figure 67 is 

analyzed for both pulsating axial load and lateral impact load. The study includes the use 

of experimentally obtained lateral forcing function, Equation 2, and the calculated 

camping coefficient, in the equation of motion.  

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
+ P(t) 𝜕𝜕

2𝑎𝑎∗

𝜕𝜕𝑧𝑧2
= 𝐹𝐹(𝐿𝐿

2
, 𝐶𝐶)                                                                    (60)                                                                    

 

 

Figure 67.  Column AB with pulsating vertical and lateral impact load 
 

 In order to account for imperfection in the column, Equation 48 is inserted into 

equation 60 after being differentiated twice: 

EI 𝜕𝜕
4𝑎𝑎

𝜕𝜕𝑧𝑧4
+ 𝑚𝑚𝜕𝜕2𝑎𝑎

𝜕𝜕𝜋𝜋2
+ 𝑐𝑐 𝜕𝜕𝑎𝑎

𝜕𝜕𝜋𝜋
+ P(t) 𝜕𝜕

2𝑎𝑎
𝜕𝜕𝑧𝑧2

= − P(t)(−� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��) +  𝐹𝐹(𝐿𝐿

2
, 𝐶𝐶)              (61)   
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After applying the finite-difference method to Equation 61, the equation of motion 

becomes; 

EI
𝑣𝑣𝑖𝑖−2
𝑘𝑘 − 4𝑣𝑣𝑖𝑖−1

𝑘𝑘 + 6𝑣𝑣𝑖𝑖
𝑘𝑘− 4𝑣𝑣𝑖𝑖+1

𝑘𝑘 +𝑣𝑣𝑖𝑖+2
𝑘𝑘

 

ℎ4  + 𝑚𝑚𝑣𝑣𝑖𝑖
𝑘𝑘−1  –  2𝑣𝑣𝑖𝑖𝑘𝑘  +  𝑉𝑉𝑖𝑖𝑘𝑘+1

 
Δ𝐶𝐶2 + 𝑐𝑐 𝑣𝑣𝑖𝑖

𝑘𝑘+1  –  𝑣𝑣𝑖𝑖𝑘𝑘−1
 

2Δ𝐶𝐶 + P(t) 𝑣𝑣𝑖𝑖−1
𝑘𝑘 −2𝑣𝑣𝑖𝑖

𝑘𝑘+𝑣𝑣𝑖𝑖+1
𝑘𝑘

ℎ2 =

+P(t)� 𝜋𝜋2

10,000 𝐿𝐿 𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍
𝐿𝐿 ��+  𝐹𝐹(𝐿𝐿2 , 𝐶𝐶)                                                                                       (62) 

Equation 62 is rearranged to calculate displacement at time t+ Δ𝐶𝐶, i.e. at time 𝑘𝑘 + 1: 

𝑣𝑣𝑖𝑖𝑘𝑘+1 = ��−γvi−2k − (−4γ + λ)vi−1k − (6γ − 2β − 2λ)vik − (−4γ + λ)vi+1k − 𝛾𝛾vi+2k −

(β − α)vik−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��  +  𝐹𝐹(𝐿𝐿

2
, 𝐶𝐶)� /(β + α)                                 (63)                                                                                                            

 In Equation 63, the subscript i represents nodal place along the column, and 

subscript 𝑘𝑘 represents the time increment.            

 For the first time interval solution, as explained in the previous section, the shape 

function (ϰ), Equation is merged with the first time interval for forwarding difference 

approximation [54]:          

𝑣𝑣𝑖𝑖1  = ϰ𝑖𝑖  +  Δ𝐶𝐶
2

2
�−  𝐸𝐸𝐸𝐸

𝑚𝑚ℎ4
(ϰ𝑖𝑖−2 − 4ϰ𝑖𝑖−1 + 6ϰ𝑖𝑖 − 4ϰ𝑖𝑖+1 + ϰ𝑖𝑖+2) − P(t)

𝑚𝑚ℎ2
(ϰ𝑖𝑖−1 − 2ϰ𝑖𝑖 +

ϰ𝑖𝑖+1) + �
𝐹𝐹�𝐿𝐿2,0�

𝑚𝑚
��                                                                                                            (64)  

 Initial displacement at the first time interval for each node is found using 

Equation 64. for each next time interval, Equation 63 is applied to each nodal location 

along the column after dividing the column into equal segments as shown in Figure 68.                   
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Figure 68.  Ground-level Column AB under vertical pulsating and                      
lateral impact loads 

 

 After solving for the first time-interval, t+ Δ𝐶𝐶, the following equations are applied 

to each node. The boundary equations are embedded in the following nodal equations. 

