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Abstract We study the use of deep learning techniques to
reconstruct the kinematics of the neutral current deep inelas-
tic scattering (DIS) process in electron–proton collisions. In
particular, we use simulated data from the ZEUS experi-
ment at the HERA accelerator facility, and train deep neural
networks to reconstruct the kinematic variables Q2 and x .
Our approach is based on the information used in the clas-
sical construction methods, the measurements of the scat-
tered lepton, and the hadronic final state in the detector, but
is enhanced through correlations and patterns revealed with
the simulated data sets. We show that, with the appropriate
selection of a training set, the neural networks sufficiently
surpass all classical reconstruction methods on most of the
kinematic range considered. Rapid access to large samples
of simulated data and the ability of neural networks to effec-
tively extract information from large data sets, both suggest
that deep learning techniques to reconstruct DIS kinematics
can serve as a rigorous method to combine and outperform
the classical reconstruction methods.

1 Introduction

Measurements of deep-inelastic scattering (DIS) by a mul-
titude of experiments all-over the world [1–5] and the study
of these measurements by the theoretical and experimental
communities [5] have revealed information on the quark-
gluon structure of nuclear matter and established quantum
chromodynamics (QCD) as the theory of the strong interac-
tion. The experiments at the HERA collider facility at the
DESY research centre in Hamburg, Germany have played
an important role in these studies. HERA has been the only
electron–proton collider built so far [6]. The data collected
in the years 1992 - 2007 have provided truly unique informa-

a e-mail: andrii.verbytskyi@mpp.mpg.de (corresponding author)

tion on the internal structure of the proton and other hadrons
[7].

The key component in these studies has been a precise
reconstruction of the DIS kinematics, using information from
the accelerator and the detectors. Multiple methods have been
applied at the HERA experiments [8] to reach an optimal pre-
cision in each particular measurement. Each of the classical
reconstruction methods uses only partial information from
the DIS event and is subject to specific limitations, either aris-
ing from the detector or the assumptions used in the method.

With the DIS measurements at the upcoming Electron-
Ion Collider in mind [9], we present in this work a novel
method for the reconstruction of DIS kinematics based on
supervised machine learning and study its performance using
Monte Carlo simulated data from the ZEUS experiment [10]
at HERA. For our approach, we develop deep neural net-
work (DNN) models that are optimised for the problem and
are allowed to take full information from the DIS event into
account. We train the DNN models on simulated data from the
ZEUS experiment and compare the results from our trained
model with the results from the classical reconstruction meth-
ods.

We show that the reconstruction of the DIS kinematics
using deep neural networks provides a rigorous, data-driven
method to combine and outperform classical reconstruction
methods over a wide kinematic range. In the past, neural
networks had already been used in the context of DIS exper-
iments [11] and we expect that our novel method and similar
approaches will play an even more important role in ongoing
and future DIS experiments [12,13].

2 Deep inelastic scattering

Deep inelastic scattering is a process in which a high-energy
lepton (l) scatters off a nucleon or nucleus target (h) with

123

THE EUROPEAN 
PHYSICAL JOURNAL C 

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10964-z&domain=pdf
mailto:andrii.verbytskyi@mpp.mpg.de


1064 Page 2 of 16 Eur. Phys. J. C (2022) 82 :1064

Fig. 1 Schematic representation of Deep Inelastic Scattering process
at Born level

large momentum transfer (the momentum of each entity is
given in parenthesis):

l(k) + h(P) → l ′(k′) + H(P ′) + remnant. (1)

The detectors in collider experiments are designed to measure
the final state of the DIS process, consisting of the scattered
lepton l ′ and the hadronic final state (HFS) H. The latter
consists of hadrons with a relatively long lifetime as well as
some photons and leptons but does not include the hadron
remnant. The H1 [14] and ZEUS experiments were not able
to register the remnant of the target due to its proximity to
the proton beam pipe.

2.1 Deep inelastic scattering at Born level

In the leading order (Born) approximation, the leptons inter-
act with quarks in the hadrons by the exchange of a single
virtual γ or Z boson in the neutral current (NC) reaction,
and the exchange of single W± boson in the charged current
(CC) reaction. The kinematics of the leading order DIS pro-
cess in a Feynman diagram-like form is shown in Fig. 1. In
this paper, we will only consider the neutral current electron
scattering off a proton in a collider experiment. In this reac-
tion, the final state lepton is a charged particle (electron or
positron) that can be easily registered and identified in the
detector.

With a fixed centre-of-mass energy,
√
s = √

(k + P)2,
two independent, Lorentz-invariant, scalar quantities are suf-
ficient to describe the deep inelastic scattering event kinemat-
ics in the Born approximation. Typically, the used quantities
are:

– the negative squared four-momentum of the exchanged
electroweak gauge boson:

Q2 = −q · q = −(k − k′)2, (2)

– the Bjorken scaling variable, interpreted in the frame of a
fast moving nucleon as the fraction of incoming nucleon

longitudinal momentum carried by the struck parton:

x = Q2

2P · q . (3)

In addition to that, the inelasticity y is used to define the
kinematic region of interest. It is defined as the fraction of
incoming electron energy taken by the exchanged boson in
the proton rest frame

y = P · q
P · k . (4)

Therefore, for the DIS an equation

Q2 = syx (5)

holds. However, the Born-level picture of the DIS process is
not sufficient for the description of the observed physics phe-
nomena. A realistic description of DIS requires the inclusion
of higher order QED and QCD processes [15].

2.2 Higher order corrections to deep-inelastic scattering
process

The DIS process with leading order QED corrections can be
written as

l(k) + h(P) → l ′(k′) + γ (Pγ ) + X (P ′) + remnant, (6)

so the kinematics is defined not only by the kinematic of
the scattered electron and the struck parton, but also by the
momentum of the radiated photon, Pγ . The lowest order elec-
troweak radiative corrections can be depicted in a form of
Feynman diagrams as shown in Fig. 2a–d and should be
considered together with the virtual corrections e–g. The
Fig. 2a, d correspond to the initial state radiation (ISR) and
the Fig. 2b, c to the final state radiation (FSR).

