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The Concept of Function 
up to the Middle of the 19 th Century 

A .  R YOUSCHKEVlTCH 
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1. Preliminary Remarks 

U p  to now the history of funct ional i ty has remained insufficiently studied. 
This impor t an t  subject  is actually avoided even by C.BOYER, whose book  I-1] 
on the history of the ma in  concepts of the calculus ran  into three editions. It goes 
wi thout  saying that  this work, as well as others on the history of mathematics ,  
does conta in  a n u m b e r  of s tatements  on isolated features of the evolut ion of the 
concept of funct ional  dependence and  on several scholars '  in terpre ta t ion  of this 
dependence. While  undoub ted ly  valuable, such statements,  even taken together, 
do no t  provide the whole picture. In  addit ion,  the op in ions  of various authors  
often differ from each other;  in particular,  they do not  agree about  the t ime when 
the concept  of funct ion actually originated. Perhaps the commones t  point  of 
view was voiced in the well k n o w n  book of D. E. SMITH ([2], p. 376) who stated, 
some fifty years ago:  

... after all, the real idea of functionality, as shown by the use of coordinates 
was first clearly and publicly expressed by Descartes 
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However, BOYER'S opinion ([1], p. 156), formulated in connection with the 
works of FERMAT, a scholar contemporary with DESCARTES, is that 

... the function concept and the idea of symbols as representing variables does not 
seem to enter into the work of any mathematician of the time. 

On the other hand, W. HARTNER & M. SC~mAMM ([3], p. 215) suppose that 

The question of [the] origin and development [of the concept of function] 
is usually treated with striking one-sidedness: it is considered almost exclusively 
in relation to Cartesian analysis, which in turn is claimed (erroneously, we 
believe) to be a late offspring of the scholastic Iatitudines formarum. 

And, further, 

...operating with functions had already reached a high degree of perfection 
by the time the first attempts were made to form a general conception of functions. 

Operations with functions, these authors contend, may be found in astronomical 
calculations of ancient scholars (e.g., in those of PTOLEMY), then in Arabic science 
and indeed in ALoBIRUNI'S works (to whom the authors' article is devoted). 

In a book [4] published later than the one quoted above I l l  and devoted to 
the history of analytic geometry C. BOYER points out other prototypes of functions 
in ancient Greek mathematics. Thus, considering the use of proportions, he says 
(p. 5): 

This was somewhat equivalent to the modern use of equations as expressions 
of functional relationships, although far more restricted. 

The same author ([4], p. 46) as well as J.E. HOFMANN ([5], pp. 80-81), A.C. 
CROMBIE ([6], VO1. ii, pp. 88-89) and others relate geometrical expressions of 
functions and computation of their values with the theory of calculations and with 
the theory of latitudes of forms of the 14 th century. However, H.WIELEITNER 
([7], p. 145) supposed that the idea of a function in the last theory contained 

... nicht die geringste Vorstellung der zahlenmiifiigen Abhfmgigkeit einer Gri~sse 
yon einer anderen 

while E.T.BELL ([8], p. 32) credited even Babylonian mathematicians with an 
instinct for functionality. Lastly, an opinion on the existence of an idea of a function 
in antique mathematics has been put forward recently by O. PEDERSEN [9]. 

I shall not extend this list of opinions, some concordant and some discordant 
one with another, sometimes correct and sometimes incorrect or at least incomplete. 
I shall only add that, as regards the 19 th century, the classical definition of a function 
included in almost every current treatise on mathematical analysis is usually 
attributed either to DIRICHLET or to LOBATCHEVSKY (1837 and 1834, respectively). 
However, historically speaking, this general opinion is inaccurate because the 
general concept of a function as an arbitrary relation between pairs of elements, 
each taken from its own set, was formulated much earlier, in the middle of the 
18 th century. 
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The importance of a historical analysis of the concept of functionality, especially 
bearing in mind contemporary discussions of this very concept, is obvious. Not 
attempting such a goal, I shall offer brief remarks describing only the main stages 
of development of the idea of function up to the middle of the 19 th century. As I 
see it, these stages are: 

(1) Antiquity, the stage in which the study of particular cases of dependences 
between two quantities had not yet isolated general notions of variable quantities 
and functions. 

(2) The Middle Ages, the stage in which, in the European science of the 14 ~h 
century, these general notions were first definitely expressed both in geometrical 
and mechanical forms, but in which, as also in antiquity, each concrete case of 
dependence between two quantities was defined by a verbal description, or by a 
graph rather than by formula. 

(3) The Modern Period, the stage in which, beginning at the end of the 16 th 
century, and, especially, during the 17 'h century, analytical expressions of functions 
began to prevail, the class of analytic functions generally expressed by sums of 
infinite power series soon becoming the main class used. 

It was the analytical method of introducing functions that revolutionized 
mathematics and, because of its extraordinary efficiency, secured a central place 
for the notion of function in all the exact sciences. 

Still, with all its fruitfulness, by the middle of the 18 ~h century this interpretation 
of functions as analytic expressions proved itself inadequate so that a new, general 
definition of a function, which later became universally accepted in mathematical 
analysis, was introduced during that very period. 

In the second half of the 19 th century this general definition opened up widest 
possibilities for the development of the theory of functions but at once betrayed 
logical difficulties which in the 20 th century caused the essence of the concept of 
function to be reconsidered (as, indeed, were the other main concepts of mathema- 
tical analysis). The struggle between different points of view continues; however, 
as I stated above, I will not discuss this period (or, rather, these two periods, 
connected respectively with the theory of functions and with mathematical logic), 
which have been described by A. F. MONNA [107. 

Here I shall as a rule discuss single-valued functions of one real variable. Such 
functions are introduced in modem treatises on mathematical analysis in some- 
what various wordings which have a common meaning. In the most general 
sense a function y of the variable x, y =f(x),  is a relation between pairs of elements 
of two number sets, X and Y, such that to each element x from the first set X one and 
only one element y from the second set Y is assigned according to some definite 
rule. Leaving aside logical difficulties inherent in the definition just given 1, I 
remark only that the functional rule, or "law", might be introduced in various 
forms: verbally; by a table of values of x and y; by an analytic expression; by a 
graph, etc., subject only to the condition that this rule be definite and, once the 
value of x be given, sufficient for finding y. 

A study of some aspects of the idea of function as represented in this definition (but not of the 
difficulties mentioned !) and, also, of the traditional terminology, aimed at a broader circle of readers is 
contained in KENNETH O.MAY'S book ([ l l l ,  pp. 253-262). 
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The idea of function understood in one or another sense is implicitly contained 
in rules for measuring areas of the simplest figures such as rectangles, circles, etc., 
known even at the outset of civilization and, also, in the very first tables (some of 
them being tables of functions of two variables) of addition, multiplication, division, 
etc. used so as to facilitate calculations. 

Obviously relations between numbers or, more generally, quantities, are 
encountered at every step in the realm of what is called elementary mathematics. 
However, this trivial fact is in itself fruitless in our search for the formation of the 
idea of function, its generalization and gradual comprehension, the concrete 
meaning which it acquires with the progress of scientific and philosophical thought 
and, lastly, for the role it plays during various stages of this progress. 

2. Tabulated Functions and the "Symptoms" of Conic Sections in Antiquity 

As stated above, the first stage of the concept of function is that of antiquity. 
Even in 2000 B.C. Babylonian mathematicians used widely for their calculations 
sexagesimal tables of reciprocals, squares and square roots, cubes and cube 
roots as well as some other tables. Tables of functions of two different types, 
the step-function and the linear-zigzag-function, as O. NEUGEBAUER ([12], Chap. 5) 
called them, were used in Babylonian astronomy during the reign of the SELEUCIDS 
for compilation of ephemerides of the sun, moon, and the planets. Empirically 
tabulated functions thereafter became the mathematical foundation for the whole 
subsequent development of astronomy. 

New shoots of the concept of function made their appearance in Greek 
mathematics and natural science. Attempts attributed to the early PYTHAGOREANS 
to determine the simplest laws of acoustics are typical of the search for quanti- 
tative interdependence of various physical quantities, as, for example, the lengths 
and the pitches of notes emitted by plucked strings of the same kind, under 
equal tensions. Later on, during the ALEXANDRIAN epoch, astronomers developed 
a whole trigonometry of chords corresponding to a circumference of a fixed 
radius and, using theorems of geometry and rules for interpolation, calculated 
tables of chords actually tantamount to tables of sines such as those that came 
into use by the Hindus a few centuries afterward. The earliest of extant table of 
chords is found in PTOLEMY'S Almagest, in which numerous astronomical tables 
of other quantities, equivalent to rational functions and, also, the simplest ir- 
rational functions of the sine are inserted [9]. 

However, the Greeks did not restrict themselves to use of tabulated functions. 
The main role in the theory of conics was played by their symptoms (aW~rcz&#~zcO, 
i.e. by those basic planimetric properties of corresponding curves that follow 
immediately from their original (though actually unused) stereometric definition 
as being plane sections of the cone. A symptom of some conic section represents, 
a modem mathematician would say, for each point of the given curve one and 
the same functional dependence between its semichord y and the segment x of 
the diameter conjugate with the chord, the ends of this segment being the point 
of intersection of the diameter with the chord and the corresponding vertex. 
Antique geometers described symptoms verbally and, also, by means of geo- 
metrical algebra (the term is due to H.G. ZEUT~EN ([13], p. 7)), in which identities 



The Concept of Function 41 

and equations of the first two degrees were represented by equalities of areas of 
certain rectangles. The meaning of these symptoms, the verbose antique des- 
cription of which seems unusual to the modern ear, could be conveyed absolutely 
accurately in the language of analytic geometry by equations of curves of the 
second order with respect to their vertices, 

y 2 = 2 p x T - P x 2 ,  y2 =2px. 
a 

However, opportunities provided by geometrical algebra were insufficient 
for conveying similarly the properties of curves of the third and fourth orders 
(cissoid and conchoid) and of some other algebraic curves known to Greek 
mathematicians, who had to define all these curves and also certain transcendent 
curves such as the quadratrix and the equiangular spiral, by means of special 
geometric or mechanical (kinematic) constructions. 

Antique mathematicians introduced a peculiar classification of curves and 
of problems solved by means of these curves. Even before EUCLID they singled 
out three classes of geometric loci: plane (~r~izc*~oO loci-straight lines and circles; 
solid (azepeol) loci-conic sections; and linear loci (z6rcot 7pa##zlcoi)-all other 
curves. It is really impossible to study here the origin and meaning of this classi- 
fication, so remote it is from ours, which originated in the t7 th century ([14], § 25). 

In ancient Greece and in Hellenistic countries later to become Roman pro- 
vinces functions introduced in connection with mathematical and astronomical 
problems were subjected to studies similar to those carried out in the mathematical 
analysis of modern times. According to the goal pursued, functions were tabulated 
by use of linear interpolation, and, in the simplest cases, limits of ratios of two 
infinitely small quantities were found as, e.g., the limit of sin x/x as x -~ 0. 

Problems on extremal values and on tangents were solved by methods equi- 
valent to the differential method; areas, volumes, lengths, and centres of gravity 
were calculated by integral methods equivalent to the calculation of integrals, 

ig  a 

e.g., ~ x dx and ~ x 2 dx. 
0 0 

Lastly, problems in which roots of cubic polynomials had to be calculated 
were solved by using conic sections (curves of the second order). For this purpose 
roots of the corresponding equations were considered as coordinates of points 
of intersection, or contact, of two such appropriate curves. In this description I 
use the common modem terminology and notation, foreign to antique mathe- 
matics. I emphasize this fact as distinctly as possible. 

Greek symbolism until about the third century A.D., apart from the use of 
digits, confined itself to denoting various quantities by different letters of the 
alphabet. No algebraic formula, no kind of literal algorithm, no analytical ex- 
pression was ever introduced. Only in the works of the late Alexandrian mathe- 
matician DIOPHANTUS and, possibly, in those of his immediate predecessors, 
whose names have been forgotten, do some algebraic signs appear, as, for example, 
signs for the first six powers of the unknown quantity, a sign of equality, etc. 
However, with the downfall of antique society, this notation was not developed. 
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3. A General Notion of Function in Antiquity 

Apart from the lack of symbolism, which impeded the whole progress of 
mathematics, the achievements of the Greeks both in increasing the number of 
functional dependences used and in discovering new methods to study them 
were indeed substantial and played a prominent role in the later development 
of mathematics right up to the creation of the new algebra, analytic geometry 
and the infinitesimal calculus in the 16 '~ and 17 th centuries. Nevertheless, I must 
repeat that there was no general idea of functionality in ancient times. 

The problem of whether antique mathematicians possessed a general concept 
of function has been considered in detail also by O. PEDERSEN in his paper devoted 
to PTOLEMY'S Almagest [9]. Quite correctly, PEDERSEN notices that, according to 
the PTOLEMAIC system of the world, positions of the sun, moon and planets are 
considered to change continuously and periodically in time; that the deter- 
mination of these positions is accomplished by PTOLEMY by means of standard 
procedures, sometimes explained by a numerical examples or, alternatively, 
formulated verbally in a quite general manner; that, lastly, these standard pro- 
cedures are used to compile various astronomical tables, i.e., to tabulate cor- 
responding functions (not only of one, but even of two, and, in several instances, 
of three variables). Noticing that the word function itself first appeared not in the 
works of antique mathematicians but much later, PEDERSEN ([9], p. 35) asks the 
next question: 

But are we for that reason justified in concluding that they had no idea of 
functional relationships? 

His own answer is that everything depends on what actually is meant by a 
function. If, together with many mathematicians of bygone days, one is to interpret 
a function as an analytical expression, then the conclusion is that the ancients did 
not know functions. 

But if, continues PEDERSEN (p. 36), we conceive a function, not as formula, 
but as a more general relation associating the elements of one set of numbers 
(viz, points of time t 1, t 2, t 3 , ...) with the elements of another set ( for  example 
some angular variable in a planetary system), it is obvious that functions in 
this sense abound throughout the Almagest. Only the word is missing: the thing 
itself is there and clearly represented by the many tables of corresponding 
elements of such sets. 

I almost agree with all this. Of course, PTOLEMY, like other astronomers of 
that age and of earlier ones, knew that celestial coordinates of moving heavenly 
bodies periodically change with time, or that, in a given circle, chords of unequal 
lengths are related to arcs of unequal lengths. Above (see § 2) I have considered 
other, earlier instances of functions studied by Greek mathematicians who did 
not compile tables for the purpose. Also, two thousand years before PTOLEMY, 
tabular relationships were well known to Babylonians. All this notwithstanding, 
antique mathematical literature lacks not only words tantamount to the term 
function but even an allusion to that more abstract and more general idea which 
unifies separate concrete dependences between quantities or numbers in whichever 
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form (verbal description, graph, table) these dependences happen to be considered. 
There is a good distance between the instinct for functionality (BELL) and the per- 
ception of it, and the same is true in regard to particular functions and the emer- 
gence of the concept of a function in one or another degree of generality. The use 
of the singular (the thing itself, i.e. the functional relation represented by various 
tables) by PEDERSEN in connection with the Almagest (see quotation above) 
seems to be incorrect in that it allows the whole passage to be interpreted as 
implying that functions corresponding to these tables were considered as parti- 
cular instances of functional relationship in general. 

A similar situation may be found in Greek mathematics as a whole. Its pro- 
cedures of calculating or of determining individual concrete limits never led to 
an explicit formulation of general concepts of a sequence, variable, limit, infinitely 
small quantity, integral, or of general theorems concerning these objects a. Appro- 
priate examples are quadratures and cubatures accomplished by ARICHIMEDES. 
Indeed, solving several problems (determining the area of a turn of a spiral, the 
volume of a spheroid, the area of a segment of a hyperboloid of revolution), he 

a 

actually calculated one and the same integral S x2 dx or, to put it otherwise, the 
o 

limit of one and the same "RIEMANN-DARBOUX" sum, completely carrying out 
the procedures required by the method of exhaustion each time anew. Noticing 
that also some other problems solved by AgCI-IIMED~ (quadrature of a parabola, 
determination of the centre of gravity of a triangle) could have been reduced to 
the calculation of the same integral, N. BOURBAI<I ([15], p. 208) continues: 

... nous ignorons jusqu'& quel point il a pris consience des liens de parentO qui 
unissent les divers problkmes dont il traite (liens que nous exprimerions en 
disant que la rnOme intdgrale revient en maints endroits, sous des aspects 
g~omktriques varies), et quelle importance il a pu leur attribuer. 

It is impossible to answer this question, but of course AgCHIMEDZS could not 
have failed to notice that the procedures of calculation in the first three problems 
were identical. Still, even for the case of the one function he used, y = x  2, he did 
not introduce a general notion of a definite integral (cf. [16]). 

