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ABSTRACT 

NUMERICAL SIMULATION OF ELECTROOSMOTIC FLOW OF  

VISCOELASTIC FLUID IN MICROCHANNEL 

 

Jianyu Ji 

Old Dominion University, 2022 

Director: Dr. Xiaoyu Zhang 

 

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic 

applications, many of which often involve the use of viscoelastic non-Newtonian fluids. Due to 

the existence of the elastic effect, the viscoelastic EOF develops into chaotic flow under extremely 

low Reynolds numbers, which is known as elastic turbulence. The mechanism of elastic turbulence 

in electroosmotic flow remains unclear. Numerical simulation plays an important role in 

understanding the mechanisms of elastic turbulence. This dissertation is aimed to study the EOF 

of viscoelastic fluids in constriction microchannels under various direct current (DC) and 

alternating current (AC) electric fields. First, the EOF of viscoelastic fluid in a straight contraction 

microchannel is investigated. The influences of the polymer concentration and the applied DC 

electric field on the elastic instabilities are analyzed. The flow fluctuations and secondary upstream 

vortices before the entrance of the microchannel are found to be related to the induced elastic stress 

within the microchannel. The polymer concentration shows a more significant influence on the 

elastic instability. A flow map in polymer concentration and electric field domain is formed as 

guidance for further studies. 

Then, the study is extended to the viscoelastic EOF in a microchannel with 90◦ bends under the 

combination of DC and AC electric fields. The elastic turbulence is identified from the fluctuation 

of the velocity field and upstream vortices. The energy spectra of the velocity fluctuation show 

power-law decay over a wide range of frequencies, which is a typical characteristic of elastic 



turbulence. The 90◦ bends show influence on the dye concentration profile in cross sections of the 

microchannel. A more even dye concentration distribution is obtained with an increasing number 

of 90◦ bends. Moreover, the opening angle of the particle trace at the exit of the contraction 

microchannel show dependency on the frequency of the AC electric field, which is related to the 

characteristic frequency of the viscoelastic EOF. 

The study is then focused on the influence of the frequency of the AC electric field on the 

viscoelastic EOF. Short contraction microchannels are adopted for the frequency study. The peak 

in the energy spectra of the velocity fluctuation under DC electric field indicates the characteristic 

frequency of the viscoelastic EOF. Under AC electric field, the highest amplitude of the energy 

spectra is obtained when the frequency of AC electric field is close to the characteristic frequency. 

The same trend is also observed in the statistical results of the average velocity. However, when 

the frequency is relatively high, both the amplitude of the energy spectra and the average velocity 

decrease to a level even lower than under a DC electric field, which indicates the existence of an 

optimal frequency of the AC electric field in order to achieve the highest flow rate. 
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NOMENCLATURE 

Re Reynolds number 

Wi Weissenberg number 

El Elastic number 

  Shear gradient 

ρ  Volumetric density of the fluid 

F  Faraday’s constant 

R  Universal gas constant 

T  Absolute temperature 

0c  Bulk salt concentration 

  Total electric potential 

Ext  Externally applied electric potential 

  Intrinsic electric potential 

  Wall zeta potential 

E  Volumetric charge density 

iz  Valence of ionic species i 

N  Total number of ionic species 

0ic  Ionic concentration of ionic species i 

f  Permittivity of the electrolyte solution 

s  Solvent viscosity 

p  Polymeric viscosity 



viii 

 

0  Total viscosity 

  Relaxation time of polymer molecules 

D  Debye length 

1N  First normal stress difference 

Q   End-to-end connector vector of the polymer chains 

   Slip parameter of network in PTT model 
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CHAPTER 1 

INTRODUCTION 

1.1 Microfluidics 

In various physical, chemical, and biological applications, utilizing microsystems has many 

advantages over traditional macro-scale devices, such as low sample consumption, quick response 

time, high throughput, and heat and mass transfer improvement. Microfluidics refers to the science 

related to the behavior, precise control, and manipulation of fluids in constrained microchannels 

[1-4], which involves a wide range of disciplines, such as engineering, chemistry, biochemistry, 

physics, nanotechnology, and biotechnology. Additionally, it is used to create microfluidic systems 

and devices with chambers and tunnels through which fluids can flow or be contained. The 

development of microfluidic systems was initially motivated by the demand for micro-analytical 

tools for biological and chemical applications [5-9]. In the past few decades, significant advances 

in microfabrication technology have boosted various practical applications for microfluidic 

devices, such as lab-on-a-chip technology for transporting [10, 11], mixing [12-14], separating [15, 

16], or otherwise processing fluids with features of small volumes or small sizes [17]. Due to a 

high surface-to-volume ratio, fluid handling at the microscale can differ from macro devices. At 

the macro-scale, fluid volume effects dominate over surface effects, and the flow is driven by 

pressure gradients or gravitational force. However, on the microscale, a significant difference is 

the dominance of surface forces, such as surface tension or viscous friction over body forces, such 

as inertia, which can lead to exciting phenomena and can be exploited for new uses. For example, 

very low Reynolds numbers are always expected for microfluidic devices, of which an essential 

consequence is that flow becomes laminar rather than turbulent, and co-flowing fluids do not 

necessarily mix in the traditional sense. Another example is capillarity, which is negligible in 
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macro devices. However, it becomes significant in microchannels and can be used to lead solutions 

into microchannels [18-20]. When comparing microfluidic devices to normally sized systems, 

there are various advantages. Microfluidics’ small volume makes it possible to analyze and use 

fewer samples, chemicals, and reagents, saving pricey samples and lowering overall application 

costs. The compact sizes of the microfluidic devices allow integration and many operations 

executed at the same time, shortening the time of the experiment. The design of the microfluidic 

chip is such that the incorporation of automation enables the user to produce multi-step reactions 

with little technical knowledge and many functionalities With the aforementioned advantages of 

microfluidics and the rapid development of micro-fabrication technologies since the emergence at 

the beginning of the 1980s, microfluidics has been used in various advanced applications, such as 

molecular biology [21, 22], DNA analysis [23], polymer processing [24], bio-fluid and food 

science [25] and the list goes on. 

1.2 Viscoelastic fluid 

1.2.1 Properties of viscoelastic fluid 

In electroosmotic flow, the working fluid is typically an electrolyte solution, such as a KCL 

aqueous solution, which can be simply described by the well-known Newtonian law of viscosity. 

The Newtonian model assumes a constant viscosity tensor and a linear relationship between the 

shear stress and the local shear rate, which is the simplest mathematical model of fluids that 

account for viscosity. In reality, no real fluid fits the definition perfectly. Particularly, in many 

practical applications, solutions show strong viscoelasticity due to the additives of fluids with 

complex structures. Viscoelastic fluid exhibits both viscous and elastic characteristics when stress 

is applied and always shows non-linear properties. Some typical characteristics of viscoelastic 

fluid include creep, anisotropy, stress relaxation, the presence of normal stress differences in shear 
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flow, and hysteresis phenomenon [26]. These characteristics are interactively connected, resulting 

in some distinctive behaviors of viscoelastic fluid flow. 

The elastic effect of the viscoelastic fluids originates from the polymer structure in the fluid. 

As illustrated in Figure 1.1, the polymers are in a coiled configuration when the shear gradient  

 is small. Once shear gradients become large enough, the elastic polymers are 

stretched and acquire an average orientation making the fluid anisotropic. As a result, a normal 

stress difference N1 ≡ τp,xx − τp,yy is built up, which is the most important effect [27] of polymer 

solutions. In the above equation, τp,xx is the normal stress along the flow direction and τp,yy is the 

normal stress in the transverse flow direction. For simple shear flows of Newtonian fluids, τxx = τyy 

= 0, and therefore, N1 = 0. In viscoelastic fluids, however, N1 increases quadratically with the 

increase of shear rate . 

 

Figure 1.1 Qualitative illustration of the coiled and stretched configurations of the polymer molecules in a 

simple shear flow vx(y) in the x direction. (a) For small velocity gradients, the polymers are circularly 

symmetric without deformation. (b) At large shear rates, the polymers are stretched and oriented, 

resulting in the normal stress difference. [28] 



4 

 

For viscoelastic fluids, the relevant dimensionless numbers characterizing the fluid rheology 

include the Reynolds number Re, the Weissenberg number Wi, and the Elasticity number El. For 

elastic polymers, the viscosity increases rapidly with the polymer length [29]. Therefore, the 

inertial effects are usually small since the Reynolds number Re is inversely proportional to the 

viscosity, which is defined as 
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where D is the characteristic length scale, U0 is the velocity of the flow, ρ is the fluid density, and 

η0 is viscosity. 

Since the Reynolds number Re is small for fluids with a high degree of polymerization, the 

Weissenberg number Wi is another more important quantitative characterization for the rheology 

of sufficiently long polymers, which measures the elasticity level of fluids and is defined as the 

ratio between the relaxation time of the polymers and the characteristic flow time as 

 0 ,
U
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(1.2) 

The relaxation time λ accounts for the time scale on which a stretched polymer blob to its 

equilibrium scape in the absence of shear. The limiting case λ →∞ corresponds to the purely elastic 

material, while λ →0 corresponds to the viscous material. For Wi << 1, the fluid behaves essentially 

like a regular Newtonian fluid, while when Wi is around one or larger than one, the viscoelastic 

properties make the polymer solutions complex and very different from a Newtonian fluid. 

In order to evaluate the relative strength of the elastic and inertial effects, another important 

dimensionless number, Elasticity number El for viscoelastic fluid, is defined as the ratio between 

Wi and Re as 
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In microfluidic systems, viscoelastic fluid flow is typically characterized by a low Reynolds 

number, high Weissenberg number, and high Elasticity number. When the Weissenberg number 

is around or larger than 1, the characteristic time is relatively small compared to the relaxation 

time of the polymer. Hence the stretched polymer molecules do not have enough time to return to 

the original coiled configuration. Under such flow conditions, the viscoelastic effect dominates 

over the fluid inertia making the flow different from Newtonian fluids. 

1.2.2 Elastic instability 

For Newtonian fluids, the flow regime is characterized by the Reynolds number. When the 

Reynolds number is low, the flow is in a laminar flow regime. When the Reynolds number is 

relatively high, the stable laminar flow develops into turbulence with instabilities due to the 

nonlinearity of the inertial force. In microchannels, due to the small scale, the Reynolds number is 

always rather small, and inertial nonlinearity is negligible. However, flow instabilities of 

viscoelastic fluids have been widely reported even under extremely low Reynolds numbers [30-

32]. Such instability and turbulence without the inertia of zero-Reynolds number flow were first 

systematically studied in a Taylor-Couette cell [30], where viscoelastic fluid flows in concentric 

rotating cylinders. Wave structures propagating in both the radial and axial directions were 

observed, and the wavelength and wave number are determined by the curvature, time, and 

Weissenberg number. Such instability was called elastic instability and turbulence. It has been 

reported that viscoelastic flows tend to become linearly unstable due to the existence of extra 

normal stress when there are curvature streamlines in the flow [30, 33, 34]. As illustrated in Figure 

1.2 (a), when the Weissenberg number is larger than 1, the polymer is stretched by the shear 

gradients. Due to the larger curvature and larger shear near the center, the inner side of the polymer 
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from the upstream stretches and rotates, resulting in a new configuration downstream. Therefore, 

the polymer is pulled towards the center when curvature exits in the streamline, which also explains 

the mechanism of the rod-climbing effect [27] of viscoelastic fluids. In a confined curve flow with 

Weissenberg numbers larger than 1, the significant normal stress effect tends to pull the fluid 

element in towards the center region with higher curvature. Therefore, a slightly perturbed flow 

regime is illustrated in Figure 1.2 (b). Some of the fluid elements move inwards towards regions 

with larger shear, and some fluid elements move outwards. The pulling force increases near the 

center with stronger shear, while the force decreases far away from the center. Thus, the perturbing 

effect is self-enhancing, resulting in an unstable flow when the pulling force is large enough. 

 

Figure 1.2. Qualitative sketch of a flow situation with curved streamlines. When the Weissenberg number 

is large enough, the normal stress is significant. The normal forces tend to pull a fluid element in towards 

the region of the largest curvature of the streamlines and largest flow rate. (a) The polymer from upstream 

is stretched and oriented by the flow to a new situation downstream. Effectively, the polymer is pulled 

inwards. (b) Small perturbations of the streamlines (the full lines) show that fluid elements that are 

displaced inwards towards regions of larger curvature are pulled in even more, and the fluid elements that 

are displaced outwards are being pulled in less, resulting in an unstable flow. [28] 
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Since Rayleigh first proposed the concept of elasticity-induced instability in 1880 [35], 

viscoelastic fluids have attracted numerous researchers’ attention. The elastic instability and 

turbulence greatly enrich the flow behaviors of the viscoelastic fluid in microscales and nanoscales. 

Much more attention has been paid to elastic instability in microchannels recently due to their 

practical applications in the improvement of mixing performance and enhancement of heat transfer 

in microdevices [36-38]. Various flow conditions have been investigated experimentally and 

theoretically, such as some typical flow geometries investigating elastic instability, as illustrated 

in Figure 1.3. The flow conditions can be summarized in three main categories: (1) shear-

dominated flow, which refers to the flow that the velocity gradient direction is perpendicular to 

the flow direction, such as flows between two parallel plates [39, 40], flows in the cavity [34, 41], 

flows in serpentine channels [42, 43], Taylor-Couette flow [44]; (2) extension dominated flow, 

which refers to the flow with strong stream-wise velocity gradients, and often occurs in 

contraction-expansion channels [45-47], stagnation point flows (cross-slot [31, 48], T- and Y-

shaped channels [49, 50]); and others [33, 51, 52]. 

 

Figure 1.3. Schematic geometries of several flow conditions investigated for the elastic instabilities of 

viscoelastic fluids: (a) flow in cross-slot, (b) flow in Y-shape channel, (c) flow in serpentine channel, (d) 

flow in contraction/expansion channel, (e) flow past solid obstacles. 



8 

 

1.2.3 High Weissenberg Number Problem 

The research on numerical solutions to non-Newtonian flow problems has grown rapidly since 

the early 1970s. Descriptions and applications of a wide range of sophisticated techniques have 

been described and applied for the solution of highly non-trivial flows through complex geometries 

and at high Deborah numbers. Initially, researchers attempted to modify the algorithms and 

methods previously used to solve Newtonian flow issues. However, the results were disappointing 

for the simulation of flows with highly elastic liquids. The early computations were plagued by a 

loss of convergence of numerical algorithm at relatively low measures of the fluid elasticity [53], 

which is quantified by the Weissenberg number (Wi). Such numerical instability was found in a 

wide range of viscoelastic models for various numerical techniques, and they were commonly 

associated with a loss of resolution of discretization methods to solve the exponential growth of 

stresses at critical points [54]. The critical values of Wi can be improved depending on the type of 

viscoelastic fluid and the numerical methods and discretization schemes utilized but they cannot 

be eliminated. For example, Crochet and Keunings [55, 56] found that the domain of convergence 

in Wi was significantly larger than using an Oldroyd B model rather than an upper-convected 

Maxwell (UCM) model in die swell problems, but they still encountered a limiting value. This is 

the so-called ‘High Weissenberg Number Problem (HWNP)’, which has been one of the major 

outstanding problems in the numerical simulation of non-Newtonian flow. 

The origin of the HWNP has been lately discovered. As mentioned earlier, by definition, the 

conformation tensor should be symmetric positive definite. However, the conformation tensor was 

found to lose the positive-definiteness when Wi is relatively high, which is a precursor of the 

HWNP [57, 58]. Moreover, the viscoelastic flows tend to have stress boundary layers with large 

variations in the stress gradients, such as exponential stress profiles near geometrical singularities 
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[59]. It is very challenging to accurately present the stress gradients due to the polynomial 

interpolations of exponential profiles. The numerical instabilities were found to be arising from 

the under-resolution of spatial stress profiles [58, 60]. 

Several techniques have been developed to solve the HWNP by enforcing the positiveness of 

the conformation tensor. For example, using the eigendecomposition and the Cholesky 

decomposition of the conformation tensor, Vaithianathan et al. [61] proposed two matrix 

decomposition-based schemes that can guarantee the positive-definiteness of the conformation 

tensor. Lozinski et al. [62] proposed the square root conformation formula based on the matrix 

decomposition of the conformation tensor with its principal square root. Afonso et al. [63] 

presented a generic kernel-conformation tensor transformation that has been successfully applied 

to various constitutive models. Some other schemes include the stabilized mixed three-field finite 

element method by Kwack et al. [64] and the finite difference-based kernel-conformation tensor 

transformation by Martins et al. [65]. However, the approach that is now most often used is the 

log-conformation method developed by Fattal and Kupferman [54], which involves changing a 

variable while utilizing the matrix logarithm of the conformation tensor. The log-conformation 

representation enhances the depiction of huge stress gradients while still maintaining positive 

definiteness since it linearizes the exponential stress profiles. 

1.3 Electroosmotic flow of viscoelastic fluid 

1.3.1 Electric Double Layer 

An aqueous solution in contact with a dielectric substance causes ion absorption or dissociation 

at the solid/liquid interface, which charges the surface electrostatically. Counter-ions will be drawn 

to the charged surface, while co-ions will be repelled away from it due to the electrostatic 

interaction between the surface charge and the solution's ions. Consequently, near the charged 
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surface, a thin layer of what is known as the "electric double layer" (EDL) forms, where counter-

ions gather and outnumber co-ions. EDL is often thought to consist of two layers, as shown in 

Figure 1.4: the Stern layer near the solid/liquid boundary and the diffusive layer beyond the Stern 

layer. The Stern layer only contains one layer of immobile counter-ions due to the strong 

electrostatic interaction between the surface charge and the counter-ions. Adjacent to the Stern 

layer, there is a thicker and more diffuse layer, where counter-ions dominate over the co-ions, and 

both are mobile. The bulk fluid outside the EDL is electrically neutral. 

The variation of the electric potential across the EDL is plotted in Figure 1.4. The induced 

electric potential gradually decreases to zero in the direction normal to the charged surface since 

it is proportional to the difference between the concentrations of counter-ions and co-ions, which 

gradually decreases with increasing wall distance. The wall surface potential and zeta potential are 

the terms used to describe the potential at the solid/liquid interface (ϕs) and the potential at the 

Stern layer/diffusive layer interface (ϕd). Even though the Stern layer is typically only a few 

angstroms, it should be noted that the wall surface potential is different from the zeta potential 

unless the Stern layer effect is neglected. The electric potential arising from the charged surface 

first linearly reduces from the wall surface potential to the zeta potential within the Stern layer, 

then exponentially decays within the double layer. The zeta potential is often used to approximate 

the wall surface potential due to the difficulty in measuring or quantifying the wall surface 

potential. Beyond the diffusive layer, the charged surface’s electrostatic influence is minimal, and 

the net charge almost disappears [66, 67]. The thickness of the EDL is dependent on the bulk salt 

concentration, which is characterized by a Debye Length 𝜆𝐷: 
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where εf is the permittivity of the electrolyte solution; F is Faraday’s constant; R is the universal 

gas constant; T is the absolute temperature; zi is the valence of the ionic species; N is the total 

number of ionic species; ci0 is the bulk salt concentration. 

Under equilibrium conditions, the concentration of the ith ionic species, ci, can be described by 

the Boltzmann equation, 
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where ϕ is the electric potential arising from the charged surface, which is governed by the Poisson 

equation: 
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In the above, ε0 is the absolute permittivity in a vacuum; and E is the mobile space charge 

density, which can be described by: 
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Substituting Equation (1.5) and Equation (1.7) into Equation (1.6), the Poisson-Boltzmann (PB) 

equation can be obtained to describe the electric potential distribution near a charged surface, 
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If the absolute value of the valence of all species is equivalent, i.e., 
iz z=  for i = 1-N, the PB 

equation can be further simplified as: 
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With 1 2 2

0 0/ 2D f RT z F c   − = =  being the Debye length, and c0 being the bulk 

concentration of all counter-ions or co-ions. 

If 
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, Equation (1.9) can be linearized by the Debye-Huckel

approximation [67] 

 2 2 ,   =  (1.10) 

based on which the electrical potential decays exponentially away from the charged surface. 

When brought into contact with an electrolyte, the majority of materials (such as silicon 

substrates or glass) utilized in the construction of microfluidic devices spontaneously acquire a 

surface electric charge. Therefore, selecting the proper materials to stimulate EOF is important. 

The zeta potential varies depending on the solid surface as well as the chemicals in the fluid, 

especially the pH of the buffer solution. Table 1.1 provides typical zeta potential values for various 

fluids in contact with PDMS and silica-coated glass. 

Table 1.1 Zeta potentials for different solutions and materials [68]. 

Solution Solution pH 
Zeta potential (mV)  

PDMS Silica-coated glass 

HEPES* 7.2 −59.0 ± 1.4 −57.9 ± 0.6 

Acetate 4.7 −17.2 ± 3.6 −35.5 ± 0.7 

Borate 9.4 −74.4 ± 1.2 −69.5 ± 1.2 

*HEPES: 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid. 
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Figure 1.4. Schematic diagram of the EDL structure, the potential, and ionic concentration profile. 

1.3.2 Electroosmotic flow 

When an external electric field is applied parallel to a negatively or positively charged surface, 

due to the non-neutral charge within the EDL, the interaction between the external electric field 

and the net charges accumulated within the EDL generates an electrostatic force exerting on the 

fluid, driving the fluid toward the cathode or anode, as schematically depicted in Figure 1.5. Such 

fluid motion is called electroosmotic flow (EOF) [69, 70]. EOF was first reported in the flow of 

water within a plug of clay under an external electric potential difference by Resus in 1809 [71]. 

Since then, in-depth investigations into the mechanism of the EOF have been conducted, and much 

later, practical applications such as electrokinetic micro pumps have also been developed. The 

EOF-based micropumps are more desirable and useful than traditional pressure-driven 

micropumps for several advantages. A parabolic velocity profile is commonly observed in 
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pressure-driven flow, which is highly dependent on the characteristic length of the channel. 

Therefore, the velocity of the pressure-driven flow in micro/nano channels is limited to a relatively 

small level. However, the channel height has no effect on the plug-like velocity profile in EOF 

when the EDL is thin. Moreover, the EOF requires less mechanical manufacturing and accurate 

control. Numerous studies have been performed on EOF both experimentally [72-74] and 

theoretically [75, 76] due to the wide applications of EOF in various fields. 

 

Figure 1.5 The schematic diagram of the electroosmotic flow in a microchannel bearing negative surface 

charge. 