With the virtual corrections taken into account in the DIS
process, Eq. (2) no longer holds, i.e.

q · q �= −(k − k′)2. (7)

The presence of higher order QCD processes, (e.g. the boson-
gluon fusion in Fig. 2h and QCD Compton Fig. 2i, j makes
the kinematic description of the DIS process even more com-
plicated. Therefore, the exact definitions of the kinematic
observables used in the analysis of the DIS events and the cor-
responding simulations are essential for the correct physics
interpretation.

2.3 The simulation of the DIS events and the kinematic
variables in the simulated events

The simulation of the inclusive DIS events in the Monte Carlo
event generators (MCEGs) starts from the simulation at the
parton level, i.e. the simulation of the hard scattering process
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 2 Feynman diagrams for Deep Inelastic Scattering process with
some leading order electroweak corrections (a–g) and QCD corrections
(h–k). The proton remnant is omitted

and the kinematics of the involved partons, e.g. given by
parton distribution functions (PDFs) [16] for the given hadron
and considering processes with all types of partons in the
initial state. The modelling of the hard scattering process
combines the calculations of the perturbative QED and/or
QCD matrix elements for the 2 → n processes at parton level
with the different QCD parton cascade algorithms designed
to take into account at least some parts of the higher order
perturbative QCD corrections not present in the calculations
of matrix elements.

The simulated collision events on the particle (hadron)
level are obtained using the parton level simulations as input
and applying phenomenological hadronisation and particle
decay models to them.

As of 2022, multiple MCEG programs are capable of sim-
ulating the inclusive DIS process at the hadron level with dif-
ferent levels of theory precision and sophistication of mod-
elling of hadronisation, beam remnant and parton cascades,
e.g. Pythia6 [17], Pythia8 [18], SHERPA-MC [19],
WHIZARD [20] and Herwig7 [21]. In addition to that, the
Lepto [22], Ariadne [23], Cascade [24] and Rapgap
[25] programs can simulate the DIS process using parts of
thePythia6 framework for the simulation of hadronisation
processes and decays of particles.

As it was discussed above, DIS beyond the Born approxi-
mation has a complicated structure which involves QCD and
QED corrections [9]. The most recent MCEG programs, e.g.
Herwig7, Pythia8, SHERPA-MC, or WHIZARD, contain
these corrections as a particular case of their own general-
purpose frameworks or are able to use specialised packages
likeOpenLoops [26],blackhat [27] orMadGraph [28].
In general, the modern MCEGs do not specify their defini-
tions of the DIS kinematic observables, but in some cases
they can be calculated from the kinematics of the initial and
final state, both for the true and reconstructed kinematics.
For instance, under some assumptions, the Q2 in the event
could be calculated according to Eq. (2). The total elimina-
tion of the ambiguities for such calculations is not possible,
as the final state kinematics even at the parton level depend
on the kinematics of all the emitted partons. The calculations
of the kinematic observables from the momenta of particles
at hadron level add an additional ambiguity related to the
identification of the scattered lepton and the distinction of
that lepton from the leptons produced in the hadronisation
and decay processes.

Contrary to the approaches adopted in modern MCEG pro-
grams, the MCEGs used for the HERA experiments relied
upon generator-by-generator implementations of the higher
order QED and QCD corrections specific for DIS or alterna-
tively applied HERACLES [15] for the corrections.

The way to get a simulation of the DIS collision even
in a specific detector is the same as for any other type of
particle collision event. It involves simulation of the particle
transport through the detector material, simulation of detector
response and is typically performed in Geant [29,30] or
similar tools. The simulated detector response is passed to the
experiment-specific reconstruction programs and should be
indistinguishable from the real data recorded by the detector
and processed in the same way.
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2.4 Reconstruction of the kinematic variables at the
detector level

The kinematics of the DIS events are reconstructed in col-
lider experiments by identifying and measuring the momen-
tum of the scattered lepton l ′ and/or the measurements of the
hadronic final state (H). The identification of the scattered
lepton is ambiguous even at the particle level of the simu-
lated DIS collision events. The same ambiguity is present
in the reconstructed real and simulated data at the detector
level. Therefore, the identification of the scattered electron
candidate for the purposes of physics analyses is a compli-
cated task on itself and was a subject of multiple studies in
the past, some of which also involved neural network-related
techniques [11]. In our paper, we rely on the standard method
of the electron identification at the ZEUS experiment [11] and
discuss solely the reconstruction of the kinematic variables
using the identified electron and other quantities measured
in the detector.

The physics analyses performed in the experiments at
HERA relied on the following quantities for the calculation
of the kinematic observables x and Q2:

– The energy (El ′ ) and polar angle (θl ′ ) of the scattered elec-
tron. Most of the DIS experiments are equipped to register
the scattered electron using the tracking and calorimeter
detector subsystems. While the tracking system is able to
provide information on the momentum of the scattered
electron, the calorimeter system can be used to estimate
the energy of the electron and the total energy of the
collinear radiation emitted by the electron. At the detec-
tor level, the estimation of these energies can be done by
comparing the momentum of the electron reconstructed
in the tracking system and the energy deposits registered
in the calorimeter system around the extrapolated path of
the electron in the calorimeter.

– The energy of the HFS expressed in terms of the following
convenient variables:

δH =
∑

i∈H
Ei − PZ ,i (8)

and

PT,H =
√√√√

(
∑

i∈H
PX,i

)

+
(

∑

i∈H
PY,i

)

, (9)

where the sums run over the registered objects i excluding
the scattered electron. Depending on the analysis require-
ments, the used objects could be either registered tracks,
energy deposits in the calorimeter system, or a combination
of both.

The measurements of the quantities listed above overcon-
strain the reconstruction of the DIS kinematics. Therefore,
in the simplest case, any subset of two observables in El ′ , θl ′ ,
δH, and PT,H, can be used for the reconstruction.

In our analysis, we consider three specific classical recon-
struction methods based on these observables which were
used by the ZEUS collaboration in the past: the electron, the
Jacques-Blondel, and the double-angle methods. We briefly
provide some details on the methods in this section, while a
more detailed description can be found elsewhere [31].