Generally speaking, studying mathematics of bygone ages, one often not only 
estimates its importance for the further development of this science (which is 
necessary) but also, not infrequently, one impermissibly broadens the inter- 
pretation of its ideas, linking them with modern, much more general, notions 
and conceptions. And it really happens that, as GOETHE'S FAUST remarked to 
his pupil WAGNER, the historian equates the spirit of the times with its reflection 
in his own mind: 

Was ihr den Geist der Zeiten heisst, 
Das ist im Grund der Herren eigner Geist, 
In dem die Zeiten sich bespiegeln. 

2 One of the few exceptions is Proposition I from Book X of EUCLID'S Elements according to which 
(in our terminology), beginning from a certain term, each subsequent term of any sequence 

a, a q l , a q i q z , a q l q z q  3 . . . .  (%<½, x = 1 , 2 , 3  . . . .  ) 

becomes smaller than any given quantity b. 
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In particular, it would have been an impermissible modernization to see the 
idea of a variable quantity in the proper sense in the works of DIOPnANTUS, who 
did use substitutions for calculation of rational roots of indeterminate equations 
and whose method does make it possible in many instances to calculate an in- 
finite number of values of the unknown of the indeterminate problem. At best, 
it is possible to speak, as D.T. WHITESIDE ([17], p. 197) does, about the notion 
or, rather, about the actual use of a substitution variable, but not about the fully 
free variable characteristic of the algebra of VI/~TE. 

Ideas of change and of variable quantity were not foreign to Greek thought. 
Problems of motion, continuity, infinity, have been considered since the times 
of HERACLITUS and ZENO of ELEA, and to the study of these notions was devoted 
most of the ARISTOTELIAN Physics or natural philosophy (q~6~zq means nature). 
Using the term motion of matter in the broad sense of change, ARISTOTLE3 dis- 
tinguished three main forms of the world processes: alteration or change of 
quality; change of magnitude or quantity, e.g. growth or decrease; and local 
motion (motus localis), this being the lowest form of motion, which necessarily 
accompanies the two other, higher forms of changes of matter. The local motion 
was subdivided into uniform motion, in which equal distances (segments or, say, 
arcs of a circumference) are travelled in equal times and difform motion; however, 
neither the (mean) velocity, such as the quotient s/t, nor, much less, the instan- 
taneous velocity, was introduced in antiquity. Hence, neither the quantitative 
change nor the local motion, both of which have eventually found their represen- 
tation in a more abstract notion of a variable quantity, became an object of 
mathematical study for the Greeks. This fact could be partially accounted for by 
the influence of controversies brought about by Z~NO'S paradoxes. 

The connection of this fact with the general direction of the development of 
Greek mechanics and astronomy is striking. Neither of these sciences overstepped 
the limits of uniform motion, for the irregular motions of heavenly bodies were 
reduced in antique systems of the world to combinations of uniform circular 
motions. Irregular motion was not studied as such. Wherever possible, kinematic 
ideas were banished from the realm of pure mathematics. Isolated propositions 
found in EUCLID in which motion and superposition are used, as well as isolated 
cases of kinematic definitions of curves (say, of the quadratrix or of the equi- 
angular spiral) do not change the general picture. 

I have remarked above that even the so-called PYTHAGOREANS had glimpsed 
quantitative laws of nature. Apart from kinematic models of the system of the 
world, this quantitative aspect of laws of nature was little developed in Greek 
science. 

Whatever the ideological or social causes and circumstances which brought 
about the features of ancient science just described, the mathematical thought 
of antiquity created no general notion of either a variable quantity or of a function. 
In the field of applications, mainly in astronomy, in which quantitative methods 
of research underwent the greatest development, the chief goal was the tabular 
representation of functions conceived as relations between discrete sets of given 
constant quantities isolated for practical purposes from continua of numerical 
values of quantities functionally related one to another. 

s ARISTOTLE used the term #ezctflo2il (change) on a par with Kivqtxlg (motion). 
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In this context, a similarity with the statical conception of CANTOR'S set 
theory, in which the intuitive idea of a variable quantity is reduced to an idea of 
a set of constant quantities given beforehand, suggests itself. In any case the 
thoughts of Greek mathematicians taken in general were far, far from the kine- 
matic conception of a flowing quantity, characteristic of the infinitesimal cal- 
culus of the 17 th, 18 th and 19 th centuries. 

4. Kinematic and Geometrical Representation of Functional Relations. 
Theories of Calculations and of Latitudes of Forms 

Occurring some time after the downfall of antique society, the new flowering 
of science in countries of Arabic culture did not, as far as is known, bring about 
essentially new developments in functionality. Still, the number of functions used 
increased, and methods of studying them improved. Thus every one of the main 
trigonometrical functions was introduced, methods of tabulating them were 
perfected (in particular, quadratic interpolation came to be used along with 
linear interpolation), and the study of positive roots of cubic polynomials by 
means of conic sections advanced essentially. Further progress was made in 
optics and astronomy. An exception, it seems, and an especially remarkable one 
from my point of view, was the analysis of accelerated motion in the Mas'fidic 
Canon (ca. 1030) of AL-BiRfJNi, which was partly preceded in 9 th century by 
TI-I~BIT IBN QURRA ([3], pp. 212-214; [17a], p. 37-38). 

Still, AL-BiRgrM's analysis and ideas did not exert much influence on his 
successors. The notion of function first occured in a more general form three 
centuries later, in the schools of natural philosophy at Oxford and Paris. Following 
such thirikers as ROBERT GROSSETESTE and ROGER BACON, these two schools, 
which flourished in the 14 th century, declared mathematics to be the main in- 
strument for studying natural phenomena. Departing from the ARISTOTELIAN 
doctrine of intension and remission of qualities and forms (intensio et remissio 
qualitatum et formarum), they proceeded to the mathematical study of non- 
uniform quantitative and local motion. 

Qualities or forms are phenomena such as heat, light, color, density, distance, 
velocity, etc., which can possess various degrees (gradus) of intensity (intensio) 
and which, generally speaking, change continuously within some given limits. 
Intensities of forms are considered in relation to their extensions (extensio) such 
as, for example, quantity of matter, time etc. During such considerations a whole 
series of most important concepts came to be introduced, e.g., instantaneous, or 
punctual, velocity (velocitas instantanea, punctualis), acceleration (intensio motus 
localis, also velocitatio), and variable quantity, conceived as being a degree or a 
flux of quality (gradus qualitatis, f luxus qualitatis). In all this, a dominant role 
was played by a synthesis of kinematic and mathematical thought. 

Toute cindmatique, notices N. BOURBAKI (I-15], p. 292), repose sur une idde 
intuitive, et en quelque sorte expdrimentale, de quantitds variables avec le temps, 
c'est-d-dire de fonctions du temps. 

Simultaneously, an idea that quantitative laws of nature were laws of functional 
type gradually ripened in natural philosophy. 
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The doctrine of intensity of forms, or, otherwise, the theory of "calculations" 
(calculationes) and its most important part, kinematics, had been developed in 
England by WILLIAM HEVTESBURY, RICHARD SWINESHEAD, and others, mostly in 
the kinematic-arithmetical direction, while in France, where its main represen- 
tative was NICOLE ORESME, it developed also in the geometrical direction. Of 
special interest is the theory of configurations of qualities (de configurationibus 
quaIitatum), or, in other words, of uniformity and difformity of intensities, or, in 
still other words, of latitudes of forms (de latitudinibus formarum), developed by 
ORESME in the middle of the 14 th century. 

Every measurable thing, wrote ORESME ([18], pp. 164-165), except numbers 
[which he, like the ancient Greeks, understood to be a set of units] is imagined 
in the manner of continuous quantity ( Omnis res mensurabilis exceptis numeris 
ymaginatur ad modum quantitatis continue). 

Therefore points, lines, and surfaces, in which, according to ARISTOTLE, the 
measure or ratio (mensura seu proportio) is initially found, are needed so as to 
measure these things; in all other things measure or ratio is learned by their 
mental relation with points, lines, and surfaces. 

ORESME represents degrees of intensity by segments of corresponding lengths, 
"latitudes" (latitudo) perpendicularly erected upon the line of "longitudes" 
(longitudo), the segments of which represent extensions; the ratio of two inten- 
sities of some quality is the same as that of the corresponding latitudes, so that, 
as ORESM~ himself says, latitudes and longitudes of some quality could be con- 
sidered instead of its intensity and extension. The upper ends of the latitudes of 
some quality generate the "line of intensity" (linea intensionis) or, in other 
words, the "line of summit" (linea summitatis) which, as does also the figure 
bounded by this line, by the segment of the line of longitudes under consideration, 
and by the two extreme latitudes, represents the given quality and its "degrees". 
The angle between the latitudes and the line of longitudes could be chosen 
arbitrarily, although latitudes are most conveniently constructed perpendicular 
to the line of longitudes. 

One of ORESME'S remarks should be specially noticed, viz, that intensities 
could be called longitudes, so extensions should then be named latitudes. In this 
context "linear" (linearis) qualities are considered, the intensities of which are 
distributed among points of a line, but there exist also "surface" (superficialis) 
and "corporeal" (corporalis) qualities, distributed among points of a two- 
dimensional or three-dimensional continuum. Surface qualities are represented 
by solids with flat bases; as to corporeal qualities, the problem of their geometrical 
representation naturally presented ORESME with extraordinary difficulties, so that 
his remarks about them are far from clear ([183; see especially Pt. 1, Chapters i-iv 
and x). 

Thus these theories, developed in the 14 th century, seem to be founded on a 
conscious use of general ideas about independent and dependent variable quan- 
tities; though direct definitions of these quantities are lacking, each of them is 
designated by a special term. The latitude of a "quality" is interpreted in a most 
general manner as being a variable quantity dependent on its longitude and, 
similarly, the "line of summit" is understood to be a graphical representation of 
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some continuous functional relation ([6], Vol. II, p. 88; [-19], p. 341). Thus, in 
these theories, a function is defined either by a verbal description of its specific 
property or directly by a graph. 

In the mathematical language of modem times the latitude and longitude 
and also the corresponding semichords and segments of diameters of the antique 
theory of conic sections (see § 2) could well be called the ordinate and abscissa, 
respectively, with only one, albeit substantial, reservation: coordinates used in 
the 14 th century were always related to points of some curve rather than to arbi- 
trary points of the plane. However, the same reservation applies even to DES- 
CARTES. It really seems that coordinates of arbitrary points having no connection 
with some curve first appear in FR. VAN SCHOOTEN'S commentary on the Latin 
edition of DESCARTES' Geometry (published in 1649), in the context of deducing 
the first known formulae for transformation of coordinates ([20], p. 191 and ft.). 

The theory of latitude of forms is distinctive for its absolutely abstract pre- 
liminary interpretation of the problems solved, no significance being attached 
to the concrete form or quality. But then ORESM~ introduces also a kind of classi- 
fication of the main kinds of linear qualities, to the study of which he essentially 
restricts himself. This classification is as follows ([18], Pt. 1, Chap. xi-xvi): 

(1) Uniform quality (qualitas uniformis) with a constant latitude and the 
line of intensity being parallel to the line of longitudes. The corresponding figure 
is a rectangle. 

(2) Uniformly difform (uniformiter difformis) quality ([18], pp. 192-193) 

is one in which if any three points [of the line considered] are taken, the 
ratio of the distance between the first and the second to the distance between 
the second and the third is as the ratio of the excess in intensity of the first 
point over that of the second point to the excess of that of the second point over 
that of the third point; I call the first of those three points the one of greatest 
intensity. ( Est euius omnium trium punctorum proportio distantie inter primum 
et 2" ad distantiam inter 2" et 3" est sicut proportio excessus primi supra 2" 
ad excessum 2 i supra 3" intensione, ita quod puncture intensiorem illorum trium 
voco primum.) 

Corresponding to this verbal description is our equation of a straight line passing 
through two given points (xl; Yl) and (x2; Y2): 

Y-Y1  x - x 1  
. 

Y2 --Yl X2 --xl  

The line of intensity is here represented by the hypotenuse of a rectangular 
triangle or, alternatively, by the inclined upper side of a quadrangle having two 
right angles at its base, the difference between these cases being occasioned by 
whether this line meets the given segment of the line of longitudes at one of its 
ends (in ORESME'S terminology, in this case the line is terminated at no-degree, 
terminatur ad non gradum, i.e., at the zero point of latitude) or does not meet the 
given segment (is terminated in both extremes at some degree, terminatur utrobique 
ad gradum). 
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(3) Difformly difform (difformiter difformis) qualities, to which all other 
cases belong. This, the most extensive class of qualities could be "described 
negatively" (potest deseribi negative) as belonging neither to uniform nor to 
uniformly difform qualities ([18], pp. 194-195). 

First, ORESME here distinguishes four simple (simplex) kinds of qualities, 
these being convex and concave (relative to the line of longitudes) arcs of a circle, 
not larger than the semicircle, and, also, similar arcs of an ellipse. (The word 
itself is not used; what is actually discussed is a curve proportional in altitude to 
a circular figure). Then, in the second place, ORES~ discusses 63 "composite" 
(compositae) difform difformities the lines of intensity of which are composed 
of two or more arcs of previously described curves or of segments of a straight 
line. These combined lines somewhat resemble EULER'S "mixed" curves (lineae 

• mixtae), see § 9; ORESME even uses the same term, mixtio, mixture. 
An important component of the theory of calculations or latitudes of forms 

was the study of functions of time. Correctly pointing out the rudimentary nature 
of these studies, N. BOURBAKI ([15], p. 217) notices that obviously they have 
been carried out sans consid&ations infinit~simales. This, however, is not exactly 
so. Infinitesimal considerations were not only latently present in the concepts of 
instantaneous velocity and acceleration themselves but also explicitly used in 
solving a whole series of problems, such as, e.g., problems of determining the 
areas of some figures unbounded in their extent, or the mean velocity of bodies 
the (instantaneous) velocities of which change by leaps according to some definite 
law an infinite number of times during a given interval of time divided into such 
parts as form a geometric progression. In these problems the main method of 
calculation was exactly the summation of infinite geometric progressions; later 
on, in the framework of the same theory, mathematicians encountered more 
complicated series, the sums of which were represented by (still unknown) tran- 
scendental quantities which they had to estimate approximately both from above 
and below (A. THOMAS, in 1509). 

An achievement most important for mechanics if not for mathematics was the 
determination of the mean velocity of uniformly difform (uniformly accelerated) 
motion, notwithstanding failure to connect this problem with the problem of the 
free fall of heavy bodies. This achievement, first accomplished at Oxford, was de- 
scribed in the works of W.HEYTESBURY (in 1335?), R.SwINESHEAD,  and J. 
DUMBLETON written almost simultaneously; they concluded that the uniformly 
difform motion is equivalent to a uniform motion with a velocity equal to the 
velocity of the accelerated movement at the middle moment of time 4. Since all 
three scholars worked in the same place, at Merton College in Oxford, modern 
literature usually refers to their conclusion as the "Merton theorem" ([19], 
Chapter 5). 

ORESME~ also, proved this theorem. He represented the past distance or the 
proportional quantity, the total (mean) velocity (veIocitas totalis), by the area of a 
triangle or a trapezium ([18], Pt. iii, Chap. vii). Actually ORESME (21], pp. 37-39 
and 122-124) went still further and determined that, for a zero initial velocity, the 

4 A special feature of SWlNESHEAD'S research was his attempt to study a rectilinear motion, the 
velocity of which is proportional to the distance from a fixed point (1 17], p. 217). 
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distance increases proportionally to the square of time and, also, that the distances 
travelled during equal intervals of time increase in proportion to odd numbers 
(1:3:5:7:...)i As a matter of fact ORESMe arrived at these results much as GALILEO 
was to do in his study of the free fall of heavy bodies in vacuo, published in the 
Dialogo (in 1632) and, again, in the Discorsi e dimostrazioni matematiche (in 1638). 
However, GALILEO'S proof of the "Merton theorem" explicitly rests upon the 
method of indivisibles, whereas in ORESME'S derivation infinitesimal considerations 
are only implied. 

In the 15 th century and also in the first half of the 16 th the theory of latitudes 
of forms and calculations enjoyed wide fame, especially in England, France, 
Italy and Spain. It had been expounded in university courses and to it not only 
manuscript works but also a number of printed books had been devoted. Never- 
theless, it was not much enriched at that time and, in particular, applications of 
its methods in physics and mechanics did not go beyond isolated,' artificially 
posed, problems. As A. C. CROMSIE ([6] vo1. ii, p. 89) puts it: 

In the 14 ~h century the idea of functional relationships was developed without 
actual measurements and only in principle. 

A survey of the general achievements of the theory under discussion might 
well conclude that in the development of some of the basic concepts of mathe- 
matics and mechanics, that of function included, in generalization and in abstrac- 
tion the natural philosophers of the 14 th century advanced far beyond all their prede- 
cessors taken together. Also, particular results of fundamental importance were 
arrived at; thus for example, the existence of figures of unbounded extent but of 
finite areas and the divergence of the harmonic series were discovered (OREsME). 
But then, potential possibilities provided by the new concepts were not widely 
exploited either in mathematics or in its applications. The schools of Oxford and 
Paris disposed only of scant means for concrete mathematical research; neither 
the representatives of these schools nor their immediate successors introduced 
any substantial novelties in computational techniques, algebra (except in the 
theory of proportions and the work of BRADWARDINE and ORESME), trigonometry, 
or methods of quadrature and cubature. An obvious disproportion developed 
between the high level of abstract theoretical speculations and the weakness of 
mathematical apparatus. 

