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To see a world in a grain of sand, And a heaven in a wild flower, Hold 
infinity in the palm of your hand, And eternity in an hour.  

William Blake (1757–1827)  

 

WHAT IS A TIME SERIES?  
Time series is “simply a list of numbers assumed to measure some process 

sequentially in time” (Stergiou et al. 2004). Mathematicians have a more formal 
definition, that is, a set or a sequence of observations, with each one recorded at 
specific times, or at least sequentially (Brockwell and Davis 2002; Box et al. 2008). Time 
series are created from multiple sources for research purposes to understand various 
behaviors. For example, social scientists could collect graduation rates, physiologists 
record heart rates, economists study consumer spending, and climatologists examine 
weather patterns. Basically, any time observations are taken repeatedly over time, from 
any source or behavior, a time series is created. 



A basic assumption of most time series analysis is that all time series inherently 
possess dependence between adjacent observations. In fact, this dependence is of 
interest because it reveals information about the source producing the behavior. In this 
way, time series analysis is essential for understanding human movement variability, 
because time series analysis reveals how the system evolves over multiple movement 
repetitions. To generate a time series, repeated measurements of some property of the 
system are made as the system varies in time. This may imply that time series data are 
essentially a list of numbers, but any list of numbers cannot be considered a time series. 
This chapter details what constitutes time series data and describes important specific 
considerations that should be kept in mind when working with time series data. 
Consider the following two lists of numbers:  

List A: 1, 2, 3, 4, 5  

List B: 3, 1, 4, 2, 5  

The average value for list A is 3; the average value for list B is 3. The range for list A is 
4; the range for list B is 4. The standard deviation for list A is 1.58, and the standard 
deviation for list B is 1.58. Thus, the statistical descriptors of the two lists are the 
same—we cannot tell the difference between these two lists by these statistical 
measures. However, by examining the lists, it is easy to observe that they are not the 
same. The difference between the two lists is the order in which the numbers appear in 
the sequence, that is, to understand the difference between the two lists, we must 
examine these lists as ordered lists of numbers. To indicate an ordered list, we will use 
the notation [1, 2, 3, 4, 5] for list A, and [3, 1, 4, 2, 5] for list B. Further, to investigate the 
difference between these two lists, we would need an analysis technique that is 
sensitive to the order of the numbers in the list. In fact, the remaining chapters of this 
book discuss various methods of data analysis that quantify various aspects of the 
patterns formed by lists of numbers, based on the order in which the numbers appear in 
the sequence.  

Time series data are a specific example of an ordered list of numbers, where 
time is the parameter that gives order to the list. For example, say every year on your 
daughter’s birthday you measure her height, starting at age 5 until age 15. Her height in 
centimeters is [108, 115, 121, 128, 134, 140, 146, 152, 157, 161, 163]. Her age in years 
at each measurement is [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. You can line them up, and 
each number in the top list is recorded at the same time as the corresponding one in the 
other list.  

[108, 115, 121, 128, 134, 140, 146, 152, 157, 161, 163]  

[  5,     6,      7,    8,     9,    10,   11,   12,   13,   14,   15]  

If you want to make a plot of height versus age, you will plot the pairs of corresponding 
numbers, that is, plot (5, 108), then plot (6, 115), then plot (7, 121), etc., because you 



will want to plot the first value, then plot the second value, then plot the third value, etc. 
(Figure 2.1).  

Another way to record your daughter’s age is to write the age at which she is 
10  cm taller than the previous measurement. This ordered list would be age in years of 
[5.0, 6.5, 8, 9.5, 11.2, 13.1] and the corresponding height in cm is [108, 118, 128, 138, 
148, 158]. This is also a time series. However, these readings were not taken at even 
time intervals. They are still time series data because they are an ordered list that is 
ordered based on time. Note that some analysis techniques assume equal time 
intervals between data points (such as the spectral analysis technique to be discussed 
later), so be aware of which type of data you are analyzing. This is where the concepts 
of discrete versus continuous time series (discussed in Chapter 1) become important. 
Discrete time series are series in which observations are made in discrete sets, such as 
at specific, fixed time intervals (Brockwell and Davis 2002). The term “continuous data 
or continuous time series” is described in various ways depending on the source. 
According to Brockwell and Davis, continuous series are those in which observations 
are recorded continuously for a specific amount of time (Brockwell and Davis 2002). 
However, Warner describes continuous data as those with a true interval/ratio level of 
measurement, or data in which the difference between two values is meaningful 
(Warner 1998). Discrete time series is also described as a sampling of continuous time 
series at certain intervals (Box et  al. 2008). Most time series, which are analyzed using 
techniques described in this book, are discrete time series, with observations made at 
equal intervals (Warner 1998; Brockwell and Davis 2002; Box et al. 2008). As the 
examples that follow will illustrate, even time series that appear continuous, when 
examined closely, are composed of individual data points. 

 



Now that we have a definition of what a time series is, let us examine some 
human movement data, that is, a plot of the knee angle versus time during walking 
(Myers et al. 2013, 1692–1702; Figure 2.2). These data were collected by applying 
several reflective markers to different body segments on a subject’s body, making a 
video of the subject while walking, and then identifying where the markers were located 
in each frame of the video. Because the cameras had been calibrated to measure 
distance in three-dimensional space, the position of the markers could be used to 
calculate the position of the body segments in each frame, and knowing that, a knee 
angle could be calculated for each frame. 