The electron (EL) method uses only measurements of the
scattered lepton, El ′ and θl ′ , to do the reconstruction of Q2

and x . The kinematic variables calculated from these mea-
surements are given by:

Q2
EL = 2El El ′(1 + cos θl ′) (10)

and

xEL = El El ′(1 + cos θl ′)

EP (2El − El ′(1 − cos θl ′))
. (11)

The electron method provides precise reconstruction of kine-
matics, but, since it uses only information from the scattered
lepton, this method is affected by initial and final state QED
radiation. Namely, the QED radiation registered in the detec-
tor separately from the scattered electron will not be taken
into account in the calculations with this method. Practically,
the reconstruction with this method gives reasonable results
when El and El ′ are significantly different from one another,
but the resolution and stability becomes poor otherwise.

The Jacques-Blondel (JB) method uses only measure-
ments of the final state hadronic system, δH and PT,H, for the
reconstruction. The kinematic variables are calculated from
these by:

Q2
J B = 2El P2

T,H
2El − δH

, (12)

xJ B = 2El Q2
J B

sδH
. (13)

The JB method is resistant to possible biases because of unac-
counted QED FSR, but requires precise measurements of the
particles momenta in the hadronic final state. The factors
that limit the precision of the measurements are the uncer-
tainties in the particle identification, the finite resolution of
the calorimeter and tracking detectors, the inefficiencies of
these detectors, the impossibility of the particle detection
around the beampipe, and the presence of objects that avoid
detection (e.g. neutrinos from particle decays).

The double-angle (DA) method combines measurements
from the scattered lepton and the final-state hadronic sys-
tem, θl ′ and γH, to perform the kinematic reconstruction as
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follows:

Q2
DA = 4E2

l sin γH(1 + cos θl ′)

sin γH + sin θl ′ − sin(γH + θl ′)
, (14)

xDA = El sin γH(1 + cos θl ′)

EP sin θl ′(1 − cos γH)
, (15)

where the angle γH is defined as

cos γH = P2
T,H − δ2

H
P2
T,H + δ2

H
. (16)

The angle γH depends on the ratio of the measured quan-
tities δH and PT,H, and thus, uncertainties in the hadronic
energy measurement tend to cancel, leading to good stabil-
ity of the reconstructed kinematic variables. Similar to the
electron method, when El and El ′ are significantly different
from one another, the double-angle method provides reliable
results, but the resolution and stability are poor otherwise.

2.5 The methodology of measurements in the deep
inelastic ep collisions

The methodology of measurements at lepton-hadron collid-
ers in general is similar to the methodologies used at e+e−
and hadron-hadron colliders. Briefly, in the most cases the
quantity of interest is measured from the real data registered
in the detector corrected for detector effects. The corrections
are estimated by comparing the analysis at the detector level
with the same analysis at particle level using detailed sim-
ulations of the collision events with the inclusion of higher
order QED and QCD processes.

The main difference between the measurements at lepton-
hadron colliders and elsewhere, is in the way the measure-
ments involve collision kinematics. At e+e− colliders, the
initial kinematics of the interactions is given by the lep-
ton energies that are known parameters of the accelerators.
Therefore, it is straightforward for most of the measure-
ments in the e+e− experiments to estimate the centre-of-mass
energy of the hard collision process. In hadron-hadron col-
lider experiments, there is no way to measure the kinematic
properties of the partons initiating the collision process, as the
involved partons cannot be observed in a free state and most
measurements in the hadron-hadron collisions are inclusive
in the kinematics of the initial state. The DIS collisions at
electron–proton colliders take a middle stance between these
cases. The kinematic observables of the DIS process are mea-
sured on an event-by-event basis at the detector level using
the methods described above.

In an experiment, the measurements of event kinematics
is affected by various effects. For a proper comparison of the
measurements of HFS, e.g. jet cross-sections or event shape
observables to corresponding perturbative QCD (pQCD) pre-
dictions, the detector-level measurements are unfolded for

detector effects while hadronisation correction factors are
calculated using MCEGs or specialised programs and applied
to the pQCD predictions [32–35]. The prescription for calcu-
lation of those correction factors vary depending on the HFS
quantities measured and the used definitions of the kinematic
observables. Typically, at ZEUS and other experiments at
HERA, after the unfolding of the detector effects, the mea-
surements were also scaled by radiation correction factors
to facilitate a comparison to theoretical calculations avail-
able at Born level in QED, see e.g. Ref. [36]. The factors
were obtained from separate high-statistics MC simulations.
This is a well-understood Monte Carlo approach and our
deep learning technique can be used with it in exactly the
same way as the classical methods, both for the experimen-
tal and the MC data. For future DIS measurements, e.g. at the
upcoming Electron-Ion Collider, it is expected that the effects
of QED and QCD radiation can be treated in an unified for-
malism [35], with the QED effects taken into account into a
factorised approach. Our DNN-based reconstruction of DIS
kinematics is compatible with such a factorised approach as
well.

Therefore, in this analysis, we keep the calculation of cor-
rection factors for QED and hadronisation effects out of scope
and limit the discussion to detector-level measurements. At
particle-level in the MC generated events, we use a single
definition of “true” kinematic observables that is based on
the kinematics of the exchanged boson extracted from the
MC event information.

Namely, we use the definitions of the true-level observ-
ables Q2

true and xtrue that follow the definitions implemented
in ZEUS Common NTuples [37,38] and were used in many
ZEUS analyses. With these definitions the Q2

true is calculated
directly from the squared four-momentum of the exchange
boson qboson,

Q2
true = −|qboson|2. (17)

The xtrue is calculated according to the formula

xtrue = Q2
true

yafter ISRsafter ISR
, (18)

with

yafter ISR = qboson · Pproton beam

(Plepton beam − PISR radiation) · Pproton beam
(19)

and

safter ISR = |Pproton beam + Plepton beam − PISR radiation|2,
(20)

where Pproton beam, Plepton beam and PISR radiation represent the
four-momenta of the proton beam particles, lepton beam par-
ticles and the momenta lost by the lepton beam particles to
ISR. Thus, yafter ISR corresponds to the fraction of energy of
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the bare lepton (i.e. without the ISR) transferred to the HFS
in the centre of mass of the proton and safter ISR to the centre-
of-mass-energy squared of the proton and the incoming bare
electron.

