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Progress is impossible without change, and those who cannot change 
their minds cannot change anything.  

George Bernard Shaw (1856–1950)  

 



INTRODUCTION  
One of the goals of time series analysis is to understand the underlying 

mechanisms that generate different dynamics for different time series. If a time series is 
not a product of random process, then we can assume that some kind of dynamics 
govern the time series. The question is what kinds of dynamics are controlling the time 
series. For nonlinear time series analysis, our focus is on nonlinear dynamics, and one 
of the goals is to characterize those dynamics by applying nonlinear tools. However, it is 
important to establish evidence of nonlinearity in a time series first in order to avoid 
obtaining possible spurious results by applying nonlinear tools to the system that does 
not contain nonlinearity. Second, nonlinearity is considered as one of the key features of 
time series that exhibit chaos, which has been shown to have a potential link with 
overall health of the biological system (Amato 1992; Buchman et al. 2001; Cavanaugh 
et al. 2010; Garfinkel et al. 1992; Goldstein et al. 1998; Orsucci 2006; Slutzky et al. 
2001; Toweill and Goldstein 1998; Wagner et al. 1996). Therefore, in terms of detecting 
chaos in a time series, identifying the presence of nonlinearity in the system is essential.  

NONLINEARITY  
Nonlinear analysis characterizes the nonlinear properties of time series data. For 

these analysis tools to provide meaningful results, they must be applied to time series 
that contain nonlinear structures. When nonlinear tools are used on data without 
nonlinear structures, false results are obtained due to practical limitations of nonlinear 
measures. Therefore, it is important to establish the evidence of nonlinearity in a time 
series prior to applying nonlinear tools.  

Before getting into a discussion of methods to identify possible nonlinearity in 
data, let us first define a nonlinear system. A nonlinear system is defined as a system 
that does not have a linear origin. This includes a system that may contain nonlinearity, 
but the underlying dynamics are linear. In this case, the presence of nonlinearity is 
caused by some measurement distortion, but it is originally generated by a linear 
stochastic process. We will look at such a case in detail later in this chapter. 
Furthermore, discussion in this chapter will be limited only to a stationary time series 
and will not include nonstationary stochastic processes. A time series is considered 
nonstationary if its distribution changes across time. In other words, the mean and 
variance of the time series change over different time intervals. Applying surrogate 
methods to nonstationary time series can lead to problems regarding the proper 
interpretation of results (Breakspear and Terry 2002; Palus 1996). For example, when 
the null hypothesis is rejected in a surrogate analysis, there is no way of knowing 
whether nonlinearity exists in the data or whether the data were generated by a 
nonstationary stochastic process. This problem was noted by Breakspear and Terry 
(2002) in their study of electroencephalographic (EEG) data (Breakspear and Terry 
2002). The problem of nonstationarity was also highlighted by Peng et al. (1995) in the 
analysis of heart rate variability. Specifically, nonstationarity makes it difficult to 
determine whether the structure of the time series is the result of the dynamics of the 



system or from changes in the external environment. Therefore, we will restrict our 
discussion to time series that are stationary.  

There are two major approaches to identify the evidence of nonlinearity in a time 
series in general. The first approach involves the direct application of nonlinear 
measures (Kaplan and Glass 1995; Mitra et al. 1997), while the second approach 
involves the application of surrogate methods (Breakspear and Terry 2002; Dingwell 
and Cusumano 2000; Palus 1996; Stergiou et  al. 2004). Methods commonly used for 
the first approach include the application of the correlation dimension or the largest 
Lyapunov exponent. The correlation dimension is a measure of self-similarity of a time 
series, while the largest Lyapunov exponent quantifies the exponential rate of 
divergence of nearby trajectories in the state space (see Chapters 3, 4, and 8). Both of 
these measures are applied to attractors reconstructed from an original time series in 
the state space. Attractors are often associated with nonlinearity and possibly chaotic 
dynamics. However, the use of these two popular nonlinear measures with experimental 
data can give spurious results. It has been reported that the correlation dimension of a 
time series with linear correlations can mimic low-dimensional behavior of the system by 
giving finite noninteger values (Osborne and Provencale 1989). Noise in a time series 
can cause the largest Lyapunov exponent to be positive, indicating the presence of 
chaos where there is none (Rapp et al. 1993). The use of other nonlinear measures 
besides correlation dimension and the largest Lyapunov exponent are also limited in 
terms of detecting nonlinearity in a time series since the probability distributions of those 
measures on time series with finite data length are unknown (Palus 1995; Pompe 1993; 
Prichard and Theiler 1995). Thus, applications of these nonlinear measures alone in 
detecting nonlinearity, possibly chaotic behavior in the system have been shown to be 
difficult (Miller et al. 2006; Schreiber and Schmitz 2000; Theiler and Rapp 1996). 
Moreover, applications of these nonlinear measures often involve subjective judgment 
of a researcher such as finding an appropriate scaling region or threshold value and 
lack in certainty. We particularly observe such procedures with methods like detrended 
fluctuation analyses and recurrence quantification analyses. To compensate for these 
weaknesses of the first approach of direct applications of nonlinear measures, the 
second approach of applying surrogate methods is often used. The second approach 
can be considered as an indirect approach in a sense that attempts to identify the 
evidence of nonlinearity by excluding that a time series has a linear origin through 
statistical hypothesis testing.  