The EOF of the incompressible electrolyte solution is governed by the modified Navier-Stokes 

equation by taking into account the electrostatic force, 
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and the continuity equation 

 0, =u
 (1.12) 

where ρ is the volumetric density of the fluid, p is the pressure, and µ is the fluid viscosity. The 

electrochemical ion transport is described by the Poisson-Nernst-Planck equation (PNP). Suppose 
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the electrolyte solution contains N different types of ionic species, and the ionic concentration of 

the ith ionic species is ci. When an external electric field is present in the electrolyte solution, ci is 

governed by the Nernst-Plank equation: 
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where Di is the diffusivity of the ith ionic species, and the electric potential ϕ is described by the 

Poisson equation as shown in Equation (1.6). The above coupled equations system is called the 

NS-PNP system, which is highly nonlinear and computationally intensive. To avoid the 

nonlinearity in the system, many studies have investigated the approximation of the system by 

linearizing the electrochemical model [77, 78]. One of the most commonly used simplifications is 

the Poisson-Boltzmann model, as shown in Equation (1.8), by assuming the ionic species 

distribution follows the Boltzmann equation as described in Equation (1.5). 

1.3.3 Electroosmotic flow of Newtonian fluids 

After the first demonstration of the principle of electroosmosis by Reuss [79] in the 19th century, 

EOF of Newtonian fluids has been extensively investigated analytically [80, 81], numerically [82], 

and experimentally [74] by many researchers over the past 30 years due to the wide range 

applications of EOF. The following section discusses some of the significant studies of Newtonian 

EOF. 

Important parameters of EOF have been investigated based on Newtonian fluids utilizing a 

variety of techniques and methods. The EDL theory was developed by Helmholtz in 1879 [83], 

relating the electric and flow parameters for electrokinetic transport and defining the EDL 

thickness as a function of the relevant physical quantities. Von Smoluchowski [84] expanded on 

Helmholtz’s double layer theory analyzing the situation in which the EDL thickness is 

considerably less than the channel dimensions, and derived a velocity slip condition for EOF. Dutta 
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and Beskok [80] investigated the analytical solution for velocity distribution, mass flow rate, 

pressure gradient, wall shear stress, and vorticity in mixed electroosmotic/pressure-driven flows 

in two-dimensional straight channel geometry. There are numerous analytical and numerical 

studies of fully developed and steady EOF in various geometries. Rice and Whitehead [85] 

theoretically studied the electrokinetic flow in narrow cylindrical capillaries. Levine et al. [86] 

developed a theory of electrokinetic flow in parallel plates considering double layer overlap. Herr 

et al. [87] analytically and experimentally investigated the EOF in cylindrical capillaries with 

nonuniform wall surface charge distributions. The model and experimental results showed that the 

velocity profile and sample-dispersion rate are a function of the local potential and system-average 

potential in the capillary system. Ghosal [88] investigated the effects of slowly varying cross-

section geometry and wall charge on EOF in a microchannel using a lubrication approximation, 

and the pressure gradient introduced by variations in cross-section geometry was found to increase 

the Taylor dispersion. Kim et al. [89] performed a numerical study of EOF using the PB model in 

a straight channel with a groove and a T-junction with a rectangular cross-section. The numerical 

results validated the experimental results of velocity distribution. Kang et al. [90] presented an 

analytical scheme to solve the Poisson-Boltzmann equation for arbitrary zeta potential and 

analyzed the dynamic electroosmotic flow in a cylindrical capillary. The electroosmotic flow for 

microchannels with arbitrary cross-sections and heterogeneous potential was examined in the 

study of Xuan and Li [91]. Yan et al. [92] proposed a model to assess the finite reservoir impacts 

on the EOF in a rectangular microchannel. In addition to the numerous analytical and experimental 

investigations, numerical simulations of the electroosmotic flow in complicated geometries of 

microchannel networks have been performed [93-96]. 
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In many analyses of EOF, the ionic distribution in the electric double layer is assumed to follow 

the equilibrium Boltzmann distribution, and the Poisson-Boltzmann equation is used to describe 

the electric potential induced by the ions [78, 97, 98]. However, in some applications, the 

convective transport of the ions may have significant effects. Park et al. [99] compared the Poisson-

Boltzmann model and the Nernst-Planck equations for the study of steady and unsteady EOF in a 

straight microchannel and an irregular microchannel with sudden expansion and contraction. For 

the EOF thought straight channel, the results of the two models are almost the same in the 

predictions of the EOF when the electric double layer is very thin. However, the results show a 

significant discrepancy when the electric double layer becomes thicker. In the irregular channel, 

the two models show the same dependency on the thickness of the electric double layer. However, 

when the external electric field is relatively high, the PB model predicted circulation in the EOF, 

while the result of the NP model shows no circulation. 

In summary, numerous studies have been performed investigating various conditions and 

models for the EOF of Newtonian fluids. The Newtonian EOF in different geometries has also 

been extensively studied and elaborated by many researchers. However, the more complex EOF 

involving non-Newtonian fluids remains to be better understood, and the literature is rather limited. 

1.3.4 Electroosmotic flow of generalized Newtonian fluids 

A generalized Newtonian fluid (GNF) is a type of non-Newtonian fluid for which the 

constitutive equation is generalized from the Newtonian fluid. The shear stress of a generalized 

Newtonian fluid is a function of shear rate but is not dependent on the history of deformation. 

Generalized Newtonian fluids can be described by the following rheological equation: 

 ( )eff ,   =
 (1.14) 
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where  is the shear stress,  is the shear rate, and ( )eff   denotes an effective viscosity of the 

fluid as a function of the shear rate. Some of the most commonly used types of generalized 

Newtonian fluids include Power-law fluid [100-102], Cross fluid [103, 104], Carreau fluid [104-

106], and Bingham fluid [107-109], etc. 

Due to the generalized constitutive equations, it is relatively easy to obtain exact solutions for 

generalized Newtonian fluids. The EOF of generalized Newtonian fluids has been investigated by 

many researchers focusing on theoretical and analytical solutions [110] and numerical simulation 

[111]. The power-law fluid model is the mostly used straightforward GNF model for the analytical 

solution investigation of fully developed flow conditions. Das and Chakraborty [112] were among 

the first to employ the power-law model to investigate EOF. In their study, an estimation of the 

fully developed velocity and temperature distributions and an explicit expression for solution 

concentration distribution within the microchannel were derived for the EOF in a rectangular 

microchannel. Zhao et al. [110] investigated the analytical expressions for the shear stress, 

dynamic viscosity, and velocity distribution in a slit channel utilizing the power-law model. A 

generalized Smoluchowski velocity is introduced by taking into account contributions due to the 

finite thickness of the electric double layer and the flow behavior index of power-law fluids. Zhao 

et al. [113] reported the numerical results of electroosmotic mobility of a more general Carreau 

non-Newtonian model, presenting the detailed effects of the Weissenberg number, the surface zeta 

potential, and the power-law index on the electroosmotic mobility. Chakraborty [114] developed 

a theoretical model for studying the capillary filling dynamics of a power-law fluid in a 

microchannel. A detailed understanding of the fundamental capillary dynamics can improve the 

design of blook transportive and monitoring microsystems. 
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Noting that presuming a non-Newtonian fluid behaves as a purely viscous fluid may be 

oversimplifying reality, it is essential to compare the theoretical solutions with the data from 

experimental investigations. Even though the theoretical investigations of the GNF have been 

extensively performed, many of the solutions from the theoretical studies remain to be further 

validated by experimental studies. 

Olivares et al. [115] analyzed the EOF of polymer solutions considering the non-Newtonian 

character of the fluid and the polymer concentration profile near the interface, which greatly 

modify the fluid viscosity. A mathematical model is derived for the EOF velocity of the solutions 

that present polymer depletion at the wall. In addition, experiments were carried out using 

carboxymethyl cellulose in fused silica capillaries to validate the consideration of the theoretical 

model, where both the polymer depletion and a certain degree of specific adsorption were observed 

to define the electroosmotic mobility. 

Zhao et al. [116] presented an analysis of the electroosmotic flow of power-law fluids in the 

parallel-plate microchannel. Closed-form exact solutions were obtained for the electroosmotic 

velocity profile and the average velocity in terms of hypergeometric functions by incorporating 

the electrostatic body force in the electric double layer and the power-law fluid constitutive model. 

Two important dimensionless parameters, the fluid behavior index and the electrokinetic 

parameter were examined. Moreover, based on the generalized Smoluchowski velocity, an 

experimental method was proposed for determining the rheological properties of power-law fluids. 

Similar conclusions from analytical investigations on the power-law fluids have been widely 

obtained by many researchers. However, as mentioned earlier, the power-law model is an ideal 

assumption of non-Newtonian fluids as a purely viscous fluid. In reality, many biofluids exhibit 

more complicated properties, such as elasticity, which can induce more complex flow behaviors. 
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In contrast to the extensive investigation of EOF of GNF, the study of EOF of viscoelastic fluids 

is relatively less. 

1.3.5 Electroosmotic flow of viscoelastic fluids 

The investigations described in the above section are restricted to the comparatively simple 

non-Newtonian model without accounting for the elastic features, as the extremely nonlinear 

constitutive equations substantially increase the complexity of solving the EOF of viscoelastic 

fluid. Compared to Newtonian fluids and generalized Newtonian fluids, there is less literature on 

the EOF of viscoelastic fluids. Only recently, studies on pure EOF of viscoelastic fluids have 

emerged. Park and Lee [117] were among the first to extend the Helmholtz-Smoluchowski velocity 

for Newtonian fluids to the calculation of viscoelastic fluids. The Helmholtz-Smoluchowski 

velocity for viscoelastic fluids was found by solving a simple cubic algebraic equation. A general 

constitutive equation was adopted in the governing equations, which covers six different kinds of 

constitutive models (i.e., Newtonian fluid, upper-convected Maxwell model, Oldroyd-B model, 

simplified PTT model, PTT model, and MPTT model). The derived Helmholtz-Smoluchowski 

velocity for different models was validated by the results obtained by solving the differential 

equations directly. Later, Park and Lee [118] numerically investigated the EOF and Newtonian 

fluid and viscoelastic fluid in a straight rectangular channel with and without external pressure. A 

general constitutive model was employed same as in their previous study to represent UCM, PTT, 

and Oldroyd-B models. For the pure EOF with no external pressure gradient, the flow rate showed 

a significant difference between the Newtonian fluid and the viscoelastic fluid. However, when an 

external pressure gradient was applied, a secondary flow was observed in the EOF of the 

viscoelastic fluid, which was not observed in the EOF of the Newtonian fluid. 
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Afonso is also among the early researchers investigating the analytical solutions for the EOF of 

viscoelastic fluids. Afonso et al. [119] obtained the analytical solution for combined electrokinetic 

and pressure forces in parallel plates using the Debye-Huckel approximation. The viscoelastic fluid 

was described simplified PTT model and Finitely Extensible Nonlinear Elastic with Peterlin 

closure (FENE-P) model. The influences of fluid rheology, EDL thickness, wall zeta potential, and 

the external pressure and electric potential on the fluid velocity and stress were discussed. Later, 

Afonso et al. [120] extended their previous study [119] to the investigation of analytical solution 

for asymmetric zeta potentials at the walls. Ferrás and Afonso et al. [121] also derived the semi-

analytical solutions or electroosmotic annular flow of viscoelastic fluids modeled by the Linear 

and Exponential PTT model between two concentric cylinders under combined influences of 

electrokinetic and pressure forcings. And the analytical solution was valid for both no slip and slip 

velocity at the walls. 

Based on the work of Afonso et al. [119], Dhinakaran et al. [122] investigated the analytical 

solution of pure EOF of a viscoelastic fluid between two parallel plates using the PTT model and 

the Gordon-Schow-alter convective derivative. A constitutive flow instability was predicted when 

the shear rate and Deborah number exceeded a critical value. The expression for the critical values 

of shear rate and Deborah number were reported. Sousa et al. [123] derived an analytical solution 

for the EOF of viscoelastic fluid under combined electroosmosis and pressure gradient forces. The 

viscoelastic fluid was described by the PTT model considering the near-wall skimming layer. The 

skimming layer is wider than the EDL, and the flow rate was enhanced compared to that of the 

uniform concentration flow case. Choi et al. [124] studied analytically the EOF of viscoelastic 

fluids in a two-dimensional microchannel with different zeta potentials using the PTT model. The 

velocity profiles of viscoelastic fluids showed enhancement over corresponding Newtonian fluids 
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under identical flow and electrochemical conditions. The dependence of the flow enhancement on 

Deborah number, extensibility parameter, slip parameter, Debye length, and zeta potential was 

illustrated quantitatively. 

The theoretical studies mentioned above provide important insight into the rheological effect 

on the viscoelastic EOF. However, these studies are limited to comparatively basic geometries, 

such as between parallel plates, straight rectangular channel, straight cylinder channel. 

Additionally, existing studies of viscoelastic EOF have been mainly focused on the steady-state 

EOF under a constant applied electric field.  Due to the existence of elasticity and relaxation time 

of viscoelastic fluids, an intriguing flow phenomena can be induced in the viscoelastic EOF when 

the flow condition is more complex, such as in more complicated geometries or under time-

dependent external electric fields. However, studies on the time-dependent flow states and the 

instabilities of viscoelastic EOF are very limited. 

1.4 Outline of the thesis 

Chapter 1 reviews the properties of viscoelastic fluids and the intriguing flow phenomenon of 

viscoelastic fluid due to the existence of elasticity. The theory and mechanism of electroosmotic 

flow are introduced based on the equations for Newtonian fluids. The remarkable research works 

on electroosmotic flow for both Newtonian and non-Newtonian fluids are also reviewed. 

Particularly the limitation of existing studies on the electroosmotic flow of viscoelastic fluids is 

elaborated. 

Chapter 2 includes the description of mathematical models for the EOF of viscoelastic fluids. 

Several commonly used constitutive models for viscoelastic fluids are introduced, along with a 

detailed description of the log-conformation representation and the finite volume method. Then 

the numerical implementation of the mathematical model in OpenFOAM is described, including 
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the both-sides-diffusion (BSD) technique and the coupling algorithms adopted in the viscoelastic 

solver in OpenFOAM. 

In Chapter 3, the EOF of viscoelastic fluid in a straight contraction microchannel is investigated. 

The viscoelastic EOF is studied as a function of the polymer concentration and the applied electric 

field. The velocity field and flow patterns are analyzed to identify the elastic instabilities. The 

velocity profile and average velocity of viscoelastic EOF are compared with those of Newtonian 

EOF to reveal the effects of the elasticity on the flow. Then, the distribution of the induced elastic 

stress under different flow conditions is analyzed to explain the mechanism of the upstream 

vortices. 

Chapter 4 further extends the study in Chapter 3 to contraction microchannels with 90◦ bends 

under a combination of DC and AC electric fields. The energy spectra of the velocity fluctuation 

in the microchannel are analyzed to identify the elastic turbulence. The dye concentration profiles 

at different cross-sections of the microchannel are compared to show the influence of the 90◦ bends 

on the viscoelastic EOF. Then, the opening angles of the particle trace under various flow 

conditions are statistically studied to investigate the influence of the frequency of the AC electric 

field on the elastic instability. 

Chapter 5, inspired by the study in Chapter 4, performs a frequency study of the viscoelastic 

EOF in short contraction microchannels. Three different lengths of the microchannel and a wide 

range of frequencies of the AC electric field are investigated. The characteristic frequency of the 

viscoelastic EOF is identified by the energy spectra of velocity fluctuation. The dependency of the 

velocity fluctuations and the average velocity on the frequency of the AC electric field are then 

analyzed. 
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Chapter 6 summarizes the conclusions of this dissertation and some potential future directions 

of the research work based on the findings in this dissertation. 
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CHAPTER 2 

MATHEMATICAL MODEL OF VISCOELASTIC FL 

UID AND NUMERICAL IMPLEMENTATION IN OPENFOAM 

Numerical simulation is a very useful tool to investigate and understand the properties of 

viscoelastic EOF, especially when the flow condition is complex. In this chapter, the mathematical 

model for the viscoelastic fluids flow problem is first described in general. Then, the approach and 

mathematical model describing the electro force in the EOF are introduced. Next, several 

commonly used constitutive models for viscoelastic fluids are described, followed by a detailed 

elaboration of the log-conformation representation for solving the High Weissenberg Number 

Problem. Next, the finite volume method is introduced. In the end, the numerical implementation 

of the mathematical model in OpenFOAM is given, including the BSD technique and the coupling 

algorithms adopted in the viscoelastic solver. 

2.1 Mathematical model 

The viscoelastic fluid is assumed to be incompressible, single-phase, and isothermal. The mass 

and momentum equations are described as follows: 

 0, =u
 (2.1) 

 
2

sp
t

 
 

+  = − +  + + 
 

u
u u u τ F

 

(2.2) 

where ρ is the fluid density; p is the pressure; ηs is the solvent dynamic viscosity; τ is the non-

Newtonian polymer stress, which can be described by various constitutive models depending on 

the different properties of the viscoelastic fluids; and F is any external body-force, such as electric 

force in EOF. 

The non-Newtonian polymer stress τ can be expressed in terms of the conformation tensor c, 

which is a tensorial variable representing the macromolecular structure of polymers, 
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where ηp is the polymer dynamic viscosity,  is the relaxation time of the polymer describing the 

time for the polymer chains to return to equilibrium after deformation; f(c) is a strain function 

dependent on the constitutive model of the fluid. The conformation tensor c describes the behavior 

of the microstructures, which is responsible for the non-Newtonian features of the fluid. Therefore, 

the non-Newtonian stress τ can be obtained as a function of the configuration of these 

microstructures (i.e., conformation tensor c). A micro-dumbbell model with a spring connecting 

two beads is used to describe the microstructure of the polymer chains in the stochastic 

microscopic theory [125], as shown in Figure 2.1. The conformation tensor represents the spatial 

configuration, or the orientation, of the polymer chains. It is defined as the statistical average of 

the dyadic product of the end-to-end connector vector Q [126] of the polymer chain carrying the 

elastic load: 

 ( )
2 2

,
,

T

eq eq

t d

Q Q


= =

QQ Q QQ Q
c

 

(2.4) 

where 
eqQ  is the equivalent length of the vector Q; ( ), t Q is the probability distribution function 

of Q following the Fokker-Planck equation. Consequently, the conformation tensor is-by 

definition-symmetric positive definite (SPD). The conformation tensor is normalized such that it 

is equal to the identity matrix I when the polymers are at equilibrium state. 
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Figure 2.1 In the dumbbell model, the polymer chain is modelled by two beads linked by a spring [125]. 

The generic differential equation that may include the majority of the viscoelastic models 

controls the development of the conformation tensor, 
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c c
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(2.5) 

where the function g(c) is decided by the constitutive model. In the section that follows, the full 

formulas of the evolution equation for the conformation tensor will be introduced based on 

different viscoelastic fluid models. 

In electroosmotic flow, the external force F can be replaced by the electrical force.  The total 

electric potential Ψ, is decomposed into two variables, Ψ = ϕExt + ψ, with ϕExt representing the 

potential originating from the externally applied electric potential while ψ being the potential 

arising from the charge of channel walls. In the current study, the Poisson-Boltzmann equation is 

used to describe the potential,  : 

 
( ) E 0 exp exp .

e e
Fc

kT kT

 
  

    
  = = − −    

      

(2.6) 

The potential 
Ext  is governed by the following Laplace equation, 
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Then the momentum equation yields 
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(2.8) 

where ρE and ϕExt represent, respectively the volume charge density within the electrolyte solution 

and the externally applied electric potential.  

2.1.1 Constitutive models 

The relationships between the deformations and the stress response of the material can be 

described through the constitutive models. The complexity of the underlying physics that results 

in flow instabilities in many viscoelastic flows must be captured by non-Newtonian constitutive 

models. There are two types of non-Newtonian constitutive models: the generalized Newtonian 

fluid models and the viscoelastic fluid models. The generalized Newtonian fluid models are 

inelastic models, where the stress response is only dependent on the instantaneous rate of 

deformations. These fluid models can roughly represent the dynamics of polymeric liquids. For 

the viscoelastic models, the stress response depends on both the instantaneous shear rate and the 

history of the deformation. In this thesis, only viscoelastic models are used. Therefore, only several 

well-known viscoelastic fluid models are presented hereinafter. 

(a) Oldroyd-B model 

The Oldroyd-B model, originally proposed by Oldroyd [127], is one of the most useful and 

common models in modeling viscoelastic fluids. It was the first material frame-invariant 

phenomenological model describing the linear viscoelasticity of dilute polymer solutions. The 

functions in and in are given by 

 ( ) ( ),  .f g= − = −c c I c c I
 (2.9) 
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By assuming that the polymer molecules behave as a suspension of Hookean springs in a 

Newtonian solvent, the Oldroyd-B model can be derived from the kinetic theory [128]. The 

fundamental properties of viscoelasticity: stress relation, creep deformations, and a first normal 

stress difference are all included in the Oldroyd-B model. 

(b) PTT model 

The PTT model was derived by Phan-Thien and Tanner [129, 130] from the kinetic theory of 

an elastic network that represents a polymeric melt. The model makes the assumption that the 

average network extent affects the rates of junction generation and destruction. Due to the 

performance of the finite element method (FEM) and its precise prediction of the viscosity at a 

low shear rate, the PTT model is preferred in various polymer melt issues. The original evolution 

equation for the PTT model is as follows: 
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(2.10) 

where ξ is the slip parameter of network. 

The strain function is given as 

 ( ) ,f = −c c I
 

(2.11) 

The relaxation function ( )g c  is supposed to have a linear dependency on the trace of the 

conformation tensor in the original PTT model [129], 

 ( ) ( )( ) ( )1 tr 3 ,g c = + − − c c I
 

(2.12) 

Later, Phan-Thien and Tanner [130] derived a more accurate relaxation function: 

 ( ) ( )( )( )exp tr .g = − −c c I c I
 

(2.13) 
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Note that in Equation (2.5), the slip parameter of network ξ = 0, which is corresponding to the 

simplified PTT model. 

(c) FENE model 

Based on the kinetic theory of polymer chains behaving like non-linear elastic springs, the 

FENE (Finitely Extensible Nonlinear Elastic) models are adapted to describe the viscoelastic 

properties of the dilute polymeric solutions. The FENE family consists of the FENE-P model 

derived by Bird et al. [131] using Peterlin’s statistical average [132] as a closure approximation 

and the FENE-CR model by Chilcott et al. [133]. The FENE-P model possesses a finite 

extensibility and predicts a shear-thinning behavior, and the FENE-CR model eliminates the shear-

rate dependency of the steady-state viscosity. 