3 Machine learning methods

The reconstruction of DIS event kinematics is overcon-
strained by the previously mentioned measurements, El ′ , θl ′ ,
δH, and PT,H. We trained an ensemble of deep neural net-
works (DNNs) to reconstruct x and Q2 by correcting results
from classical reconstruction methods using the information
on the scattered lepton and the final-state hadronic system.

The ensemble DNN method presented here is a new
approach designed specifically to address this reconstruction
problem. The remainder of this section discusses in detail
specifics of the DNN architectures, the specific optimisation
methods used to find the optimal parameters defining the
DNNs, and the specific structure of the ensemble models.
Shown rigorously in what follows, the main motivation for
using the unique model is:

– the universal approximation capabilities of the DNN
models with our specific architectures

– the necessary reduction in the approximation error with
the increase in the depth of our DNN models

– avoidance of a degradation problem [39] in training due
to the residual structure of our DNN models.

Further details on the DNN-based reconstruction method will
be provided in Ref. [40].

3.1 Neural networks architecture

The problem of reconstruction of DIS event kinematics can
be posed as a task to construct a functional relationship
between a set of input variables x and a set of response
variables y. In many cases, such a relation is a continu-
ous function, and can be approximated to arbitrary accuracy
with a neural network. The corresponding neural network
can have various architectures. The simplest architecture is
a sequence of fully-connected, feed-forward (hidden) layers.
For an input x ∈ R

m , the output of the first hidden layer is:

h1(x) = α (A0x) , h1 ∈ R
d1 , (21)

where A0 : Rm → R
d1 is an affine transformation, the com-

position of a translation and a linear mapping, andα : R → R

is a nonlinear function, called an activation function. Define
the application of α on a vector x := (x1, x2, ..., xm)T ∈ R

m ,
by α(x) := (α(x1), α(x2), ..., α(xm))T .

For A1 : Rd1 → R
d2 , the output h1 is passed into a second

hidden layer:

h2(x) = α
(
A1h

1(x)
)

, h2 ∈ R
d2 , (22)

and so on, for a desired number of hidden layers. An affine
transformation on the output of the final hidden layer is the
output of the network. For i ∈ N, call di the number of nodes
in hidden layer i .

Define �D
m,n(α) to be the set of neural networks with D

hidden layers that mapRm → R
n with continuous, nonlinear

activation function α. If ψ ∈ �D
m,n , then there exists a set of

natural numbers {di }D+1
i=0 ⊂ N with d0 = m and dD+1 = n, a

set affine transformations {Ai : Rdi → R
di+1}Di=0, such that,

for x ∈ R
m ,

⎧
⎪⎨

⎪⎩

h0(x) = x,

hi+1(x) = α
(
Aihi (x)

)
for 0 ≤ i < D,

ψ(x) = ADhD(x).

(23)

Specific universality properties of �D
m,n(α) are proven in

Refs. [41,42]. In particular, there exists some element in the
class of neural networks that is arbitrarily close to any contin-
uous function. For this reason, we say that �D

m,n(α) is dense
in the space of continuous functions.

We consider a particular subclass of neural networks that
also maintain the universal approximation property. We call
it �D

m,n(α). If a function φ ∈ �D
m,n(α), there exists a set of

natural numbers {di }D+1
i=0 ⊂ N with d0 = m and dD+1 = n,

a set of affine transformations {Ai : Rdi → R
di+1}D−1

i=0 , a set
of matrices {Wi ∈ R

di×n}Di=0, such that, for x ∈ R
m ,

⎧
⎪⎨

⎪⎩

h1(x) = α (A0x) ,

hi+1(x) = α
(
Aihi (x)

)
for 0 ≤ i < D,

φ(x) = W0x + ∑D
i=1 Wihi (x).

(24)

Here the affine transformations Ai , i = 0, 1, . . . , D−1, have
the form

Aix = Mix + bi , for x ∈ R
di

for matrices Mi ∈ Rdi×di+1 and vectors bi ∈ Rdi+1 . The
function φ defined by (24) is determined by matrices Mi

and Wi , and vectors bi whose entries/components will be
embraced in a single notation ω later. That is, φ = φω. When
ω is chosen via an optimisation problem, φ(x) is a function
of the input variable x ∈ R

d0 .
Let �D

m,n(α) be the function class in which we search
for an optimal kinematic reconstruction method. In addition
to the universality property, it can be shown that this class is
good for searching for an appropriate reconstruction function
because there the necessary reduction in the approximation
error with the increase in the depth and the residual structure
avoids a degradation problem in the weights during training
[40].
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3.2 Optimisation methods

In any given problem to be solved with the DNN, the task is
to choose an optimal function from the classF = �D

m,n(α) to
be a functional relationship between a set of input variables
x and a set of response variables y.

Each function φ ∈ F is completely determined by the
elements of the matrices and vectors that determine the values
of the hidden layers. Let ω ∈ R

p be the collection of all these
elements, where p is the total number of them. We can then
write for any x ∈ R

m : φ(x) = φω(x).
Choosing an optimal function from this class entails find-

ing the collection of parameters ω in R
p that minimises LD,

the expected discrepancy or generalisation error between y
and φω(x), over the joint probability distribution of x and y,
D, defined by:

LD(ω) = E
x,y∼D

	(ω, x, y) =
∫

	(ω, x, y)dD(x, y), (25)

where 	 is some loss function measuring the discrepancy
between y and φω(x).