GENERAL PRINCIPLES OF SURROGATION  

Surrogate methods were originally developed to prevent misdiagnoses of random 
stochastic processes from being characterized as chaotic dynamical processes or vice 
versa (Stergiou et al. 2004; Theiler et al. 1992; Theiler and Rapp 1996). They take a 
form of hypothesis testing to determine whether a given time series is consistent with a 
specific null hypothesis. The general procedure of a surrogate method is as follows 
(Figure 5.1). First, a null hypothesis is specified, and from the original time series an 



ensemble of surrogate time series is generated that are consistent with this null 
hypothesis. The null hypothesis is typically what researchers want to show that is not 
true. An example of null hypothesis would be that the time series was generated by a 
linear stochastic process. If the data are nonlinear, the test statistic results will be the 
difference between the original and surrogate time series and the null hypothesis will be 
proven false. If the results are the same, the null hypothesis fails to be proven false, and 
the original time series is a linear stochastic process. These surrogate time series must 
preserve some properties (mean, variance, and/or power spectra), which correspond to 
the underlying null hypothesis. Then, discriminating statistics such as the correlation 
dimension are computed for both the original and the ensemble of surrogate time 
series. The values of the discriminating statistics between the original time series and 
the distribution of values of discriminating statistics obtained from the surrogate time 
series are compared. If the value of the discriminating statistics from the original time 
series does not fall within the distribution of the discriminating statistics of the 
surrogates, the null hypothesis should be rejected. As it is stated differently, if the 
results between original and surrogate are different, the null is rejected, and if the 
discriminating statistic is the same between original and surrogate, the null is accepted. 
The following tools are examples of discriminating statistics that have been used before 
for this purpose: the correlation dimension (Diks 1996; Grassberger and Procaccia 
1983; Small 2005; Small and Judd 1998; Small and Tse 2002; Yu et al. 2000), the 
largest Lyapunov exponent (Kantz and Schreiber 1997; Wolf et al. 1985), approximate 
entropy (Miller et al. 2006; Pincus 1991), sample entropy (Lamoth et al. 2010, 2011; 
Rathleff et al. 2011), higher and cross moments (Keenan 1985; Tsay 1986), a simple 
skewed difference statistic (Theiler et al. 1992), Volterra polynomials (POL) (Barahona 
and Poon 1996; Kugiumtzis 1999), and the local average mapping (LAM) (Schreiber 
and Schmitz 1997). 

 



This approach to use surrogate methods for determining whether a given time 
series is consistent with a specific null hypothesis has been applied to identify the 
evidence of nonlinearity in many biological systems such as postural control, ECG, 
EEG, gait mechanics, and so forth (Acharya et al. 2005; Breakspear and Terry 2002; 
Buzzi et al. 2003; Chang et al. 1994; Cignetti et al. 2009; Collins and De Luca 1995; 
Costa et al. 2014; Ehlers et al. 1998; Govindan et al. 1998; Hausdorff et al. 1995; 
Ivanov et al. 1996; Janjarasjitt et al. 2008; Kugiumtzis 2001; Kunhimangalam et al. 
2008; Kurz et al. 2008; Ladislao and Fioretti 2007; Little et al. 2006; Martinerie et al. 
1998; Miller et al. 2006; Myers et al. 2013; Nurujjaman et al. 2009; Palus 1996; Porta 
et al. 2007; Preatoni et al. 2010; Rieke et al. 2003; Rombouts et al. 1995; Stam et al. 
1997; Stergiou et al. 2004; Zhang et al. 2007; Zhao et al. 2008; Wurdeman et al. 2014). 
Table 5.1 details the surrogate methodology and whether determinism was found in 
these studies. Throughout the various methods and biological time series utilized in 
these studies, a common theme was the presence of nonlinear patterns and 
consistence of rejecting the null hypothesis in biological time series. 

