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ABSTRACT 
 

HARD-REAL-TIME COMPUTING PERFORMANCE IN A CLOUD ENVIRONMENT 
 

Alvin Cornelius Murphy 
Old Dominion University, 2022 

Director: Dr. James D. Moreland, Jr. 

 

The United States Department of Defense (DoD) is rapidly working with DoD Services to 

move from multi-year (e.g., 7-10) traditional acquisition programs to a commercial industry-

based approach for software development. While commercial technologies and approaches 

provide an opportunity for rapid fielding of mission capabilities to pace threats, the suitability 

of commercial technologies to meet hard-real-time requirements within a surface combat 

system is unclear. This research establishes technical data to validate the effectiveness and 

suitability of current commercial technologies to meet the hard-real-time demands of a DoD 

combat management system. (Moreland Jr., 2013) conducted similar research; however, 

microservices, containers, and container orchestration technologies were not on the DoD radar 

at the time. Updated knowledge in this area will inform future DoD roadmaps and investments. 

A mission-based approach using Mission Engineering will be used to set the context for applied 

research. A hypothetical yet operationally relevant Strait Transit scenario has been established 

to provide context for definition of experimental parameters to be set while assessing the 

hypothesis. System models federated to form a system-of-systems architecture and data from a 

cloud computing environment are used to collect data for quantitative analysis. 
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CHAPTER 1 

   INTRODUCTION 

 
The Defense Department is pursuing an aggressive software development program 

focused on bringing automated software tools, services, and standards to DoD programs so that 

software applications can be created, deployed, and operated in a secure, flexible, and 

interoperable manner (AFCEA, 2019). The effort, referred to as DevSecOps, merges software 

development efforts with operations to increase the speed of software delivery. Security is 

integrated across the effort using automated scripts to identify vulnerabilities during 

development and operations. The DevSecOps software life-cycle from (DoD, 2019) is depicted 

in Figure 1. The approach harnesses so-called software containers for deployment of software 

as microservices, a dedicated repository of code and solutions that is secure and compliant with 

the Federal Risk and Authorization Management Program, or FedRAMP, and National Institute 

of Standards and Technology (NIST) criteria. The platform also utilizes Kubernetes, the Google-

designed open-source container orchestration tool for automatically deploying and managing 

software containers (AFCEA, 2019).  
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Figure 1. DevSecOps Software Lifecycle 

 

 

While these technologies are well known and understood in commercial industry, they 

have not been used to date within surface combat systems. Prototype research is needed to 

verify and validate that it is possible to synthesize cloud computing and open-source 

technologies to realize a microservices architecture for a hard-real-time deterministic Combat 

Management System (CMS). An example of past surface combat system research to assess 

commercial technologies is provided in (Moreland et al., 2014). 

This research will use Mission and Systems Engineering techniques to design a relevant 

experimental prototype. Figure 2 summarizes the differences between mission engineering, 

system engineering, and computer science competencies; e.g. this research will not address 

detailed software design activities that would occur after the system engineering has translated 

mission requirements into system requirements ((OUSD(R&E), 2020), (ISO/IEC/IEEE, 2015), 

(INCOSE, 2015)). 
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Figure 2. Mission Engineering, Systems Engineering, and Computer Science Core Competencies 

 

 

Use cases will be used to define the prototype mission objects related to the notional 

Decision Support System (DSS); e.g., weapon assessment, trial engage. DevSecOps reusable 

components (e.g., container) will be used to define system threads within a system-of-systems. 

Use of mission threads will enable the selection of container-based services needed to meet 

mission objectives without bringing along extra functional “baggage.” The use of containers 

demonstrates an ability to quickly re-configure (e.g., composability) to meet emergent mission 

requirements beyond what was possible with a monolithic system. 

The approach for this research is depicted in Figure 3.  
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Figure 3. Research Approach 

 

 

This document is organized as follows: 
 

• Chapter 1 (Introduction) discusses the theoretical formulation behind the proposed 

research, discusses the purpose of this research, and identifies questions to be addressed. 

• Chapter 2 (Background of the Study) presents a literature review and discusses limitations 

of past research. 

• Chapter 3 (Methodology) discussed the methodology approach, articulates the mission 

engineering context, presents predictions and hypotheses, and discusses development and 

instantiation of the prototype test environment. 

• Chapter 4 (Results) discusses the statistical analysis results. 

• Chapter 5 (Discussion) provides an overview of findings and discusses research implications 

and limitations. 

• Chapter 6 (Conclusions) presents contributions to the Engineering Management and 

Systems Engineering (EMSE) “body of knowledge” from this study and offers suggestions for 

future research. 
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1.1 THEORETICAL FORMULATION 

 
Grant and Osanloo (2014) describe a theoretical framework as the foundation from 

which all knowledge is constructed (metaphorically and literally) for a research study. The 

theory that I will use is framed around the use of microservices and cloud native software 

principles to determine effectiveness and suitability of these technologies to meet the hard-

real-time requirements of a CMS.  

 

MICROSERVICES 
 

A microservices framework was first discussed in (Fernåndez-Villamor et al., 2010) as an 

attempt to simplify the process of defining service descriptions to push automatic service 

consumption in the semantic web. This framework attempts to improve the description task by 

enabling reusability across service descriptions.  

The current definition of microservices was formally introduced in 2014.  Lewis and 

Fowler (2014) described microservices as an architectural style characterized around 

organization and business capability, automated deployment, intelligence in the endpoints, and 

decentralized control of languages and data. Prior to the introduction of microservices, 

applications were considered monolithic. While the monolithic style has delivered successful 

software over the years, changes require rebuilding of the entire application prior to 

deployment of capability upgrades and bug fixes. (Lewis & Fowler, 2014) discuss that over time 

it is often hard to keep a good modular structure within monolithic applications, which makes it 

harder to keep changes from affecting multiple modules. Scaling to meet capacity demands 
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requires scaling of the entire application rather than parts of it that require greater resources. A 

comparison of the two architectural styles is presented in Figure 4. 

 

 

 
Figure 4. Monoliths and Microservices (Lewis & Fowler, 2014) 

 

 

The largest challenges that microservices bring are a need for standardization of the 

architecture or services themselves, along with requirements for each microservice in order to 

ensure trust and availability (Fowler, 2016). Richards (2015) contains a rating and analysis of the 

common architecture characteristics for the microservices architecture pattern. The rating for 

each characteristic is based on the natural tendency for that characteristic as a capability based 
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on a typical implementation of the pattern, as well as what the pattern is generally known 

from. Richards (2015) “low” assessment of “performance” motivates this research.  

 

VIRTUAL MACHINES VS. CONTAINERS 
 

Microservices are typically deployed in containers to enable rapid upgrades. However, it 

should be noted that the introduction of virtual machines led to the introduction of containers. 

Figure 5 from (Janetakis, 2017) summarizes the difference between the layers of a virtual 

machine versus a container. Both use a server infrastructure that may be a desktop, laptop, or 

cloud provided server resource (e.g., Amazon). On top of the infrastructure is the operating 

system such as Mac OS, Windows, or Linux. The next layer introduces the differences. On a VM 

a hypervisor is used to enable each VM to be its on self-contained computer running on the 

server infrastructure. Using a hypervisor, multiple guest operating systems (OS) may be run on 

the host machine. However, each guest OS requires a full set of resource and library 

requirements. For example, if 3 guest OS instances are running and each is 700 MB, 3 times the 

server resources are required to support all 3 (e.g., 2.1 GB). Containers use a daemon to share a 

single instance base OS resource across multiple containers. Containers are packaged as images 

that unique library resources as required by the individual applications.  This enables starting of 

containers in milliseconds instead of minutes required to start up individual OS resources. 

However, each application running in the containers must be based upon the same base OS, 

e.g., Linux. Both approaches have differing use cases. For example, VMs enable isolation among 

full systems whereas containers focus on isolation of applications to enable rapid deployment.  

This description is simplified by (Walsh & Duffy, 2015) in the Red Hat Container Coloring Book. 

Virtual machines can be thought of as houses that are self-contained with a standard set of 
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amenities. You may have more infrastructure than is needed. Containers are like apartments 

where you are free to a pick a size that meets individual needs, e.g., a studio apartment vs. a 

penthouse. 

 

 

 
Figure 5. Virtual Machines vs. Docker Containers 

 

 

CLOUD-NATIVE APPLICATIONS 
 

Gannon et al. (2017) provide an overview of the properties of a cloud-native application:  

• Cloud-native applications operate at a global scale where an application’s data and 

services are replicated in local data centers so that interaction latencies are minimized. 

Consistency models are robust enough to give the user confidence in the integrity of the 

application. 

• Cloud-native applications scale well with thousands of concurrent users while ensuring 

data synchronization and consistency. 
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• Cloud-native applications are built on the assumption that cloud infrastructure is fluid 

and failure is constant.  

• Cloud-native applications are designed so that upgrades and tests occur seamlessly 

without disrupting production. 

• Security is not an afterthought in cloud-native applications where security is part of the 

underlying application architecture. 

 

TWELVE-FACTOR APPLICATION 
 

The twelve-factor application methodology is complementary to realizing cloud-native 

applications. The twelve-factor app is a methodology for building software-as-a-service 

applications that (Wiggins, 2017): 

• Use declarative formats for setup automation, to minimize time and cost for new 

developers joining the project; 

• Have a clean contract with the underlying operating system, offering maximum 

portability between execution environments; 

• Are suitable for deployment on modern cloud platforms, obviating the need for servers 

and systems administration; 

• Minimize divergence between development and production, enabling continuous 

deployment for maximum agility; 

• And can scale up without significant changes to tooling, architecture, or development 

practices. 

The twelve factors from (Wiggins, 2017) are summarized in Table 1. 
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Table 1. The Twelve Factors 

Factor Description 

I. Codebase One codebase tracked in revision control, many deploys 

II. Dependencies Explicitly declare and isolate dependencies 
III. Config Store config in the environment 

IV. Backing services Treat backing services as attached resources 

V. Build, release, run Strictly separate build and run stages 

VI. Processes Execute the app as one or more stateless processes 

VII. Port binding Export services via port binding 

VIII. Concurrency Scale out via the process model 

IX. Disposability Maximize robustness with fast startup and graceful shutdown 

X. Dev/prod parity Keep development, staging, and production as similar as possible 

XI. Logs Treat logs as event streams 

XII. Admin processes Run admin/management task as one-off processes 

 

 

REACTIVE MANIFESTO 
 

The Reactive Manifesto defines criteria for building systems that are more flexible, 

loosely coupled, and scalable. Only a few years ago a large application had tens of servers, 

seconds of response time, hours of offline maintenance, and gigabytes of data. Today 

applications are deployed on everything from mobile devices to cloud-based clusters running 

thousands of multi-core processors. Users expect millisecond response times and 100% uptime. 

Data is measured in petabytes. Today’s demands are simply not met by yesterday’s software 

architecture. Systems built as reactive systems are easier to develop and amenable to change. 

Reactive Systems are significantly more tolerant of failure when failure does occur and meet it 

with elegance rather than disaster. Large systems are composed of smaller ones and therefore 

depend on the Reactive properties of their constituents. This means that Reactive Systems 
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apply design principles so these properties apply at all levels of scale, making them composable 

(Bonér et al., 2014). 

SOLID PRINCIPLES 
 

Martin (2017) discusses the SOLID principles that tell us how to arrange our functions 

and data structures into classes, and how those classes should be interconnected.  The goal of 

the principles is the creation of mid-level software structures that: 

• Tolerate change, 

• Are easy to understand, and 

• Are the basis of components that can be used in many software systems. 

The term “mid-level” refers to the fact that these principles are applied by programmers 

working at the module level. They are applied just above the level of the code and help to 

define the kinds of software structures used within modules and components. The SOLID 

principles from (Martin, 2017) are summarized in Table 2. 

 

 

Table 2. SOLID Principles 

SOLID Principle Description 

SRP: The Single Responsibility 
Principle 
 

An active corollary to Conway’s law: The best structure for a software 
system is heavily influenced by the social structure of the organization that 
uses it so that each software module has one, and only one, reason to 
change. 

OCP: The Open-Closed Principle Bertrand Meyer made this principle famous in the 1980s. The gist is that for 
software systems to be easy to change, they must be designed to allow the 
behavior of those systems to be changed by adding new code, rather than 
changing existing code. 

LSP: The Liskov Substitution 
Principle 

Barbara Liskov’s famous definition of subtypes, from 1988. In short, this 
principle says that to build software systems from interchangeable parts, 
those parts must adhere to a contract that allows those parts to be 
substituted one for another. 



 12 

SOLID Principle Description 

ISP: The Interface Segregation 
Principle 

This principle advises software designers to avoid depending on things that 
they don’t use. 

DIP: The Dependency Inversion 
Principle 

The code that implements high-level policy should not depend on the code 
that implements low-level details. Rather, details should depend on 
policies. 

 

 

1.2 PURPOSE 

 
Prototype research in the surface combat system domain is needed to verify and 

validate that it is possible to synthesize cloud computing and open source technologies to 

realize a microservices architecture for a hard-real-time deterministic Combat Management 

System (CMS). Abbott (2017) discusses the severity of missing a hard, soft, and firm real-time 

deadline. Real-time is focused on getting the expected result given input “in time” for the 

response to be useful, e.g., meeting a deadline. Missing a hard-real-time deadline can result in 

catastrophic mission failure. An example of past surface combat system research to assess 

hard-real-time with commercial technologies is provided in (Moreland et al., 2014). 

Figure 6 from (Wang, 2011) illustrates the impact of missing a deadline in a real-time 

system. V(t) defines the value of making or missing a deadline. In soft real-time subfigure (a) if a 

deadline is missed the value of the data provided gracefully degrades over time. In firm real-

time subfigure (b) if a deadline is missed, the data after the deadline is of no value. In hard 

essential real-time subfigure (c) if the deadline is missed, there is a known defined penalty (n). 

In hard critical real-time subfigure (d) if the deadline is missed, the realized disaster is of 

exponential unknown impact. 
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Figure 6. Deadline represented with value functions 

 

 

In Figure 7 we use an end-to-end (E2E) mission analysis approach adapted from 

(Firesmith, 2019) to define a CMS use case to illustrate the impact of missing a real-time 

deadline. Mission threads are used to identify potential integration problems. In the scenario 

depicted, the Weapon Coordinator software component requests effectiveness options from 

the integrated Laser, Missile, and Gun Controllers. The mission thread steps are as follows: 

1. CMS operator enters threat criteria into the Tactical Decision Support (TDS) Software. 

Ordered engagements are designated as semi-auto; i.e. the Weapon Coordinator (WC) 

has weapon designation authority with operator command by negation. 

2. Track data provided by the Information Management (IM) Software qualifies a track as a 

threat. 

3. TDS orders Weapon Coordinator (WC) Software engagement of the threat. 
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4. WC asks all weapons for predicted effectiveness via associated Weapon Controllers 

(WCtrl). Each WCtrl is given X ms to respond. 