The FENE-P model is given as 
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(2.14) 

The FENE-CR model is given as 

 
( ) ( )

( ) 21 /
f g

tr L

−
= =

−

c I
c c

c
 

(2.15) 

(d) Giesekus model 

A constitutive model for concentrated polymer solutions was developed by Giesekus [134, 135] 

with the addition of quadratic components of the stress, which may be seen as the result of 

anisotropic hydrodynamic drag brought on by the interactions between polymers. The functions 

f(c) and g(c)are given as 

 ( ) ,f = −c c I
 

(2.16) 

 ( ) ( ) ( )2 1 2 1 ,g   = + − − −c c c I  (2.17) 
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where the dimensionless parameter α is between 0 and 0.5, which quantifies the effect of the 

anisotropic stretching. 

2.1.2 The log-conformation representation 

In the present work, the log-conformation representation of Fattal and Kupferman [54] is 

adapted to solve the HWNP. The log-conformation representation consists in the utilization of a 

new variable Θ, the matrix-logarithm of the conformation tensor in the constitutive model 

 log .=Θ c  (2.18) 

The velocity gradient ∇u can be decomposed into the following according to Fattal and 

Kupferman [54] 

 1,− = + +u Ω B Nc  (2.19) 

where Ω and N are anti-symmetric matrices, and B is a symmetric traceless matrix. The matrices 

Ω, B, and N can be derived by the projection of the velocity gradient into the principal base of the 

stress tensor. The velocity gradient is changed as 
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The conformation tensor in the eigen decomposition form for in a two-dimensional problem is 

written as 
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where λ1 and λ2 are the eigenvalues and R is the orthogonal matrix of the conformation tensor 

containing the eigenvectors. And the decomposed tensors can be written as 
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where R is the orthogonal matrix of the conformation tensor containing the eigenvectors. 
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The calculation of λ1, λ2, m11, m22, ω and n are shown as follows. λ1 and λ2 are calculated from 

the characteristic equation of the conformation tensor c 

 ( )det 0.i− =c I
 

(2.23) 

The expansion of the characteristic equation yields 

 2 0,i ib d + + =
 

(2.24) 

where b  and d  can be expressed by the components of c as 

 ( )11 22 ,  det .b c c d= − − = − c  (2.25) 

The eigenvalues can be expressed by the coefficients b and d using the quadratic formula as 
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Then the eigen vectors corresponding to the above eigenvalues can be calculated by solving the 

algebraic equation 

 ( ) ,i i− =c I e 0  (2.27) 

which yields 
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Then the decomposition Equation (2.20) becomes 

 T T T T 1 .− = + +R uR R ΩR R BR R Nc R  (2.29) 

Then substituting Equations (2.20), (2.21), and (2.22) into Equation (2.29) yields 
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which can be simplified as 



33 

 

 

212

21

1

0
0

.
0

0

n

m

m n







 
+ 

   = 
   − − 
   

(2.31) 

From Equation (2.31) the following equations are obtained 
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The calculation for three-dimensional problems is described in Appendix A. 

Substituting Equation (2.29) into Equation (2.10) finally yields the following evolution 

equation for the log-conformation tensor: 

 
( ) ( ) ( ) ( )

1
2 exp exp .g

t 


+  − − − = − −   

Θ
u Θ ΩΘ ΘΩ B Θ Θ

 
(2.33) 

In summary, the viscoelastic fluid solver solves the Equation (2.33) and recovers the 

conformation tensor with the matrix-exponential of ψ: 

 ( )exp .=c ψ  (2.34) 

The conformation tensor’s symmetric positive definiteness is enforced by construction in 

Equation (2.34). Be aware that the matrix-logarithm and matrix-exponential are tensor operations, 

where the logarithm and exponent are applied to a tensor’s eigenvalues, respectively: 
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(2.35) 

2.2 Finite volume method 

Due to the complexity and high nonlinearity of the above differential equations, most problems 

cannot be solved analytically. Therefore, numerical procedures are required to solve the set of 

partial differential equations. Several numerical methods have been widely used in computational 
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fluid dynamics (CFD), such as finite difference (FDM) [136, 137], finite element method (FEM) 

[138], and finite volume method (FVM) [139-141]. The popularity of FVM in CFD stems from 

some special properties of the method. First, because terms in the conservation equations are 

evaluated using face fluxes throughout each unique control volume and because the flux 

conservation is maintained in a particular volume, the FVM is rigorously conservative. 

Additionally, the FVM offers high flexibility as a discretization method due to the discretization 

in the space domain is carried out directly in physical space with no need for any transformation 

between the physical and computational coordinate systems. Furthermore, because of the adoption 

of a collocated arrangement [142], the FVM may be used to solve flows in complicated geometries. 

These advancements have increased the FVM’s usefulness while maintaining the FVM’s 

straightforward mathematical formulation across a broad range of applications. Another crucial 

aspect of the FVM is that it mirrors the physics and the conservation principles it models, such as 

the integral property of the governing equations and the features of the terms it discretizes. Since 

the first application of the FVM in the study of the classical benchmark problem of viscoelastic 

fluid flows past a cylinder by Hu et al. [143], the FVM has been extensively used in the study of 

the viscoelastic fluid problems [144-146], especially with the implementation of the log-

conformation reformulation in the framework of the FVM. In the present study, the FVM is 

adopted to transform the governing equations into a system of linear algebraic equations.  

As seen in Figure 2.2, in the FVM, the space domain is subdivided into finite non-overlapping 

volumes, and Vn represents an arbitrary volume. The volume Vn is enclosed by surface S consisting 

of several segments named by ( )1, 2,...iS i = . 
iSn denotes the normal vector of the volume on 

segment Si directing outward from the volume. 
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Figure 2.2 Schematic of the discrete cell in the FVM. 

By integrating the momentum equation over the volume Vn shown in Figure 2.2, Equation (2.2) 

is transformed to 

 
( )2 ,

n n n n n n

s

V V V V V V

dV dV dV pdV f dV dV
t

  


+  −  = −  +  +
     
u

u u u c F

 

(2.36) 

On the left-hand side of the above equation, the three terms represent the temporal term, 

convection term, and diffusion term, respectively. The time domain is divided into discrete times 

t0, t1,…,tn, tn+1…with time step ∆t = tn+1 – tn . Then the time derivative term can be discretized with 

the first-order accurate Euler method as 
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(2.37) 

Two types of Euler method are available depending on the evaluation of other terms in the 

equation, including implicit method with the term evaluated at tn+1, and explicit method with the 

term evaluated at tn. The discretization of the convection term and the diffusion term is done by 

applying the divergence theorem, which replaces the volume integrals by the surface integrals as 
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where 
i

C

SJ  represents the convection flux over the volume surface. Note that the velocity field u 

varies on the faces of the volume where the summation happens, therefore an approximation of u 

on the faces is needed such that the velocity variation within the volume is included. Various 

schemes have been developed and applied successfully to the convection discretization, such as 

the first-order accurate upwind scheme and the second-order accurate central differencing scheme. 

The diffusion term is discretized as follows 

 ( )2

s s s i
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(2.39) 

The second-order accurate linear scheme can be used to discretize the diffusion term. 

On the right-hand side of Equation (2.36), the remaining terms are generally referred as source 

terms. The treatment of source terms is described as follows 
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The source term ( )R u  is linearized as ( ) 0 1R R R= +u u , and the source terms can be treated as 
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(2.41) 

where un is the velocity field evaluated at the volume Vn. Other equations in the system can also 

be discretized similarly as the momentum equation. Then the set of differential equations are 

converted to a system of algebraic equations, which can be solved by the algebraic operations. 

2.3 Numerical implementation in OpenFOAM 

OpenFOAM (Open Source Field Operation and Manipulation) is a powerful FVM-based CFD 

software and has found widespread use in engineering and science fields due to its ability to 

implement intricate mathematical models and provide parallel computing. Moreover, OpenFOAM 
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is distributed with a large set of precompiled applications (solvers) and allows users to create their 

own or modify existing ones. A variety of solvers for many common classical issues, including 

compressible flows, incompressible flows, multiphase flows, heat transfer, combustion, etc. 

OpenFOAM also includes useful meshing tools for the generation of different types of mesh, such 

as blockMesh for structural 2D and 3D mesh, and cfMesh and snappyHexMesh for hex-dominant 

mesh. Additionally, OpenFOAM offers easy mesh conversion from frequently used meshing 

software, such as ANSYS, Fluent, Pointwise, Salome, etc.  

The numerical simulations in this thesis are performed using a viscoelastic fluid solver 

implemented in OpenFOAM. Programmed using the C++ language, OpenFOAM solvers are 

organized using a standard convention that the source code of each application is stored in a 

directory with the name as the name of the solver. The top level source file then takes the solver 

name with the .C extension. For example, the structure of a solver named as newSolver is shown 

in Figure 2.3. The source code of the solver is in a directory newSolver, where three parts can be 

found, including the top level file named as newSolver.C, the header file name as otherHeader.H, 

and a subdirectory named as make for compilation.  

 

Figure 2.3 Directory structure for a solver named as newSolver. 
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2.3.1 Viscoelastic fluid solver in OpenFOAM 

The library and viscoelastic fluid solver (viscoelasticFluidFoam) created by Favero et al. [147] 

in OpenFOAM provides a variety of constitutive equations to model viscoelastic fluids. However, 

viscoelasticFluidFoam presents stability issues for some high Weissenberg number problems. 

Recently, Pimenta and Alves [148] optimized viscoelasticFluidFoam and created rheoTool by 

modifying some critical points minimizing the stability issues. In rheoTool, Pimenta and Alves 

[149, 150] implemented coupled solvers for simulating electrically-driven flows and tested the 

solvers in benchmark flows. In the present study, the electroosmotic flow of viscoelastic fluids is 

numerically solved by the solver rheoEFoam implemented in rheoTool. 

2.3.2 The both-sides-diffusion (BSD) technique 

The both-sides-diffusion technique consists in adding a diffusive term on both sides of 

momentum equation with the one on the left-hand side added implicitly and the one on the right-

hand side explicitly. Both added terms will cancel each other once the steady state is reached. This 

method has a stabilizing effect by increasing the ellipticity of the momentum equation. 

Incorporating the terms arising from the both-sides-diffusion in the momentum equation, then 
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(2.42) 

It should be noted that the additional diffusive terms are scaled by the polymeric viscosity ηp, 

which is an optional but popular choice in the literature [151]. 

2.3.3 Coupling algorithms 

In the OpenFOAM toolbox, most solvers use segregated solutions to solve linear systems of 

equations in a coupled way, where the equations for each variable are solved sequentially. 

However, even for a fully implicit method, the coupling between variables is weak, resulting in 

the occurrence of numerical divergence. For pressure-velocity coupling, the SIMPLE and 



39 

 

SIMPLEC algorithms are commonly used in steady-state solvers, and the PISO and PIMPLE 

algorithms are commonly used in transient solvers. Pimenta and Alves [148] investigated the 

SIMPLEC algorithm in solving transient viscoelastic fluid flows at low Reynolds numbers and 

great stability and accuracy were obtained. The continuity equation derived for SIMPLEC yields 

[148]  
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where ap are the diagonal coefficients from the momentum equation, 
1 nb

nb

H a= −  is an operator 

representing the negative sum of the off-diagonal coefficients from momentum equation, 

*

nb nb

nb

a= − +H u b  is an operator containing the off-diagonal contributions, plus the source terms 

(except the pressure gradient) of the momentum equation and p* is the pressure field known from 

the previous time-step. After obtaining the continuity-compliant pressure field, the velocity is then 

corrected by following equation 
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Same as the pressure-velocity coupling problem, the stress-velocity decoupling problems lead 

to the similar numerical challenges. In the interpolation from cell-centered to face-centered fields, 

cell-centered velocity tends to lose the influence of the forces of its neighborhood cells. Such forces 

can be pressure gradient or the polymeric extra-stress. In the case of polymeric extra-stresses, it is 

the divergence term (∇∙τ) in the momentum equation accounting for the decoupling when τ is 

linearly interpolated from cell centers to face centers. Pimenta and Alves [148] described a new 

stress-velocity coupling method as follows 
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where the terms with an overbar are linearly interpolated from cell-centered values, and the 

remaining velocity gradients are directly evaluated from the cell-centered velocities standing the 

face. Substituting the definition of into the momentum equation with the both-sides-diffusion terms 

yields 
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2.3.4 Overview of the algorithm 

In the solver rheoEFoam, the coupling between the pressure and velocity fields is ensured by 

the SIMPLEC algorithm and an inner-iteration loop is used to reduce the explicitness of the method 

and to increase its accuracy and stability. The sequence adopted in the rheoEFoam solving the 

differential equations consists of the following steps [148]: 

Step 1. Initialize the fields  Ext 0
, , , , ,p  u τ Θ  and time ( )0t = . 

Step 1.1. Compute steady state 
Ext  and  . 

Step 2. Enter the time loop ( )t t=  . 

Step 2.1. Enter the inner iteration loop ( )0i = . 

Step 2.1.1. Compute 
iΘ  and iτ  by log-conformation method. 

Step 2.1.2. Compute estimated velocity field *

iu  by solving the momentum equation. 

Step 2.1.3. Compute pressure field by enforcing the continuity equation. 

Step 2.1.4. Correct the previously estimated velocity field using the correct pressure field. 

Step 2.1.5. Increase the inner iteration index and repeat the computation from Step 2.1.1, 

until the inner iteration criteria (i.e., maximum tolerance) is satisfied. 
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Step 2.1.6. Set    
iExt Ext, , , , , , , , , ,i i i i it t

p p   =u τ Θ u τ Θ . 

Step 2.2. Increase time, t t t= + , and return to Step 2.1 until the simulation time is reached. 

Step 3. Stop the simulation and exit. 
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CHAPTER 3 

ELECTROOSMOTIC FLOW OF VISCOELASTIC FLUID THROUGH A 

CONSTRICTION MICROCHANNEL 

3.1 Introduction 

The EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two 

reservoirs on either side is numerically investigated. The flow is modeled by the Oldroyd-B (OB) 

model coupled with the Poisson-Boltzmann (PB) model. EOF of polyacrylamide (PAA) solution 

is studied as a function of the PAA concentration and the applied electric field. In contrast to the 

steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied 

electric field (PAA concentration) exceeds a critical value for a fixed PAA concentration (electric 

field), and vortices form at the upstream of the constriction. EOF velocity of viscoelastic fluid 

becomes spatially and temporally dependent, and the velocity at the exit of the constriction 

microchannel is much higher than that at its entrance, which is in qualitative agreement with the 

experimental observation from the literature. Under the same apparent viscosity, the time-averaged 

velocity of the viscoelastic fluid is lower than that of the Newtonian fluid. 

The existing studies of EOF have been mainly focusing on Newtonian fluids [152, 153]. 

However, in reality, EOF has been widely used to control and manipulate biological fluids (i.e., 

blood, saliva, lymph, protein, and DNA solutions) [154-156] and polymeric solution [156], which 

exhibit non-Newtonian characteristics. Therefore, investigating the EOF of viscoelastic fluids is 

of practical importance. Bello et al. [157] conducted the pioneering study on the EOF of non-

Newtonian fluid and measured the EOF velocity of methyl cellulose solution in a capillary. Their 

results show that the EOF velocity of such polymer solutions is much higher than that predicted 

with the classic Helmholtz-Smoluchowski velocity. Chang and Tsao [158] conducted similar 
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experiments and found the effective viscosity decreased because of the sheared polymeric 

molecules inside the electrical double layer (EDL). Theoretically, non-Newtonian effects can be 

characterized by proper constitutive models relating the dynamic viscosity and the rate of shear. 

Such constitutive models include power-law model [159], Carreau model [104], WhiteMetzner 

model [160], Bingham model [107], Oldroyd-B model [127], PTT model [129], Moldflow second-

order model [161], Giesekus model [162], etc. Das and Chakraborty [112] developed an 

approximate solution for the EOF velocity of power-law fluid between two parallel plates. Zhao 

et al. [110, 116] derived a generalized Helmholtz-Smoluchowski velocity for the EOF of power-

law fluid in a slit microchannel. Later, Zhao and Yang [163, 164] extended the study to a 

cylindrical microcapillary. Olivares et al. [115] experimentally investigated EOF of a non-

Newtonian polymeric solution and verified the generalized Helmholtz-Smoluchowski velocity. 

Tang et al. [165] numerically investigated EOF of a power-law fluid using Lattice-Boltzmann 

method. Zimmerman et al. [104] carried out a numerical simulation of EOF of Carreau fluid in a 

T-junction microchannel and found that the flow field significantly depended on the non-

Newtonian characteristics of the fluid. The aforementioned studies on EOF of non-Newtonian fluid 

are limited to inelastic constitutive models (i.e., power-law and Carreau models). However, some 

fluids show both viscous and elastic behaviors, which can be presented by viscoelastic constitutive 

models. There is existing literature investigating the characteristic of EOF of viscoelastic fluids, 

showing that the viscoelasticity of the fluid affects the flow pattern and flow rate. Note that in the 

those studies, the EOF of non-Newtonian fluid was assumed to be in a steady state.  

Recently, EOFs of non-Newtonian fluids have been reported to be time-dependent and show 

instabilities even at low Reynolds numbers. Such EOFs are time-dependent because of the 

nonlinear viscosity and elasticity of non-Newtonian fluids. Bryce and Freeman [166] first reported 
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the electro-elastic instability in EOF of PAA solutions through a 2:1:2 micro-scale 

contraction/expansion when the applied electric field exceeded a threshold value. Later, Bryce and 

Freeman [167] reported that such instabilities insignificantly enhanced the mixing in microflow. 

Pimenta and Alves [148, 168] later experimentally and numerically studied the electro-elastic 

instabilities of PAA solutions in both cross-slot and flow-focusing microdevices and found that 

mixing efficiency was not improved significantly. Song et al. [169] experimentally and 

numerically studied the elastic instability in EOF of viscoelastic polyethylene oxide (PEO) 

solutions through T-shaped microchannels. The results demonstrated that the threshold electric 

field for the onset of instability highly depended on the PEO concentration. Song et al. [170] later 

extended the work by experimentally investigating the fluid rheological effects on the elastic 

instability in EOF of six types of phosphate buffer-based aqueous solutions through T-shaped 

microchannels. They found that shear thinning effect of the fluid might account for the electro-

elastic instabilities. However, the fluid with high elasticity alone did not have instability, which is 

inconsistent with the results of Pimenta [168]. The authors attribute the inconsistency to the neglect 

of microstructural effects. (e.g., polymer-wall interaction and electric effect on the molecular 

structure of the polymer, etc.) of shear-thinning polymer solutions. However, this experimental 

result shows similarity to the work of Ko et al. [171], in which weakly shear-thinning, viscoelastic 

polyvinylpyrrolidone (PVP) and PEO solutions exhibited Newtonian-like EOF patterns. In 

contrast, shear-thinning and weakly elastic xanthan gum (XG) solution exhibited disturbance and 

vortices, suggesting that fluid elasticity alone has an insignificant impact on the steady-state EOF 

pattern. More recently, Sadek [172] experimentally investigated EOF of viscoelastic fluids through 

different microchannel configurations, including hyperbolic-shaped contractions followed by an 
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abrupt expansion, and abrupt contractions followed by a hyperbolic-shaped expansion. EOF 

showed instabilities of elastic origin at very low Weissenberg numbers (Wi) (i.e., Wi < 0.01). 

There is only limited literature on numerical studies of electro-elastic instabilities. Afonso et al. 

[173] numerically investigated the elastic instability of EOF through a cross-slot geometry using 

the upper-converted Maxwell and the simplified Phan-Thien-Tanner models, and a direct flow 

transition from steady symmetric state to unsteady flow without crossing the steady asymmetric 

state at a critical Wi was observed. Pimenta and Alves [168] numerically investigated the electro-

elastic instabilities in cross-slot and flow-focusing micro devices using OB model and PB model. 

They found that the strong shear-dominated flow within the EDL at the corners had a more 

significant contribution to the elastic instabilities than the extensionally dominated bulk flow. Song 

et al. [169] numerically investigated EOF of PEO solution through a T-shaped microchannel. Their 

model considered only the influence of PEO solution on the fluid viscosity, conductivity, and zeta 

potential. Due to the neglect of fluid elasticity effect in the mathematical model, only the 

electrokinetic flow phenomena of dilute PEO solution (i.e.,  750 ppm) were captured. 

Both experimental and numerical investigations in the EOF instabilities of viscoelastic fluid are 

limited, and the conditions proposed by various researchers for triggering the instabilities in the 

EOF of viscoelastic fluids show inconsistency and remain unclear. Inspired by the existing 

literature, in this chapter, we numerically study the EOF of viscoelastic fluids in a constriction 

microchannel, which is close to an actual microfluidic device.  

3.2 Mathematical Model and Geometry 

We consider incompressible monovalent binary electrolyte solution such as KCL with bulk 

concentration c0 mixed with PAA polymer solution of concentration cp, which fills a microchannel 

of height HC, length LC, and width w connecting two identical reservoirs of height Hr and length 
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Lr on either side. The solid walls of the constriction microchannel and the reservoirs are assumed 

to carry a constant negative zeta potential, ξ0. When dealing with non-Newtonian fluids, constant 

zeta potential has been widely accepted [174]. Huang et al. [174] compared theoretical and 

experimental results of PEO solutions, and constant zeta potential was proven for various PEO 

concentrations. Therefore, in the current study, the effect of the polymer concentration on the wall 

zeta potential is neglected. Two electrodes are placed at both ends of the reservoirs, and an external 

potential bias U0 is applied between the inlet (Anode) and outlet (Cathode). Through the interaction 

between the externally applied electric field and net charges accumulated within the EDL in the 

vicinity of the charged walls, EOF flowing from the anode reservoir through the constriction 

microchannel towards the cathode reservoir is generated. The apparent electric field between the 

inlet and outlet is defined as Eapp = U0/(2Lr + LC). In some applications, there are slit microchannels 

with width much larger than height [175, 176]. For example, two-phase flow patterns were studied 

in a microchannel with 10-mm width and 50-µm height [175]. For microchannels with such 

geometries, the flow can be simplified to a 2D problem [177]. Therefore, in the current study, the 

channel width is assumed to be much larger than the channel height, and the flow can be simplified 

to a 2D problem, as schematically shown in Figure 3.1. A Cartesian coordinate system with the 

origin fixed at the center of the microchannel is adopted with the x-axis along the length direction 

and the y-axis in the height direction. 
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Figure 3.1 Schematic diagram of a constriction microchannel connecting two reservoirs at both ends. The 

solid walls of reservoirs and the constriction channel are negatively charged, and an electric field is 

imposed by applying a potential difference between anode and cathode positioned in two reservoirs. 