Since surrogate methods take the form of a null hypothesis testing, 
considerations must be given to the selection of discriminating statistics and 
discriminating criteria. Hypothetically, it should not matter which discriminating statistic 
is used. However, there are two different views on the selection of discriminating 
statistics. One view is that all nonlinear statistics should be able to detect the presence 
of nonlinearity by rejecting the null hypothesis at different significance levels. The 
alternative view is that the mismatch between a surrogate algorithm and discriminating 
statistics can lead to a spurious result. There are many different surrogate algorithms, 
which will determine which discriminating statistic is appropriate, based on the 
origination of the time series data. In general, a discriminating statistic must give 
consistent results for both surrogates and original time series if the null hypothesis is 
true. If the null hypothesis is not true, the discriminating statistic of the original time 
series should be different from the distribution of the discriminating statistics for its 
surrogates. The use of multiple discriminating statistics is encouraged in order to 
establish the evidence of nonlinearity in a time series since there may be cases where 
one discriminating statistic is not sufficient (Kugiumtzis 2001). For example, using 
parameters such as the largest Lyapunov exponent, correlation dimension, global false 
nearest neighbors, average mutual information and others on both simulated and actual 
EEG data, Kugiumtzis (2001) argued that different nonlinear methods characterize 
different aspects of data. However, if there is nonlinearity in the data, those different 
nonlinear methods should be able to detect the presence of nonlinearity by rejecting the 
null hypothesis at different significance levels respectively. On the other hand, it has 
been pointed out that the mismatch between surrogate algorithm and discriminating 
statistics can occur and can lead to a spurious result (Small et al. 2001, 188101). 
Therefore, considerations should be given to the right match between a specific 
surrogate algorithm and discriminating statistics (Zhang et al. 2007). We will show some 
examples of mismatch between a discriminating statistics and surrogate algorithm later 
in this chapter.  



 



 



 



 



HYPOTHESIS TESTING (DISCRIMINATING CRITERION)  
In this section, hypothesis testing will be discussed. The first question that needs 

to be answered after computing discriminating statistics for both original time series and 
its surrogates is what criteria should be used to determine whether the null hypothesis 
should be rejected or not. One way to conduct a hypothesis test is by using a 
parametric criterion. The mean (μH) and standard deviation (σH) of discriminating 
statistics for surrogate data are used to calculate the significance S with a unit of 
“sigma,” which in turn is used to construct a confidence level of inference (Theiler et al. 
1992):  

 
For example, the rejection of the null hypothesis at the 95% level of confidence is 
indicated by significance of about two “sigmas.” The assumption for this criterion is that 
the distribution of discriminating statistics is Gaussian. However, it has been shown that 
the distributions of many nonlinear measures do not follow a Gaussian distribution 
(Schreiber and Schmitz 2000; Theiler et al. 1992).  

Therefore, another criterion, the rank-order criterion is often used in the literature 
since it is more robust in terms of defining significance. This criterion namely examines 
the ranks of discriminating statistics of an original time series and surrogates. Suppose 
N surrogate time series were generated from the original time series and the 
discriminating statistics Q were computed for each surrogate time series and the 
original time series. Then, there are (N + 1) Q’s in total. Let QD be the discriminating 
statistics value for the original time series, and Q1, Q2,…, QN be the discriminating 
statistic’s values for the surrogates. Now, all these (N + 1) discriminating statistic’s 
values are ranked in an increasing order. If the original time series is generated by a 
process which is consistent with the null hypothesis, the probability of QD to be the 
smallest or the largest will be 1/(N + 1). According to the rank-order criterion, the null 
hypothesis is rejected when QD is the smallest or the largest values among (N + 1) Q’s. 
For a one-sided test, 1/(N + 1) is regarded as a false rejection rate while 2/(N + 1) for a 
two-sided test. Therefore, in order to conduct hypothesis testing at 95% significance 
level, 19 surrogates must be generated for a one-sided test and 39 surrogates for a two-
sided test.  

Let us look at an example of a surrogate test using sample entropy (SampEn), 
which is a measure of regularity as a discriminating statistics (Example Box 5.1). 
Nineteen surrogate time series were generated from an original time series. Twenty 
sample entropy (SampEn) values were computed for the original time series and the 
nineteen surrogates. After ranking those 20 SampEn values, we may reject the null 
hypothesis at 95% confidence level if the SampEn value of the original time series was 
the smallest value (Figure 5.2; Appendix 5.A). In this case, the probability of a false 
rejection is 5%.  



 

EXAMPLE BOX 5.1 EXAMPLE OF SURROGATE TESTING  

This example uses the data from Appendix 5.A to go through the steps of 
surrogate testing. For space purposes, only the original and one surrogate time 
series are included. For this example, sample entropy (SampEn) will be used as 
the discriminant, which is a measure of regularity. The data are a continuous 
knee flexion/extension time series from walking.  

1. Plot the data and identify the null hypothesis. It is important to plot the 
data to quickly inspect that the data are as expected (no missing points, 
proper length, etc.). Identifying the null hypothesis will determine which 
surrogate algorithm should be implemented. In our example, a knee 
flexion/extension time series is used that has inherent periodicity due to 
the repetition of gait cycles. The repeating cycles of the time series are 
evident in the graph in the following. Therefore, an appropriate null 
hypothesis would be that our time series is consistent with a periodic orbit 
perturbed by uncorrelated noise. To test this hypothesis, we will need to 
use the pseudoperiodic surrogate (PPS) method. 