5. Each WCtrl responds to WC within X ms with probability of kill/negation (Pn) and cost 

factor. 

6. The WC selects the weapon based upon a Greedy Algorithm approach. 

7. WC orders weapon engagement and reports status to TDS. 

8. TDS provides Situation Awareness (SA) to the CMS operator prior to opening fire. 

Let’s assume that the hard-real-time deadline for controller responses is set to 75 

milliseconds. The Weapon Coordinator would need to make a weapon selection decision prior 

to getting the Laser response in 100 milliseconds. A less effective, higher cost weapon would be 

selected and potentially waste a weapon that could be more effective in a future engagement.  
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Figure 7. Combat Management System (CMS) Scheduling Example 

 

 

1.3 PROBLEM STATEMENT AND RESEARCH QUESTIONS 

 
While commercial technologies and approaches provide an opportunity for rapid 

fielding of capabilities to pace threats, the suitability of commercial technologies to meet hard-

real-time requirements within a surface combat system is unclear.  The following questions are 

posed based upon a literature review.  

QUESTIONS 
 

The primary question is related to the deterministic nature of DevSecOps technologies.  

Q1: Is it possible to synthesize cloud computing and open-source technologies to realize 

a microservices architecture for a hard-real-time deterministic Combat Management System 

(CMS)? 
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Additional questions are proposed based upon the use of mission analysis and specific 

technology implementation. 

Q2: Does end-to-end (E2E) mission thread analysis increase SoS interoperability and 

reduce integration issues? 

Q3: What benefits are gained from a microservice-based DevSecOps approach? 

Q4: Is the resultant architecture hard-real-time deterministic? 
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CHAPTER 2 

 BACKGROUND OF THE STUDY 

 

 Several key publications from the existing body of knowledge are presented, and 

research areas lacking sufficient study are identified to inform this research. 

 

2.1 REVIEW OF PRIOR RESEARCH 

Figure 8 provides an overview of literature identified as relevant to this research. Each 

article is organized by the research question identified in Section 1.3. 

 

 

 
Figure 8. Microservices Literature Review 

 

 

CONTAINER BASED MICROSERVICE PERFORMANCE (Q1) 
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Multiple studies have been conducted on cloud-based deployment and orchestration 

technologies. We shall focus on the performance of a container-based deployment of 

microservices (see Question 1). 

Felter et al. (2014) compares deployment of software in VMs versus containers and 

finds that Docker containers equal or exceed performance in every case tested. A suite of 

workloads is used to stress the CPU, memory, storage, and networking resources. The authors 

suggest that their findings argue against implementation on IaaS using VMs and PaaS as 

containers. A container-based IaaS can offer better performance. The authors assess the 

performance of Redis and MySQL in the different environments. 

Amaral et al. (2015) focus on a deployment model where one process (or a few related 

processes) is deployed per container. The deployment technique is referred to as Related 

Process Per Container or RPPC. The authors point out that two different approaches emerge for 

deployment of containers: master-slave or nested containers (see Figure 9). 
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Figure 9. Overview of master-slave and nested-container models (Amaral et al., 2015) 

 

 

The master-slave approach discussed by (Amaral et al., 2015) is composed of one 

container as the master coordinating other containers called slaves, in which application 

processing will be running. In this approach the master needs to track the subordinates’ 

containers, help their communication, and guarantee that the slaves do not interact with other 

containers from a different master. The authors refer to the master-slave approach as “regular 

container.” In the nested-container approach, the subordinates’ containers (the children) are 

hierarchically created into the main container (parent). The children run the application 

process, and they are limited by the parent’s boundaries. The nested-container approach might 

be easier to manage since all other containers are inside only one container. This approach may 

benefit from sharing the same memory, disk, and network; however, there may be an overhead 

penalty. The authors state that the nested-containers are inspired by the “pod” concept that is 

implemented by Google for better managing Docker containers (i.e. Kubernetes) (Google, 

2020). The authors cite their research contribution as providing a benchmark analysis for 
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container virtualization by implementing nested and master-slave containers, hence comparing 

the performance against virtual machines. The authors compare (i) bare metal, (ii) regular 

containers (i.e. master slave), (iii) nested containers, and (iv) virtual machines (VMs).  

Amaral et al. (2015) noted that the creation of regular containers is the fastest 

deployment approach (as expected), followed by nested containers and VMs. However, the 

creation of a single nested-container has almost 8 times more overhead than the creation of 

one regular container. Nevertheless, the creation of nested-containers is still more than twice 

as fast as virtual machines. The authors attribute this nested container overhead to initialization 

of the Docker container host platform within the parent container, which involves loading an 

image stored locally on the host and creation of the child container itself. The image loading 

was taking an average of 6.2s (see Figure 10). 
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Figure 10. Time to create an increasing number of instances of virtual containers (base 2 log scale in both axes). 

Where the nested-container is a fully initialized parent plus one child (Amaral et al., 2015) 

 

 

Amaral et al. (2015) assess network throughput and latency for single intra-host and 

host-to-host communication. Figure 11 depicts the configurations discussed by the authors. 

Results are summarized in Figure 12 and Figure 13. 
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Figure 11. Test configurations described in (Amaral et al., 2015) 

 

 

 
Figure 12. Network Throughput and Latency for Different Configurations of Client/Server Under Bare-Metal, 

Container, and Virtual Machine on a Single Host Machine (Amaral et al., 2015) 

 

 

 
Figure 13. Network Throughput and Latency Evaluation for Different Configurations of Client/Server Under Bare-

Metal, Container, and Virtual Machines Across Two Hosts (Amaral et al., 2015) 
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Wei et al. (2018) note that there are very few studies revealing the overheads, such as 

starting new containers in orchestration systems, such as Kubernetes. Though traditional 

Virtual Machines (VMs) can take on the order of minutes to launch, containers are much faster, 

and the launch times can be on the order of seconds. These overheads are typically considered 

to be negligible compared with the benefits of container-based systems; however, are they 

predictable? 

Wei et al. (2018) investigate these costs in a systematic study within a private cloud 

platform. The evaluation outlines a process for studies of this kind. Study results confirm that 

launch times of VMs are in the range of minutes, whereas containers typically only take 

seconds. However, these results also show that launch times for new containers do not always 

scale linearly. Specifically, the authors discuss that a system organized by Minikube, a tool that 

eases local deployment of Kubernetes, introduces a penalty on launch times once the number 

of containers exceeds 80% of the maximum number of pods available for the cluster. This work 

demonstrates the presence of unexpected overheads and the need for a systematic 

infrastructure for testing deployments of containerized services at scale. 

 
 

ARCHITECTURE ANALYSIS TOOLS (Q2) 
 

Assessment of a microservice based E2E architecture will require automated testing 

tools as well as architecture documentation for detailed static analysis by CMS subject matter 

experts (SMEs). The following articles have been deemed relevant (see Question 2). 

Sotomayor et al. (2019) provide a comparison of tools used for runtime testing of 

microservice architectures (see Figure 14). There are several tools to support the testing of 
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microservices, including tools to support different levels of testing (e.g., unit, integration, and 

system). The authors cite testing challenges due to the added complexity of network 

communications between collaborating services. 

ContainerCloudSim is an extension of CloudSim developed by (Piraghaj et al., 2017) that 

provides support for modeling and simulation of containerized cloud environments. The 

simulation supports comparison of container scheduling and provisioning policies in terms of 

energy efficiency and SLA compliance. The authors provide an overview of similar efforts; 

however, previous efforts do not support modeling and simulation of containers in a cloud 

environment. ContainerCloudSim offers a Container as a Service (CaaS) model that consists of 

containerized cloud data centers, hosts, virtual machines, containers, and applications along 

with their workloads. The authors demonstrated that ContainerCloudSim can support large 

scale CaaS simulations of up to 5,000 containers. They believe that their research will energize 

research in CaaS policies. 
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Figure 14. Tools Used to Support the Testing of Microservices (Sotomayor et al., 2019) 

 

 

DockerSim is an extension of the iCanCloud platform developed by (Nikdel et al., 2017). 

DockerSim adds (i) a full container deployment and behavioral layer, (ii) full packet-level 

network and protocol behaviors, (iii) full packet-level scheduling behaviors, and (iv) a generic 

queuing network approach to modeling application-layer software as a service (SaaS) 

deployment. According to the authors, their approach adds a research capability to support 

scientific methods per-experiment control and repeatability tenants. Within existing cloud 

simulators (e.g., CloudSim, iCanCloud, etc.), a common choice has been made to trade off 

network- and packet-level fidelity in favor of increased simulator performance. The authors 

state that ContainerCloudSim does not seek to incorporate the (i)-(iv) capabilities discussed 

above, thereby, placing DockerSim in a better position to support research into timing sensitive 
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cloud computing issues whereas ContainerCloudSim is better positioned to explore energy 

consumption issues. 

Mayer and Weinreich (2018) presents an approach to extract and analyze the 

architecture based on a combination of static service information with infrastructure-related 

and aggregated run-time information. The agility of a microservices based architecture, which 

results from independent development and integration of new services, leads to continuous 

architectural changes. The authors propose a generic way to retrieve the necessary static and 

dynamic data from different distributed microservices, with the collected information 

combined in a central location. Close attention has been paid to continuously extracting the 

architecture over a long period of time. To support long-term analysis, an aggregation process 

has been established to condense the collected run-time information. This approach facilitates 

identification of design weaknesses, managing of service APIs, and management of scaling 

issues.  

Mayer and Weinreich (2018) developed a data model for collection of architectural 

information (see Figure 15). As shown in the data model, architectural information is important 

at three different levels in a microservice-based software system: services, infrastructure, and 

interaction. The data model was optimized for use in a graph database that contains nodes 

which relate to directed edges. The authors point out that using a graph database, simple 

transitive queries can be written, for example, to load all services with which a specific service 

is communicating directly or indirectly. The authors surveyed 15 architects, developers, and 

operations experts. The study participants identified information about service APIs, service 

interactions and dependencies, service version, the number and distribution of service 
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instances, and system metrics as most important. Prototype dashboards were developed based 

upon these use cases. The authors demonstrated feasibility of their approach to support 

automated generation of documentation and dashboards to support analysis, maintenance, 

and software development to add capability. 

 

 

 
Figure 15. Data Model (Mayer & Weinreich, 2018) 

 

 

C2 IMPLEMENTATIONS (Q3) 
 

Can cloud computing and open-source technologies currently implemented in mission 

critical system in Public Sector research and DoD environments meet hard-real-time 
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deterministic requirements? These examples provide insight into what is potentially possible 

within a CMS implementation and potential benefits (see Question 3).  Bogner et al. (2019) 

provide an overview of state of the practice solution architectures followed by specific case 

study implementations. 

During 17 interviews (i.e. P1-P17) with software professionals from 10 companies, 

Bogner et al. (2019) analyzed 14 service-based systems summarized in Figure 16 (i.e. S1-S14). 

The interviews focused on applied technologies, microservices characteristics, and the 

perceived influence on software quality. The authors found that companies generally rely on 

well-established technologies for service implementation, communication, and deployment. 

Most systems, however, did not exhibit a high degree of technological diversity as commonly 

expected with microservices. The de facto standard for microservice communications was 

RESTful HTTP. Representative state transfer (REST) is a software architectural style that defines 

a set of constraints to be used for creating web services that may be accessed using the web-

based hypertext transfer protocol (HTTP). Even though it was not the primary protocol in each 

of the 14 cases, it existed in all of them, sometimes for minor interfaces. Participants named 

interoperability, technology independence, and loose coupling as advantages, even though 

most participants that used REST felt no need to justify this decision. Some participants saw 

direct synchronous RESTful communication between services as harmful (P5, P6, P15) and 

relied more on messaging to decouple services further, which P6 saw as follows: “We also have 

some REST-based communication between services, which is not 100% clean. In some cases, we 

had to choose between performance or clear data ownership, so we compromised.” Kafka was 

the preferred messaging solution followed by the Advanced Message Queuing Protocol 
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(AMQP). In one case, the remote procedure call (RPC) developed by Google (gRPC) was chosen 

to replace REST, because its streaming nature was seen as more efficient and end-user friendly 

(P10). Reactive Microservices and event sourcing were used by some participants (P10, P15, 

P17). No new system relied on SOAP for communication. SOAP was sometimes simply kept to 

integrate with legacy systems. 

 

 

 
Figure 16. System Characteristics (Bogner et al., 2019) 
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The European Organization for Nuclear Research (CERN) is reliant on a messaging 

technology that is common in microservice implementations. The CERN Health & Safety and 

Environmental (HSE) protection develops and operates the Radiation and Environmental 

Unified Supervision (REMUS) system that provides supervision, control, and data acquisition 

(SCADA) of CERN accelerators, experiments, and their surrounding environment (Ledeul et al., 

2019). At the time of the article, REMUS interfaced with 80 device types, contained 650,000 

tags, managed 84,000 alarms, and handled a throughput of 3,700 changes per second. REMUS 

archives roughly 38 billion measurements per year. To comply with SCADA safety regulations, 

REMUS needed to meet requirements for security, reliability, scalability, performance, and 

loose coupling. REMUS opted for Apache Kafka for log processing due to its successful 

implementations with more than 13,000 companies including Netflix, Uber, Spotify, Cisco, 

Yahoo, Twitter, Square, and overall, a third of Fortune 500 companies. All outgoing 

measurements retrieved by the REMUS supervisory system are published in near-real time 

through Kafka, in a dedicated Kafka topic. REMUS contains 3,300 publication tags (e.g., topics), 

sending about 600 messages per second to CERN Kafka brokers. 

Bruza and Reith (2018); (Bruza, 2018) discuss the integration of Multi-Domain Command 

and Control (MDC2) capabilities to conduct effective cyberwarfare within a USAF Air Operations 

Center (AOC). The Air Force Life Cycle Management Center (AFLCMC) and Defense Innovation 

Unit Experimental (DIUx) initiated an AOC Pathfinder program as a case study for developing 

software. MDC2 starts with data collection from multiple sources; this includes Intelligence, 

Surveillance, and Reconnaissance as well as other data sources such as weather forecasts, 

maintenance schedules, or other information regarding the status of blue forces (Bruza, 2018). 
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MDC2 data must be processed and displayed effectively to enable rapid decision making and 

produce effects. The key is that this process should be completely domain agnostic. Data from 

multiple domains should be collected and processed by experts in those domains and then 

presented to decisionmakers who will select a course of action to produce the effects needed 

to accomplish their mission. The course of action can include capabilities and assets from 

multiple domains all working together to produce the needed effects in the battlespace. The 

MDC2 process is summarized in Figure 17. DevOps solutions to MDC2 requirements are 

summarized in Table 3. 