The following nodal equations are run for each time interval, Δ𝐶𝐶. In order to have a stable 

calculation, Δ𝐶𝐶, must be equal or smaller than 0.0005 seconds. Also, the damping 

coefficient value, 𝑐𝑐𝑖𝑖𝑘𝑘= 0.00029.   

 

𝑣𝑣1𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣−1𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣0𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣1𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣2𝑘𝑘 − 𝛾𝛾𝑣𝑣3𝑘𝑘 −
1 
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(𝛽𝛽 − 𝛼𝛼)𝑣𝑣1𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                   (65-a) 

𝑣𝑣2𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣0𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣1𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣2𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣3𝑘𝑘 − 𝛾𝛾𝑣𝑣4𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣2𝑘𝑘+1 = ��−(7𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣2𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣3𝑘𝑘 − 𝛾𝛾𝑣𝑣4𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣2𝑘𝑘−1 � +

P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                                               (65-b) 

 𝑣𝑣3𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣1𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣3𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣4𝑘𝑘 − 𝛾𝛾𝑣𝑣5𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣3𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                                                                               

𝑣𝑣3𝑘𝑘+1 = ��−(−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣2𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣3𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣4𝑘𝑘 − 𝛾𝛾𝑣𝑣5𝑘𝑘 − (𝛽𝛽 −

𝛼𝛼)𝑣𝑣3𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                               (65-c) 

 𝑣𝑣4𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣2𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣3𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣4𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣5𝑘𝑘 − 𝛾𝛾𝑣𝑣6𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣4𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                     (65-d) 

 𝑣𝑣5𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣3𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣4𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣5𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣6𝑘𝑘 − 𝛾𝛾𝑣𝑣7𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣5𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                     (65-e) 

 𝑣𝑣6𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣4𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣5𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣6𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣7𝑘𝑘 − 𝛾𝛾𝑣𝑣8𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣6𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��+  𝐹𝐹(𝐿𝐿

2
, 𝐶𝐶)� /(𝛽𝛽 + 𝛼𝛼)                    (65-f) 

 𝑣𝑣7𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣5𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣6𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣7𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣8𝑘𝑘 − 𝛾𝛾𝑣𝑣9𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣7𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                      (65-g) 

2 

3 

4 
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𝑣𝑣8𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣6𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣7𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣8𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣9𝑘𝑘 − 𝛾𝛾𝑣𝑣10𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣8𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                      (65-h) 

 𝑣𝑣9𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣7𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣8𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣9𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣10𝑘𝑘 − 𝛾𝛾𝑣𝑣11𝑘𝑘 −

(𝛽𝛽 − 𝛼𝛼)𝑣𝑣9𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼)                                    (65-i) 

 𝑣𝑣10𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣8𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣9𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣10𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣11𝑘𝑘 −

𝛾𝛾𝑣𝑣12𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣10𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣8𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣9𝑘𝑘 − ((6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆) − 𝛾𝛾((𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑)))𝑣𝑣10𝑘𝑘 − ((−4𝛾𝛾 +

𝜆𝜆)+2𝛾𝛾( 𝜓𝜓
(𝜓𝜓−𝜑𝜑)))𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣10𝑘𝑘−1

 
� + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼) (65-j) 

 𝑣𝑣11𝑘𝑘+1 = ��−𝛾𝛾𝑣𝑣9𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣10𝑘𝑘 − (6𝛾𝛾 − 2𝛽𝛽 − 2𝜆𝜆)𝑣𝑣11𝑘𝑘 − (−4𝛾𝛾 + 𝜆𝜆)𝑣𝑣12𝑘𝑘 −

𝛾𝛾𝑣𝑣13𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1 � + P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /(𝛽𝛽 + 𝛼𝛼) 

𝑣𝑣11𝑘𝑘+1 = �−2𝛾𝛾𝑣𝑣9𝑘𝑘 + �6𝛾𝛾 − 𝜆𝜆 − 𝛾𝛾Š + ��𝜆𝜆 − 2𝛾𝛾 − 𝛾𝛾Š� (𝜓𝜓+𝜑𝜑)
(𝜓𝜓−𝜑𝜑)��𝑣𝑣10