 
2. Calculate and choose parameters for surrogate method. As mentioned 
earlier, the PPS algorithm is appropriate for this data. To implement the 
PPS algorithm, the state space must be reconstructed. Thus, the 
embedding dimension and the time lag from the original series must be 
calculated to generate the surrogate time series. Another parameter that 
must be determined is the noise radius, which defines the amount of noise 
in a surrogate. The proper ρ is selected to maximize the number of short 
segments that are the same for the original time series and the surrogate. 
For this particular time series, the embedding dimension is 6, time lag is 
10 and the noise radius is 0.5.  

3.  . Using the same parameters, a series of 19 surrogates should be 
calculated from the original time series. Each of these surrogates should 
be plotted to ensure that it was generated correctly. In the example, the 
dotted line is the original time series and the 19 surrogates are all plotted 



in black. The surrogates resemble the original time series, which is 
correct. Only 1.5 s of data is shown for clarity purposes. 

 
4. Calculate the discriminating statistic. SampEn, a measure of regularity 
is our chosen discriminating statistic. To calculate SampEn, some 
parameters need to be chosen first. Briefly, SampEn calculates the 
logarithmic probability that run patterns that are close (within tolerance r) 
for m observations remain close (with the same tolerance r) on the next 
incremental comparison. For this example, m = 2 and r = 0.2 will be used 
based on previous studies using entropy calculations on kinematic data 
(Georgoulis et al. 2006; Myers et al. 2012; Yentes et al. 2013). Next, all 
SampEn values from the original and surrogate should be plotted. In our 
example, the open circle is the original time series and the solid circles are 
the surrogates. It is clear in the graph that the original time series has the 
lowest entropy value and therefore is not within the distribution of the 
surrogates. The SampEn values for the original and surrogate time series 
from Appendix 5.A are 0.373 and 0.401, respectively. Keep in mind, 
however, that each time a surrogate series is generated, it adds dynamics 
noise. So, a surrogate you generate from the example data will not match 
the provided surrogate series. However, you can use the example 
surrogate series to test whether your SampEn calculations are correct 
using the same parameters used in this example. 

 



5. Test for significance between the discriminating statistic values of the 
original time series and the series of surrogates. There are multiple ways 
that determine whether the discriminating statistic values of the original 
time series are different from the surrogates. One of the most common 
ways as used in this example is a simple rank test. Based on the plot from 
step 4, it is clear that we can reject the null hypothesis at 95% confidence 
level because the SampEn value of the original time series is the smallest 
value. This means that the regularity of the original time series is 
significantly different than that of the surrogates. That would leave a 5% 
probability that our rejection of the null is false. Remember the null 
hypothesis was that our original knee joint flexion/extension time series is 
consistent with a periodic orbit perturbed by uncorrelated noise. Since we 
rejected the null hypothesis, we have concluded that our time series is not 
an orbit with noise, but contains identifiable dynamics. 

 

LINEAR SURROGATE METHODS  
As we have mentioned earlier in the chapter, there are many different surrogate 

algorithms. In this section, the most commonly applied surrogate algorithms, which are 
called linear surrogate methods, will be discussed. Linear surrogate methods were 
originally developed by Theiler and colleagues (Theiler et al. 1992; Theiler and Rapp 
1996), and later improvements were made by Schreiber et al. (Schreiber and Schmitz 
2000). These linear surrogate methods are applied to a stationary irregular time series 
without any long-term trend or periodicity. If trends, especially periodic trends, are 
present (i.e., gait kinematic data), other algorithms are more appropriate as we will see 
later in the chapter. They are known as Algorithm 0, Algorithm 1 or Fourier transform 
surrogate, and Algorithm 2 or amplitude adjusted Fourier transform (AAFT), and each 
algorithm deals with a different null hypothesis.  

Algorithm 0  
First, let us examine Algorithm 0, which is used to test whether there is any 

evidence that a time series has any dynamics at all. Therefore, surrogate time series 
generated by Algorithm 0 should be consistent with the null hypothesis of an 
independent and identically distributed (IID) noise with unknown (random) mean and 
variance. Such a surrogate time series is generated by randomly shuffling an original 
time series, destroying temporal correlations (Example Box 5.2). Since this method 
permutes temporal order of a time series without replacement, a surrogate time series 
preserves the same probability distribution as the original time series (Figure 5.3). 

 



 



 
 

EXAMPLE BOX 5.2 NUMERICAL EXAMPLE OF THEILER ET AL. 
ALGORITHM 0 SURROGATE METHOD  

This example uses the following 20 data points from 20 s of standing 
posture sampled at 1 Hz. {0.76, 0.64, 0.34, 0.60, 0.55, 0.27, 0.29, −0.39, 0.04, 
−0.19, −0.21, −0.51, −0.93, −0.48, 0.69, 1.63, 0.13, 1.5, 1.26, 1.5}.  

1. Plot the data and identify the null hypothesis. The null hypothesis for A0 
is that the data are consistent with independent and identically distributed 
noise with unknown mean and variance.  