 

 

 
Figure 17. MDC2 Vision “Multi-Domain Command and Control Operating Concept,” 2016 from (Bruza, 2018) 
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Table 3. DevOps Answers to MDC2 Requirements 

DevOps Answers to MDC2 Requirements 

MDC2 Application Development Requirement DevOps Answer 

Rapid Software Release Designed for reduced development timelines 

Data Sharing Additional data pipelines can be added as 
microservices and/or application programming 
interfaces 

User Feedback Informs Development Development is iterative based on user feedback for 
the entire lifecycle of the application 

Frequent Changes and Updates Designed to enable frequent development of new 
code 

Security and Reliability DevOps toolsets ensure secure software design 
principles are followed 

 

 

Bruza (2018) deems the AOC Pathfinder integration to be a success and offers the 

following research findings: 

• AOC Pathfinder has extensibility to “increase the scope of their applications in the 

future and ensure that the proper intelligence is collected during the target 

development cycle to provide multi-domain options at the end of the cycle rather than 

developing a target with kinetic effects in mind.” 

• The AOC Pathfinder experienced success with applying DevOps to develop software in 

months or weeks rather than years that is extensible to MDC2. Additionally, a 

microservice architecture provides a means of making MDC2 software more flexible to 

changing needs. The author cites that “MDC2 is not qualitatively different from a single-

domain C2 software (it is qualitatively different because there is [sic] more information 

and people to manage), so software development practices that work for C2 software 

can work for MDC2.” 



 33 

• Using pairing of government with industry for training new members, integrated 

security teams, the ATO-in-a-day concept, and the DevOps toolset provided by industry 

were discussed as main attributes of success. In addition, the AOC Pathfinder project 

embraced Silicon Valley’s entrepreneurial culture to promote creative problem solving 

and avoid falling back into old patterns. 

Kho Lin et al. (2018) explores the use of Kubernetes technology for an Australian 

Defense Forces (ADF) ATHENA platform. ATHENA is a strategic simulation and analysis platform 

focused on manpower planning. ATHENA provides a framework for what-if analysis, e.g., what 

if we close a flight school, what if the number of instructors does not meet the needs and 

demands of the ADF in 5-year time, what should the intake of new students be in the next few 

years. As more organizations within the ADF used ATHENA, a robust horizontally scalable 

platform was needed. ATHENA leverages container-based technologies for auto-scaling. As the 

market leader, Docker was used as the core container-based solution, and Kubernetes was used 

as the container orchestration. In Kubernetes, the concept of a Pod is used to encapsulate 

containers. A Kubernetes Pod object holds one or more containers and introduces an IP-per-

Pod network model. Therefore, containers within a Pod share their network namespaces 

including their IP address. In Kubernetes, Pods are ephemeral. That is, a Kubernetes cluster can 

replicate Pods (destroy and re-create new ones) for dynamically scaling up and down, for self-

healing purposes and/or for self-managing purposes. This is challenging for application 

developers to keep track of.  

To experiment with the auto-scaling setup and benchmarking, (Kho Lin et al., 2018) 

configured the ATHENA Worker Horizontal Pod Autoscaler (HPA) to use 80% target CPU 
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utilization with one CPU resource request for each Worker Pod instance. The HPA replication 

factor was set to a minimum of one Pod to a maximum of six Pods. The trend lines showed that 

the rate of increase in runtime decreases as more resources were added, this is a clear 

indication that auto-scaling was successful. However, during the experimental runs, it was 

noted that the auto-scaler does not react immediately to usage spikes. The authors concluded 

that an auto-scaling system cannot meet the user performance demands by simply relying on 

CPU utlization and memory usage metrics. Most web and mobile applications require auto-

scaling based upon Requests per Second to handle bursty traffic and stochastic user load. The 

authors intented to extend a Kubernetes API to provide more insight to the HPA controller to 

predict when auto-scaling is required. 

 

CLOUD COMPUTING ARCHITECTURE (Q4) 
 

The foundation of a CMS architecture and its ability to meet hard-real-time 

requirements is the underlying communications architecture. The following papers address 

studies related to message broker and pub/sub technologies (see Question 4). John and Liu 

(2017) provide an overview of message broker technologies with a primary focus on Apache 

Kafka and AMQP. Dobbelaere and Esmaili (2017) add to the Kafka versus RabbitMQ body of 

knowledge through a qualitative and quantitative assessment of the technologies from the 

perspective of publish and subscribe architectures. RabbitMQ is primarily known as an efficient 

and scalable implementation of AMQP. 

Despite commonalities, Kafka and AMQP have different histories and design goals 

(Dobbelaere & Esmaili, 2017). Kafka was built at LinkedIn as its centralized event pipelining 

platform, replacing a disparate set of point-to-point integration systems (Goodhope et al., 
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2012). Kafka is designed to handle high throughput (billions of messages). In its design, 

particular attention has been paid to the efficient handling of multiple consumers of the same 

stream that read at different speeds (e.g., streaming vs. batch). Figure 18 from (Dobbelaere & 

Esmaili, 2017) shows a high-level architecture of Kafka. Producers send messages to a Kafka 

topic that holds a feed of all messages of that topic. Each topic is spread over a cluster of Kafka 

brokers, with each broker hosting zero or more partitions of each topic. Each partition is an 

ordered write-ahead log of messages that are persisted to disk. All topics are available for 

reading by any number of consumers, and additional consumers have very low overhead. John 

and Liu (2017) explain that the fundamental features behind Kafka are performance over 

reliability and it offers high throughput, low latency message queuing. The loss of a single 

record among a multitude is not a deal-breaker. The rationale behind this is, for log aggregated 

data, delivery guarantees are unnecessary. Kafka is used at CERN for their Radiation and 

Environmental Unified Supervision (REMUS) system that manages 600 messages per second to 

CERN Kafka brokers (Ledeul et al., 2019).  
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Figure 18. Kafka Architecture (Dobbelaere & Esmaili, 2017) 

 

 

AMQP is an asynchronous message queuing protocol, aiming to create an open standard 

for passing messages between applications and systems regardless of internal design (John & 

Liu, 2017).  It was initially designed for financial transaction processing systems, such as trading 

and banking systems, which require high guarantees of reliability, scalability, and 

manageability. AMQP was born out of the need for interoperability of different asynchronous 

messaging middleware implementations (Dobbelaere & Esmaili, 2017). While various 

middleware standards existed for synchronous messaging (e.g., SOAP), the same did not hold 

true in the world of asynchronous messaging. What is now known about AMPQ originated in 

2003 at JPMorgan Chase. Figure 19 presents a high-level architecture for RabbitMQ (AMPQ). 

The design of AMPQ has been driven by stringent performance, scalability, and reliability 

requirements from the finance community. AMPQ takes on a modular approach, dividing the 
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message brokering task between exchanges and message queues. The implementation can be 

summarized as follows: 

• An exchange is essentially a router that accepts incoming messages from applications 

and, based on a set of rules or criteria, decides which queues to route the messages to. 

• A message queue stores messages and sends them to message consumers. Message 

durability is up to the queue implementation. 

• Joining together exchanges and message queues are bindings, which specify the rules 

and criteria by which exchanges route messages. Specifically, applications create 

bindings and associate them with message queues, thereby determining the messages 

that exchanges deliver to each queue. 

• Channels can be used to isolate message streams from each other. In a multi-thread 

environment, individual threads are typically assigned their own channel. 

 

 

 

Figure 19. RabbitMQ (AMQP) Architecture (Dobbelaere & Esmaili, 2017) 
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John and Liu (2017) uses the RabbitMQ implementation of AMQP for analysis of broker 

technologies. A survey of message broker implementations is provided in Appendix D of (John 

& Liu, 2017). Two types of tests were run for both Kafka and AMQP technologies. The single 

producer/consumer test keeps the overall total workload constant (1 million messages, 50B 

each) and scales the queue deployment from 1 to 5 nodes. The multiple producer/consumer 

setup keeps the number of nodes constant and scales the number of producers/consumers 

connecting from each node. All benchmarks were run using a modified version of Flotilla, which 

is a message broker benchmarking tool written in Go. The results reveal that Kafka has a higher 

throughput while AMQP has a lower latency. AMQP uses a consumer push-model for data 

distribution while Kafka uses the pull-model where consumers must fetch messages from 

brokers. The push-model results in better mean latency in AMQP. The authors conclude that 

throughput and reliability are key aspects that should be considered when making a choice of a 

message broker. If reliability for an application is not critical, Kafka is a better choice. If 

messages are important, such as financial transactions, the cost of losing any of the messages is 

far higher than not achieving an optimal throughput, and the application is encouraged to use 

AMQP. Additionally, AMQP can encrypt messages out-of-the-box. 

Dobbelaere and Esmaili (2017) uses empirical methods to conduct quantitative analysis 

to compare efficiency and performance of Kafka and RabbitMQ implementations. For both 

technologies, the authors used the test tools provided by the respective distributions. Latency 

measurements for ideal operating conditions are summarized in Figure 20. Since the tools 

reported different statistical summaries, the table presents a selected subset that is relevant 
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and semantically comparable. The authors draw two conclusions from the results. (i) Both 

systems can deliver millisecond-level low-latency guarantees. The results for Kafka seem a little 

better; however, Kafka was tested at an ideal setting (zero cache miss), and in a more realistic 

setting RabbitMQ outperforms it. (ii) Replication does not drastically hamper the results. More 

specifically, in the case of RabbitMQ the results are almost identical. For Kafka, it only appears 

after the median value, with a 100% increase in the 99.9 percentile. 

 

 

 
Figure 20. RabbitMQ vs. Kafka Latency Results (Dobbelaere & Esmaili, 2017) 

 

 

Wu et al. (2019) analyze the reliability for a specific distributed messaging system. The 

authors indicate that Kafka’s use cases vary from tracking clicks in a website, network, and 

infrastructure monitoring, to electronic financial trading and customer service for online 

reservations. The requirements of Kafka’s reliable data delivery differ among those use cases. 

An application that collects streams of web page logs to count views per web page can tolerate 

some inaccurate processing. In this situation a quick response from the application is prioritized 

over reliability. However, for the streams of debit and credit card payments, reliability is the top 
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priority, and there is no tolerance for errors in processing. Specifically, every stream of data 

should be processed exactly once without exception. 

Wu et al. (2019) developed a testbed and tool for Testing the Reliability of Apache Kafka 

(TRAK) to study the different delivery semantics in Kafka and compare their reliability under 

poor network quality. Additionally, faults were injected using an open-source network 

emulation tool called Pumba. The authors varied Kafka delivery semantics by changing Kafka 

settings: (1) at-most-once, (2) at-least-once, (3) exactly once. Two failure types were injected 

from TRAK: (1) broker and (2) client. A “network failure” type was injected using Pumba. To 

evaluate the reliability of data delivery, two metrics were defined, the loss rate and duplicate 

rate of messages. In tests without any fault injection, the network was observed to be fast (less 

than 0.1 ms delay), without any packet lost, and no messages lost or duplicated. In tests under 

fault injection, the network delays range from 1ms to 300ms and the pack loss from 1% to 10%. 

 
 

2.2 LIMITATIONS OF EXISTING STUDIES 

 
According to the literature review and previous studies, none of the previous efforts 

provide a quantitative assessment of the ability of a microservice based architecture to meet 

the hard-real-time deterministic demands of a Combat Management System (CMS). Efforts 

assess the performance of the components of an CMS architecture; however, none of the 

efforts focus on the assessment of an E2E architecture that is representative of a CMS. 

Observed limitations are summarized in Table 4. These limitations and associated gaps in 

knowledge set the stage for focused research. 
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Table 4. Limitations of Existing Studies 

Question Limitations 

Q1: Microservices 
Performance 

Lacks node architecture that is representative of CMS components. Variance in 
container start up times is tolerated without assessment of design alternatives. 

Q2: E2E Analysis Environment used to generate architecture products and conduct analysis is not 
representative of CMS architecture and challenges of CMS interface 
management (e.g. APIs). 

Q3: C2 Implementation MDC2 example is similar to CMS challenges; however, the results are qualitative 
not quantitative. Focus is on change in DevOps culture. 

Q4: Architecture Provides detailed assessment of Kafka vs. RabbitMQ; however, a mix may be 
required within a CMS to meet unique CMS domain requirements (e.g. external 
interface to weapons/sensors vs internal processing). Analysis is required to 
facilitate experiment design. 
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CHAPTER 3 

         METHODOLOGY 

 
The purpose of this chapter is to describe the methodological approach, conceptual 

analysis framework, and approach for analysis. 

 

3.1 METHODOLOGICAL APPROACH 

This research seeks to use an Empiricist, Positivist, Deductive paradigm as defined by 

(Siangchokyoo & Sousa-Poza, 2012). 

• Epistemological Position: Empiricist – Justification of Knowledge through 

observation. 

• Ontological Position: Positivist – Seek to find reality independent of the observer. 

• Mode of Reasoning: Deductive – Usage of confirmatory reasoning to obtain 

knowledge. 

A mission-based approach will be used to set the context for applied research. A 

hypothetical yet operationally relevant Strait Transit scenario has been established to provide 

context for definition of experimental parameters to be set while assessing the hypothesis. 

System models and data from a cloud computing environment will be used to collect data for 

quantitative analysis. To achieve this goal, this research will leverage an existing CMS Prototype 

built within a DevSecOps cloud computing infrastructure (e.g., Amazon Web Services) to 

simulate an operational scenario and generate operationally relevant CMS data under 

operational mission conditions for analysis. A CMS Prototype exists; however, statistical 

analysis has yet to occur. The use of a DevSecOps environment supports the positivist 
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ontological position using automation. A primary precept of DevSecOps is to automate 

everything which creates an environment of repeatability. 

This research will focus on a core hard-real-time thread within the software core of the 

combat system (e.g., representative response to a weapons options request within the CMS) 

that will be built from commercial products and not all elements of a full combat system. 

Variables are summarized in the following paragraphs. 

 

3.2 CONCEPTUAL ANALYSIS FRAMEWORK 

Figure 21 presents a conceptual analysis framework for the study variables, hypothesis, 

and associated dependent variables (based upon discussions above). Positive predicted 

independent variable effects on dependent variables are indicated with a positive (+) 

hypothesis (e.g., +H1). Negative predicted independent variable effects on dependent are 

indicated with a negative (-) hypothesis (e.g. -H2). Framework details are discussed below. 
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Figure 21. Conceptual Analysis Framework 

 

 

INDEPENDENT VARIABLES 
 

Latency, throughput, and jitter will be the primary independent variable used to assess 

system usability and ability to rapidly field capability through having a scalable system (i.e., 

dependent variables). The following definitions are provided from (Moreland Jr., 2013): 

• Latency - This factor refers to the end-to-end processing time between the sending 

of information from one application to the receipt of that information by other 

applications. Processing latency directly impacts the reaction time of a system when 

trying to provide a timely response to an operational incident. 