The governing equations are same as introduced in Chapter 2. To numerically solve the coupled 

equations, CUBISTA scheme [178] is used to discretize the convective terms and central 

differences are used for the discretization of Laplacian and gradient terms. The time derivatives 

are discretized with three-time level explicit difference scheme [179], which is of the second order 

accuracy. The exponential source term is linearized using Taylor expansion up to the second term 

[180]. All the terms in the momentum equation, except the pressure gradient and the electric 

contribution, are discretized implicitly. A small time-step, ∆t = λ/105, is used to ensure accuracy. 

The well-known SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations-Consistent) 

algorithm [181] is used to resolve the velocity-pressure coupling. The pressure field is computed 

by PCG (Preconditioned Conjugate Gradient) solver, of which the tolerance and maximum 

iteration are set to be 1×10−8 and 800, respectively. The velocity field is computed by PBiCG 

(Preconditioned Biconjugate Gradient) solver, of which the tolerance and the maximum iteration 
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are set to be 1×10−10 and 1000, respectively. The above numerical methods are listed in Appendix 

B. As shown in Figure 3.2, the boundary conditions are given as follows: 

(1) At the Anode (edge AG in Figure 3.2): n∙∇u = 0; p = 0; τ = 0; ϕExt = U0; n∙∇ψ = 0; Θ = 0; 

where n denotes the normal unit vector on the surface. 

(2) At the Cathode (edge FL in Figure 3.2): n∙∇u = 0; n∙∇τ = 0; ϕExt = 0; n∙∇ψ = 0; n∙∇Θ = 0. 

(3) On the reservoir walls (edges ABC, DEF, GHI, and JKL in Figure 3.2) and the microchannel 

walls (Edges CD and IJ in Figure 3.2): u = 0; n∙∇ϕExt = 0; ψ = ξ0; n∙∇Θ = 0; n∙∇p is obtained 

from the momentum equation; the components of τ are linearly extrapolated. 

The following initial conditions are specified within the domain: u = 0; p = 0; τ = 0; ϕExt = 0; ψ 

= 0; Θ = 0. 

 

Figure 3.2. Boundary conditions with n denoting the normal unit vector on the surface. 

Structural mesh is adopted to discretize the computational domain. 90◦ corners of the 

contraction channel (points I, J, C, and D in Figure 3.1) are smoothed by a fillet of a 1 µm in radius 
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to avoid sharp turns. The 90◦ corners of the reservoirs (points H, K, B, and E in Figure 3.1) are 

smoothed by a fillet of 2 µm in radius. To capture the EDL in the vicinity of the charged walls, a 

finer mesh is distributed near the charged reservoir and channel walls as shown in Figure 3.3. To 

reduce the number of mesh, a relatively low bulk concentration c0 = 0.01 mM is used, and the EDL 

thickness is 95 nm in this study. There are 77192 cells in the mesh.  

 

Figure 3.3 Computational mesh used in the numerical simulations. Mesh of the whole geometry (a) and 

detailed view of the mesh at channel corner (b), at reservoir corner (c), and in the constriction 

microchannel (d). 

3.3 Code Validation of rheoEFoam 

In this work, ηp and λ for 100 ppm, 250 ppm, and 1000 ppm PAA-water solutions are adopted 

to accomplish curve fitting as shown in Figure 3.4. The values of ηp and λ were experimentally 

measured, and the slow retraction method was used to measure the relaxation time. The polymer 

dynamic viscosity can be expressed as ηp = 2.22×10−5∙ cp, and the relaxation time can be expressed 
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as λ = 3.69×10−3 + 3.9422×10−5∙ cp
2, where cp represents the weight concentration of PAA solution 

with the unit of ppm. The ηp and λ for other studied in this work are estimated by the curve-fitting 

expressions. 

 

Figure 3.4 (a) Polymer dynamic viscosity ηp and (b) relaxation time λ as a function of the polyacrylamide 

(PAA) concentration, cp. 

In a microfluidic channel with EDL thickness much smaller than the channel height, the EOF 

velocity of a Newtonian fluid can be approximated by the Helmholtz-Smoluchowski velocity 

formula [181],  

 
0

0

0

,xE
u




= −

 

(3.1) 

Where Ex is the actual local electric field in the mainstream direction and is the total viscosity 

0  of the fluid. To check the accuracy of the code, both the Newtonian and viscoelastic fluids in 

the same geometry with HC = 40 µm, LC = 200 µm, Hr = 400 µm, and Lr = 400 µm. Other 

parameters are set as U0 = 60 V, ξ0 = −0.11 V [182], and ε = 6.906266×10−10 F∙m−1. For Newtonian 

fluid, the total viscosity is set as η0 = ηs = 0.00322 kg/(m∙s). When the concentration of PAA 

solution is less than 2 ppm, the relaxation time is less than 0.1 ms [183], and the fluid can be 
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approximately treated as Newtonian fluid. Therefore, for the OB model, parameters are set as ηs = 

0.00317 kg/(m∙s), ηp = 0.00005 kg/(m∙s), η0 = ηs + ηp = 0.00322 kg/(m∙s), and λ = 0.1 ms. Figure 

3.5a depicts electric potential ϕExt(x,0) along the x-axis when Eapp = 600 V/cm. The electric field 

in the x-direction, Ext

x


−


, in the constriction microchannel is 1820 V/cm, which is about 10 times 

of the electric field in the reservoirs. This is because of the 10:1:10 contraction geometry and 

current conservation. With the same electric conductivity, the electric field is inversely 

proportional to the cross-sectional area of the geometry. Note that the actual electric field within 

the constriction microchannel is about three times of the apparent electric field, Eapp, which does 

not consider the cross-sectional variation of the geometry. EOFs of both Newtonian fluid and 

viscoelastic fluid reach a steady state. Figure 3.5b shows the x-component velocity profiles, u(0,y), 

of the Newtonian fluid (solid line) and the OB model (circles). The velocity first rises rapidly 

within the thickness of EDL, then reaches a plateau in the cross section of the channel. When Ex = 

1820 V/cm, the calculated Helmholtz-Smoluchowski velocity is 4.29 mm/s, and the velocity at the 

center of the channel is 4.27 mm/s for both Newtonian and OB models. The relative difference 

between the approximated velocity and the simulated velocity is less than 0.5%. In addition, the 

result for OB model matches that of Newtonian fluid. Such consistency between Newtonian model 

and OB model matches that of Newtonian fluid. Such consistency between Newtonian model and 

OB model is because the polymer dynamic viscosity ηp is much smaller than the solvent dynamic 

viscosity ηs, and the relaxation time of the polymer λ is also tiny. Under the considered condition, 

the elastic effect of the fluid is negligible, and the OB fluid is almost the same as Newtonian fluid 

with the same total viscosity. 
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Figure 3.5 (a) Electric potential distribution (blue dash line shows the relative position of the geometry) 

along the x-axis, (b) the x-component velocity at the center of the constriction microchannel, u(0,y), for 

Newtonian model (solid line) and OB model (symbol). 

Afonso et al. [119] derived an analytical solution of viscoelastic EOF between two parallel 

plates based on the Debey-Hückel approximation, which is valid under the condition of low zeta 

potential (i.e., ξ0 < 25 mV). The analytical solution of the velocity profile across the height of the 

channel is given as: 
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where  is the dielectric constant of the solution, ((cosh( )) / (cos( ))),A y H =

2 2 2

0((2 ) / ( ))Bn e z k T = , Bk  is the Boltzmann constant, and 0n  is the ionic density. For OB model, 

ε = 0. The above equation yields ( )
0

1E xE
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. 

To further validate our code for OB model, EOF of viscoelastic fluid with ηs = 0.001 kg/(m∙s), 

ηp = 0.00222 kg/(m∙s), η0 = ηs + ηp = 0.00322 kg/(m∙s), and λ = 8.6 ms in a straight 2D channel 

(with height of 40 μm) is studied. These rheology parameters are corresponding to those of 100 
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ppm PAA solution. U0 is set as 10 V, while ξ0 is chosen as −10 mV and −110 mV, respectively. 

Under the considered conditions, the flows are steady state due to relatively low electric field 

strength. Figure 3.6 depicts the x-component velocity profile at the center of the channel, and the 

numerical results (triangles) are in excellent agreement with the analytical results (lines). Although 

the analytical solution is based on the Debey-Hückel approximation, the numerical result also 

agrees well with the analytical solution when the zeta potential ξ0 is −110 mV. Therefore, the 

agreement of results attained from the OB model and the Newtonian model, which are also 

validated by the Helmholtz-Smoluchowski approximation, as well as the agreement of analytical 

solution of OB model and numerical results for EOF of viscoelastic fluid in a straight channel, 

validate the code. 

 

Figure 3.6 The x-component velocity profile of viscoelastic electroosmotic flow (EOF) between two 

parallel plates: (a) zeta potential is −10 mV, (b) zeta potential is −110 mV. Analytical result of Afonso et 

al. (solid line) and current numerical result (symbol). 

3.4 Mesh Independence Study 

Three different meshes are used to conduct the mesh independence study with Eapp = 600 V/cm 

and cp = 100 ppm. As shown in Figure 3.7, there are 135192, 95252, and 77192 cells in mesh 1, 



54 

 

mesh 2, and mesh 3, respectively. For mesh 1, the meshes near the charged wall are 7 nm, so there 

are 14 meshes within the EDL thickness. In mesh 2 and mesh 3, the meshes near the charged wall 

are 10 nm, and there are 10 meshes within the EDL thickness. However, there are fewer meshes 

within the two reservoirs in mesh 3 than in mesh 2. Figure 3.8 shows spatial distribution of the 

normal polymer stress and streamlines of three different meshes at t = 1.78 s. The normal polymer 

stress and streamlines of the three meshes show no notable difference. 

 

 

Figure 3.7 Three different meshes used for the mesh independence study. The meshes are symmetric with 

respect to the x-axis and y-axis, and only 1/4 of the total meshes are presented. (a) mesh 1: 135192 cells, 

(b) mesh 2: 95252 cells, (c) mesh 3: 77192 cells. 
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Figure 3.8 Spatial distribution of normal polymeric stress (left) and streamlines (right) for mesh 1 (the top 

row), mesh 2 (the middle row), and mesh 3 (the bottom row) at t = 1.78 s. 

Figure 3.9 shows the spatial distribution of velocity magnitudes along x = 0 and y = 0 at t = 1.78 

s. For velocity magnitude distribution along x = 0 (Figure 3.9a), the maximum relative error occurs 

at y = 0. The maximum relative error for mesh 2 is 
meshs2 mesh1 mesh1/ 0.9%U U U− = , and the 

maximum relative error for mesh 3 is 
meshs3 mesh1 mesh1/ 1.1%U U U− = . The average relative errors for 

all sampling point are 0.45% for mesh 2 and 0.64% for mesh 3. For velocity magnitude distribution 

along y = 0 (Figure 3.9b), compared to mesh 1, the average relative errors for all sampling points 

are, respectively, 0.29% for mesh 2 and 0.72% for mesh 3.  

Since the results from the above three meshes are in good agreement, mesh 3 is used to perform 

other simulations. 
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Figure 3.9 Spatial distribution of velocity magnitudes at t = 1.78 s: (a) velocity magnitudes profile at x = 

0, (b) velocity magnitudes profile at y = 0. 

3.5 Results and Discussion 

Newtonian fluid is investigated to provide the reference flow characteristics for the contraction 

geometry. For the PAA solution with different concentrations cp, the applied apparent electric field 

Eapp varies from low values to high (i.e., 100-600 V/cm). In this section, first, the flow pattern of 

Newtonian fluid and the time-dependent flow patterns of PAA solutions are described. Then, the 

instabilities of PAA solutions with various Eapp and cp are discussed, and a flow map is formed 

based on the investigated values of Eapp and cp. Finally, statistical results of cross-sectional average 

velocity are presented. 

3.5.1 Instability of PAA Solutions 

For Newtonian fluids with various total viscosities, the EOF reaches a steady state under all 

conditions of the applied electric field strengths. There is no vortex occurring in the reservoirs and 

the constriction microchannel. The streamlines of Newtonian fluid show excellent symmetry about 

the x-axis. Additionally, the magnitude of the velocity, U (x, y), is symmetric about the y-axis, U 

(x, y) = U (x, −y). For EOF of PAA solutions, when Eapp and cp are relatively low, the flow pattern 
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is similar to that of Newtonian fluid, and the flow reaches a steady state without vortex. With 

increasing Eapp and cp, however, the viscoelastic flow becomes time dependent and significant 

instabilities are observed. Figure 3.10 depicts the streamlines at different times when Eapp = 100 

V/cm and cp = 500 ppm. Figure 3.11 depicts the streamlines at different times when Eapp = 600 

V/cm and cp = 150 ppm. Figure 3.12 shows the velocity magnitudes as a function of time at three 

different locations, namely, upstream the constriction microchannel (−3HC, 0), cent of the 

constriction microchannel (0, 0), and downstream the constriction microchannel (3HC, 0). For the 

EOF of both cp = 150 ppm and cp = 500 ppm, strong instabilities and upstream vortices are 

observed. 

 

Figure 3.10 Instability of EOF with cp = 500 ppm and Eapp = 100 V/cm. Streamlines at different times: (a) 

1.71 s, (b) 1.75 s, (c) 1.79 s, (d) 1.83 s, and (f) 1.91 s. The color bar represents the elastic normal stress τxx. 
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Figure 3.11 Instability of EOF with cp = 150 ppm and Eapp = 600 V/cm. Streamlines at different times: (a) 

1.70 s, (b) 1.72 s, (c) 1.74 s, (d) 1.76 s, (e) 1.78 s, and (f) 1.80 s. The color bar represents the elastic 

normal stress τxx. 

 

Figure 3.12 Velocity magnitudes at three different locations ((−3HC, 0), (0, 0), (3HC, 0)): (a) cp = 150 

ppm and Eapp = 600 V/cm, (b) cp = 500 ppm and Eapp = 100 V/cm. 

Figure 3.10 and Figure 3.11 show that the viscoelastic EOF is time dependent. The streamlines 

in the left inlet reservoir far away from the solid walls (AB and GH in Figure 3.1) and near the 
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entrance of the constriction microchannel show significant fluctuation and become asymmetric 

about the x-axis. However, the streamlines near the solid walls of both reservoirs and in the outlet 

reservoir show insignificant change over time. Within 0.1 s, vortices continuously form and 

disappear within the inlet reservoir right before the entrance of the constriction microchannel. In 

Figure 3.10a, significant curvature at the streamlines of the EOF upstream the constriction 

microchannel is observed. Then, the curvature of the streamlines further develops into a pair of 

vortices showing notable differences at different times. After growing to the maximum size, the 

vortices start to shrink until the vortices break and disappear, as shown in Figure 3.10c, d. Next, 

the vortices in the EOF keep forming and breaking repeatedly as shown in Figure 3.10e, f. 

Comparing Figure 3.10b, c, the central locations of the vortices are both spatially and temporally 

dependent. In Figure 3.10b, the direction of the circulation is marked by curved red lines. The pair 

of vortices are in opposite directions and form a stagnant region right before the entrance of the 

constriction microchannel. Therefore, the induced vortices are referred to as entrance-centerline 

vortices. 

For cp = 150 ppm and Eapp = 600 V/cm the width and length of the vortices are nearly the same 

as the height of the constriction microchannel (HC), while for cp = 500 ppm and Eapp = 100 V/cm, 

the width and the length of the vortices are about 2HC. In a similar geometry, however, Ko [171] 

did not observe vortices in their experiments with 200 ppm PAA solution under Eapp ranging from 

75 V/cm to 200 V/cm. The elastic instability increases with increasing polymer concentration and 

the applied electric field. The results discussed in the following section show that for cp = 200 

ppm, the vortices occur when the applied electric field exceeds the threshold value of 300 V/cm. 

Therefore, the numerical results qualitatively agree with the experimental observation of Ko [171] 

under their experimental condition. Table C1 in Appendix C summarizes the EOF instabilities 
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from the literature. In Sadek’s [172] experimental study, small vortices at the entrance and large 

upstream circulation flows were observed. For highly concentrated polymer solution, downstream 

circulation flows were observed at a critical voltage. The upstream vortices found in this study are 

distinct from the small vortices and large circulation flows found in Sadek’s study [172] in terms 

of location. Note that the geometry in this study differs significantly from the experimental study 

of Sadek [172], and large circulating flows near the reservoir corners and channel lips are not 

observed.  

For Newtonian fluid, the EOF reaches a steady state, and the velocity magnitudes are symmetric 

about the y-axis. Therefore, for Newtonian fluid, U (−3HC, 0) = U (3HC, 0). However, as shown in 

Figure 3.12, the velocity magnitudes at three points (−3HC, 0), (0, 0) and (3HC, 0) fluctuate around 

specific values and velocity magnitudes do not show symmetry about the y-axis. For cp = 500 ppm 

and Eapp = 100 V/cm, as shown in Figure 3.12b, the time-averaged velocity at the channel center 

is 0.201 mm/s with a standard deviation of 0.013 mm/s. The time-averaged velocity downstream 

the constriction microchannel is 0.108 mm/s, which is about two times that upstream the 

constriction microchannel (i.e., 0.047 mm/s). For cp = 150 ppm and Eapp = 600 V/cm, the time-

averaged velocities at the upstream, center, and downstream of the constriction microchannel are, 

respectively, 0.19 mm/s, 2.82 mm/s, and 2.05 mm/s. The ratio of the downstream velocity to the 

upstream velocity is about ten times. In contrast to Newtonian EOF, the flow velocity of the 

viscoelastic fluid at the downstream is significantly higher than that at the upstream, which has 

also been experimentally observed in Ko’s [171] experiments, where a fluid jet after the 

constriction microchannel was observed and the ratio of the velocity at the downstream centerline 

to that at upstream of the constriction microchannel varies between 1 and 2 under Eapp ranging 

from 75 V/cm to 200 V/cm and cp = 200 ppm. 
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Figure 3.12 also shows that EOF of cp = 500 ppm and Eapp = 100 V/cm presents stronger 

instabilities than that of cp = 500 ppm and Eapp = 600 V/cm. Comparing Figure 3.10 and Figure 

3.11, the streamlines show stronger fluctuation and larger upstream vortices for solution with 

relatively high polymer concentrations. Such a trend suggests that although the increase of both 

Eapp and cp can enhance the instabilities of the viscoelastic EOF, the polymer concentration, cp, 

affects the instabilities of the EOF more significantly, which will be further discussed in the next 

section.  

Figure 3.10 and Figure 3.11 also show the spatial distribution of elastic normal stress τxx with 

the color bar representing its magnitude. To clearly reveal it, Figure 3.13 depicts the spatial 

distribution of τxx in the whole geometry for cp = 150 ppm and Eapp = 600 V/cm at t = 1.78 s. 

Within the two reservoirs, the elastic normal stress is nearly zero at location far away from the 

constriction microchannel. However, significant elastic normal stress is induced near the entrance 

of the constriction microchannel and near the downstream lips. Due to the contraction geometry, 

the electric field within the constriction microchannel is about 10 times that within the inlet 

reservoir as shown in Figure 3.5a, and the flow velocity in the microchannel is significantly higher 

than that in the reservoir. For example, Figure 3.12 shows that the ratio of the time-averaged 

velocity within the microchannel to that in the inlet reservoir, U(0, 0) = U(−3HC, 0), is 4.28 for cp 

= 500 ppm and Eapp = 100 V/cm and 10.79 for cp = 150 ppm and Eapp = 600 V/cm. Near the 

entrance of the microchannel, the high velocity gradient results in a strong extension of polymer 

molecules and consequently induces significant elastic normal stress. Therefore, τxx experiences a 

rapid increase near the entrance of the constriction microchannel. At the exit of the constriction 

microchannel, similarly, a significant increase of τxx is induced at the exit lips. Figure 3.14a and b 

depict the streamlines in the constriction microchannel and the color bar represents the velocity 
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magnitude, U, for cp = 150 ppm and Eapp = 600 V/cm and Newtonian fluid with the same total 

viscosity and Eapp at t = 1.78 s, respectively. For the viscoelastic fluid, at both the entrance and exit 

of the constriction microchannel, as shown by the dashed circles in Figure 3.14a, velocity becomes 

spatially dependent along the y-axis. Velocity near the walls of the constriction microchannel is 

significantly higher than that at the centerline of the microchannel, and a local maximum occurs 

near the inlet/outlet corners of the constriction microchannel. However, in the EOF of Newtonian 

fluid, as shown in Figure 3.14b, at both the entrance and the exit of the constriction microchannel, 

the velocity magnitude is more evenly distributed in the cross-section of the constriction 

microchannel. Figure 3.14c depicts the velocity magnitude profile at the entrance (2x/HC = −5) 

and exit (2x/HC = 5) of the constriction microchannel. For Newtonian fluid, the velocity magnitude 

profile is identical at 2x/HC = ±5 and is symmetric about the x-axis. The ratio of the maximum 

velocity magnitude near the channel walls to that at the centerline is 1.6. However, for PAA 

solution, due to the elastic instability, the velocity magnitude profile is asymmetric about the x-

axis at 2x/HC = ±5. In addition, the ratios of the maximum velocity magnitude near the channel 

walls to that at the centerline are 9.7 and 4 at 2x/HC = −5 and 2x/HC = 5, respectively, which are 

much higher than that of the Newtonian fluid. For Newtonian fluid, the velocity profile is 

symmetric about the centerline of the microchannel (i.e., y = 0). However, Figure 3.14c shows that 

the local maximum velocity near the top channel wall differs from the velocity near the bottom 

channel wall, and the velocity profile is asymmetric about y = 0. 
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Figure 3.13 Spatial distribution of the elastic normal stress τxx for cp = 150 ppm and Eapp = 600 V/cm at t = 

1.78 s. 

As PAA solution flows from the microchannel into the outlet reservoir, fluid velocity first 

decreases when fluid exits the microchannel and then increases in the outlet reservoir, as shown 

by the region marked with a circle in Figure 3.14a and by the velocity magnitude as a function of 

x at y = 0 in Figure 3.14d. The two dashed lines in Figure 3.14d represent the entrance and exit of 

the constriction microchannel. EOF of Newtonian fluid within the constriction is a plateau, and its 

velocity magnitude within the constriction is much higher than those at both reservoirs, and this is 

because the electric field within the constriction microchannel is significantly higher than that in 

the reservoirs. However, the velocity of PAA solution becomes spatially dependent within the 

constriction, and a local maximum occurs before the exit and a local minimum occurs at the exit 

of the constriction microchannel. In addition, a local maximum occurs at the downstream outlet 

reservoir. Figure 3.14d also clearly shows that the velocity in the downstream outlet reservoir is 

significantly higher than that at the upstream inlet reservoir. For example, U(2x/ HC = 10.0)/U(2x/ 

HC = −10.0) = 3.37. The unexpected velocity decrease at the microchannel exit and velocity 

increase at the downstream outlet reservoir do not occur in Newtonian fluid as shown in Figure 
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3.14b, d. Such a phenomenon is probably because of the extrudate swell effect of polymers [184]. 