 
2. Randomly shuffle the original time series. This can be done with the 
randn function in MATLAB®. After shuffling, our time series is as follows: 



 {0.60, 0.13, −0.19, −0.48, 1.5, −0.93, 0.76, 1.26, 1.63, 0.29, 0.04, 0.64, 
−0.21, 0.69, 1.5, 0.27, 0.34, −0.39, 0.55, −0.51}  

 
This step would be repeated so that a total of at least 19 surrogates are 
generated to be able to reject the null with 95% confidence that the 
original time series is not within the distribution of the surrogates.  

3. Calculate the discriminant statistic. For this example, the discriminant is 
not calculated because the 20 points data series would be too short to 
provide meaningful results, but this would be the next step.  

4. Test for significance between the discriminating statistics values of the 
original time series and the series of A0 surrogates. 

 

Suppose, surrogate time series are generated by Algorithm 0 and some 
discriminating statistic is applied, and the null hypothesis of the test is rejected. What 
does this indicate? The rejection of the null hypothesis of IID noise implies the evidence 
of some structure in a time series. If the null is accepted, it means that the original time 
series has no determinable dynamics, that is, there are no correlations among the data 
points of the time series. Thus, the next step is to test whether this structure has a linear 
origin or not by using Algorithm 1 or Algorithm 2.  

Algorithm 1 (Fourier Transform) 
 The null hypothesis in Algorithm 1 addresses that a time series is generated 

from a linear Gaussian stochastic process, which is equivalent to a linearly filtered 
noise. Algorithm 0 involves random shuffling of a time series. This process destroys 
both linear and nonlinear correlations among data points. In order to preserve linear 
correlations, shuffling must be done in the frequency domain. Therefore, the first step of 
generating surrogate time series by Algorithm 1 is to perform a Fourier transform, that 
is, taking data from the time domain to the frequency domain, where Fourier 
transformed data have corresponding amplitudes and phases. The next step is to 
shuffle the phases while preserving the amplitudes in the frequency domain. The final 
step is to take the inverse Fourier transform in order to transform back the data to the 



time domain from the frequency domain (Figure 5.4; Example Box 5.3). A surrogate 
time series generated by Algorithm 1 preserves the linear correlations, which are 
represented by the discrete Fourier power spectrum as the original time series while 
any additional structure should be destroyed. However, surrogate time series does not 
preserve the probability distribution of the original data, which can lead to a false 
rejection of the null hypothesis. There is an especially obvious discrepancy in the 
probability distribution between a coarsely grained time series and its surrogate 
generated by Algorithm 1. 

 
 

EXAMPLE BOX 5.3 NUMERICAL EXAMPLE OF THEILER ET AL. 
ALGORITHM 1 SURROGATE METHOD  

This example will use the same 20 data point time series as Example Box 5.2, 
but continue through the steps for the A1 algorithm.  

1. Plot the data and identify the null hypothesis. The appropriate null 
hypothesis for the A1 algorithm is that the time series is generated from a 
linear Gaussian stochastic process equivalent to a linearly filtered noise. 
The time series is: {0.76, 0.64, 0.34, 0.60, 0.55, 0.27, 0.29, −0.39, 0.04, 
−0.19, −0.21, −0.51, −0.93, −0.48, 0.69, 1.63, 0.13, 1.5, 1.26, 1.50}.  

 
2. Perform a Fourier transform. Since randomly shuffling the time series 
removes linear and nonlinear correlations among data points, shuffling 
must be done in the frequency domain. This can be done with the fft 



function in MATLAB®. After the transform, the series is “moved” from the 
time domain to the frequency domain. The result is a list of coefficients 
representing real and imaginary parts. The coefficients represent the 
amount that each frequency contributes to the overall signal. Plots of the 
real and imaginary parts of each Fourier coefficient are as follows:  

 
3. Shuffle the phases while preserving the amplitudes. The graphs in the 
following are the real and imaginary amplitudes of the Fourier coefficients 
after the phases have been shuffled. It is clear that the frequency 
contributions are different from the original.  

 



4. Take the inverse Fourier transform. This step takes the data back into 
the time domain. The surrogate time series is {1.00, 1.10, 1.09, 0.72, 0.65, 
0.64, −0.14, −0.42, −0.52, −0.63, −0.83, −0.16, 0.06, 0.44, 0.44, 1.11, 
1.05, 0.37, 0.57, 0.98}. The new time series is plotted:  

 
5. Calculate the discriminant statistic. For this example, we will not 
calculate the discriminant because the 20 data point time series would be 
too short to provide meaningful results, but this would be the next step.  

6. Test for significance between the discriminating statistics values of the 
original time series and the series of A1 surrogates. 

 

Let us look at an example. An autoregressive time series with length N = 2000 called 
AR is generated by the following Equation 5.2:  

 
where δ is an error term. 

