
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Engineering Management & Systems
Engineering Theses & Dissertations

Engineering Management & Systems
Engineering

Fall 12-2022

Hard-Real-Time Computing Performance in a Cloud Environment Hard-Real-Time Computing Performance in a Cloud Environment

Alvin Cornelius Murphy
Old Dominion University, amurp003@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

 Part of the Computer Engineering Commons, Computer Sciences Commons, Industrial Engineering

Commons, and the Systems Engineering Commons

Recommended Citation Recommended Citation
Murphy, Alvin C.. "Hard-Real-Time Computing Performance in a Cloud Environment" (2022). Doctor of
Philosophy (PhD), Dissertation, Engineering Management & Systems Engineering, Old Dominion
University, DOI: 10.25777/c2gf-5416
https://digitalcommons.odu.edu/emse_etds/192

This Dissertation is brought to you for free and open access by the Engineering Management & Systems
Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Femse_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Femse_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Femse_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/192?utm_source=digitalcommons.odu.edu%2Femse_etds%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

HARD-REAL-TIME COMPUTING PERFORMANCE IN A CLOUD ENVIRONMENT

by

Alvin Cornelius Murphy
B.S. May 1991, Virginia Polytechnic Institute and State University

M.S. Jan 2007, George Mason University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT AND SYSTEMS ENGINEERING

OLD DOMINION UNIVERSITY
December 2022

 Approved by:

 James D. Moreland, Jr. (Director)

 Andres Sousa-Poza (Member)

 Samuel Kovacic (Member)

 Saikou Diallo (Member)

ABSTRACT

HARD-REAL-TIME COMPUTING PERFORMANCE IN A CLOUD ENVIRONMENT

Alvin Cornelius Murphy
Old Dominion University, 2022

Director: Dr. James D. Moreland, Jr.

The United States Department of Defense (DoD) is rapidly working with DoD Services to

move from multi-year (e.g., 7-10) traditional acquisition programs to a commercial industry-

based approach for software development. While commercial technologies and approaches

provide an opportunity for rapid fielding of mission capabilities to pace threats, the suitability

of commercial technologies to meet hard-real-time requirements within a surface combat

system is unclear. This research establishes technical data to validate the effectiveness and

suitability of current commercial technologies to meet the hard-real-time demands of a DoD

combat management system. (Moreland Jr., 2013) conducted similar research; however,

microservices, containers, and container orchestration technologies were not on the DoD radar

at the time. Updated knowledge in this area will inform future DoD roadmaps and investments.

A mission-based approach using Mission Engineering will be used to set the context for applied

research. A hypothetical yet operationally relevant Strait Transit scenario has been established

to provide context for definition of experimental parameters to be set while assessing the

hypothesis. System models federated to form a system-of-systems architecture and data from a

cloud computing environment are used to collect data for quantitative analysis.

 iii

Copyright, 2022, by Alvin Cornelius Murphy, All Rights Reserved.

 iv

This dissertation is dedicated to my Mom and Dad who have always driven me to bigger and
better achievements, my friends and family who kept me in good spirits during times of

frustration, and to God for giving me the strength to keep going.

 v

ACKNOWLEDGMENTS

There are many people who have contributed to the successful completion of this

dissertation; however, I express many, many thanks to my advisor Dr. Moreland and my

committee for providing guidance to keep me on track. I thank NSWC Dahlgren for granting me

an academic fellowship in FY2022 that helped me with my work, school, and life balance.

Finally, I thank colleagues I’ve met over the years in the DevSecOps community for imparting

knowledge to focus this topic, the ODU IT Department staff for helping me with technology,

and work colleagues for peer review of the statistics required to build the prototype and

perform analysis.

 vi

NOMENCLATURE

ADF Australian Defense Forces

AFLCMC Air Force Life Cycle Management Center

AI Artificial Intelligence

AMI Amazon Machine Images

AMQP Advanced Message Queuing Protocol

AOC Air Operations Center

API Application Programming Interface

App Application

AWS Amazon Web Services

B Bytes

C2 Command and Control

C4 Context, Container, Component, and Code

CaaS Container as a Service

CCI Commonwealth Cyber Initiative

CERN European Organization for Nuclear Research

CLI Command Line Interface

CMS Combat Management Systems

COVA Coastal Virginia

CPU Central Processing Unit

Dev Development

 vii

DevSecOps Development, Security, Operations

DIUx Defense Innovation Unit Experimental

DoD Department of Defense

DSS Decision Support System

E2E End-to-End

EC2 Elastic Cloud Compute

EMSE Engineering Management and Systems Engineering

GB Gigabyte

Gbps Gigabits per second

GPU Graphics Processing Unit

gRPC Google Remote Procedure Call

HPA Horizontal Pod Autoscaler

HSE Health & Safety and Environment

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

IDE Integrated Data Environment

IM Information Management

IP Internet Protocol

JSON JavaScript Object Notation

JVM Java Virtual Machine

K8S Kubernetes

MB Megabyte

 viii

MDC2 Multi-Domain Command and Control

μs Microsecond

ms Millisecond

mTLS Mutual Transport Layer Security

NIST National Institute of Standards and Technology

Ops Operations

OS Operating System

OTP Open Telecom Platform

PaaS Platform as a Service

PC Personal Computer

Pn Probability of Negation

REMUS Radiation and Environmental Unified Supervision

REST Representational State Transfer

RPC Remote Procedure Call

RPPC Related Process Per Container

s Second

SA Situational Awareness

SaaS Software as a Service

SCADA Supervision, Control, and Data Acquisition

SCI Software Configuration Item

SDK Software Development Kit

Sec Security

 ix

SLA Service-Level Agreement

SME Subject Matter Expert

SOAP Simple Object Access Protocol

SPP Scala Platform Process

TAO Tactical Actions Officer

TDS Tactical Decision Support

USAF United States Air Force

VM Virtual Machine

WC Weapon Coordinator

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language

 x

TABLE OF CONTENTS

Page

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

Chapter

1 INTRODUCTION .. 1

1.1 THEORETICAL FORMULATION ... 5
1.2 PURPOSE ... 12
1.3 PROBLEM STATEMENT AND RESEARCH QUESTIONS .. 15

2 BACKGROUND OF THE STUDY .. 17

2.1 REVIEW OF PRIOR RESEARCH .. 17
2.2 LIMITATIONS OF EXISTING STUDIES .. 40

3 METHODOLOGY ... 42

3.1 METHODOLOGICAL APPROACH ... 42
3.2 CONCEPTUAL ANALYSIS FRAMEWORK... 43
3.3 MISSION CONTEXT ... 51
3.4 USEABILITY OF CMS/AI .. 52
3.5 EXPERIMENT DESIGN .. 55
3.6 SOFTWARE IMPLEMENTATION ... 56
3.7 COMPUTING INFRASTRUCTURE .. 66
3.8 TELEMETRY COLLECTION .. 71

4 RESULTS .. 75

4.1 LOAD DATA FILES ... 75
4.2 CONVERT DATA INTO USEABLE METRICS .. 75
4.3 EXPLORATORY DATA ANALYSIS.. 76
4.4 HYPOTHESIS TESTING .. 100

5 DISCUSSION .. 104

5.1 OVERVIEW OF FINDINGS ... 104
5.2 RESEARCH IMPLICATIONS ... 109
5.3 RESEARCH LIMITATIONS ... 110

 xi

Chapter Page

6 CONCLUSIONS .. 111

6.1 PRIMARY CONTRIBUTIONS OF THIS STUDY ... 111
6.2 WIDENING THE SCOPE .. 112
6.3 SUGGESTIONS FOR FUTURE RESEARCH .. 113

REFERENCES .. 115

VITA ... 124

 xii

LIST OF TABLES

Table Page

1. THE TWELVE FACTORS ... 10

2. SOLID PRINCIPLES ... 11

3. DEVOPS ANSWERS TO MDC2 REQUIREMENTS .. 32

4. LIMITATIONS OF EXISTING STUDIES .. 41

5. DSS PROTOTYPE COMPUTE RESOURCES ... 68

6. QUESTION BASED HYPOTHESIS RESULTS ... 105

7. DSS PROTOTYPE APPLICATIONS MAPPED TO MISSION USE CASES ... 107

8. RESEARCH APPLICABILITY TO KNOWN COMMERCIAL CONCERNS .. 112

 xiii

LIST OF FIGURES

Figure Page

1. DEVSECOPS SOFTWARE LIFECYCLE ... 2

2. MISSION ENGINEERING, SYSTEMS ENGINEERING, AND COMPUTER SCIENCE CORE COMPETENCIES 3

3. RESEARCH APPROACH ... 4

4. MONOLITHS AND MICROSERVICES (LEWIS & FOWLER, 2014) .. 6

5. VIRTUAL MACHINES VS. DOCKER CONTAINERS ... 8

6. DEADLINE REPRESENTED WITH VALUE FUNCTIONS ... 13

7. COMBAT MANAGEMENT SYSTEM (CMS) SCHEDULING EXAMPLE .. 15

8. MICROSERVICES LITERATURE REVIEW ... 17

9. OVERVIEW OF MASTER-SLAVE AND NESTED-CONTAINER MODELS (AMARAL ET AL., 2015) 19

10. TIME TO CREATE AN INCREASING NUMBER OF INSTANCES OF VIRTUAL CONTAINERS (BASE 2 LOG SCALE IN BOTH

AXES). WHERE THE NESTED-CONTAINER IS A FULLY INITIALIZED PARENT PLUS ONE CHILD (AMARAL ET AL.,

2015) ... 21

11. TEST CONFIGURATIONS DESCRIBED IN (AMARAL ET AL., 2015) .. 22

12. NETWORK THROUGHPUT AND LATENCY FOR DIFFERENT CONFIGURATIONS OF CLIENT/SERVER UNDER BARE-

METAL, CONTAINER, AND VIRTUAL MACHINE ON A SINGLE HOST MACHINE (AMARAL ET AL., 2015) 22

13. NETWORK THROUGHPUT AND LATENCY EVALUATION FOR DIFFERENT CONFIGURATIONS OF CLIENT/SERVER

UNDER BARE-METAL, CONTAINER, AND VIRTUAL MACHINES ACROSS TWO HOSTS (AMARAL ET AL., 2015) 22

14. TOOLS USED TO SUPPORT THE TESTING OF MICROSERVICES (SOTOMAYOR ET AL., 2019) 25

15. DATA MODEL (MAYER & WEINREICH, 2018) ... 27

16. SYSTEM CHARACTERISTICS (BOGNER ET AL., 2019) .. 29

 xiv

Figure Page

17. MDC2 VISION “MULTI-DOMAIN COMMAND AND CONTROL OPERATING CONCEPT,” 2016 FROM (BRUZA,

2018) ... 31

18. KAFKA ARCHITECTURE (DOBBELAERE & ESMAILI, 2017).. 36

19. RABBITMQ (AMQP) ARCHITECTURE (DOBBELAERE & ESMAILI, 2017) ... 37

20. RABBITMQ VS. KAFKA LATENCY RESULTS (DOBBELAERE & ESMAILI, 2017) .. 39

21. CONCEPTUAL ANALYSIS FRAMEWORK ... 44

22. RESEARCH MIND MAP .. 50

23. MISSION SCENARIO OV-1 AND KILL CHAIN ... 54

24. MICROSERVICE PERFORMANCE CAUSE AND EFFECT DIAGRAM (ISHIKAWA) .. 55

25. EXPERIMENTAL PROTOTYPE SOFTWARE CONTEXT ... 57

26. DSS PROTOTYPE USE CASES (OMG, 2015) ... 58

27. DSS SERVICE INTERACTIONS (UML SEQUENCE DIAGRAM) (OMG, 2015) ... 59

28. DSS COMPONENT DIAGRAM .. 62

29. DSS DEPLOYMENT DIAGRAM ... 65

30. THE ROLE OF THE ARTIFACT REPOSITORY (HUMBLE & FARLEY, 2011) .. 66

31. DDS PROTOTYPE DEVELOPMENT, INTEGRATION, AND TEST ENVIRONMENT ... 67

32. AMAZON MACHINE IMAGE (AMI) CPU DETAILS ... 69

33. CCI RESEARCH ENVIRONMENT (PRATT, 2022) .. 71

34. JAEGER VISUALIZATION .. 72

35. COLLECTION OF I/O METRICS WITHIN JAEGER .. 74

36. DSS PROTOTYPE DATA FILES .. 75

 xv

Figure Page

37. COMBINED DATA SUMMARY .. 76

38. DURATION VS. USE CASES AND COMPUTING PLATFORM SOURCE .. 77

39. DURATION VS. USE CASES WITH MAC PLATFORM REMOVED .. 78

40. DURATION HISTOGRAM WITH USE CASE INDICATED (I.E. TRACE.NAME) .. 79

41. DURATION VS. USE CASE BOXPLOT .. 80

42. Q-Q PLOT OF DURATION PER USE CASE ... 81

43. TRACE-ROUTE FROM HOME LAB TO OPENSKY API ... 82

44. OPENSKY ENDPOINT IN GRETZENBACH, SWITZERLAND... 83

45. DENSITY PLOT OF DURATION CLUSTERS .. 84

46. BIC PLOT OF COMPONENTS ... 86

47. BEST BIC VALUES ... 86

48. CLASSIFICATION PLOT OF BIC COMPONENT RELATIONSHIPS ... 87

49. INTERNAL DURATION BOXPLOT ... 89

50. INTERNAL DURATION HISTOGRAM ... 90

51. EXTERNAL DURATION BOXPLOT ... 91

52. EXTERNAL DURATION HISTOGRAM... 92

53. SHAPIRO-WILK NORMALITY TEST .. 93

54. SHAPIRO-WILK TESTING WITH PROCESSING DELAY ... 94

55. ORIGINAL INTERNAL DURATION... 96

56. MODIFIED INTERNAL DURATION WITH PROCESSING DELAY ... 97

57. ORIGINAL EXTERNAL DURATION .. 98

 xvi

Figure Page

58. MODIFIED EXTERNAL DURATION WITH PROCESSING DELAY .. 99

59. REVISED DATA "GLIMPSE" WITH THRESHOLD INDICATOR ... 100

60. T-TEST RESULTS FOR INTERNAL USE CASE DATA ... 101

61. BINOMIAL TEST (ALL USE CASE DATA) ... 102

62. BINOMIAL TEST (EXTERNAL USE CASE DATA) ... 103

63. MAPPING OF MEASURED DURATIONS TO INTERNAL USE CASES ... 109

 1

CHAPTER 1

 INTRODUCTION

The Defense Department is pursuing an aggressive software development program

focused on bringing automated software tools, services, and standards to DoD programs so that

software applications can be created, deployed, and operated in a secure, flexible, and

interoperable manner (AFCEA, 2019). The effort, referred to as DevSecOps, merges software

development efforts with operations to increase the speed of software delivery. Security is

integrated across the effort using automated scripts to identify vulnerabilities during

development and operations. The DevSecOps software life-cycle from (DoD, 2019) is depicted

in Figure 1. The approach harnesses so-called software containers for deployment of software

as microservices, a dedicated repository of code and solutions that is secure and compliant with

the Federal Risk and Authorization Management Program, or FedRAMP, and National Institute

of Standards and Technology (NIST) criteria. The platform also utilizes Kubernetes, the Google-

designed open-source container orchestration tool for automatically deploying and managing

software containers (AFCEA, 2019).

 2

Figure 1. DevSecOps Software Lifecycle

While these technologies are well known and understood in commercial industry, they

have not been used to date within surface combat systems. Prototype research is needed to

verify and validate that it is possible to synthesize cloud computing and open-source

technologies to realize a microservices architecture for a hard-real-time deterministic Combat

Management System (CMS). An example of past surface combat system research to assess

commercial technologies is provided in (Moreland et al., 2014).