 
The time series plotted in Figure 2.2 is the knee angle calculated from each 

frame in the video, with the time at which the frame was acquired plotted on the x axis. 
If you zoom in on just 1.5 s of the data (Figure 2.3), you can see that the data are not 
actually a continuous line, but rather it is composed of individual points. In other words, 
the time series is not continuous, but rather it is discrete. If you count the dots in the 1.5 
s of data, you will find that there are 90 points. This is because the camera acquiring the 
video was taking a picture about every 0.0167 s, or 60 frames/s (60 frames/s times 1.5 
s = 90 data points). The Hertz, or Hz for short, is a common unit of measure for how 
many data points are acquired every second. In this example, the data were collected at 
60 Hz.  

SOME EXAMPLES OF TIME SERIES DATA  



Time series analysis is useful in many different situations, whenever you are 
trying to describe the change of a system with time, that is, the dynamics of the system. 
For example, a psychologist had subjects fill out a survey once a day for 4 weeks, 
scoring the answers, and creating a time series that has 28 points (Fredrickson and 
Losada 2005). Astronomers have observed sunspot activity annually since 1700 by 
counting sunspots visible on the sun, creating a time series of length 314  (Figure 2.4; 
National Office of Oceanic and Atmospheric Administration 2013). Physiologists 
analyzed blood samples for luteinizing hormone every 10 min for 4 days, creating a time 
series 577 points long (Liu et al. 2007). Biomechanists interested in the gait function of 
patients with peripheral arterial disease analyzed the ankle flexion and extension angles 
captured by cameras taking 60 pictures/s for 45 s, resulting in a time series 2700 points 
long (Myers et al. 2009, 2011). Data from this experiment describe adjustments of the 
ankle with each step while walking on a treadmill. These adjustments are meaningful 
because they reflect the cooperative strategies of the locomotor system and are 
considered a marker of the system’s health (Figure 2.5). 

 



 

 



As you can see from this wide range of examples, there is no typical application 
of  time series analysis. Scientists, engineers, and clinicians from many different 
disciplines use time series analysis to provide an understanding the dynamics of 
whatever system they are studying. While all these different applications may seem 
entirely unrelated, the methodology of the analysis overlaps considerably.  

SEVERAL IMPORTANT ASPECTS OF TIME SERIES DATA ANALYSIS  
While there are many varied uses for the analysis of time series data, there are 

some general aspects that are important regardless of the application, and these 
considerations are discussed in the following sections. Perhaps the most important 
initial consideration is the goal of the analysis. A general goal of all time series analysis 
is to understand the patterns in the data. How that understanding is to be used will 
influence the type of analyses that will be performed. The goals of time series analysis 
include forecasting, determining a transfer function for predictive purposes, describing a 
phenomenon or relationships between related time series, studying the effect of 
interventions on the time series, developing control schemes, and others (Warner 1998; 
Brockwell and Davis 2002; Box et al. 2008). Each of these purposes can be applied in 
varying domains from predicting the stock market, understanding weather patterns, or 
describing movement problems that result from pathology. Linear time series analysis 
methods assume observations are independent of past history. However, sequential 
observations of human movement are rarely independent of each other. This book 
acknowledges this fact and approaches human movement from this exact perspective 
that seems mostly lost in the current literature. Therefore, important features discussed 
here are centered on nonlinear algorithmical techniques to investigate human 
movement. However, regardless of the investigative approach, it is always essential to 
consider several fundamental issues of time series analysis. These include length of the 
time series, noise, resolution, stationarity and inherent periodicity, sampling frequency, 
spectral analysis, and filtering and smoothing. Each algorithm presented in this book 
has unique requirements, and many of these issues will be revisited in upcoming 
chapters. In the following section, we discuss these considerations as applicable for all 
algorithms.  

Length of the Time Series  
The length of the time series is often seen as a major limitation for the utilization 

of a certain types of analyses for time series data. In particular, for nonlinear analysis, 
the individuals (usually mathematicians) who have derived the formulas suggest that a 
certain number of data points are critical for performing the analysis. It is not that the 
nonlinear calculation with fewer data points than what they suggest cannot be done, but 
the problem is whether the answer received from using a shorter time series is really an 
accurate characterization of the dynamics of the system.  

From a more intuitive perspective, you need a time series long enough to capture 
the essential dynamics of the system. As an example, consider the periodic behavior of 



the sunspot cycle. It takes over 10 years for the cycles to repeat. If you only record 
sunspot activity for 5 years, you would not be able to discover from your data that there 
is a 10-year cycle. If you collect 10 years, you will observe a complete cycle, but you 
would not know that the same pattern will be repeated. The more complete the cycles 
you have, the better your ability to characterize the dynamics, just as in estimating the 
population mean, the more samples you have from that population the better.  

So how long is long enough? This depends on which analytical technique you 
want to use—some require more data than others. One mathematical rule of thumb is 
that you want a time series that is at least 10D data points in length, where D is the 
dimensionality of the system. The dimensionality will be discussed later in the book, but 
for many systems of interest, it is probably at least three, and likely a bit higher, 
depending on the system that you are studying. So if the dimension of your system 
happens to be 6, you need 106 or 1,000,000 data points. However, whether or not it is 
practical to obtain such a time series is another important consideration. Let us say you 
are studying ecological time series data, such as the annual population of a certain 
species. You can only collect one data point per year, so a technique that requires 
1,000,000 data points is clearly out of the question. Less stringent guidelines suggest 
having at least 5 and if possible 10 repetitions of the cycle to be able to understand the 
underlying dynamics (Warner 1998).  