At the exit of the constriction microchannel, curved streamlines tilting toward the walls of the 

constriction microchannel are observed in viscoelastic fluid, suggesting that fluid tends to flow 

toward the charged walls of the microchannel. Such lateral velocity component results in the 

velocity’s increase near the microchannel walls and velocity’s decrease near the centerline at the 

exit of the constriction microchannel. In addition, the significant increase of τxx near the 

downstream lips observed in Figure 3.13 can also be attributed to the extrudate swell effect of 

polymers when polymer exits from the constriction microchannel to larger outlet reservoir. 

 

Figure 3.14 Streamlines and velocity magnitude for cp = 150 ppm and Eapp = 600 V/cm and Newtonian 

fluid at t = 1.78 s: (a) 150 ppm PAA solution, (b) Newtonian fluid with same total viscosity at 150 ppm 

PAA solution, (c) velocity magnitude profiles at 2x/HC = ±5, (d) velocity magnitudes profiles at y = 0 

(The blue dash lines show the position of the contraction microchannel). The color bar represents the 

velocity magnitude U. 
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The generated elastic normal stress τxx was typically used to explain the formation of vortices 

in pressure-driven viscoelastic flows within curved geometries [27, 185, 186]. It has been reported 

that the development of the polymeric elastic stresses is caused by the flow-induced changes of 

the polymer conformation in the solution. Such changes of the polymer conformation are strain-

dependent, anisotropic, and dependent on the flow. The extra elastic stresses are nonlinear under 

shear and can alter the flow behavior. At low Reynolds numbers where inertia is negligible, when 

the elastic normal stress exceeds by a certain amount the local shear stress, the flow transits from 

stable to unstable, and the vortices form at upstream of the constriction microchannel. Such elastic 

instabilities are often observed in flows with sufficient curvature [187-189], and some argue that 

curvature is necessary for infinitesimal perturbations to be amplified by the normal stress 

imbalances in the viscoelastic flows [34]. However, other theoretical studies reported that 

viscoelastic flows also showed a nonlinear instability in parallel shear flows, such as in viscoelastic 

flows within straight pipes at low Reynolds numbers [190]. Although the formation of the 

upstream vortices in the viscoelastic EOF shares the same mechanism as the pressure-driven flow, 

the locations of the vortices found in this study are distinct from the typical lip and corner vortices 

accruing in pressure-driven viscoelastic flows. This is probably because of the different velocity 

profiles in the pressure-driven flow and the EOF. In pressure-driven flow, the velocity is zero at 

solid walls and increases to a maximum at the centerline of the geometry. However, the EOF 

velocity profile is nearly a plug flow as shown in Figure 3.5b. The velocity increases from zero to 

a plateau within the EDL thickness, which is only on the order of a few nanometers. For the 

pressure-driven flow, the highest velocity is at the centerline of the geometry and the velocity near 

the wall is relatively low, resulting in the stagnant region near the solid boundaries (lips and 

corners). However, EOF velocity in the vicinity of the charged wall is almost the same as that in 
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the channel centerline. For the extensional flow of viscoelastic fluids, the stretched polymer 

molecules lead to large elastic stresses, which significantly depend on the geometry and velocity 

profile. The induced elastic stresses render the primary flow unstable and cause an irregular 

secondary flow. The flow subsequently acts back on the polymer molecules and stretches them 

further, causing a strong disturbance of the EOF and yielding a time-dependent EOF. 

3.5.2 Elastic Instabilities under Various Eapp and cp 

In order to study the effects of Eapp and cp on the instabilities of viscoelastic EOF, cp is varied 

from 100 ppm to 500 ppm and Eapp is varied from 100 V/cm to 600 V/cm. Flow patterns under 

different conditions of Eapp and cp are shown in Figure 3.15-Figure 3.18. At certain Eapp (cp), EOF 

becomes more unstable with the increase of cp (Eapp). Figure 3.15 shows the streamlines for 

different PAA concentrations under Eapp = 600 V/cm, and Figure 3.16 shows the streamlines within 

the constriction microchannel with the color bar representing pressure for Newtonian fluid and τxx 

for PAA solutions. As shown in Figure 3.15 and Figure 3.16, when cp increases, the polymeric 

stress τxx at the entrance of the constriction microchannel increases rapidly, resulting in the 

fluctuation of the streamlines upstream of the microchannel. When cp is relatively low (100 ppm), 

EOF of viscoelastic fluid is similar to that of Newtonian fluid, and the flow is in a steady state. 

With an increase in the PAA concentration up to 150 ppm, significant curvature of the centerline 

streamlines is observed, and the streamlines become asymmetric about the x-axis and y-axis. As 

cp continuously increases up to 200 ppm, a pair of upstream vortices in opposite flow directions 

are induced at upstream of the constriction microchannel, forming a stagnant region as shown in 

Figure 3.15d. The width and length of the pair of vortices are about 1.6 times the constriction 

microchannel height (i.e., 1.6HC). Such vortices are found to grow significantly in size with 

increasing cp, which is in qualitative agreement with the experimental observations of Ko [171]. 



67 

 

Within the constriction microchannel, as shown in Figure 3.16d, nearly 1/4 of the microchannel 

length (i.e., 1/4LC) from the entrance shows a significant increase of τxx. Near the downstream lips 

of the microchannel, a local maximum of the polymeric stress τxx is observed. When cp increases 

to 250 ppm, the fluctuation of the streamlines and the size of the vortices grow dramatically as 

shown in Figure 3.15e, in which the width and length of the vortices are about 2.9 times the 

microchannel height (i.e., 2.9HC). The region with significant value of τxx is near 1/3 of the 

microchannel length (i.e., 1/3LC), as shown in Figure 3.16e. When cp further increases to 500 ppm, 

as shown in Figure 3.15f, the vortices grow to 4.4 times of the constriction microchannel height 

(i.e., 4.4HC). More than half of the microchannel length shows a significant increase in τxx. 

Furthermore, a small vortex is induced near the downstream lip of the microchannel, which is also 

reported in experimental studies of Ko [171]. 

 

Figure 3.15 Streamlines of Newtonian fluid and PAA solutions with different concentrations under Eapp = 

600 V/cm at 1.70 s: (a) Newtonian fluid, (b) cp = 100 ppm, (c) cp = 150 ppm, (d) cp = 200 ppm, (e) cp = 

250 ppm, and (f) cp = 500 ppm. The color bar represents the elastic normal stress τxx. 
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Figure 3.16 Streamlines in microchannel of Newtonian fluid and PAA solutions with different 

concentrations under Eapp = 600 V/cm at 1.70 s: (a) Newtonian fluid, (b) cp = 100 ppm, (c) cp = 150 ppm, 

(d) cp = 200 ppm, (e) cp = 250 ppm, and (f) cp = 500 ppm. The color bar represents the elastic normal 

stress τxx. 

Figure 3.17 and Figure 3.18 show the streamlines for cp = 150 ppm when Eapp is varied from 

100 V/cm to 600 V/cm with the color bar representing the magnitude of τxx. At a relatively low 

electric field such as Eapp = 100 V/cm, EOF of PAA solution is similar to the Newtonian fluid, and 

the flow is in a steady state and symmetric about channel centerline. In addition, the induced 

polymeric stress τxx in the constriction microchannel is relatively small. When Eapp increases up to 

400 V/cm, centerline streamlines start to show notable fluctuation and become asymmetric about 

the x-axis. At the entrance of the microchannel, microchannel, a slight increase of τxx is observed, 

however, significant increase of τxx is observed near the microchannel walls and the downstream 

lips, as shown in Figure 3.18d. When Eapp increases to 500 V/cm, a pair of upstream vortices are 

induced upstream microchannel, and the size of the vortices is about the height of the constriction 

microchannel. Additionally, as shown in Figure 3.18e, significant τxx is induced near the entrance 
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of the constriction microchannel. However, when Eapp further increases to 600 V/cm, the size of 

the upstream vortices does not show a notable increase in comparison with that of Eapp = 500 V/cm. 

The results clearly show that the increase of cp and/or Eapp can magnify the elastic instabilities of 

the viscoelastic EOF. However, the increase of cp has a more significant enhancing effect on the 

elastic instabilities of the viscoelastic EOF than the increase of Eapp. 

 

Figure 3.17 Streamlines of 150 ppm PAA solution under different Eapp at 1.78 s: (a) 100 V/cm, (b) 200 

V/cm, (c) 300 V/cm, (d) 400 V/cm, (e) 500 V/cm, and (f) 600 V/cm. The color bar represents the elastic 

normal stress τxx. 
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Figure 3.18 Streamlines in microchannel of 150 ppm PAA solution under different Eapp at 1.78 s: (a) 100 

V/cm, (b) 200 V/cm, (c) 300 V/cm, (d) 400 V/cm, (e) 500 V/cm, and (f) 600 V/cm. The color bar 

represents the elastic normal stress τxx. 

Figure 3.19 depicts a flow map for the onset of vortices in unstable EOF as functions of cp and 

Eapp. At a fixed cp (Eapp), vortices and unstable EOF occur when Eapp (cp) exceeds a specific 

threshold value. For example, for cp = 200 ppm, the flow becomes unstable with the occurrence 

of vortices when Eapp is above 300 V/cm. For a relatively low PAA concentration (i.e., cp = 100 

ppm), it requires a very high electric field (up to 850 V/cm) to yield unstable EOF with upstream 

vortices. In contrast, for a relatively high cp (i.e., cp = 500 ppm), the vortices occur at Eapp between 

50 V/cm and 100 V/cm. An asymptotic curve fitting is implemented to illustrate the transition 

condition from no upstream vortices to the formation of upstream vortices, which is given as Eapp 

= 47.79 + 2892.25×0.987cp, where cp represents the polymer concentration in ppm, and Eapp is the 

apparent electric field in V/cm. Above the curve in Figure 3.19, the EOF becomes time-dependent 

with upstream vortices, and no vortex forms under the conditions below the curve. Note that the 

flow map is only valid for the geometry considered in this study with the zeta potential of −100 
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mV. The instabilities of the viscoelastic EOF are dependent on the value of zeta potential. A 

comparison of the flow patterns of lower zeta potential (−70 mV) and higher zeta potential (−150 

mV) is presented in section 3.5.4. 

 

Figure 3.19 Flow map in cp-Eapp space for EOF of PAA solutions through a 10:1:10 

constriction/expansion microchannel. Up-right of the fitting curve are the conditions that trigger the 

vortex in the EOF.  

Since the flow velocity is time dependent, we first calculate the cross-sectional average velocity 

over a period of ∆t = t2 – t1, and then take the time-average to obtain the averaged velocity as, 
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∆t = 1 s is used in this study. Figure 3.20 shows the average velocity at the center of the 

constriction as a function of cp at different values of Eapp. In comparison, it also shows the result 

of Newtonian fluid whose viscosity is the same as the total viscosity of PAA solution under Eapp = 

600 V/cm. Under the same Eapp = 600 V/cm, the average velocity in the constriction microchannel 
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of the Newtonian flow is about 6 -12% higher than that of the PAA solution. The decrease of the 

average velocity in PAA solution is attributed to the induced polymeric stress at the entrance of 

the constriction microchannel. For Newtonian fluid, the average velocity decreases as cp increases, 

which is due to the increase of viscosity to make its viscosity be the same as that of PAA solution 

with the concentration of cp. For PAA solutions, under the same Eapp, average velocity 

exponentially decreases as the polymer concentration increases. One reason is attributed to the 

increase of total viscosity with the increase in cp. In addition, the induced polymer stress within 

the constriction increases with the increase of polymer concentration, as show in Figure 3.16, and 

the induced polymer stress slows down the flow. 

 

Figure 3.20 Time averaged cross-sectional average velocity at the center of the constriction microchannel 

(x = 0): (a) average velocity, (b) comparison of average velocity (with deviation) and Helmholtz-

Smoluchowski velocity (lines). 

Under the considered condition of c0 = 0.01 mM, the EDL thickness is only 95 nm, which is 

much smaller than the height of the constriction. In Newtonian fluid, the EOF velocity can be 

approximated by the well-known Helmholtz-Smoluchowski velocity formula as described in 
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Equation (3.1).  We wonder if the average velocity of PAA solutions can still be approximated 

with the Helmholtz-Smoluchowski velocity formula. Since the actual local electric field within the 

constriction is much higher than the apparent electric field Eapp, time-averaged electric field in the 

x-direction at the center of the constriction is used in the calculation of the Helmholtz-

Smoluchowski velocity. Figure 3.20b shows the average velocity as a function of the apparent 

electric field under various PAA concentrations. The lines in Figure 3.20b represent the 

corresponding EOF velocity predicted by the Helmholtz-Smoluchowski velocity formula. At a 

fixed cp, as expected, the EOF velocity increases with an increase in the applied electric field. In 

general, the Helmholtz-Smoluchowski formula over predicts the velocity, and at a fixed cp, the 

relative error increases with the increasing Eapp. For example, for cp = 100 ppm, the relative errors 

under Eapp = 100 V/cm and 600 V/cm are, respectively, 1.2% and 8.6%. At a fixed Eapp, the absolute 

error, which is the difference between the Helmholtz-Smoluchowski approximated velocity and 

the average velocity obtained from the full numerical simulation, increases with the increasing 

PAA concentration. However, the relative error shows no notable change with the increasing cp. 

For example, at Eapp = 600 V/cm, the relative errors for cp = 100 ppm, 300 ppm, and 500 ppm are, 

respectively, 8.7%, 9.6%, and 9.0%. To evaluate the applicability of the Helmholtz-Smoluchowski 

formula to approximate the velocity of viscoelastic fluids for cp ranging from 100 ppm to 500 ppm, 

the minimum, average, and maximum relative errors at different Eapp are calculated as shown in 

Table 1. When Eapp ≤ 300 V/cm, the relative error is less than 5%. However, when Eapp ≥ 400 

V/cm, the relative error is larger than 5%, and the Helmholtz-Smoluchowski formula failed to 

predict the velocity of the viscoelastic fluids accurately. In this study, the largest relative error is 

9.6% when cp = 300 ppm and Eapp = 600 V/cm. 
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Table 3.1 Relative error between the Helmholtz-Smoluchowski velocity and the average velocity from the 

full mathematic method. 

Eapp (V/cm) 100 200  300 400 500 600 

Minimum relative error 1.0% 1.3% 1.8% 5.5% 7.0% 8.5% 

Average relative error 1.3% 1.6% 2.3% 5.9% 7.7% 8.9% 

Maximum relative error 1.5% 1.9% 2.8% 6.5% 8.2% 9.6% 

 

3.5.3 Dimensionless numbers 

Dimensional analysis is a useful tool to fully characterize the flow and identify the dominant 

forces in complex flow of polymeric materials. Reynolds number (Re) is commonly used in 

rheological studies to determine whether the inertial force or the viscous force is dominating the 

flow, which is given by: Re = ρul/ η, where ρ is the fluid density, u is the average velocity in the 

microchannel, l is the characteristic length scale (HC), and η is the fluid viscosity. In addition, the 

Weissenberg number (Wi) is used to assess the flow elasticity of the PAA solutions, which is 

defined as: Wi = λu/l, where λ is the relaxation time. Based on our results, the Re is nearly zero, 

indicating that the inertial force of the EOF is negligible. The Wi is on the order of 1, which 

indicates that the elastic effect in the flow is significant. 

 

Figure 3.21 Reynolds number (a) and Weissenberg number (b) of the viscoelastic EOF. 
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3.5.4  Results for other Zeta potentials  

Two other different zeta potentials (−70 mV and −150 mV) are studied for 150 ppm PAA 

solution under Eapp = 600 V/cm. Figure 3.22 shows the results of −70 mV zeta potential. Significant 

curvatures of the centerline streamlines are observed. However, at other places, no significant 

disturbance is observed. Figure 3.23 shows the results of −150 mV zeta potential. Similar to the 

results of −110 mV zeta potential, strong disturbance is induced in the viscoelastic EOF. Upstream 

vortices form and disappear. An increase of elastic normal stress is observed within the constriction 

microchannel. Figure 3.24 shows the velocity magnitude at the center of constriction channel (i.e., 

(0,0)). When the zeta potential is low (−70 mV), the velocity magnitude is almost steady state. 

However, when the zeta potential is high (−150 mV), the velocity magnitude shows strong 

fluctuation. The results for zeta potentials of −70 mV, −110 mV, and −150 mV show that the 

elastic instabilities of the EOF of PAA solutions are dependent on the value of zeta potential. 

Higher zeta potential induces larger electroosmotic velocity, and therefore stronger stretching of 

the polymers at the entrance of the constriction microchannel. Higher velocity and polymer normal 

stress lead to stronger instabilities of the viscoelastic flow. 
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Figure 3.22 Streamlines of 150 ppm PAA solution under at Eapp = 600 V/cm at different times: (a) 1.70 s, 

(b) 1.72 s, (c) 1.74 s, (d) 1.76 s, (e) 1.78 s, (f) 1.80 s. Zeta potential is −70 mV. The color bar represents 

the elastic normal stress τxx. 

 

Figure 3.23 Streamlines of 150 ppm PAA solution under at Eapp = 600 V/cm at different times: (a) 1.70 s, 

(b) 1.72 s, (c) 1.74 s, (d) 1.76 s, (e) 1.78 s, (f) 1.80 s. Zeta potential is −150 mV. The color bar represents 

the elastic normal stress τxx. 
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Figure 3.24 Velocity magnitudes at (0,0) for 150 ppm PAA solution with zeta potentials of −70 mV and 

−150 mV under Eapp = 600 V/cm. 

3.6 Conclusions 

Electroosmotic flow (EOF) of viscoelastic fluid through a 10:1:10 constriction microchannel is 

numerically investigated as function of the applied electric field and the polymer concentration. In 

the current study, we neglect the effect of the polymer concentration on the zeta potential of the 

channel walls. Compared to the EOF of Newtonian fluid, the following distinct results for 

viscoelastic EOF through a 10:1:10 constriction microchannel are obtained: 

(1) When polyacrylamide (PAA) concentration (applied electric field) exceeds a critical value, 

the EOF of viscoelastic fluid becomes time-dependent with upstream vortices occurring in 

the inlet reservoir near the entrance of the constriction microchannel. In contrast, the EOF 

of Newtonian fluid is always in a steady state without vortices. 

(2) For the viscoelastic EOF, significant polymer stress is induced near the entrance within the 

constriction and near the downstream lips of the constriction, causing the elastic instabilities 

of the viscoelastic EOF. The induced polymer stress is dramatically magnified with the 
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increase of polymer concentration and applied electric field. However, the increase of 

polymer concentration shows a more significant enhancing effect on the polymer stress than 

the increase of the applied electric field. 

(3) The EOF velocity of viscoelastic fluid within the constriction becomes temporally and 

spatially dependent. Near the exit of the constriction, due to the extrudate swell effect of the 

polymers, the velocity at the centerline first decreases at the exit followed by an increase in 

the outlet reservoir. 

(4) The velocity at the exit of the constriction is higher than that at the entrance of the 

constriction because of the formation of upstream vortices, which is in qualitative 

agreement with experimental observation obtained from the literature. 

(5) Under the same total viscosity and applied electric field, the velocity of Newtonian fluid is 

higher than that of viscoelastic fluid, which is attributed to the induced polymeric stress 

within the constriction. When the applied electric field is less than 300 V/cm, the 

Helmholtz-Smoluchowski velocity formula can predict the cross-sectional average velocity 

of viscoelastic fluid with PAA concentration up to 500 ppm, and the relative error is less 

than 5%. At a fixed PAA concentration, in general, the relative error of the Helmholtz-

Smoluchowski approximation increases with an increase in the applied electric field. 
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CHAPTER 4 

ELECTROOSMOTIC FLOW OF VISCOELASTIC FLUID THROUGH A 

MICROCHANNEL WITH 90° BENDS UNDER PULSATING ELECTRIC FIELDS 

4.1 Introduction 

Most previous research on electro-elastic instabilities is restricted to microchannels with 

straightforward geometries driven by direct current (DC) electric fields. However, the electro-

elastic instabilities are found to be strongly related to high local velocity gradients in the 

microchannel, which can be resulted from special structures of the microchannel and the externally 

applied electric field. Therefore, based on the study in Chapter 3, the EOF of viscoelastic fluids 

through a microchannel with 90-degree bends is numerically studied. A constant DC electric field 

combined with AC electric fields with various amplitudes and frequencies are applied to the 

microchannel. OB model is adopted to describe the constitutive characteristics of PAA solutions 

and PB model is used to describe the electrokinetic phenomenon. Solutions with both low and high 

polymer concentrations are investigated. The polymer concentration, the amplitude and frequency 

of the AC electric field are shown to be correlated with the electro-elastic instabilities. 

4.2 Geometry and mathematical model 

The computational domain has the dimensions shown in Figure 4.1 in the Oxy plane. Only 2D 

geometry is considered to reduce the computational burdens imposed by the unsteadiness. The 

working fluid is treated as incompressible monovalent binary electrolyte solution comprising ions 

such as K+ and Cl- with bulk concentration c0 mixed with PAA polymer solution of concentration 

cp. The solid walls of the microchannel and the reservoirs are assumed to carry a constant negative 

zeta potential, ξ0. Two electrodes are placed at both ends of the reservoirs, and an external potential 

bias U = U0 + UAsin(2fEt) is applied between the inlet (Anode) and outlet (Cathode). The apparent 
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electric field between the inlet and outlet is defined as Eapp = U/(2Lr + LC). The reservoir height Hr 

and the reservoir length Lr are 400 μm. The length of the microchannel is LC = 200 µm, and the 

height of the microchannel is HC = 20 µm. 

 

Figure 4.1 Schematic diagram of a microchannel with bends connecting two reservoirs at both ends. The 

solid walls of the reservoirs and the microchannel are negatively charged. DC and AC electric fields are 

imposed by applying a potential difference between anode and cathode positioned in two fluid reservoirs. 