𝑘𝑘 + ((−6𝛾𝛾 + 2𝛽𝛽 + 2𝜆𝜆 −

𝛾𝛾𝜑𝜑′) + ��4𝛾𝛾 − 2𝜆𝜆 + 2𝛾𝛾Š� (𝜓𝜓)
(𝜓𝜓−𝜑𝜑)�)𝑣𝑣11𝑘𝑘 − (𝛽𝛽 − 𝛼𝛼)𝑣𝑣11𝑘𝑘−1

 
+ P(t)� 𝜋𝜋2

10,000 𝐿𝐿
𝑆𝑆𝑖𝑖𝑛𝑛 �𝜋𝜋 𝑍𝑍

𝐿𝐿
��� /

(𝛽𝛽 + 𝛼𝛼)                                                                                                                        (65-k) 

 

 For each Δt, starting from 0 seconds, displacement, 𝑣𝑣6, at mid-height of the 

column is calculated at the presence of the pulsating axial load and the lateral impact 

load. Figures 69 shows the response of the column when the actual natural circular 

frequency of the cooling tower (Ω=52.88 Rad/Sec.) is used in the pulsating axial load 

with the damping, c=0.00029. The figure shows a comparison between the results from 

8 

9 

10 

11 
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the FDM and SAP-2000 for the displacement-time relations at the mid-height of the 

column.  

 

Figure 69.  Displacement-time for Column AB mid-height, with pulsating axial load 
and lateral impact loads, with Ω=52.88 rad/sec. 

 

3.3 Dynamic Response with or without Impact Load Using SAP-2000 

 The commercial computer program SAP-2000 is used to analyze the lab model 

and a full-scale building frame under vertical vibrating load from the HVAC system and 

the lateral applied impact load on the first floor’s middle column.  

3.3.1 Steel Building Frame Model Dynamic Response with and without Impact Load 

 The building frame model shown in Figure 70 is analyzed using SAP-2000 to 

observe the frame’s response at the mid-height of the ground-level column, joint number 

21, and the top floor, joint number 76. 10% of the HVAC system’s load is applied to the 

top two middle joints, joint numbers 71 and 75, that pulsate simultaneously at the same 
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time. Also, the lateral impact load, F(L/2,t) is applied to the mid-span of the front middle 

column at joint number 21. From chapter 2; natural circular frequency of the frame model 

is 𝜔𝜔𝑛𝑛= 135.55 rads/sec. and the calculated damping coefficient is 0.000586.  

 Figures 71 and 72 show the building frame’s response at the mid-height of the 

ground-level column and the top floor, respectively. Figures 73 and 74 show the 

building’s response when the frame model’s damping coefficient is changed to the 

damping coefficient obtained from adding bolted damping panels to the system, c = 

0.586. 

 

 

Figure 70.  Building model with impact load on ground-level column and pulsating 
load on top 

 

P’(t)/2      P’(t)/2      

F(L/2,t) 
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Figure 71.  Displacement-time at top floor, Joint 76, with c = 0.00586 
 

 

Figure 72.  Displacement-time at ground-level column mid-height, Joint 21,         
with c = 0.00586 
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Figure 73.  Displacement-time at top floor, Joint 76, with c = 0.586 
 

 

Figure 74.  Displacement-time at ground-level column mid-height, Joint 21,         
with c = 0.586 
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3.3.2 Full-Scale Building Frame Dynamic Response with and without Impact Load 

A full-scale steel frame structure is analyzed when the cooling tower is placed on 

the top floor to include the total operational load of the HVAC system (7780 bl) and a 

lateral impact load is applied to the ground-level column, simultaneously. The frame 

shown in Figure 75 is a three-story with two-bay by three-bay on the x-axis, the height of 

each floor is 15-ft and each bay is 20-ft. The building frame is analyzed with different 

loadings and various loading combinations. The steel frame shown in Figure 76 has HSS 

8x8x1/4 for the beams and the columns. The square section steel has yielding stress of 46 

ksi and Young’s Modulus of elasticity of 29,000 ksi [53]. This tubular square section size 

is determined after designing the frame to the pulsating axial load, dead load, and the live 

load for both full load and checkered load shown in Figures 77, 78 and 79, 

simultaneously. The applied live load used in the calculations is 50 psf which is 

suggested for both office and lobby design calculations in ASCE 7-10 [57]. It is assumed 

that each beam is carrying half of the live load on each bay area, meaning, each beam is 

carrying 50 psf x 10 ft = 500 lb/ft  = 41.67 lb/in.  The load combination for the applied 

dead and live loads are based on the LRFD design load combination of ASCE 7-10 [57]. 
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Figure 75.  Building frame with impact load on ground-level column and pulsating 
vertical load on top 