AR is generated by the linear Gaussian stochastic process. Thus, the null 
hypothesis of Algorithm 1 should not be rejected. Another time series called AR2 is 
created by making AR coarse (removing the precisions). Even though little difference is 
visually observed between the plots of the two time series, the number of unique values 
each time series has is quite different (Figure 5.5a). The number of unique values of AR 
is the same as its data length (2000) while AR2 only has 71 unique values, even though 
it is still 2000 data points long. Nineteen surrogate time series are generated from AR 
and AR2, respectively, but again it is hard to differentiate between the surrogate time 
series of each time series by a visual inspection (Figure 5.5b). However, the results of 
the null hypothesis testing using the SampEn as discriminating statistics are different 
between AR and AR2 (Figure 5.5c). For AR, the SampEn value of the original time 
series falls within the distribution of the SampEn values of the surrogates, and this is 
what we have expected, that is, not rejecting the null hypothesis. However, the SampEn 
value of AR2 is the smallest SampEn values among the SampEn value of its surrogate 
time series. As a result, we may reject the null hypothesis at 95% confidence level. The 
discrepancy in the results between AR and AR2 hypothesis testing seems to be due to 



an increase in the number of values in surrogate time series generated from AR2. The 
SampEn value of AR2 is much lower than the SampEn value of AR since AR2 has 
fewer numbers of unique values than that of the AR2. However, the process of 
generating surrogate time series using the Fourier transform preserves the frequency 
distribution (Figure 5.6), but not the probability distribution (Figure 5.7). Thus, Algorithm 
1 increases the number of unique values in surrogate time series generated from AR2: 
they all have 2000 unique values. This jump in the increase in the number of values in 
the surrogate time series is reflected in the value of SampEn of surrogates generated 
from AR2. It created discrepancies in the SampEn values between AR2 and its 
surrogates, causing the false rejection of the null hypothesis. In order to avoid statistical 
bias, it is better that the probability distribution of an original time series and surrogate 
are the same. Therefore, for a coarsely grained time series, Algorithm 1 may not be an 
appropriate surrogate method to apply.  

Again, let us suppose surrogate time series are generated by Algorithm 1 and 
some discriminating statistics are applied, and the null hypothesis is rejected. What 
does the rejection of the null hypothesis of a linearly filtered noise imply? It may be 
indicating evidence of a more complex structure in a time series such as nonlinearity. 
However, even though a time series contains nonlinearity, it may be due to some 
distortion caused by a measurement procedure, and the origin of underlying dynamics 
may be linear stochastic. To test such a case, Algorithm 2 can be used. 

Algorithm 2  
Algorithm 2 deals with the null hypothesis of a static and monotonic nonlinear f-

ilter. Here, a measurement procedure is regarded as a nonlinear filter and enhances 
fluctuations in a system with linear dynamics as this linear stochastic system passes 
through the filter. Therefore, the time series contains nonlinearity, which enhances the 
system with linear dynamics as it goes through the filter, but this nonlinearity is not in 
the dynamics. This process is known as nonlinear distortion and is described by the 
following equation where h (·) is an invertible, static measurement function, {xn} is the 
underlying linear stochastic process, and {yn} is the observed data:  

 
A time series in test is assumed to have failed a test for originating from a Gaussian 
process by Algorithm 1 and therefore shown that it is not generated by a linear 
Gaussian stochastic process. However, if the invertible, static measurement function 
may be able to explain this deviation from the Gaussian distribution, then it may be 
shown that the underlying dynamics are a linear Gaussian stochastic process. Algorithm 
2 deals with such a scenario. Since the underlying dynamics are considered as a linear 
Gaussian stochastic process, part of the procedure to generate surrogate time series by 
Algorithm 2 also involves Algorithm 1. It is necessary to rescale the time series first so 
that the distribution will be Gaussian, and we can apply Algorithm 1. Example Box 5.4 



goes through the procedure of generating a surrogate time series by Algorithm 2 by 
using a simple 10 data point time series. 

 

 



 



 

 



 



EXAMPLE BOX 5.4 NUMERICAL EXAMPLE OF THEILER ET AL. 
ALGORITHM 2 OR THE AAFT SURROGATE METHOD  

This example will illustrate the process of generating a surrogate time series by 
Algorithm 2.  

1. Plot the data and identify the null hypothesis. The appropriate null 
hypothesis for the A2 algorithm is that the time series is generated from a 
static and monotonic nonlinear filter. The original time series for this 
example is: {xn} = {125.00, 67.37, 46.33, 49.64, 49.83, 172.36, 188.22, 
157.40, 138.77, 276.97}.  

 
2. Rank order {xn} and make a time series of rank. If we rank order the 
time series, it would be: {46.33, 49.64, 49.83, 67.37, 125.00, 138.77, 
157.40, 172.36, 188.22, 276.97}. So, the rank order time series would take 
the position of these numbers as 1–10, in the order of the original series. 
The time series of the ranks would be: Rank_original = {5, 4, 1, 2, 3, 8, 9, 
7, 6, 10}. 