The problem with the discussion is that, while the inventor of certain technique 
can only guarantee the results if there are this large number of data points, the 
technique may be somewhat robust with respect to sample size and thus able to give 
reasonable results for a smaller number of data points. The big question, then, is how 
robust are the techniques for nonlinear analysis with respect to the length of the time 
series. This varies from one technique to the next, and even for a given technique, 
different algorithms can have different requirements. Also see the following discussion 
about sampling frequency as it relates to the length of the time series. 

Sampling Frequency and Spectral Analysis  
Sampling frequency is a critical consideration when dealing with time series data. 

It is a measure of how often you acquire a data sample, and thus, sampling frequency 
multiplied by the length of time that you sampled gives the number of data points in your 
time series. The sampling frequency needs to be high enough to capture the dynamics 
of the quickest changes in your system. For example, with the sunspot data (Figure 
2.4), there is a cycle about every 10.5 years. So if you only sampled every 20 years, 
you would miss it. Even if you sampled every 10 years, that would not be enough to 
catch the cycle. The minimum frequency at which you need to sample in order to have a 
chance of obtaining periodic dynamics is twice the frequency of the fastest dynamics. 
This principle is known as the Nyquist sample theory. But this gives you only two data 
points for every cycle, so going up to a sampling frequency of about five times the 
fastest frequency is a good rule of thumb for periodic data. In human locomotion, the 
highest frequencies that occur during walking are less than 12 Hz. Thus, a 24 Hz 



sampling rate should be satisfactory; however, in reality, biomechanists usually sample 
at 5–10 times the highest frequency in the signal. Remember, if data are undersampled, 
the entire signal is not captured. If data are oversampled, more measurement noise 
could be introduced.  

So how do you decipher what frequencies are in your data? One method is 
spectral analysis, which entails breaking down the biological signal into simple signals. 
The typical approach to analyzing data is to describe the data in terms of how they 
change over time, which is known as the time domain. An alternative approach arises in 
the form of data analysis in the frequency domain. This type of analysis presents data 
as a function of frequencies contained in the signal rather than a function of amplitudes 
over time. Frequency-domain analysis is used extensively to provide additional insights 
into healthy and pathological movement (Giakas et al. 1996; Giakas and Baltzopoulos 
1997; Stergiou et al. 2002; Giakas 2004; Wurdeman et  al. 2011; McGrath et  al. 2012). 
More specifically, spectral analysis is a numerical technique to write your data as the 
sum of multiple discrete sine and cosine functions of different frequencies. There are 
many different frequency transforms available, but the most commonly used transform 
is the Fourier transform. This transform uses sums of sine and cosine functions to 
represent the more complex functions, in our case, signals of human movement. The 
plot of the power at each frequency is referred to as the power spectral density plot or 
simply the power spectrum.  

Calculating the power spectrum is like shining light through a prism. Just as the 
prism shows the light has many component colors, the spectral analysis shows your 
data as many component wave functions. There are four characteristics of signals 
included in the sine and cosine waves that represent the signal. These are frequency, 
amplitude, vertical offset or shift off the baseline, and the phase angle, which indicates 
where the signal starts and shifts from right to left. Any signal, h(t) is made up of these 
four characteristics. Equation 2.1 incorporates each of these variables:  

h(t) = A0 + Asin(2πft + θ)         (2.1) 

but 2πf = ω, so another way to write Equation 2.1 is Equation 2.2:  

h(t) = A0 + Asin(ωt + θ)         (2.2)  

where  

A0 is the offset  

A is the amplitude  

f is the frequency  

θ is the phase shift  

ω is the angular velocity  

Thus, if you know these characteristics, then you can write the equation for the signal.  



To demonstrate how different frequencies contribute to a signal consider the 
following: a sine wave of 3 Hz, a cosine wave of 13 Hz, a sine wave of 30 Hz, and the 
sum of these three wave functions. The peak in the power spectrum corresponds to the 
frequency of the wave function in the time series (Figure 2.6a through c), and the time 
series that is a sum of three wave functions has three peaks, corresponding to the three 
frequencies which were added together (Figure 2.6d). The reason for wanting to divide 
your data into sine and cosine functions is because then you can see which frequencies 
are contributing the most to your data just by examining the peak positions. If the peak 
corresponding to 3 Hz is very high, then you likely have a 3 Hz component in your 
signal. If the 3 Hz component of your signal is the highest frequency that is significant, 
then you know you would need a sampling frequency of at least 6 Hz (2 × 3 Hz = 6 Hz) 
to be able to see it, but something more like 15 Hz (5 × 3 Hz = 15 Hz) would be best to 
define it better. For real data, determining the highest frequency can be a bit tricky, 
because often the signal approaches the baseline gradually without a clear cutoff point 
(Figure 2.7).  