With a randomly sampled data set {xi , yi }Ni=1, if N is suf-
ficiently large, then the generalisation error can be approxi-
mated by an empirical error:

LD ≈ 1

N

N∑

i=1

	(ω, xi , yi ). (26)

This summation is sometimes called the fidelity term, as
it measures the discrepancy between the data and model pre-
dictions. A commonly used fidelity term is the mean square
error, with:

	(ω, xi , yi ) = ‖yi − φω(xi )‖2
2. (27)

The fidelity term used in this study is a modification of
this, the mean square logarithmic error:

	(ω, xi , yi ) = ‖ log(yi ) − log(φω(xi ))‖2
2. (28)

Due to the universality of neural networks, there is a model
that can achieve zero empirical error. However, in the pres-
ence of noise this means the model can overfit to the data
sample and loose its generalisability. This problem can be
addressed by adding a regularisation term to the optimisa-
tion problem as a penalty for certain irregular behaviour.
Common regularisation terms include the 	2-norm, used to
limit the size of the parameters, and the 	1-norm, which can
induce sparse solutions. For out analysis, we choose the 	1-
regularisation. The Theorem 1.3 in [43] and Proposition 27
of [44] provide an evidence that minimising the 	1 norm
provides sparse optimal solutions with a minimal number of
nonzero elements. Well-constructed models should be able to
generalise the information from one given sample to any pos-
sible event. Thus, regularisation with the 	1 norm produces a

model determined by a minimal number of parameters so that
the optimal solution does not fit completely to the training
set and loose its generalisability.

Therefore, the determination of the optimal neural net-
work model consists of minimising this final loss function,
the sum of the sample fidelity term and a weighted regulari-
sation term:

min
ω∈Rp

1

N

N∑

i=1

	(ω, xi , yi ) + R · ||ω||1, (29)

where 	 is defined in Eq. (28) and R is a hyperparameter to
determine the magnitude of the regularisation.

Expression 29 can be minimised using stochastic gradient
methods on batches of the data sample [45]. The training
is accelerated using classical momentum methods [46]. In
particular, randomly select an initial set of parameters ω0.
Select a sequence of step sizes, or learning rates, Lk that
diminish to zero. Randomly selecting a batch of data with
indices I ⊂ {1, ..., N }. Choosing a momentum parameter μ.
By defining:

vk+1 = μvk − Lk∇ωL I (ω
k), (30)

ωk+1 = ωk + vk+1. (31)

Then the sequence ωk converges to a set of parameters defin-
ing the optimal neural network with the minimal generalisa-
tion error, in the sense described here.

3.3 The model

We construct a model to rigorously weight classically derived
reconstructions of x and Q2 with corrections based on mea-
surements from the final state lepton and hadronic system.
The final reconstruction of these observables with the neu-
ral network approach are labelled below as Q2

NN and xNN

respectively.
The constructed model is an ensemble of networks from

the previously defined function class �D
m,1(α), where α is

the rectified linear unit (ReLU). The values of D and m vary
with each network in the ensemble.

The NC DIS events studied in this analysis are by defini-
tion the events containing the scattered electron in the final
state, therefore we aim to reconstruct the Q2

NN primarily
from the related observables, i.e. using the properties of the
electron directly measured in the experiment. In particular,
we use as inputs three set of variables: the classically recon-
structed kinematic observables

(
Q2

EL , Q2
DA, Q2

J B

)
, mea-

surements on the scattered lepton (El ′ , θl ′), and measure-
ments on the final-state hadronic system

(
δH, PT,H

)
. We

reconstruct the Q2 in the form:

Q2
NN = AQ2

(
Q2

EL , Q2
DA, Q2

J B

)
+ LQ2

(
AQ2 , El ′ , θl ′

)

+ HQ2
(
AQ2 , δH, PT,H

)
, (32)
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in which AQ2 could be understood as a rigorous average of
classically derived reconstructions, LQ2 is a correction term
computed from the scattered lepton, and HQ2 is another cor-
rection term computed from the final-state hadronic system.
In our analysis AQ2 , LQ2 , HQ2 are simultaneously trained
networks in �5

3,1(α), with each hidden layer of the networks
containing 2000 nodes.

The x observable for the NC DIS events is actually cal-
culated from the electron-related observables as well. There-
fore, we reconstruct xNN , with Q2

NN also as an input, for
a total of eight inputs (xEL , xDA, xJ B, El ′ , θl ′ , δH, PT,H,

Q2
NN ), in the form:

xNN = Ax (xEL , xDA, xJ B) + Lx

(
Ax , Q

2
NN , El ′ , θl ′

)

+ Hx

(
Ax , Q

2
NN , δH, PT,H

)
,

(33)

where Ax , Lx , and Hx are defined similarly to AQ2 , LQ2 , and
HQ2 , but Ax is a network in �20

3,1(α) with each hidden layer

containing 1000 nodes, and Lx , Hx are networks in �10
4,1(α),

with each hidden layer containing 500 nodes.
The number of hidden layers and the number of nodes in

each hidden layer were each progressively increased until
sufficiently desirable results were achieved. Smaller net-
works provided good results on average, but larger networks
were needed to find best results in small, specific regions
of the kinematic space. A further increasing of the num-
bers of hidden layers and nodes per layer beyond the cho-
sen values was found to not significantly alter the perfor-
mance of the kinematic reconstruction, due to the conver-
gence results of deep neural networks. The convergence the-
orems of deep neural networks with the ReLU activation
function as the number of layers increases were recently
established in [47,48].

In the ensemble neural network model, we used the ReLU

α(x) := max(x, 0), x ∈ R (34)

as the nonlinear activation function It has been shown [49]
that with a gradient descent algorithm, using the ReLU func-
tion as the activation function provides a smaller training
time compared to that with the use of functions with saturat-
ing nonlinearities, such as a sigmoid or hyperbolic tangent
function. The reduced training time enabled us to experi-
ment with more sophisticated networks. In addition to this,
the ReLU functions do not need input normalisation to pre-
vent them from saturating, which is a desirable property for
the present analysis. Moreover, it was shown in [47] that the
selection of the ReLU activation function produces a neural
network as a piecewise linear function over a nonuniform
partition, of the domain, determined by parameters involved
in the affine transformations Ai . Such a structure ensures a
good representability of the neural network and can over-
come the problem of underfitting.

To accommodate for the large range of the Q2 and x vari-
ables in the analysis, we select the loss function defined in
Eq. (28) for the training of the DNN models.

4 Experimental setup

The Monte Carlo simulated events used to train our deep
neural networks were specifically generated using the con-
ditions of e± p scattering in the ZEUS detector at HERA.
A detailed description of the ZEUS detector can be found
elsewhere [10].