To determine the influence exerted by the theories of calculations and latitude 
of forms upon the mathematics of modern times is a rather complicated problem, 
the materials at our disposal being insufficient for an accurate and comprehensive 
solution. In many instances the similarity between the common concepts and 
particular results of the two is so great as hardly to be attributed to ordinary 
coincidence. More naturally, we may perceive here persistence of traditions some- 
times transmitted by complicated means, e.g. by migration through a number of 
countries. Information could have been transmitted not only in written or printed 
form but also by means of lectures or even private conversations (some indubitable 
evidence of which exists). 

An example is provided by GALILEO'S study of the free fall of heavy bodies: 
Even the general resemblance of GALmEO'S mathematical interpretation of the 
corresponding law to ORESME'S interpretation of the Merton theorem implies 
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a continuity of ideas; this implication becomes certitude in view of the fact that 
M.CLAOEa'T has found the Merton theorem in no less than seventeen books 
printed in the 16 th century. 

Just as striking is the resemblance of some basic principles of DESCARTES' 
universal mathematics with ORESME'S theory of latitudes of forms. What I mean 
here is the representation of all quantities and relations among them by means of 
geometric forms and, ultimately, by means of segments of straight lines, as 
DESCARTES himself stated in his ReguIae ad directionem ingenii, written as early 
as 1629. We do not know whether DESCARTES actually read ORESME'S works, but 
we do know how important for DESCARTES were his conversations with his friend, 
I. BEECKMAN, whose familiarity with ORESME'S ideas and in particular with the 
Merton theorem is testified by his diary for the year 1618 ([19], pp. 417-418). Thus, 
some influence of ORESME upon DESCARTES is very probable; of course it is not 
contradicted by the direct connection between DESCARTES' coordinate method 
with the symptoms of conic sections as described by APOLLONIVS of Perga 5. 

Also, it could hardly be doubted that the kinematic ideas of English calculators 
persisted in England and influenced the works of NEPER, BARROW and NEWTON. 
In particular, we know that SWINESHEAD was not forgotten even in the 17 'h 
century; among those who read SWINESHEAD and wha admired him highly was 
LE1BNIZ, ([1], p. 88). 

5. Descartes' Variable Quantity; Algebraic Functions 

Sure as I am that the ideas of both the Oxford and the Paris schools of natural 
philosophy played a noticeable role in the making of mathematics of modern 
times and, in particular, in the development of the general notion of function, still 
I do not maintain that this role was dominant, the more so as a new interpretation 
of functionality came to the fore in the 1T h century. 

Decisive significance for the further development of the doctrine of functions 
was played, on the one hand, by the impetuous growth of computational mathe- 
matics and, on the other, by the creation of literal, symbolic algebra along with the 
corresponding extension of the concept of number, so as, by the end of the 16 'h 
century, to embrace not only the whole field of real numbers but also imaginary 
and complex numbers. These were, so to say, preliminaries in mathematics itself 
to the introduction of the concept of function as a relation between sets of numbers 
rather than "quantities" and for analytical representation of functions by formulae. 
It is sufficient in this context to mention the progress in trigonometry and discovery 
of logarithms; what should be especially emphasized, though, is the introduction 
of numerous signs for mathematical operations and relations (in the first place, 
those of addition, substraction, of powers and of equality) and, above all, of signs 
for unknown quantities and parameters, which V I ~  in 1591 denoted by vowels 
A, E, 1 . . . .  and consonants B, G, D,... of the Latin alphabet, respectively. The 
importance of this notation, which, for the first time ever, made it possible to put 
on paper in symbolic form algebraic equations and expressions containing un- 

s This connection has been recently pointed out again by M. SCHRAMM in a polemic with A.C. 
CROMmE, who supposes that ORESME had made a step toward founding analytic geometry and that 
DESCART~ probably knew ORESME'S works ([22], pp. 90-91). 
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known quantities and arbitrary coefficients (a word also originating with VII~TE), 

could be hardly overestimated. However, the creator of the new algebra did not 
use his remarkable discovery to further the concept of function; "functional 
thought" was not characteristic of his mind. 

VI~TE'S symbolism suffered from serious shortcomings and soon was amended 
by number of scholars, then extended beyond the realms of algebra and used in the 
infinitesimal calculus. DESCARTES, NEWTON, LEIBNIZ (who attached utmost 
importance to the appropriate selection of signs), EULER and other scholars of the 
highest calibre participated in this process of perfecting mathematical symbolism; 
this process continues in our time in all branches of mathematics. 

On the other hand, in the exact sciences of former times, especially from the 
beginning of the 17 th century, the new conception of quantitative laws of nature 
(see § 4) as establishing functional relations between numerical values of physical 
quantities had been gathering strength in ever-increasing measure and becoming 
more and more distinctive. In this process the creation of a broader and broader 
field of physical metrology with the introduction of quantitative measures of 
heat, pressure etc.  played an important role; so did the swift gain in the precision of 
experiments and observations, brought about by the invention of various scientific 
instruments. Among the sciences mechanics, overtaking astronomy, came to the 
fore and, with it, its new branch, dynamics, soon to be joined by celestial mechanics. 
To study the relation between curvilinear motion and the forces affecting motion 
had become the chief problem of science. This problem gave rise to a series of 
problems in infinitesimal analysis, the solution of which had to be carried through 
to numerical answers. 

As a consequence of all this, a new method of introducing functions was 
brought into being, to become for a long time the principal method in mathematics 
and, especially, in its applications. As before, functions not infrequently were 
introduced verbally; by a graph; kinematically; and, as before, tables of functions 
continued to be used most extensively. However, in theoretical research, the 
analytical method of introducing functions by means of formulae and equations 
came to the foreground. 

We are able to tell almost exactly when this reversal of ideas took place. Even 
by the turn of the 16 th century functions were being introduced only by means of 
old methods. In just this way the logarithmic function (the most important, along 
with the trigonometric functions), was introduced. J. BORGI calculated his logarith- 
mic tables (published in 1620), starting from the relation, emphasized earlier 
by M.STIEFEL (in 1544) but known even to ARCHIMEDES, between the geometric 
progression of the powers of some quantity (e.g., q, q2, q3, . . .  and the arithmetic 
progression of its powers (1;2; 3; ...). This relation, as is evidenced by the inter- 
polation process used by him, B~?RGI intuitively understood to be continuous. 
However, J.NEPER, whose work was published in 1614-1619, proceeded from a 
comparison of two continuous rectilinear motions, one being that of a point (L) 
moving uniformly and the other being that of a second point (N) the velocity 
of which is presumed proportional to its distance from some fixed point. 6 In this 
case, the distance travelled by point L is the (NAPIERIAN) logarithm of the distance 
travelled by point N. 

6 See Footnote 4 on the corresponding work of SWlNESHEAD. 
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But then, only fifteen to twenty years after this, independently of each other, 
both FERMAT and DESCARTES in applying the new algebra to geometry presented 
the analytical method of introducing functions, thus opening a new era in mathe- 
matics. 

In his Introduction to plane and solid loci (Ad locos planos et solidos isagoge) 
written somewhat before 1637 but published only in 1679, FERMAT (I-23], p. 91) 
says: 

As soon as two unknown quantities appear in a final equation, there is a locus, 
and the end point of one of  the two quantities describes a straight or a curved line. 

(Quoties in ultima aequalitate duae quantitates ignotae reperiuntur, sit 
locus loco et terminus alterius ex illis deseribet lineam rectam aut curvam.) 

Here both the argument and the function are just called unknown quantities, this 
term actually meaning line-segments of continuously varying length. 

Using VI~a'E'S notation and also a rectilinear coordinate system, FERMAa" 
then writes down equations of a straight line and, drawing upon AVOLLONrUS' 
Conics, of some curves of the second order. 

In more detail the idea of introducing a function analytically was developed 
by DESCARTES in his celebrated Geometry (La giom&rie, 1637). His main purpose 
was to reduce the solution of all algebraic problems and equations to some stan- 
dard procedures for constructing their real r o o t s -  i.e., the coordinate segments of 
points of intersection of appropriate plane curves of the lowest possible order. 

Relating a plane algebraic curve with an equation between the coordinates of 
its points, the coordinates being again understood as line-segments, DESCARTES 
([24], p. 386) wrote: 

Prenant successivement infinies diverses grandeurs pour la ligne y, on en 
trouvera aussi infinies pour la ligne x, et ainsi on aura une infiniti de divers 
points tels que celui qui est marqu~ C, par le moyen desquels on dicrit la ligne 
courbe ddmandOe. 

Here, for the first time and completely clearly, is maintained that an equation 
in x and y is a means for introducing a dependence between variable quantities 
in such a way as to enable calculation of the values of one of them corresponding 
to a given values of the other one. 

A little further on DESCARTES singles out the class of algebraic curves (which 
he calls geometric curves). All the points of these curves, as DESCARTES noticed, 
bear some relation to all the points of a straight line, it being possible to represent 
this relation by some equation, the same for each point of a given curve. By an 
equation DESCARa'ES, not being able to write down in symbols any equations 
of other kinds, actually meant an algebraic equation. Calling non-geometrical 
curves mechanical, DESCARTES then and there introduced his not yet perfect 
classification of geometrical curves in kinds (genres), those of the first kind being 
lines described by equations of second degree; those of second kind, described by 
equations of the third and fourth degrees; those of the third kind, by equations of 
fifth and sixth degrees etc. 7 

7 The universally adopted classification of algebraic curves introduced by NEWTON about the 
year 1670 was published only in his Enumeration of lines of the third order (Enumeratio linearum tertii 
ordinis) in 1704. 
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Introduction of functions in the form of equations effected a real revolution 
in the development of mathematics. The use of analytical expressions, the opera- 
tions with which are carried out according to strictly specified rules, imparted 
a feature of a regular calculus to the study of functions, thus opening up entirely 
new horizons. Originating in the course of applying algebra to geometry, this 
method of representing functions was immediately extended to other branches of 
mathematics and in the first place to the realm of infinitesimal calculations. 

In notes written approximately a hundred years ago but first published only in 
1925 F. ENGE~ ([25], p. 275), the great thinker, maintained that 

Der Wendepunkt in der Mathematik war Descartes' variable GrOfle. Damit 
die Bewegung und damit die Dialektik in der Mathematik, und damit auch 
sofort mit Notwendigkeit die Differential- und lntegralrechnung, die auch so fort 
anfiingt . . . 

The opinion of the noted mathematician H.HANKEL expressed approximately 
at the same time ([26], pp. 44-45) is much the same as the assertion just quoted: 

... wiihrend die Alten den Begriff der Bewegung, des riiumlichen Ausdruckes 
der Veriinderlichkeit ... in ihrem strengen Systeme niemals und auch in der 
Behandlung phoronomisch erzeugten Kurven nur voriibergehend verwenden, 
so datiert die neuere Mathematik yon dem Augenblicke, als Descartes yon der 
rein algebraischen Behandlung der Gleichungen dazu fortschrirt, die Gr6ssen- 
veri~nderungen zu untersuchen, welche ein algebraischer Ausdruck erleidet, 
indem eine in ihm allgemein bezeichnete Gr6sse eine stetige Folge yon Werten 
durchlgtuft. 

Exactly at the time of DESCARTES and FERMAT functional thought became 
predominant in mathematical creative work. In connection with this I notice in 
passing also that the analytic geometry of DESCARTES and FERMAT, poor as it was 
at first in discovery if compared with the achievements of the theory of conic 
sections of the ancients, is potentially superior to the analytic geometry of 
AVOLLONIUS and differs from it as much as the new symbolic algebra differs from 
the antique "geometrical algebra" (cf [17], p. 294). 

At the beginning the range of analytically expressed functions was restricted 
to algebraic ones, and DESCARTES even excluded from his geometry all mechanical 
curves as not being amenable to his method of analysis. However, a discovery 
made somewhat later, in the middle of the 17 th century by P.MENGOLI, N. 
MERCATOR, J. GREGORY and I.NEWTON independently made it possible to re- 
present analytically any functional relation studied in those times. 

What I mean here is the discovery of how to develop functions into infinite 
power series. Other infinite expressions of functions were afterwards a d d e d -  
infinite products, continued fractions etc. In an embryonic form the idea that an 
infinite expression was a "function" was not new, the infinite decreasing geometric 
progression having long been known (see § 4), but only in the second half of the 
17 th century did the power series become the most fruitful and, as was supposed 
even a great while afterwards, the universal means for analytic expression and 
study of any function. P.BOUTROUX ([27], p. 117) even considered the theory of 
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development of functions into power series to be the most original, remarkable, 
and fruitful component of the new mathematics as discovered by NEWTON and 
LEIBNIZ. In any case, exactly because of power series the conception of function 
as an analytic expression occupied the central place in mathematical analysis. 
Not without reason one of NEWTON'S principal works was called The method of 
Fluxions and infinite Series ( Methodus fluxionurn et serierum infinitarurn ). 

6. The Concept of Function as Understood by Newton (c. 1670) 
and Leibniz (1673-1694) 

There was no great distance between first descriptions of the new concepts of 
function and the formulation of corresponding definitions which at first bore 
mechanical or geometrical features, both by force of tradition and because the 
methods of infinitesimal calculus were created mainly in the course of solution of 
problems in mechanics and of related geometrical problems. 

The logarithmic function was a hyperbolic area; the elliptic function, an arc 
of a conic section; integrals were represented by distances, areas, arcs, volumes; 
differentials, by infinitely small coordinate segments; derivatives, by velocities 
or ratios of sides of infinitely small (characteristic) rectangle triangles, etc. 

An especially clear kinematic-geometric interpretation of the basic conceptions 
of mathematical analysis was presented by NEWTON, who developed the ideas of 
his teacher, I.BARROW, as explicated in lectures delivered at Cambridge in 1664- 
1665 but published only later [28], which describe conceptions of time and motion 
and of their geometrical presentation originating with GALILEO and ORESME 
([153, p. 220; [293, p. 240). 

Like BARROW, NEWTON chooses time as a universal argument and interprets 
dependent variables as continously flowing quantities possessing some velocity 
of change. 

In two letters to J. WALLIS, dated 27 August and 17 September 1692 (old style), 
NEWTON concisely explained his conception of the infinitesimal calculus, the 
development of which he had begun as early as 1664-1666. Somewhat shorter 
versions of these were published in 1693, in the Latin, enlarged edition of WALLIS' 
algebraic tract (English edition 1685). Here one reads that NEWTON (['30], p. 391) 
reduced his method to the solution of two problems: 

Data aequatione fluentes quotcunque quantitates involvente, fluxiones 
invenire: et vice versa. Per fluentes quantitates intelligit indeterrninatas, id est 
quae in generatione Curvarurn per moturn loealern perpetuo augentur vel dirninu- 
untur, et per earurn fluxionern intelIigit celeritatern incrernenti vel decrernenti, s 

In more detail NEWTON expounded these same ideas in a number of other 
works, as for example in the above-mentioned Method offluxions and infinit e 

s A somewhat  loose English translation made at the end of the 17 th or at the beginning of the 
18 'h century, published in 1961 ([31], p. 222 and if), is included in the following passage: 

The illustrious Mr  Newton has reduced the Doctrine of  Fluxions to two Prop: 1 Any Equation 
given wherein are Flowing Quantities to f ind the Fluxions, and ye Contrary. By flowing quantities 
he understands Indeterminate Quantities, that is which in ye Generation of a Curve by local motion 
perpetually Encrease or Decrease, & by ye Flux: he means the Celerity o f  their lncrem't or Deerem't. 
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series, written ca. 1670 but published in an English translation from a Latin manu- 
script only in 1736 [-32]. As is evident, even the two principal problems of the 
infinitesimal calculus were expressed in mechanical terms, viz, given the law for 
the distance, to determine velocity of motion (differentiation), and, given the 
velocity of motion, to determine the distance travelled (integration of differential 
equations and, in particular, of functions). However, NEWTON'S conceptions 
plainly incline towards a more abstract understanding of philosophical and 
mechanical terms. Thus, concerning the universal argument, time, NEWTON 
says in his Method offluxions ([-32a], pp. 72-73) (I am here quoting his original 
Latin version, dating back to 1670-1671): 

We can have, however, no estimate of time except in so far as it is expounded 
and measured by an equable local motion, and furthermore quantities oJ the same 
kind alone, and so also their speeds of increase and decrease, may be compared 
one with another. For these reasons, in what follows I shall have no regard 
to time, formally so considered, but from quantities propounded which are of the 
same kind shall suppose some one to increase with an equable flow: to this all 
the others may be referred as though it were time, and so by analogy the name of 
"time" may not improperly be conferred upon it. 