 

 

P’(t)/2      

P’(t)/2      

F(L/2,t) 
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Figure 76.  Building frame structural member sizes (HSS 8x8x1/4) 
 

 

Figure 77.  Building frame service loading 
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Figure 78.  Building frame checkered-board service loading 
 

 

Figure 79.  Building frame checkered-board service loading in XZ plane 
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The following loading combinations are adopted from ASCE 7-10 [57] and are 

used for determining the full-scale building frame:  

1.4 DL, 

1.2 DL+1.6LL, 

1.2 DL+1.6LLcheck,  

1.2DL+ P+LL, and 

1.2DL+ P+LLcheck 

 In the above load combinations, DL is dead load, LL is live load, LLcheck is 

checkered live load applied to every other beam on the x-axis, and P is the pulsating axial 

load (P’(t)).  

 From SAP-2000, it is found that for the first mode of the full-scale frame, Time 

Period, Tn, is 0.559765 seconds. From that, the natural frequency is 𝑓𝑓 = 1.78 Hz and 𝜔𝜔𝑛𝑛 = 

11.22 rad/sec. Damping coefficient used in the analysis is c = 0.05. The lateral impact 

load applied to the ground-level column is shown in Figure 80.  

 The model is analyzed for service load combinations of DL+ P+LLcheck and DL+ 

P+LLcheck + Impact. The building frame’s response at the top floor, joint 68, are shown in 

Figures 81 and 82, respectively. The lateral impact load formed three plastic hinges in the 

ground-level column as shown in Figure 83. Figures 84 and 85 show the building’s 

response when the damping coefficient is increased by 94.2% from adding bolted 

damping panels to the frame. Increasing the damping coefficient eliminated one plastic 

hinge in the ground-level column as shown in Figure 86.  
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Figure 80. Applied forcing function  
 

 

Figure 81. Acceleration-time relation at top-floor for DL+ P+LLcheck with c = 0.05 
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Figure 82. Acceleration-time relation at top-floor for DL+ P+LLcheck + Impact        
with c = 0.05 

 

Figure 83. Location of three plastic hinges in ground-level column, c = 0.05 
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Figure 84. Acceleration-time relation at top-floor for DL+ P+LLcheck with c = 0.097 
 

 

Figure 85. Acceleration-time relation at top-floor for DL+ P+LLcheck + Impact     
with c = 0.097 
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Figure 86. Location of two plastic hinges in ground-level column, with c = 0.097 
 

3.4 Transient Dynamic Elastic-Plastic Behavior  

 Ground-column AB of the building frame is studied to investigate the plastic 

moment capacity of the building frame under applied impact load to the frame. For this 

purpose, the frame is experimentally impacted by three various impact loads to generate a 

plot for maximum force from each impact load vs the height of the pendulum to the 
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building’s column (5, 7, and 9 inches). Figure 87 shows the pendulum, the frame, and the 

location of the three possible plastic hinges.  

 

 

Figure 87.  Plastic hinge formation in Column AB 
 

A 

D 

B 
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 Figure 88 shows each of the forcing functions applied to the ground-level column, 

separately, and Figure 89 shows the relationship between the maximum force of each 

impact load vs pendulum’s distance, q. From the SAP-2000 analysis, maximum bending 

moments at locations A, B, and D for each impact load are found, respectively, as shown 

in Table 2. The average bending moment at each forcing function is taken to calculate the 

maximum pendulum’s height that forms the three plastic hinges. Figure 90 shows the 

relation between the maximum force, F(t) max, obtained from Figure 88 versus the 

corresponding average internal bending moment, Mavg, obtained from the frame analysis. 

 

 

Figure 88.  Forcing functions 
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Figure 89.  Impact load amplitude versus distance q 
 

 

Figure 90.  Impact load amplitude versus average bending moment at A,B, and D in 
Column AB at q = 5, 7, and 9 in.  
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Table 4. Impact load amplitude Fmax at locations A, D, and B of Column AB, and 
Mavg 

  M (lb-in) Mavg (lb-in) 
Distance, q (in) Fmax (lb) A D B (A+D+B)/3 

0 0 0 0 0 0 
5 186 483 404 239 375 
7 259 673 562 333 523 
9 330 857 715 423 665 

15.00 556       1120 
 

 The plastic moment of the hollow section is calculated to be 1120 lb.in. (𝑀𝑀𝑆𝑆 =

 𝜎𝜎𝑦𝑦 × 𝑍𝑍 = 62,000 × 0.018066406 = 1120 𝑙𝑙𝑙𝑙. 𝑖𝑖𝑛𝑛. ). From Figure 90, it is found that at 

moment = 1120 lb.in. force is 556.1 lb. From Figure 89, at force = 556.1 lb, q is found to 

be 15 in. meaning; if the pendulum is pulled by 15 inches from the column, it generates 

enough forcing function that forms three plastic hinges at joints A, B, and D. 