To examine the sampling frequency issue from another perspective, let us 
examine sampling a known signal at various frequencies (Figure 2.8). Each frame on 
the left side of Figure 2.8 shows the signal we are trying to sample in a solid black line, 
and the data that we actually sample in black dots, with a line connecting the dots. Each 
frame on the right side is the power spectrum calculated from the data that we sampled 
(from the black dots). The signal that we are trying to sample is the sum of two wave 
functions, one at 2 Hz and one at 3 Hz; it is the same data as in Figure 2.6d. In Figure 
2.8a, the sampling frequency is 30 Hz—10 times the highest frequency in the signal we 
are trying to sample. The curve fits the data so well that the plot of the actual data can 
barely be seen. Moving down in Figure 2.8, the sampling frequency is reduced. At 6 Hz, 
the sampling rate is twice the highest frequency in the signal, and one can see from the 
power spectrum that the spectral analysis is just barely able to capture the highest 
frequency peak. However, examining the time series plot on the left, we see that the 
there are significant gaps where the sampled data do not match the signal of interest 
very well. The power spectrum contains all peaks that it should based on the original 
data. So, based on this spectral analysis, 6 Hz is the lowest sampling rate that is 
acceptable. At even lower sampling rates (Figure 2.8e), peaks show up in the power 
spectra that do not belong based on the known dynamics of the time series. This 
phenomenon is called aliasing and is the reason that you always need to have a 
sampling rate at least twice the highest frequency of interest in your time series. 



 
Spectral analysis is a very powerful tool for finding periodic components in your 

data, and thus, it is widely used. But you should bear in mind that it is a mathematical 
technique to write your time series data as a sum of sine and cosine functions. 
The interpretation of the periodicity in your data depends on your understanding of the 
underlying mechanism, and what periodicity or lack thereof means in terms of the 
system you are studying. There are a number of software programs that will allow you 
to calculate the power spectrum of your data, but there are many subtleties, not 
discussed here (such as windowing, detrending, and zero-padding (Percival and 
Walden 1993; Stoica and Moses 1997; Huang et al. 1998; Beard 2003; Prabhu 2013), 
that can help you do a better job with the analysis. See Percival and Walden (1993), or 
any good digital signal processing textbook for a more in-depth discussion of spectral 
analysis. Or, for a more lighthearted introduction, see “Who Is Fourier? A Mathematical 
Adventure” (Sakakibara 1995). 



 
Much of the discussion so far has focused on acquiring sufficient data—the 

algorithms require long time series, and higher sampling frequencies ensure that higher 
frequency components are captured in the data. However, there are reasons not to just 
sample at the highest frequency possible. One limitation may just be storage space. If 
you sample at 10,000 Hz instead of 100 Hz, you have 100 times as much data to store. 
With computer memory being cheaper and cheaper, this is not the problem once was. 
But do not be confused by the requirement of many of the nonlinear analysis algorithms 
for having a large number of data points, and think that you can crank up the sampling 
frequency to get the required number of data points. Remember that the reason you 
need all those data points is because you need to track the system over a long enough 
time that the dynamics of the system can be observed. For example, the sunspot data 
(Figure 2.6b) have a cycle of about 10.5 years. The data were acquired every year for 
over 307 years. One could gather data every day for 1 year and have an even longer 
time series (365 data points). But even though the time series is longer, it would not 
allow you to determine the 10.5-year cycle. This is because you need to let the system 
evolve for long enough time that the essential dynamics can be captured. Sampling 
every day does not tell you much about the 10.5-year cycle, because the system has 
not evolved significantly from one data sample to the next. In other words, the result you 
get today will be highly correlated with the result you get tomorrow. This concept will be 
elaborated further in the chapter that contains the discussion of the autocorrelation 
function (Chapter 8). 



 

Noise  
In any experimental measurement, there are always concerns about 

measurement error or contamination of what you are trying to measure with other 
information that you are not trying to measure. For example, let us assume that I am 
measuring the position of a simple pendulum as a function of time. The time series in 
Figure 2.9a represents the actual position of a pendulum bob. Random noise, 
representing measurement error, is plotted in Figure 2.9b. Noise is particularly important 
for the nonlinear analyses. Often the assumption is made that the noise is “random” 
meaning that there is no correlation between noise at one data point and the noise at 
another data point. You may recall from physics that white light contains all colors of 
visible light and that the prism separates the light into component colors. The spectral 



analysis described here plays on the analogy between separating light into component 
colors based on frequency and separating time series data into wave functions (sine 
and cosine functions) with different frequencies. When random noise is broken down 
into a sum of sine and cosine functions, it has all frequencies that the time series can 
have represented. Thus, it is called “white” noise to emphasize that it has all 
frequencies, just as white light has all colors in it. The power spectrum of white noise is 
flat, as can be seen by looking carefully at the baseline in Figure 2.9b and comparing it 
to the zero baseline in Figure 2.9a. When the signal is contaminated by white noise, this 
is also seen in the power spectrum (Figure 2.9c). 

 
However, there is no guarantee that the noise in an experiment will be white 

noise. For example, the AC power outlets into which data acquisition equipment is 
plugged are 60 Hz power in North America and many other parts of the world and 50 Hz 
in Europe. The equipment is designed to minimize the contamination of the output from 
this power line noise, but the result is not perfect, and so 60 Hz (or 50 Hz in Europe) is a 
common type of noise that can be seen in data acquired at 120 Hz (or 100 Hz in 
Europe) or higher sampling frequency (recall the requirement to sample at twice any 
given frequency to detect it). Thus, the problem with noise in nonlinear dynamics 
analysis is that you are trying to detect the dynamics of the system of interest, and the 
experimental data may be contaminated by a signal with unknown dynamics. As in any 
experiment, anything that can optimize the signaltonoise ratio is beneficial. Additionally, 



some of the algorithms to be discussed in other chapters may be more robust to 
experimental noise than others.  