(Cfim autem temporis nullam habeamus aestimationem nisi quatenus id per 
aequabilem motum localem exponitur et mensuratur, et praeterea cfim quantitates 
ejusdem tantfim generis inter se eonferri possint et earum incrementi et decre- 
menti ceIeritates inter se, eapropter ad tempus formaliter spectatum in sequentibus 
haud respiciam, sed e propositis quantitatibus quae sunt ejusdem generis aliquam 
aequabili fluxione augeri fingam cui caeterae tanquam tempori referantur, 
adeoque cui nomen temporis analogicl tribui mereatur.) 9 

Somewhat further ([-32a], pp. 88-91) NEWTON calls the fluent, which plays 
the role of independent variable, a correlated quantity (quantitas correlata); the 
dependent quantity he calls related (reIata). Thus only the basic notions are 
introduced kinematically, so actually the method of fluxions is developed for the 
fluents, expressed analytically either in a finite form or by sums of infinite power 
series, those decimal fractions of mathematical analysis. 

At the outset, LEIBNIZ also arrived at the basic notions of differential and inte- 
gral calculus, developing them from the geometry of curves. It is sufficient to recall 
that as early as in his basic" memoir on the differential calculus, A new method for 
maxima and minima as well as tangents, ... and a remarkable type of Calculus for 
them (Nova methodus pro maximis et minimis, itemque tangentibus ..., et singularis 
pro illis calculi genus), in 1684, he described the differential (dy) of an ordinate 

9 Cf, ORESME ([18], pp. 274-275): 
... therefore time so stated is in no way "difform" or even properly "uniform", as time also is 

not said to be "' quick" or "slow". However, time can be said improperly to be uniform, since that dura- 
tion which is time in the aforesaid way is not properly measured except by uniform motion, i.e. regular 
motion. (.. .  idcirco tempus sic dictum nullo modo est difforme nec etiam proprie uniforme, sicut 
etiam tempus non dicitur velox vel tardum. Verumptamen improprie tempus potest dici uniforme 
quoniam illa duratio que tempus est modo predicto non mensuratur proprie nisi per motum uniformem, 
id est, regularem). 
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of some curve ([33], v, p. 220) as being a segment whose ratio to dx, an arbitrary 
increment of the abscissa, is equal to the ratio of its ordinate to the subtangent. 

The word "function" first appears in LEmNIZ' manuscripts of August, 1673, and 
in particular in his manuscript entitled The inverse method of tangents, or about 
functions (Methodus tangentium inversa, seu de functionibus). At first the deter- 
mination of subtangents, subnormals and other segments related to variable 
points of a curve is here treated both for "geometrical" and "non-geometrical" 
curves for which ([34], p. 44) 

the relation between its applicate [ordinate] ED and abscissa AE is re- 
presented by some equation known to us (in qua Relatio applicatae ED ad 
abscissam AE aequatione quadam nobis cognita explicatur ). 

Then LEIBNIZ ([34], p. 47) goes on to consider the inverse problem of deter- 
mining applicates (ordinates) from a given property of the curve's tangent or of 

other kinds of lines which, in a given figure, perform some function (ex aliis 
linearum in figura data functiones facientium generibus assumtis ). 

It should be remembered that the Latin verbfungor, functus sum, fungi means, 
to perform, to fulfil (execute) an obligation, etc. As D. MAHNKE remarks ([34], 
p. 47): 

LEIBNIZ gebraucht allerdings in der vorliegenden Handschrift Jfir diese 
gesetzliche Beziehung, in der die Ordinate einer Kurve zu ihrer Abszisse ... 
steht, noch nicht das Wort Funktion; abet wie der Anfang der Handschrift be- 
weist, hat er den Funktionsbegriff schon im weitesten Sinne gebildet und benennt 
ihn mit dem Wort relatio. Auch an der vorliegenden Stelle, bei der allgemeinen 
Formulierung der dem umgekehrten Tangentenproblem fihnlichen Probleme, 
hat das Wort Funktion noch nicht ganz den heutigen mathematischen Sinn, 
sondern eher den, den wit in der Sprache des tiiglichen Lebens mit ibm verbinden ; 
es bedeutet also etwa die °" Verrichtung ", die ein Glied eines Organismus oder ein 
Tell einer Maschine zu leisten hat, seine Aufgabe, Stellung oder l/I~rkungsweise. 
"In figura functionem facere" bedeutet also z.B.: die Kurve beriihren, auf ihr 
senkrecht stehen, ihre Subtangente oder Subnormale bilden usw., wobei natiirlich 
immer ein begrenztes Stfick der so oder so "funktionierenden" Linie, z.B. das 
Tangentenstiick zwischen Beriihrungspunkt und X-Achse, in Betracht zu ziehen 
ist. 

But further on in the same manuscript the term function takes on a new meaning 
as a general term for different segments connected with a given curve. 

So spricht er [LEmNIZ], said D. MAHN~:E (p. 48), an spglteren Stellen der 
Handschrift yon dem regressus a Tangentibus aut aliis functionibus ad ordinatas, 
und in diesem Sinne ist auch der Ausdruck de functionibus in der Oberschrift zu 
verstehen. 

In the same relatively broad sense of differential geometry a definition of a 
function first appeared in print in a few articles of LEm•IZ published in 1692 and 
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1694. There he calls functions (functiones, fonctions) any parts of straight lines, 
i.e., segments obtained by constructing infinite straight lines corresponding to a 
fixed point and to points of a given curve 1°. He explains that he actually means 
abscissae, ordinates, chords, segments of tangents and of normals cut off by 
coordinate axes, segments of subtangents and subnormals etc., and in the same 
sense the word function was used by JAKOB BERNOULLI in his work in the Acta 
Eruditorum for October 1694. 

However, such a definition of a function did not correspond to any broader 
analytical context. The correspondence of LEIBNIZ with JOHANN BERNOULLI 

during 1694-1698 actually traces how the want of a general term to represent 
arbitrary quantities dependent on some variable soon brought about the use of 
the term function in the sense of an analytical expression. 

7. A Function as an Arbitrary Analytic Expression: 
Johann Bernoulli (1694-1718) and Euler (1748) 

In his letter of 2 September 1694 BERNOULLI ([33], iii, p. 150), telling LEIBNIZ 
about his discovery of the development of S ndz into an infinite series 

1 dn 1 ddn 
n z - - i - ~  z" z'-dTz +TTg75 z3 dz 2 

(which, however, LEIBNIZ already knew) wrote: 

by n I understand a quantity somehow formed from indeterminate and constant 
[quantities] (per n intelligo quantitatem quomodocunque formatam ex inder- 
minatis et constantibus). 

In the same year this discovery, expressed in the same words, appeared in 
BERNOULLI'S article ([35], i, p. 126) in the Acta Eruditorum. The term function is 
not yet used. It is lacking also in BERNOULLfS letter of 25 Aug. 1696 ([33], iii, 
p. 324) where he proposes to denote by 

1 2 
X , X  

diverse quantities given somehow by an indeterminate [quantity] x and by 
constants ... [either] algebraically or transcendentally (quantitates diversas 
utcunque datas per indeterminatam x et constantes ... vel aIgebraica, vel trans- 
cendenter). 

JOHANN BERNOULLI first uses the word function only two years later, in an 
article appended to his letter of 5 July 1698 and devoted to the solution of the 
isoperimetric problem posed by his brother JAKOB: among all the curves B F N  

10 See LEIBNIZ, De linea ex  Iineis numero infinitis ordinatim ductis inter se concurrentibus formata ..., 
Acta Eruditorum, Apr. 1692 ([331, V, p. 268); Nova  Calculi differenrialis applicatio et usus ..., Acta 
Eruditorum, July 1694 ([331 V, p. 306); Considirations sur la di f f irence qu'il y a fi observer entre l 'Analyse 
ordinaire et le nouveau Calcul des Transcendentes, Journal des Sqavans, Aug. 1694 ([33], V, p. 307-308). 
E.g. ([33], v, p. 306) 

Funct ionem voco portionem rectae, quae, ductis ope sola puncti  f i x i  et puncti  curvae cure curvedine 
sua dati rectis, abscinduntur. 
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of given length and base BN to find a curve any powers of the ordinates FP of 
which generate ordinates PZ of (another) curve B Z N  of a maximum, or minimum, 
area. 

Actually, JOHANN BERNOULLI ([33], iii, pp. 506-507) even generalizes this 
problem supposing it to be 

to find [a curve] BFN, the ordinates FP of which, raised to a given power or, 
in general, some functions of these ordinates, etc. (illa [curva] BFN, cujus 
applicatae FP ad datam potestatem elevatae seu generaliter earum quaecunque 
functiones etc.). 

In a French translation published in 1706 in the MOrn. Acad. sci. Paris ([-35], 
t. 1, p. 424) this passage from the original reads thus: 

trouver la courbe B F N  telle, que ses appliquies FP klevies dune puissance 
donn~e, ou g~n~ralement telle, que les fonctions quelconques de ces appliqu~es 
PZ, exprimOes par d'autres appliqu~es PZ etc. 

BERNOULLI does not explain in what sense he takes "some" (quaecunque) 
functions; nevertheless, he could hardly have meant anything other than analytic 
expressions already known by that time.11 

z It seems that the first approach to a general definition of a function as being an "analytic" 
expression and, moreover, allowing an infinite process to be involved, is found in J. GREGORY'S Veritable 
quadrature of the circle and hyperbola (Vera circuli et hyperbolae quadrature), published in 1667. This 
book being unavailable, I shall describe the corresponding definition introduced by GREGORY as 
expounded in the article of M.DEHN & E.HELLINGER ([36], p. 477): 

we call a quantity x composed (compositum) of  other quantities a, b ..... if x results from a, b . . . .  by 
the four elementary species, extracting of  roots or by any other imaginable operation (quacunque 
alia imaginabiIi operatione). 

By these last words GREGORY meant composition of convergent sequences, he himself having 
introduced the term convergens, possibly transplanting it into mathematics from optics, with which he 
occupied himself a good deal. Note that GREGORY used the term terminatio for the limit of a convergent 
sequence (series convergens). 

Addendum. Having forwarded this article to the Editor, I am now able to add the relevant passage 
from GREGORY'S work Vera circuli et hyperbolae quadratura (1667), for which I am greatly indebted 
to Dr. D.T. WHITESIDE [37a, p. 9]: 

Definitiones 
5. Quamitatem dicimus d quantitatibus esse composttum; cure d quantitatum additione, sub- 

ductione , multipIicatione, divisione, radicum extractione, vel quacunque alia imaginabili operatione, 
f i t  alia quantitas. 

6. Quando quantitas eomponitur ex quantitatum additione, subductione, divisione, radicum 
extractione: dicimus illam componi analytic& 

7. Quand6 quantitates d quantitatibus inter se commensurabilibus analytieO componi possunt, 
dicimus illas esse inter se analyticas. 

Definition 5 corresponds to the definition published by J. BER.~OULLX in 1718 (see § 7): only the 
any other imaginable operation means for GREGORY some rather general infinite process called by 
him our sixth operation (nostra sexta operatio). 

Definition 6, which defines the quantity composed analytically (analyticl), corresponds to a 
certain degree to our algebraic function. It is difficult to agree with M.BARON who says [29, p. 8] that: 
Theexpression analytic was first used by James Gregory who defined an analytic quantity as one obtainable 
by algebraic operations together with passage to the limit. The word analytic~ is employed here by 
GREGORY in Vt~TE'S sense. As C. J. SCRIBA says [37 b, p. 13-14]: "A nalytisch" nennt er dabei eine Grfsse, 
die durch endlich viele der J~nf Grundoperationen aus zueinander kommensurablen Gr6ssen zusammen- 
gesetzt ist. 
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On 29 July 1698 LEIBNIZ expressed his satisfaction with Join. BERNOULLI'S 
use of  his (LEIBNIZ') term "funct ion" ([33], iii, p. 526) after which both correspon- 
dents exchanged their opinions a few times more about  the most appropriate 
notation for a function of one or many variables. Both favored distinguishing 
functions by means of indices, not in the way we do it now but thus: 
x -W, x - - ~ ,  x ; - ~ ,  ~ and so on ([33], iii, p. 537). 

In the same place LEIBNIZ proposed to write dz for the ratio dz:dx. This 
notation did not endure. 

Simultaneously or somewhat earlier LEmNIZ introduced into general use the 
words "cons tan t"  and "variable",  12 "coordinates"  (in 1692 ([33], v, p. 268)), and 
"paramete r"  in the sense of an arbitrary constant segment or quantity [in a 
manuscript  written ca. 1679 ([33], iii, p. 103) and, in 1692, in a printed work 
(ibidem, p. 268)], etc. Lastly, he found inconvenient the terminology which 
DESCARTES had introduced, and so he changed it. DESCARTES had classified curves 
as "geometrical"  and "mechanical",  erroneously excluding the latter from 
geometry as being insusceptible to study by means of his (algebraic) method; 
see also § 5. 

LEIBNIZ instead divided functions and curves into two classes: algebraic, 
namely, those which could be represented by an equation of a certain order 
(certi gradus), and transcendental. Transcendental functions and curves could also 
be subjected to an exact study and calculus, although of a different nature, by their 
representation by equations of an indefinite (gradus indefiniti) or infinite order 
which ([33], V, pp. 123-124 and 228, 1684 and 1686 respectively) 

transcend any algebraic equation (omnem aequationem algebraicam trans- 
cendant ) 1 a. 

LEIBNIZ' definition of transcendental functions as non-algebraic ones has been 
repeated in textbooks right up to our day. As to the intrinsic property of trans- 
cendental complex analytic functions (possession of at least one singular point 
besides poles and branch points of finite order), this was to be established only in 
the middle of the 19 th century. However, twenty years had to pass until the new de- 
finition of a function appeared in print. All this time the term function itself 
remained little known. It is lacking in CHR. WOLf'S Mathematisches Lexicon, 
published in 1716, in which, nevertheless, two related articles were included, 
Quantitas constans, eine unveriinderliche Grfsse, and Quantitates variabiles, 
ver~nderliche Gri~ssen. The second article mentions that the distinction between the 
two kinds of quantities is essential in LEIBNIZ' new analysis ([38], columns 1144 
and 1149-1150). 

Expression of one variable quantity by means of another one is also treated 
in the same source, though in another article, Abscissa, die Abscisse, it is as follows 
([38], columns 3-4): 

12 These two words happened to enjoy a wider fame because of the first printed treatise on differen- 
tial calculus, written by L'HosPITAL and published in 1696, in which [371 the quantitOs constantes and 
quantitds variables are defined right from the beginning. 

13 In the manuscript, dated 1679, LEIBNIZ ([33-1, iii, p. 103) called algebraic curves "analytic" 
(curva analytica); in the same place also the term "transcendent curve" is found. 
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Durch die Relation der Abszisse AP zu der halben Ordinate [we should have 
preferred: to the (whole) ordinate] PM pfleget man die krummen Linien yon 
einander zu unterscheiden. 

A few examples of functions are presented in such articles as Aequatio ex- 
ponentialis, eine Exponential-Gleichung; Aequa~io indeterminata, eine undeter- 
minirte Gleichung and Aequatio transcendens, eine Transcendentische Gleichung. 

The idea of functional relationship is not even mentioned in such articles as 
Calculus differentialis, die Differential-Rechnung and Calculus integralis, seu 
summatorius, die Integral-Rechnung. The idea that mathematical analysis is a 
general science of variables and their functions seems to be due to EULER, who 
said just this in the preface to his famous Introductio in analysin infiniwrum, 
completed ca. 1744 and published in 1748 [39]. 

The first explicit definition of a function as an analytic expression to appear 
in print is in J. BERNOULLI'S article Remarques sur ce qu'on a donni jusqu'ici de 
solutions des probl~mes sur les isopdrimitres, published in the Mira. Acad. roy. 
sci. Paris for 1718. Here it is that one finds ([35], ii, p. 241) 

Ddfinition. On appelle fonc t ion  d'une grandeur variable une quantiti 
compos~e de quelque maniOre que ce soit de cette grandeur variable et de constantes. 

In the same place BERNOULLI also proposed the Greek letter q~ as a notation 
for a caract~ristique of a function (the term is due to LEmNIZ), still writing the argu- 
ment without brackets: q~x. Brackets, as well as the sign f for function are due to 
EULER who used them in his article E. 45, communicated in 1734 and published 
in 1740. 

In his definition BERNOULLI gave no indication of how to constitute functions 
from the independent variable. But then, it is obvious that he actually meant 
analytic expressions of functions, this being in accord with the basic tendency 
in the development of the infinitesimal analysis which, retaining and even strength- 
ening its connections with geometry, mechanics and physics, during the 18 '~ 
century became a scientific discipline more and more self-contained in its principles. 
All the initial concepts of the calculus gradually lose their geometrical and mechan- 
ical shell, are formulated arithmetically or algebraically, and begin to be appre- 
hended as logically preceding similar concepts of other exact sciences. 