This research will use Mission and Systems Engineering techniques to design a relevant

experimental prototype. Figure 2 summarizes the differences between mission engineering,

system engineering, and computer science competencies; e.g. this research will not address

detailed software design activities that would occur after the system engineering has translated

mission requirements into system requirements ((OUSD(R&E), 2020), (ISO/IEC/IEEE, 2015),

(INCOSE, 2015)).

 3

Figure 2. Mission Engineering, Systems Engineering, and Computer Science Core Competencies

Use cases will be used to define the prototype mission objects related to the notional

Decision Support System (DSS); e.g., weapon assessment, trial engage. DevSecOps reusable

components (e.g., container) will be used to define system threads within a system-of-systems.

Use of mission threads will enable the selection of container-based services needed to meet

mission objectives without bringing along extra functional “baggage.” The use of containers

demonstrates an ability to quickly re-configure (e.g., composability) to meet emergent mission

requirements beyond what was possible with a monolithic system.

The approach for this research is depicted in Figure 3.

 4

Figure 3. Research Approach

This document is organized as follows:

• Chapter 1 (Introduction) discusses the theoretical formulation behind the proposed

research, discusses the purpose of this research, and identifies questions to be addressed.

• Chapter 2 (Background of the Study) presents a literature review and discusses limitations

of past research.

• Chapter 3 (Methodology) discussed the methodology approach, articulates the mission

engineering context, presents predictions and hypotheses, and discusses development and

instantiation of the prototype test environment.

• Chapter 4 (Results) discusses the statistical analysis results.

• Chapter 5 (Discussion) provides an overview of findings and discusses research implications

and limitations.

• Chapter 6 (Conclusions) presents contributions to the Engineering Management and

Systems Engineering (EMSE) “body of knowledge” from this study and offers suggestions for

future research.

 5

1.1 THEORETICAL FORMULATION

Grant and Osanloo (2014) describe a theoretical framework as the foundation from

which all knowledge is constructed (metaphorically and literally) for a research study. The

theory that I will use is framed around the use of microservices and cloud native software

principles to determine effectiveness and suitability of these technologies to meet the hard-

real-time requirements of a CMS.

MICROSERVICES

A microservices framework was first discussed in (Fernåndez-Villamor et al., 2010) as an

attempt to simplify the process of defining service descriptions to push automatic service

consumption in the semantic web. This framework attempts to improve the description task by

enabling reusability across service descriptions.

The current definition of microservices was formally introduced in 2014. Lewis and

Fowler (2014) described microservices as an architectural style characterized around

organization and business capability, automated deployment, intelligence in the endpoints, and

decentralized control of languages and data. Prior to the introduction of microservices,

applications were considered monolithic. While the monolithic style has delivered successful

software over the years, changes require rebuilding of the entire application prior to

deployment of capability upgrades and bug fixes. (Lewis & Fowler, 2014) discuss that over time

it is often hard to keep a good modular structure within monolithic applications, which makes it

harder to keep changes from affecting multiple modules. Scaling to meet capacity demands

 6

requires scaling of the entire application rather than parts of it that require greater resources. A

comparison of the two architectural styles is presented in Figure 4.

Figure 4. Monoliths and Microservices (Lewis & Fowler, 2014)

The largest challenges that microservices bring are a need for standardization of the

architecture or services themselves, along with requirements for each microservice in order to

ensure trust and availability (Fowler, 2016). Richards (2015) contains a rating and analysis of the

common architecture characteristics for the microservices architecture pattern. The rating for

each characteristic is based on the natural tendency for that characteristic as a capability based

 7

on a typical implementation of the pattern, as well as what the pattern is generally known

from. Richards (2015) “low” assessment of “performance” motivates this research.

VIRTUAL MACHINES VS. CONTAINERS

Microservices are typically deployed in containers to enable rapid upgrades. However, it

should be noted that the introduction of virtual machines led to the introduction of containers.

Figure 5 from (Janetakis, 2017) summarizes the difference between the layers of a virtual

machine versus a container. Both use a server infrastructure that may be a desktop, laptop, or

cloud provided server resource (e.g., Amazon). On top of the infrastructure is the operating

system such as Mac OS, Windows, or Linux. The next layer introduces the differences. On a VM

a hypervisor is used to enable each VM to be its on self-contained computer running on the

server infrastructure. Using a hypervisor, multiple guest operating systems (OS) may be run on

the host machine. However, each guest OS requires a full set of resource and library

requirements. For example, if 3 guest OS instances are running and each is 700 MB, 3 times the

server resources are required to support all 3 (e.g., 2.1 GB). Containers use a daemon to share a

single instance base OS resource across multiple containers. Containers are packaged as images

that unique library resources as required by the individual applications. This enables starting of

containers in milliseconds instead of minutes required to start up individual OS resources.

However, each application running in the containers must be based upon the same base OS,

e.g., Linux. Both approaches have differing use cases. For example, VMs enable isolation among

full systems whereas containers focus on isolation of applications to enable rapid deployment.

This description is simplified by (Walsh & Duffy, 2015) in the Red Hat Container Coloring Book.

Virtual machines can be thought of as houses that are self-contained with a standard set of

 8

amenities. You may have more infrastructure than is needed. Containers are like apartments

where you are free to a pick a size that meets individual needs, e.g., a studio apartment vs. a

penthouse.

Figure 5. Virtual Machines vs. Docker Containers

CLOUD-NATIVE APPLICATIONS

Gannon et al. (2017) provide an overview of the properties of a cloud-native application:

• Cloud-native applications operate at a global scale where an application’s data and

services are replicated in local data centers so that interaction latencies are minimized.

Consistency models are robust enough to give the user confidence in the integrity of the

application.

• Cloud-native applications scale well with thousands of concurrent users while ensuring

data synchronization and consistency.

 9

• Cloud-native applications are built on the assumption that cloud infrastructure is fluid

and failure is constant.

• Cloud-native applications are designed so that upgrades and tests occur seamlessly

without disrupting production.

• Security is not an afterthought in cloud-native applications where security is part of the

underlying application architecture.

TWELVE-FACTOR APPLICATION

The twelve-factor application methodology is complementary to realizing cloud-native

applications. The twelve-factor app is a methodology for building software-as-a-service

applications that (Wiggins, 2017):

• Use declarative formats for setup automation, to minimize time and cost for new

developers joining the project;

• Have a clean contract with the underlying operating system, offering maximum

portability between execution environments;

• Are suitable for deployment on modern cloud platforms, obviating the need for servers

and systems administration;

• Minimize divergence between development and production, enabling continuous

deployment for maximum agility;

• And can scale up without significant changes to tooling, architecture, or development

practices.

The twelve factors from (Wiggins, 2017) are summarized in Table 1.

 10

Table 1. The Twelve Factors

Factor Description

I. Codebase One codebase tracked in revision control, many deploys

II. Dependencies Explicitly declare and isolate dependencies
III. Config Store config in the environment

IV. Backing services Treat backing services as attached resources

V. Build, release, run Strictly separate build and run stages

VI. Processes Execute the app as one or more stateless processes

VII. Port binding Export services via port binding

VIII. Concurrency Scale out via the process model

IX. Disposability Maximize robustness with fast startup and graceful shutdown

X. Dev/prod parity Keep development, staging, and production as similar as possible

XI. Logs Treat logs as event streams

XII. Admin processes Run admin/management task as one-off processes

REACTIVE MANIFESTO

The Reactive Manifesto defines criteria for building systems that are more flexible,

loosely coupled, and scalable. Only a few years ago a large application had tens of servers,

seconds of response time, hours of offline maintenance, and gigabytes of data. Today

applications are deployed on everything from mobile devices to cloud-based clusters running

thousands of multi-core processors. Users expect millisecond response times and 100% uptime.

Data is measured in petabytes. Today’s demands are simply not met by yesterday’s software

architecture. Systems built as reactive systems are easier to develop and amenable to change.

Reactive Systems are significantly more tolerant of failure when failure does occur and meet it

with elegance rather than disaster. Large systems are composed of smaller ones and therefore

depend on the Reactive properties of their constituents. This means that Reactive Systems

 11

apply design principles so these properties apply at all levels of scale, making them composable

(Bonér et al., 2014).

SOLID PRINCIPLES

Martin (2017) discusses the SOLID principles that tell us how to arrange our functions

and data structures into classes, and how those classes should be interconnected. The goal of

the principles is the creation of mid-level software structures that:

• Tolerate change,

• Are easy to understand, and

• Are the basis of components that can be used in many software systems.

The term “mid-level” refers to the fact that these principles are applied by programmers

working at the module level. They are applied just above the level of the code and help to

define the kinds of software structures used within modules and components. The SOLID

principles from (Martin, 2017) are summarized in Table 2.

Table 2. SOLID Principles

SOLID Principle Description

SRP: The Single Responsibility
Principle

An active corollary to Conway’s law: The best structure for a software
system is heavily influenced by the social structure of the organization that
uses it so that each software module has one, and only one, reason to
change.

OCP: The Open-Closed Principle Bertrand Meyer made this principle famous in the 1980s. The gist is that for
software systems to be easy to change, they must be designed to allow the
behavior of those systems to be changed by adding new code, rather than
changing existing code.

LSP: The Liskov Substitution
Principle

Barbara Liskov’s famous definition of subtypes, from 1988. In short, this
principle says that to build software systems from interchangeable parts,
those parts must adhere to a contract that allows those parts to be
substituted one for another.

 12

SOLID Principle Description

ISP: The Interface Segregation
Principle

This principle advises software designers to avoid depending on things that
they don’t use.

DIP: The Dependency Inversion
Principle

The code that implements high-level policy should not depend on the code
that implements low-level details. Rather, details should depend on
policies.

1.2 PURPOSE

Prototype research in the surface combat system domain is needed to verify and

validate that it is possible to synthesize cloud computing and open source technologies to

realize a microservices architecture for a hard-real-time deterministic Combat Management

System (CMS). Abbott (2017) discusses the severity of missing a hard, soft, and firm real-time

deadline. Real-time is focused on getting the expected result given input “in time” for the

response to be useful, e.g., meeting a deadline. Missing a hard-real-time deadline can result in

catastrophic mission failure. An example of past surface combat system research to assess

hard-real-time with commercial technologies is provided in (Moreland et al., 2014).

Figure 6 from (Wang, 2011) illustrates the impact of missing a deadline in a real-time

system. V(t) defines the value of making or missing a deadline. In soft real-time subfigure (a) if a

deadline is missed the value of the data provided gracefully degrades over time. In firm real-

time subfigure (b) if a deadline is missed, the data after the deadline is of no value. In hard

essential real-time subfigure (c) if the deadline is missed, there is a known defined penalty (n).

In hard critical real-time subfigure (d) if the deadline is missed, the realized disaster is of

exponential unknown impact.

 13

Figure 6. Deadline represented with value functions

In Figure 7 we use an end-to-end (E2E) mission analysis approach adapted from

(Firesmith, 2019) to define a CMS use case to illustrate the impact of missing a real-time

deadline. Mission threads are used to identify potential integration problems. In the scenario

depicted, the Weapon Coordinator software component requests effectiveness options from

the integrated Laser, Missile, and Gun Controllers. The mission thread steps are as follows:

1. CMS operator enters threat criteria into the Tactical Decision Support (TDS) Software.

Ordered engagements are designated as semi-auto; i.e. the Weapon Coordinator (WC)

has weapon designation authority with operator command by negation.

2. Track data provided by the Information Management (IM) Software qualifies a track as a

threat.

3. TDS orders Weapon Coordinator (WC) Software engagement of the threat.

 14

4. WC asks all weapons for predicted effectiveness via associated Weapon Controllers

(WCtrl). Each WCtrl is given X ms to respond.

5. Each WCtrl responds to WC within X ms with probability of kill/negation (Pn) and cost

factor.

6. The WC selects the weapon based upon a Greedy Algorithm approach.

7. WC orders weapon engagement and reports status to TDS.

8. TDS provides Situation Awareness (SA) to the CMS operator prior to opening fire.

Let’s assume that the hard-real-time deadline for controller responses is set to 75

milliseconds. The Weapon Coordinator would need to make a weapon selection decision prior

to getting the Laser response in 100 milliseconds. A less effective, higher cost weapon would be

selected and potentially waste a weapon that could be more effective in a future engagement.

 15

Figure 7. Combat Management System (CMS) Scheduling Example

1.3 PROBLEM STATEMENT AND RESEARCH QUESTIONS

While commercial technologies and approaches provide an opportunity for rapid

fielding of capabilities to pace threats, the suitability of commercial technologies to meet hard-

real-time requirements within a surface combat system is unclear. The following questions are

posed based upon a literature review.

QUESTIONS

The primary question is related to the deterministic nature of DevSecOps technologies.

Q1: Is it possible to synthesize cloud computing and open-source technologies to realize

a microservices architecture for a hard-real-time deterministic Combat Management System

(CMS)?

 16

Additional questions are proposed based upon the use of mission analysis and specific

technology implementation.

Q2: Does end-to-end (E2E) mission thread analysis increase SoS interoperability and

reduce integration issues?

Q3: What benefits are gained from a microservice-based DevSecOps approach?

Q4: Is the resultant architecture hard-real-time deterministic?

 17

CHAPTER 2

 BACKGROUND OF THE STUDY

 Several key publications from the existing body of knowledge are presented, and

research areas lacking sufficient study are identified to inform this research.

2.1 REVIEW OF PRIOR RESEARCH

Figure 8 provides an overview of literature identified as relevant to this research. Each

article is organized by the research question identified in Section 1.3.

Figure 8. Microservices Literature Review

CONTAINER BASED MICROSERVICE PERFORMANCE (Q1)

 18

Multiple studies have been conducted on cloud-based deployment and orchestration

technologies. We shall focus on the performance of a container-based deployment of

microservices (see Question 1).

Felter et al. (2014) compares deployment of software in VMs versus containers and

finds that Docker containers equal or exceed performance in every case tested. A suite of

workloads is used to stress the CPU, memory, storage, and networking resources. The authors

suggest that their findings argue against implementation on IaaS using VMs and PaaS as

containers. A container-based IaaS can offer better performance. The authors assess the

performance of Redis and MySQL in the different environments.

Amaral et al. (2015) focus on a deployment model where one process (or a few related

processes) is deployed per container. The deployment technique is referred to as Related

Process Per Container or RPPC. The authors point out that two different approaches emerge for

deployment of containers: master-slave or nested containers (see Figure 9).

 19

Figure 9. Overview of master-slave and nested-container models (Amaral et al., 2015)

The master-slave approach discussed by (Amaral et al., 2015) is composed of one

container as the master coordinating other containers called slaves, in which application

processing will be running. In this approach the master needs to track the subordinates’

containers, help their communication, and guarantee that the slaves do not interact with other

containers from a different master. The authors refer to the master-slave approach as “regular

container.” In the nested-container approach, the subordinates’ containers (the children) are

hierarchically created into the main container (parent). The children run the application

process, and they are limited by the parent’s boundaries. The nested-container approach might

be easier to manage since all other containers are inside only one container. This approach may

benefit from sharing the same memory, disk, and network; however, there may be an overhead

penalty. The authors state that the nested-containers are inspired by the “pod” concept that is

implemented by Google for better managing Docker containers (i.e. Kubernetes) (Google,

2020). The authors cite their research contribution as providing a benchmark analysis for

 20

container virtualization by implementing nested and master-slave containers, hence comparing

the performance against virtual machines. The authors compare (i) bare metal, (ii) regular

containers (i.e. master slave), (iii) nested containers, and (iv) virtual machines (VMs).

Amaral et al. (2015) noted that the creation of regular containers is the fastest

deployment approach (as expected), followed by nested containers and VMs. However, the

creation of a single nested-container has almost 8 times more overhead than the creation of

one regular container. Nevertheless, the creation of nested-containers is still more than twice

as fast as virtual machines. The authors attribute this nested container overhead to initialization

of the Docker container host platform within the parent container, which involves loading an

image stored locally on the host and creation of the child container itself. The image loading

was taking an average of 6.2s (see Figure 10).