Filtering and Smoothing  
Experimental noise is a problem in time series analysis. As highlighted in the 

previous section, interference from other biological signals, movement artifacts or high 
frequency noise in our acquisition system contaminate the dynamics of our signal of 
interest. One approach commonly used to deal with these issues in time series analysis 
is filtering the data. “Filtering” comes from the analogy to light, where a color filter allows 
only certain wavelengths of light to pass. For example, a red filter absorbs green light, 
and allows the red light to pass through, so when you look through the filter, everything 
appears as shades of red. One might call a red filter a “red pass” filter, since red light is 
allowed to pass through it. Any operation that changes the data by reducing or 
amplifying components in either the time or frequency domain should be considered 
filtering. Another common term for filtering is “smoothing,” which comes from the idea 
that data become smoother when fit to an equation such as polynomials or splines 
(more about this later) (Woltring 1985; Dohrmann et al. 1988; Vaughan et al. 1999; 
Giakas 2004). Whether the data should be filtered or not depends on the research 
question. When asking questions about movement variability, filtering and smoothing 
are avoided as much as possible. However, these operations are commonly performed 
in discrete point analyses, especially those that use differentiation with multiple 
calculation steps such as joint torque and power calculations. Differentiation in this case 
is the calculation of velocity and acceleration from displacement data. This process 
preferentially amplifies higher frequencies. Thus, every time you differentiate, the noise 
becomes larger relative to the signal, so the measurement noise must be filtered to 
maintain the biological phenomenon. Velocities are noisier than positions and 
accelerations are noisier than velocities. Position data must be smoothed before 
calculating velocities and accelerations. The first central difference method (of 
differentiation) is a type of smoothing: averaging. To check whether the proper 
smoothing was performed, the position, velocity, and acceleration should be graphed. 
The more filtering that is performed, or the more frequencies that are removed, the 
“smoother” the signal will be. However, this is exactly when you need to consider if you 
have missed any important true biological phenomena, especially high-frequency 
impact phenomena. This is notoriously the case with running related biomechanical 
data in the literature where kinematics are filtered with a cutoff below 6 Hz even though 
important high-frequency phenomena exist between 12 and 20 Hz (Giakas 2004). We 
believe that one of the reasons for the lack of a true understanding of the mechanisms 
behind running injuries is actually the massive contamination of the literature with 
inaccurate results which stifle scientific progress (Stergiou et al. 1999; Giakas  2004).  

A common type of smoothing is using polynomials. In this method, the data are 
forced to fit a certain mathematical model. This is a poor method because there is 
limited control over what data are included or excluded, so it is likely that true data will 
be removed. A better method that is an extension of the idea of using polynomials to 



smooth is the spline. A spline function consists of a number of low-order polynomials 
that are pieced together. Cubic, or third order, and quartic, or fourth order, splines are 
the most popular for biomechanics applications. Another type of smoothing is digital 
filtering. Again, the basic premise of filtering in time series analysis is based on the idea 
of breaking up the measured signal into its various frequency components using the 
spectral analysis techniques discussed earlier, and then removing frequencies that are 
not of interest. Filtering is performed by setting a key frequency known as the cutoff 
frequency. The cutoff informs the filter to keep or remove subsequent or remaining 
frequencies. Filters also differ based on the operation used to change the frequency 
components, which is called the transfer function. The type of transfer function 
determines which frequencies are kept and which are filtered. Three different bands can 
be used in a transfer function, including a pass, transition, and stop. A pass preserves 
the specified frequency components, a transition band progressively decreases the 
power of the frequency components covered, and the stop band removes all remaining 
frequencies.  

There are also different algorithms that can be implemented to correctly filter the 
data. Two of the most common implementations of this technique are the Butterworth 
filter, the critically damped filter, and the Jackson filter (Smith 2002). The algorithms will 
use the selected cutoff and contain different bands depending on what type of data are 
being smoothed. One can select whether to remove frequencies above a certain cutoff 
frequency, called a “low-pass” filter, because lower frequencies are allowed to pass 
through the filter. A “high-pass” filter would block low frequencies and allow high 
frequencies to pass through. A “band pass” or “notch pass” filter passes through 
frequencies in an intermediate range, while rejecting higher and lower frequencies. 
Because random noise is a high-frequency component of the measured signal, a low-
pass filter is used to remove it. The cutoff frequency must be carefully selected to 
remove noise without removing the signal of interest. Figure 2.10b shows that a cutoff 
frequency above the three features of interest leaves them intact, but if the cutoff 
frequency is too low (Figure 2.10c and d), the peaks of interest are removed. It is 
important to select a cutoff frequency that will preserve most of the data of interest. 
Typically, a cutoff frequency that maintains 99% of the data is chosen. The roll-off is the 
transition between areas to maintain or smooth. The slope of the cutoff is the roll-off and 
this changes with the order of the polynomial. As the order is increased, the sharpness 
of the slope is increased and vice versa. 