• Throughput - Throughput capacity is derived as the total number of messages 

processed for a given period of time. Throughput can be used as a performance 

index to evaluate a web service provider. The determination of the number of 

providers being serviced also defines how many users can be processed concurrently 

in a networked environment. 
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• Jitter - This factor measures the variability in latency measurements between 

successive messages. The objective is to produce a computing architecture with 

small latencies and a low, insignificant jitter. This result is advantageous for the 

quick delivery of messages with very limited to no data outliers. In the case of hard-

real-time systems, jitter is a crucial performance parameter due to the necessity of 

providing reliable performance under tremendous computing speed requirements. 

Further detail for “deterministic control systems“ is provided in (Roa et al., 2011). 

Measuring determinism means the capability to accurately characterize the worst-case time 

to exchange information end to end, no matter what other network traffic is occurring. The 

“throughput”, “latency time” and “jitter time” of this response are the quantified measures 

of determinism. Roa et al. (2011) define these terms as follows: 

• Throughput - In communication networks, such as Ethernet or packet radio, 

throughput or network throughput is the average rate of successful message 

delivery over a communication channel. This data may be delivered over a physical 

or logical link or pass through a certain network node. The throughput is usually 

measured in bits per second (bit/s or bps), and sometimes in data packets per 

second or data packets per time slot. 

• Latency - a measure of the time delay experienced by a system. Latency in a packet-

switched network is measured either one-way (the time from the source sending a 

packet to the destination receiving it), or roundtrip (the one-way latency from 

source to destination plus the one-way latency from the destination back to the 
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source). Round-trip latency is more often quoted because it can be measured from a 

single point. 

• Jitter - In the context of computer networks, the term jitter is often used as a 

measure of the variability over time of the packet latency across a network. A 

network with constant latency has no variation (or jitter). Packet jitter is expressed 

as an average of the deviation from the network mean latency. However, for this 

use, the term is imprecise. The standards-based term is packet delay variation (PDV). 

PDV is an important quality of service factor in assessment of network performance. 

These definitions will be combined to provide definitions that are inclusive of mission 

capability, technical implementation, and resultant hard-real-time behavior. 

DEPENDENT VARIABLES 
 

Usability – Krug (2014) provides a methodology for assessment of usability. The author 

breaks down usability into the following attributes: 

• Useful: Does it do something people need done? 

• Learnable: Can people figure out how to use it? 

• Memorable: Do they have to relearn it each time they use it? 

• Effective: Does it get the job done? 

• Efficient: Does it do it with a reasonable amount of time and effort? 

• Desirable: Do people want it? 

• Delightful: It using it enjoyable, or even fun? 

All of these attributes can provide an assessment of a microservice implementation. For 

example, if microservice processing is latent or unpredictable (e.g. jitter), the resultant 
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microservice design fails to be useful, desirable, efficient, and delightful. Useful, learnable, 

memorable, and desirable are related to the user interface (e.g. UI) design but also related to 

the allocation of microservice functionality.  

Ability to Rapidly Field Capability – The principles of the Agile Manifesto summarize the 

attributes required to rapidly field capability (Beck et al., 2001): 

• Our highest priority is to satisfy the customer through early and continuous delivery 

of valuable software. 

• Welcome changing requirements, even late in development. Agile processes harness 

change for the customer's competitive advantage. 

• Deliver working software frequently, from a couple of weeks to a couple of months, 

with a preference for the shorter timescale. 

• Businesspeople and developers must work together daily throughout the project. 

• Build projects around motivated individuals. Give them the environment and 

support they need and trust them to get the job done. 

• The most efficient and effective method of conveying information to and within a 

development team is face-to-face conversation. 

• Working software is the primary measure of progress. 

• Agile processes promote sustainable development.  

• The sponsors, developers, and users should be able to maintain a constant pace 

indefinitely. 

• Continuous attention to technical excellence and good design enhances agility. 

• Simplicity--the art of maximizing the amount of work not done--is essential. 
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• The best architectures, requirements, and designs emerge from self-organizing 

teams. 

• At regular intervals, the team reflects on how to become more effective, then tunes 

and adjusts its behavior accordingly. 

A microservice implementation designed around business (e.g., mission) capability 

enables achievement of these goals to achieve rapid fielding of capabilities. The allocation of 

functionality to microservices and associated throughput through interface definition will 

impact achievement of these goals. 

PREDICTIONS AND HYPOTHESIS 
 

Hypothesis statements were derived from predicted results based upon the research 

questions identified in Chapter 1 and literature review in Chapter 2. 

Hypothesis:  Modern DevSecOps architectures can be designed to meet hard-real-time 

latency (μ) requirements using modern computing environments and computing infrastructure:  

H0: μ ≤ tbd ms with jitter within latency bounds  

Ha: μ > tbd ms with jitter exceeding latency bounds 

∝ = 0.05  

Experiments will include single-node and multi-node configurations per the referenced 

literature (see Chapter 2).  

Additional hypothesis statements were derived from predicted results based upon the 

previously identified research questions to put the null and alternate hypothesis results within 

a SoS and mission context. The independent variables to be measured are throughput, latency, 

and jitter while the associated dependent variables are rapid fielding of capability and usability. 
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The Research Framework relationships to be used for analysis of the hypotheses are depicted in 

Figure 21. A similar format was used in (Moreland Jr., 2013). The independent variables are 

throughput, latency, and jitter that are measurable as the tactical environment varies to assess 

the dependent variables of “Rapid fielding of capability to pace threats” and “Usability.” 

Associated hypotheses are depicted in the center column.  

From Q1 it is predicted (P1) that AI microservices architecture will have a positive 

impact on time to implement capability upgrades and development cost. Therefore, Hypothesis 

1 (+H1) is captured accordingly: The scalability of microservices as new data sources added to 

an architecture enables maintaining high throughput and predicted to have a positive impact 

on rapid fielding of capability.  

From Q2 it is predicted (P2) that DevSecOps container orchestration technologies (e.g., 

Kubernetes) will have a positive impact on combat system availability and latency due to the 

ability to tune deployment configurations and load balance. The resulting Hypothesis 2 (+H2) 

reads: Microservices orchestration through DevSecOps technologies enables maintaining low 

latency service call responses and is predicted to have a positive impact on usability.  

From Q3 it is predicted (P3) that web-based user interface technologies will have a 

negative impact on deterministic hard-real-time performance needed for positive control of 

organic weapons. This prediction results in the following Hypothesis 3 (-H3): Web-based 

interfaces (e.g., RESTful HTTP) will increase jitter which is predicted to have a negative impact 

on usability and the deterministic performance needed for positive control of organic 

weapons.  
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From Q4 it is predicted (P3) that a systems architecture model will have a positive 

impact on micro-services architecture performance prediction and prediction of associated 

mission thread impacts. This leads to the final hypothesis or Hypothesis 4 (+H4): A system 

architecture model can predict end-to-end latency within a mission thread to quantify SoS 

usability.  

Figure 22 summarizes question, prediction, and hypothesis relationships through the 

use of a Mind Map. 

 

 

 
Figure 22. Research Mind Map 
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3.3 MISSION CONTEXT 

A CMS supports the team in the Combat Information Center (CIC) of a naval vessel with 

its tactical work. Basically, this means the continuous execution of the stages of information 

processing in the naval tactical domain and involves the building of a situational picture of the 

surroundings of the ship, an understanding of the situation (including an extrapolation into the 

future), and the possible undertaking of offensive and defensive actions (Arciszewski et al., 

2009). In military applications, this is known as the Observe, Orient, Decide, and Act (OODA) 

loop. The loop is similar to the domain agnostic information processing model of (Endsley, 

1987) and of (Parasuraman et al., 2000). The loop can be further subdivided into distinct tasks 

like correlation, classification, identification, threat assessment, and engagement. Correlation is 

the process whereby different sensor readings are integrated over time to generate a track. 

The following scenario has been defined to add context to the experiment design. The 

scenario is based upon the end-to-end mission thread presented in Section 1.2 (see Figure 7). 

Political hostility between Country Red and Country Green has escalated over the past 6 

months to a point where military conflict is imminent. The Country Green Navy Cruiser (CG), 

USS Dahlgren, has been tasked with a mission to escort a Country Green Command Ship (LCC) 

through a Strait between the two countries to establish a command post in the event of 

wartime activity. USS Dahlgren will lead a Surface Action Group (SAG) composed of a destroyer 

(DD) and an unmanned surface vehicle (USV). Additionally, USS Dahlgren is equipped with an 

unmanned aerial vehicle (UAV). During mission planning, USS Dahlgren acquires intelligence 

data that indicates that Country Red has made modifications to their surface combatant 

weapon systems that will impact the USS Dahlgren’s abilities to engage and develop fire control 
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solutions against Country Red’s surface-to-surface missiles (SSM). USS Dahlgren contacts its 

Country Green shore support activity to identify and develop software upgrades within 72 

hours to react to the emergent threat. Country Green develops potential solutions within their 

DevSecOps Software Factory to provide a rapid response. After User Centered Design (UCD), 

system analysis through simulation, CI/CD system integration testing, and DevSecOps 

automation enabled certification, Country Green can deliver an effective and suitable solution 

from their Software Factory prior to Country Green SAG deployment. The USS Dahlgren Task 

Group enters the Strait. Once the SAG enters the Strait, National Technical Means (NTM) 

detects a Country Red surface threat near the end of the Strait. A non-organic UAV in close 

proximity to the surface threat is tasked with providing additional targeting information (e.g. 

Triton). Joint assets may also be tasked with providing support. A targeting solution is provided 

to the CMS and over-the-horizon (OTH) weapons are employed. Figure 23 depicts the 

operational concepts in an operational view (OV-1) with the corresponding mission thread 

using the Find-Fix-Track-Target-Engage-Assess (F2T2EA) mission essential tasks taxonomy. For 

our research we shall focus on the deterministic responsiveness of the CMS/AI Services 

provided to support operator decisions. 

3.4 USEABILITY OF CMS/AI 

Murphy and Moreland (2021) discuss integration of AI services into a hard-real-time 

system-of-system to ensure trustworthiness. Ahn et al. (2007) described the concept of multi-

dimensional trust by different agent characteristics, such as quality, reliability, and availability. 

For (Matei et al., 2009), trust refers to the trustworthiness of a sensor, whether it has been 

compromised, the quality of data from the sensor, and the network connection. Grandison and 
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Sloman (2000) define trust as the belief in the competence of an entity to act dependably, 

securely, and reliably within a specified context. Lastly, recognizing trust is multi-dimensional, 

NIST defines it as “... the demonstrable likelihood that the system performs according to 

designed behavior under any set of conditions as evidenced by characteristics including, ... 

security, privacy, reliability, safety and resilience” (Griffor et al., 2017). Huang et al. (2020) 

emphasize the importance of advanced research around digital artifacts and trustworthy 

systems in the following statement, “To address the above research issues, digital systems 

engineering needs to integrate and leverage digital technologies such as Big Data technologies 

(including cloud computing), Data Science, ML, AI, semantics technologies, as well as digital 

mechanisms of security and trust developed in cybersecurity, Blockchain, and computational 

trust communities.” Jamshidi (2009) discusses the need to revisit all aspects of systems 

engineering to address the key aspects of sensing and control within a system of systems. 

Several patterns are presented to provide options for addressing design concerns. Pollard 

(1991) presents patterns found in modern combat systems. 
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Figure 23. Mission Scenario OV-1 and Kill Chain 

 

 

For AI to be useable, a common language must be defined to ensure that the service 

and service user correctly interpret the information provided (Gruber, 1993). Web Ontology 

Language (OWL) and Resource Description Framework Schema (RDFS) help to facilitate shared 

knowledge and common understanding. RDFS was designed to create a common English based 

subject-predicate-object model that enables connecting of data within the semantic web (W3C, 

2010). OWL based ontologies help different domains (e.g. business units) understand and share 

concepts using a common language to avoid confusion. This common understanding is an 

enabler for the application of AI by making the data machine usable. Ontologies also support 

reasoning. Huang (2018) established an ontology to assess Scientific Computing Integrity (SCI). 

This ontology integrates an Open Provence Model (OPM), temporal logic, and trust reasoning to 

enable SCI validation.  
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3.5 EXPERIMENT DESIGN 

Ishikawa’s Fishbone Diagrams provide a practical way of analyzing the causes of a 

particular effect before identifying a solution. Fishbone Diagrams are also referred to as cause-

and-effect diagrams. Wong et al. (2016) use Fishbone Diagrams to analyze social and behavior 

issues. Coccia (2017) uses Fishbones to evaluate technologies. A Fishbone Diagram depicted in 

Figure 24 was used to analyze and prioritize potential causes of degraded hard-real-time 

performance within a microservice based architecture. The analysis is focused on the 

implementation of artificial intelligence (AI) services to provide decision aids to system 

operators. Three primary areas of interest are identified: computing infrastructure, AI 

processing complexity, and software architecture. 

 

 

 
Figure 24. Microservice Performance Cause and Effect Diagram (Ishikawa) 
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Computing infrastructure is concerned with selection of the computing hardware to 

implement the microservices. Variations in processor performance, number of processors, 

memory, network, and virtualization approach (e.g., hypervisor) may have significant effects on 

hard-real-time microservice performance. These factors will vary by selection of the host 

environment but will be fixed within a host environment for data collection. For example, 

experiments may be conducted within a home computing environment and later replicated on 

cloud hardware (e.g., Amazon Web Services Infrastructure as a Services (IaaS)). 

Software architecture is concerned with microservice implementation design and 

coordination among microservices to provide capability. The technology stack choices, 

implementation patterns, and component communication approach will have varying degrees 

of impact on performance.  

AI processing complexity is concerned with microservice design. While software 

architecture was concerned with technology choices, this factor is based on software 

implementation choices. Software metrics such as McCabe’s Cyclomatic Complexity can be 

used as a methodology for measurement (McCabe, 1976). 

This research will provide software design patterns that can be reused by implementors 

of future safety-critical system capabilities, e.g., Surface Navy combat systems. Additionally, it is 

envisioned that this research will inform requirements for future CMS software applications. 

3.6 SOFTWARE IMPLEMENTATION 

A notional experimental software prototype context is depicted in Figure 25. The 

prototype system is envisioned to be a Decision Support System (DSS) that may provide hard-
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real-time decision support to system operators. The DSS provides artificial intelligence services 

to assist the user in decision making. The architecture is presented using the context, container, 

component, and code (C4) model style from (Brown, 2019).  

 

 

 

Figure 25. Experimental Prototype Software Context 

 

 

Use cases were developed to identify services required to realize the DSS Prototype. The 

use cases are depicted in  Figure 26. The primary operator for our system is a Tactical Actions 

Officer (TAO) that wants to use the DSS to enable an informed weapons decision. The primary 

use cases allow the system operator to observe information about aircraft in the area through 

the “Review Tactical Information” use case, assess which weapons are capable against threat 

aircraft through the “Review Weapon Recommendations” use case, and assess the 

effectiveness of a single weapon against a target through the “Review Predicted Weapon 

Effectiveness” use case. 
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Figure 26. DSS Prototype Use Cases (OMG, 2015) 

 

 

SOLID Principles such as the Single Responsibility principle discussed in Chapter 1 of this 

dissertation were used to define the componentization of microservices used to realize the DSS 

Prototype. A sequence diagram depicted in Figure 27 was used to explore interaction 

alternatives based upon the use cases. Each interaction was designed to have varying levels of 

dependencies among the microservice-based software configuration items (SCIs). The “Trial 
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Engage” use case was designed to be the least complex with a single dependency between the 

User Interface and the Trial Engage application. However, the “Review Tactical Information” use 

case was designed to be the most complex with a dependency on external flight data services 

provided by an OpenSky API (OpenSky, 2021). 