 At the laboratory, the model frame is impacted by the pendulum when it was 

pulled by 16 inches, no permanent damage was observed in the column. This is because 

the forcing function at 16 inches did not generate the maximum required force, 556 lb, on 

the column. This is because the forcing functions duration at q = 15 inches vs the forcing 

function at q = 16 inches is much shorter and the forcing function is more intense as 

shown in Figure 91. The pendulum at q = 18 inches impact the column again, this time, it 

left a permanent deformation by 0.1 inches at the middle span in the column as shown in 

Figure 92. The forcing function at q = 18 inches was able to generate the force (581 lb), 

above the force needed (556 lb), to form the plastic hinges.  
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Figure 91.  Forcing functions at q = 5, 7, 9, 15, 16, and 18 in. 
 

  The lab frame is analyzed using SAP-2000 to predict the times when each of the 

three plastic hinges form as well as the building’s response at the top floor. Time History 

analysis showed only two plastic hinges formed, at A and D, as shown in Figure 93. The 

first plastic hinge was at location D, at time 0.013 seconds, and the second plastic hinge 

was at joint A, at time 0.017 seconds. Figure 94 shows a comparison between the lab data 

vs SAP-2000 for the top floor when the model frame is impacted at q = 18 in. to generate 

the plastic hinges. The comparison is in acceptable range, the difference refers to the 

errors during data collection, material behavior and the difference between the two 

approaches, real behaviors of the model at the lab and the lump-mass based calculation 

from SAP-2000.  

 

MpD 

MpA 
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Figure 92.  Ground-level column of model frame after impact with q = 18 in. 
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Figure 93.  Location of two plastic hinges in Column AB of model frame 
 

 

Figure 94.  Comparison of acceleration-time relations at top floor for impact       
with q = 18 in.  
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 The Time History analysis was run multiple time for various increased forcing 

function to predict the required forcing function that generates three plastic hinges in the 

column. The analysis showed that if the pendulum is pulled by around 25 inches to 

generated maximum applied force of 730 lb, the three plastic hinges form in the column. 

At the lab, the pendulum is pulled by 25 inches to impact the ground column with forcing 

function shown in Figure 95 to generate the three plastic hinges, as shown in Figure 96. 

Figure 97 shows a large permanent deformation in the ground column by 0.44 inches. 

The compared acceleration vs time relations at the top floor in Figure 98 show an 

acceptable difference between the collected data during the impact test versus the Time 

History analysis for the dame impact load intensity, the difference refers to real behaviors 

of the model at the lab and the lump-mass based calculation from SAP-2000. 

 

Figure 95.  Applied forcing function versus time with q = 25 in. 
 

MpD 

MpA 

MpB 
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Figure 96.  Location of three plastic hinges in Column AB of model frame 
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Figure 97.  Ground-level column deformation of model impacted  with q = 25 in. 
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Figure 98. Comparison of acceleration-time relations at top floor of model frame for 
impact with q = 25 in. 

 

 

 From Figure 99, it is shown that the spikes in the theoretical run are higher than 

the collected data. However, in Figure 98, it is shown that with time, vibration in the 

theoretical model analysis fades quicker. This is because the damping coefficient used in 

the SAP-2000 (c=0.000586) is calculated for the entire building for mode 1, while in the 

reality, all the modes happen simultaneously, and the damping coefficient changes along 

the height of the frame and time.  
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Figure 99.  Comparison of acceleration-time relations at top floor of model frame 
for impact with q = 25 in., 0<t<0.5 sec. 

 

 

 Figures 100 shows the response of the ground-level column at its mid-height. The 

figure shows acceleration, velocity, and displacement versus time relations. The figure 

shows that right after the formation of the plastic hinges, drastic changes in the dynamic 

behavior occur. Table 5 shows the boundary conditions at the mid-height of the ground-

column, D, during the time of each plastic hinge in the column. The table shows 

acceleration in g, velocity in in./sec., and displacement in in. at node D at time 0.0009 

sec. when the first plastic hinge forms at D, and at time 0.011 sec. when the second 

plastic hinge forms at A, and at time 0.017 sec. when the third plastic hinge forms at B. 
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Figure 100.  Acceleration, velocity, and displacement versus time for model frame at 
ground-level column mid-height with q = 25 in. 