 
There are many decisions to be made when it comes to whether and how to filter 

data. Ultimately, the hypotheses and research questions should determine which filter 
should be implemented. One way to make sure that filtering is not altering the data in a 
way that changes the phenomenon is to filter interactively. This is important because a 
computer has no way to know when the filter being implemented is affecting the data. 
As the filter is being applied, the raw data should be graphed with the filtered data to 
make sure that phenomena are not being smoothed out of the data. A good starting 
point to know what not to filter is to think back to sampling theorem. Based on Nyquist 
sample theory, data under the Nyquist frequency should not be filtered. The discussion 
later regarding the potential biological importance of nonstationarity further emphasizes 
this point.  

Filtering data is a very common method of data manipulation for many types of 
linear analyses. The problem is that most of the filtering techniques are based on 
statistically preserving the linear features of the data. These methods, such as 
Butterworth filtering, were not designed to be used on data that will subsequently be 
analyzed using nonlinear techniques. Thus, there is no reason to believe that the 
nonlinear dynamics of the time series would still be intact after filtering, and in fact, one 



would expect that these methods would be counterproductive for nonlinear analysis 
(Rapp et al. 1993; Theiler and Eubank 1993). Some nonlinear filters have been 
developed, but again testing them on experimental data is problematic because the 
nature of the underlying attractor, if there is one, is unknown. Thus, it is likely the filter is 
distorting the underlying dynamics (Kantz and Schreiber 2003). Data previously 
described or seen as “noisy” have been shown in recent literature to have deterministic 
patterns and provide important information about the dynamics of the system. Filtering 
the time series can alter the embedding dimension needed to properly reconstruct the 
state space and can influence results of calculations of the time lag and others. In 
nearly all situations presented in this book, it is recommended that filtering be avoided 
(or at least be considered with extreme care) to capture the true dynamics of the 
system.  

Resolution  
The concept of significant figures is probably familiar from high school. If a 

person’s height is measured by comparing with the door frame, then the person might 
be measured to be about 72 in. (two significant figures). If a tape measure is used, the 
person’s height might be measured as 72.75 in. (four significant figures). The more 
significant figures used, the more precision the measurement has, and the greater the 
number of figures that need to be recorded in the lab notebook. A similar issue arises 
when using computers for data acquisition in that different measurement techniques 
have different levels of precision associated with them. For example, if one is using 
video cameras to record knee angles, the resolution of the camera will limit the 
precision with which the knee position can be measured. If the knee position stored in 
the computer is examined, then after seeing 13.67485362842 stored as knee position 
for a given frame, it might be concluded that there are 13 significant figures. The 
problem is that typically the computer can store more significant figures than your 
measurement technique can provide. If one divides one (one significant figure) by three 
(one significant figure), your calculator will show 0.333333333, with as many three’s as 
the screen will allow it to show. Doing division does not increase the number of 
significant figures in the result. Similarly, knee position of 13.67485362842 is limited by 
the pixel resolution of the camera, not by how many digits the computer can store. 
Some measurement techniques have better precision than others, so you need to be 
familiar with the limitations of the equipment being used. 

The algorithms that have been developed for performing nonlinear analysis are 
often generated and tested by people who are not working with experimental data, but 
rather work with computer-generated time series. Computer programs are written to 
produce a time series based on known equations, the Lorenz equations, for example. 
The time series created in this manner has no noise, and precision as high as the 
computer is capable of storing. Experimental data, on the other hand, will likely be 
contaminated with some measurement noise and will only be able to measure the 
parameter of interest to a limited degree of precision. Why is a little round-off error a 



problem? A chaotic-behaving system is sensitive to small perturbations, frequently 
discussed in terms of sensitivity to initial conditions. Some of the algorithms used to 
study such systems may give different results depending on the precision of the data 
used. In fact, Lorenz discovered this property of chaotic systems when he entered the 
result of a previous calculation by hand into his computer and rounded it off as he 
entered it, only to find that the rounded off number gave dramatically different results in 
the calculation than the higher precision number that was not entered by hand on 
another run (Kerry 2008). In general, the significant digits should be used, as 
determined by the equipment measuring the phenomenon. It is recommended that you 
test the effect of rounding the data on the outcome value of the particular algorithm 
used to see how rounding may change the results. A detailed guide for testing the 
limitations of any particular algorithm can be found at the end of the chapter, which will 
guide decisions on the number of digits to use for time series analysis.  

Stationarity  
The concept of stationarity is, in vague terms, the requirement that there is 

statistical similarity of successive parts of a time series. It indicates that the mean and 
the variance should not change as a function of time in the time series. In Figure 2.11a, 
there is a stationary white noise time series, in Figure 2.11b, the time series is not 
stationary because the mean is different in the first half compared to the second half, 
and in Figure 2.11c, the time series is not stationary because the variance is different in 
the first half compared to second half. The sound of a cymbal clashing, if hit only once, 
is not stationary because the acoustic power of the clash, and hence, its variance 
diminishes with time. 