  

 

 
Figure 27. DSS Service Interactions (UML Sequence Diagram) (OMG, 2015) 
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It should be noted that the Track Management application was inserted to create a layer 

of abstraction between flight data requests through the Sensor Interface application to the 

OpenSky API. Access to the OpenSky API for flight data adds unpredictable latency through the 

use of public networks to access the endpoint. However, the Track Management application 

can provide immediate deterministic responses to local requests for last known flight data 

without relying on reaching out to external non-deterministic networks.  

 
The DSS is broken down into the software configuration items depicted in Figure 28 that 

satisfy an end use function that can be uniquely identified (ISO/IEC/IEEE, 2008). The component 

allocation is driven by the DSS Prototype use cases and needs for data collection and analysis. 

The primary services provided are Weapon Assessment and Trial Engage. The Weapon 

Assessment Service reviews target track kinematics and organic weapon systems capabilities to 

provide and assess weapon/target pairing for engagement of the specific target. The 

assessment is based upon known weapons’ capabilities against the position of the target and 

kinematic capabilities. The Trial Engage Service assesses the target against weapon capabilities 

and known tactics to use against a target. Data for display of engagement profiles is provided, 

e.g., earliest time to launch, latest time to launch, flyout pattern. Both services require hard-

real-time responses to enable operator weapon selection within time for weapons release and 

consummation of the engagement. If recommendations are latent, destruction of the targeted 

platform is imminent. The component diagram breaks the primary services down into 

microservices that are needed to provide DSS functionality, e.g., a sensor interface or track 
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management. Monolithic analysis services are included as pre-packaged containers from the 

Docker Container Repository. 
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Figure 28. DSS Component Diagram 
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The physical deployment to realize the components is depicted in  Figure 29. Physical 

container descriptions are provided below.   

DSS APPLICATIONS (MICROSERVICES) 
 

• opensky-int: Provides the OpenSky API for flight data. The app provides data about 

aircraft within 60 NM of Richmond (RIC) or Dulles (IAD) airports. 

• tm-server: Provides sensor track data (e.g. OpenSky) and system tracks to support DSS 

services. System tracks represent the system-wide common understanding of track 

object states used for decision support. 

• wa-app: The Weapon Assessment Application determines which weapons are capable of 

successfully engaging a target. The wa-app uses the tm-server api to get track data. 

• te-app: The Trail Engage Application predicts the success probability of an engagement 

with a specific weapon target pairing. The predicted track kinematic data at engagement 

time is provided; therefore, the current track kinematics from the tm-server are not 

queried prior to providing a response. 

• test-app: Provides an ability to initiate automated tests. the test-app uses the dss-ui to 

call dss-ui endpoint to replicate operator interactions with the DSS Prototype. 

• dss-ui: Provides a simple graphical interface to launch DSS services. 

 

TOOLS (SERVICE APPLICATIONS) 
 



 64 

• telem-jaeger: The open source Jaeger container collects "span" data from the DSS 

applications. Spans collect duration data for service calls amongst containers; e.g. 

latency. This the fundamental data that is being analyzed here. 

• grafana: The open source Grafana container connects to the telem-jaeger container to 

create visualization dashboards. Also, Grafana facilitates the export of data as a .csv file 

for analysis. 

• notebook: The Jupyter Notebook container supports analysis of the data recorded by 

Jaeger and exported by Grafana. An embedded R software library is used for analysis. 

In our experiment we will apply various technologies to assess the hard-real-time 

deterministic nature of the architecture. Specifically, we’ll look at Docker containers as well as 

container orchestration using Kubernetes. An excursion using ODU Coastal Virginia (COVA) 

Commonwealth Cyber Initiative (CCI) resources is planned to gain access to a high end process 

with Kubernetes orchestration, and an Istio service mesh is planned. The Istio service mesh 

adds a layer of security (e.g., trustworthiness) but may impact deterministic performance. The 

Istio data plane within the mesh is used to define which services can talk to each other via the 

proxies that reside within the container pods. All traffic within the mesh is controlled and 

protected by the Istio technology. Li et al. (2019) discuss service mesh challenges in detail as 

well as future research opportunities. 
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Figure 29. DSS Deployment Diagram 
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3.7 COMPUTING INFRASTRUCTURE 

Figure 30 from (Humble & Farley, 2011) shows a diagram of the use of an artifact 

repository in a typical installation. It is a key resource that stores the binaries, reports, and 

metadata for each release candidate. 

 

 

 
Figure 30. The Role of the Artifact Repository (Humble & Farley, 2011) 

 

 

An artifact repository on GitHub is core to the development and deployment of the DSS 

Prototype. Figure 31 depicts the environment used for DSS Prototype development, 

integration, and test. Technical specification for each of the computer environments is provided 

below. Software is developed and initially tested on a MacBook Air laptop. Code is periodically 
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committed to the GitHub repository. Once the build meets requirements, the code is cloned 

from GitHub onto the PC and Raspberry Pi 4 Linux environments for integration testing. 

Additionally, code is cloned onto an Amazon EC2 instance to demonstrate compatibility in a 

“cloud based” environment external to the “home lab.” The ODU Commonwealth Cyber 

Initiative (CCI) Research Environment provides an opportunity to test the DDS Prototype in an 

environment that replicates a target real-time environment being used for commercial and DoD 

applications. DSS Prototype compute resources are summarized in Table 5. 

 

 

 
Figure 31. DDS Prototype Development, Integration, and Test Environment 
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Table 5. DSS Prototype Compute Resources 

 

 

HOME LAB 
 

The “Home Lab” is a network of clustered computers in the researcher’s home. The lab 

was used for software development and build testing before deployment. The “Home Lab” 

includes an assortment of computers ranging from 2012 to 2020. The Raspberry Pi 

configuration features a Broadcom 2711 system on chip (SoC) (BCM2711 ARM Peripherals, 

2022). 

 
 

AMAZON WEB SERVICES 
 

The Amazon Web Service (AWS) Free Tier was leveraged to provide an ability to test 

beyond the “home lab.” The AWS Free Tier provides access to an Amazon Elastic Cloud 

Compute (EC2) t2.micro instance. The t2.micro has 1 virtual CPU, but T2 instances are a low-

cost, general purpose instance type that provides a baseline level of CPU performance with the 

ability to burst above the baseline when needed. T2 instances are one of the lowest-cost 

Env ID Platform Chipset Processor Memory OS 

0 MacBook Air (2017) Intel Core i5 Dual-Core Intel 
Core 5 @ 1.8 GHz 

8 GB 1600 MHz 
DDR3 

MacOS 12.4 
(Monterey) 

1 Linux PC (2012) Intel Core i7 Intel(R) Core(TM) 
i7-3770K CPU @ 
3.50GHz 

16 GB 1600 MHz 
DDR3 

CentOS Linux 8 
(Core) 

2 Raspberry Pi 4 (2020) Broadcom 
BCM 2711 

Quad-core Cortex-
A72 (ARM v8) 64-
bit SoC @ 1.5 GHz 

4 GB LDDR4-3200 
SDRAM 

Debian GNU/Linux 
11 (bullseye) 

3 Amazon Elastic Compute 
Cloud (EC2): t2.micro 

Intel Xeon Intel(R) Xeon(R) 
CPU E5-2676 v3 @ 
2.40GHz 

1 GB Debian GNU/Linux 
10 (buster) 

4 ODU Commonwealth 
Cyber Initiative (CCI) 

Intel Xeon Intel(R) Xeon(R) 
CPU E5-2683 v4 @ 
2.10GHz 
 

128 GB Red Hat Enterprise 
Linux 8.5 (Ootpa) 

https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/ARM_Cortex-A72


 69 

Amazon EC2 instance options and are ideal for a variety of general-purpose applications like 

micro-services, low-latency interactive applications, small and medium databases, virtual 

desktops, development, build and stage environments, code repositories, and product 

prototypes (AWS, 2022).  

Debian Linux 10 was selected for the Amazon Machine Image (AMI). The Linux “cat 

/proc/cpuinfo” command was used to obtain relevant CPU details depicted in Figure 32. 

 

 

admin@ip-172-31-93-240:~$ cat /proc/cpuinfo 
processor : 0 
vendor_id : GenuineIntel 
cpu family : 6 
model  : 63 
model name : Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz 
… 
cpu MHz  : 2400.001 
… 
cpu cores : 1 
… 
bogomips : 4800.00 
… 

 
Figure 32. Amazon Machine Image (AMI) CPU Details 

 

 

ODU COVA CCI 
 
 

The CCI environment provided for access to the Rancher version of Kubernetes that was 

designed for Government applications. Addition of an Istio Service Mesh is also planned for the 
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environment. The specification of the CCI environment is detailed below (Tucker, 2022). A 

diagram of the CCI research environment at ODU is depicted in Figure 33 (Pratt, 2022). 

Compute Nodes: 

• 20 x Dell PowerEdge R630 

• E5-2683v4/32C/128GB RAM 

• Total Cores: 640 

• Total RAM: 2.5TB 

Storage Nodes: 

• 8 x Dell PowerEdge C6420  

• 2x Xeon 6230/40C/48GB RAM/6 x 960GB SSD 

• Total Storage: 46 TB each usable 

GPU Nodes: 

• x Dell PowerEdge C4140 

• 2x Xeon 6230/20C/192GB RAM/4x NVIDIA V100 

• Total GPU: 16 x NVIDIA V100 32GBVRAM  GPUs with NVLink 
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Figure 33. CCI Research Environment (Pratt, 2022) 

 

 

3.8 TELEMETRY COLLECTION 

Telemetry collection using the OpenTelemetry standard is the primary means for 

collection of latency metrics from the Docker containers.  

OPENTELEMERY 
 

OpenTelemetry is a collection of tools, APIs, and SDKs. It is used to instrument, 

generate, collect, and export telemetry data (metrics, logs, and traces) to help analyze 

software’s performance and behavior (OpenTelemetry, 2022). A cloud-based tool called Jaeger 
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was used to collect telemetry data and export for analysis. A sample visualization of telemetry 

data from the ODU CCI environment is depicted in Figure 34. 

 

 

 
Figure 34. Jaeger Visualization 

 

 

I/O METRICS 
 

The DSS Test Application was later modified to use a Python psutil library to log 

input/output metrics (Rodola, 2022). The following metrics were collected and reported as 

OpenTelemetry attributes: 

• cpu.load.avg   

• num.cpu   



 73 

• net.io.count   

• start.io.count   

• end.io.count 

The io.count metric is a tuple including the following attributes: 
 

• # bytes_sent: number of bytes sent 

• # bytes_recv: number of bytes received 

• # packets_sent: number of packets sent 

• # packets_recv: number of packets received 

• # errin: total number of errors while receiving 

• # errout: total number of errors while sending 

• # dropin: total number of incoming packets which were dropped 

• # dropout: total number of outgoing packets which were dropped 

Figure 35 was generated from the ODU CCI production environment. The I/O metrics are 

collected as “tags” as part of the OpenTelemetry standard. It should be noted that with every 

run the error and packet loss metrics were zero (e.g., errin, errout, dropin, dropout). This is due 

to the nature of the Docker environment where a single computer is internally running multiple 

containers without relying on external networks. It should also be noted for the external API 

calls, the error and packet loss metrics were also zero. The I/O count metric is a counter that 

starts at zero and grows with each I/O interaction. Since the responses are “canned” the growth 

was always consistent for internal calls but were variable for interactions with the flight data 

API due to variance in the number of active flights. 
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Figure 35. Collection of I/O Metrics within Jaeger 
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CHAPTER 4 

               RESULTS 

 

The purpose of this chapter is to report results from statistical analysis. 

 

4.1 LOAD DATA FILES 

Data files were loaded from the 5 different environments discussed in Section 0 and 

merged into a combined “spanData” dataset shown in Figure 36. 

 

 

macData <- read.csv('DSS_SpanData-mac-2022-05-02 18_38_26_s10-5-1.csv', header = TRUE) 
linpcData <- read.csv('DSS_SpanData-linuxpc-2022-06-06 17_38_29_s10-5-1.csv', header = TRUE) 
rpi4Data <- read.csv('DSS_SpanData-rpi4-2022-06-06 17_52_59_s10-5-1.csv', header = TRUE) 
awsEC2Data <- read.csv('DSS_SpanData-aws_ec2-2022-06-07 17_44_08_s10-5-1.csv', header = TRUE) 
cci_Data <- read.csv('DSS_SpanData-odu_cci-2022-06-28 17_47_20_s10-5-1.csv', header = TRUE) 

Figure 36. DSS Prototype Data Files 

 

4.2 CONVERT DATA INTO USEABLE METRICS 

To make the data more usable and easier to understand we apply conversions from text 

to numeric data and add additional columns with supporting information. A useCase column is 

added to identify specific DSS request use cases, e.g., Get Dulles Airport Data. The data also 

indicates whether the request is managed internally or a connection to an external service is 

required to provide a response (i.e., https://opensky-network.org). A numContainers column is 

added to indicate the number of containers involved in providing a use case response 
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(e.g. independent variable). An ext column is added to indicate whether an API external to the 

Docker environment is used; e.g., ext = TRUE for OpenSky API calls.   

4.3 EXPLORATORY DATA ANALYSIS 

A summary of the resulting data is presented in Figure 37. Figure 38 shows that the Mac 

implementation of Docker Containers adds latency within the Docker environment. In non-

linux based platforms, a Docker desktop running a virtual machine is required to provide the 

Docker capability that is native to Linux platforms. The Mac is considered to be the DSS 

development environment and not representative of the integration and production 

environments. 