 21

Figure 10. Time to create an increasing number of instances of virtual containers (base 2 log scale in both axes).

Where the nested-container is a fully initialized parent plus one child (Amaral et al., 2015)

Amaral et al. (2015) assess network throughput and latency for single intra-host and

host-to-host communication. Figure 11 depicts the configurations discussed by the authors.

Results are summarized in Figure 12 and Figure 13.

 22

Figure 11. Test configurations described in (Amaral et al., 2015)

Figure 12. Network Throughput and Latency for Different Configurations of Client/Server Under Bare-Metal,

Container, and Virtual Machine on a Single Host Machine (Amaral et al., 2015)

Figure 13. Network Throughput and Latency Evaluation for Different Configurations of Client/Server Under Bare-

Metal, Container, and Virtual Machines Across Two Hosts (Amaral et al., 2015)

 23

Wei et al. (2018) note that there are very few studies revealing the overheads, such as

starting new containers in orchestration systems, such as Kubernetes. Though traditional

Virtual Machines (VMs) can take on the order of minutes to launch, containers are much faster,

and the launch times can be on the order of seconds. These overheads are typically considered

to be negligible compared with the benefits of container-based systems; however, are they

predictable?

Wei et al. (2018) investigate these costs in a systematic study within a private cloud

platform. The evaluation outlines a process for studies of this kind. Study results confirm that

launch times of VMs are in the range of minutes, whereas containers typically only take

seconds. However, these results also show that launch times for new containers do not always

scale linearly. Specifically, the authors discuss that a system organized by Minikube, a tool that

eases local deployment of Kubernetes, introduces a penalty on launch times once the number

of containers exceeds 80% of the maximum number of pods available for the cluster. This work

demonstrates the presence of unexpected overheads and the need for a systematic

infrastructure for testing deployments of containerized services at scale.

ARCHITECTURE ANALYSIS TOOLS (Q2)

Assessment of a microservice based E2E architecture will require automated testing

tools as well as architecture documentation for detailed static analysis by CMS subject matter

experts (SMEs). The following articles have been deemed relevant (see Question 2).

Sotomayor et al. (2019) provide a comparison of tools used for runtime testing of

microservice architectures (see Figure 14). There are several tools to support the testing of

 24

microservices, including tools to support different levels of testing (e.g., unit, integration, and

system). The authors cite testing challenges due to the added complexity of network

communications between collaborating services.

ContainerCloudSim is an extension of CloudSim developed by (Piraghaj et al., 2017) that

provides support for modeling and simulation of containerized cloud environments. The

simulation supports comparison of container scheduling and provisioning policies in terms of

energy efficiency and SLA compliance. The authors provide an overview of similar efforts;

however, previous efforts do not support modeling and simulation of containers in a cloud

environment. ContainerCloudSim offers a Container as a Service (CaaS) model that consists of

containerized cloud data centers, hosts, virtual machines, containers, and applications along

with their workloads. The authors demonstrated that ContainerCloudSim can support large

scale CaaS simulations of up to 5,000 containers. They believe that their research will energize

research in CaaS policies.

 25

Figure 14. Tools Used to Support the Testing of Microservices (Sotomayor et al., 2019)

DockerSim is an extension of the iCanCloud platform developed by (Nikdel et al., 2017).

DockerSim adds (i) a full container deployment and behavioral layer, (ii) full packet-level

network and protocol behaviors, (iii) full packet-level scheduling behaviors, and (iv) a generic

queuing network approach to modeling application-layer software as a service (SaaS)

deployment. According to the authors, their approach adds a research capability to support

scientific methods per-experiment control and repeatability tenants. Within existing cloud

simulators (e.g., CloudSim, iCanCloud, etc.), a common choice has been made to trade off

network- and packet-level fidelity in favor of increased simulator performance. The authors

state that ContainerCloudSim does not seek to incorporate the (i)-(iv) capabilities discussed

above, thereby, placing DockerSim in a better position to support research into timing sensitive

 26

cloud computing issues whereas ContainerCloudSim is better positioned to explore energy

consumption issues.

Mayer and Weinreich (2018) presents an approach to extract and analyze the

architecture based on a combination of static service information with infrastructure-related

and aggregated run-time information. The agility of a microservices based architecture, which

results from independent development and integration of new services, leads to continuous

architectural changes. The authors propose a generic way to retrieve the necessary static and

dynamic data from different distributed microservices, with the collected information

combined in a central location. Close attention has been paid to continuously extracting the

architecture over a long period of time. To support long-term analysis, an aggregation process

has been established to condense the collected run-time information. This approach facilitates

identification of design weaknesses, managing of service APIs, and management of scaling

issues.

Mayer and Weinreich (2018) developed a data model for collection of architectural

information (see Figure 15). As shown in the data model, architectural information is important

at three different levels in a microservice-based software system: services, infrastructure, and

interaction. The data model was optimized for use in a graph database that contains nodes

which relate to directed edges. The authors point out that using a graph database, simple

transitive queries can be written, for example, to load all services with which a specific service

is communicating directly or indirectly. The authors surveyed 15 architects, developers, and

operations experts. The study participants identified information about service APIs, service

interactions and dependencies, service version, the number and distribution of service

 27

instances, and system metrics as most important. Prototype dashboards were developed based

upon these use cases. The authors demonstrated feasibility of their approach to support

automated generation of documentation and dashboards to support analysis, maintenance,

and software development to add capability.

Figure 15. Data Model (Mayer & Weinreich, 2018)

C2 IMPLEMENTATIONS (Q3)

Can cloud computing and open-source technologies currently implemented in mission

critical system in Public Sector research and DoD environments meet hard-real-time

 28

deterministic requirements? These examples provide insight into what is potentially possible

within a CMS implementation and potential benefits (see Question 3). Bogner et al. (2019)

provide an overview of state of the practice solution architectures followed by specific case

study implementations.

During 17 interviews (i.e. P1-P17) with software professionals from 10 companies,

Bogner et al. (2019) analyzed 14 service-based systems summarized in Figure 16 (i.e. S1-S14).

The interviews focused on applied technologies, microservices characteristics, and the

perceived influence on software quality. The authors found that companies generally rely on

well-established technologies for service implementation, communication, and deployment.

Most systems, however, did not exhibit a high degree of technological diversity as commonly

expected with microservices. The de facto standard for microservice communications was

RESTful HTTP. Representative state transfer (REST) is a software architectural style that defines

a set of constraints to be used for creating web services that may be accessed using the web-

based hypertext transfer protocol (HTTP). Even though it was not the primary protocol in each

of the 14 cases, it existed in all of them, sometimes for minor interfaces. Participants named

interoperability, technology independence, and loose coupling as advantages, even though

most participants that used REST felt no need to justify this decision. Some participants saw

direct synchronous RESTful communication between services as harmful (P5, P6, P15) and

relied more on messaging to decouple services further, which P6 saw as follows: “We also have

some REST-based communication between services, which is not 100% clean. In some cases, we

had to choose between performance or clear data ownership, so we compromised.” Kafka was

the preferred messaging solution followed by the Advanced Message Queuing Protocol

 29

(AMQP). In one case, the remote procedure call (RPC) developed by Google (gRPC) was chosen

to replace REST, because its streaming nature was seen as more efficient and end-user friendly

(P10). Reactive Microservices and event sourcing were used by some participants (P10, P15,

P17). No new system relied on SOAP for communication. SOAP was sometimes simply kept to

integrate with legacy systems.

Figure 16. System Characteristics (Bogner et al., 2019)

 30

The European Organization for Nuclear Research (CERN) is reliant on a messaging

technology that is common in microservice implementations. The CERN Health & Safety and

Environmental (HSE) protection develops and operates the Radiation and Environmental

Unified Supervision (REMUS) system that provides supervision, control, and data acquisition

(SCADA) of CERN accelerators, experiments, and their surrounding environment (Ledeul et al.,

2019). At the time of the article, REMUS interfaced with 80 device types, contained 650,000

tags, managed 84,000 alarms, and handled a throughput of 3,700 changes per second. REMUS

archives roughly 38 billion measurements per year. To comply with SCADA safety regulations,

REMUS needed to meet requirements for security, reliability, scalability, performance, and

loose coupling. REMUS opted for Apache Kafka for log processing due to its successful

implementations with more than 13,000 companies including Netflix, Uber, Spotify, Cisco,

Yahoo, Twitter, Square, and overall, a third of Fortune 500 companies. All outgoing

measurements retrieved by the REMUS supervisory system are published in near-real time

through Kafka, in a dedicated Kafka topic. REMUS contains 3,300 publication tags (e.g., topics),

sending about 600 messages per second to CERN Kafka brokers.

Bruza and Reith (2018); (Bruza, 2018) discuss the integration of Multi-Domain Command

and Control (MDC2) capabilities to conduct effective cyberwarfare within a USAF Air Operations

Center (AOC). The Air Force Life Cycle Management Center (AFLCMC) and Defense Innovation

Unit Experimental (DIUx) initiated an AOC Pathfinder program as a case study for developing

software. MDC2 starts with data collection from multiple sources; this includes Intelligence,

Surveillance, and Reconnaissance as well as other data sources such as weather forecasts,

maintenance schedules, or other information regarding the status of blue forces (Bruza, 2018).

 31

MDC2 data must be processed and displayed effectively to enable rapid decision making and

produce effects. The key is that this process should be completely domain agnostic. Data from

multiple domains should be collected and processed by experts in those domains and then

presented to decisionmakers who will select a course of action to produce the effects needed

to accomplish their mission. The course of action can include capabilities and assets from

multiple domains all working together to produce the needed effects in the battlespace. The

MDC2 process is summarized in Figure 17. DevOps solutions to MDC2 requirements are

summarized in Table 3.

Figure 17. MDC2 Vision “Multi-Domain Command and Control Operating Concept,” 2016 from (Bruza, 2018)

 32

Table 3. DevOps Answers to MDC2 Requirements

DevOps Answers to MDC2 Requirements

MDC2 Application Development Requirement DevOps Answer

Rapid Software Release Designed for reduced development timelines

Data Sharing Additional data pipelines can be added as
microservices and/or application programming
interfaces

User Feedback Informs Development Development is iterative based on user feedback for
the entire lifecycle of the application

Frequent Changes and Updates Designed to enable frequent development of new
code

Security and Reliability DevOps toolsets ensure secure software design
principles are followed

Bruza (2018) deems the AOC Pathfinder integration to be a success and offers the

following research findings:

• AOC Pathfinder has extensibility to “increase the scope of their applications in the

future and ensure that the proper intelligence is collected during the target

development cycle to provide multi-domain options at the end of the cycle rather than

developing a target with kinetic effects in mind.”

• The AOC Pathfinder experienced success with applying DevOps to develop software in

months or weeks rather than years that is extensible to MDC2. Additionally, a

microservice architecture provides a means of making MDC2 software more flexible to

changing needs. The author cites that “MDC2 is not qualitatively different from a single-

domain C2 software (it is qualitatively different because there is [sic] more information

and people to manage), so software development practices that work for C2 software

can work for MDC2.”

 33

• Using pairing of government with industry for training new members, integrated

security teams, the ATO-in-a-day concept, and the DevOps toolset provided by industry

were discussed as main attributes of success. In addition, the AOC Pathfinder project

embraced Silicon Valley’s entrepreneurial culture to promote creative problem solving

and avoid falling back into old patterns.

Kho Lin et al. (2018) explores the use of Kubernetes technology for an Australian

Defense Forces (ADF) ATHENA platform. ATHENA is a strategic simulation and analysis platform

focused on manpower planning. ATHENA provides a framework for what-if analysis, e.g., what

if we close a flight school, what if the number of instructors does not meet the needs and

demands of the ADF in 5-year time, what should the intake of new students be in the next few

years. As more organizations within the ADF used ATHENA, a robust horizontally scalable

platform was needed. ATHENA leverages container-based technologies for auto-scaling. As the

market leader, Docker was used as the core container-based solution, and Kubernetes was used

as the container orchestration. In Kubernetes, the concept of a Pod is used to encapsulate

containers. A Kubernetes Pod object holds one or more containers and introduces an IP-per-

Pod network model. Therefore, containers within a Pod share their network namespaces

including their IP address. In Kubernetes, Pods are ephemeral. That is, a Kubernetes cluster can

replicate Pods (destroy and re-create new ones) for dynamically scaling up and down, for self-

healing purposes and/or for self-managing purposes. This is challenging for application

developers to keep track of.

To experiment with the auto-scaling setup and benchmarking, (Kho Lin et al., 2018)

configured the ATHENA Worker Horizontal Pod Autoscaler (HPA) to use 80% target CPU

 34

utilization with one CPU resource request for each Worker Pod instance. The HPA replication

factor was set to a minimum of one Pod to a maximum of six Pods. The trend lines showed that

the rate of increase in runtime decreases as more resources were added, this is a clear

indication that auto-scaling was successful. However, during the experimental runs, it was

noted that the auto-scaler does not react immediately to usage spikes. The authors concluded

that an auto-scaling system cannot meet the user performance demands by simply relying on

CPU utlization and memory usage metrics. Most web and mobile applications require auto-

scaling based upon Requests per Second to handle bursty traffic and stochastic user load. The

authors intented to extend a Kubernetes API to provide more insight to the HPA controller to

predict when auto-scaling is required.

CLOUD COMPUTING ARCHITECTURE (Q4)

The foundation of a CMS architecture and its ability to meet hard-real-time

requirements is the underlying communications architecture. The following papers address

studies related to message broker and pub/sub technologies (see Question 4). John and Liu

(2017) provide an overview of message broker technologies with a primary focus on Apache

Kafka and AMQP. Dobbelaere and Esmaili (2017) add to the Kafka versus RabbitMQ body of

knowledge through a qualitative and quantitative assessment of the technologies from the

perspective of publish and subscribe architectures. RabbitMQ is primarily known as an efficient

and scalable implementation of AMQP.

Despite commonalities, Kafka and AMQP have different histories and design goals

(Dobbelaere & Esmaili, 2017). Kafka was built at LinkedIn as its centralized event pipelining

platform, replacing a disparate set of point-to-point integration systems (Goodhope et al.,

 35

2012). Kafka is designed to handle high throughput (billions of messages). In its design,

particular attention has been paid to the efficient handling of multiple consumers of the same

stream that read at different speeds (e.g., streaming vs. batch). Figure 18 from (Dobbelaere &

Esmaili, 2017) shows a high-level architecture of Kafka. Producers send messages to a Kafka

topic that holds a feed of all messages of that topic. Each topic is spread over a cluster of Kafka

brokers, with each broker hosting zero or more partitions of each topic. Each partition is an

ordered write-ahead log of messages that are persisted to disk. All topics are available for

reading by any number of consumers, and additional consumers have very low overhead. John

and Liu (2017) explain that the fundamental features behind Kafka are performance over

reliability and it offers high throughput, low latency message queuing. The loss of a single

record among a multitude is not a deal-breaker. The rationale behind this is, for log aggregated

data, delivery guarantees are unnecessary. Kafka is used at CERN for their Radiation and

Environmental Unified Supervision (REMUS) system that manages 600 messages per second to

CERN Kafka brokers (Ledeul et al., 2019).

 36

Figure 18. Kafka Architecture (Dobbelaere & Esmaili, 2017)

AMQP is an asynchronous message queuing protocol, aiming to create an open standard

for passing messages between applications and systems regardless of internal design (John &

Liu, 2017). It was initially designed for financial transaction processing systems, such as trading

and banking systems, which require high guarantees of reliability, scalability, and

manageability. AMQP was born out of the need for interoperability of different asynchronous

messaging middleware implementations (Dobbelaere & Esmaili, 2017). While various

middleware standards existed for synchronous messaging (e.g., SOAP), the same did not hold

true in the world of asynchronous messaging. What is now known about AMPQ originated in

2003 at JPMorgan Chase. Figure 19 presents a high-level architecture for RabbitMQ (AMPQ).