 

Table 5.  Displacement, velocity, and acceleration values at times of plastic hinge 
development at ground-level column Nodes D, A, and B 

Plastic 
hinges 

Time 
(sec.) 

Displacement 
(in.) 

Velocity 
(in/sec.) 

Acceleration 
(g) 

D 0.0009 0.179 7.66 15.62 
A 0.0110 0.252 68.24 47.49 
B 0.0170 0.607 12.94 -28.91 

 

The results from the lab tests to the SAP-2000 Time-History analysis show an 

acceptable agreement that the results are reliable and can be used for bigger scale.  
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CHAPTER IV 

4. COMPARISON OF RESULTS AND DISCUSSION 
 

A comparison of the results for the steel building frame model, the cantilever, and 

the full-scale building frame is presented in this chapter.  

4.1 Steel Building Frame Model 

 Adding various lead damping systems to the steel building frame model showed a 

significant effect on decreasing vibration in the building model.  

4.1.1 Suspended Lead Dampers 

 Figure 101 shows that adding lead dampers to the exterior columns showed 

significant impact on decreasing vibration and increasing damping in the building frame 

model. From Figure 101, at a time of 2.9173-3.2415 seconds, the frame has 3.09g 

acceleration in the absence of lead dampers in the building. When 12, 24, or 48 0.15-in. 

diameter lead dampers are installed in the exterior columns, simultaneously, acceleration 

is decreased to 2.20g, 1.95g, and 1.72g, respectively. Meaning, vibrations is decreased by 

29% (((3.09g-2.20g)/3.09g)*100), 37%, and 44%, respectively. From the results, it is 

found that with increasing the number of lead dampers in the exterior columns, vibration 

decays faster. 

 At the time when the impact load impacts the frame, the lead dampers do not 

dampen anything as shown in Figure 102. Adding the lead dampers to the exterior 

columns does not help in decreasing the impact of the impact load on the building. 

However, right after the impact load impacts the building, the lead dampers start working 
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on decaying motion in the building from time 0.4 sec. as shown in Figure 103. With 

passing time, the lead dampers decay more and more motion. Right after 0.4 sec., the 

building with 48-lead dampers in the exterior columns decreases vibration by 22%. 

The building frame is tested again to observe the response of the frame when it is 

impacted on the y-axis. From Figure 104, it is shown that on the y-axis at times 2.7552-

2.8363 seconds, acceleration is decreased from 3.31g to 2.46g, i.e. vibrations is decreased 

by 25% when 48 0.15-in. lead dampers are added to the exterior columns. 

 

 

Figure 101.  Node 3 acceleration-time relations of frame model along x-axis  
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Figure 102.  Node 3 acceleration-time relations of frame model along x-axis,   
0<t<0.5 sec. 

 

 

 

Figure 103.  Node 3 acceleration-time relations of frame model along x-axis,      
0<t<3 sec. 
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Figure 104.  Acceleration-time relations of frame model at top floor along y-axis 
 

4.1.2 Welded Damping Panel Along x-axis 

 Figures 105 and 106 show the building model’s response to the applied 

impact load at the presence of welded dampers on x-axis with and without the presence 

of lead dampers in the damping panels, respectively. From the figures, from time 3.2577 

seconds to 3.5008 seconds, it is observed that the empty welded panels were able to 

reduce acceleration at the top floor from 3.04g to 1.20g, and after adding 15 0.2-in. lead 

dampers to each panel column, acceleration is decreased to 1.00g. The graphs show that 

the empty panels and the panels with lead dampers in them were able to decrease 

vibration (acceleration) by 60% and 67%, respectively.   

From Figure 107, it is observed that the welded panels do not show any impact 

during the impact load event. The system starts decaying motion right after the impact 

load impacts the frame at a time of 0.4 seconds. As shown in Figure 108, at time 0.4 sec., 

the damping system decreases vibration by 44%.  
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Figure 105.  Acceleration-time relations of building frame with empty welded panels 
on the x-axis and 48 lead dampers in exterior columns 

 

 

 

Figure 106.  Acceleration-time relations of building frame with welded panels 
including 15 lead dampers on x-axis and 48 lead dampers in exterior columns 

 



138 
 

 

Figure 107.  Acceleration-time relations of building frame with welded panels 
including 15 lead dampers on x-axis and 48 lead dampers in exterior columns, 

0<t<0.5 sec. 