 

 

Rows: 500 
Columns: 9 
$ Trace.ID   <chr> "9ee3577fb1b427bc4fc17fecc5154d7d", "f05ddc4dc13aff5c309801… 
$ Trace.name <chr> "/TE", "/tracks", "/IAD", "/RIC", "/WA", "/TE", "/tracks", … 
$ Start.time <chr> "2022-05-02 10:25:01.366", "2022-05-02 10:25:00.309", "2022… 
$ Duration   <dbl> 36.0, 43.3, 464.0, 494.0, 139.0, 30.3, 30.0, 478.0, 546.0, … 
$ platform   <chr> "2017-macbook", "2017-macbook", "2017-macbook", "2017-macbo… 
$ env        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,… 
$ useCase    <chr> "Trial Engage (Internal)", "Get Stored Local DSS Tracks (In… 
$ useCaseNum <dbl> 2, 1, 4, 5, 3, 2, 1, 4, 5, 3, 2, 1, 4, 5, 3, 2, 1, 4, 5, 3,… 
$ ext        <lgl> FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, … 

Figure 37. Combined Data Summary 
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Figure 38. Duration vs. Use Cases and Computing Platform Source 

 

 

In Figure 39, Figure 40, Figure 41, and Figure 42 we examine the data without the data 

from the MacBook platform. The plots seem to indicate the presence of 2 clusters. Each plot 

shows that internal and external duration data is heavily separated. We shall use cluster 

analysis to investigate. 
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Figure 39. Duration vs. Use Cases with Mac Platform Removed 
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Figure 40. Duration Histogram with Use Case Indicated (i.e. Trace.name) 
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Figure 41. Duration vs. Use Case Boxplot 
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Figure 42. Q-Q Plot of Duration per Use Case 

 

 

The data presented in Figure 43 provides a sample of server routing used to access flight 

data from the OpenSky API to help explain the change in duration for external interface calls. 

Multiple non-deterministic network hops account for the increased duration latency. Figure 44 

depicts the service endpoint in Gretzenbach, Switzerland. 
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Figure 43. Trace-Route from Home Lab to OpenSky API 
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Figure 44. OpenSky Endpoint in Gretzenbach, Switzerland 

 

 

CLUSTER ANALYSIS 
 

The R library “mclust” was used to verify the separation of internal and external models 

as indicated from the plots, i.e., use cases that use an external API to collect external flight data 

from Richmond (RIC) and Dulles (IAD) airports.  The library mclust is a contributed R package for 

model-based clustering, classification, and density estimation based on finite normal mixture 

modelling. It provides functions for parameter estimation via the EM algorithm for normal 

mixture models with a variety of covariance structures and functions for simulation from these 

models. MclustBIC returns an object of class ‘mclustBIC’ containing the Bayesian Information 

Criterion (BIC) for the specified mixture models numbers of clusters. Auxiliary information is 

returned as attributes (Scrucca et al., 2016). 
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A density plot of the duration data is presented in Figure 45. As indicated above, two 

clusters separating internal and external services call seem to be present. 

 

 

 

Figure 45. Density Plot of Duration Clusters 
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Figure 46 and Figure 47 summarize the best Bayesian Information Criterion (BIC) values 

from BIC analysis. The data indicates that 2 clusters exist. The two best matches are: 

• VEV:varying volume,equal shape,varying orientation (ellipsoidal covariance) 

• EEE:equal volume,equal shape,equal orientation (ellipsoidal covariance) 

The clusters are depicted in Figure 48. We shall separate internal from external data. 
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Figure 46. BIC Plot of Components 

 

 

Best BIC values: 
             VEV,2      EEE,2      EEE,1 
BIC      -6136.963 -6586.3351 -6662.2804 
BIC diff     0.000  -449.3724  -525.3177 

Figure 47. Best BIC Values 
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Figure 48. Classification Plot of BIC Component Relationships 
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INTERNAL DATA ANALYSIS 
 

The revised Boxplot for internal data is depicted in Figure 49. An internal duration 

histogram is presented in Figure 50. The histogram plot indicates that the data is not normally 

distributed and suggests an adjustment will be needed to enable application of statistics. 
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Figure 49. Internal Duration Boxplot 
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Figure 50. Internal Duration Histogram 

 

 

EXTERNAL DATA ANALYSIS 
 

The revised Boxplot for external data is depicted in Figure 51. An external duration 

histogram is presented in Figure 52. The histogram plot indicates that the data is not normally 

distributed and suggests an adjustment will be needed to enable application of statistics. 
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Figure 51. External Duration Boxplot 
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Figure 52. External Duration Histogram 

 

 

SHAPIRO-WILK TEST FOR NORMAL DISTRIBUTION 
 

The Shapiro-Wilk test is used to determine if a dataset is normally distributed to enable 

application of the t-Test for statistical hypothesis testing. The null-hypothesis of the Shapiro-

Wilk test is that the population is normally distributed. Thus, if the p-value is less than the 
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chosen alpha level, then the null hypothesis is rejected and there is evidence that the data 

tested are not normally distributed. On the other hand, if the p value is greater than the chosen 

alpha level, then the null hypothesis (that the data came from a normally distributed 

population) cannot be rejected (e.g., for an alpha level of .05, a dataset with a p value of less 

than .05 rejects the null hypothesis that the data are from a normally distributed population). 

The Shapiro-Wilk test results in Figure 53 indicate that the internal and external data 

samples are not normally distributed and need to be adjusted to apply hypothesis testing. The 

exploratory data analysis plots indicated significant gaps in the internal data with short 

durations.  

 

 

Shapiro-Wilk normality test 
 
data:  iSpan$Duration 
W = 0.9075, p-value = 5.081e-11 

 
    Shapiro-Wilk normality test 
 
data:  eSpan$Duration 
W = 0.71543, p-value = 3.053e-16 

Figure 53. Shapiro-Wilk Normality Test 

 

 

The exploratory data analysis and Shapiro-Wilk test results seem to indicate measuring 

of an API response with very little variation. Given that each use case is expected to have some 

processing delay, the R rnorm function is used to add a normally distributed processing delay to 
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each of the use cases with a mean of 50 ms and a standard deviation of 10 ms. The resultant 

change in Shapiro-Wilk test results after application of the processing delay is presented in 

Figure 54. The data from the internal use cases now yields a p-value of 0.2265 which indicates 

that the data is now normally distributed. However, the data from the external use cases still 

indicates that the distribution is not normal with a p-value far less than the alpha level of 0.05. 

 

 

    Shapiro-Wilk normality test 
 
data:  pd_iSpan$Duration 
W = 0.9921, p-value = 0.2265 

 
    Shapiro-Wilk normality test 
 
data:  pd_eSpan$Duration 
W = 0.72568, p-value = 6.034e-16 

Figure 54. Shapiro-Wilk Testing with Processing Delay 
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Histograms of the original internal use case duration and internal use case duration with 

a normally distributed processing delay added are plotted with a binwidth of 1 ms in 

F 

Figure 55 and Figure 56. The original internal duration is skewed right. It can also be 

noted that processing delays for each of the internal use cases are somewhat visibly separated. 

However, the duration with processing delay indicates data that is normally distributed with 

normally distributed processing delays across the internal use cases. 
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F 

Figure 55. Original Internal Duration 
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Figure 56. Modified Internal Duration with Processing Delay 

 

 

Histograms of the original external use case duration and external use case duration 

with a normally distributed processing delay added are plotted with a binwidth of 10 ms in 

Figure 57 and Figure 58. Both plots of the external durations continue to be skewed right 

indicating that the data is not normally distributed. 
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Figure 57. Original External Duration 
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Figure 58. Modified External Duration with Processing Delay 

 

 

The data indicates that a normal distribution is achieved with the internal data but not 

with the external data due to the extreme variation in response times through external servers 

and routers to return flight data for Richmond and Dulles airports. We shall apply a t-test for 

the internal data, but for the external data we shall apply a binomial test to see if the threshold 
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of 500 ms can be maintained. This will require adding a threshold indication to the datasets, i.e. 

an indication of TRUE if the duration is less than 500 ms and FALSE if not. Figure 59 presents the 

revised data with the threshold indicator (hthreshold) added. 

 

 

Rows: 160 
Columns: 10 
$ Trace.ID   <chr> "0d8efde6f35af9599ae0ffc9cd68b6fb", "d6c36d3d53a329daf1f72e… 
$ Trace.name <chr> "/RIC", "/RIC", "/RIC", "/RIC", "/RIC", "/RIC", "/RIC", "/R… 
$ Start.time <chr> "2022-06-06 21:36:51.531", "2022-06-06 21:36:45.723", "2022… 
$ Duration   <dbl> 476.2477, 416.5003, 671.6718, 404.2449, 427.0154, 391.0872,… 
$ platform   <chr> "2012-linpc", "2012-linpc", "2012-linpc", "2012-linpc", "20… 
$ env        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,… 
$ useCase    <chr> "Get Richmond Airport Data (External)", "Get Richmond Airpo… 
$ useCaseNum <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,… 
$ ext        <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,… 
$ hthreshold <lgl> TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRU… 

Figure 59. Revised Data "Glimpse" with Threshold Indicator 

 

 

4.4 HYPOTHESIS TESTING 

We can now proceed with hypothesis testing. We will apply a t-Test to our normalized 

internal use case data. However, we will use a Binomial test to assess the probability of meeting 

the 500 ms requirements. 

T-TEST (INTERNAL USE CASE DATA) 
 

Given that we were able to verify a normal distribution with the process delay applied 

to the internal use case data, we are able to use a Student’s t-Test to test the hypothesis on the 

internal use case data. Our mean is 500 ms (e.g. 𝜇 = 500 ms) and our null hypthesis is less than 
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500 ms. This is an example of what is called a one-tailed hypothesis; e.g. evidence against the 

null hypothesis comes from only one tail of the distribution (namely, duration above 500). 

Sample t-test results in Figure 60 of the internal span data indicates a p-value of 1 so we 

fail to reject the null hypothesis that the duration mean is less than 500 ms. The p-value 

converges to 1 because all of the internal duration results are far less than 500 ms. 

 

 

    One Sample t-test 
 
data:  x 
t = -745.31, df = 239, p-value = 1 
alternative hypothesis: true mean is greater than 500 
95 percent confidence interval: 
 57.9299     Inf 
sample estimates: 
mean of x  
 58.90716  

Figure 60. t-Test Results for Internal Use Case Data 

 

 

BINOMIAL TESTS 
 

We’ll use Binomial Tests to test the probability of success for meeting the 500 ms 

duration. For Binomial Test we need to review the number of trials and number of successes. 

ALL USE CASE DATA 
 

Let’s look at the combined data first. For all use case data, we had 400 use case runs 

resulting in 354 successes where the duration was less than 500 ms. The Binomial Test results in 

Figure 61 indicate that the probability of success for all data is 89%. 
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   Mode   FALSE    TRUE  
logical      46     354  

 
    Exact binomial test 
 
data:  354 and 400 
number of successes = 354, number of trials = 400, p-value = 1 
alternative hypothesis: true probability of success is less than 0.5 
95 percent confidence interval: 
 0.0000000 0.9102965 
sample estimates: 
probability of success  
                 0.885  

Figure 61. Binomial Test (All Use Case Data) 

 

 

For the internal data we had 240 use case trials with 240 trials resulting in durations of 

far less than 500 ms; i.e. 100 probability of success. We used a t-Test to test our hypothesis. 

However, a Binomial Test will be used to test the probability of success for the external use 

cases. 

EXTERNAL USE CASE DATA 
 

For the external use cases we have 160 trials with 114 with a duration less than 500 ms. 

The results of the Binomial Test in Figure 62 indicate a 71% probability of success for the 

external use cases. 
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   ext          hthreshold      
 Mode:logical   Mode :logical   
 TRUE:160       FALSE:46        
                TRUE :114       
                                
    Exact binomial test 
 
data:  114 and 160 
number of successes = 114, number of trials = 160, p-value = 1 
alternative hypothesis: true probability of success is less than 0.5 
95 percent confidence interval: 
 0.0000000 0.7711356 
sample estimates: 
probability of success  
                0.7125  

 
Figure 62. Binomial Test (External Use Case Data) 
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CHAPTER 5 

            DISCUSSION 

 

5.1 OVERVIEW OF FINDINGS 

Findings are summarized through the analysis of questions and hypothesis developed in 

Chapters 2 and 3 of this dissertation. 

 

PRIMARY HYPOTHESIS 
 

GENERAL DISCUSSION OF NORMALITY 
 

It was required to separate external data from internal to establish normality of the data 

samples. A processing delta with a gaussian distribution was applied to the dataset to replicate 

the variation in processing time for each call to the services. The data from the internal use 

cases exhibit a normal distribution after application of a gaussian processing delay. The data 

from the external use cases could not be transformed into a normal distribution. However, a 

binomial test was used to assess the probability of maintaining the 500 ms threshold with 

external data routing uncertainties. 

HYPOTHESIS RESULTS 
 

Hypothesis testing using the Student’s t-Test and Binomial Test indicates that latency 

constraints of 500 ms can be maintained internally and externally. However, several external 

samples were greater than 500 ms. This is most likely due to the non-deterministic nature of 

internet (e.g. http) requests. Within the internal environment, data is directly routed between 

microservices within the Docker environment within a private network. The data shows that a 
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container based microservice architecture can meet the requirement; however, care must be 

taken to manage processing per container that may increase container response times. 

DSS PROTOTYPE ENVIRONMENT 
 

The non-deterministic nature of the Docker environment on the MacBook laptop 

significantly affected the ability to assess deterministic behavior. Boxplots of data inclusive of 

what was sampled from the MacBook clearly depicted this issue. Linux platforms run a 

container as intended; however, non-Linux platforms require the use of a Linux based Virtual 

Machine on top of the host OS to implement containers. While the MacBook met the needs for 

rapid software development, the use of a separate integration and test environment was 

clearly validated through the collected data. 

 

HYPOTHESIS DERIVED FROM QUESTIONS 
 

The question-based hypothesis results were not directly measured and tested; however, 

evaluation of the primary hypothesis provided evidence to assess the question-based 

hypothesis statements. The results are summarized in Table 6. 

 

 

Table 6. Question Based Hypothesis Results 

Hx Description Evidence/SoS Evidence Boundary Assessment 

H1 

The scalability of 
microservices as new data 
sources are added to an 
architecture enables 
maintaining high throughput 
and predicted to have a 
positive impact on rapid 
fielding of capability of 
capability. 

• Ability to mediate data through 
containers with single responsibility 
with common backend interface; e.g., 
OpenSky sensor interface 

• Ability to rapidly field in different 
environments through configuration as 
code; e.g., Docker containers to 
Kubernetes (RKE2) 

Inferred 
True 

True 
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Hx Description Evidence/SoS Evidence Boundary Assessment 

• Ability for ”Ops” to get on the same 
page with “Dev” to rapidly field 

Limitations 
Demonstrated 6 integrated 
“core” microservices but 
unable to scale the system to 
exceed the 500 ms threshold 

• Threshold will be dependent on 
internal service architecture and design 
(e.g., computer science). 

True 

H2 

Microservices orchestration 
through DevSecOps 
technologies enables 
maintaining low latency 
services call responses and 
predicted to have a positive 
impact on usability. 

• Demonstrated ability to manage 
latency through orchestration of the 
architecture and ensure usability 

Inferred 
True 

True 
Limitations 
Added 50 ms mean latency 
with 10 ms standard 
deviation on top of container 
SoS interface overhead to 
account for microservice 
processing. 

• Latency will be a function of internal 
service architecture and design (e.g., 
computer science). 