The process of making mathematical analysis into an autonomous scientific 
discipline, which in the 19 th century turned into a process of arithmetizing it, 
was protracted. At first it subdued mechanics, making it a part of mathematical 
analysis: indeed, for NEWTON a fluxion of a quantity was the velocity of its change; 
for LAGRANGE velocity was a derivative of the function which represented distance 
in terms of time. Moreover, in his Micanique analytique (in 1788) LAGRANGZ de- 
clared mechanics to be a part of mathematical analysis the exposition of which 
demanded neither figures nor geometrical or mechanical considerations in general. 
There was a similar trend concerning the relation of mathematical analysis to 
geometry, the methods of which ceased to be applied not only for defining, but 
even for illustrating basic concepts of the calculus. 

This is testified by even a most cursory comparison of L'HoSPITAL'S Analyse 
des infiniments petits, etc. (published in 1696) with EULER'S and LAG~NGE'S 
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courses, in which geometrical illustrations are not used at all. Of course, geometrical 
intuition did continue to play its constructive role; of course, there always were 
scholars who substantiated analytical "existence theorems" by referring to geo- 
metrical obviousness; and, of course, the educational value of geometrical and 
mechanical analogies came to be understood once again. 

The general tendency does not change, however, so that in due time (though 
only in the second half of the 19 th century) it became necessary to define analytically 
such geometrical notions as the area of a surface, the length of a curve, etc., which 
before that seemed to be intuitively obvious. 

Further essential development of the concept of function was effected by 
LEONHARD EULER, the pupil of JOH. BERNOULLI. In Chapter I of Volume I of his 
Introductio in analysin infinitorum, in 1748 (E.101) EULER subjected to more 
detailed study the concept of function as actually used in mathematical  analysis. 
He began by defining initial notions. According to EULER, a constant 'is a definite 
quantity always assuming one and the same value while a variable is introduced 
as the set (sometimes as one or another subset) of complex numbers. 

A variable quantity, wrote EULER ([391, p. 17), is an indeterminate, or 
universal, quantity, which comprises in itself absolutely all determinate values. 

(Quantitas variabilis est quantitas indeterminata seu universalis, quae 
omnes omnino valores determinatos in se complectitur.) 

Thus, he continues (p. 18), a variable quantity comprises in itself absolutely 
all numbers, both positive and negative, both integer and fractional, both rational 
and irrational and transcendent. Even zero and imaginary numbers are not 
excluded from the meaning of a variable quantity. 

(Quantitas ergo variabilis in se compIectitur omnes prorsus numeros, tam 
affirmativos quam negativos, tam integros quam fractos, tam rationales quam 
irrationales et transcendentes. Quin etiam cyphra et numeri imaginarii a significatu 
quantitatis varabilis non excluduntur.) 

In his definition of a function EULER once more followed his teacher, JOH. 
BERNOULLI, changing however the word "quant i ty"  into "analytic expression" 
(ibidem): 

A function of a variable quantity is an analytic expression composed in any 
way from this variable quantity and numbers or constant quantities. 

(Functio quantitatis variabilis est expressio analytica quomodocunque 
composita ex itla quantitate variabili et numeris seu quantitatibus constantibus.) 

I shall have to leave aside both EULER'S introduction of functions of a complex 
variable on a par with those of a real variable (a step of utmost  importance) and 
also some formal inconvenience occasioned by the fact that EULER did not con- 
sider constants to be functions in their own right. To me, it is important  that 
EULER was the first to at tempt to answer the question, what is the extent of the 
term analytic expression ? Or, which methods of its composition are actually 
meant?  14 

14 This problem had been encountered even in the 17 th century (see Footnote 11) when, in his 
own way, J.GREGORY attempted to solve it. 
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Enumerating operations by means of which analytical expressions are com- 
posed, EULER starts with algebraic operations (to which he refers also the solution 
of algebraic equations) and then names various transcendent ones, arriving in 
particular at exponential and logarithmic functions and at an infinite number of 
other functions furnished by the integral calculus, integration of differential 
equations included. 

Then, EULER singles out explicit and implicit functions, the latter being those 
originated by solution of equations, and formulates theorems on the existence 
of a function inverse to a given one and of a function represented parametrically 
(given y and x as functions of z, y is a function of x and, inversely, x is a function 
of y). Practically speaking ([-391, p. 25), because of the imperfection of algebra 
such functions are not always capable of being represented explicitly; 

meanwhile, nevertheless, this reciprocity of functions is understood as if all 
equations could be solved. 

(interim tamen nihilominus, quasi omnes aequationes resolvi possent, haec 
functionum reciprocatio perspieitur ).l 5 

I shall show in § 8 how EULER classifies these last methods of introducing 
functions under his first general definition of a function. For the time being, I 
remark that EULER'S classification of functions (described above, to be sure, not 
in every detail) was put to use in its entirety. 

8. Analytic Functions 

Obviously, it seemed impossible to enumerate various methods of expressing 
functions analytically so in Chapter 4 of his Introductio EULER reduces them all 
to a single one, declaring the universal and, simultaneously, the most convenient 
form of an analytic expression of a function to be an infinite power series of the type 

A + B z +  Cz 2 +Dz  3 + .... 

Being of course unable to prove that any function could be developed into such 
a series, he offered the challenge ([-39], p. 74): 

... should anyone doubt, [-his] doubt will be eliminated by the very development 
of one or another function. 

(si quis dubitet, hoc dubium per ipsam evolutionem cuiusque functionis 
tolletur ). 

However, added EULER, to render this explication broader, not only positive 
integral powers of z should be admitted, but any powers. Thus there will be no 
doubt that any function of z could be transmuted into an infinite expression of the 

type Az  ~ + B z '  + Cz ~ + Dz ~ +. . .  

the exponents ~, fl, y, ~ etc. denoting any numbers. 

i s Wha t  is here said about  algebraic equations holds, mutatis mutandis, also for any other equations. 
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( Q u o  autem haec explicatio latius pateat,  praeter  potestates  ipsius z ex-  

ponentes integros aff irmativos habentes admitti  debent  potestates quaecunque. 
Sic dubium erit nullum, quin omnis  funct io  ipsius z in huiusmodi express ionem 

infinitam transmutari  possit (see above) denotantibus exponent ibus  ~, fl, 7, 8, 
etc. numeros quoscunque.)  

Indeed, the overwhelming majority of functions used in mathematical 
analysis in EULER'S time were analytic (in our sense of the term) in the whole 
domain of their definition, except perhaps at isolated values of the argument and, 
in special cases, could have been developed in series of terms containing fractional 
or negative powers of the argument. 16 No wonder that power series and, to a lesser 
extent, infinite products and developments into sums of partial fractions or con- 
tinued fractions are used in Volume 1 of the Introduct io  as the main instrument for 
studying various classes of elementary functions. 

As noticed above, theorems on the existence of implicit or parametric functions 
from EULER'S viewpoint could have been considered within the limits of a general 
definition of a function. The point is that, according to EULER, an arbitrary alge- 
braic equation of any power is solvable in radicals. In a more general case, because 
each function, y, could be represented by some series of terms containing powers 
of the argument, z, this argument could be expressed in terms ofy by inverting the 
series; procedures of inverting series had been introduced by NEWTON. 

JOH. BERNOULLI and EULER'S definition of a function as being an analytic 
expression the most general form of which is a power series was accepted by many 
other mathematicians right up to LAGRANGE who, referring in his Th~orie des 
fonct ions  analyt iques (in 1797) to LEIBNIZ and BERNOULLI called a function any 
expression de ealcul Q 

In passing I shall notice that LAGRANGE, like EULER and other mathematicians 
of the 18 th century, considered it beyond doubt that any function of mathematical 
analysis could be represented by a series of terms proportional to real powers of 
the independent variable; moreover, LAGRANGE ([-40"], Pt. I, Chapter I) even 
attempted to prove that, generally, the powers occuring are positive integers, 
while fractional or negative powers could occur only in cases corresponding to 
isolated, special values of the argument. 

Thus, a function, defined in the beginning of Volume 1 of EULER'S Introduct io  
as any analytic expression, is later declared to be (in our terminology) a function 
analytic everywhere except, perhaps, at isolated special points in the vicinity of 
which it could be represented by a generalized power series (see also § 10). 

16 In essence, such an interpretation of analytic representability is similar to the conception held 
by J. GREGORY (see Footnote 11). 

17 As LAGRANGE says (140], p. 15): 
On appelle fonction d'une ou de plusieurs quantitis, route expression de calcul dans laqueUe ces 

quantitis entrent d'une rnaniire quelconque, m~lies ou non d'autres quamitis qu'on regarde comme 
ayam des valeurs donnles et invariables, tandis que Ies quantitis de la fonction peuvent recevoir toutes 
les valeurs possibles. Ainsi, dans les fonctions on ne considlre que les quantitis qu' on suppose variables, 
sans aucun ~gard aux constantes qui peuvent y Y~re m~lles. 
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9. Continuous and Discontinuous (mixed) Functions in Enler's Sense; 
the Controversy About the Vibrating String 

Actually studied in Volume 1 of the Introductio are only analytic functions. 
However, EtJLER knew that functions of a different kind also exist. This fact is 
noticed in the beginning of Volume 2 of the Introductio, which is devoted mainly 
to the theory of plane curves. Just as some curved line corresponds to any function 
of x, so also curved lines are represented by functions of x, says EULER, continuing 
([41], p. 11) thus: 

From such an idea about curved lines at once follows their division into 
continuous and discontinuous or mixed ones. 

( Ex hac linearum curvarum idea statim, sequitur earum divisio in continuas 
et discontinuas sen mixtas.) 

This terminology, which for EULER had a special sense, unusual to us, was used 
right up to the time when BOLZANO (in 1817) and CAUCr~¥ (in 1821) attached the 
now generally adopted meaning to the expressions continuous and discontinuous; 
sometimes it was used even later than that. 

In EULER'S sense continuity meant invariability, immutability of the l a w - o f  
the equation determining the function over all the domain of values of the inde- 
pendent variable, while discontinuity of a function meant a change of the analytical 
law, an existence of different laws on two or more intervals of this domain. Dis- 
continuous curves, explained EULER, are composed from continuous parts, being 
exactly for this reason called mixed or irregular (irregulares); also, he sometimes 
called such curves mechanical (mechanices). In geometry, according to Et:LER, 
mainly continuous (i.e. analytic) curves are studied. 

Discontinuous, or mixed functions and curves of Volume 2 of the lntroductio 
correspond to our piecewise analytic functions; thus their inclusion into mathe- 
matical analysis offered no essential extension of the concept of function? s 

i8 According to an opinion recently expressed by I. GRATTAN-GUINNESS ([42], pp. 6-7) EULER'S 
term continuous is synonymous with our "differentiable" while his " 'discontinuous" corresponds to 
our "continuous".  On the other hand, A. Sl~EXSER [42 a] had written, "By a continuous function EULER, 
like LEmNIZ before him, means a function specified by an analytic law, precisely as are those now called 
analytic functions. They have the property of being determined in their entire range by an arbitrarily 
small piece ..." TRUESDELL [42b, pp. XLI-XLIII] ,  accepting SPE1SER'S statement, contended that the 
context of partial differentia/1 equations, in which Euum introduced his discontinuous functions, made 
it plain that he regarded those functions as failing to be differentiable only at isolated points. He wrote, 
"EuLER'S physical universe ... is piecewise smooth, still indeed "cont inuous" though in lesser degree 
than the LEIBNITZIAN." Later [51, pp. 243, 247-248, 296-297, 419] TRUESDELL adduced evidence to 
show that in the context of the vibrating string EULER meant by "function" (not necessarily continuous 
in his sense) what we should now call a continuous function with piecewise continuous slope and 
curvature. However, see Footnote 22a for EULER'S use of functions discontinuous in the modem sense. 

Leaving aside the problem of EULER'S having identified analytical expressions with analytic 
functions (in essence an illegitimate thing to do), I remark that EULER'S functions, whether continuous 
or discontinuous (mixed) in any of his senses of those words, can have discontinuities in the modern 
s e n s e  at isolated points. 

In his late works EULER, as I shall show, took a broader point of view as regards discontinuous 
functions; see below. 
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However, not later than the very year in which the Introductio was published 
(we recall that the manuscript of this work was completed in 1744), EULER under- 
stood that the class of discontinuous functions (curves), far from being exhausted by 
mixed functions (curves), should be essentially extended. As noticed by A.I. 
MARKUSHEVICH ([43], pp. 108-109) EULER had seen the necessity for such an ex- 
tension even in 1744, during his work on the Methodus inveniendi lineas maximi 
minimive proprietates gaudentes (E.65) when he compared extremal curves- 
solutions of variational problems- with curves differing infinitely little from them 
in the vicinity of one, or of a few, isolated points. 

Nevertheless, the main impulse for further development of the concept of 
function came from EULER'S work on mathematical physics, beginning with the 
celebrated problem concerning infinitely small vibrations of a finite homogeneous 
string fixed at both ends 19. The first mathematical interpretation of this problem, 
speculations about which go back to GALILEO, w a s  offered by TAYLOR (in 1715), 
though the first decisive step toward the theory was made by D'ALEMBERT in a 
memoir communicated to the Acad. Roy. Sci. et Belles-Lettr. Berlin at the end of 
1746 and published in its Histoire in 1749 [-45]. 

D'ALEMBERT expressed the conditions of this problem by equations equivalent 
to a partial differential equation 

c32Y =a  2 c~2Y 
t?t 2 ~x 2 

(which appeared in an explicit form in EULER'S memoir E. 213, published in 1755) 
and proved that the general solution of the problem could be represented by a 
sum of two arbitrary functions 

y=~p(x + at) + ~9(x--at), 

which, because of the boundary conditions, reduces to 

y=~o(at + x ) - q ~ ( a t - x ) .  

In each particular case the functions appearing in the general solution are 
determined by the initial form of the string (and the initial velocities of its points). 
Of course, these initial conditions could be various, but D'ALEYmERT rigidly 
restricted the class of admitted initial forms of the string, holding that without 
such restrictions no solution of the problem by mathematical analysis would be 
possible. Among restrictions imposed by D'ALEMBERT particularly interesting is 
the assumption that the initial form of the string must be represented over all its 
extent by one and the same equation, i.e. that in EULER'S sense the string is con- 
tinuous. 

19 GRATTAN-GuINY~S' statement ([42], p. 6) to the effect that the distinction between continuous 
and discontinuous functions made by EULER in Vol. 2 of his Introduetio was occasioned by his study of 
the problem of the string is rather doubtful. So far as I know, the only correction to the manuscript 
of this volume, which already was in the hands of its Swiss publisher, M. BOUSOUET, and the edition of 
which was supervised by J. CASTILLON, was sent by EULER on December 15, 1744, through G.CRAMER 
([44], N °. 462-464). The printing of the Introductio, as evidenced by a letter of CRAMER to EULER dated 
August 13, 1746 ([44], N °. 467), had begun during the winter of 1746-1747, while on April 8, 1748, 
CASTILLON informed EUL~R (ibidem, N °. 369) that it had been completed. 
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EULER soon responded to D'ALEMBERT'S memoir, with which he had become 
acquainted soon after its communication, by presenting, on May 16, 1748, his 
own memoir, De vibratione chordarum exercitatio, E. 119, published in Nova 
Acta Eruditorum in 1749 (French version: Sur la vibration des cordes, E. 140, 
published in 1750 ([46], pp. 50-77) by the same Acad. Roy. Berlin). 

Highly valuing D'ALEMBERT'S method as a whole, EULER disagreed with him 
as to the nature of functions admitted in the initial conditions (and, consequently, 
in the solution of the problem). Guided by physical considerations and profound 
mathematical intuition, even in stating the problem he wrote ([46], p. 64): 

...la premikre vibration d~pend de notre bon pIaisir, puisqu'on peut, avant 
de 16cher Ia corde, lui donner une figure quelconque ; ce qui fait que le mouvement 
vibratoire de la m~me corde peut varier d l'infini, suivant qu'on donne d Ia corde 
telle ou telte figure au commencement du mouvemem. 

Repeating this assertion in the research itself, which in its first part rather 
resembles that of D'ALEMBERT, EULER (p. 72) considers a 

courbe anguiforme, soit r~gulidre, contenue dans une certaine ~quation, soit 
irr~gulidre ou m~canique, 

i.e. with no restrictions to be imposed on the form of the string. In one particular 
case he produces a solution corresponding to the continuous initial form represented 
by a trigonometric series 

nx  . 2nx  . 3nx 
y =c~ sin --~-- + fl sin - - - ~ +  ~ sin - - - ~ +  .-., (,) 

the string being fixed at the end points x = 0 and x = I. 
D'ALEMBERT did not agree with EULER. Thus began the long controversy 

about the nature of functions to be allowed in the initial conditions and in the 
integrals of partial differential equations, which continued to appear in an ever 
increasing number in the theory of elasticity, hydrodynamics, aerodynamics, and 
differential geometry. 