The design of AMPQ has been driven by stringent performance, scalability, and reliability

requirements from the finance community. AMPQ takes on a modular approach, dividing the

 37

message brokering task between exchanges and message queues. The implementation can be

summarized as follows:

• An exchange is essentially a router that accepts incoming messages from applications

and, based on a set of rules or criteria, decides which queues to route the messages to.

• A message queue stores messages and sends them to message consumers. Message

durability is up to the queue implementation.

• Joining together exchanges and message queues are bindings, which specify the rules

and criteria by which exchanges route messages. Specifically, applications create

bindings and associate them with message queues, thereby determining the messages

that exchanges deliver to each queue.

• Channels can be used to isolate message streams from each other. In a multi-thread

environment, individual threads are typically assigned their own channel.

Figure 19. RabbitMQ (AMQP) Architecture (Dobbelaere & Esmaili, 2017)

 38

John and Liu (2017) uses the RabbitMQ implementation of AMQP for analysis of broker

technologies. A survey of message broker implementations is provided in Appendix D of (John

& Liu, 2017). Two types of tests were run for both Kafka and AMQP technologies. The single

producer/consumer test keeps the overall total workload constant (1 million messages, 50B

each) and scales the queue deployment from 1 to 5 nodes. The multiple producer/consumer

setup keeps the number of nodes constant and scales the number of producers/consumers

connecting from each node. All benchmarks were run using a modified version of Flotilla, which

is a message broker benchmarking tool written in Go. The results reveal that Kafka has a higher

throughput while AMQP has a lower latency. AMQP uses a consumer push-model for data

distribution while Kafka uses the pull-model where consumers must fetch messages from

brokers. The push-model results in better mean latency in AMQP. The authors conclude that

throughput and reliability are key aspects that should be considered when making a choice of a

message broker. If reliability for an application is not critical, Kafka is a better choice. If

messages are important, such as financial transactions, the cost of losing any of the messages is

far higher than not achieving an optimal throughput, and the application is encouraged to use

AMQP. Additionally, AMQP can encrypt messages out-of-the-box.

Dobbelaere and Esmaili (2017) uses empirical methods to conduct quantitative analysis

to compare efficiency and performance of Kafka and RabbitMQ implementations. For both

technologies, the authors used the test tools provided by the respective distributions. Latency

measurements for ideal operating conditions are summarized in Figure 20. Since the tools

reported different statistical summaries, the table presents a selected subset that is relevant

 39

and semantically comparable. The authors draw two conclusions from the results. (i) Both

systems can deliver millisecond-level low-latency guarantees. The results for Kafka seem a little

better; however, Kafka was tested at an ideal setting (zero cache miss), and in a more realistic

setting RabbitMQ outperforms it. (ii) Replication does not drastically hamper the results. More

specifically, in the case of RabbitMQ the results are almost identical. For Kafka, it only appears

after the median value, with a 100% increase in the 99.9 percentile.

Figure 20. RabbitMQ vs. Kafka Latency Results (Dobbelaere & Esmaili, 2017)

Wu et al. (2019) analyze the reliability for a specific distributed messaging system. The

authors indicate that Kafka’s use cases vary from tracking clicks in a website, network, and

infrastructure monitoring, to electronic financial trading and customer service for online

reservations. The requirements of Kafka’s reliable data delivery differ among those use cases.

An application that collects streams of web page logs to count views per web page can tolerate

some inaccurate processing. In this situation a quick response from the application is prioritized

over reliability. However, for the streams of debit and credit card payments, reliability is the top

 40

priority, and there is no tolerance for errors in processing. Specifically, every stream of data

should be processed exactly once without exception.

Wu et al. (2019) developed a testbed and tool for Testing the Reliability of Apache Kafka

(TRAK) to study the different delivery semantics in Kafka and compare their reliability under

poor network quality. Additionally, faults were injected using an open-source network

emulation tool called Pumba. The authors varied Kafka delivery semantics by changing Kafka

settings: (1) at-most-once, (2) at-least-once, (3) exactly once. Two failure types were injected

from TRAK: (1) broker and (2) client. A “network failure” type was injected using Pumba. To

evaluate the reliability of data delivery, two metrics were defined, the loss rate and duplicate

rate of messages. In tests without any fault injection, the network was observed to be fast (less

than 0.1 ms delay), without any packet lost, and no messages lost or duplicated. In tests under

fault injection, the network delays range from 1ms to 300ms and the pack loss from 1% to 10%.

2.2 LIMITATIONS OF EXISTING STUDIES

According to the literature review and previous studies, none of the previous efforts

provide a quantitative assessment of the ability of a microservice based architecture to meet

the hard-real-time deterministic demands of a Combat Management System (CMS). Efforts

assess the performance of the components of an CMS architecture; however, none of the

efforts focus on the assessment of an E2E architecture that is representative of a CMS.

Observed limitations are summarized in Table 4. These limitations and associated gaps in

knowledge set the stage for focused research.

 41

Table 4. Limitations of Existing Studies

Question Limitations

Q1: Microservices
Performance

Lacks node architecture that is representative of CMS components. Variance in
container start up times is tolerated without assessment of design alternatives.

Q2: E2E Analysis Environment used to generate architecture products and conduct analysis is not
representative of CMS architecture and challenges of CMS interface
management (e.g. APIs).

Q3: C2 Implementation MDC2 example is similar to CMS challenges; however, the results are qualitative
not quantitative. Focus is on change in DevOps culture.

Q4: Architecture Provides detailed assessment of Kafka vs. RabbitMQ; however, a mix may be
required within a CMS to meet unique CMS domain requirements (e.g. external
interface to weapons/sensors vs internal processing). Analysis is required to
facilitate experiment design.

 42

CHAPTER 3

 METHODOLOGY

The purpose of this chapter is to describe the methodological approach, conceptual

analysis framework, and approach for analysis.

3.1 METHODOLOGICAL APPROACH

This research seeks to use an Empiricist, Positivist, Deductive paradigm as defined by

(Siangchokyoo & Sousa-Poza, 2012).

• Epistemological Position: Empiricist – Justification of Knowledge through

observation.

• Ontological Position: Positivist – Seek to find reality independent of the observer.

• Mode of Reasoning: Deductive – Usage of confirmatory reasoning to obtain

knowledge.

A mission-based approach will be used to set the context for applied research. A

hypothetical yet operationally relevant Strait Transit scenario has been established to provide

context for definition of experimental parameters to be set while assessing the hypothesis.

System models and data from a cloud computing environment will be used to collect data for

quantitative analysis. To achieve this goal, this research will leverage an existing CMS Prototype

built within a DevSecOps cloud computing infrastructure (e.g., Amazon Web Services) to

simulate an operational scenario and generate operationally relevant CMS data under

operational mission conditions for analysis. A CMS Prototype exists; however, statistical

analysis has yet to occur. The use of a DevSecOps environment supports the positivist

 43

ontological position using automation. A primary precept of DevSecOps is to automate

everything which creates an environment of repeatability.

This research will focus on a core hard-real-time thread within the software core of the

combat system (e.g., representative response to a weapons options request within the CMS)

that will be built from commercial products and not all elements of a full combat system.

Variables are summarized in the following paragraphs.

3.2 CONCEPTUAL ANALYSIS FRAMEWORK

Figure 21 presents a conceptual analysis framework for the study variables, hypothesis,

and associated dependent variables (based upon discussions above). Positive predicted

independent variable effects on dependent variables are indicated with a positive (+)

hypothesis (e.g., +H1). Negative predicted independent variable effects on dependent are

indicated with a negative (-) hypothesis (e.g. -H2). Framework details are discussed below.

 44

Figure 21. Conceptual Analysis Framework

INDEPENDENT VARIABLES

Latency, throughput, and jitter will be the primary independent variable used to assess

system usability and ability to rapidly field capability through having a scalable system (i.e.,

dependent variables). The following definitions are provided from (Moreland Jr., 2013):

• Latency - This factor refers to the end-to-end processing time between the sending

of information from one application to the receipt of that information by other

applications. Processing latency directly impacts the reaction time of a system when

trying to provide a timely response to an operational incident.

• Throughput - Throughput capacity is derived as the total number of messages

processed for a given period of time. Throughput can be used as a performance

index to evaluate a web service provider. The determination of the number of

providers being serviced also defines how many users can be processed concurrently

in a networked environment.

 45

• Jitter - This factor measures the variability in latency measurements between

successive messages. The objective is to produce a computing architecture with

small latencies and a low, insignificant jitter. This result is advantageous for the

quick delivery of messages with very limited to no data outliers. In the case of hard-

real-time systems, jitter is a crucial performance parameter due to the necessity of

providing reliable performance under tremendous computing speed requirements.

Further detail for “deterministic control systems“ is provided in (Roa et al., 2011).

Measuring determinism means the capability to accurately characterize the worst-case time

to exchange information end to end, no matter what other network traffic is occurring. The

“throughput”, “latency time” and “jitter time” of this response are the quantified measures

of determinism. Roa et al. (2011) define these terms as follows:

• Throughput - In communication networks, such as Ethernet or packet radio,

throughput or network throughput is the average rate of successful message

delivery over a communication channel. This data may be delivered over a physical

or logical link or pass through a certain network node. The throughput is usually

measured in bits per second (bit/s or bps), and sometimes in data packets per

second or data packets per time slot.

• Latency - a measure of the time delay experienced by a system. Latency in a packet-

switched network is measured either one-way (the time from the source sending a

packet to the destination receiving it), or roundtrip (the one-way latency from

source to destination plus the one-way latency from the destination back to the

 46

source). Round-trip latency is more often quoted because it can be measured from a

single point.

• Jitter - In the context of computer networks, the term jitter is often used as a

measure of the variability over time of the packet latency across a network. A

network with constant latency has no variation (or jitter). Packet jitter is expressed

as an average of the deviation from the network mean latency. However, for this

use, the term is imprecise. The standards-based term is packet delay variation (PDV).

PDV is an important quality of service factor in assessment of network performance.

These definitions will be combined to provide definitions that are inclusive of mission

capability, technical implementation, and resultant hard-real-time behavior.

DEPENDENT VARIABLES

Usability – Krug (2014) provides a methodology for assessment of usability. The author

breaks down usability into the following attributes:

• Useful: Does it do something people need done?

• Learnable: Can people figure out how to use it?

• Memorable: Do they have to relearn it each time they use it?

• Effective: Does it get the job done?

• Efficient: Does it do it with a reasonable amount of time and effort?

• Desirable: Do people want it?

• Delightful: It using it enjoyable, or even fun?

All of these attributes can provide an assessment of a microservice implementation. For

example, if microservice processing is latent or unpredictable (e.g. jitter), the resultant

 47

microservice design fails to be useful, desirable, efficient, and delightful. Useful, learnable,

memorable, and desirable are related to the user interface (e.g. UI) design but also related to

the allocation of microservice functionality.

Ability to Rapidly Field Capability – The principles of the Agile Manifesto summarize the

attributes required to rapidly field capability (Beck et al., 2001):

• Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

• Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference for the shorter timescale.

• Businesspeople and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and

support they need and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development.

• The sponsors, developers, and users should be able to maintain a constant pace

indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity--the art of maximizing the amount of work not done--is essential.

 48

• The best architectures, requirements, and designs emerge from self-organizing

teams.

• At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

A microservice implementation designed around business (e.g., mission) capability

enables achievement of these goals to achieve rapid fielding of capabilities. The allocation of

functionality to microservices and associated throughput through interface definition will

impact achievement of these goals.

PREDICTIONS AND HYPOTHESIS

Hypothesis statements were derived from predicted results based upon the research

questions identified in Chapter 1 and literature review in Chapter 2.

Hypothesis: Modern DevSecOps architectures can be designed to meet hard-real-time

latency (μ) requirements using modern computing environments and computing infrastructure:

H0: μ ≤ tbd ms with jitter within latency bounds

Ha: μ > tbd ms with jitter exceeding latency bounds

∝ = 0.05

Experiments will include single-node and multi-node configurations per the referenced

literature (see Chapter 2).

Additional hypothesis statements were derived from predicted results based upon the

previously identified research questions to put the null and alternate hypothesis results within

a SoS and mission context. The independent variables to be measured are throughput, latency,

and jitter while the associated dependent variables are rapid fielding of capability and usability.

 49

The Research Framework relationships to be used for analysis of the hypotheses are depicted in

Figure 21. A similar format was used in (Moreland Jr., 2013). The independent variables are

throughput, latency, and jitter that are measurable as the tactical environment varies to assess

the dependent variables of “Rapid fielding of capability to pace threats” and “Usability.”

Associated hypotheses are depicted in the center column.

From Q1 it is predicted (P1) that AI microservices architecture will have a positive

impact on time to implement capability upgrades and development cost. Therefore, Hypothesis

1 (+H1) is captured accordingly: The scalability of microservices as new data sources added to

an architecture enables maintaining high throughput and predicted to have a positive impact

on rapid fielding of capability.

From Q2 it is predicted (P2) that DevSecOps container orchestration technologies (e.g.,

Kubernetes) will have a positive impact on combat system availability and latency due to the

ability to tune deployment configurations and load balance. The resulting Hypothesis 2 (+H2)

reads: Microservices orchestration through DevSecOps technologies enables maintaining low

latency service call responses and is predicted to have a positive impact on usability.

From Q3 it is predicted (P3) that web-based user interface technologies will have a

negative impact on deterministic hard-real-time performance needed for positive control of

organic weapons. This prediction results in the following Hypothesis 3 (-H3): Web-based

interfaces (e.g., RESTful HTTP) will increase jitter which is predicted to have a negative impact

on usability and the deterministic performance needed for positive control of organic

weapons.

 50

From Q4 it is predicted (P3) that a systems architecture model will have a positive

impact on micro-services architecture performance prediction and prediction of associated

mission thread impacts. This leads to the final hypothesis or Hypothesis 4 (+H4): A system

architecture model can predict end-to-end latency within a mission thread to quantify SoS

usability.

Figure 22 summarizes question, prediction, and hypothesis relationships through the

use of a Mind Map.

Figure 22. Research Mind Map

 51

3.3 MISSION CONTEXT

A CMS supports the team in the Combat Information Center (CIC) of a naval vessel with

its tactical work. Basically, this means the continuous execution of the stages of information

processing in the naval tactical domain and involves the building of a situational picture of the

surroundings of the ship, an understanding of the situation (including an extrapolation into the

future), and the possible undertaking of offensive and defensive actions (Arciszewski et al.,

2009). In military applications, this is known as the Observe, Orient, Decide, and Act (OODA)

loop. The loop is similar to the domain agnostic information processing model of (Endsley,

1987) and of (Parasuraman et al., 2000). The loop can be further subdivided into distinct tasks

like correlation, classification, identification, threat assessment, and engagement. Correlation is

the process whereby different sensor readings are integrated over time to generate a track.

The following scenario has been defined to add context to the experiment design. The

scenario is based upon the end-to-end mission thread presented in Section 1.2 (see Figure 7).

Political hostility between Country Red and Country Green has escalated over the past 6

months to a point where military conflict is imminent. The Country Green Navy Cruiser (CG),

USS Dahlgren, has been tasked with a mission to escort a Country Green Command Ship (LCC)

through a Strait between the two countries to establish a command post in the event of

wartime activity. USS Dahlgren will lead a Surface Action Group (SAG) composed of a destroyer

(DD) and an unmanned surface vehicle (USV). Additionally, USS Dahlgren is equipped with an

unmanned aerial vehicle (UAV). During mission planning, USS Dahlgren acquires intelligence

data that indicates that Country Red has made modifications to their surface combatant

weapon systems that will impact the USS Dahlgren’s abilities to engage and develop fire control

 52

solutions against Country Red’s surface-to-surface missiles (SSM). USS Dahlgren contacts its

Country Green shore support activity to identify and develop software upgrades within 72

hours to react to the emergent threat. Country Green develops potential solutions within their

DevSecOps Software Factory to provide a rapid response. After User Centered Design (UCD),

system analysis through simulation, CI/CD system integration testing, and DevSecOps

automation enabled certification, Country Green can deliver an effective and suitable solution

from their Software Factory prior to Country Green SAG deployment. The USS Dahlgren Task

Group enters the Strait. Once the SAG enters the Strait, National Technical Means (NTM)

detects a Country Red surface threat near the end of the Strait. A non-organic UAV in close

proximity to the surface threat is tasked with providing additional targeting information (e.g.