The set of governing equations of the problem are mostly the same as in Chapter 3, including 

the mass conservation equation, momentum equation, and the OB model. In addition, the dye 

concentration dynamics is numerically modeled as the transport of a passive scalar. The following 

convective-diffusive equation is solved to track the dye concentration in the computational domain, 

 2

dye ,
C

C D C
t


+  = 


u

 
(4.1) 

where C is the dye concentration and Ddye is the diffusivity of the dye. In this study, Ddye is 

relatively small (4×10−11 m2/s) and the Peclet number (Pe = Hu/ Ddye) is much large than one so 

that the convection effect dominates over the diffusion. A relatively low bulk concentration c0 = 
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0.0001 mM is used in this study. The EDL thickness is 954 nm. The boundary conditions are given 

as follows (boundary conditions for study 2 are shown in Figure D.1 in Appendix D): 

(1) At the Anode (edge AML in Figure 4.1): n∙∇u = 0; p = 0; τ = 0; ϕExt = U0 + UAsin(2fEt); 

n∙∇ψ = 0; Θ = 0; C = 1 at edge ML; C = 0 at edge AM; where n denotes the normal unit 

vector on the surface. 

(2) At the Cathode (edge FG in Figure 4.1): n∙∇u = 0; p = 0; n∙∇τ = 0; ϕExt = 0; n∙∇ψ = 0; n∙∇Θ 

= 0; n∙∇C = 0. 

(3) On the reservoir walls and the microchannel walls: u = 0; n∙∇ϕExt = 0; ψ = ξ0; n∙∇Θ = 0; 

n∙∇C = 0; n∙∇p is obtained from the momentum equation; the components of τ are linearly 

extrapolated. 

The following initial conditions are specified within the domain: u = 0; p = 0; τ = 0; ϕExt = 0; ψ 

= 0; Θ = 0; C = 1 in the upper half of the inlet reservoir (the shaded area of the inlet reservoir in 

Figure 4.1); and C = 0 in the rest of the computational domain. 

The meshing tool blockMesh provided in OpenFOAM is used to create structural mesh in the 

computational domain as seen in Figure 4.2. The geometry at the 90° corners is slightly rounded 

to prevent the electric field singularity at corners of the geometry. Refined mesh is dispersed close 

to the charged walls, and the cells are compressed toward the walls, assuring the employment of 

at least 10 cells within the EDL to resolve the strong gradients that have emerged inside the EDL 

in the proximity of the charged walls. The EDL thickness is 954 nm in this study. The edge size 

of the layer of cells adjacent to the walls is 25 nm and there are 15 cells inside the EDL. The mesh 

has a total of 543,976 cells. A mesh independence study, described in the next section, is performed 

to ensure the accuracy of the simulation. 
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Figure 4.2 Computational mesh used in the numerical simulations. Mesh of the whole geometry (a) and 

detailed view of the mesh in the microchannel (b), at the channel corner (c), and at the 90° bends of the 

microchannel (d). 

In this work, the adopted ηp and λ for 100 ppm, 250 ppm, and 500 ppm PAA-water solutions 

were experimentally measured [183], and the slow retraction method was used to measure the 

relaxation time. The values of ηp and λ used in this work are listed in Table 1. The zeta potential 

ξ0 is −110 mV. The solvent dynamic viscosity ηs is 0.001 kg/(m∙s). The external potential bias is  

U = U0 + UAsin(2fEt). And the apparent electric field is defined as Eapp = U/(2Lr + LC) = E0 + 

EAsin(2fEt), where E0 is the EC electric field (i.e., V/cm); EA is the amplitude of the AC electric 

field (i.e., 0.1E0, 0.2E0, and 0.4E0); fE is frequency of the AC electric field (i.e., 4 Hz, 6 Hz, 8 Hz, 

and 10 Hz). A thorough code validation of the solver was performed in Chapter 3. 

Table 4.1 Parameters of PAA-solutions. 

cp (ppm) 100 250 500 

ηp (kg/( m∙s)) 0.00222 0.00555 0.0111 

λ (s) 0.0086 0.0196 0.0476 
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4.3 Mesh Independence Study 

Three different meshes are used to perform a mesh independence study for cp = 100 ppm, EA = 

0.1E0 and fE = 10 Hz. There are 543976, 610656, and 748236 cells in mesh 1, mesh 2, and mesh 3, 

respectively. Figure 4.3 shows the detailed views near the charged walls of the three meshes. For 

mesh 1, the meshes near the charged walls are 25 nm, and there are 15 cells within the EDL 

thickness. In mesh 2, the cells within the EDL thickness are the same as mesh 1, however the cells 

far away from the charged walls are slightly refined. In mesh 3, the cells near the charged walls 

are 20 nm, and there are 20 cells within the EDL thickness. The cells far away from the charged 

walls are the same as mesh 2. Figure 4.4 shows the spatial distribution of the dye concentration 

and the streamlines of three different meshes at t = 1 s. The results of three different meshes show 

no notable difference. 

 

Figure 4.3 Detailed views near the charged wall of the three different meshes used for the mesh 

independence study: (a) mesh 1: 543976 cells, (b) mesh 2: 610656 cells, (c) mesh 3: 748236 cells. 
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Figure 4.4 Spatial distribution of dye concentrations (left column) and streamline (right column) for mesh 

1 (the top row), mesh 2 (the middle row), and mesh 3 (the bottom row) at t = 1 s. 

 

Figure 4.5 Velocity profile at x = 0, t = 1 s of the three different meshes. 
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Figure 4.6 Plot of cross-sectional average velocities at x = 0 in the microchannel of three different 

meshes. 

Figure 4.5 plots the velocity profiles at x = 0 for three different meshes at t = 1 s, which show 

great consistency in the cross-section. Comparing with mesh 1, the maximum relative difference 

is 1.42 % at y/HC = 0.4 for mesh 2 and 1.67 % at y/HC = −0.3 for mesh 3. The average relative 

differences for mesh 2 and mesh 3 are 0.94 % and 0.75 %, respectively. Figure 4.6 shows the cross-

sectional average velocities at x = 0 in the microchannel of the three different meshes from t = 0 s 

to t = 1 s, which is calculated by ( )
C

C

/2

C
/2

0, /
H

H
U U y dy H

−
=  . Within 1 s, the three average velocities 

are nearly identical with a maximum relative difference of 3.92 % for mesh 2 and 3.76 % for 

mesh3. The average relative differences for mesh 2 and mesh 3 are 0.91% and 1.03 %, respectively. 

The three different meshes show great agreement in predicting the velocity field in the 

microchannel. Therefore, mesh 1 is used for other simulations. 
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4.4 Results and discussions 

In this section, the flow characteristics of the EOF through a constriction micro-channel with 

90° bends are attained when imposed to constant and pulsating electric fields for Newtonian and 

viscoelastic fluids. Under a steady electric field, elastic instabilities are observed in the viscoelastic 

EOF, and the pulsating electric fields amplify the instabilities even more. The following analysis 

discusses the elastic instabilities from three aspects: (a) velocity fluctuation and energy spectra of 

the velocity fluctuation, (b) flow patterns revealed by the streamlines, (c) particle trajectories in 

the downstream reservoir. The strength and frequency of the pulsating electric field are given 

particular focus. 

4.4.1 Velocity and energy spectra of velocity fluctuations 

We first analyze the velocity of the EOF at the center of the microchannel (i.e., (0,0)). The EOF 

of a Newtonian fluid with the same total viscosity as 200 ppm PAA solution is studied as a 

reference. Figure 4.7 shows a plot of the velocities of the Newtonian fluid and PAA solutions when 

the microchannel is under DC electric field. The Weissenberg numbers of the viscoelastic EOF 

investigated in this study are all around 1, namely, Wi = 0.86, 0.98, and 1.19 for 100 ppm, 250 

ppm, and 500 ppm PAA solutions, respectively. As shown in Figure 4.7a, under DC electric field, 

the velocity of the Newtonian fluid is steady and time independent while all velocities of the PAA 

solutions show fluctuations. PAA solution with less polymer concentration has higher velocity due 

to less viscosity. Figure 4.7b shows the energy spectra of velocity fluctuations at the center of the 

microchannel. The three energy spectra curves share the same general appearance: there is a 

plateau at low frequency followed by two continuous power-law decay regions separated by a 

distinct inflection point. The exponents are rather close for all three energy spectra curves, around 
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−2.6 at lower frequencies and around −6.3 in the high-frequency region. Apart from the inflection 

points, none of the curves exhibit any significant peaks.  

 

Figure 4.7 Velocities at the center of the microchannel of Newtonian fluid with the same total viscosity as 

250 ppm PAA solution, and cp = 100 ppm, 250 ppm, 500 ppm PAA solutions under DC electric field: (a) 

velocity magnitude plots at the center of the microchannel, (b) energy spectra of the velocity fluctuations. 

In Figure 4.8 we plot the velocities of 100 ppm PAA solution when fE is 10 Hz and EA varies 

from 0 to 0.4E0. When AC electric field is applied, the velocity at the center of the microchannel 

fluctuates in the same frequency as the AC electric field. In the upper left of Figure 4.8, a closer 

view of the velocities reveals that, in addition to electric field’s influence, there are small 

fluctuations in the velocities originating from the elastic instabilities, which will be discussed in 

the following sections. In the following discussions, to distinguish between the large velocity 

fluctuation due to the AC electric field and the small velocity fluctuation originating from the 

elastic instabilities, the former is referred to as the main fluctuation and the latter is called the 

minor fluctuation. The statistical outcomes of the velocities in Figure 4.8 are shown in Figure 4.9. 

As shown in Figure 4.9a, for AC electric field with different amplitudes, the averages of the 
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velocities show no significant difference (i.e., < 2%). The amplitudes of the velocities increase 

linearly as the increasing of the amplitudes of the AC electric field. Figure 4.9b shows the energy 

spectra of the velocity magnitude fluctuations. A distinct peak at 10 Hz is observed in the energy 

spectra, which is due to the main frequency of the AC electric field. The peak energy at 10 Hz 

increases with the increasing amplitude of the AC electric field. Except for the main peak, the 

energy spectra curves share similar features. Two continuous power-law decay regions are 

observed with exponents of about −2.6 at lower frequencies and −5.5 at higher frequencies. 

 

Figure 4.8 Velocities at the center of the microchannel for cp = 100 ppm at fE = 10 Hz, and EA = 0, 0.1E0, 

0.2E0, 0.4E0. 
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Figure 4.9 Statistical results for cp = 100 ppm at fE = 10 Hz, and EA = 0.1E0, 0.2E0, and 0.4E0: (a) average 

velocities and the velocity amplitudes, (b) energy spectra of the velocity fluctuations. 

Additionally, the velocities of 250 ppm PAA solution at the center of the microchannel (i.e., 

(0,0)) under DC and AC electric fields are presented in Figure 4.10. The amplitude of AC electric 

field is EA = 0.1E0, and the frequency fE varies from 4 Hz to 10 Hz. The velocities show minor 

fluctuation for both DC and AC electric fields. The minor fluctuation is more significant under DC 

electric field and AC electric field with relatively low frequencies (i.e., 4 Hz and 6 Hz). With the 

increase of the frequency of the AC electric field, the minor fluctuation of the velocity becomes 

unsignificant. The statistical outcomes of the velocities in Figure 4.10 are displayed in Figure 4.11a. 

When the amplitude of the AC electric field is fixed and the frequency varies, the relative 

difference of the average velocity is less than 1%, which is negligible. The main fluctuation, 

however, exhibits the opposite tendency from the minor fluctuation in that its amplitude grows as 

the frequency rises. Figure 4.11b plots the energy spectra of the velocity fluctuations. Except for 

the distinct peak of the main frequency of the AC electric field, the energy spectra curves are rather 

similar to under DC electric fields, a plateau at low-frequency region followed by two continuous 

power-law decay regions separated by an inflection point. The exponents are very close for 
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different frequencies, around −2.7 at lower frequencies, and around −5.7 at the high-frequency 

region. The energy spectra of the 500 ppm PAA solution’s velocity fluctuation are presented in 

Figure 4.12. Figure 4.12a shows the general characteristics of the energy spectra at three different 

points in the microchannel. At low frequencies, the exponents are around −3.2 and at high 

frequencies, they are roughly −5.7. Figure 4.12b presents the energy spectra of the velocity 

fluctuations when the amplitude of the AC electric field is relatively high (EA = 0.4E0), which 

shows similar features as in Figure 4.12a, with exponents around −2.9 at lower frequencies, and 

around −4.1 at high frequencies. 

 

Figure 4.10 Velocities at the center of the microchannel for cp = 250 ppm under DC electric field and AC 

electric fields at EA = 0.1E0, and fE = 4, 6, 8, and10 Hz. 
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Figure 4.11 Analysis of velocity for cp = 250 ppm under AC electric field at EA = 0.1E0 and fE = 4, 6, 8, 

and10 Hz: (a) statistical results of average velocity and velocity amplitude, (b) energy spectra of velocity 

fluctuation. 

 

Figure 4.12 Energy spectra of the velocity fluctuation for cp = 500 ppm: (a) energy spectra at three 

locations in the microchannel at EA = 0.1E0 and fE = 10 Hz, (b) energy spectra at EA = 0.4E0 and fE = 4, 6, 

8, and10 Hz. 

All energy spectra curves investigated in this study display power-law decay over a wide range 

of frequencies, with exponents varying from −2.3 to −3.2 at low frequencies and from −4.1 to −6.3 
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at high frequencies. According to Groisman and Steinberg [191], elastic turbulence is 

characterized by flow perturbations over a wide range of temporal and spatial scales with 

increasing transfer rate of standard quantities (momentum, heat and mass). In their study, 

Groisman and Steinberg [191] observed evidence of the first feature: the energy spectra of velocity 

fluctuations displayed a power-law decay over a wide range of frequencies and wavelengths with 

exponents between −2 and −4. Several later works claimed that exponent larger than 3 in spectral 

analysis is a characteristic of the elastic turbulence [192, 193], which was also reported in 

theoretical studies [194, 195]. The energy spectra curves of the velocity fluctuations in this study 

show similar features as aforementioned literatures, which indicates the existence of elastic 

turbulence regime in the viscoelastic EOF. 

4.4.2 Flow patterns 

In Chapter 3, the flow patterns of a constriction straight channel are found to be highly 

dependent on the polymer concentrations and the applied electric field. In this study, the AC 

electric field shows a similar influence on the flow pattern of the viscoelastic EOF. Due to the 

existence of the DC and AC electric fields, the absolute value of Eapp is not fixed but changes 

rapidly, which magnifies the instabilities in the flow. Figure 4.13 depicts the streamlines for 100 

ppm PAA solution under DC electric field at Eapp = 400 V/cm from 1 s to 1.1 s. Two small time-

dependent vortices are observed in the inlet reservoir near the inlet of the microchannel. The 

diameter of the vortices is about the height of the microchannel (i.e., 20 µm). Such vortices were 

reported and analyzed in the study in Chapter 3. Apart from the formation and disappearance of 

the upstream vortices, slight fluctuations of the streamlines along the centerline of the inlet and 

outlet reservoirs are observed. In comparison, Figure 4.14 shows the streamlines for 500 ppm PAA 

solution under DC electric field at Eapp = 400 V/cm from 1 s to 1.1 s. Compared with 100 ppm 
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PAA solution, two much larger circulations with diameters about 3.5 times of the height of the 

microchannel (i.e., 70 µm) are observed in the inlet reservoir near the entrance of the microchannel. 

The direction of the circulation is marked by red curved lines. The pair of vortices are in opposite 

directions and a large stagnant region is formed right before the entrance of the microchannel. At 

different times the pair of vortices show no significant change in size. The streamlines are smooth 

in the inlet reservoir far from the microchannel and in the whole outlet reservoir. However, 

stronger fluctuation can be observed in the streamlines along the centerline of the two reservoirs. 

The fluctuation of the streamlines in the inlet reservoir is due to the instability induced by the 

vortices, while the fluctuation in the outlet reservoir is caused by the instability at the outlet of the 

microchannel. Compared with 100 ppm PAA solution, 500 ppm PAA solution displayed stronger 

instability under the same DC electric field at Eapp = 400 V/cm. Figure 4.15 shows the streamlines 

for 500 ppm PAA solution under DC and AC electric fields at EA = 0.4E0 and fE = 10 Hz from 1 s 

to 1.1 s. Within 0.1 s, the size of the vortices grows first and then decreases dramatically due to 

existence of the AC electric field. Apart from the change of size, the orientation of the vortices 

shows strong fluctuation, which can also be observed in the fluctuation of the streamlines upstream 

the vortices. In the outlet reservoir, fluctuation in the streamlines along the center line of the 

reservoir is observed. The application of the AC electric field induces stronger instabilities in the 

streamlines compared with DC electric field only. 
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Figure 4.13 Streamlines for cp = 100 ppm under DC electric field at Eapp = E0 from 1 s to 1.1 s. 

 

Figure 4.14 Streamlines for cp = 500 ppm under DC electric field at Eapp = E0 from 1 s to 1.1 s. 
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Figure 4.15 Streamlines for cp = 500 ppm under AC electric field at EA = 0.4E0 and fE = 10 Hz from 1 s to 

1.1 s. 

To better visualize the flow behavior and the elastic turbulence regime, the upper half of the 

inlet reservoir is mixed with a dye of finite concentration, whereas the fluid in the lower half of 

the inlet reservoir has a zero-dye concentration. A relatively small diffusivity (Ddye) is adopted in 

this study so that the convection effect dominates over the diffusion. Figure 4.16 shows the dye 

patterns of Newtonian fluid with the same total viscosity as 250 ppm PAA solution at different 

times. The EOF of Newtonian fluid shows no instability. The upper half of the microchannel is 

filled with dyed fluids, while the lower half of the microchannel is filled with fluids with zero dye 

concentration. A distinctive, smooth, and time-independent dividing line can be observed in the 

microchannel between the dyed and undyed fluids, which implies that the EOF of Newtonian fluid 

is steady and time-independent. Figure 4.17 shows the dye patterns for cp = 250 ppm at EA = 0.4E0 

and fE = 10 Hz. Compared with the dye patterns of the Newtonian fluid, the dye patterns in Figure 

4.17 show less stable and distinctive dividing lines in the microchannel between the dyed and 
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undyed fluids. In the left half of the microchannel, a relatively clearer dividing line can be observed 

compared with the right half of the microchannel due to the 90° bends of the microchannel, which 

generate curvilinear streamlines in the microchannel and induce the elastic instabilities. Such 

elastic instabilities are often observed in flows with sufficient curvature, and some argue that 

curvature is necessary for infinitesimal perturbations to be amplified by the normal stress 

imbalances in the viscoelastic flows [34, 187, 189]. In order to describe the change of dye patterns 

at different locations in the microchannel, Figure 4.18 presents the statistical results of dye 

concentration distribution for PAA solutions and Newtonian fluid at three different cross-sections 

of the microchannel. For all the solutions investigated, the dyed fluid flows from the inlet reservoir 

to the outlet reservoir through the microchannel in less than 1 s. Therefore, a time average of the 

dye concentration C is calculated from 1 s to 3 s to avoid the influence of the flow fluctuation. As 

shown in Figure 4.18a, at the first cross-section (x = −80 µm) PAA solutions and Newtonian fluid 

share similar dye concentration distribution: C starts from 0 near the lower channel wall (y = −10 

µm) with a sharp increase to 1 near the upper channel wall. For the Newtonian fluid, at the second 

and third cross sections (x = 0 µm and −80 µm) C is nearly zero at the lower channel wall (y = −10 

µm) and increases to 1 with a relatively smaller slope compared with the at the first cross-section. 

However, the dye patterns for the Newtonian fluid at three cross-sections show no significant 

differences. For the 250 ppm and 500 ppm PAA solutions, however, the dye concentration 

distribution is found to be strongly related to the position of cross-sections. At the second cross-

section (x = 0 µm), C is more evenly distributed than at the first cross-section, and at the third 

cross-section (x = −80 µm), C shows the most even distribution. Such a trend is more observable 

in the 500 ppm PAA solution than in the 250 ppm PAA solution, which is due to the stronger 

viscoelastic effect. In Figure 4.18b, we plot the standard deviation of the dye concentration (SC) at 
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the three cross-sections. A smaller standard deviation implies a more even dye concentration 

distribution across the microchannel. SC decreases with the increasing section number (i.e., 

increasing 90° bends) and polymer concentrations. The dye patterns in the outlet reservoir of PAA 

solutions also show difference from the Newtonian fluid. The dye concentration for Newtonian 

fluid changes smoothly in the outlet reservoir and no significant perturbation is observed. However, 

for the 250 ppm PAA solution, under the AC electric field, the dyed fluid is in a wavy appearance 

in the outlet reservoir, which originates from the flow fluctuation at the outlet of the microchannel.  

 

Figure 4.16 Dye patterns for Newtonian fluids with the same total viscosity as 250 ppm PAA solution at 

different times. 
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Figure 4.17 Numerical dye patterns for cp = 250 ppm at EA = 0.4E0, fE = 10 Hz. 

 

Figure 4.18 Dye concentration profile at different cross-sections of the micro channel: (a) dye 

concentration distribution of Newtonian fluid with same total viscosity as 250 ppm PAA solution, 250 

ppm PAA solution, and 500 ppm PAA solution at three different cross-sections of the microchannel at EA 

= 0.4E0, fE = 10 Hz, (b) standard deviation of the dye concentration C. 
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Figure 4.19 First normal stress difference N1 for cp = 500 ppm at EA = 0.4E0, fE = 10 Hz from 1 s to 1.1 s. 

Figure 4.19 depicts the spatial distribution of the first normal stress difference N1(τxx − τyy) in 

the microchannel of 500 ppm PAA solution at different times. Near the entrance of the 

microchannel, a significant positive increase of N1 is induced, which implies that the polymer 

molecules experience strong extension in the x-axis direction, whereas in the y-axis direction, the 

polymer molecules are relatively compressed. Such distribution of N1 near the entrance of the 

microchannel is due to the high velocity gradient at the entrance originating from the contraction 

geometry. When the microchannel is parallel to the x-axis, a rapid positive increase of N1 is 

observed in the adjacent to the walls of the microchannel, and such increase of N1 is negative 

when the microchannel is parallel to the y-axis. The distribution of N1 near the walls of the 

microchannel suggests that the polymer molecules are intensively stretched in the flow direction 

near the channel walls within a rather thin layer. Such phenomenon is due to the existence of EDL 

in the EOF. Within the EDL, which is a rather thin layer near the charged walls of the microchannel, 

the EOF velocity rapidly increases from zero to the maximum, resulting in a high velocity gradient 

in the flow direction. Therefore, the polymer molecules are always stretched in the flow direction 

near the charged channel walls. In the microchannel far away from the entrance and the channel 
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walls, N1 shows slightly positive, meaning that the polymer molecules are relatively more 

stretched in the x-axis direction than in the y-axis direction. The regions with high values of N1 in 

the microchannel fluctuate significantly with the changing of the Eapp, which amplifies the 

instabilities of the viscoelastic EOF. 