 3. Generate a random time series which has the same length as {xn} and 
has a Gaussian distribution. We call this random time series {yn} ={1.50, 
−0.28, 0.50, 1.034, −1.51, −2.34, 0.26, −0.52, 0.23, 0.32}.  

4. Sort {yn} in an ascending order, which is called Sorted_{yn}. 
Sorted_{yn} = {−2.34, −1.50, −0.52, −0.28, 0.23, 0.26, 0.32, 0.50, 1.03, 
1.50}  

5. Reorder Sorted_{yn} according to Rank_original and let it be called 
Reordered_{yn}. Reordered_{yn} = {0.23, −0.28, –2.34, −1.51, −0.52, 
0.50, 1.03, 0.32, 0.26, 1.50}. Reordered_{yn} has the same time evolution 
as the {xn}, but the distribution is Gaussian.  

6. Apply Algorithm 1 on Reordered_{yn}. That is taking the Fourier 
transform and shuffling phases while keeping the amplitudes and then 
applying the inverse Fourier transform. This series is called 
Surrogate_{yn} = {1.07, 1.19, −0.55, −1.06, −1.48, −0.06, 0.17, −0.12, 
−0.28, 0.30}.  



7. Rank order Surrogate_{yn}. This results in Rank_Surrogate {yn} = {5, 4, 
3, 9, 8, 6, 7, 10, 1, 2}.  

8. Reorder Rank_Surrogate {yn}. This sequence is called Final_reorder = 
{9, 10, 3, 2, 1, 6, 7, 5, 4, 8}.  

9. Arrange {xn} according to the Final_reorder. Now, a surrogate has been 
generated as Surrogate = {188.22, 276.97, 49.83, 49.64, 46.33, 138.77, 
157.40, 125.00, 67.37, 172.36}. By plotting the series in the following, it is 
clear that the surrogate contains the same values as the original, but in a 
different order. 

 
The chart following further illustrates how the surrogate series has changed from 
the original series. Two highlighted values show 46.33 moving from position 3 in 
the original series to position 5 in the surrogate series and 188.22 moving from 
position 7 to position 1. 

 
A surrogate time series generated by Algorithm 2 preserves the amplitude 

distribution of the original time series and linear correlations among data points or 
power spectrum of the original time series. Algorithm 2 deals with more realistic 
situations than Algorithm 1. However, limitations with Algorithm 2 have also been 



reported (Kugiumtzis 2001; Schreiber and Schmitz 1997). When a time series is short 
and strongly correlated, rescaling of the inverse Fourier transformed data can change 
the linear correlations of the time series, causing a discrepancy between the power 
spectrum of the original time series and the surrogate time series (Figure 5.8). This 
discrepancy can lead to a false rejection of the null hypothesis, especially with a 
discriminating statistic which is sensitive to correlations among data points such as 
polynomial and local average fit, mutual information, and largest Lyapunov exponent 
(Kugiumtzis 2001). To deal with this problem, Schreiber et al. (1996) proposed an 
improved method known as the iterated amplitude-adjusted Fourier transform (IAAFT), 
and this has been widely used (Lehnertz et al. 2001; Poggi et al. 2004; Rieke et al. 
2003).  

Iterated Amplitude-Adjusted Fourier Transform  

The steps to generate surrogate time series by the iterated amplitude-adjusted 
Fourier transform (IAAFT) are as follows (Figure 5.9). Let {xn} be the original time series 
where n = 1, 2,…, N:  

1. Sort {xn} in an ascending order and store this sorted time series Sorted_{xn}. 
2. Take the Fourier transform of {xn} and store the squared, the amplitudes of 

the Fourier transform of {xn},  Xk2 = |Σxn𝑒𝑒2𝜋𝜋kn|N  |2 
3. Shuffle {xn} and take the Fourier transform and call it FTRandomized {xn}.  
4. To adjust the power spectrum, replace the squared amplitudes of 

FTRandomized {xn} by { Xk2}. The phases are kept unchanged. Then 
transform back by taking the inverse Fourier transform.  

5. The procedure at step 4 will change the amplitude distribution. Therefore, 
adjust the amplitudes by ranking the values of this time series and replacing 
them by the values of Sorted_{xn}.  

6. However, again the procedure at step 5 may alter the power spectrum, 
so step 4 and step 5 are repeated until some convergence is achieved. 

 

A surrogate time series generated by IAAFT preserves the power spectrum of an 
original time series much better than the other surrogate algorithms (Figure 5.10). For a 
numerical example, please see Example Box 5.5. This algorithm is trying to maintain 
the underlying linear correlations. However, there is no guarantee that iterations will 
eventually converge. Furthermore, there is also a concern that surrogate time series 
generated by IAAFT for a data with short length may not have 



 



 



 



A surrogate time series generated by IAAFT preserves the power spectrum of an 
original time series much better than the other surrogate algorithms (Figure 5.10). For a 
numerical example, please see Example Box 5.5. This algorithm is trying to maintain 
the underlying linear correlations. However, there is no guarantee that iterations will 
eventually converge. Furthermore, there is also a concern that surrogate time series 
generated by IAAFT for a data with short length may not have enough randomization, 
which makes hypothesis testing against a specific system rather than a general class of 
the system (Small and Judd 1998; Small and Tse 2002). Or, put another way, the 
surrogate time series may not be different enough from the original. 