 



The stationarity issue is perplexing because the exact nature of the stationarity 
required for nonlinear analysis is not clear. The stationarity requirement for the 
experimental data comes from an assumption commonly made by mathematicians in 
the derivation of the mathematical algorithms that are used for the nonlinear analysis. 
For example, Pincus assumes stationarity in the derivation of the algorithm for 
approximate entropy (Pincus 1991), and Wolf et al. assume stationarity in the derivation 
of the algorithm for maximum Lyapunov exponent (Wolf et al. 1985). There are 
nominally two types of stationarity for mathematicians, strong stationarity and weak 
stationarity. Strong stationarity requires all possible moments of ensembles (or shorter 
subsets) of time series data to be time invariant. In mathematics, a moment is, loosely 
speaking, a quantitative measure of the shape of a set of points. The first moment of the 
distribution of the random variable is the population mean. The second moment 
measures the width or distribution of a set of points in one dimension or in higher 
dimensions and can be represented as the shape of a cloud of points as it could be fit 
by an ellipsoid. Weak stationarity only makes this requirement for the mean and the 
autocorrelation function of time series data to be time invariant (Bendat and Piersol 
2000). However, even weak stationarity is a difficult requirement to meet in 
experimental time-series data. For example, a sine function is not a stationary signal, 
since the mean for data that are near the bottom of a trough is not the same as the 
mean for data points that are near the top of a crest. Thus, none of the time series 
presented in this chapter, except for Figures 2.9b and 2.11a (white noise), would meet 
the requirement of stationarity.  

Lack of stationarity or nonstationarity is often discussed as a limitation to other 
forms of nonlinear analysis. However, some authors have attempted to quantify 
nonstationarity of a time series as a useful measure in itself (Rieke et al. 2003; Cao 
et al. 2004; Chau et al. 2005; Makinen et al. 2005; Gourevitch and Eggermont 2007; 
Tong et al. 2007). For example, some of the debate about global climate change 
centers around the stationarity, or lack thereof, of climate-related variables (Karner 
2002; Gagan et al. 2004; Mailhot et al. 2007). More specifically, nonstationarity may be 
inherent to biological systems and should actually be embraced and studied and not be 
considered as a limitation. Further, multiple researchers suggested that 
nonstationarities in physiological data may be the result of fractal properties, which has 
led to investigations of studying these long-term fluctuations in the data (Stanley 1971; 
Goldberger and West 1987; Meesman et al. 1993; Peng et al. 1993; Turcott and Teich 
1993, 1996; Goldberger 1996; Viswanathan et al. 1997). Nonstationarity as a true 
physiological phenomenon can occur because such processes are more complex than 
the concept of homeostasis; instability or nonstationarity in the behavior demonstrate 
that the dynamics can occur over multiple timescales (Viswanathan et al. 1997; Pavlov 
et al. 2006). For example, in an electroencephalogram, the interspike intervals formed 
three distinct orbits during the hour before the occurrence of an epileptic seizure. In this 
case, nonstationarity in the data indicated the onset of a seizure (So et al. 1998). In the 
analysis of interbeat intervals of healthy individuals and individuals with congestive 
heart failure, the diseased population demonstrated greater inconsistency across 



multiple time scales. Even though the interbeat intervals of healthy individuals did 
change time scales, the behaviors displayed similar dynamics across those multiple 
scales, whereas individuals with congestive heart failure (CHF) were unable to regulate 
the interbeat intervals over particular time scales (Viswanathan et al. 1997). The 
concept of nonstationarity as a true biological phenomenon is supported by the fact that 
systems are under neurophysiological control and those control mechanisms, in the 
absence of disease, can regulate activity in many varying situations (i.e., time scales). 

A commonly used technique to remove nonstationarity of time series data is to 
difference the data (Chatfield 2003). Differencing is the process of subtracting values 
between two data points to create a new point in a “differenced” series. Thus, a new 
time series is created, where the value at each point is found by subtracting the data at 
that time point from the next data point, resulting in a time series shorter by one than in 
the original time series. This procedure may be repeated multiple times, as necessary, 
until the data appear to be stationary. For example, investigators in our laboratory 
applied this technique to time series data from infant sitting postural control, and the 
approximate entropy was calculated before and after differencing. The results showed 
no benefit to differencing the data, as the approximate entropy was better correlated 
with developmental variables if no differencing was done. Our conclusion was that 
approximate entropy is robust to the requirement of mathematical nonstationarity 
(Deffeyes et al. 2007).  

Another technique that can address the issue of nonstationarity is detrending. 
Briefly, detrending occurs before the application of a nonlinear algorithm, usually as a 
first step in the calculation process. A good example is detrended fluctuation analysis 
(DFA Chapter 7) that fits a power law to the series’ average fluctuations across different 
scales (Viswanathan et al. 1997). These scales come in the form of box sizes and the 
least square line is fitted to the data in each box. The original data are detrended by 
subtracting the least square line of each window, which makes the time series 
stationary. This technique is described in more detail in Chapter 7. A note of caution, 
detrending must only be done if you are certain that the trend is not part of the dynamics 
of the signal. This would occur in the case of errors in measurement due to calibration, 
or drift from the equipment signal (Kantz and Schreiber 2003).  

Some experimentalists have a more pragmatic concept of stationarity. The need 
for requiring a stationary time signal is that the underlying system dynamics must not 
change over the course of the data acquisition. If the system jumps from a chaotic 
behavior to a limit cycle behavior in the middle of the time series, clearly the system is 
nonstationary, and application of any of the nonlinear analysis algorithms discussed in 
this book would be problematic. However, the time series could potentially be divided 
into multiple stationary signals, evaluated, and compared. In this way, stationarity within 
signals is maintained and nonlinear algorithms can be implemented and used to 
describe differences between signals. There is also precedence for interpreting 



stationarity or lack thereof as a motor control technique to understand the dynamics of a 
system (Newell 1997; Stergiou et al. 2004). 