Triton). Joint assets may also be tasked with providing support. A targeting solution is provided

to the CMS and over-the-horizon (OTH) weapons are employed. Figure 23 depicts the

operational concepts in an operational view (OV-1) with the corresponding mission thread

using the Find-Fix-Track-Target-Engage-Assess (F2T2EA) mission essential tasks taxonomy. For

our research we shall focus on the deterministic responsiveness of the CMS/AI Services

provided to support operator decisions.

3.4 USEABILITY OF CMS/AI

Murphy and Moreland (2021) discuss integration of AI services into a hard-real-time

system-of-system to ensure trustworthiness. Ahn et al. (2007) described the concept of multi-

dimensional trust by different agent characteristics, such as quality, reliability, and availability.

For (Matei et al., 2009), trust refers to the trustworthiness of a sensor, whether it has been

compromised, the quality of data from the sensor, and the network connection. Grandison and

 53

Sloman (2000) define trust as the belief in the competence of an entity to act dependably,

securely, and reliably within a specified context. Lastly, recognizing trust is multi-dimensional,

NIST defines it as “... the demonstrable likelihood that the system performs according to

designed behavior under any set of conditions as evidenced by characteristics including, ...

security, privacy, reliability, safety and resilience” (Griffor et al., 2017). Huang et al. (2020)

emphasize the importance of advanced research around digital artifacts and trustworthy

systems in the following statement, “To address the above research issues, digital systems

engineering needs to integrate and leverage digital technologies such as Big Data technologies

(including cloud computing), Data Science, ML, AI, semantics technologies, as well as digital

mechanisms of security and trust developed in cybersecurity, Blockchain, and computational

trust communities.” Jamshidi (2009) discusses the need to revisit all aspects of systems

engineering to address the key aspects of sensing and control within a system of systems.

Several patterns are presented to provide options for addressing design concerns. Pollard

(1991) presents patterns found in modern combat systems.

 54

Figure 23. Mission Scenario OV-1 and Kill Chain

For AI to be useable, a common language must be defined to ensure that the service

and service user correctly interpret the information provided (Gruber, 1993). Web Ontology

Language (OWL) and Resource Description Framework Schema (RDFS) help to facilitate shared

knowledge and common understanding. RDFS was designed to create a common English based

subject-predicate-object model that enables connecting of data within the semantic web (W3C,

2010). OWL based ontologies help different domains (e.g. business units) understand and share

concepts using a common language to avoid confusion. This common understanding is an

enabler for the application of AI by making the data machine usable. Ontologies also support

reasoning. Huang (2018) established an ontology to assess Scientific Computing Integrity (SCI).

This ontology integrates an Open Provence Model (OPM), temporal logic, and trust reasoning to

enable SCI validation.

 55

3.5 EXPERIMENT DESIGN

Ishikawa’s Fishbone Diagrams provide a practical way of analyzing the causes of a

particular effect before identifying a solution. Fishbone Diagrams are also referred to as cause-

and-effect diagrams. Wong et al. (2016) use Fishbone Diagrams to analyze social and behavior

issues. Coccia (2017) uses Fishbones to evaluate technologies. A Fishbone Diagram depicted in

Figure 24 was used to analyze and prioritize potential causes of degraded hard-real-time

performance within a microservice based architecture. The analysis is focused on the

implementation of artificial intelligence (AI) services to provide decision aids to system

operators. Three primary areas of interest are identified: computing infrastructure, AI

processing complexity, and software architecture.

Figure 24. Microservice Performance Cause and Effect Diagram (Ishikawa)

Problem:
Hard-Real-Time

Microservice

Performance

API Complexity (e.g. # of parameters)

Number of Options (e.g. weapons, tactics)Memory

CPUs

Load Balancing (1-2-5-10)

Pod Distribution

Software
Architecture

Computing

Infrastructure

AI Processing

Complexity

Microservice Orchestration Design

Technology Stack (e.g. DB, Language, OS)

Processor

Network Bandwidth

Messaging API/Protocol (e.g. REST, gRPC)

Proposed variables for multivariate analysis
due to predicted impact and available

prototype development resources. All other
variable will be fixed controls.

Hypervisor (if any)

Software Defined Network (SDN)

 56

Computing infrastructure is concerned with selection of the computing hardware to

implement the microservices. Variations in processor performance, number of processors,

memory, network, and virtualization approach (e.g., hypervisor) may have significant effects on

hard-real-time microservice performance. These factors will vary by selection of the host

environment but will be fixed within a host environment for data collection. For example,

experiments may be conducted within a home computing environment and later replicated on

cloud hardware (e.g., Amazon Web Services Infrastructure as a Services (IaaS)).

Software architecture is concerned with microservice implementation design and

coordination among microservices to provide capability. The technology stack choices,

implementation patterns, and component communication approach will have varying degrees

of impact on performance.

AI processing complexity is concerned with microservice design. While software

architecture was concerned with technology choices, this factor is based on software

implementation choices. Software metrics such as McCabe’s Cyclomatic Complexity can be

used as a methodology for measurement (McCabe, 1976).

This research will provide software design patterns that can be reused by implementors

of future safety-critical system capabilities, e.g., Surface Navy combat systems. Additionally, it is

envisioned that this research will inform requirements for future CMS software applications.

3.6 SOFTWARE IMPLEMENTATION

A notional experimental software prototype context is depicted in Figure 25. The

prototype system is envisioned to be a Decision Support System (DSS) that may provide hard-

 57

real-time decision support to system operators. The DSS provides artificial intelligence services

to assist the user in decision making. The architecture is presented using the context, container,

component, and code (C4) model style from (Brown, 2019).

Figure 25. Experimental Prototype Software Context

Use cases were developed to identify services required to realize the DSS Prototype. The

use cases are depicted in Figure 26. The primary operator for our system is a Tactical Actions

Officer (TAO) that wants to use the DSS to enable an informed weapons decision. The primary

use cases allow the system operator to observe information about aircraft in the area through

the “Review Tactical Information” use case, assess which weapons are capable against threat

aircraft through the “Review Weapon Recommendations” use case, and assess the

effectiveness of a single weapon against a target through the “Review Predicted Weapon

Effectiveness” use case.

 58

Figure 26. DSS Prototype Use Cases (OMG, 2015)

SOLID Principles such as the Single Responsibility principle discussed in Chapter 1 of this

dissertation were used to define the componentization of microservices used to realize the DSS

Prototype. A sequence diagram depicted in Figure 27 was used to explore interaction

alternatives based upon the use cases. Each interaction was designed to have varying levels of

dependencies among the microservice-based software configuration items (SCIs). The “Trial

 59

Engage” use case was designed to be the least complex with a single dependency between the

User Interface and the Trial Engage application. However, the “Review Tactical Information” use

case was designed to be the most complex with a dependency on external flight data services

provided by an OpenSky API (OpenSky, 2021).

Figure 27. DSS Service Interactions (UML Sequence Diagram) (OMG, 2015)

 60

It should be noted that the Track Management application was inserted to create a layer

of abstraction between flight data requests through the Sensor Interface application to the

OpenSky API. Access to the OpenSky API for flight data adds unpredictable latency through the

use of public networks to access the endpoint. However, the Track Management application

can provide immediate deterministic responses to local requests for last known flight data

without relying on reaching out to external non-deterministic networks.

The DSS is broken down into the software configuration items depicted in Figure 28 that

satisfy an end use function that can be uniquely identified (ISO/IEC/IEEE, 2008). The component

allocation is driven by the DSS Prototype use cases and needs for data collection and analysis.

The primary services provided are Weapon Assessment and Trial Engage. The Weapon

Assessment Service reviews target track kinematics and organic weapon systems capabilities to

provide and assess weapon/target pairing for engagement of the specific target. The

assessment is based upon known weapons’ capabilities against the position of the target and

kinematic capabilities. The Trial Engage Service assesses the target against weapon capabilities

and known tactics to use against a target. Data for display of engagement profiles is provided,

e.g., earliest time to launch, latest time to launch, flyout pattern. Both services require hard-

real-time responses to enable operator weapon selection within time for weapons release and

consummation of the engagement. If recommendations are latent, destruction of the targeted

platform is imminent. The component diagram breaks the primary services down into

microservices that are needed to provide DSS functionality, e.g., a sensor interface or track

 61

management. Monolithic analysis services are included as pre-packaged containers from the

Docker Container Repository.

 62

Figure 28. DSS Component Diagram

 63

The physical deployment to realize the components is depicted in Figure 29. Physical

container descriptions are provided below.

DSS APPLICATIONS (MICROSERVICES)

• opensky-int: Provides the OpenSky API for flight data. The app provides data about

aircraft within 60 NM of Richmond (RIC) or Dulles (IAD) airports.

• tm-server: Provides sensor track data (e.g. OpenSky) and system tracks to support DSS

services. System tracks represent the system-wide common understanding of track

object states used for decision support.

• wa-app: The Weapon Assessment Application determines which weapons are capable of

successfully engaging a target. The wa-app uses the tm-server api to get track data.

• te-app: The Trail Engage Application predicts the success probability of an engagement

with a specific weapon target pairing. The predicted track kinematic data at engagement

time is provided; therefore, the current track kinematics from the tm-server are not

queried prior to providing a response.

• test-app: Provides an ability to initiate automated tests. the test-app uses the dss-ui to

call dss-ui endpoint to replicate operator interactions with the DSS Prototype.

• dss-ui: Provides a simple graphical interface to launch DSS services.

TOOLS (SERVICE APPLICATIONS)

 64

• telem-jaeger: The open source Jaeger container collects "span" data from the DSS

applications. Spans collect duration data for service calls amongst containers; e.g.

latency. This the fundamental data that is being analyzed here.

• grafana: The open source Grafana container connects to the telem-jaeger container to

create visualization dashboards. Also, Grafana facilitates the export of data as a .csv file

for analysis.

• notebook: The Jupyter Notebook container supports analysis of the data recorded by

Jaeger and exported by Grafana. An embedded R software library is used for analysis.

In our experiment we will apply various technologies to assess the hard-real-time

deterministic nature of the architecture. Specifically, we’ll look at Docker containers as well as

container orchestration using Kubernetes. An excursion using ODU Coastal Virginia (COVA)

Commonwealth Cyber Initiative (CCI) resources is planned to gain access to a high end process

with Kubernetes orchestration, and an Istio service mesh is planned. The Istio service mesh

adds a layer of security (e.g., trustworthiness) but may impact deterministic performance. The

Istio data plane within the mesh is used to define which services can talk to each other via the

proxies that reside within the container pods. All traffic within the mesh is controlled and

protected by the Istio technology. Li et al. (2019) discuss service mesh challenges in detail as

well as future research opportunities.

 65

Figure 29. DSS Deployment Diagram

 66

3.7 COMPUTING INFRASTRUCTURE

Figure 30 from (Humble & Farley, 2011) shows a diagram of the use of an artifact

repository in a typical installation. It is a key resource that stores the binaries, reports, and

metadata for each release candidate.

Figure 30. The Role of the Artifact Repository (Humble & Farley, 2011)

An artifact repository on GitHub is core to the development and deployment of the DSS

Prototype. Figure 31 depicts the environment used for DSS Prototype development,

integration, and test. Technical specification for each of the computer environments is provided

below. Software is developed and initially tested on a MacBook Air laptop. Code is periodically

 67

committed to the GitHub repository. Once the build meets requirements, the code is cloned

from GitHub onto the PC and Raspberry Pi 4 Linux environments for integration testing.

Additionally, code is cloned onto an Amazon EC2 instance to demonstrate compatibility in a

“cloud based” environment external to the “home lab.” The ODU Commonwealth Cyber

Initiative (CCI) Research Environment provides an opportunity to test the DDS Prototype in an

environment that replicates a target real-time environment being used for commercial and DoD

applications. DSS Prototype compute resources are summarized in Table 5.

Figure 31. DDS Prototype Development, Integration, and Test Environment

DSS Code

Commit
DSS Code

Clone

DSS Code

Clone

DSS Code

Clone

DSS Code

Clone

DSS Code

Development Integration Testing Production

MacBook Air

CentOS

Linux PC

Raspberry

Pi 4

Amazon

EC2
Instance

ODU

Commonwealth
Cyber Initiative
Environment

Network

Switch

 68

Table 5. DSS Prototype Compute Resources

HOME LAB

The “Home Lab” is a network of clustered computers in the researcher’s home. The lab

was used for software development and build testing before deployment. The “Home Lab”

includes an assortment of computers ranging from 2012 to 2020. The Raspberry Pi

configuration features a Broadcom 2711 system on chip (SoC) (BCM2711 ARM Peripherals,

2022).

AMAZON WEB SERVICES

The Amazon Web Service (AWS) Free Tier was leveraged to provide an ability to test

beyond the “home lab.” The AWS Free Tier provides access to an Amazon Elastic Cloud

Compute (EC2) t2.micro instance. The t2.micro has 1 virtual CPU, but T2 instances are a low-

cost, general purpose instance type that provides a baseline level of CPU performance with the

ability to burst above the baseline when needed. T2 instances are one of the lowest-cost

Env ID Platform Chipset Processor Memory OS

0 MacBook Air (2017) Intel Core i5 Dual-Core Intel
Core 5 @ 1.8 GHz

8 GB 1600 MHz
DDR3

MacOS 12.4
(Monterey)

1 Linux PC (2012) Intel Core i7 Intel(R) Core(TM)
i7-3770K CPU @
3.50GHz

16 GB 1600 MHz
DDR3

CentOS Linux 8
(Core)

2 Raspberry Pi 4 (2020) Broadcom
BCM 2711

Quad-core Cortex-
A72 (ARM v8) 64-
bit SoC @ 1.5 GHz

4 GB LDDR4-3200
SDRAM

Debian GNU/Linux
11 (bullseye)

3 Amazon Elastic Compute
Cloud (EC2): t2.micro

Intel Xeon Intel(R) Xeon(R)
CPU E5-2676 v3 @
2.40GHz

1 GB Debian GNU/Linux
10 (buster)

4 ODU Commonwealth
Cyber Initiative (CCI)

Intel Xeon Intel(R) Xeon(R)
CPU E5-2683 v4 @
2.10GHz

128 GB Red Hat Enterprise
Linux 8.5 (Ootpa)

https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/ARM_Cortex-A72

 69

Amazon EC2 instance options and are ideal for a variety of general-purpose applications like

micro-services, low-latency interactive applications, small and medium databases, virtual

desktops, development, build and stage environments, code repositories, and product

prototypes (AWS, 2022).

Debian Linux 10 was selected for the Amazon Machine Image (AMI). The Linux “cat

/proc/cpuinfo” command was used to obtain relevant CPU details depicted in Figure 32.

admin@ip-172-31-93-240:~$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz
…
cpu MHz : 2400.001
…
cpu cores : 1
…
bogomips : 4800.00
…

Figure 32. Amazon Machine Image (AMI) CPU Details

ODU COVA CCI

The CCI environment provided for access to the Rancher version of Kubernetes that was

designed for Government applications. Addition of an Istio Service Mesh is also planned for the

 70

environment. The specification of the CCI environment is detailed below (Tucker, 2022). A

diagram of the CCI research environment at ODU is depicted in Figure 33 (Pratt, 2022).