In our analysis, we have used two samples of Monte
Carlo simulated e+ p DIS events that are provided by the
ZEUS collaboration. These samples were generated with an
inclusion of QED and higher order QCD radiative effects
using the HERACLES 4.6.6 [15] package with DJANGOH
1.6 [50] interface and the ARIADNE 4.12 and LEPTO
6.5.1 packages for the simulation of the parton cascade.
For both samples the same set of kinematic cuts was applied
during the generation, the same set of PDFs were used,
CTEQ5D [51] and the same hadronisation settings were
used to model the hadronisation with the Pythia6 pro-
gram. Therefore, the essential difference between the two
samples is the way the higher order corrections are par-
tially modelled with the corresponding algorithms (QCD cas-
cades). Namely, theLEPTOMCEG utilises the parton shower
approach [52], while ARIADNE implements a color-dipole
model [53]. Accordingly, we label the data-sets produced by
the LEPTO generator as “CDM” data sets and those with
ARIADNE as “MEPS” data sets.

The generated particle-level events were passed through
the ZEUS detector and trigger simulation programs based
on Geant 3.21 [29], assuming the running conditions of the
ZEUS experiment in the year 2007 with a proton beam energy
of 920 GeV. The simulated detector response was processed
and reconstructed using exactly the same software chain and
the same procedures as being used for real data. The results
of the processing were saved in ROOT [54] files in a form
of ZEUS Common NTuples [37,38], a format that can be
easily used for physics analysis without any ZEUS-specific
software.

5 Event selection

The selection of events for the neural network training is
motivated by the selection procedure applied in the previous
ZEUS analyses [55–60]. Even though the presented analysis
performed on the Monte Carlo simulated events, the selection
cuts are choosen and applied as if the analysis is performed
on real data for the purpose of being as close as possible
to the measurements. The general motivation for these cuts
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is the same as in many analyses performed by the ZEUS
collaboration: to define unambiguously the phase space of
the measurement, ensure low fraction of background events,
and a reasonable description of the detector acceptance by
Monte Carlo simulations.

5.1 Phase space selection

The phase space for the training of the neural networks in
this analysis is selected as 100 GeV2 < Q2 < 20480 GeV2,
being close to the phase space of the physics analysis in Ref.
[59].

In the phase-space region at low x and very low inelasticity
y, the QED predictions from the Monte Carlo simulations are
not reliable because of a limit of higher orders in the calcula-
tions [61]. To avoid these phase-space regions, the events are
required to have yJ B · (1 − xDA)2 > 0.004 and yJ B > 0.04
[61]. To ensure optimal electron identification and electron
energy resolution, similar to the previous physics analyses,
a kinematic cut 0.2 < yEL < 0.7 is used.

5.2 Event selection

The deep inelastic scattering events of interest are those char-
acterised by the presence of a scattered electron in the final
state and a significant deposit of energy in the calorimeter
from the hadronic final state. The scattered electrons are reg-
istered in the detector as localised energy depositions primar-
ily in the electromagnetic part of the calorimeter, with little
energy flow into the hadronic part of the calorimeter. On the
other hand, hadronic showers propagate in the detector much
more extensively, both transversely and longitudinally.

In addition to the DIS process, there are also background
processes which leave similar signatures in the detector as
those described above. Therefore, the correct and efficient
identification of the scattered lepton is crucial for the selec-
tion of the NC DIS events. For this analysis, the SINISTRA
algorithm is used to identify lepton candidates [11]. Based
on the information from the detector and the results of the
SINISTRA algorithm, the following selection criteria are
applied to select the events for the further analysis:

– Detector status: It is required that for all the events the
detector was fully functional.

– Electron energy: At least one electron candidate with
energy greater than 10 GeV [59] is identified in the event.

– Electron identification probability: The SINISTRA
[11] probability of a lepton candidate being the DIS lep-
ton was required to be greater than 90%. If several lepton
candidates satisfy this condition, the candidate with the
highest probability is used. In addition to this, there must
be no problems reported by the SINISTRA algorithm.

– Electron isolation: To assist in removing events where
the energy deposits from the hadron system overlap with
those of the scattered lepton, the fraction of the energy
not associated to the lepton is required to be less than 10%
over the total energy deposited within a cone around the
lepton candidate. The cone is defined with a radius of
0.7 units in the pseudorapidity-azimuth plane around the
lepton momentum direction [59].

– Electron track matching: The tracking system covers
the region of polar angles restricted to 0.3 < θ < 2.85
rad. Electromagnetic clusters within that region that have
no matching track are most likely photons. If the lepton
candidate is within this region, the presence of a matched
track is required. This track must have a distance of clos-
est approach between the track extrapolation point at
the front surface of the CAL and the cluster centre-of-
gravity-position of less than 10 cm. The track energy
must be greater than 3 GeV [59].

– Electron position: To minimise the impact of imperfect
simulation of some detector regions, additional require-
ments on the position of the electromagnetic shower are
imposed. The events in which the lepton is found in the
following regions (x ,y and z being the cartesian coordi-
nates in the ZEUS detector) are rejected [62]:

–
√
x2 + y2 < 18 cm, regions close the beam pipe

– z < −148 cm and y > 90 cm and −14 < x <

12 cm, a part of the RCAL where the depth was
reduced due to the cooling pipe for the solenoid
(chimney),

– −104 < z < −98.5 cm or 164 < z < 174 cm,
regions in-between calorimeter sections (super-crack).

– Primary vertex position: It was required that the recon-
structed primary vertex position is close to the central
region of the detector, applying the selection −28.5 <

Zvtx < 26.7 cm [59].
– Energy-longitudinal momentum balance: To suppress

photoproduction and beam-gas interaction background
events and imperfect Monte Carlo simulations of those,
restrictions are put on the energy-longitudinal momen-
tum balance. This quantity is defined as:

δ = δl + δH = (El ′ − Pz,l ′) + (EH − Pz,H)

=
∑

i

(Ei − Pz,i ), (35)

where the final summation index runs over all energy
deposits in the detector. In this analysis, we apply a con-
dition of 38 < δ < 65 GeV [59].