An interesting description of stationarity is also provided by Small (2005). Small 
notices that the definition of stationarity is not the same for all systems. For linear 
systems, there is stationarity if all its moments (statistical descriptors) remain the same 
over time. A nonstationary system is then one that has some type of temporal 
dependence that arises from an external source. Thus, if we extend the definition of the 
system to include all such external sources, then the system is stationary. This reminds 
us of dynamical systems theory in which a system cannot be considered without its 
constraints, namely morphological, environmental, and biomechanical constraints.  

Small (2005) also provides an interesting example to illustrate the earlier 
discussion, as he describes someone standing on the beach watching the ups and 
downs of the tide. This individual will describe this system as nonstationary. However, if 
the same individual considers the relative positions of the earth, the moon, and the sun, 
then he could determine that if all are studied together, he will have an approximately 
stationary system (Small 2005). 

A GENERAL NOTE ON EXPERIMENTAL LIMITATIONS OF TIME 
SERIES DATA  

One approach to understanding the effect of these limitations on your data as 
you are using any particular algorithm is to use computer-generated data from several 
systems with known dynamics, such as a sine function, the Lorenz equations, the 
Henon map, pseudorandom noise, and so forth, and manipulate them to have the same 
limitations (data length, resolution, etc.) as your experimental data. For example, you 
can round the data off to have a precision similar to the experimental data, add noise, 
and/or add a linear trend to increase nonstationarity, and then run the algorithm of 
interest on these different time series and observe if the result is consistent with 
expectations based on the system dynamics that generated the time series. One way to 
add noise is to use a pseudorandom number generator, such as the “randn” function in 
MATLAB®, to generate a random time series and then add that to clean computer-
generated time series from a system with known dynamics. One issue is that the 
dynamics of the noise that may be contaminating the experimental data are not known. 
It may not be random. It could be periodic, as in the case of contamination with 60 Hz 
(or 50 Hz in Europe), or it could be chaotic, generated by a process that appears to be 
random but actually has some structure to it. Dealing with experimental limitations of 
time series data is one of the greatest challenges to successful application of nonlinear 
analysis algorithms to systems with unknown dynamics (Rapp 1994). However, by 
exploring the effect of each limitation, the dynamics of the time series can be 
understood much better and the benefits could outweigh the time expense. In closing, 
remember the following considerations when conducting time series analysis:  



• Length: Make sure data are long enough to capture a minimum of 5–10 cycles 
of the phenomenon being studied; the more data present, the more likely the true 
dynamics have been captured in the signal. 

• Sampling frequency: Sample at the correct rate of frequency at least 2 times, 
but not more than 10 times the highest frequency. This will make sure the entire 
signal is captured without adding noise to the signal. The frequency in the data is 
determined with a spectral analysis.  

• Noise: Optimize the signal-to-noise ratio and be aware of how the nonlinear 
algorithm used is affected by noise.  

• Filtering and smoothing: Be very cautious in filtering data intended to use for 
nonlinear analysis. If filtering must be done, ensure the cutoff is above the 
Nyquist frequency and perform the filtering interactively.  

• Resolution: Determine how many significant digits to be used based on the 
precision of the equipment collecting the data. Test the effect of rounding the 
data on the outcome value of the nonlinear algorithm of choice.  

• Stationarity: Nonstationarity may be an important biological measure in itself. 
Various techniques can be used to remove nonstationarity; however, these 
techniques may impact the dynamics of the signal. Some algorithms are affected 
by stationarity less than others. 

EXERCISES  
1. Define a time series.  

2. What is a common unit of measure for how many data points are acquired every 
second?  

3. How long does your data have to be?  

4. Let {1, 5, 20, 2, 35} be the original time series. Create a differenced time series.  

5. Competitive cyclists pedal with a cadence of about 90 cycles/min. What is the 
minimum sampling frequency you would need to estimate the cadence from knee 
flexion time series data? What would be a preferred sampling rate?  

6. A physiologist measures the electrical signal from a research subject’s muscle as he 
flexes his elbow using electromyography (EMG). Spectral analysis shows frequencies 
lower and higher than the range of interest. What sort of filter might the physiologist 
want to apply to the data to remove the unwanted low and high frequencies? Another 
researcher only wants to remove the high frequencies. What sort of filter should the 
second researcher apply?  

7. For a period of 15 years an ornithologist measured the annual population of the 
white-faced scops owl living in a patch of forest, and found the following result: [11 13 



15 16 15 17 19 22 21 21 24 27 26 28 29]. Make a time series plot of the data. Does it 
appear to be stationary? Difference the data and make a plot of the differenced time 
series. Does the differenced time series appear more stationary than the original time 
series?  

8. If you have access to MATLAB, make a plot of a sine function from time 0 to 10 s. 
Sample at a frequency of 100 Hz, and make the sine function with a with a frequency of 
0.5 Hz and amplitude of 5. Restrict the axes to 3–4 s, and −10 to +10 in sine amplitude.  

9. Make a plot of a sine function from time 0 to 10 s, with a frequency of 0.5 Hz and add 
in Gaussian distributed random noise, with a mean of 0 and a standard deviation of 1.  

10. Calculate the power spectra of both of the plots you made in questions #4 and #5.  
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