Compute Nodes:

• 20 x Dell PowerEdge R630

• E5-2683v4/32C/128GB RAM

• Total Cores: 640

• Total RAM: 2.5TB

Storage Nodes:

• 8 x Dell PowerEdge C6420

• 2x Xeon 6230/40C/48GB RAM/6 x 960GB SSD

• Total Storage: 46 TB each usable

GPU Nodes:

• x Dell PowerEdge C4140

• 2x Xeon 6230/20C/192GB RAM/4x NVIDIA V100

• Total GPU: 16 x NVIDIA V100 32GBVRAM GPUs with NVLink

 71

Figure 33. CCI Research Environment (Pratt, 2022)

3.8 TELEMETRY COLLECTION

Telemetry collection using the OpenTelemetry standard is the primary means for

collection of latency metrics from the Docker containers.

OPENTELEMERY

OpenTelemetry is a collection of tools, APIs, and SDKs. It is used to instrument,

generate, collect, and export telemetry data (metrics, logs, and traces) to help analyze

software’s performance and behavior (OpenTelemetry, 2022). A cloud-based tool called Jaeger

 72

was used to collect telemetry data and export for analysis. A sample visualization of telemetry

data from the ODU CCI environment is depicted in Figure 34.

Figure 34. Jaeger Visualization

I/O METRICS

The DSS Test Application was later modified to use a Python psutil library to log

input/output metrics (Rodola, 2022). The following metrics were collected and reported as

OpenTelemetry attributes:

• cpu.load.avg

• num.cpu

 73

• net.io.count

• start.io.count

• end.io.count

The io.count metric is a tuple including the following attributes:

• # bytes_sent: number of bytes sent

• # bytes_recv: number of bytes received

• # packets_sent: number of packets sent

• # packets_recv: number of packets received

• # errin: total number of errors while receiving

• # errout: total number of errors while sending

• # dropin: total number of incoming packets which were dropped

• # dropout: total number of outgoing packets which were dropped

Figure 35 was generated from the ODU CCI production environment. The I/O metrics are

collected as “tags” as part of the OpenTelemetry standard. It should be noted that with every

run the error and packet loss metrics were zero (e.g., errin, errout, dropin, dropout). This is due

to the nature of the Docker environment where a single computer is internally running multiple

containers without relying on external networks. It should also be noted for the external API

calls, the error and packet loss metrics were also zero. The I/O count metric is a counter that

starts at zero and grows with each I/O interaction. Since the responses are “canned” the growth

was always consistent for internal calls but were variable for interactions with the flight data

API due to variance in the number of active flights.

 74

Figure 35. Collection of I/O Metrics within Jaeger

 75

CHAPTER 4

 RESULTS

The purpose of this chapter is to report results from statistical analysis.

4.1 LOAD DATA FILES

Data files were loaded from the 5 different environments discussed in Section 0 and

merged into a combined “spanData” dataset shown in Figure 36.

macData <- read.csv('DSS_SpanData-mac-2022-05-02 18_38_26_s10-5-1.csv', header = TRUE)
linpcData <- read.csv('DSS_SpanData-linuxpc-2022-06-06 17_38_29_s10-5-1.csv', header = TRUE)
rpi4Data <- read.csv('DSS_SpanData-rpi4-2022-06-06 17_52_59_s10-5-1.csv', header = TRUE)
awsEC2Data <- read.csv('DSS_SpanData-aws_ec2-2022-06-07 17_44_08_s10-5-1.csv', header = TRUE)
cci_Data <- read.csv('DSS_SpanData-odu_cci-2022-06-28 17_47_20_s10-5-1.csv', header = TRUE)

Figure 36. DSS Prototype Data Files

4.2 CONVERT DATA INTO USEABLE METRICS

To make the data more usable and easier to understand we apply conversions from text

to numeric data and add additional columns with supporting information. A useCase column is

added to identify specific DSS request use cases, e.g., Get Dulles Airport Data. The data also

indicates whether the request is managed internally or a connection to an external service is

required to provide a response (i.e., https://opensky-network.org). A numContainers column is

added to indicate the number of containers involved in providing a use case response

 76

(e.g. independent variable). An ext column is added to indicate whether an API external to the

Docker environment is used; e.g., ext = TRUE for OpenSky API calls.

4.3 EXPLORATORY DATA ANALYSIS

A summary of the resulting data is presented in Figure 37. Figure 38 shows that the Mac

implementation of Docker Containers adds latency within the Docker environment. In non-

linux based platforms, a Docker desktop running a virtual machine is required to provide the

Docker capability that is native to Linux platforms. The Mac is considered to be the DSS

development environment and not representative of the integration and production

environments.

Rows: 500
Columns: 9
$ Trace.ID <chr> "9ee3577fb1b427bc4fc17fecc5154d7d", "f05ddc4dc13aff5c309801…
$ Trace.name <chr> "/TE", "/tracks", "/IAD", "/RIC", "/WA", "/TE", "/tracks", …
$ Start.time <chr> "2022-05-02 10:25:01.366", "2022-05-02 10:25:00.309", "2022…
$ Duration <dbl> 36.0, 43.3, 464.0, 494.0, 139.0, 30.3, 30.0, 478.0, 546.0, …
$ platform <chr> "2017-macbook", "2017-macbook", "2017-macbook", "2017-macbo…
$ env <dbl> 0,…
$ useCase <chr> "Trial Engage (Internal)", "Get Stored Local DSS Tracks (In…
$ useCaseNum <dbl> 2, 1, 4, 5, 3, 2, 1, 4, 5, 3, 2, 1, 4, 5, 3, 2, 1, 4, 5, 3,…
$ ext <lgl> FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, …

Figure 37. Combined Data Summary

 77

Figure 38. Duration vs. Use Cases and Computing Platform Source

In Figure 39, Figure 40, Figure 41, and Figure 42 we examine the data without the data

from the MacBook platform. The plots seem to indicate the presence of 2 clusters. Each plot

shows that internal and external duration data is heavily separated. We shall use cluster

analysis to investigate.

 78

Figure 39. Duration vs. Use Cases with Mac Platform Removed

 79

Figure 40. Duration Histogram with Use Case Indicated (i.e. Trace.name)

 80

Figure 41. Duration vs. Use Case Boxplot

 81

Figure 42. Q-Q Plot of Duration per Use Case

The data presented in Figure 43 provides a sample of server routing used to access flight

data from the OpenSky API to help explain the change in duration for external interface calls.

Multiple non-deterministic network hops account for the increased duration latency. Figure 44

depicts the service endpoint in Gretzenbach, Switzerland.

 82

Figure 43. Trace-Route from Home Lab to OpenSky API

 83

Figure 44. OpenSky Endpoint in Gretzenbach, Switzerland

CLUSTER ANALYSIS

The R library “mclust” was used to verify the separation of internal and external models

as indicated from the plots, i.e., use cases that use an external API to collect external flight data

from Richmond (RIC) and Dulles (IAD) airports. The library mclust is a contributed R package for

model-based clustering, classification, and density estimation based on finite normal mixture

modelling. It provides functions for parameter estimation via the EM algorithm for normal

mixture models with a variety of covariance structures and functions for simulation from these

models. MclustBIC returns an object of class ‘mclustBIC’ containing the Bayesian Information

Criterion (BIC) for the specified mixture models numbers of clusters. Auxiliary information is

returned as attributes (Scrucca et al., 2016).

 84

A density plot of the duration data is presented in Figure 45. As indicated above, two

clusters separating internal and external services call seem to be present.

Figure 45. Density Plot of Duration Clusters

 85

Figure 46 and Figure 47 summarize the best Bayesian Information Criterion (BIC) values

from BIC analysis. The data indicates that 2 clusters exist. The two best matches are:

• VEV:varying volume,equal shape,varying orientation (ellipsoidal covariance)

• EEE:equal volume,equal shape,equal orientation (ellipsoidal covariance)

The clusters are depicted in Figure 48. We shall separate internal from external data.

 86

Figure 46. BIC Plot of Components

Best BIC values:
 VEV,2 EEE,2 EEE,1
BIC -6136.963 -6586.3351 -6662.2804
BIC diff 0.000 -449.3724 -525.3177

Figure 47. Best BIC Values

 87

Figure 48. Classification Plot of BIC Component Relationships

 88

INTERNAL DATA ANALYSIS

The revised Boxplot for internal data is depicted in Figure 49. An internal duration

histogram is presented in Figure 50. The histogram plot indicates that the data is not normally

distributed and suggests an adjustment will be needed to enable application of statistics.

 89

Figure 49. Internal Duration Boxplot

 90

Figure 50. Internal Duration Histogram

EXTERNAL DATA ANALYSIS

The revised Boxplot for external data is depicted in Figure 51. An external duration

histogram is presented in Figure 52. The histogram plot indicates that the data is not normally

distributed and suggests an adjustment will be needed to enable application of statistics.

 91

Figure 51. External Duration Boxplot

 92

Figure 52. External Duration Histogram

SHAPIRO-WILK TEST FOR NORMAL DISTRIBUTION

The Shapiro-Wilk test is used to determine if a dataset is normally distributed to enable

application of the t-Test for statistical hypothesis testing. The null-hypothesis of the Shapiro-

Wilk test is that the population is normally distributed. Thus, if the p-value is less than the

 93

chosen alpha level, then the null hypothesis is rejected and there is evidence that the data

tested are not normally distributed. On the other hand, if the p value is greater than the chosen

alpha level, then the null hypothesis (that the data came from a normally distributed

population) cannot be rejected (e.g., for an alpha level of .05, a dataset with a p value of less

than .05 rejects the null hypothesis that the data are from a normally distributed population).

The Shapiro-Wilk test results in Figure 53 indicate that the internal and external data

samples are not normally distributed and need to be adjusted to apply hypothesis testing. The

exploratory data analysis plots indicated significant gaps in the internal data with short

durations.

Shapiro-Wilk normality test

data: iSpan$Duration
W = 0.9075, p-value = 5.081e-11

 Shapiro-Wilk normality test

data: eSpan$Duration
W = 0.71543, p-value = 3.053e-16

Figure 53. Shapiro-Wilk Normality Test

The exploratory data analysis and Shapiro-Wilk test results seem to indicate measuring

of an API response with very little variation. Given that each use case is expected to have some

processing delay, the R rnorm function is used to add a normally distributed processing delay to

 94

each of the use cases with a mean of 50 ms and a standard deviation of 10 ms. The resultant

change in Shapiro-Wilk test results after application of the processing delay is presented in

Figure 54. The data from the internal use cases now yields a p-value of 0.2265 which indicates

that the data is now normally distributed. However, the data from the external use cases still

indicates that the distribution is not normal with a p-value far less than the alpha level of 0.05.

 Shapiro-Wilk normality test

data: pd_iSpan$Duration
W = 0.9921, p-value = 0.2265

 Shapiro-Wilk normality test

data: pd_eSpan$Duration
W = 0.72568, p-value = 6.034e-16

Figure 54. Shapiro-Wilk Testing with Processing Delay

 95

Histograms of the original internal use case duration and internal use case duration with

a normally distributed processing delay added are plotted with a binwidth of 1 ms in

F

Figure 55 and Figure 56. The original internal duration is skewed right. It can also be

noted that processing delays for each of the internal use cases are somewhat visibly separated.

However, the duration with processing delay indicates data that is normally distributed with

normally distributed processing delays across the internal use cases.

 96

F

Figure 55. Original Internal Duration

 97

Figure 56. Modified Internal Duration with Processing Delay

Histograms of the original external use case duration and external use case duration

with a normally distributed processing delay added are plotted with a binwidth of 10 ms in

Figure 57 and Figure 58. Both plots of the external durations continue to be skewed right

indicating that the data is not normally distributed.

 98

Figure 57. Original External Duration

 99

Figure 58. Modified External Duration with Processing Delay

The data indicates that a normal distribution is achieved with the internal data but not

with the external data due to the extreme variation in response times through external servers

and routers to return flight data for Richmond and Dulles airports. We shall apply a t-test for

the internal data, but for the external data we shall apply a binomial test to see if the threshold

 100

of 500 ms can be maintained. This will require adding a threshold indication to the datasets, i.e.

an indication of TRUE if the duration is less than 500 ms and FALSE if not. Figure 59 presents the

revised data with the threshold indicator (hthreshold) added.

Rows: 160
Columns: 10
$ Trace.ID <chr> "0d8efde6f35af9599ae0ffc9cd68b6fb", "d6c36d3d53a329daf1f72e…
$ Trace.name <chr> "/RIC", "/RIC", "/RIC", "/RIC", "/RIC", "/RIC", "/RIC", "/R…
$ Start.time <chr> "2022-06-06 21:36:51.531", "2022-06-06 21:36:45.723", "2022…
$ Duration <dbl> 476.2477, 416.5003, 671.6718, 404.2449, 427.0154, 391.0872,…
$ platform <chr> "2012-linpc", "2012-linpc", "2012-linpc", "2012-linpc", "20…
$ env <dbl> 1,…
$ useCase <chr> "Get Richmond Airport Data (External)", "Get Richmond Airpo…
$ useCaseNum <dbl> 5,…
$ ext <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,…
$ hthreshold <lgl> TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRU…

Figure 59. Revised Data "Glimpse" with Threshold Indicator

4.4 HYPOTHESIS TESTING

We can now proceed with hypothesis testing. We will apply a t-Test to our normalized

internal use case data. However, we will use a Binomial test to assess the probability of meeting

the 500 ms requirements.

T-TEST (INTERNAL USE CASE DATA)

Given that we were able to verify a normal distribution with the process delay applied

to the internal use case data, we are able to use a Student’s t-Test to test the hypothesis on the

internal use case data. Our mean is 500 ms (e.g. 𝜇 = 500 ms) and our null hypthesis is less than

 101

500 ms. This is an example of what is called a one-tailed hypothesis; e.g. evidence against the

null hypothesis comes from only one tail of the distribution (namely, duration above 500).

Sample t-test results in Figure 60 of the internal span data indicates a p-value of 1 so we

fail to reject the null hypothesis that the duration mean is less than 500 ms. The p-value

converges to 1 because all of the internal duration results are far less than 500 ms.

 One Sample t-test

data: x
t = -745.31, df = 239, p-value = 1
alternative hypothesis: true mean is greater than 500
95 percent confidence interval:
 57.9299 Inf
sample estimates:
mean of x
 58.90716

Figure 60. t-Test Results for Internal Use Case Data

BINOMIAL TESTS

We’ll use Binomial Tests to test the probability of success for meeting the 500 ms

duration. For Binomial Test we need to review the number of trials and number of successes.

ALL USE CASE DATA

Let’s look at the combined data first. For all use case data, we had 400 use case runs

resulting in 354 successes where the duration was less than 500 ms. The Binomial Test results in

Figure 61 indicate that the probability of success for all data is 89%.

 102

 Mode FALSE TRUE
logical 46 354

 Exact binomial test

data: 354 and 400
number of successes = 354, number of trials = 400, p-value = 1
alternative hypothesis: true probability of success is less than 0.5
95 percent confidence interval:
 0.0000000 0.9102965
sample estimates:
probability of success
 0.885

Figure 61. Binomial Test (All Use Case Data)

For the internal data we had 240 use case trials with 240 trials resulting in durations of

far less than 500 ms; i.e. 100 probability of success. We used a t-Test to test our hypothesis.

However, a Binomial Test will be used to test the probability of success for the external use

cases.

EXTERNAL USE CASE DATA

For the external use cases we have 160 trials with 114 with a duration less than 500 ms.

The results of the Binomial Test in Figure 62 indicate a 71% probability of success for the

external use cases.