– Missing transverse energy: To remove beam-related
background and cosmic-ray events, a cut on the missing
energy is imposed. PT,miss/

√
ET < 2.5 GeV1/2, where
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Fig. 3 Distribution of events from the training set in (xtrue, Q2
true) plane

and the boundaries of the analysis bins from Table 3

ET is the total transverse energy in the CAL and PT,miss

is the missing transverse momentum, the transverse com-
ponent of the vector sum of the hadronic final state and
scattered electron momenta.

6 Training the DNN models

We use the neural network models defined in Sect. 3.3 and
consider them as optimisation problem in terms of Eq. (29),
i.e., we minimise the loss function across the selected train-
ing set and satisfy sparse regularity conditions. Every neural
network making the ensemble model for x and Q2 are trained
simultaneously. The optimal regularity condition depends on
the selection of the training set, the events batch size, the ini-
tial learning rate, and the regularisation parameter. We aim
to select these in a way that minimises overfitting in particu-
lar regions of the kinematic space while still maximising the
mean accuracy of the model.

We select a set of events from the “MEPS” data sets for
training, as described in Sect. 5, and define the true values
of the x and Q2 as described in Sect. 2.3. Figure 3 shows a
distribution of selected events in the (xtrue, Q2

true) plane and
the boundaries of the chosen analysis bins.

First, we train the network to reconstruct Q2 by optimising
Eq. (29) with an initial learning rate of L = 1.0 × 10−5 and
a regularisation parameter of R = 1.0 × 10−5. We select a
batch size of 10,000.

The reconstruction of x is more complex. We fix the reg-
ularisation parameter to R = 1.0 × 10−5 and select optimal
parameters for the learning rate L and batch size B experi-

Table 1 Resolution of log x reconstruction after 200 epochs of training
with different values of initial learning rate L and batch size B
L RMS of log x − log xtrue

B B B
10,000 50,000 100,000

1.0 × 10−7 0.1507 0.1523 0.1598

5.0 × 10−7 0.1568 0.1575 0.1575

1.0 × 10−6 0.1504 0.1585 0.1547

5.0 × 10−6 0.2384 0.2284 0.1829

1.0 × 10−5 0.2182 2.5972 2.2767

1.5 × 10−5 0.2122 1.7751 1.6028

2.0 × 10−5 3.0258 0.2607 0.2852

5.0 × 10−5 3.6962 2.4858 3.1231

Table 2 Resolution of log x reconstruction after 200 epochs of training
with different values of regularisation parameter R
R RMS of log x − log xtrue

1.0 × 10−6 0.1493

1.0 × 10−5 0.1494

1.0 × 10−4 0.1484

Fig. 4 Training history for x reconstruction model using different
training parameters but the same Q2 reconstruction model obtained
with L = 1.0 × 10−5, R = 1.0 × 10−6 and B = 10,000. In each of
the cases, the initial learning rate was set to L = 1.0 × 10−5 and the
regularisation parameter to R = 1.0 × 10−6

mentally by varying the learning rate against the batch size.
The appropriate selection of these parameters ensures fast
convergence of the stochastic gradient method by balancing
noise in the gradients with the stability of the algorithm. For
each set of parameters, ten attempts are made and the best
result in terms of the mean square error of the x reconstruction
model over the training set is chosen. The results are listed
in Table 1. The smaller learning rate assures a higher stabil-
ity of the results than a larger learning rate. It prolongs the
training process but avoids a poor convergence of the learn-
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Table 3 Kinematic bins in x and Q2, see also Fig. 3

Bin Q2 ( GeV2) x

1 120–160 0.0024–0.010

2 160–320 0.0024–0.010

3 320–640 0.01–0.05

4 640–1280 0.01–0.05

5 1280–2560 0.025–0.150

6 2560–5120 0.05–0.25

7 5120–10240 0.06–0.40

8 10240–20480 0.10–0.60

ing process as observed for larger learning rates. The larger
batch size does not offer any advantages in our analysis as
shown in Table 1. We, therefore, select an initial learning rate
of 10−5 with a minimal batch size. To choose the regulari-
sation parameter close to the optimal one, we vary its value
with constant batch size of 10,000 and initial learning rate of
10−5 and again observe the mean square error of the x recon-
struction model over the training set. For each set of parame-
ters, ten attempts are made and the best result is chosen. The
results are presented in Table 2. Accordingly, we choose a
regularisation parameter of 10−6. Using this regularisation,
the neural network models for both x and Q2 are defined
by weight parameters, of which 50% are effectively zero, or
less than 10−8 Following the suggestions in Ref. [63], we
start with a small batch size, and increase it in initial training
epochs. We test this approach by comparing the mean square
error of the x reconstruction model over the training set over
the first 200 epochs of training over three different training
regimes. The results are summarised in Fig. 4 and imply to
use a gradually increasing batch size up to a maximum batch
size of 1000.

7 Results

We evaluate the performance of our approach for the recon-
struction of DIS kinematics by applying it to detailed Monte
Carlo simulations from the ZEUS experiment and by compar-
ing our results to the results from the electron, double-angle,
and Jacques-Blondel reconstruction methods. For the com-
parison, we use various combinations of statistically inde-
pendent data sets, one for the training, and another for the
evaluation. In our systematic studies, we have found no signs
of overtraining and also no indication that the results depend
on the selected Monte Carlo simulations. For the results pre-
sented in this section, we use the “MEPS” data set for the
training and the “CDM” data set for evaluation. The main
quantities of the comparison are the resolutions of the recon-
structed variables log Q2/1 GeV2 and log x as measured in

Fig. 5 Distributions of log Q2/1 GeV2−log Q2
true/1 GeV2 for various

reconstruction methods in individual analysis bins. For better visibil-
ity, the data points for each reconstruction method are connected with
straight lines

selected x − Q2 regions (bins). The resolutions are defined

as

√
∑N

i

(
log Q2

i /1 GeV2 − log Q2
i,true/1 GeV2

)2
/N and

√∑N
i

(
log xi − log xi,true

)2
/N , where N stands for the

number events in the corresponding bin. The boundaries of
the bins are given in Table 3 and are chosen to be close to the
bins used in ZEUS DIS analyses, e.g. in Ref. [57].