True 

H3 

Web-based interfaces (e.g. 
RESTful HTTP) will increase 
jitter and predicted to have a 
negative impact on usability 
and the deterministic 
performance needed for 
positive control of ownship 
weapons. 

• Demonstrated non-deterministic 
performance when using external web-
based interface for access to flight data 

• Mitigated problem through use of 
”sensor interface abstraction” layer 

Inferred 
True 

True 

Limitations 
Used single flight data 
endpoint. 

• Response times from flight data 
interface was non-deterministic. Expect 
that any interface outside of the local 
system through external 
switches/routers will be non-
deterministic. 

True 

H4 

A system architecture model 
can predict end-to-end 
latency within a mission kill 
chain to quantify SoS 
usability. 

• Demonstrated ability to use 
architecture models to predict system-
of-system impacts once ”budgets” are 
applied 

Inferred 
True 

True Limitations 
Used a sequence diagram for 
comparison to actual results. 
Need to include statistics 
based metrics in the model 
for a detailed comparison. 

• Demonstrated feasibility of approach 
that can be applied to multiple 
diagram types (e.g., sequence, 
activity). 

True 
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HYPOTHESIS H1 
 

The sequence diagram in Figure 27 provides an overview of microservice interactions 

used to realize each of the use cases identified through mission engineering. A summary of how 

microservices applications are reused to realize mission threads is presented in Table 7. A 

Sensor Interface Application is used to mitigate change when new data sources are added. The 

analysis revealed that low latency and high throughput can be maintained amongst the internal 

applications. However, external sources exhibited a non-deterministic behavior. The use of an 

external interface layer (e.g., Sensor Interface Application) can help to isolate the external 

behavior from internal and enable design flexibility and scalability to ensure that requirements 

are met (e.g. less than 500 ms duration) and enable rapid fielding of new capability. While the 

500 ms threshold was demonstrated as possible to be met, additional testing can be done to 

identify contributing thresholds that may break scalability, e.g., number of containers or 

processing complexity per container. Hypothesis H1 is assessed as True. 

 

 

Table 7. DSS Prototype Applications Mapped to Mission Use Cases 

Mission Use Case User Interface 
App 

Track Management 
App 

Weapon 
Assessment App 

Trial Engagement 
App 

Sensor Interface 
App 

Review Tactical 
Information 

X X   X 

Review Weapon 
Recommendations 

X X X   

Review Predicted 
Weapon 
Effectiveness 

X   X  

 



 108 

 

HYPOTHESIS H2 
 

As seen with Hypothesis H1, the orchestration of microservices can enable control of 

latency to ensure that the system is useable. We saw through the analysis that our 500 ms 

threshold can be met. Additionally, we demonstrated an ability to vary processing delay and 

still meet requirement. Our software prototype was based on the Python programming 

language; however, system design technologies can also be varied (e.g., C++, Java) to enable 

design flexibility to meet requirements. Hypothesis H2 is assessed as True. 

 

HYPOTHESIS H3 
 

Our analysis revealed significant variation in response time when dealing with external 

data sources. To mitigate this risk, we included a sensor interface layer in the design to abstract 

the external delays from the management of response times internal to the system. Hypothesis 

H3 is assessed as True for external interfaces; however, system engineers and software 

developers have a high degree of design flexibility to control internal latency related jitter. 

 

HYPOTHESIS H4 
 

Plots of the internal duration latency mapped directly to the software architecture 

threads depicted in the sequence diagrams. Figure 63 demonstrates the predictability of 

latency to each use case based upon microservice application interactions. This changed when 

gaussian process delay was added to each of the threads; however, this same processing delay 
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can be implemented in software architecture models to support simulation. Hypothesis H4 is 

assessed as True. 

 

 

 
Figure 63. Mapping of Measured Durations to Internal Use Cases 

 

 

5.2 RESEARCH IMPLICATIONS 

This research has shown how mission and system engineering can be used to design a 

relevant experimental prototype to support capability analysis. Use cases were used to define 

mission objectives for a notional Decision Support System (DSS).  Sequence diagrams were used 

to define associated mission threads for the identified use cases. These use cases were then 

mapped to reusable containerized application (e.g., software configuration items (SCIs)) to 
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create a system of system to meet mission requirements.  The use of containers demonstrated 

an ability to quickly re-configure (e.g., composability) to meet emergent mission requirements 

beyond what was possible with a monolithic system. We demonstrated that mission 

requirements can be met with a containerized system of systems approach. 

 

5.3 RESEARCH LIMITATIONS 

While this research explored requirements definition and system architecture design 

using mission and system engineering practices, it does not cross into detailed software design 

that would be within the domain of computer science. Computer scientists would take the 

requirement and system architecture defined through mission and system engineering and 

identify software technologies and software implementation patterns to ensure that 

requirements continue to be met with the detailed software design. Messaging frameworks 

such as Kafka and AMQP and programming languages such as C++, Java, Rust, and Node.js all 

have implications that may affect meeting requirements. Many of the SCIs may be decomposed 

into smaller services that become part of the SCI. Some of these software technology options 

were briefly discussed in Section 0.  
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CHAPTER 6 

           CONCLUSIONS 

 
 

6.1 PRIMARY CONTRIBUTIONS OF THIS STUDY 

The research offers the following contributions to the mission and system engineering 

body of knowledge: 

• Insight into current microservice and container performance within the context 

of hard-real-time combat system constraints 

• Insight into system design factors affecting hard-real-time performance 

• Documented traceability approach from microservices to mission capabilities 

• Insight into hard-real-time implementation patterns 

• Insight into system engineering based microservice design documentation 

approach (e.g. SysML/UML) 

• Insight into how to assess hard-real-time performance in mission critical systems 

(e.g., multi-variate analysis) 

o Current microservices designs have been industry based 

o Have not required “hard real-time” assessment due to nature of business 

(e.g., Netflix, Amazon) 
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6.2 WIDENING THE SCOPE 

Profiling of known companies was conducted to identify similarities of this research to 

known commercial concerns. Table 8 summarizes challenges that would be relevant to combat 

systems engineering and this research.  

 

 

Table 8. Research Applicability to Known Commercial Concerns 

COMPANY PERSONA CONCERN 
(https://www.cncf.io) 

APPLICABILITY TO HARD-REAL-
TIME SAFETY CRITICAL DOMAIN 

Capital One Challenges of resilience and velocity. 
Millions of transactions per day. Some 
apps deal with critical functions like 
fraud detection and credit decisioning; 
e.g. AI.“Now, a team can come to us and 
we can have them up and running with a 
basic decisioning app in a fortnight, 
which before would have taken a whole 
quarter, if not longer.” Deployments 
increased by several orders of 
magnitude. 

Directly applicable: Resilience 
challenge is directly related to 
management of combat situations. 
Other concerns are also of interest 
but not within research scope. 

Netflix Challenges of Latency, Productivity, and 
Velocity. Netflix developed its own 
technology stack for interservice 
communication using HTTP/1.1. For 
several years, that stack supported the 
company’s stellar growth. But by 2015, 
there were pain points: Clients for 
interacting with remote services were 
often wrapped with handwritten code. 

Directly applicable: Latency 
concern is relatable. Productivity 
and velocity relate to other domain 
concerns but not within the 
research scope. 

Pinterest Challenges of Efficiency and Velocity. 
After eight years in existence, Pinterest 
had grown into 1,000 microservices and 
multiple layers of infrastructure and 
diverse set-up tools and platforms. The 
first phase involved moving services to 
Docker containers. Once these services 
went into production in early 2017, the 
team began looking at orchestration to 
help create efficiencies and manage 
them in a decentralized way. After an 
evaluation of various solutions, Pinterest 
went with Kubernetes. 

Not applicable to this research: 
However, concerns are related to 
broader combat system domain 
concerns. 

Spotify Challenges of Efficiency and Velocity. 
After eight years in existence, Pinterest 
had grown into 1,000 microservices and 
multiple layers of infrastructure and 

Not applicable to this research: 
However, concerns are related to 
broader combat system domain 
concerns. 

https://www.cncf.io/
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APPLICABILITY TO HARD-REAL-
TIME SAFETY CRITICAL DOMAIN 

diverse set-up tools and platforms. The 
first phase involved moving services to 
Docker containers. Once these services 
went into production in early 2017, the 
team began looking at orchestration to 
help create efficiencies and manage 
them in a decentralized way. After an 
evaluation of various solutions, Pinterest 
went with Kubernetes. 

 

 

6.3 SUGGESTIONS FOR FUTURE RESEARCH 

The source code, documentation, and analysis scripts for the prototype can be found on 

GitHub at https://github.com/amurp003/dss-prototype to facilitate repeatability and continued 

research. The following suggestions for future research can be divided into 2 categories. 

Technical suggestions are proposed to add more fidelity and progress closer to the objective 

microservices discussed within (Murphy & Moreland, 2021). Cosmetic suggestions are proposed 

to increase the usability of the prototype applications. 

 

TECHNICAL 
 

• Service Mesh with mTLS 

• Distributed clusters (e.g., sensor management, track management, command and control) 

• Add representative gaussian delays to each microservice. Determine and add based upon 

historical data. This will make the prototype and analysis likely classified for some safety 

critical systems (e.g., weapon systems). 

 

COSMETIC 
 

• Plot flight data. 

https://www.cncf.io/
https://github.com/amurp003/dss-prototype
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• Add more flight center points beyond Dulles (IAD) and Richmond (RIC) airports. Consider 

manual latitude and longitude entry with a variable range to extend from the center point 

(e.g., 60 NM). 

• Add flight motion on the user interface plot. 

• Add selection from live flights and associated kinematics in DSS calculated responses (e.g., 

Trial Engage, Weapon Assessment). 



 115 

REFERENCES 
 
 
Abbott, D. (2017). Linux for Embedded and Real-time Applications (4th Edition ed.). Newnes.  

AFCEA. (2019). Defense Department’s DevSecOps Initiative Is on the Move. 

https://www.afcea.org/content/node/20892/ 

Ahn, J., DeAngelis, D., & Barber, S. (2007). Attitude Driven Team Formation using Multi-

Dimensional Trust 2007 IEEE/WIC/ACM International Conference on Intelligent Agent 

Technology (IAT'07),   

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M., & Steinder, M. (2015, 28-30 Sept. 

2015). Performance Evaluation of Microservices Architectures using Containers 2015 

International Symposium on Network Computing and Applications, Cambridge, MA.  

Arciszewski, H. F. R., de Greef, T. E., & van Delft, J. H. (2009). Adaptive Automation in a Naval 

Combat Management System. IEEE Transactions on Systems, Man, and Cybernetics - 

Part A: Systems and Humans, 39(6).  

AWS. (2022). Amazon EC2 Instance Types. Amazon Web Services. Retrieved June 29 from 

https://aws.amazon.com/ec2/instance-types/ 

BCM2711 ARM Peripherals. (2022). https://datasheets.raspberrypi.com/bcm2711/bcm2711-

peripherals.pdf 

Beck, K., Beddle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, 

J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., 

Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for Agile Software 

Development. https://agilemanifesto.org 

https://www.afcea.org/content/node/20892/
https://aws.amazon.com/ec2/instance-types/
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://agilemanifesto.org/


 116 

Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2019). Microservices in Industry: Insights 

into Technologies, Characteristics, and Software Quality 2019 IEEE International 

Conference on Software Architecture Companion (ICSA-C),   

Bonér, J., Farley, D., Kuhn, R., & Thompson, M. (2014, 16 September 2014). The Reactive 

Manifesto, v2.0. Retrieved 25 December from https://www.reactivemanifesto.org 

Brown, S. (2019). Software Architecture for Developer, Volume 2. 

https://leanpub.com/visualising-software-architecture  

Bruza, M., & Reith, M. (2018). Teaming with Silicon Valley to Enable Multi-Domain Command 

and Control. International Conference on Cyber Warfare and Security,  

Bruza, M. R. (2018). An Analysis of Multi-Domain Command and Control and the Development 

of Software Solutions through DevOps Toolsets and Practices Air Force Institute of 

Technology].  

Coccia, M. (2017). The Fishbone diagram to identify, systemize and analyze the sources of 

general purpose technologies. Journal of Social and Adminstrative Sciences, 4(4), 291-

303. https://doi.org/10.1453/jsas.v4i4.1518  

Dobbelaere, P., & Esmaili, K. S. (2017). Industry paper: Kafka versus RabbitMQ: A comparative 

study of two industry reference publish/subscribe implementations, Association for 

Computing Machinery, Inc.  

DoD. (2019). DoD Enterprise DevSecOps Reference Design, Version 1.0. DoD CIO Retrieved from 

https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%2

0Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583 

https://www.reactivemanifesto.org/
https://leanpub.com/visualising-software-architecture
https://doi.org/10.1453/jsas.v4i4.1518
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583


 117 

Endsley, M. R. (1987). The Application of Human Factors to the Development of Expert Systems 

for Advanced Cockpits. Human Factors Society - 31st Annual Meeting,  

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014, 21 July 2014). An Updated Performance 

Comparison of Virtual Machines and Linux Containers 2015 IEEE International 

Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, 

PA.  

Fernåndez-Villamor, J. I., Iglesias, C. Á., & Garijo, M. (2010). Microservices: LIghtweight Service 

Descriptions for REST Architectural Style ICAART 2010, Valencia, Spain.  

Firesmith, D. (2019, 5 August). Mission Thread Analysis Using End-to-End Data Flows - Part 1. 

Retrieved 5 May from https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-

analysis-using-end-to-end-data-flows---part-1.html 

Fowler, S. J. (2016). Production-Ready Microservices. O’Reilly Media, Inc.  

Gannon, D., Barga, R., & Sundaresan, N. (2017). Cloud-Native Application. IEEE Cloud 

Computing(September/October 2017), 16-21.  

Goodhope, K., Koshy, J., Kreps, J., Narkhede, N., Park, R., Rao, J., & Ye, Y. (2012). Building 

LinkedIn’s Real-time Activity Data Pipeline. Bulletin of the IEEE Computer Society 

Technical Committee on Data Engineering, 35(2), 33-45.  

Google. (2020, 20 April). Pod. Google. Retrieved 25 April from 

https://cloud.google.com/kubernetes-engine/docs/concepts/pod 

Grandison, T., & Sloman, M. (2000). A Survey of Trust in Internet Applications. IEEE 

Communications Surveys & Tutorials.  

https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-1.html
https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-1.html
https://cloud.google.com/kubernetes-engine/docs/concepts/pod


 118 

Grant, C., & Osanloo, A. (2014). Understanding, Selecting, and Integrating a Theoretical 

Framework in Dissertation Research: Creating the Blueprint for Your “House”. 

Administrative Issues Journal Education Practice and Research. 

https://doi.org/10.5929/2014.4.2.9  

Griffor, E. R., Greer, C., Wollman, D. A., & Burns, M. J. (2017). Framework for Cyber-Physical 

Systems: Volume 2, Working Group Reports (NIST SP 1500-202). 

https://doi.org/10.6028/NIST.SP.1500-202 

Gruber, T. R. (1993). Toward Principles for the Design of Ontologies Used for Knowledge 

Sharing. International Journal Human-Centered Studies, 43, 907-928.  