 

Figure 108.  Acceleration-time relations of building frame with welded panels 
including 15 lead dampers on x-axis and 48 lead dampers in exterior columns,  

0<t<3 sec. 
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4.1.3 Bolted Damping Panel Along x-axis 

 Figures 109 and 110 show the effect of mounting bolted damping panels on the 

building frame model’s x-axis on decreasing vibration in the building model and 

decaying vibration faster. From the figures, it is determined that from the time around 

1.1345 seconds, acceleration in the frame is close to zero. Meaning, both the empty 

bolted lead dampers and the bolted lead dampers with 14 0.2-in. diameter lead dampers 

decay acceleration in the building by almost 100%.  

 The bolted panels showed more impact on decaying vibration compared to both 

the lead dampers and the welded panels. The bolted panels have helped damping the 

system in the event of the impact load. At the time when the impact load excites the 

frame, the bolted panels act and help the structure in absorbing energy. As shown in 

Figure 111, the damping system has helped the frame to decrease acceleration in the 

frame by 20% at the time of the impact load hitting the frame, at 0.05 sec. Right after the 

impact load excites the frame, the bolted frame decays in motion drastically. At time 0.2 

seconds, it drops acceleration from 4.8g to 1.62g, i.e., it decreases acceleration/vibration 

by 66%. At time 0.45 sec., it decreases vibration by 90%. The impressive effectiveness of 

the bolted panels refers to the friction between the bolts, the panels, and the beams during 

the excitement in absorbing energy. As shown in Figure 112, as time passes, the welded 

panels absorb even more energy, it stops the frame from vibrating as soon as the first 

second passes.  
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Figure 109.  Acceleration-time relations for building frame with empty bolted panels 
on x-axis and 48 lead dampers in exterior columns 

 

 

Figure 110.  Acceleration-time relations for building frame with bolted panels 
including 14 lead dampers on x-axis and 48 lead dampers in exterior columns 
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Figure 111.  Acceleration-time relations of building frame with bolted panels 
including 14 lead dampers on x-axis and 48 lead dampers in exterior columns, 

0<t<0.5 sec. 

 

Figure 112.  Acceleration-time relations of frame with bolted panels including 14 
lead dampers on x-axis and 48 lead dampers in exterior columns, 0<t<3 sec. 
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4.1.4 Bolted Damping Panel Along y-axis 

 Figures 113 and 114 show the effect of mounting bolted damping panels on the 

building frame model’s y-axis on decreasing vibration in the building model and 

decaying vibration faster. From the figures, it is determined that from the time around 

1.2966 seconds, acceleration in the frame is close to zero. Meaning, both the empty 

bolted lead dampers and the bolted lead dampers with 14 0.2-in. diameter lead dampers 

decay acceleration in the building by close to 100%.  

 

Figure 113.  Acceleration-time relations of building frame with empty bolted panels 
on y-axis and 48 lead dampers in exterior columns 
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Figure 114.  Acceleration-time relations of building frame with bolted panels 
including 14 lead dampers on y-axis and 48 lead dampers in exterior columns 

 

4.2 Steel Cantilever with Lead dampers 

 Figures 115 and 116 show that with increasing the number of lead dampers of 

both sizes (0.5” and 0.6”, respectively) in the cantilever, vibration decays much faster. At 

a time of 2.00-2.10 seconds, the frame has 4.28g acceleration in the absence of lead 

dampers in the building. When 27, or 53 lead dampers of each size are installed in the 

exterior columns, simultaneously, acceleration is decreased to 0.78g (27 0.5” lead 

dampers), 0.43g (53 0.5” lead dampers), 0.39g (27 0.6” lead dampers), and 0.23g (53 

0.6” lead dampers), respectively, i.e. vibrations is decreased by 82% (((4.28g-

0.78g)/4.28g)x100), 90%, 91%, and 95%, respectively. From Figures 117 and 118, it is 

shown that with time, increasing number of lead dampers become negligible. 
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Figure 115.  Cantilever acceleration-time relations with 0.5-in. lead dampers 
 

 

Figure 116.  Cantilever acceleration-time relations with 0.6-in. lead dampers 
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 At the time when the impact load excites the frame, from 0 sec. to 0.1 sec., shown 

in Figures 117 and 118 for lead dampers sizes 0.5” and 0.6”, respectively, the lead 

dampers do not damp anything. Adding the lead dampers to the cantilever does not help 

in decreasing the impact of the impact load on the structural member. However, right 

after the impact load excites the cantilever, the lead dampers start working on decaying 

motion in the building from time 0.1 sec. Right after 0.1 sec., the member with 53-lead 

dampers of 0.5” and 0.6”, get a decrease in vibration by 22% and 32%, respectively.  