 

Figure 4.20 Particle path from three locations in the microchannel for cp = 100 ppm at Eapp = E0: (a) 

coordinates of the three source points in the microchannel, (b) particle paths originating from (−100 µm, 0 

µm), (c) particle paths originating from (−100 µm, 4 µm), (d) particle paths originating from (−100 µm, 8 

µm). 

Particle paths through the microchannel are extracted to study the instabilities of the viscoelastic 

EOF. As shown in Figure 4.20a, three locations are selected to generate the particle paths. Figure 

4.20b, c, and d show the particle paths of 100 ppm PAA solution under DC electric field. The 

particle paths show a jet-like appearance in the outlet reservoir with different opening angles 

related to the location of the source point. For example, in Figure 4.20, the opening angles of the 

flow jet are measured to be 35°, 36°, and 116° for the three locations. The particles originating 

from the location far from the center line of the microchannel show a larger opening angle in the 
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outlet reservoir than the particles near the centerline, suggesting that the viscoelastic EOF 

experiences stronger perturbation at locations far from the center line of the microchannel and near 

the walls of the microchannel. Figure 4.21 depicts the particle paths of 100 ppm PAA solution 

originating from (−100 µm, 4 µm) under AC electric fields with different amplitudes (EA = 0, 

0.1E0, 0.2E0, and 0.4E0) but the same frequency (fE = 8 Hz). The opening angles of the particle 

paths in the outlet reservoir are measured to be 36°, 57°, 73°, and 123°, which are found to increase 

with the increasing amplitude of the AC electric field. Within the microchannel, the particles are 

more evenly distributed in the cross direction of the microchannel when under AC electric field 

with a higher amplitude. And the same trend can also be observed after particles passing through 

more 90° bends of the microchannel. For example, in Figure 4.21d, particles in the microchannel 

are more scattered than in Figure 4.21a, b, and c. In the right half of the microchannel, particles 

fill more of the microchannel than in the left half of the microchannel. The result in Figure 4.21 

implies that the elastic instabilities of the EOF are significantly amplified by the increasing 

amplitude of the AC electric field and the 90° bends of the microchannel. Similar features are also 

found in the particle paths originating from the center of the microchannel (−100 µm, 0 µm) as 

shown in Figure 4.22. It should be mentioned that in Figure 4.22b, the opening angle is 140°. 

However, the majority of the particles are within a smaller angle (104°) as indicated by the red 

lines in Figure 4.22b.  
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Figure 4.21 Particle paths of 100 ppm PAA solutions originating from (−100 µm, 4 µm) at: (a) Eapp = E0, 

(b) EA = 0.1E0, fE = 8 Hz, (c) EA = 0.2E0, fE = 8 Hz, (d) EA = 0.4E0, fE = 8 Hz. 

 

Figure 4.22 Particle paths of 100 ppm PAA solutions originating from (−100 µm, 0 µm) at: (a) Eapp = E0, 

(b) EA = 0.1E0, fE = 8 Hz, (c) EA = 0.2E0, fE = 8 Hz, (d) EA = 0.4E0, fE = 8 Hz. 

Figure 4.23 shows the particle path of 500 ppm PAA solutions originating from three different 

locations under DC electric field. The particle paths at three locations are all with relatively large 

opening angles (i.e., 76°, 67°, and 97°), and no strong relevance between opening angles and the 

locations of the source points is observed. Such result implies that for 500 ppm PAA solution, 
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elastic instabilities are widely triggered in the microchannel due to the stronger viscoelastic effect. 

Figure 4.24 presents the particle paths of 500 ppm PAA solution under AC electric fields with 

different amplitudes but the same frequency, same as in Figure 4.21. The particle paths are all with 

large opening angles: 72°, 87°, 92°, and 118°. Same as 100 ppm PAA solution, the opening angles 

increase with increasing amplitudes of the AC electric fields.  

 

Figure 4.23 Particle paths of 500 ppm PAA solutions under DC electric field originating from: (a) (−100 

µm, 0 µm), (b) (−100 µm, 4 µm), (c) (−100 µm, 8 µm). 

 

Figure 4.24 Particle paths of 500 ppm PAA solutions originating from (−100 µm, 4 µm) at: (a) Eapp = E0, 

(b) EA = 0.1E0, fE = 8 Hz, (c) EA = 0.2E0, fE = 8 Hz, (d) EA = 0.4E0, fE = 8 Hz. 
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Figure 4.25 Particle paths of 250 ppm PAA solutions originating from (−100 µm, 0 µm) under DC 

electric field (Eapp = E0) and AC electric field at EA = 0.2E0, and fE = 4, 5, 6, 7, 8, 9, and10 Hz. 

Figure 4.25 presents the particle paths of 250 ppm PAA solution originating from (−100 µm, 0 

µm) under DC electric field and AC electric field with the same amplitude (EA = 0.2E0) but 

different frequencies (4, 5, 6, 7, 8, 9, and10 Hz). The opening angles of the particle paths show 

differences under different frequencies. An opening angle of 22° is observed under DC electric 

field. Under AC electric field, when the frequency is relatively low, the opening angle slightly 

increases with the increase of frequency and the particle path shows the largest opening angle at 8 

Hz. However, when the frequency is higher than 8 Hz, the opening angle of the particle path 

decreases as the increasing of frequency. Figure 4.26a shows the opening angles of particle paths 

originating from (−100 µm, 0 µm) of 100 ppm, 250 ppm, and 500 ppm PAA solutions under DC 

electric field and AC electric fields. For 100 ppm PAA solution, the opening angle of the particle 

path is relatively small under DC electric field, and the largest opening angle is observed at 5 Hz. 

When the frequency exceeds than 5 Hz, the particle paths remain a comparably large opening angle 

as 5 Hz. For 500 ppm PAA solution, under DC electric field, a much larger opening angle of the 
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particle path is observed compared with 100 ppm and 250 ppm PAA solutions. Under AC electric 

field, when the frequency is relatively low, larger opening angles of the particle paths are observed 

compared with DC electric field and the largest opening angle is observed at 5 Hz. However, when 

the frequency is relatively high, the opening angle decreases dramatically to a level smaller than 

DC electric field. Unlike Newtonian fluids, the existence of elasticity of viscoelastic fluid 

engenders its flow to have a characteristic frequency related to its elasticity. Such characteristic 

frequency can be identified by analyzing velocity fluctuations in DC driven EOF. Figure 4.26b 

shows the power spectra curves of velocity fluctuations under DC electric field at low frequencies. 

For 250 ppm PAA solution, the power spectra curve shows a peak at 9.2 Hz, while for 100 ppm 

and 500 ppm PAA solutions, the power spectra curves show peaks around a relatively lower 

frequency (i.e., 7 Hz) compared with 250 ppm PAA solution. The frequencies of the power spectra 

peaks in Figure 4.26b show a slight difference from the frequencies of opening angle peaks in 

Figure 4.26a. In order to induce the largest opening angle of the particle path originating from the 

centerline near the entrance of the microchannel, a frequency slightly lower than the characteristic 

frequency of the EOF obtained from DC driven flow is needed for the AC electric field. Moreover, 

when the frequency of the AC electric field is larger than the characteristic frequency, the opening 

angles of the particle path remain at the same level as the largest opening angle obtained. However, 

both 250 ppm and 500 ppm solutions show much smaller opening angles when the frequency 

exceeds the optimal frequency, and particularly the opening angles of 500 ppm PAA solution 

decrease to a level smaller than under DC electric field. Such result implies that for PAA solution 

with a low concentration (i.e., 100 ppm), stronger elastic instabilities are triggered in a pulsating 

EOF when the frequency exceeds the optimal value and such enhancing effect on the elastic 

instabilities remains observable for larger frequencies to a certain level. However, for PAA 



106 

 

solutions with a relatively high concentration (i.e., 250 ppm), an optimal frequency is needed to 

magnify the elastic instabilities to the highest level, and when the frequency exceeds the optimal 

value, such enhancing effect becomes insignificant. Furthermore, for PAA solutions with rather 

high concentration (i.e., 500 ppm), an optimal frequency is needed to fully magnify the elastic 

instabilities, while the elastic instabilities are restrained when the frequency to a certain degree is 

larger than the optimal value. The different effects of the AC electric field on the PAA solutions 

with different concentrations are probably due to the different relaxation time of the PAA solutions. 

PAA solution with higher concentration has a larger relaxation time, which means a longer time 

is needed for the EOF to react to the changes in the flow due to the changing electric field. 

Therefore, when the frequency of the AC electric field is too high, the polymers in the EOF do not 

have enough time to fully react and thus the enhancing effect on the elastic instabilities is 

insignificant. However, geometry is also a factor that is possibly related to the optimal frequency, 

such as the contraction ratio, length of the microchannel, and shape of the microchannel.  
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Figure 4.26 Statistical results of 100 ppm, 250 ppm and 500 ppm PAA solutions: (a) opening angle of 

particle paths originating from (−100 µm, 0 µm), (b) power spectra of velocity fluctuations under DC 

electric field. 

4.5 Conclusions 

Electroosmotic flow (EOF) of viscoelastic fluid through a 20:1:20 constriction microchannel 

with 90° bends under DC/AC electric fields is studied. Three different concentrations of the 

polymer solution under AC electric fields with various amplitudes and frequencies show the 

following distinct results: 

(1) Under DC electric field, the velocity of Newtonian fluid is steady and time independent, 

however, the velocities of PAA solution show fluctuations. The power spectra of the 

velocity fluctuations under both DC and AC electric fields show power-law decay over a 

wide range of frequencies, which is a typical characteristic of elastic turbulence. 

(2) Under AC electric field, the velocity of PAA solution fluctuates in the same frequency as 

the electric field. Apart from the main fluctuation, a minor fluctuation can also be observed. 

The frequency and amplitude of the electric field show no significant influence on the 
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average of the velocity at the center of the microchannel. However, when the amplitude of 

the electric field is fixed, the amplitude of the velocity increases with the increase of the 

frequency. 

(3) A pair of upstream vortices are observed for PAA solutions. The sizes of the vortices are 

much larger for the highly concentrated PAA solution, and the vortices are significantly 

altered by the AC electric field. 

(4) The dye pattern of the PAA solution fluctuates in the microchannel. Under AC electric field, 

a distinct wavy dye pattern is observed in the outlet reservoir. The dye pattern in the 

microchannel is affected by the 90° bends. At the downstream of the 90° bends the dye 

concentration is more evenly distributed than upstream the 90° bends. 

(5) The particle path from the same location at the entrance of the microchannel shows a jet-

like shape in the outlet reservoir with an opening angle. The opening angle of the particle 

path is highly related to the polymer concentration and the AC electric field. An optimal 

frequency is needed to get the largest opening angle for all PAA solutions. However, 

frequencies higher than the optimal value still show enhancing effects for the low-

concentrated PAA solution, while a higher frequency for high-concentrated PAA solution 

tends to restrain the elastic instabilities. 
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CHAPTER 5 

FREQUENCY STUDY OF TIME-PERIODIC ELECTROOSMOTIC FLOW OF 

VISCOELASTIC FLUID THROUGH SHORT CONSTRICTION MICROCHANNEL 

5.1 Introduction 

In actuality, a DC electric field is employed in EOF to drive the fluid in microchannels. 

However, due to the bubble formation issue in electrolyte near electrodes that the DC electric field 

experiences recently, periodic EOF is gaining more and more attention as a substitute way for 

microfluidic control and transport in the microchannels. It has been discovered that some natural 

chemical processes, such as the electroosmosis of the human epidermal membrane [196] are 

associated to periodic EOF. Periodic electroosmosis, in contrast to steady electroosmosis, has a 

velocity profile that wavers with time and has been used to improve fluid mixing and flow rate 

control in microchannels [197, 198]. Dutta and Beskok [199] were among the early researchers 

investigating the time-periodic EOF between two parallel plates. Their analytical solution of 

velocity revealed near-wall inflection points with localized velocity extrema, which may have an 

impact on the stability properties of time-periodic EOF. Ramos et al.’s theoretical investigation 

[200] has demonstrated that EOF is frequency-dependent, with the velocity being a function of 

both space and frequency across micro-electrodes. Experimental research of Minor et al. [201] on 

the electromobility of colloidal particles revealed that the bulk electroosmosis could be stopped by 

applying an AC electric field with a specific frequency. Microfluidic pumps based on AC EOF 

have been the subject of research studies since the discovery of the AC EOF conveyance 

mechanism. Studer et al. [202] fabricated microfluidic AC EOF pump and the velocity was found 

to be dependent on the frequency of the electric field. Within a wide range of frequencies from 0.1 

kHz to 100 kHz, the maximum velocity of the pump was seen at 5 kHz. According to Olesen et 
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al.’s experimental investigation [203, 204], AC electrokinetic micropumps are more effective at 

pumping microflows when the voltage is low. 

Newtonian fluids were the primary focus of all the pulsating EOF research work mentioned 

above. With only a small body of literature, the impact of periodic EOFs on non-Newtonian fluids 

is not well understood. The analytical solutions for time-periodic EOF of general Maxwell fluids 

between micro-parallel plates were initially examined by Liu et al. [205] utilizing the separation 

of variables approach, where the velocity profile and volume flow rate showed a strong 

dependence on the flow parameters. The analytical solution for the analogous flow in the 

rectangular microchannel was researched by Jian et al. [206]. Recent research by Moghadam and 

Akbarzadeh [207] into the time-periodic EOF of power-law fluid in a circular microchannel 

revealed that the flow was constrained to a thin region near the channel wall at extremely high 

dimensionless frequencies. Later, a study based on the Carreau-Yasuda model, which combines 

pressure gradient and time-periodic electroosmosis, was also carried out by the same author [208]. 

The improved mixing effect of AC EOF in a T-junction micromixer was examined using a power-

law model in Alipanahrostami and Ramiar’s numerical work [209]. Based on the PTT model, 

Sayantan and Sandip [210] employed time-periodic EOF to regulate the mass flow rate of 

viscoelastic fluids. It was discovered that the mass flow rate amplitude and the phase lag were 

connected to the fluid’s viscoelastic properties.  

The mechanism of time-periodic EOF of viscoelastic fluids is still unknown due to the relatively 

few investigations that have been undertaken. Therefore, the time-periodic EOF of viscoelastic 

fluids is investigated in the current study using 10:1:10 contraction microchannels. The 

viscoelastic properties of the PAA water solution are simulated using the OB model, and the 

electrokinetic phenomenon is described using the Poisson-Boltzmann (PB) model. The 
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microchannel is subjected to both a continuous DC electric field and AC electric fields with 

different frequencies. The effects of the AC electric field frequency on the viscoelastic time-

periodic EOF are investigated. 

5.2 Geometry and parameters 

Short microchannels with three different lengths (LC = 10 µm, 15 µm, and 20 µm) connecting 

two reservoirs on either side are investigated as shown in Figure 5.1. The height of the channel is 

HC = 40 µm. The height and the length of the reservoirs are Hr = 400 µm and Lr = 400 µm, 

respectively. A DC and AC electric potential bias U = U0 + UAsin(2fEt) is applied between the 

inlet (Anode) and outlet (Cathode). The apparent electric field between the inlet and outlet is 

defined as Eapp = U/(2Lr + LC). In this study, U0 = 40 V, UA = 16 V, and fE is investigated from 0 

Hz to 20 Hz. The governing equations are the same as in chapter 3. The bulk ion concentration 

0 0.0001 mM,c = and the EDL thickness is 954 nm. The EOF of 500 ppm PAA water solution is 

investigated. The polymer viscosity is ηp = 0.0111 kg/(m∙s) and the relaxation time is λ = 0.0476 

s. The boundary conditions are given as follows (shown in Figure D.2 in Appendix D): 

(1) At the Anode (edge AL in Figure 5.1): n∙∇u = 0; p = 0; τ = 0; ϕExt = U0 + UAsin(2fEt); 

n∙∇ψ = 0; Θ = 0; where n denotes the normal unit vector on the surface. 

(2) At the Cathode (edge FG in Figure 5.1): n∙∇u = 0; p = 0; n∙∇τ = 0; ϕExt = 0; n∙∇ψ = 0; n∙∇Θ 

= 0. 

(3) On the reservoir walls (edges ABC, DEF, GHI, and JKL in Figure 5.1) and the microchannel 

walls (Edges CD and IJ in Figure 5.1): u = 0; n∙∇ϕExt = 0; ψ = ξ0; n∙∇Θ = 0; n∙∇p is obtained 

from the momentum equation; the components of τ are linearly extrapolated. 

The following initial conditions are specified within the domain: u = 0; p = 0; τ = 0; ϕExt = 0; ψ 

=0; Θ = 0. 
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Figure 5.1 Schematic diagram of a constriction microchannel connecting two reservoirs at both ends. 

The structural mesh used to discretize the 2D computational domain is shown in Figure 5.2. 

The geometry at 90° corners is slightly rounded to avoid the electric field singularity. The edge 

size of the layer of cells adjacent to the walls is 25 nm and there are 15 cells in the EDL. The mesh 

for 10 µm microchannel has a total of 526560 cells as shown in Figure 5.2, and there are 530780 

and 535000 cells for the 15 µm microchannel and 20 µm microchannel, respectively. 

 

Figure 5.2 Computational mesh used in the numerical simulations for microchannels with length of 15 

um. Mesh of the whole geometry (a) and detailed view of the mesh at channel (b). 
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5.3 Mesh independence study 

Three different meshes are used to perform a mesh independence study for each microchannel 

for the 500 ppm PAA solution as shown in Figure 5.3. For mesh 1, the meshes near the charged 

walls are 25 nm, and there are 15 cells within the EDL thickness. In mesh 2, there are 20 cells 

within the EDL thickness and the size of the cells near the charged walls is 20 nm. The cells outside 

the EDL thickness are the same for mesh 1 and mesh 2. In mesh 3, the cells within the EDL 

thickness are the same as mesh 1. However, the cells outside the EDL thickness are slightly finer 

than mesh 1. The number of cells in each mesh for the three microchannels is listed in Table 5.1. 

 

Figure 5.3 Detailed views near the charged wall of the three different meshes for the three microchannels 

used for the mesh independence study. 

Table 5.1 Number of cells in each mesh used for mesh independence study. 

Number of cells 10 µm 15 µm 20 µm 

Mesh 1 526560 530780 535000 

Mesh 2 547580 552100 556620 

Mesh 3 632400 636620 640840 

 

Figure 5.4 plots the cross-sectional average velocities at x = 0 in the microchannel of the three 

different meshes from t = 0 s to t = 1 s, which is calculated by ( )
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1 s, the cross-sectional average velocities show no significant difference for the three different 

meshes considering the large fluctuations in the viscoelastic EOF. The time averaged cross-

sectional average velocities are plotted in Figure 5.4d. For the 3 meshes of the microchannels with 

different lengths, the time averaged cross-sectional average velocities are very close. Relative 

errors of mesh 2 and mesh 3 are calculated compared with mesh 1 as shown in Table 5.2. The 

relative errors are all smaller than 5%.  

The three different meshes show great consistency in predicting the velocity field in the 

microchannel. In order to save the computational cost, mesh 1 is used to perform other simulations.  
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Figure 5.4 Cross-sectional average velocities at x = 0 in the microchannel: (a) velocities in the 10 µm 

microchannel, (b) velocities in the 15 µm microchannel, (c) velocities in the 10 µm microchannel, (d) 

time averaged cross-sectional average velocities. 

Table 5.2 Relative errors of cross-sectional average velocity of mesh 2 and mesh 3. 

Relative error 10 µm 15 µm 20 µm 

Mesh 2 2.93% 0.63% 3.47% 

Mesh 3 1.47% 0.83% 0.49% 
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5.4 Results and discussion 

In this section, flow features of viscoelastic EOF through short constriction microchannels are 

obtained when imposed to constant and pulsating electric fields. Three different lengths (i.e., 10 

µm, 15 µm and 20 µm) of the microchannel are studied. Newtonian fluid is investigated for the 10 

µm microchannel to provide reference flow characteristics. The frequency of the pulsating electric 

field is investigated from 1 Hz to 20 Hz. The instabilities of the viscoelastic EOF are described. 

The energy spectra of the viscoelastic EOF under a constant electric field shows a main frequency. 

Finally, the influence of the frequency of the pulsating electric field on the viscoelastic EOF is 

analyzed. 

5.4.1 Instability of the EOF under constant electric field 

The results of Newtonian fluid with the same total viscosity as 500 ppm PAA solution are first 

presented as a reference for the viscoelastic fluid. Under DC electric field, the EOF reaches a 

steady state for Newtonian fluids. As shown in Figure 5.5, the streamlines of Newtonian fluid 

show excellent symmetry about the x-axis and y-axis. Figure 5.6a shows the velocities at the center 

of the microchannel (i.e., (0,0)) for Newtonian fluid under DC electric field and AC electric fields 

(fE = 4 Hz and 10 Hz). Under DC electric field, the velocity is time independent, and no fluctuation 

is observed. Under AC electric field, the velocity fluctuates in the same frequency as the electrical 

driving force. No minor fluctuation is observed in the velocity other than the fluctuation in the 

main frequency. Under different frequencies, the amplitude of the velocity fluctuation and the 

cross-sectional time-averaged velocity show no significant difference. However, for PAA solution, 

the velocity at the center of the microchannel fluctuates dramatically even under DC electric field 

as shown in Figure 5.6b. 
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Figure 5.5 Time-independent streamlines of Newtonian fluid under DC electric field for 10 µm 

microchannel. 

 

Figure 5.6 Velocity at the center of 10 µm microchannel (i.e., (0,0)): (a) Newtonian fluid under DC 

electric field and AC electric field (fE = 4 Hz and 10 Hz), (b) 500 ppm PAA solution under DC electric 

field. 