 103

 ext hthreshold
 Mode:logical Mode :logical
 TRUE:160 FALSE:46
 TRUE :114

 Exact binomial test

data: 114 and 160
number of successes = 114, number of trials = 160, p-value = 1
alternative hypothesis: true probability of success is less than 0.5
95 percent confidence interval:
 0.0000000 0.7711356
sample estimates:
probability of success
 0.7125

Figure 62. Binomial Test (External Use Case Data)

 104

CHAPTER 5

 DISCUSSION

5.1 OVERVIEW OF FINDINGS

Findings are summarized through the analysis of questions and hypothesis developed in

Chapters 2 and 3 of this dissertation.

PRIMARY HYPOTHESIS

GENERAL DISCUSSION OF NORMALITY

It was required to separate external data from internal to establish normality of the data

samples. A processing delta with a gaussian distribution was applied to the dataset to replicate

the variation in processing time for each call to the services. The data from the internal use

cases exhibit a normal distribution after application of a gaussian processing delay. The data

from the external use cases could not be transformed into a normal distribution. However, a

binomial test was used to assess the probability of maintaining the 500 ms threshold with

external data routing uncertainties.

HYPOTHESIS RESULTS

Hypothesis testing using the Student’s t-Test and Binomial Test indicates that latency

constraints of 500 ms can be maintained internally and externally. However, several external

samples were greater than 500 ms. This is most likely due to the non-deterministic nature of

internet (e.g. http) requests. Within the internal environment, data is directly routed between

microservices within the Docker environment within a private network. The data shows that a

 105

container based microservice architecture can meet the requirement; however, care must be

taken to manage processing per container that may increase container response times.

DSS PROTOTYPE ENVIRONMENT

The non-deterministic nature of the Docker environment on the MacBook laptop

significantly affected the ability to assess deterministic behavior. Boxplots of data inclusive of

what was sampled from the MacBook clearly depicted this issue. Linux platforms run a

container as intended; however, non-Linux platforms require the use of a Linux based Virtual

Machine on top of the host OS to implement containers. While the MacBook met the needs for

rapid software development, the use of a separate integration and test environment was

clearly validated through the collected data.

HYPOTHESIS DERIVED FROM QUESTIONS

The question-based hypothesis results were not directly measured and tested; however,

evaluation of the primary hypothesis provided evidence to assess the question-based

hypothesis statements. The results are summarized in Table 6.

Table 6. Question Based Hypothesis Results

Hx Description Evidence/SoS Evidence Boundary Assessment

H1

The scalability of
microservices as new data
sources are added to an
architecture enables
maintaining high throughput
and predicted to have a
positive impact on rapid
fielding of capability of
capability.

• Ability to mediate data through
containers with single responsibility
with common backend interface; e.g.,
OpenSky sensor interface

• Ability to rapidly field in different
environments through configuration as
code; e.g., Docker containers to
Kubernetes (RKE2)

Inferred
True

True

 106

Hx Description Evidence/SoS Evidence Boundary Assessment

• Ability for ”Ops” to get on the same
page with “Dev” to rapidly field

Limitations
Demonstrated 6 integrated
“core” microservices but
unable to scale the system to
exceed the 500 ms threshold

• Threshold will be dependent on
internal service architecture and design
(e.g., computer science).

True

H2

Microservices orchestration
through DevSecOps
technologies enables
maintaining low latency
services call responses and
predicted to have a positive
impact on usability.

• Demonstrated ability to manage
latency through orchestration of the
architecture and ensure usability

Inferred
True

True
Limitations
Added 50 ms mean latency
with 10 ms standard
deviation on top of container
SoS interface overhead to
account for microservice
processing.

• Latency will be a function of internal
service architecture and design (e.g.,
computer science).

True

H3

Web-based interfaces (e.g.
RESTful HTTP) will increase
jitter and predicted to have a
negative impact on usability
and the deterministic
performance needed for
positive control of ownship
weapons.

• Demonstrated non-deterministic
performance when using external web-
based interface for access to flight data

• Mitigated problem through use of
”sensor interface abstraction” layer

Inferred
True

True

Limitations
Used single flight data
endpoint.

• Response times from flight data
interface was non-deterministic. Expect
that any interface outside of the local
system through external
switches/routers will be non-
deterministic.

True

H4

A system architecture model
can predict end-to-end
latency within a mission kill
chain to quantify SoS
usability.

• Demonstrated ability to use
architecture models to predict system-
of-system impacts once ”budgets” are
applied

Inferred
True

True Limitations
Used a sequence diagram for
comparison to actual results.
Need to include statistics
based metrics in the model
for a detailed comparison.

• Demonstrated feasibility of approach
that can be applied to multiple
diagram types (e.g., sequence,
activity).

True

 107

HYPOTHESIS H1

The sequence diagram in Figure 27 provides an overview of microservice interactions

used to realize each of the use cases identified through mission engineering. A summary of how

microservices applications are reused to realize mission threads is presented in Table 7. A

Sensor Interface Application is used to mitigate change when new data sources are added. The

analysis revealed that low latency and high throughput can be maintained amongst the internal

applications. However, external sources exhibited a non-deterministic behavior. The use of an

external interface layer (e.g., Sensor Interface Application) can help to isolate the external

behavior from internal and enable design flexibility and scalability to ensure that requirements

are met (e.g. less than 500 ms duration) and enable rapid fielding of new capability. While the

500 ms threshold was demonstrated as possible to be met, additional testing can be done to

identify contributing thresholds that may break scalability, e.g., number of containers or

processing complexity per container. Hypothesis H1 is assessed as True.

Table 7. DSS Prototype Applications Mapped to Mission Use Cases

Mission Use Case User Interface
App

Track Management
App

Weapon
Assessment App

Trial Engagement
App

Sensor Interface
App

Review Tactical
Information

X X X

Review Weapon
Recommendations

X X X

Review Predicted
Weapon
Effectiveness

X X

 108

HYPOTHESIS H2

As seen with Hypothesis H1, the orchestration of microservices can enable control of

latency to ensure that the system is useable. We saw through the analysis that our 500 ms

threshold can be met. Additionally, we demonstrated an ability to vary processing delay and

still meet requirement. Our software prototype was based on the Python programming

language; however, system design technologies can also be varied (e.g., C++, Java) to enable

design flexibility to meet requirements. Hypothesis H2 is assessed as True.

HYPOTHESIS H3

Our analysis revealed significant variation in response time when dealing with external

data sources. To mitigate this risk, we included a sensor interface layer in the design to abstract

the external delays from the management of response times internal to the system. Hypothesis

H3 is assessed as True for external interfaces; however, system engineers and software

developers have a high degree of design flexibility to control internal latency related jitter.

HYPOTHESIS H4

Plots of the internal duration latency mapped directly to the software architecture

threads depicted in the sequence diagrams. Figure 63 demonstrates the predictability of

latency to each use case based upon microservice application interactions. This changed when

gaussian process delay was added to each of the threads; however, this same processing delay

 109

can be implemented in software architecture models to support simulation. Hypothesis H4 is

assessed as True.

Figure 63. Mapping of Measured Durations to Internal Use Cases

5.2 RESEARCH IMPLICATIONS

This research has shown how mission and system engineering can be used to design a

relevant experimental prototype to support capability analysis. Use cases were used to define

mission objectives for a notional Decision Support System (DSS). Sequence diagrams were used

to define associated mission threads for the identified use cases. These use cases were then

mapped to reusable containerized application (e.g., software configuration items (SCIs)) to

 110

create a system of system to meet mission requirements. The use of containers demonstrated

an ability to quickly re-configure (e.g., composability) to meet emergent mission requirements

beyond what was possible with a monolithic system. We demonstrated that mission

requirements can be met with a containerized system of systems approach.

5.3 RESEARCH LIMITATIONS

While this research explored requirements definition and system architecture design

using mission and system engineering practices, it does not cross into detailed software design

that would be within the domain of computer science. Computer scientists would take the

requirement and system architecture defined through mission and system engineering and

identify software technologies and software implementation patterns to ensure that

requirements continue to be met with the detailed software design. Messaging frameworks

such as Kafka and AMQP and programming languages such as C++, Java, Rust, and Node.js all

have implications that may affect meeting requirements. Many of the SCIs may be decomposed

into smaller services that become part of the SCI. Some of these software technology options

were briefly discussed in Section 0.

 111

CHAPTER 6

 CONCLUSIONS

6.1 PRIMARY CONTRIBUTIONS OF THIS STUDY

The research offers the following contributions to the mission and system engineering

body of knowledge:

• Insight into current microservice and container performance within the context

of hard-real-time combat system constraints

• Insight into system design factors affecting hard-real-time performance

• Documented traceability approach from microservices to mission capabilities

• Insight into hard-real-time implementation patterns

• Insight into system engineering based microservice design documentation

approach (e.g. SysML/UML)

• Insight into how to assess hard-real-time performance in mission critical systems

(e.g., multi-variate analysis)

o Current microservices designs have been industry based

o Have not required “hard real-time” assessment due to nature of business

(e.g., Netflix, Amazon)

 112

6.2 WIDENING THE SCOPE

Profiling of known companies was conducted to identify similarities of this research to

known commercial concerns. Table 8 summarizes challenges that would be relevant to combat

systems engineering and this research.

Table 8. Research Applicability to Known Commercial Concerns

COMPANY PERSONA CONCERN
(https://www.cncf.io)

APPLICABILITY TO HARD-REAL-
TIME SAFETY CRITICAL DOMAIN

Capital One Challenges of resilience and velocity.
Millions of transactions per day. Some
apps deal with critical functions like
fraud detection and credit decisioning;
e.g. AI.“Now, a team can come to us and
we can have them up and running with a
basic decisioning app in a fortnight,
which before would have taken a whole
quarter, if not longer.” Deployments
increased by several orders of
magnitude.

Directly applicable: Resilience
challenge is directly related to
management of combat situations.
Other concerns are also of interest
but not within research scope.

Netflix Challenges of Latency, Productivity, and
Velocity. Netflix developed its own
technology stack for interservice
communication using HTTP/1.1. For
several years, that stack supported the
company’s stellar growth. But by 2015,
there were pain points: Clients for
interacting with remote services were
often wrapped with handwritten code.

Directly applicable: Latency
concern is relatable. Productivity
and velocity relate to other domain
concerns but not within the
research scope.

Pinterest Challenges of Efficiency and Velocity.
After eight years in existence, Pinterest
had grown into 1,000 microservices and
multiple layers of infrastructure and
diverse set-up tools and platforms. The
first phase involved moving services to
Docker containers. Once these services
went into production in early 2017, the
team began looking at orchestration to
help create efficiencies and manage
them in a decentralized way. After an
evaluation of various solutions, Pinterest
went with Kubernetes.

Not applicable to this research:
However, concerns are related to
broader combat system domain
concerns.

Spotify Challenges of Efficiency and Velocity.
After eight years in existence, Pinterest
had grown into 1,000 microservices and
multiple layers of infrastructure and

Not applicable to this research:
However, concerns are related to
broader combat system domain
concerns.

https://www.cncf.io/

 113

COMPANY PERSONA CONCERN
(https://www.cncf.io)

APPLICABILITY TO HARD-REAL-
TIME SAFETY CRITICAL DOMAIN

diverse set-up tools and platforms. The
first phase involved moving services to
Docker containers. Once these services
went into production in early 2017, the
team began looking at orchestration to
help create efficiencies and manage
them in a decentralized way. After an
evaluation of various solutions, Pinterest
went with Kubernetes.

6.3 SUGGESTIONS FOR FUTURE RESEARCH

The source code, documentation, and analysis scripts for the prototype can be found on

GitHub at https://github.com/amurp003/dss-prototype to facilitate repeatability and continued

research. The following suggestions for future research can be divided into 2 categories.

Technical suggestions are proposed to add more fidelity and progress closer to the objective

microservices discussed within (Murphy & Moreland, 2021). Cosmetic suggestions are proposed

to increase the usability of the prototype applications.

TECHNICAL

• Service Mesh with mTLS

• Distributed clusters (e.g., sensor management, track management, command and control)

• Add representative gaussian delays to each microservice. Determine and add based upon

historical data. This will make the prototype and analysis likely classified for some safety

critical systems (e.g., weapon systems).

COSMETIC

• Plot flight data.

https://www.cncf.io/
https://github.com/amurp003/dss-prototype

 114

• Add more flight center points beyond Dulles (IAD) and Richmond (RIC) airports. Consider

manual latitude and longitude entry with a variable range to extend from the center point

(e.g., 60 NM).

• Add flight motion on the user interface plot.

• Add selection from live flights and associated kinematics in DSS calculated responses (e.g.,

Trial Engage, Weapon Assessment).

 115

REFERENCES

Abbott, D. (2017). Linux for Embedded and Real-time Applications (4th Edition ed.). Newnes.

AFCEA. (2019). Defense Department’s DevSecOps Initiative Is on the Move.

https://www.afcea.org/content/node/20892/

Ahn, J., DeAngelis, D., & Barber, S. (2007). Attitude Driven Team Formation using Multi-

Dimensional Trust 2007 IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT'07),

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M., & Steinder, M. (2015, 28-30 Sept.

2015). Performance Evaluation of Microservices Architectures using Containers 2015

International Symposium on Network Computing and Applications, Cambridge, MA.

Arciszewski, H. F. R., de Greef, T. E., & van Delft, J. H. (2009). Adaptive Automation in a Naval

Combat Management System. IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans, 39(6).

AWS. (2022). Amazon EC2 Instance Types. Amazon Web Services. Retrieved June 29 from

https://aws.amazon.com/ec2/instance-types/

BCM2711 ARM Peripherals. (2022). https://datasheets.raspberrypi.com/bcm2711/bcm2711-

peripherals.pdf

Beck, K., Beddle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,

J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S.,

Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for Agile Software

Development. https://agilemanifesto.org

https://www.afcea.org/content/node/20892/
https://aws.amazon.com/ec2/instance-types/
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://agilemanifesto.org/

 116

Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2019). Microservices in Industry: Insights

into Technologies, Characteristics, and Software Quality 2019 IEEE International

Conference on Software Architecture Companion (ICSA-C),

Bonér, J., Farley, D., Kuhn, R., & Thompson, M. (2014, 16 September 2014). The Reactive

Manifesto, v2.0. Retrieved 25 December from https://www.reactivemanifesto.org

Brown, S. (2019). Software Architecture for Developer, Volume 2.

https://leanpub.com/visualising-software-architecture

Bruza, M., & Reith, M. (2018). Teaming with Silicon Valley to Enable Multi-Domain Command

and Control. International Conference on Cyber Warfare and Security,

Bruza, M. R. (2018). An Analysis of Multi-Domain Command and Control and the Development

of Software Solutions through DevOps Toolsets and Practices Air Force Institute of

Technology].

Coccia, M. (2017). The Fishbone diagram to identify, systemize and analyze the sources of

general purpose technologies. Journal of Social and Adminstrative Sciences, 4(4), 291-

303. https://doi.org/10.1453/jsas.v4i4.1518

Dobbelaere, P., & Esmaili, K. S. (2017). Industry paper: Kafka versus RabbitMQ: A comparative

study of two industry reference publish/subscribe implementations, Association for

Computing Machinery, Inc.

DoD. (2019). DoD Enterprise DevSecOps Reference Design, Version 1.0. DoD CIO Retrieved from

https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%2

0Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583

https://www.reactivemanifesto.org/
https://leanpub.com/visualising-software-architecture
https://doi.org/10.1453/jsas.v4i4.1518
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583

 117

Endsley, M. R. (1987). The Application of Human Factors to the Development of Expert Systems

for Advanced Cockpits. Human Factors Society - 31st Annual Meeting,

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014, 21 July 2014). An Updated Performance

Comparison of Virtual Machines and Linux Containers 2015 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia,

PA.

Fernåndez-Villamor, J. I., Iglesias, C. Á., & Garijo, M. (2010). Microservices: LIghtweight Service

Descriptions for REST Architectural Style ICAART 2010, Valencia, Spain.

Firesmith, D. (2019, 5 August). Mission Thread Analysis Using End-to-End Data Flows - Part 1.