Huang, J. (2018). From Big Data to Knowledge: Issues of Provenance, Trust, and Scientific 

Computing Integrity 2018 International Conference on Big Data, Seattle, WA.  

Huang, J., Gheorghe, A., Handley, H., Pazos, P., Pinto, A., Kovacic, S., Collins, A., Keating, C., 

Sousa-Poza, A., Rabadi, G., Unal, R., Cotter, T., Landaeta, R., & Daniels, C. (2020). 

Towards digital engineering: the advent of digital systems engineering. Int. J. System of 

Systems Engineering, 10(3), 234-261.  

Humble, J., & Farley, D. (2011). Continuous Delivery. Addison-Wesley.  

INCOSE. (2015). INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes 

and Activities, 4th Edition. Wiley.  

ISO/IEC/IEEE. (2008). 12207-2008 - ISO/IEC/IEEE International Standard - Systems and software 

engineering -- Software life cycle processes. In: IEEE. 

ISO/IEC/IEEE. (2015). ISO/IEC/IEEE 15288, Systems and software engineering — System life 

cycle processes. In: IEEE. 

https://doi.org/10.5929/2014.4.2.9
https://doi.org/10.6028/NIST.SP.1500-202


 119 

Jamshidi, M. (2009). Control of System of Systems INDIN, Cardiff, UK.  

Janetakis, N. (2017, 2 July). Virtual Machines vs Docker Containers YouTube. 

https://www.youtube.com/watch?v=TvnZTi_gaNc 

John, V., & Liu, X. (2017). A Survey of Distributed Message Broker Queues.  

Kho Lin, S., Altaf, U., Jayaputera, G., Li, J., Marques, D., Meggyesy, D., Sarwar, S., Sharma, S., 

Voorsluys, W., Sinnott, R., Novak, A., Nguyen, V., & Pash, K. (2018). Auto-Scaling a 

Defence Application across the Cloud Using Docker and Kubernetes 2018 IEEE/ACM 

International Conference on Utility and Cloud Computing Companion (UCC Companion),   

Krug, S. (2014). Don’t Make Me Think, Revisited: A Common Sense Approach to Web Usability.  

Ledeul, A., Millan, G. S., Savulescu, A., & Styczen, B. (2019, 7-11 October). Data Streaming with 

Apache Kafka for CERN Supervision, Control, and Data Acquisition System for Radiation 

and Environmental Protection. International Conference on Accelerator and Large 

Experimental Physics Control Systems (ICALEPCS), New York, NY, USA. 

Lewis, J., & Fowler, M. (2014, 1 March). Microservices.  

https://martinfowler.com/articles/microservices.html 

Li, W., Lemieux, Y., Gao, J., Zhao, Z., & Han, Y. (2019). Service Mesh: Challenges, State of the Art, 

and Future Research Opportunities 2019 IEEE International Conference on Service-

Oriented System Engineering (SOSE),   

Martin, R. C. (2017). Clean Architecture: A Craftsman's Guide to Software Structure and Design, 

First Edition. Prentice Hall.  

https://www.youtube.com/watch?v=TvnZTi_gaNc
https://martinfowler.com/articles/microservices.html


 120 

Matei, I., Baras, J. S., & Jiang, T. (2009). A Composite Trust Model and its Application to 

Collaborative Distributed Information Fusion. 12th International Conference on 

Information Fusion, Seattle, WA. 

Mayer, B., & Weinreich, R. (2018). An Approach to Extract the Architecture of Microservice-

Based Software Systems 2018 IEEE Symposium on Service-Oriented System Engineering 

(SOSE),   

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering, SE-

2(4), 308-320.  

Moreland, J. D., Sarkani, S., & Mazzuchi, T. (2014). Service-Oriented Architecture (SOA) 

Instantiation within a Hard Real-Time, Deterministic Combat System Environment. 

INCOSE Systems Engineering, 17(3), 264-277. https://doi.org/10.1002/sys.21268  

Moreland Jr., J. D. (2013). Service-Oriented Architecture (SOA) Instantiation Within a Hard Real-

Time, Deterministic Combat System Environment [Dissertation, The George Washington 

University]. ProQuest.  

Murphy, A., & Moreland, J. (2021). Integrating AI Microservices into Hard-Real-Time SoS to 

Ensure Trustworthiness of Digital Enterprise Using Mission Engineering. JIDPS, 25(1), 38-

54. https://doi.org/10.3233/JID-210013  

Nikdel, Z., Gao, B., & Neville, S. W. (2017). DockerSim: Full-stack Simulation of Container-based 

Software-as-a-Service (SaaS) Cloud Deployments and Environments 2017 IEEE Pacific 

Rim Conference on Communications, Computers and Signal Processing (PACRIM),   

OMG. (2015). OMG Unified Modeling Language (OMG UML), Version 2.5. 

https://www.omg.org/spec/UML/2.5/PDF 

https://doi.org/10.1002/sys.21268
https://doi.org/10.3233/JID-210013
https://www.omg.org/spec/UML/2.5/PDF


 121 

OpenSky. (2021). The OpenSky Network API. Retrieved July 1 from 

https://openskynetwork.github.io/opensky-api/ 

OpenTelemetry. (2022). OpenTelemetry Homepage. Retrieved 1 July from 

https://opentelemetry.io 

OUSD(R&E). (2020). Mission Engineering Guide.  

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A Model for Types and Levels of 

Human Interaction with Automation. IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, 30(3), 286-297. 

https://doi.org/10.1109/3468.844354  

Piraghaj, S. F., Dastjerdi, A. V., Calheiros, R. N., & Buyya, R. (2017). ContainerCloudSim: An 

environment for modeling and simulation of containers in cloud data centers. In 

Software - Practice and Experience (Vol. 47, pp. 505-521): John Wiley and Sons Ltd. 

Pollard, J. R. (1991). Combat Systems Vision 2030: Functional Architecture for Future Shipboard 

Combat Systems. https://apps.dtic.mil/dtic/tr/fulltext/u2/a252668.pdf 

Pratt, J. (2022). ODU CCI Research Environment. In A. Murphy (Ed.), (Discussions between J. 

Pratt and A. Murphy regarding the CCI capabilities ed.). 

Richards, M. (2015). Software Architecture Patterns. O’Reilly Media, Inc.  

Roa, M., Cantrell, W., Cartes, D., & Nelson, M. (2011). Requirements for deterministic control 

systems.  

Rodola, G. (2022). psutil documentation. Retrieved 28 Sep from https://psutil.readthedocs.io/ 

https://openskynetwork.github.io/opensky-api/
https://opentelemetry.io/
https://doi.org/10.1109/3468.844354
https://apps.dtic.mil/dtic/tr/fulltext/u2/a252668.pdf
https://psutil.readthedocs.io/


 122 

Scrucca, L., Fop, M., Murphy, T. B., & Raferty, A. E. (2016). mclust 5: Clustering, Classification 

and Density Estimation Using Gaussian Finite Mixture Models. The R Journal, 8(1), 289-

317.  

Siangchokyoo, N., & Sousa-Poza, A. A. (2012). Research Methodologies: A Look at the 

Underlying Philosophical Foundations of Research. 2012 International Annual 

Conference of the American Society for Engineering Management,  

Sotomayor, J. P., Allala, S. C., Alt, P., Phillips, J., King, T. M., & Clarke, P. J. (2019). Comparison of 

Runtime Testing Tools for Microservices 2019 IEEE 43rd Annual Computer Software and 

Applications Conference (COMPSAC),   

Tucker, A. (2022). Deployment of DSS Prototype on ODU CCI Research Environment. In A. 

Murphy (Ed.), (Discussion between A. Tucker and A. Murphy regarding the CCI 

deployment ed.). 

W3C. (2010). RDF Vocabulary Description Language 1.0: RDF Schema (RDFS). Retrieved 30 Jan 

from https://www.w3.org/2001/sw/wiki/RDFS 

Walsh, D., & Duffy, M. (2015). The Container Coloring Book. Who’s Afraid of the Big Bad Wolf? 

In: Red Hat. 

Wang, R. R. (2011, 1 Mar 2020). Opher Etzion on Four Types of Real-time.  

http://blog.softwareinsider.org/2011/06/20/mondays-musings-real-time-versus-right-

time-and-the-dawn-of-engagement-apps/screen-shot-2011-06-20-at-6-38-45-am 

Wei, T., Malhotra, M., Gao, B., Bednar, T., Jacoby, D., & Coady, Y. (2018). No Such thing as a 

“Free Lunch”? - Systematic Benchmarking of Containers. 2018 IEEE/ACM International 

Conference on Utility and Cloud Computing Companion (UCC Companion),  

https://www.w3.org/2001/sw/wiki/RDFS
http://blog.softwareinsider.org/2011/06/20/mondays-musings-real-time-versus-right-time-and-the-dawn-of-engagement-apps/screen-shot-2011-06-20-at-6-38-45-am
http://blog.softwareinsider.org/2011/06/20/mondays-musings-real-time-versus-right-time-and-the-dawn-of-engagement-apps/screen-shot-2011-06-20-at-6-38-45-am


 123 

Wiggins, A. (2017). The Twelve-Factor App. Retrieved 1 March from https://12factor.net 

Wong, K. C., Woo, K. Z., & Woo, K. H. (2016). Ishikawa Diagram. In Quality Improvement in 

Behavioral Health (pp. 119-132). https://doi.org/10.1007/978-3-319-26209-3_9  

Wu, H., Shang, Z., & Wolter, K. (2019). TRAK: A Testing Tool for Studying the Reliability of Data 

Delivery in Apache Kafka 2019 IEEE International Symposium on Software Reliability 

Engineering Workshops (ISSREW),   

 
  

https://12factor.net/
https://doi.org/10.1007/978-3-319-26209-3_9


 124 

VITA 
 

Alvin Cornelius Murphy 
Engineering Management and Systems Engineering (EMSE) Department, Old Dominion 

University, 2101 Engineering Systems Building, Norfolk, VA 23529 
 
Education 
 
Dec 2022 Ph.D. Engineering Management and Systems Engineering. Old Dominion 

University, Norfolk, VA 
Jan 2007 M.E. Systems Engineering. George Mason University, Fairfax, VA 
May 1991 B.S. Electrical Engineering. Virginia Tech, Blacksburg, VA 
 
 
Work Experience 
 
Jun 1991 – 1996 Naval Surface Warfare Center Port Hueneme Division – Dahlgren 

Detachment. Dahlgren, VA 
2006 – Present Naval Surface Warfare Center Dahlgren Division. Dahlgren, VA   
 
Dr. Murphy is a Principal Engineer within the Integrated Combat Systems Department at NSWC 
Dahlgren. He has spent the past 31 years engineering, developing, testing, integrating, and 
assessing Warfare Systems and C4I for AEGIS, the Navy, and Joint Warfighter. In 1999, Dr. 
Murphy broadened his focus from individual platforms to strike force systems engineering as a 
plank holder in the development of the Navy’s Distributed Engineering Plant (DEP) and Battle 
Force Interoperability Requirements (BFIR) and Metrics definition. Dr. Murphy currently leads 
combat system requirements and architecture development for Future Navy surface platforms 
and surface Navy Enterprise as the Chief System-of-Systems Engineer for the Navy’s Integrated 
Combat System (ICS). Additionally, Dr. Murphy leads surface Navy combat system DevSecOps 
initiatives and associated collaboration at Naval and DoD levels. 
 
Selected Publications 
 

Murphy, A., & Moreland, J. (2021). Integrating AI Microservices into Hard-Real-Time SoS 
to Ensure Trustworthiness of Digital Enterprise Using Mission Engineering. JIDPS, 25(1), 38-54. 
doi:10.3233/JID-210013 

Richardson, David S; Slavin, Jerico; Lohr, Barret; Haas, Doug; Allen, Justin; Brandts, Kirk; 
Murphy, Alvin; Quinnan, Bob; Fitzsimmons, Jay. “Virtualization Roadmap: A Strategy for 
Deploying Virtualized Combat Systems to Surface Navy Ships.” NSWCDD/TR-19/278, 
March 2020. 

Schroeder, Eric; Murphy, Alvin. “Modeling a Modular Integrated Laser System Kill Chain 
to Support Design and Integration Trades.” NSWCDD/MP-19/108 (DTIC: AD1072569), February 
2019. 


	Hard-Real-Time Computing Performance in a Cloud Environment
	Recommended Citation

	INTRODUCTION
	1.1 THEORETICAL FORMULATION
	Microservices
	Virtual Machines vs. Containers
	Cloud-native Applications
	Twelve-Factor Application
	Reactive Manifesto
	SOLID Principles

	1.2 PURPOSE
	1.3 PROBLEM STATEMENT AND RESEARCH QUESTIONS
	Questions


	2 BACKGROUND OF THE STUDY
	2.1 REVIEW OF PRIOR RESEARCH
	Container Based Microservice Performance (Q1)
	Architecture Analysis Tools (Q2)
	C2 Implementations (Q3)
	Cloud Computing Architecture (Q4)

	2.2 LIMITATIONS OF EXISTING STUDIES

	3         METHODOLOGY
	3.1 Methodological Approach
	3.2 Conceptual Analysis Framework
	Independent Variables
	Dependent Variables
	Predictions and Hypothesis

	3.3 Mission Context
	3.4 Useability of CMS/AI
	3.5 Experiment Design
	3.6 Software Implementation
	DSS Applications (Microservices)
	Tools (Service Applications)

	3.7 COMPUTING INFRASTRUCTURE
	Home Lab
	Amazon Web Services
	ODU COVA CCI

	3.8 Telemetry Collection
	OpenTelemery
	I/O Metrics


	4               RESULTS
	4.1 Load Data Files
	4.2 Convert Data into Useable Metrics
	4.3 Exploratory Data Analysis
	Cluster Analysis
	Internal Data Analysis
	External Data Analysis
	Shapiro-Wilk Test for Normal Distribution

	4.4 Hypothesis Testing
	t-Test (Internal Use Case Data)
	Binomial Tests
	All Use Case Data
	External Use Case Data



	5            DISCUSSION
	5.1 OVERVIEW OF FINDINGS
	PRIMARY HYPOTHESIS
	General Discussion of Normality
	Hypothesis Results
	DSS Prototype Environment

	HYPOTHESIS DERIVED FROM QUESTIONS
	Hypothesis H1
	Hypothesis H2
	Hypothesis H3
	Hypothesis H4


	5.2 RESEARCH IMPLICATIONS
	5.3 RESEARCH LIMITATIONS

	6           CONCLUSIONS
	6.1 PRIMARY CONTRIBUTIONS OF THIS STUDY
	6.2 WIDENING THE SCOPE
	6.3 SUGGESTIONS FOR FUTURE RESEARCH
	TECHNICAL
	COSMETIC