Soon the controversy gained a new dimension with the entry of a new partici- 
pant, D.BERNOULLI, whose contribution was published in 1755. Developing the 
principle of superposition of modes, introduced by him in his earlier studies, 
BERNOULLI maintained that both the arbitrary initial form of the string and its 
subsequent vibrations could be represented by an infinite series of terms including 
sines of multiple angles. According to BERNOULLI an appropriate choice of coeffi- 
cients makes such series (*) as general as power series; however, the method of 
calculating "FOURIER coefficients" remained unknown to him. 

EULER, who shortly before had offered, in one special case, a solution in the 
form of a series (.), excluded any possibility of representing in such a form arbitrary 
mixed functions or extensive classes of continuous functions, e.g., algebraic ones. 
(See his Remarques sur Ies m~moires precedents de M.Bernoulli (E. 213), published 
in 1755; Eclaircissements sur le mouvement des cordes vibrantes ( E. 317), published 
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in 1766; Sur le mouvement d'une corde qui au commencement n'a ~tk dbranl~e que 
dans une partie (E. 339), pub l i shed  in 1767 ([-46], pp.  237, 385, 430-431).) 20 

D'ALEMBERT rejected D. BERNOULLI'S so lu t ion  also. However  the con t roversy  
did  no t  end. I t  was taken  up by LAGRANGE (in 1759-1762), and,  somewha t  later,  
by o ther  p r o m i n e n t  ma thema t i c i ans  (MONGE, LAPLACE, ARBOGAST, FOURIER 
and others).  

This cdnt roversy ,  a mos t  deta i led  his tory  of which up to 1788 is presented  by  
C. TRUESDELL [51], was of  u tmos t  impor t ance  bo th  for the progress  of ma the ma t i c a l  
physics and for the me thodo log ica l  deve lopmen t  of  the founda t ions  of ma the ma t i c a l  
analysis.  F r o m  the poin t  of view of  my subject, it is essential  that ,  from the very 
beginning  of his s tudy of  the p rob l em of the string, EULER laid down the thesis 
that  in its so lu t ion  curves of  an a rb i t r a ry  form should  be admi t ted ,  i.e. curves w h i c h  
do no t  be long to the class of  mixed funct ions and,  general ly  (in EULER'S opinion) ,  
do not  comply  with any analyt ica l  law. 

In more  deta i l  EULER deve loped  his views on this subject  in his De usufunctionum 
discontinuarum in analysi (E. 322) forwarded  to the Petersburg  Academy  in the 
spr ing of 1763 and  publ i shed  in 1767 ([52], pp. 74-91). In this memoir ,  continuous 
funct ions are  defined, in te rms of geometr ica l  images,  by assuming  not  on ly  tha t  
the re la t ion  between coord ina tes  of  all poin ts  of  any such curve is de te rmined  by  
one and the same law or  equa t ion  but  also that  (pp. 75-76) 

all the parts o f  the [ con t inuous ]  curve are f i rmly  connected with each other 
in such a way as to make impossible any change in them without disturbing the 
connection o f  continuity. 

(omnes curvae partes ira vinculo arctissimo inter se cohaerent; ut nulIa in 
ilIis mutatio salvo continuitatis nexu locum invenire possit). 

EULER emphas izes  that  what  he means  is not  the connectedness ,  or  cont inui ty ,  
of the course,  or  run, of  the curve (continuitas tractu), but,  exclusively, the  single- 

20 EULER supposed that a function continuous on some interval is defined by one and only one 
expression over all this interval (as will be said below). Thus, according to EULER, an odd, periodic sum 
of a sine series could not represent either any algebraic function or, as a rule, transcendent functions. 
Later on, in his memoir Disquisitio ulterior super seriebus secundum multiplae cuisdam anguli progredi- 
entibus (E. 704), forwarded to the Petersburg Academy of sciences on (June 9) May 29, 1777, and 
published posthumously in 1798 ([47], pp. 333-355), EOLER deduced formulae for the "FouRIER 
coefficients" on the interval [0, 7r]. However, he took no further part in the controversy about re- 
presentability of functions by trigonometric series. 

Somewhat earlier (in 1772, see [481) D.BERNOOLLI, starting from other reasoning, developed the 
function 

7g X 

Y = T - T  (*) 

into a sine series, noticing correctly that the development holds in the interval (0,2 zr) and also describing 
quite strictly the behavior of the series both at the ends of, and beyond, this interval. He also considered 
a few more examples. 

It is remarkable that the same development of the functions (,) had been known to EULEa who, 
notwithstanding this contradiction of his own opinion, included it both in his letter to GOLDBACH 
dated July 4, 1744 (149], p. 195) and in his Instituriones calculi differentialis (E.212) published in 1755 
([50], pt. 2, § 92) without mentioning that the development holds for 0 <x <2~ only. This is not the 
only occasion on which EULER knew examples which did not comply with his conceptions but which 
he may have considered to be insignificant exceptions from the general rule. 
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ness of the corresponding analytical law. Thus, the two conjugate branches of a 
hyperbola constitute one continuous curve. This main property of continuous 
lines which, for EULER, directly followed from his conception of continuity, could 
be expressed otherwise: any small part of a continuous line (function) uniquely 
determines this line as a whole (see Footnote 18). 

Long ago I. Yu.TIMCHENCKO ([53], p. 482) noticed that 

to the extent that EULER identified analytical expressions with functions 
representable by TAYLOR series the property of "continuity" corresponds to 
the property of uniqueness of analytic functions in WEIERSTRASS' sense 21. 

As to discontinuous curves, EULER ([52], p. 76) defines them as 

all curves not determined by any definite equation, of the kind wont to be 
traced by a free stroke of the hand. 

(omnes enim lineae curvae per nullam certain aequationem determinatae, 
cuiusmodi libero manus tractu delineari solent). 

Again, this discontinuity does not apply to the course of the curve; discontinuous 
are also such lines as extend continuously (etiamsi continuo procedant) in the 
sense of connectedness. If we disregard the empirical fact that ideal geometrical 
figures cannot be traced, discontinuous functions thus correspond to our arbitrary 
piecewise continuous functions with piecewise continuous derivatives of both the 
first and the second order (cf [51], p. 247) 22. Without this last condition, implied 
by the geometrical description though not formulated explicitly, the discontinuity 
becomes absolutely arbitrary so that no part of a discontinuous curve need be 
continuous, i.e. analytically representable and thus, according to EULER, analytic. 

The breadth of EULER'S new conception is also confirmed by his mentioning, 
immediately after giving a description of the whole class of discontinuous, or 
mechanical, curves, that (ibidem) to this class 

should be attributed also lines usually called mixed (Atque huc etiam referri 
convenit lineas vulgo mixtas vocatas) 

as, e.g., the boundary of a polygon (an example repeatedly considered during the 
controversy about the string) etc. 

In the subsequent part of his memoir EULER studies the role of different kinds 
of functions in mathematics. In traditional branches of both mathematical analysis 
and higher geometry continuous functions are studied, the case being somewhat 
different in that newly discovered and as yet little developed field of integral 
calculus, the integration of equations containing differentials of functions of two 
or more variables. 

Just as arbitrary constant quantities appear in the integrals of ordinary differen- 
tial equations, so solutions of that essentially new kind of equations contain 

2z The uniqueness of the development  of a function (of a real variable) into a TAYLOR series under 
the assumpt ion that such a series does exist had been established by C. MACLAURI~ ([54], Vol. 2, 
pp. 610-611). 

22 In the problem of the string, also supposed is its continuity (connectedness) over all the interval 
of its vib/'ation. 
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discontinuous functions, absolutely indefinite and dependent upon our discretion 
(ab arbitrio nostro) ([52], p. 86). EULER supposed that exactly this circumstance 
constitutes the main feature (and main power) of integrating partial differential 
equations, which presents a most extensive sphere of further research. To partial 
differential equations EULER devoted somewhat later almost the whole of Volume 3 
of his lnstitutiones calculi integralis (E. 385), published in 1770, once again vigo- 
rously emphasizing the usefulness of discontinuous functions ([55], §§ 37 and 299). 

10. Euler's General Definition of a Function 

Since, according to EULER, discontinuous functions generally are not analytical- 
ly representable, the definition of a function given in Volume 1 of the Introductio 
and somewhat modified in its Volume 2 became too narrow. So as to formulate 
another definition comprising all known classes of relation EULER turned to a 
notion which was always present albeit not explicitly expressed in any method of 
introducing functions: the general notion of correspondence between pairs of 
elements, each belonging to its own set of values of variable quantities. This 
notion, unconnected with any definite analytical expression, had been used more 
than once in reasonings implicitly contained in Volume I of the Introductio, espe- 
cially in its Chapters 2 and 3, the first of which opens with following phrase ([391, 
p. 32): 

Functions are transmuted into other forms either by introducing another 
variable quantity instead of the initially used or [even] while retaining the same 
variable quantity. 

(Functiones in alias formas transmutantur vel loco quantitatis variabilis 
aliam introducendo vel eandem quantitatem variabilem retinendo ). 

Examples given in the same passage illustrate how one and the same variable 
quantity can be represented in various forms. Thus, a function of z, u = 2 -  3 z + z 2 
is the same as u = (1 - z ) ( 2 -  z), and v = a 4 -  4 a3z + 6 a 2 z z - 4  a z 3 + z* is transmuted 
into a more simple function of y, v = y4, by a substitution a - z  = y, while an irra- 
tional function of z, 

W = ~ ,  

becomes a rational function of y, 

after a substitution 

a 2 + yZ 
w = - -  

2y ' 

a z _yZ 

2y 

It is obvious that any such two (or more) analytical expressions possess a 
common property, viz they establish in different form the same correspondence 
between two sets of numerical values of the variable z and the corresponding 
function u or v or w. 
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Now this idea of relationship must needs be given in as universal and as 
abstract form as possible, and exactly this did EULER do when he formulated his 
new definition of a function in the preface to his Institutiones calculi differentialis 
(published in 1755) ([50], p. 4): 

l f  some quantities so depend on other quantities that if the latter are changed 
the former undergo change, then the former quantities are called functions of the 
latter. This denomination is of broadest nature and comprises every method by 
means of which one quantity could be determined by others. If, therefore, x 
denotes a variable quantity, then all quantities which depend upon x in any 
way or are determined by it are called functions of it. 

(Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam 
ipsae mutationes subeant, eae harum functiones appellari solent ; quae denomina- 
rio latissime pater atque omnes modos, quibus una quantitas per alias determinari 
potest, in se complectitur. Si igitur x denotet quantitatem variabilem, omnes 
quantitates, quae utcunque ab x pendent seu per earn determinantur, eius func- 
tiones vocantur.) 

However, in the book itself, devoted to the differential calculus, only analytic 
functions are considered, a circumstance which enabled EULF.R to manage without 
explicit use of the concept of the limit of a function (only once mentioned in the 
preface), basing himself on a peculiar "calculus of zeros" [56]. 

EULER'S concept of function exerted a great positive influence on the whole 
subsequent development of mathematics. First of all, of essential importance, was 
the isolation of the class of continuous functions, i.e. analytic functions represen- 
table by power series, and the discovery of the main properties peculiar to this 
class, of which up to now I have mentioned only uniqueness (characteristic, as was 
found out only in the 20 th century, of the even more general class of quasi-analytic 
functions). 

Besides this property, EULER (also to some extent, D'ALEMBERT) determined 
other essential properties of analytic functions. Thus, he showed (in 1755, published 
in 1778) that analytic functions map a sphere conformally on to a plane, preserving 
similarity of infinitely small figures; the expression itself (projectio conformis) is 
due to F.SCHUBERT, who used i t in 1789, after EULER'S death. EUL~ was the first 
to use complex quantities in calculations of definite integrals and, in connection 
with this, deduced (in 1777, published in 1797), using general analytical considera- 
tions, the so-called CAUCHY-RIEMANN equations, which o'ALENBERT had derived 
in 1752 in the course of his hydrodynamical researches. Thus the general theory of 
analytic functions of the 19 'h century, with its three directions developed by 
CAUCHY, RIEMANN, and WEIERSTRASS, was rooted in the works of EULER and 
D'ALEMBERT. 

Not less important for the subsequent development of mathematical analysis 
was the introduction of arbitrary discontinuous functions and the study of a number 
of problems concerning relations between intrinsic properties of one or another 
class of functions of a real variable and the nature of the mathematical apparatus 
used to represent those functions. 
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Notwi ths tanding  the prolonged and persistent opposi t ion of  D'ALEMBERT, 
who sometimes pointed out really weak or insufficiently founded details in 
EULER'S concept ion (special difficulties were connected with the problems of  
discontinuity, in our  sense of the word, of the slope and curvature of  the initial 
form of the string), this concept ion gradually became more  and more  widely 
disseminated. The first to come out in favor of  EULER was LAGRANGE (in 1759-1762) 
in his works on the propaga t ion  of sound and on vibrat ion of strings; though  he 
turned his coat  for some time to D'ALEMBERT'S side, he returned later on (in 1788) 
to his previous stand. 

With some reservations or  specifications EULER'S point  of view was supported 
later by many  other  mathematicians,  including G.MONGE, P.S.LAPLACE, M.J. 
CONDORCET and L. ARBOGAST. Even D'ALEMBERT, during his last years, changed 
his opinion and allowed in the solutions of partial differential equations of any 
order discontinuous functions the derivatives of  which up to the same order  
possess no saltus (Sur les fonc t ions  discontinues, 1780). Actually D'ALEMBERT 
used the concept  of left-derivative and right-derivative at a point  [57-1. 

It should be noticed in this connect ion that these discussions revealed the need 
for a more distinct separat ion of cont inuous  from discont inuous functions (in our  
sense), as was indeed effected by L. ARBOGAST in a work  [58] to which the Peters- 
burg Academy of Sciences in 1790 awarded the prize for its compet i t ion of  1787 
regarding the nature  of arbi t rary functions to be admit ted in solving partial diffe- 
rential equations.  

ARBOGAST thought  it possible ( though not  in the problem of the string, in 
which the cont inui ty  of the curve is condi t ioned by its very nature) to use not  only 
functions With discont inuous derivatives but also functions discont inuous at 
isolated points2Za; these he called ([58], p. 11)fonctions discontigfies 

parce que toutes leur parties ne t iennent pas, ou ne sont pas contigiies les 

unes aux  autres. 

However,  ARBO6AST offered no analytical definition of continuity (or dis- 
continuity). Mathemat ic ians  of the 18 'h century had not  felt need for such a defini- 
t ion;  if necessary, they described the main  property of  continuity verbally. 

Thus, for example, explaining methods  of approximate  calculation of  definite 
integrals in Volume 1 of his Inst i tut iones calculi integratis (E. 342), published in 
1768, EULER wrote  ([59], §§ 297 and 300) that the calculation of S X d x  would be 

22a AS this paper was going to press, C. TRUESDELL called to my attention EULER'S paper E 340, 
Eclaircissements plus ddtaillls sur la ginlration et la propagation du son, et sur la formation de l'~cho, 
Opera omnia, ser. III, Vol. 1, ed. E. BERNOULLI, R. BERNOULLI, F. RUDIO, A. SPEISER, 1926. In this paper, 
which was presented to the Berlin academy on 19 and 26 September 1765 and was published in 1767, 
EULER considers the wave equation in the context of aerial disturbances. There, in contrast with the 
problem of the vibrating string, the physical problem does not require solutions continuous in the 
modern sense. To study solutions of the functional equation EULER regards as equivalent to or perhaps 
a replacement for the partial differential equation, he introduces functions that have the value 0 at all 
points except one. He remarks that since these pulse functions form what is called now a (non-enumer- 
able) basis for the set of all functions, use of them as initial values for a wave function makes it possible 
to describe concisely and in geometric terms the entire theory of propagation and reflection of plane 
waves. It is interesting to note also that EULER effects these solutions by diagrams in which the pulse 
functions are represented. The matter is explained at length by TRUESDELL [42 b, pp. LXI-LXII]. 
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the more accurate the smaller are the assumed increments of the independent 
variable x provided the increments of the integrand X were also small, Also 
verbally EULER describes (§ 304) the behavior of a discontinuous function 

1 
X = in the vicinity of the point x = 1, noticing that any small increment in 

x gives rise to an extremely large change of the function X,  but he did not use the 
term continuity. 23 

Discontinuities in the derivatives of solutions of partial differential equations 
present great difficulties, to overcome which proved possible only at the much 
higher level of mathematical  analysis as reached in the second half of the 19 th 
century (cf, [51], pp. 286-297). In our time a further, extremely broad and most 
important  development of this problem grew from functional analysis. What  I 
mean here is the theory of generalized solutions of partial differential equations 
(in particular, of the wave equation) developed mainly at the hands of S. L. SOBOLEV 
(1936) and L. SCHWARTZ (1945). These generalized functions (SoBOLEV) or distri- 
butions (ScHwARTZ)are linear functionals which need not be differentiable in the 
usual sense but possess generalized derivatives. 