The distributions of the log Q2/1 GeV2−log Q2
true/1 GeV2

and log x − log xtrue quantities are given in the Figs. 5 and 6,
respectively. The numerical values for the resolution are sum-
marised for all the bins and methods in Table 4. The DNN
optimisation procedure minimises the generalisation error
described in Eq. (25) plus the regularisation penalty, so dis-
tributions in Figs. 5 and 6 do not necessarily peak at zero. In
addition to that, Figs. 7 and 8 show the two dimensional dis-
tributions of events in log Q2/1 GeV2 vs. log Q2

true/1 GeV2

and log x vs. log xtrue planes.
The comparison of the DNN-based approach with the clas-

sical methods demonstrates that the DNN-based approach is
well suited for the reconstruction of DIS kinematics. Specif-
ically, for most of the bins, our approach provides the best
resolution as measured by the standard deviation of the log-
arithmic differences of true and reconstructed variables. The
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Fig. 6 Distributions of log x − log xtrue for various reconstruction
methods in individual analysis bins. For better visibility, the data points
for each reconstruction method are connected with straight lines

better performance of the DNN-based approach in most of
the bins is a consequence of using additional available infor-
mation about the final state. In this respect, the DNN-based
approach is similar to averaging of the values provided by
the classical methods with some weights or to alternative
approaches for the same task, e.g. see kinematic fitting in Ref.
[64]. However, in addition to a better resolution, the recon-
struction with the DNN has an important advantage over
the classical methods or any simple combination of them.
It allows to combine the methods without the intrinsic biases
of each method and enables an extension of the model with
additional physics observables in a robust way.

The resolution is improved by the DNN-based approach in
two ways. For the first couple of bins, the main improvement
is caused by the more precise estimation of the reconstructed
observables. This is clearly seen in Figs. 5 and 6. For the
bins with higher Q2 and x the main improvement is due to
the rejection of outliers, which can be seen in Figs. 7 and 8.
The bins with higher Q2 and x also demonstrate another,
very specific advantage on the DNN approach. Due to the
low number of training events in the high Q2 and x region,
it would not be possible to train a DNN model or combine
the Q2 and x observables with other methods using infor-
mation from this region only. However, the DNN training
process benefits from the constraints from the higher num-
ber of events available elsewhere in the kinematical space
and delivers models that perform well even in the bins with
highest Q2 and x .

Table 4 Resolution of the reconstructed kinematic variables in bins of x and Q2. The resolution for x and Q2 is defined as the RMS of the
distributions log(x) − log(xtrue) and log(Q2) − log(Q2

true) respectively

Bin Events Resolution of log x Resolution of log Q2/1 GeV2

1 301780 NN: 0.070 EL: 0.083 NN: 0.035 EL: 0.035

JB: 0.180 DA: 0.103 JB: 0.203 DA: 0.062

2 350530 NN: 0.069 EL: 0.082 NN: 0.040 EL: 0.043

JB: 0.167 DA: 0.096 JB: 0.192 DA: 0.064

3 138456 NN: 0.098 EL: 0.130 NN: 0.055 EL: 0.053

JB: 0.138 DA: 0.100 JB: 0.150 DA: 0.077

4 74844 NN: 0.067 EL: 0.084 NN: 0.044 EL: 0.046

JB: 0.117 DA: 0.077 JB: 0.138 DA: 0.063

5 31043 NN: 0.064 EL: 0.091 NN: 0.036 EL: 0.041

JB: 0.102 DA: 0.073 JB: 0.117 DA: 0.053

6 11475 NN: 0.053 EL: 0.079 NN: 0.033 EL: 0.036

JB: 0.083 DA: 0.061 JB: 0.100 DA: 0.045

7 3454 NN: 0.050 EL: 0.069 NN: 0.036 EL: 0.038

JB: 0.074 DA: 0.055 JB: 0.093 DA: 0.042

8 624 NN: 0.036 EL: 0.055 NN: 0.033 EL: 0.037

JB: 0.067 DA: 0.045 JB: 0.095 DA: 0.041

Minimal value shown in bold
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8 Conclusions

We have presented the use of DNN to reconstruct the kine-
matic observables Q2 and x in the study of neutral current
DIS events at the ZEUS experiment at HERA. The DNN
models are specially designed to be effective in their univer-
sal approximation capability, robust in the sense that increas-
ing the depth of the networks will necessarily reduce empir-
ical error, and computationally efficient with a structure that
avoids “vanishing” gradients arising in the backpropagation
algorithm.

Compared to the classical reconstruction methods, the
DNN-based approach enables significant improvements in
the resolution of Q2 and x . At the same time, it is evident
that the usage of the DNN approach allows to match easily
any definition of Q2 and x at the true level that is preferred
for a given physics analysis.

The large samples of simulated data required for the train-
ing of the DNN can be generated rapidly at modern data
centres. Also, DNN allow to effectively extract information
from large data sets. This suggests that our new approach for
the reconstruction of DIS kinematics can serve as a rigor-
ous method to combine and outperform the classical recon-
struction methods at ongoing or upcoming DIS experiments.
We will extend the approach beyond inclusive DIS measure-
ments and will study next the use of DNN for the reconstruc-
tion of event kinematics in semi-inclusive and exclusive DIS
measurements.
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Appendix: Software used in the analysis

The ROOT package [54] of version 6.22 was used to read the
ZEUS data, provided by the data preservation at Max-Planck
for Physics [65], analyze it and prepare plain text (or ROOT
files) with selected information to be used with the ML tools.
The selected information from the plain text (or ROOT) files
was piped using the pandas package [66] into Keras [67]
interface to tensorflow [68] 2.3.0 library to train the ML
models. The packagesEigen [69],frugally-deep [70],
JSON for Modern C++ [71] and FunctionalPlus
[72] were used for execution of the trained models after
these were converted into frugally-deep model format
[70] to be used with C++ application. The dependencies for
the tensorflow were supplied from the PyPi repository.
The training was performed using libraries for computing on
GPUs from theCUDA [73] framework of version 10.1. We are
grateful to MPCDF1 for the ability to compile and execute
the codes on the HPC cluster “Cobra” in [74]. The operation
system used was Linux on x86_64 architecture using gcc
[75] of version 7.3 and python [76] of version 3.6.8.

The figures with the final results were produced with the
PGFPlots [77] package.
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