Retrieved 5 May from https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-

analysis-using-end-to-end-data-flows---part-1.html

Fowler, S. J. (2016). Production-Ready Microservices. O’Reilly Media, Inc.

Gannon, D., Barga, R., & Sundaresan, N. (2017). Cloud-Native Application. IEEE Cloud

Computing(September/October 2017), 16-21.

Goodhope, K., Koshy, J., Kreps, J., Narkhede, N., Park, R., Rao, J., & Ye, Y. (2012). Building

LinkedIn’s Real-time Activity Data Pipeline. Bulletin of the IEEE Computer Society

Technical Committee on Data Engineering, 35(2), 33-45.

Google. (2020, 20 April). Pod. Google. Retrieved 25 April from

https://cloud.google.com/kubernetes-engine/docs/concepts/pod

Grandison, T., & Sloman, M. (2000). A Survey of Trust in Internet Applications. IEEE

Communications Surveys & Tutorials.

https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-1.html
https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-1.html
https://cloud.google.com/kubernetes-engine/docs/concepts/pod

 118

Grant, C., & Osanloo, A. (2014). Understanding, Selecting, and Integrating a Theoretical

Framework in Dissertation Research: Creating the Blueprint for Your “House”.

Administrative Issues Journal Education Practice and Research.

https://doi.org/10.5929/2014.4.2.9

Griffor, E. R., Greer, C., Wollman, D. A., & Burns, M. J. (2017). Framework for Cyber-Physical

Systems: Volume 2, Working Group Reports (NIST SP 1500-202).

https://doi.org/10.6028/NIST.SP.1500-202

Gruber, T. R. (1993). Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. International Journal Human-Centered Studies, 43, 907-928.

Huang, J. (2018). From Big Data to Knowledge: Issues of Provenance, Trust, and Scientific

Computing Integrity 2018 International Conference on Big Data, Seattle, WA.

Huang, J., Gheorghe, A., Handley, H., Pazos, P., Pinto, A., Kovacic, S., Collins, A., Keating, C.,

Sousa-Poza, A., Rabadi, G., Unal, R., Cotter, T., Landaeta, R., & Daniels, C. (2020).

Towards digital engineering: the advent of digital systems engineering. Int. J. System of

Systems Engineering, 10(3), 234-261.

Humble, J., & Farley, D. (2011). Continuous Delivery. Addison-Wesley.

INCOSE. (2015). INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes

and Activities, 4th Edition. Wiley.

ISO/IEC/IEEE. (2008). 12207-2008 - ISO/IEC/IEEE International Standard - Systems and software

engineering -- Software life cycle processes. In: IEEE.

ISO/IEC/IEEE. (2015). ISO/IEC/IEEE 15288, Systems and software engineering — System life

cycle processes. In: IEEE.

https://doi.org/10.5929/2014.4.2.9
https://doi.org/10.6028/NIST.SP.1500-202

 119

Jamshidi, M. (2009). Control of System of Systems INDIN, Cardiff, UK.

Janetakis, N. (2017, 2 July). Virtual Machines vs Docker Containers YouTube.

https://www.youtube.com/watch?v=TvnZTi_gaNc

John, V., & Liu, X. (2017). A Survey of Distributed Message Broker Queues.

Kho Lin, S., Altaf, U., Jayaputera, G., Li, J., Marques, D., Meggyesy, D., Sarwar, S., Sharma, S.,

Voorsluys, W., Sinnott, R., Novak, A., Nguyen, V., & Pash, K. (2018). Auto-Scaling a

Defence Application across the Cloud Using Docker and Kubernetes 2018 IEEE/ACM

International Conference on Utility and Cloud Computing Companion (UCC Companion),

Krug, S. (2014). Don’t Make Me Think, Revisited: A Common Sense Approach to Web Usability.

Ledeul, A., Millan, G. S., Savulescu, A., & Styczen, B. (2019, 7-11 October). Data Streaming with

Apache Kafka for CERN Supervision, Control, and Data Acquisition System for Radiation

and Environmental Protection. International Conference on Accelerator and Large

Experimental Physics Control Systems (ICALEPCS), New York, NY, USA.

Lewis, J., & Fowler, M. (2014, 1 March). Microservices.

https://martinfowler.com/articles/microservices.html

Li, W., Lemieux, Y., Gao, J., Zhao, Z., & Han, Y. (2019). Service Mesh: Challenges, State of the Art,

and Future Research Opportunities 2019 IEEE International Conference on Service-

Oriented System Engineering (SOSE),

Martin, R. C. (2017). Clean Architecture: A Craftsman's Guide to Software Structure and Design,

First Edition. Prentice Hall.

https://www.youtube.com/watch?v=TvnZTi_gaNc
https://martinfowler.com/articles/microservices.html

 120

Matei, I., Baras, J. S., & Jiang, T. (2009). A Composite Trust Model and its Application to

Collaborative Distributed Information Fusion. 12th International Conference on

Information Fusion, Seattle, WA.

Mayer, B., & Weinreich, R. (2018). An Approach to Extract the Architecture of Microservice-

Based Software Systems 2018 IEEE Symposium on Service-Oriented System Engineering

(SOSE),

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering, SE-

2(4), 308-320.

Moreland, J. D., Sarkani, S., & Mazzuchi, T. (2014). Service-Oriented Architecture (SOA)

Instantiation within a Hard Real-Time, Deterministic Combat System Environment.

INCOSE Systems Engineering, 17(3), 264-277. https://doi.org/10.1002/sys.21268

Moreland Jr., J. D. (2013). Service-Oriented Architecture (SOA) Instantiation Within a Hard Real-

Time, Deterministic Combat System Environment [Dissertation, The George Washington

University]. ProQuest.

Murphy, A., & Moreland, J. (2021). Integrating AI Microservices into Hard-Real-Time SoS to

Ensure Trustworthiness of Digital Enterprise Using Mission Engineering. JIDPS, 25(1), 38-

54. https://doi.org/10.3233/JID-210013

Nikdel, Z., Gao, B., & Neville, S. W. (2017). DockerSim: Full-stack Simulation of Container-based

Software-as-a-Service (SaaS) Cloud Deployments and Environments 2017 IEEE Pacific

Rim Conference on Communications, Computers and Signal Processing (PACRIM),

OMG. (2015). OMG Unified Modeling Language (OMG UML), Version 2.5.

https://www.omg.org/spec/UML/2.5/PDF

https://doi.org/10.1002/sys.21268
https://doi.org/10.3233/JID-210013
https://www.omg.org/spec/UML/2.5/PDF

 121

OpenSky. (2021). The OpenSky Network API. Retrieved July 1 from

https://openskynetwork.github.io/opensky-api/

OpenTelemetry. (2022). OpenTelemetry Homepage. Retrieved 1 July from

https://opentelemetry.io

OUSD(R&E). (2020). Mission Engineering Guide.

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A Model for Types and Levels of

Human Interaction with Automation. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 30(3), 286-297.

https://doi.org/10.1109/3468.844354

Piraghaj, S. F., Dastjerdi, A. V., Calheiros, R. N., & Buyya, R. (2017). ContainerCloudSim: An

environment for modeling and simulation of containers in cloud data centers. In

Software - Practice and Experience (Vol. 47, pp. 505-521): John Wiley and Sons Ltd.

Pollard, J. R. (1991). Combat Systems Vision 2030: Functional Architecture for Future Shipboard

Combat Systems. https://apps.dtic.mil/dtic/tr/fulltext/u2/a252668.pdf

Pratt, J. (2022). ODU CCI Research Environment. In A. Murphy (Ed.), (Discussions between J.

Pratt and A. Murphy regarding the CCI capabilities ed.).

Richards, M. (2015). Software Architecture Patterns. O’Reilly Media, Inc.

Roa, M., Cantrell, W., Cartes, D., & Nelson, M. (2011). Requirements for deterministic control

systems.

Rodola, G. (2022). psutil documentation. Retrieved 28 Sep from https://psutil.readthedocs.io/

https://openskynetwork.github.io/opensky-api/
https://opentelemetry.io/
https://doi.org/10.1109/3468.844354
https://apps.dtic.mil/dtic/tr/fulltext/u2/a252668.pdf
https://psutil.readthedocs.io/

 122

Scrucca, L., Fop, M., Murphy, T. B., & Raferty, A. E. (2016). mclust 5: Clustering, Classification

and Density Estimation Using Gaussian Finite Mixture Models. The R Journal, 8(1), 289-

317.

Siangchokyoo, N., & Sousa-Poza, A. A. (2012). Research Methodologies: A Look at the

Underlying Philosophical Foundations of Research. 2012 International Annual

Conference of the American Society for Engineering Management,

Sotomayor, J. P., Allala, S. C., Alt, P., Phillips, J., King, T. M., & Clarke, P. J. (2019). Comparison of

Runtime Testing Tools for Microservices 2019 IEEE 43rd Annual Computer Software and

Applications Conference (COMPSAC),

Tucker, A. (2022). Deployment of DSS Prototype on ODU CCI Research Environment. In A.

Murphy (Ed.), (Discussion between A. Tucker and A. Murphy regarding the CCI

deployment ed.).

W3C. (2010). RDF Vocabulary Description Language 1.0: RDF Schema (RDFS). Retrieved 30 Jan

from https://www.w3.org/2001/sw/wiki/RDFS

Walsh, D., & Duffy, M. (2015). The Container Coloring Book. Who’s Afraid of the Big Bad Wolf?

In: Red Hat.

Wang, R. R. (2011, 1 Mar 2020). Opher Etzion on Four Types of Real-time.

http://blog.softwareinsider.org/2011/06/20/mondays-musings-real-time-versus-right-

time-and-the-dawn-of-engagement-apps/screen-shot-2011-06-20-at-6-38-45-am

Wei, T., Malhotra, M., Gao, B., Bednar, T., Jacoby, D., & Coady, Y. (2018). No Such thing as a

“Free Lunch”? - Systematic Benchmarking of Containers. 2018 IEEE/ACM International

Conference on Utility and Cloud Computing Companion (UCC Companion),

https://www.w3.org/2001/sw/wiki/RDFS
http://blog.softwareinsider.org/2011/06/20/mondays-musings-real-time-versus-right-time-and-the-dawn-of-engagement-apps/screen-shot-2011-06-20-at-6-38-45-am
http://blog.softwareinsider.org/2011/06/20/mondays-musings-real-time-versus-right-time-and-the-dawn-of-engagement-apps/screen-shot-2011-06-20-at-6-38-45-am

 123

Wiggins, A. (2017). The Twelve-Factor App. Retrieved 1 March from https://12factor.net

Wong, K. C., Woo, K. Z., & Woo, K. H. (2016). Ishikawa Diagram. In Quality Improvement in

Behavioral Health (pp. 119-132). https://doi.org/10.1007/978-3-319-26209-3_9

Wu, H., Shang, Z., & Wolter, K. (2019). TRAK: A Testing Tool for Studying the Reliability of Data

Delivery in Apache Kafka 2019 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW),

https://12factor.net/
https://doi.org/10.1007/978-3-319-26209-3_9

 124

VITA

Alvin Cornelius Murphy
Engineering Management and Systems Engineering (EMSE) Department, Old Dominion

University, 2101 Engineering Systems Building, Norfolk, VA 23529

Education

Dec 2022 Ph.D. Engineering Management and Systems Engineering. Old Dominion

University, Norfolk, VA
Jan 2007 M.E. Systems Engineering. George Mason University, Fairfax, VA
May 1991 B.S. Electrical Engineering. Virginia Tech, Blacksburg, VA

Work Experience

Jun 1991 – 1996 Naval Surface Warfare Center Port Hueneme Division – Dahlgren

Detachment. Dahlgren, VA
2006 – Present Naval Surface Warfare Center Dahlgren Division. Dahlgren, VA

Dr. Murphy is a Principal Engineer within the Integrated Combat Systems Department at NSWC
Dahlgren. He has spent the past 31 years engineering, developing, testing, integrating, and
assessing Warfare Systems and C4I for AEGIS, the Navy, and Joint Warfighter. In 1999, Dr.
Murphy broadened his focus from individual platforms to strike force systems engineering as a
plank holder in the development of the Navy’s Distributed Engineering Plant (DEP) and Battle
Force Interoperability Requirements (BFIR) and Metrics definition. Dr. Murphy currently leads
combat system requirements and architecture development for Future Navy surface platforms
and surface Navy Enterprise as the Chief System-of-Systems Engineer for the Navy’s Integrated
Combat System (ICS). Additionally, Dr. Murphy leads surface Navy combat system DevSecOps
initiatives and associated collaboration at Naval and DoD levels.

Selected Publications

Murphy, A., & Moreland, J. (2021). Integrating AI Microservices into Hard-Real-Time SoS
to Ensure Trustworthiness of Digital Enterprise Using Mission Engineering. JIDPS, 25(1), 38-54.
doi:10.3233/JID-210013

Richardson, David S; Slavin, Jerico; Lohr, Barret; Haas, Doug; Allen, Justin; Brandts, Kirk;
Murphy, Alvin; Quinnan, Bob; Fitzsimmons, Jay. “Virtualization Roadmap: A Strategy for
Deploying Virtualized Combat Systems to Surface Navy Ships.” NSWCDD/TR-19/278,
March 2020.

Schroeder, Eric; Murphy, Alvin. “Modeling a Modular Integrated Laser System Kill Chain
to Support Design and Integration Trades.” NSWCDD/MP-19/108 (DTIC: AD1072569), February
2019.

	Hard-Real-Time Computing Performance in a Cloud Environment
	Recommended Citation

	INTRODUCTION
	1.1 THEORETICAL FORMULATION
	Microservices
	Virtual Machines vs. Containers
	Cloud-native Applications
	Twelve-Factor Application
	Reactive Manifesto
	SOLID Principles

	1.2 PURPOSE
	1.3 PROBLEM STATEMENT AND RESEARCH QUESTIONS
	Questions

	2 BACKGROUND OF THE STUDY
	2.1 REVIEW OF PRIOR RESEARCH
	Container Based Microservice Performance (Q1)
	Architecture Analysis Tools (Q2)
	C2 Implementations (Q3)
	Cloud Computing Architecture (Q4)

	2.2 LIMITATIONS OF EXISTING STUDIES

	3 METHODOLOGY
	3.1 Methodological Approach
	3.2 Conceptual Analysis Framework
	Independent Variables
	Dependent Variables
	Predictions and Hypothesis

	3.3 Mission Context
	3.4 Useability of CMS/AI
	3.5 Experiment Design
	3.6 Software Implementation
	DSS Applications (Microservices)
	Tools (Service Applications)

	3.7 COMPUTING INFRASTRUCTURE
	Home Lab
	Amazon Web Services
	ODU COVA CCI

	3.8 Telemetry Collection
	OpenTelemery
	I/O Metrics

	4 RESULTS
	4.1 Load Data Files
	4.2 Convert Data into Useable Metrics
	4.3 Exploratory Data Analysis
	Cluster Analysis
	Internal Data Analysis
	External Data Analysis
	Shapiro-Wilk Test for Normal Distribution

	4.4 Hypothesis Testing
	t-Test (Internal Use Case Data)
	Binomial Tests
	All Use Case Data
	External Use Case Data

	5 DISCUSSION
	5.1 OVERVIEW OF FINDINGS
	PRIMARY HYPOTHESIS
	General Discussion of Normality
	Hypothesis Results
	DSS Prototype Environment

	HYPOTHESIS DERIVED FROM QUESTIONS
	Hypothesis H1
	Hypothesis H2
	Hypothesis H3
	Hypothesis H4

	5.2 RESEARCH IMPLICATIONS
	5.3 RESEARCH LIMITATIONS

	6 CONCLUSIONS
	6.1 PRIMARY CONTRIBUTIONS OF THIS STUDY
	6.2 WIDENING THE SCOPE
	6.3 SUGGESTIONS FOR FUTURE RESEARCH
	TECHNICAL
	COSMETIC