Just as the modern theory of summation of series showed the essential correct- 
ness of EULER'S views on the importance and use of divergent series, so also the 
theory of generalized functions illustrates strikingly EULER'S profound intuition 
and perspicacity as regards discontinuous functions. 

However, in neither case did the general state of mathematical  analysis in the 
18 'h century allow EULER either to establish his ideas accurately (from the point 
of view of subsequent generations) or to formulate exact definitions, or, also, to 
save him from errors, some of which were noticed even by his junior contempo- 
raries. 

11. Criticism of the Concept of "Mixed" Functions; 
Charles (1780) and Fourier (1807-1821) 

The first of EULER'S ideas to be criticized was his isolation of the class of 
mixed functions. Soon after his death it was shown that functions which were 
introduced by different analytic expressions in different regions of some finite (or, 
sometimes, infinite) interval could be represented also by one and the same 
equation. The first examples of such functions were offered by J.CHARLES in his 
Fragment sur les fonctions discontinues, 1780 [60]. 

Much later, a no lesser person than CAUCHY himself considered it worthwhile 
to devote a paper  expressly to this problem, the Mdmoire sur Iesfonctions continues 

23 It should be noticed that in the case under consideration EULER essentially interprets the de- 
finite integral as being the limit of the sum ~ X(Xk)AXk; he himself supposed ([59], § 302) that the 
integration could be carried out as accurately as needed, adding, however, that an absolute exactness 
is attainable only if all the A x k be infinitely small, i.e. equal to zero. 

Such a conception of a definite integral, originating with LEmNIZ and revitalized in a more precise 
formulation due to CAUCHY, differed from the basic definition adopted by EULER and his contempo- 
raries, according to which the integral was understood to be a function the differential of which is 
equal to Xdx, the definite integral being equal to the difference between the values of the primitive 
function (a terme due to LAGRANGE) at the upper and lower limits of integration. 
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[61] (published in 1844). His simplest example was a function 

= x ,  x=>0, 
y = 

- -X ,  x < O ,  

thus discontinuous but simultaneously representable by a single equation y = 1/7 z 
for every - o~ < x < + m and thus continuous. Thus the discrimination between 
mixed and continuous functions proved itself theoretically untenable. 

Much more important, though, was the criticism of this same notion of 
mixed functions within the framework of the theory of trigonometric series. As 
we have seen (see § 9) in two of his memoirs (E. 317 and 339) EULER flatly denied 
that it was possible to represent the initial figure of the string, as defined on two 
parts of a given finite interval by two different equations, by a series of terms 
containing sines of multiple arcs. 

In the beginning of the 19 th century, FOURIER refuted this assertion in his works 
on the theory of propagation of heat, which also gave rise to the general theory of 
trigonometric series. Even in 1805, in a fragment recently published by I. GRATTAN- 
GVINNESS ([-62], p. 183), FOURIER wrote: 

II rdsulte de rues recherches sur cet objet que les fonctions arbitraires m~me 
discontinues peuvent toujours &re reprisentdes par les ddveloppements en 
sinus ou cosinus d'arcs multiples, et que les intigrales [of the partial differential 
equations] qui contiennent ces d~veloppements sont pricisement aussi gOndrales 
que ceIles off entrent les fonctions arbitraires d'arcs multiples. Conclusion que 
le cdlObre Euler a toujours repoussde. 

FOURIER goes on to present a few examples illustrated by graphs. He developed 
his reasoning in more detail in his Thdorie de Ia propagation de la chaleur dans les 
solides, forwarded to the Institut de France on December 21, 1807, but published 
only recently, again by GRATTAN-GVINNESS (see [62]), and, afterwards, in his 
basic Th~orie anaIytique de la chaleur in 1822 [63]. 

Conclusions reached by FOURIER in 1807 startled mathematicians of older 
generations, and LAGRANGE, for one, distrusted them; on the other hand, after 
1822 they received an enthusiastic welcome from young mathematicians. 

Brought up in traditions of the 18 ~h century, FOURIER himself supposed that a 
trigonometric series may be, used so as to represent any mixed function and 
offered no statisfactory analysis of the problem of representing functions by such 
a series. However, once the problem had been stated, in the next few years it 
became the subject of special studies based on the new general conception of the 
calculus, the elements of which had been systematically developed by CAUCHY 
in his Cours d'analyse ... I re pattie: analyse algibrique, 1821 [64] and Risumi 
des lemons ... sur Ie calcul infinitdsimal, 1823 [65]. 

The coefficients of Fougme, series of any given function f (x)  being equal to 
integrals of the products f (x)  cos nx and f (x)  sin nx,  the class of such series was 
gradually broadened as more and more general definitions of the integral were 
formulated. Also, the concepts of convergence and of summation of series gradually 
acquired new content. 
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12. Digression: The Analytical Representation of Functions 

Here we shall not go into the details of numerous researches devoted to suffi- 
cient conditions for representing functions by FOURIER series. I shall mention only 
that from the conditions presented by P. LEJEUNE-DmICHLET in 1829-1837 [66] 
it followed that any bounded function if piecewise continuous and piecewise 
monotone over a given interval could be developed into a FOURIER series con- 
vergent to that function. This meant that an arbitrary curve traced over a given 
interval by a free stroke of the hand (i.e., any arbitrary discontinuous, in EULER'S 
sense, and bounded function) could be represented by a single analytical law, thus 
changing it into a continuous one. Of course, not every function continuous over a 
given interval is representable by its FOURIER series which, in this interval, may 
diverge at infinitely many points. 

Whether a given function be representable analytically or not depends on the 
methods of analytical expression admitted. In Volume 1 of his lntroductio EULER 
declared the most general form of analytical expression to be a power series 
generated by a denumerable number (a modern term) of additions and multi- 
plications of the variable x and a denumerable set of constants, an additional 
limiting process being allowed 2~. 

Later on EULEg definitely expressed his confidence in the fact that his dis- 
continuous functions are not, generally speaking, analytic, explaining in addition 
(e.g., in his Eclaircissements sur le rnouvement des cordes vibrantes, E. 317 ([-46], 
p. 385)) that 

on regarderoit fort real d propos Wutes les courbes comme renfermdes dans 
cette dquation parabolique 

y =  A + B x  + Cx2 + Dx3 +etc 

quoi qu' on puisse faire passer cette courbe par une infinitd de points donnds. 

And right he was: CAUCHY proved that even a function infinitely differentiable 
at a given point could still fail to be analytic at that point. His example, 

F (x )=  exp -~-~ , x ~ O  

[0 ,  x = 0  

published in 1823 in his R~sum~ des lemons ... sur le calcul infinitesimal [65], has 
become classical 25. Moreover, as was shown by A. PRINGSHEIM (in 1893) there are 
infinitely differentiable functions not analytic over any interval. 

If the fund of algebraic expressions be extended, the realm of analytically 
representable functions broadens most extraordinarily. Thus WEIERSTRASS 
showed that any function continuous over a closed interval could be represented 
in that interval by a sum of uniformly convergent series of integer polynomials 
(published 1885). Furthermore,  even discontinuous functions of a very complex 

24- As pointed out above (Footnote 11), such a construction recalls the idea of J.GREGORY. 
25 This function could be written down by a single analytical expression, viz, by a sum of every- 

where convergent series of exponential functions of special form. 
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nature, the classification of which was developed by R.BAIRE (in 1898-1899), 
can be represented by sums of convergent series and multiple series of polynomials. 
H.LEBESGUE called analytically representable any function that could be con- 
structed by a denumerable set of additions, multiplications and limiting processes, 
carried out according to a definite law regarding the independent variable and a 
denumerable set of constant quantities. 

BAIRE'S classification (as established in 1905 by LEBESGUE) embraces all 
such functions which are also measurable in E. BOREL'S sense. This law of construc- 
tion LEBESGUE named une expression analytique (cf. 1-10]). 

13. Euler's General Definition Recognized: Condorcet (1778), Lacroix (1797), 
Fourier (1821), Lobatchevsky (1834), Dirichlet (1837) 

Thus the division into continuous functions and discontinuous" functions 
(mixed ones included) failed to retain its place in mathematics26; on the other hand, 
the general definition of a function due to EULER (see § 10) gradually gained wider 
and wider recognition and use. It seems that the first to appraise correctly the 
importance of this new definition w a s  CONDORCET, who developed EULER'S 
conception in an unpublished Traitk du calcul integral, an unfinished manuscript 
of which, transmitted to the Paris Academy of sciences in 1778-1782, is preserved 
at the Library of the Institut de France, complete with proofsheets. 27 

As projected by its author this book should have had five parts, only two of 
which were actually written. The first of these parts, entitled De fonctions analyt- 
iques, opens with an explanation of what is understood to be an analytic function 
(see [67], p. 134): 

Je  suppose que j'aie un certain nombre de quantitds x, y, z . . . .  , F, et que pour 
chaque vateur d&ermin~e de x, y, z . . . .  etc., F air une ou pIusieurs valeurs d&er- 
min~es qui y rdpondent ; je  dis que F est une fonction de x, y, z . . . .  

Offering a few examples of explicit and implicit functions, introduced by means 
of equations, CONDORCET continues: 

Enfin, si je  sais que lorsque x, y, z seront dOterminOes, F l e  sera aussi, quand 
m6me je  ne conno[trois ni Ia maniOre d'exprimer F en x, y, z, ni Ia forme de 
l'dquation entre F et x, y, z ; j e  saurai que F est fonction de x, y, z. 

Finally, three kinds of functions are distinguished: 
(1) Functions the form of which is known (we should say, explicit functions); 
(2) Functions introduced by unsolved equations between F and x, y, z (implicit 

functions); and 
(3) Functions given only by certain conditions (e.g. by differential equations). 

26 I am leaving aside the function y = ( - 1 )  ~ considered in 1727-1728 in the correspondence of 
EULER with JoH.BERNOULLI ([44], No. 190-192) and, also, in Vol. 2 of EULER'S lntroductio ([41], § 517). 
This function, which is expressed by an equation and thus is in this sense continuous, assumes real 
values only for such values of x as are irreducible fractions with odd denominators.  In Vol. 2 of the 
lntroductio EULER showed that this function, which he called paradoxical, is represented, as we should 
say now, by two everywhere dense sets of isolated points belonging to the straight lines y = I  and y = - I. 

27 Not  to be confused with CONDORCET'S earlier book of the same title (Paris, 1765). 
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Some mechanical examples are given so as to illustrate the third kind, to which 
also are attributed 

des fonctions qui ne sont connues que parce qu'on salt en g~n~ral qu'une 
certaine quantitd sera ddtermin~e lorsque d'aurres quantit~s le seront. 

Again, examples of some physical phenomena the mathematical description 
of which is unknown are given. 

As is seen, CONDORCET was the first to use the term fonction anatytique for 
describing functions of arbitrary nature, the adjective analytique implying above 
all functions considered in mathematical analysis. Continuing his exposition, 
CONDORCET attempts to derive a TAYLOR series formally for an arbitrary function, 
almost in the way LAGRANGE had done, a little earlier, in his memoir, Sur une 
nouvelle espdce de calcul relatif  d la differentiation et & l'int~gration des quantit~s 
variables, published in 1774 ([68], pp. 441-476). It seems, however, that the term 
fonction anaIytique is due primarily to CONDORCET. 

Although CONDORCET'S unfinished Traitk never saw the light of day, its printed 
pages had been read by a number of mathematicians at Paris, as S.F. LACROIX 
indicated in the preface to his course of mathematical analysis in three volumes 
[69]. Moreover, in defining a function LACROIX followed EULER and CONDORCET. 
Noticing that at first a function of some quantity had been understood to be any 
of its powers (the same inaccuracy was commited by LAGRANGE in the beginning 
of his Thkorie des fonctions analytiques [40]) then, also, any other algebraic ex- 
pressions, LACROIX continues (p. 1): 

Enfin de nouveUes idkes, amen~es par le progrds de l'analyse, ont donn~ 
lieu d la d~finition suivante des fonctions. [The definition itself, emphasized by 
the author, follows immediately.] Toute quantit~ dont la valeur dkpend d'une 
ou de plusieurs autres quantitds, est dire fonction de ces dernikres, soit qu'on 
sache ou qu'on ignore par quelles opdrations il faut  passer pour remonter de 
celles-ci ~ Ia premikre. 

LACROIX'S Traitk, being widely known, contributed greatly to the dissemination 
of the new concept of function. It is true that in many other books and manuals 
of that time the old definition of a function as being an analytical expression was 
still used. As I have mentioned (see Footnote 17), this was the case with LAGRANGE'S 
Thdorie des fonctions analytiques, first published in 1797, the second, revised and 
suplSlemented edition of which appeared in 1813. Essentially the same interpreta- 
tion of the concept of function was implied also in CAUCHY'S Analyse alg~brique 
(in 1821) although in the definition itself the term analytical expression is not 
u s e d  2s. 

2s CAUCHY'S definition is ([64], Chap. I, § I): 
Lorsque des quantitds variables sont tellement li~es entre elles que, la valeur de l'une d'elles 

dtant donn~e, on puisse en conclure les valeurs de routes les autres, on confoit d'ordinaire ces diverses 
quantitds exprirndes au moyen de Fune d'entre eUes, qui prend alors le nora de variable inddpendente 
et les autres quantitds exprirn~es au moyen de la variable inddpendente sont ce qu'on appelle des 
fonctions de cette variable. 
Contrary to the opinion of M.KLINE ([70], p. 950) who holds that an analytical expression is not 

required by CAUCHY and to the opinion of F.A. MEDVEDEV ([71], p. 238), I suppose that CAUCHY 
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But then, rather soon, EULER'S general definition was accepted by three 
scholars of the highest calibre, in all three cases in connection with their researches 
on the theory of trigonometric series. First of all, one finds such a definition in 
FOURIER'S Th~orie analytique de la chaleur, published in 1821 ([63], p. 500): 

En g~n&al, la fonction f(x) reprOsente une suite de valeurs ou ordonnkes, 
dont chacune est arbirraire. 

Immediately FOURIER repeats himself, maintaining that he does not suppose 
these ordinates to be subject to a common law, they succeed each other in any 
manner whatever, and each ordinate could be considered as given individually. I 
shall touch upon the sense implied by FOURIER (and other mathematicians) in 
speaking about arbitrary nature of a functional dependence below. 

Following this laconic definition by FOURIER, whose work at once acquired 
wide fame, LOBATCHEVSKY and DIRICHLET published much more wordy definitions. 
In his article, 06 rlcqesaHxtrI wp~iroI-IOMerprIqecr~rrx CTpor~ ( O n  the disappearance 
[convergence] of trigonometric series), in 1834, LOBATCHEVS~Y wrote ([72], p. 43): 

General conception demands that a function of x be called a number which is 
given for each x and which changes gradually together with x. The value of the 
function could be given either by an analytical expression, or by a condition which 
offers a means for testing all numbers and selecting one of them; or, lastly, the 
dependence may exist but remain unknown. 

(OSmee nOHHTHe Tpe6yeT, qTO6BI ~yHHurIe~ OT X HaSBIBaTB qI~CYlO, HOTOpOe 
~aeTcJ:t ~JIH ~ a H ~ o r o  x H BMecTe C X HOCTeHeHHO H3MeH~eTCH. 3HaqeHi, ie ~yHH~HIJI 

MO~I~eT 6BITt, ~aHO I4JiII aHaJII4TH~Iec~I~IM BBIpa~eH~eM, ~ ycJIOBI//eM, ~oT0p0e  no-  

~&eT cpe~CTBO HCII]bITBIBaTB Bee qHcYla I4 BBI6HpaTB 0~HO H3 HI~X; ~IJ'lI~ HaI~oHe~ 3aB- 

I, ICI~IMOCTt~ MO;~I'~eT cyII~eCTBOBaTB ~I 0CTaBaTBCH HeI~ISBeCTtt0~.) 

Then, declaring that, though no contradictory examples were yet known, the 
alleged possibility of representing any function analytically is no more than an 
arbitrary assumption, LOBATCHEVSKY concludes (p. 44): 

It seems impossible to doubt either the truth that everything in the world 
could be expressed by numbers or the correctness [of the judgement] that any 
change and relation in it is represented by an analytic function. Meanwhile the 
broad view of the theory allows the existence of dependence only in the sense that 
numbers, in connection with one anotheL be regarded as though given together. 
For this reason Lagrange, in his CalcuI des fonctions, 29 with which he wished to 
replace the differential calculus, damaged the generality of the concept as much 
as he thought to gain in the strictness of judgement. 

actually thought  here only of analytically expressed functions. This is implied both by his formulation, 
in which he twice mentions that on confoit d'ordinaire that the functions are exprirn~es au rnoyen de la 
variable ind~pendante, and by his separation (following the definition) of explicit and implicit functions, 
the latter being characterized by the fact that the equations which they and the independent variable 
should satisfy are not  solved algebraically. 