Figure 5.7 displays the streamlines of the PAA solution at different times when subjected to 

DC electric field. Different from the static flow state of the Newtonian EOF, the viscoelastic EOF 

is time dependent. Strong fluctuation of the velocity field is observed in the left inlet reservoir near 

the entrance of the constriction microchannel. A pair of unstable vortices are observed to fluctuate 
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in both size and location. As shown in Figure 5.7, from 1 s to 1.08 s, the size of the vortices 

gradually decreases until the vortices disappear at 1.08 s, after which the vortices form again and 

grow in size. At 1 s, the pair of vortices is oriented to the direction above the centerline of the 

microchannel. However, at 1.04 s, an opposite orientation of the pair of vortices is observed. Due 

to the existence of the stagnation area and the fluctuation of vortices orientation, the flow along 

the centerline in the right outlet reservoir is affected and fluctuates. Unlike Newtonian fluids, the 

existence of elasticity is a unique feature of viscoelastic fluids, which results in the existence of a 

characteristic frequency (fC) in the viscoelastic flow. In order to have a deeper understanding of 

the instabilities observed in the viscoelastic EOF under DC electric field, the power spectra of the 

velocity fluctuation are obtained by conducting Fast Fourier transformation. Figure 5.8 shows the 

kinetic energy spectra of the velocity fluctuations at the center of the microchannel (i.e., (0,0)) in 

the frequency domain. For the microchannel with 3 different lengths, the energy spectra curves 

exhibit similar characteristics. The majority energy of the velocity fluctuation is distributed in the 

range 0-20 Hz. Under DC electric field, a clear dominant frequency between 5 Hz and 7 Hz is 

observed in the energy spectra of the velocity fluctuations, which indicates the characteristic 

frequency of the viscoelastic flow. 
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Figure 5.7 Streamlines of 500 ppm PAA solution in 10 µm microchannel under DC electric field. 

 

Figure 5.8 Energy spectra of the velocity fluctuation in the viscoelastic EOF at the center of the 

microchannel (i.e., (0,0)) when under DC electric field. 

5.4.2 Effects of the frequency on the instabilities of the viscoelastic EOF 

To investigate the effects of the characteristic frequency on the viscoelastic EOF, pulsating 

electric field is applied to the microchannel. The energy spectra of the velocity fluctuation under 
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DC electric field show that the majority energy of the fluctuation is distributed under 20 Hz in the 

frequency domain, and the characteristic frequency of the viscoelastic EOF is between 5 Hz and 7 

Hz. Therefore, the frequency of the externally applied electric field is studied from 1 Hz to 20 Hz. 

The velocity at the center of the microchannel (i.e., (0,0)) is used for the frequency analysis. As 

shown in Figure 4a, in the Newtonian pulsating EOF, the amplitude of the velocity keeps constant 

for different pulsating frequencies. However, in the viscoelastic pulsating EOF, the amplitude of 

the velocity and the cross-sectional time-averaged velocity show a significant difference when 

under AC electric field with different frequencies. 

Figure 5.9 shows the velocity and the energy spectra of the velocity fluctuation of the 

viscoelastic EOF at the center of the microchannel under pulsating electric field with different 

frequencies (i.e., 5 Hz, 10 Hz, 15 Hz, and 20 Hz), among which significant difference can be 

observed. As shown in Figure 5.9a, when the frequency of the pulsating electric field is 5 Hz, 

which is close to the characteristic frequency of the viscoelastic fluid, a clear periodic velocity 

profile in the same frequency as the electrical driving force is obtained with relatively large and 

uniform velocity amplitudes. However, when the frequency of the electric field is much larger than 

the characteristic frequency of the viscoelastic fluid, the fluctuation of the velocity is more random. 

For example, when the frequency is 10 Hz, the amplitude of each peak in the velocity-time profile 

varies dramatically. Within the first 2 seconds, 7 relatively large peaks are observed, while other 

peaks are extremely small. For the velocities under 15 Hz and 20 Hz electric field, the amplitudes 

of the velocity fluctuation are more uniform than under 10 Hz electric field, however, the 

amplitudes are still generally much smaller than under 5 Hz electric field. To have a deeper insight 

in the frequency distribution of the velocity fluctuation, Figure 5.9b shows the energy spectra of 

the velocity fluctuations at the center of the microchannel. For the viscoelastic EOF under 
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pulsating electric field with different frequencies, the power spectra curves share the same general 

appearance: there is a plateau at low frequencies followed by a power-law decay region at higher 

frequencies, which is a unique feature of elastic turbulence. The exponent is around 2.4 for all the 

energy spectra curves. In the power spectra of the velocity fluctuation under 5 Hz pulsation electric 

field, a clear peak is observed at 5 Hz. However, for the energy spectra curves under pulsating 

electric field with higher frequencies, although the highest energy appears at the frequencies of the 

electric driving force, no significant peaks are observed in the rest energy spectra curves in Figure 

5.9b compared with under 5 Hz electric field.  

Figure 5.10 shows the streamlines of the viscoelastic fluid in 10 µm microchannel under 5 Hz 

pulsating electric field. Compared with the streamlines under DC electric field as shown in Figure 

5.7, more chaotic streamlines are observed under pulsating electric field. At t = 1 s, a pair of large 

vortices are observed in the left inlet reservoir before the entrance of the constriction microchannel, 

resulting in a stagnation area along the centerline of the microchannel. Then due to the changing 

electric field, the pair of vortices disappear and at t = 1.08 s the vortices form again. However, at 

t = 1.10 s, the pair of vortices move away from the centerline of the microchannel to the corner of 

the left inlet reservoir forming a stagnation in the flow near the upstream lips of the constriction 

microchannel and the fluid at the centerline of the inlet reservoir flows through the constriction 

microchannel. Moreover, in the right outlet reservoir, two small vortices form near the downstream 

lips of the constriction microchannel. The upstream lip vortices are unstable and move to the 

centerline of the microchannel with the change of the pulsating electric field as shown in the 

streamlines at t = 1.12 s and t = 1.14 s, resulting in the fluid near the charged walls of the inlet 

reservoir flows through the constriction microchannel. At t = 1.16 s, the streamlines are even more 

chaotic, in which two small unsymmetric vortices form before the entrance of the constriction 
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microchannel and lead to the fluid flowing through only the lower half of the microchannel. And 

in the outlet reservoir the fluid flows near the charged walls forming a large circulation near the 

centerline of the reservoir. The upstream lip vortices and the downstream vortices observed under 

pulsating electric field are unique and not observed under DC electric field. Figure 5.11 shows the 

first normal stress difference N1(τxx − τyy) of 500 ppm PAA solution in 10 µm microchannel under 

5 Hz pulsating electric field at different times. A significant positive increase of N1 is induced, 

which indicates that the polymer molecules are strongly stretched in the x-axis direction, whereas 

in the y-axis direction, the polymer molecules are relatively compressed. The increase of N1 is due 

to the high velocity gradient at the entrance of the microchannel. Due to the relaxation time of the 

polymer molecules, the stretched polymer molecules take time to relax. Therefore, the positive N1 

is observed at the downstream of the constriction microchannel.  

 

Figure 5.9 Velocity at the center of the 10 µm microchannel under pulsating electric field with different 

frequencies (i.e., fE = 5, 10, 15, and 20 Hz): (a) velocity-time profile, (b) energy spectra of the velocity 

fluctuations. 
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Figure 5.10 Streamlines of 500 ppm PAA solution in 10 µm microchannel under 5 Hz pulsating electric 

field. 

 

Figure 5.11 First normal stress difference of 500 ppm PAA solution in 10 µm microchannel under 5 Hz 

pulsating electric field. 

Figure 5.12 shows the statistical results of the viscoelastic EOF under pulsating electric field 

with frequencies from 1 Hz to 20 Hz. Figure 5.12a plots the magnitude of the energy spectra at the 

dominant frequency, which is the frequency of the pulsating electric field. For the 10 µm 
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microchannel, the highest energy magnitude appears at fE = 5 Hz, while for the 15 µm and 20 µm 

microchannels, the highest energy magnitude appears at fE = 6 Hz. Such result show consistency 

with the energy spectra curves in Figure 5.8, which shows the characteristic frequency of the 

viscoelastic fluid under DC electric field. When the pulsating electric field is at the same frequency 

as the characteristic frequency of the viscoelastic fluid, the magnitude of the energy spectra at the 

dominant frequency is much higher than when the pulsating electric field is at frequencies far from 

the characteristic frequency of the viscoelastic fluid, which indicates that the energy of the velocity 

fluctuation is highly distributed near the characteristic frequency and resonance takes place. Figure 

5.12b shows the cross-sectional average velocities of the three microchannels. Since the flow 

velocity is time-dependent, the cross-average velocity over a period of ∆t = t2 – t1 is calculated.  

The time-averaged velocity is calculated as: 

 
( )

2 C

1 C

/2

/2

C

0,
U= ,

t H

t H
U y dydt

t H

−

 

 

 

(5.1) 

where ∆t = 2 s is adopted in the current study. Intriguing characteristics of the statistical outcome 

of the average velocities can be seen in the following aspects: (1) the length of the microchannel 

shows significant influence on the pulsating viscoelastic EOF; the average velocity is generally 

higher in shorter microchannels; (2) the average velocity in the microchannel is highly dependent 

on the frequency of the pulsating electric field, the average velocity increases dramatically under 

pulsating electric field with increasing fE until fE reaches a certain value close to the characteristic 

frequency of the viscoelastic fluid, however, with the further increasing of 𝑓E, the average velocity 

decreases dramatically until fE = 9 Hz; when fE is relatively high (> 9 Hz), the average velocity 

decreases to a level smaller than the average velocity under DC electric field; (3) the highest 

average velocity is obtained when fE = 4 Hz for 10 µm and 15 µm microchannels, and the highest 
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average velocity in the 20 µm microchannel is observed at fE = 5 Hz, which are slightly smaller 

than the frequencies observed for the highest energy amplitude in Figure 5.12a. 

 

Figure 5.12 Statistical results of the viscoelastic EOF: (a) magnitude of the energy spectra at the 

frequency of the pulsating electric field, (b) cross-sectional average velocity. 

5.5 Conclusions 

Electroosmotic flow (EOF) of viscoelastic fluid through short 10:1:10 constriction 

microchannels is numerically investigated as a function of the frequency of the pulsating electric 

field. Three lengths of the constriction microchannel are studied. The frequency of the pulsating 

electric field is varied from 1 Hz to 20 Hz. The EOF of Newtonian fluid under pulsating electric 

field is studied for reference. Compared with Newtonian EOF and viscoelastic EOF under DC 

electric field, the pulsating viscoelastic EOF shows the following distinct results: 

(1) Under DC electric field, the Newtonian EOF is time independent. Under pulsating electric 

field with the same amplitude, the amplitude of the velocity and the average velocity in 

Newtonian EOF is independent on the frequency of the pulsating electric field. However, 
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the viscoelastic EOF shows significant fluctuations under DC electric field and strong 

dependence on the frequency of the pulsating electric field. 

(2) For the viscoelastic EOF under DC electric field, the dynamic energy spectra of the velocity 

fluctuation at the center of the microchannel viscoelastic EOF shows a dominant frequency, 

which indicates the existence of the characteristic frequency of the viscoelastic fluid.  

(3) Under pulsating electric fields with various frequencies, strong instabilities are triggered in 

the viscoelastic EOF with random upstream and downstream vortices observed. The energy 

spectra curves of the velocity fluctuations share similar general features with a peak at the 

dominant frequency and a power-law decay over a wide range of frequencies, which is a 

typical characteristic of elastic turbulence. 

(4) The highest magnitude of the energy spectra is observed at the frequency of the pulsating 

electric field. However, the highest magnitude varies with the exciting frequency and 

resonance occurs in the EOF when the frequency of the pulsating electric field is near the 

characteristic frequency of the viscoelastic fluid observed under DC electric field. 

(5) The average velocity in the microchannel is highly dependent on the frequency of the 

pulsating electric field. When the frequency is relatively low, the average velocity increases 

with the increasing frequency and the highest average velocity is observed near the 

characteristic frequency of the viscoelastic fluid. However, at relatively high frequencies, 

the average velocity decreases to a level even smaller than under DC electric field. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Microfluidics has been widely used in many applications, especially in bioengineering, where 

electroosmotic flow plays an important role due to the unique advantages over pressure-driven 

flow. Many biofluids used in bioresearch show strong viscoelastic effects due to the existence of 

large molecular chains. Therefore, understanding the mechanism of viscoelastic EOF in 

microchannels is of practical importance. Numerical simulation provides a powerful tool for 

investigating the intriguing flow phenomenon in viscoelastic EOF, such as the electro-elastic 

turbulence, and has been widely utilized. 

In this dissertation, the EOF of viscoelastic fluid in contraction microchannels is intensively 

investigated using a viscoelastic solver based on OpenFOAM. First, the viscoelastic EOF in a 

10:1:10 contraction/expansion microchannel is investigated for a wide range of applied electric 

fields and polymer concentrations. The elastic instabilities are found to be highly dependent on 

both the electric field and the polymer concentration. The elastic instabilities in the viscoelastic 

EOF can be observed from the velocity fluctuation and the formation of upstream vortices. The 

upstream vortices are related to the level of the induced elastic stress within the contraction 

microchannel near the entrance. And the flow conditions that will trigger the upstream vortices are 

shown in a polymer concentration and electric field domain flow map. 

Next, the viscoelastic EOF in the microchannel with 90◦ bends under DC and AC electric fields 

is investigated. The energy spectra of the velocity fluctuations at the center of the microchannel 

show power-law decay over a wide range of frequencies, which indicates the existence of elastic 

turbulence. Such characteristic is observed both under DC electric field only and the combination 
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of DC and AC electric field. A characteristic frequency in the energy spectra is observed at 

relatively low frequencies under DC electric field. The 90◦ bends show influence on the dye 

concentration profile across the microchannel cross-section. The dye concentration is more evenly 

distributed with increasing numbers of 90◦ bends and increasing polymer concentration. The 

opening angle of the particle path at the outlet of the microchannel show dependency on the 

frequency of the AC electric field. The largest opening angle is observed at a frequency slightly 

lower than the characteristic frequency. 

Finally, a frequency study of the viscoelastic EOF is performed in short constriction 

microchannels. Majority of the energy is distributed at the frequencies smaller than 20 Hz in the 

energy spectra of the velocity fluctuation under DC electric field, and the peak in the energy spectra 

indicates that the characteristic frequency of the viscoelastic EOF is around 6 Hz. Under AC 

electric field, the amplitude of the energy spectra and the average velocity show strong dependency 

on the frequency of the AC electric field. The highest amplitude of the energy spectra and average 

velocity are obtained when the frequency is around 5 Hz, which is very close to the characteristic 

frequency. However, when the frequency is higher than 10 Hz, the fluctuation is suppressed and 

the average velocity decreases to a level smaller than under DC electric field.  

6.2 Future work 

In this dissertation, the numerical investigations of the viscoelastic EOF in microchannels 

consider relatively simple conditions and reveal some intriguing flow phenomena. In the future, 

the study can be further extended in the following aspects to obtain a better understanding of the 

elastic instabilities in viscoelastic EOF. 

(1) To save computational resources, only 2D geometry is considered in the current study. 

However, a 3D geometry introduces more complexity to the viscoelastic EOF. Therefore, 
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the simulation of viscoelastic EOF in 3D microchannels is of great importance in 

understanding the conditions that will induce elastic instabilities. By comparing the results 

of 2D simulation and 3D simulation, the necessary geometries of the microchannel for 

triggering elastic instabilities can be better understood and therefore experimental study of 

viscoelastic EOF in microchannel can be guided. 

(2) In the current study, a constant wall zeta potential is used for the microchannel and 

reservoirs. The EOF velocity is highly related to the wall zeta potential. Therefore, a 

constant wall zeta potential predicts relatively simple flow conditions. Viscoelastic EOF in 

microchannels with varying wall zeta potentials can be investigated in triggering the elastic 

instabilities, which can be applied to the mixing of fluids in microchannels with rather 

straightforward geometries.  

(3) Only OB model is used in the current study to describe the elastic effect of the polymer. 

Different viscoelastic constitutive models take into account different properties of the 

polymers, which can show a significant influence on the behavior of the viscoelastic EOF. 

Therefore, more constitutive models can be investigated by numerical simulations of the 

EOF in microchannels. Comparing the results of different constitutive models can reveal 

the effects of the polymeric microstructure on the elastic instabilities. 
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APPENDIX A  

CALCULATION OF LOG-CONFORMATION REFOMULATIOIN FOR THREE-

DIMENSIONAL PROBLEM 

For three-dimensional problems, the decomposition of Equation 2.19 yields: 
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The eigen-decomposition of the conformation tensor c can be written as 

 ,T=c RΛR  (A.2) 
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Λ and λ1, λ2, and λ3 are the eigenvalues of conformation tensor c, which 

can be calculated by: 

 ( )det 0.i− =c I
 

(A.3) 

The above equation yields 

 3 2 0,i i ib c d  + + + =  (A.4) 

where the coefficients b, c, and d are calculated by the components of c 
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Then λi can be expressed as 
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where p = (3c−b2)/(3a2), q = (27d−9bc+2b3)/27, and 𝜔 = (−1 + √3𝑖)/2.  

The eigenvector corresponding to λi is then calculated by solving the following equation 

 ( ) ,i ie− =c I 0  (A.7) 

Define s1 = (c22− λi)(c33− λi) −c23c32, s2 = (c11− λi)(c33− λi) −c13c31, s3 = (c11− λi)(c22− λi) −c12c21, 

and then the eigenvector can be expressed as 
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Then Equation 2.30 becomes  
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The above equation yields 
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Then ω1, ω2, ω3, n1, n2, and n3 are calculated as 
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APPENDIX B  

SUMMARY OF NUMERICAL METHODS USED IN THE VISCOELASTIC SOLVER 

Table B.1. Summary of current studies on elastic instabilities of viscoelastic EOF.  

Terms Numerical method 

Convective terms CUBISTA scheme 

Laplacian and gradient terms Central differences 

Time derivatives Three-time level explicit difference scheme 

Exponential source term Taylor expansion 

Velocity-pressure coupling SIMPLEC algorithm 

Pressure field PCG solver 

Velocity field PBiCG solver 
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APPENDIX C 

 ELASTIC INSTABILITIES OF VISCOELASTIC EOF 

Table C.1. Summary of current studies on elastic instabilities of viscoelastic EOF.  

Geometry Fluids Electrical parameters Instabilities 

Constriction channel [166] 
Contraction ratio: 2:1  
Width: 200 μm and 100 μm 
Depth: 20 μm 

PAA (18×106 and 
5×106 Da) with 20:80 
vol.% methanol: 
water mixture. 1−480 
ppm. 

Electro-osmotic mobility: 
(5.6±0.5)×10−4, 
(5.7±0.7)×10−4, and 
(3.1±0.2)×10−4 cm2/Vs for 
polymer free, high molecular 
weight, and low molecular 
weight 120 ppm PAA 
solutions. 
Electric field: 0−900 V/cm. 

1. High molecular weight PAA solution 
leads to fluctuation above a critical 
flow rate.  

2. The fluctuation is dependent on the 
polymer concentration. 

Cross slot channel [148,149] 
Width: 100 μm 
Height: 50 μm 

PAA, 5×106 Da, 300 
and 1000 ppm.  

Electro-osmotic mobility: 
(6.4±0.2)×10−4, 
(7.2±0.1)×10−4 cm2/Vs for 
1000 ppm and 300 ppm PAA 
solutions. 
∆V = 20−140 V. 

1. For both 300 ppm and 1000 ppm PAA 
solution, transition from steady state 
to time-dependent state was observed 
at ∆V = 20−140 V. 

2. The fluctuation of the EOF does not 
enhance mixing effect. 

T-shaped channel [170] 
Main-branch:  

Width: 200 μm 
Depth: 30 μm 

Side-branch 1: 
Width: 100 μm 
Depth: 50 μm  

Side-branch 2: 
Width: 100 μm 
Depth: 67 μm   

Phosphate buffer-
based aqueous 
polymer solutions. 
(500 ppm XG, 5% 
PVP, 2000 ppm PEO, 
200 ppm PAA, 1000 
ppm hyaluronic acid 
(HA) ). 

Electro-osmotic mobility: 
3.5×10−4, 0.1×10−4, 4.6 
×10−4, 0.1×10−4, and 
4.2×10−4 cm2/Vs for XG, 
PVP, HA, PEO, PAA 
solutions.  
∆V = 100−500 V. 
  

1. Fluid shear-thinning might be the 
primary cause of electro-elastic 
instabilities (fluctuation of velocity). 

2. Fluid elasticity alone does not cause 
instability. 

3. Threshold voltage for the onset of 
instability decreases with the increase 
of polymer concentration. 

4. Increasing the buffer concentration 
causes a rise of threshold voltage. 

Constriction channel [171] 
Contraction ratio: 10:1 
Width: 400 μm and 40 μm 

1 mM phosphate 
buffer-based aqueous 
polymer solutions. 

Electro-osmotic mobility: 
0.54×10−4, 0.75×10−4, 
0.06×10−4, 0.14×10−4, 

1. Fluid elasticity alone does not cause 
instability.  

2. Fluid shear-thinning effect alone 
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Depth: 40 μm depth  
Length of constriction: 200 
μm  

(2000 ppm XG, 5% 
PVP, 3000 ppm PEO, 
and 200 ppm PAA.) 

1.82×10−4 cm2/Vs for buffer, 
XG, PVP, PEO, PAA 
solutions. 
Electric field: 100–400 
V/cm. 

caused counter-rotating circulations in 
weakly elastic XG solution. 

3. No electric field-dependent 
phenomenon was observed in strong 
viscoelastic and shear-thinning PAA 
solutions. 

Hyperbolic/abrupt contraction 
with abrupt/ hyperbolic 
expansion [172] 
Channel 1: (7.2:1) 

Width: 401 μm and 56 μm 
Depth: 100 μm 
Length of constriction: 382 
μm    

Channel 2: (22.4:1) 
Width: 403 μm and 18 μm 
Depth: 100μm 
Length of constriction: 
128μm   

1 mM borate buffer 
with 0.05% wt. 
sodiumdodecylsulfate.  
100, 300, 1000, and 
10000 ppm PAA 
solutions. 

Electro conductivity: 
20.2, 55.5, 178.3 and 161.8 
μS/cm for 100, 300, 1000, 
and 10000 ppm PAA 
solutions.  
∆V = 2.5−90 V. 

1. For hyperbolic contraction, upstream 
vortices were observed on high 
contraction ratio geometry. The 
vortices grow with increasing electric 
field.  

2. For abrupt contraction, small vortices 
were observed at the entrance of low 
contraction ratio geometry. 

3. For abrupt contraction, small vortices 
and large flow circulation were 
observed near the entrance. And large 
downstream vortices were observed 
for 1000 ppm PAA solution.  
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APPENDIX D 

 BOUNDARY CONDITIONS  

 

Figure D.1 Boundary conditions for study 2 in Chapter 4. 

 

Figure D.2 Boundary conditions for study 3 in Chapter 5.
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