 

 

Figure 117.  Cantilever acceleration-time relations with 0.5-in. lead dampers, 
0<t<0.5 sec. 
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Figure 118.  Cantilever acceleration-time relations with 0.6-in. lead dampers, 
0<t<0.5 sec. 

 

4.3 Full-Scale Steel Frame  

 The analytical results showed that with adding bolted damping panels to the full-

scale steel frame, the top end plastic hinge was eliminated and the impacted ground-level 

column was prevented from collapse. Figure 119 shows the drastic reduction in vibration 

at the top floor of the building frame.  
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Figure 119.  Full-scale building frame acceleration-time relations  
 

 In summary, the collected data show that with increasing number and or size of 

lead dampers, vibration decays more and faster. The results show that the lead dampers 

and damping panels have significant role in decreasing vibration in steel buildings. 
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CHAPTER V 

5.  CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions 

Based on the results of the experimental and the theoretical study conducted, the 

following conclusions are drawn: 

1. In both steel building frame model as well as the full-scale building subjected to 

a localized column impact load, a very significant reduction in vibration occurs 

when suspended lead dampers are used.  

2. Both the cantilever as well as the model frame tests show that the degree of the 

effectiveness of suspended lead dampers is related to the number of lead 

dampers. 

3. Installation of welded or bolted steel panels with suspended lead dampers in the 

laboratory frame model showed a substantial reduction in vibration.  

4. The numerical solution algorithm developed for solving the partial differential 

equation of dynamic equilibrium to account for both axial pulsating load and 

lateral impact load on a ground-level building column reveals a substantial 

reduction of vibration when suspended lead dampers are used.     

5. The transient dynamic elastic-plastic analysis of both the model frame as well as 

the full-scale building shows that the ground-level column develops a plastic 

hinge first at the location of the impact load, followed by a plastic hinge at the 

column base, and finally at its top end.  
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6. The use of bolted damping panels eliminated the formation of the plastic hinge at 

the top end of the impacted ground-level column; however, in the absence of 

such damping panels, the impacted column develops three plastic hinges thereby 

turning into a collapse mechanism.    

7. The bolted damping panel was more effective than the welded one; however, the 

welded damping panel performed better than the suspended lead dampers used 

only in the building columns.  

8. The elastic-plastic transient dynamic analysis of the building model frame 

exhibits a drastic reduction in vibration after the formation of the three plastic 

hinges in the ground-level column under impact.  

 The study conducted shows that suspended lead dampers can significantly reduce 

vibration in steel buildings when subjected to a localized impact load both with and 

without an axial pulsating load.  

5.2 Future Research 

           The transient dynamic elasto-plastic behavior of building frames subjected to 

simultaneous or sequentially applied impact loads on both the ground level columns, as 

well as, those in the upper stories of the frames should be studied in the future.  

Additional studies can include impact loads applied to the building beams and joints.  

Retrofitting schemes to strengthen existing buildings under impact or shock loads also 

need to be developed.     
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APPENDIX: COMPUTER PROGRAM SAP-2000 

In dynamic analysis, the computer program SAP-2000 uses lumped mass. It 

automatically generates lumped masses at the joints of each element. “In a dynamic 

analysis, the mass of the structure is used to compute inertial forces. Normally, the mass 

is obtained from the elements using the mass density of the material and the volume of 

the element. This automatically produces lumped (uncoupled) masses at the joints. The 

element mass values are equal for each of the three translational degrees of freedom. No 

mass moments of inertia are produced for the rotational degrees of freedom. This 

approach is adequate for most analyses.” [58] [SAP-2000 analysis manual, page 40]. 

SAP-2000 always uses lumped masses, which means that at the joints, there no mass 

coupling between the degree of freedom.  

“Inertial forces acting on the joints are related to the accelerations at the joints by 

a 6x6 matrix of mass values. These forces tend to oppose the accelerations. In a joint 

local coordinate system, the inertia forces and moments F1, F2, F3, M1, M2, and M3  at a 

joint are given by: 

 

Where ü1, ü2, ü3, ȑ1, ȑ2, and ȑ3  are the translational and rotational accelerations at 

the joint, and the terms u1, u2, u3, r1, r2, and r3 are the specified mass values.”  [SAP-

2000 analysis manual, page 40].  
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