29 In his Le¢ons sur le calcul desfonctions (1801, 2 "0 ed. 1806 [73]) LAGRANGE offered the same de- 
finition of a function as given by him earlier (in 1797) in his ThOorie des/bnctions analytiques (see 
Footnote  17). 
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(I'~a;~KeTCH HeJIB3H COMHeBaTBCH HH B I4CTHHe TOrO~ qTO Bee B MHpe MoH<eT ~BITB 

IIpe~CTaBJIeHO qHC~aM~I; HH B cnpase~JIHB0CrH TOr0, q r0  BcHEaH B HeM nepeMeHa 

H OTHOIIIeHHe B ~ p a m a e r c a  aHaJmTHqecHo~t 4pyH~He~. Mem~yTeM 0 6 I I I H p H ~  ssrJIH~ 

TeopHH 7~onycHaeT cyn~ecTBoBaHHe 3aBHCHMOCTH TOJIBHO B TOM CMBICJIe, qTO~/aI ~ac~a, 
O~HH C ~pyrHM~4 B CBHSH, HpHHHMaTB Half 6BI ~aHHBIMH BMeCTe. JIarpaHH~ B CBOeM 

BH'~HCneHHH ~yHR~Hi~ (Calcul desfonctions), EOTOpMMH xowea 3aMeHHT~ ~H¢¢epe- 
HnHam, HOe, CTOn~O me, cJxe~oBaTen~HO, noBpe~HJ~ o6mHpHOCTH HOHHTH~, CEOJII, EO 
~yMa~z B~rpaT~ B CTpOrOCTH CymT~eHHa.) 

The tendency to include in the concept of function also such hypothetical de- 
pendences as might turn out to be not analytically representable is thus expressed 
absolutely distinctly. But then, because LOBATCHEVSKY'S term gradually means 
continuously in CAUCHY'S sense, LOBATCHEVSKY'S definition taken literally 
somewhat unexpectedly concerns continuous functions only. 

The same is true concerning the definition that DmICRLET offered in 1837 in 
his memoir Uber die Darstellung ganz willkiMicher Funktionen durch Sinus- und 
Cosinusreihen, from which I shall now quote the whole relevant passage ([66], 
pp. 135-136): 

Man denke sich unter a und b zwei feste Werthe und unter x eine verSnderIiche 
GrSsse, welche nach und nach alle zwischen a und b liegenden Werthe annehmen 
soil. Entspricht nun jedem x ein einziges, endliches y, und zwar so, dass, wShrend 
x das Imervall yon a bis b stetig durchliiuft, y = f ( x )  sich ebenfalls allmShlich 
verSndert, so heisst ye ine  stetige oder continuirliche Function yon x fi~r dieses 
Intervall. Es ist dabei gar nicht nSthig, dass y in diesem ganzen Imervalle nach 
demselben Gesetze yon x abh~ngig sei, ja man braucht nicht einmal an eine durch 
mathematische Operationen ausdri~ckbare Abhiingigkeit zu denken. Geometrisch 
darstelh, d.h. x und y als Abszisse und Ordinate gedacht, erscheint eine stetige 
Function als eine zusammenhSngende Curve yon der jeder zwischen a und b 
enthaltenen Abszisse nur ein Punkt emspricht. Diese Definition schreibt den 
einzelnen Theilen der Curve kein gemeinsames Gesetz vor ; man kann sich dieselbe 
aus den verschiedenartigsten Theilen zusammengesetzt oder ganz gesetzlos 
gezeichnet denken. Es geht hieraus hervor, dass eine solche Function ffir ein 
Intervall als vollstSndig bestimmt nur dann anzusehen ist, wenn sie emweder fi~r 
den ganzen Umfang desselben graphisch gegeben ist, oder mathematischen, f f r  
die einzelnen Theile desselben gehenden Gesetzen unterworfen wird. So lange man 
iiber eine Function nut fiir einen Theil des Intervalls bestimmt hat, bleibt die 
Art ihrer Fortsetzung ]~r das i~brige Imervall ganz Willkiir i~berlassen. 

In essence the definitions of LOBATCHEVSKY and DIRICHLET are identical, 
the only difference being that DmlCHLET thought it necessary to add a geometrical 
explanation. Their positively general nature concerning continuous functions and 
the possibility of their being directly generalized so as to include discontinuous 
functions are absolutely evident. 

Since the authors considered discontinuous functions, their restricting their 
definitions to functions continuous in CAUCRY'S sense seems the more surprising: 
functions (or derivatives) with isolated points of discontinuity are explicitly in- 
cluded in the sufficient conditions for representing a function by FOURmR series 
as established by LOBATCHEVSKY and DIRICHLET themselves. And to DIRICHLET 
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we are also indebted for his celebrated example of a function discontinuous at 
each point of the interval 0 < x < 1 : 

01 for rational values of x, 
f (x)  = for irrational values of x. 

Why did both these scholars think it expedient to restrict their definitions with 
continuous functions? The most natural explanation of this circumstance has been 
offered by MEDVEDEV ([71] pp. 242-243): the class of functions just isolated, 
functions continuous in CAUCHY'S sense, immediately became extremely important, 
and it was precisely this class which it was necessary to free from the restriction 
of analytical representation the more so since even later some scholars, for example 
V. YA. BUNYAKOVSKY ([74], p. 246) and G.G. STOKES ([75], p. 240), identified 
continuity in the sense of CAUCHY with continuity in EULER'S sense. 

H. BURKHARDT noticed that only in 1841 did A. COURNOT formulate a definition 
of a function with the degree of generality that came to be commonly attributed 
to DIRICHLET and, later on, to both DIRICHLET and LOBATCHEVSKY 3°. The attri- 
bution to DmlCHLZr is due to HANKEL, whose work was published in 1870. 
COURNOT'S 7h6orie des fonctions, t. I (Paris, 1841) having proved unavailable, 
I shall quote his words as given by BURKHAgDT ([76], p. 968): 

Nous concevons qu'une grandeur peut d6pendre d'une autre, sans que cette 
d~pendance soit de nature d pouvoir &re exprim6e par une combinaison des 
signes de l'algObre. 

Somewhat further COURNOT (ibidem) suggested that it is possible to 

imaginer une thkorie qui aurait pour objet la discussion des propri&ks 
gknOrales des fonctions. 

14. Hankel on Functionality 

It is obvious that, as just mentioned, a concept of function of no lesser generality 
was really due both to LOBATCHEVSKY and to DmICHLET. However neither 
COURNOT'S book nor LOBATCHEVSKY'S article enjoyed in those times any wide 
popularity, as is evidenced by H. HANKEL'S Untersuchungen i~ber die unendlich oft 
oszillierenden und unstetigen Funktionen ([26], publ. 1870). Having presented a 
concise historical essay, HANKEL then offers introductory remarks on the concept 
of function, formulating the following definition ([26], p. 49): 

Eine Funktion heiJ3t y yon x, wenn jedem Werte der veri~nderlichen Gr6J3e x 
innerhalb eines gewissen Intervalles ein bestimmter Wert yon y entspricht; 
gIeichviel, ob y in dem ganzen Intervalle nach demselben Gesetze yon x abhfingt 
oder nicht; ob die Abh~ngigkeit durch mathematische Operationen ausgedri~ckt 
werden kann oder nicht. 

HANKEL goes on to add (ibidem) that he will call this definition by DmlCHLET'S 
name 

so In his commentaries on the work of LOBATCHEVSKY, G.L.LUNZ ([72], pp. 15-16) interpreted 
the quoted definition as relating to any function. According to LUNZ, the word gradually is used here 
by LOBATCHEVSKY on a par with consecutively rather than with continuously (in CAUCHY'S sense). 
As pointed out by MEDVEDEV (E71], pp. 235-236), this interpretation is rather doubtful. 
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weil sie [this definition] seinen Arbeiten fiber die Fourierschen Reihen, 
weIche die Unhaltbarheit jenes iilteren Begriffes zweifellos dargetan haben, 
zugrunde liegt. 

This old concept HANKEL also calls EULERSChe Auffassung (p. 48), recalling the 
continuous and discontinuous functions in the Introductio. 

Then, on p. 53, HANKEL qualifies his definition saying that the bestimmter Wert 
yon y does not include the case of infinite discontinuity and offers a new definition 
almost coinciding with part of the original preceding the semicolon. Exactly 
in this or in a similar form the general definition of a function was included in 
courses in mathematical analysis at the end of the 19 th century and in the 20 th. 

It should be noticed that HANKEL formulated his definition prudently: Not 
reproducing DIRmHLET'S definition, he restricted himself to remarking that his 
own definition actually is the cornerstone of DIRICHLET'S Arbeiten fiber die Fourier- 
schen Reihen. 

Having contributed so much to the study of discontinuous functions, HANKEL 
could hardly have failed to notice that the definition of DIRICHLET himself had to 
do with continuous functions, a circumstance pointed out only in our time, 
by A. CHURCH [77], A. OSTROWSKY [78], and other authors. 

15. The Historical Role of Enler's General Definition 

Thus, it seems that for HANKEL the main point was the spirit of DIRICHLET'S 
definition rather than its literal formulation. On the other hand, in contrasting 
DIRICHLET'S definition with die Eulersche Auffassung HANKEL was positively 
mistaken. 

As shown above (see § 10), EULER'S concept of function actually underwent 
essential evolution, and if one or another name is to be connected with the de- 
finition of a function in one-to-one correspondence, that name should be EULER'S; 
EULER it was whose concept, described in 1755, was developed by many scholars, 
LOBATCHEVSKY and DIRICHLET included. 

A special consideration of the arbitrary nature of functional relations and of 
their analytical representability is warranted. 

First, different notions about the degree of arbitrariness and about the kind 
of behavior of the functions used are characteristic of different times and different 
~enerations of mathematicians. Though EULER, LACROIX, o r  FOURIER never came 
across such functions as the discontinuous function due to DIRICHLET 31 mentioned 
above (see § 13), their concept of a function as being an arbitrary correspondence 
was for their time as general as was DIRICHLET'S concept for his time. And, for 
that matter, Dirichlet himself did not imagine such functions as came to be intro- 
duced in the times of G. CANTOR,  BAIRE, BOREL and LEBESGUE. 

Second, as has been said (see § 12), the problem of analytical representability 
of functions came out to be much more complex than had been supposed by 
mathematicians right up to the beginning of the 20 'h century. Circumvention of 
analytical representability was thought necessary during a long period beginning 

al In this connection it is nevertheless instructive to remember  EULER'S paradoxical function 
y = ( - 1) ~ (see Footnote  26). 
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with EULER and ending with DIRICHLET and COURNOT. But then, it was gradually 
found out that more and more extensive classes of functions, at first those com- 
plying with DIRICHLET'S conditions in the theory of FOURIER series, then continuous 
functions and even those of more general nature, are representable by means of 
one or another analytical method. 

U. DINI, in his Fondamenti per Ia teorica delle funzioni di variabiIi reali, published 
in 1878 (German edition, 1892), quite appropriately inquired ([79], p. 49) 

ob bei Aufrechterhahung der ganzen in der Definition enthaltenen Allge- 
meinheit es stets miSglich sein wird, in einem gewissen Intervall eine Funktion y 
yon x fiir alle Werte der Variabelen in diesem Intervall dutch eine oder mehrere, 
endliche oder unendliche Reihen yon Rechnungsoperationen, die man mit der 
Variabelen vornimmt, analytisch auszudri~cken oder nicht. 

Also, added DINI, the current level of mathematical knowledge being taken into 
account, a quite satisfactory answer to his question is just impossible. 

As noticed above (see § 12) LEBI2SGUE, in 1905, gave a positive answer to this 
question concerning all measurable functions, simultaneously offering an example 
of a function not representable analytically in his sense. 

I am compelled to leave aside the related problem of the legitimacy of BAmE'S 
and LEBESGUE'S constructions, later subjected to criticism from the point of view 
of "effectivism", "contructivism" and other directions of the foundations of 
mathematics. 

If rejection of analytical representability turns out to be in a sense illusory, of 
what importance then is EULER'S definition of 1755 ? Also, of what importance are 
all the definitions growing from it? The weak side of EULER'S definition did not 
escape the attention of HANKEL who, for one, regarded it as a reine Nominal- 
definition ([-26], p. 49), pointing out that functions defined so universally possess 
no common property whatsoever. 

The proper answer to the question just posed is given by the development itself 
of the theory of functions. As time went on, the class of functions considered, 
growing broader and broader, underwent essential changes. Analytical expressions 
composed by means of comparatively simple calculating operations having been 
almost the only subject of study during approximately two centuries, they never 
lost their importance. But then, with the course of time, it became necessary to 
study different classes of functions (continuous, differentiable, with finite variation, 
pointwise discontinuous, measurable, etc.) introduced by means of one or another 
basic property w, hich defines the whole structure of a given class independently 
of whether the functions of this class are analytically representable. As formulated 
by N.N.LuzIN in his book HHTerpaa ~i Tp~IrO~OMeTp~IqeCKHIt p ~  (Integral and 
trigonometric series) published in 1915 ([-80], p. 50), 

the main difference between methods of studying functions within the framework 
of mathematical analysis and [alternatively] theory of functions is that classical 
analysis deduces properties of any function starting from the properties of those 
analytical expressions and formulae by which this function is defined, while the 
theory of functions determines the properties of function starting from that 
property which a priori distinguishes the class of functions considered. 
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(OcHoBaaa pasha ~a B MeTo~e Hsy~eaHa /lbyHH rXX~t aHa:maoM ~ weopHe~t ~yrlr~ UHfl 
COCTOI, IT B TOM~ qT0 H;aaccH~ecH~ ana~s  HSB~TeHaeT CBOI~CTBa ~yH~I~HH H3 CB0J~CTB 

TeX aHa~II~THqecKHx BMpa~eHH~t H ~0pMy~I, r~0TOpBIMH 0Ha onpe~eJieHa, ToP~a Ral~ 

Teoprla ~yHHI~H~ ~e~CTBlITeJiBHOrO nepeMeHg0ro BBIBO~HT CBO~CTB& ~yHEIU~H ~IS 

T0r0 CB0~ICTBa, HoTopoe apriori xapaETepHsyeT paccraarpHBaeMM~l ~nacc ~yHEI~Hfi.) 

It is also important  to notice that, within the theory of functions, verbal de- 
scriptions of the behavior of functions over one or another set of values of the 
independent variable become generally used. 

As mentioned above, modem mathematical logic discovered essential diffi- 
culties inherent in the universal, hence nonalgorithmic definition of a function. 
Even in 1927, H. WEYL maintained, quite correctly, that ([81-1, p. 8) 

Niemand kann erklSren, was eine Funktion ist. Abet: "Eine Funktion f i s t  
gegeben, wenn auf irgendeine bestimmte gesetzm~ssige Weise jeder reelen 
Zahl a eine Zahl b zugeordnet ist ... Man sagt dann, b sei der Wert der Funktion f 
fiat den Argumentwert a". 

Thus, two differently defined functions are considered identical if, for all possible 
values of a, the corresponding values of b coincide. Opinions of mathematicians 
about the sense of the words auf irgendeine bestimmte gesetzmiissige Weise (empha- 
sized by me, not by WEYL) differ. However, EULER'S general (nominal) definition 
of a function, which became necessary as early as the middle of the 18 th century, 
has been successfully used - to borrow an expression uttered on another occas ion -  
as ein Medium freien Werdens-for more and more complex constructions in the 
theory of functions and, also, has opened up new horizons in the development 
of many branches of mathematical analysis and its applications. Even the diffi- 
culties inherent in this definition served a positive role in the statement and study 
of a number of problems in foundations of mathematics and mathematical logics. 

Addendum 

When this article was almost complete I received the Tagungsbericht, Problem- 
geschichte der Mathematik 22.9. bis 28.9.1974, Mathematisches Forschungs- 
institut Oberwolfach, BRD. 

From this source I learn that the central subject of the Conference was the 
development of the concept of function, to which almost half the reports were 
devoted. The first report  delivered by Dr. KagIN REICR was a summary of the 
original version of this article (see Acknowledgment): Bericht fiber einen Aufsatz 
yon A.P. Juschkewitsch zur Geschichte des Funktionsbegriffs. Other reports on the 
subject were those by C.J.SCRmA, E.M.BRUINS, C.O. SELENIUS, I.SCHNEIDF-g, 
O. VOLK, I. GRATTAN-GUINNESS and H. G~RICrd~. Participants in the concluding 
discussion were H. GERICKF_, G. HIRSCH, J.J.M. BOS and others. 

The summaries of the reports published in the Tagungsbericht are too concise 
to be taken into account here, and I may only hope that the reports themselves 
will be published. Also, I regret that one source, mentioned in the report of 
SCRIBA, viz, S. BOCHNER, The rise of functions (Rice Univ. Studies 56 (1970), No. 2, 
3-21 (1971)), remains unknown to me. 
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