 
EXAMPLE BOX 5.5 NUMERICAL EXAMPLE OF THE IAAFT  

This example will use the same 10 data point time series as Example Box 5.4, 
which is: {xn} = {125.00, 67.37, 46.33, 49.64, 49.83, 172.36, 188.22, 157.40, 
138.77, 276.97}.  

1. Plot the data, identify the null hypothesis, and Sort {xn} in an ascending 
order. The appropriate null hypothesis for this algorithm is that the time 
series is generated from a linear Gaussian stochastic process. 



 
The new time series is Sorted_{xn} = {46.33, 49.64, 49.83, 67.37, 120.00, 138.77, 
157.40, 172.36, 188.22, 276.97}.  

2. Take the Fourier transform of {xn} and store the squared amplitudes of 
the Fourier transform of {xn},  Xk2 = |Σxn𝑒𝑒2𝜋𝜋kn|N  |2. 

 
The transform moves the series from the time domain to the frequency domain. 
The power spectrum of {xn} is shown. The Fourier transform results in a list of 
real and imaginary coefficients in the different frequencies. The plots of the 
frequency components from the Fourier transform are shown in the following. 
The stored squared amplitudes of the Fourier transform of {xn} that are stored as 
follows: {Xk2 } = {1271.89, 396.23, 170.51, 222.24, 77.16, 175.59, 77.16, 222.24, 
170.51, 396.23}. The amplitude distribution of {xn} is shown on the next page. 



 
3. Shuffle {xn} and take the Fourier transform of the shuffled series. This 
series is called FTRandomized {xn}. Shuffled {xn} = {49.64, 276.97, 
172.36, 188.22, 120.00, 46.33, 49.83, 157.40, 138.77, 67.37}. The 
FTRandomized {xn} results in the following real and imaginary coefficients: 

 



 
The power spectrum of Shuffled { xn } is different from the spectrum of { xn }, so 
needs to be adjusted. However, the amplitude distribution Shuffled { xn } is similar 
with that of the {xn }. 

 
4. The power spectrum is adjusted by replacing the squared amplitudes of 
FTRandomized {xn} with {𝑋𝑋𝑘𝑘2 }. This randomizes the series without 
changing the phases. Then, the series is transformed back by using the 
inverse Fourier transform. That results in a surrogate {102.19, 281.05, 



185.90, 187.87, 139.30, 65.28, 13.55, 111.26, 107.20, 78.28}. This time 
series now looks like: 

 
Now, the power spectrum of the adjusted surrogate series is similar with the 
power spectrum as {xn}. However, the amplitude distribution of the surrogate is 
different from that of {xn}. Keep in mind that although the differences are small, 
our example time series is only 10 data points. Thus, these differences would be 
magnified for longer series. 

 



5. Adjust the amplitude distribution. The procedure from Step 4 will 
change the amplitude distribution. The amplitudes are adjusted by ranking 
the values of the surrogate time series and replacing them by the values 
of Sorted_{xn}. Rank order of the surrogate is {13.55, 65.28, 78.28, 
102.19, 107.20, 111.26, 139.30, 185.90, 187.87, 281.05} which results in 
the Rank_surrogate = {7, 6, 10, 1, 9, 8, 5, 3, 4, 2}. Now, the rank is sorted 
and ranked according to its position. For example, you can see that rank 
number 1 of Rank_surrogate was in the 4th position, rank number 2 in the 
10th position, etc., which results in Sorted_ rank_surrogate = {4, 10, 8, 9, 
7, 2, 1, 6, 5, 3}. The final part of this step is to replace them with the 
values of Sorted_{xn}. From step 1, Sorted_{xn} = {46.33, 49.64, 49.83, 
67.37, 120.00, 138.77, 157.40, 172.36, 188.22, 276.97}. When the 
Sorted_rank_surrogate is replaced with the values from Sorted_{xn}, the 
4th number from Sorted_{xn}is placed 1st in our new series, the 10th 
number from Sorted_{xn} 2nd, and so on, resulting in the 
Amplitude_adjusted_surrogate = {67.37, 276.97, 172.36, 188.22, 157.40, 
49.64, 46.33, 138.77, 120.00, 49.83}. 

 
6. The procedure in step 5 may again alter the power spectrum. Thus, 
step 4 and step 5 are repeated until some convergence is achieved and 
both the power spectrum and the amplitude distribution are close to being 
preserved. By examining the amplitude distribution shown in the following, 
it is clear that the amplitude distribution has changed and is (again) similar 
with {xn}, but the power spectrum has changed (again). However, the 
differences between this power spectrum and {xn}, are less than between 
the spectrum of Shuffled {xn} and {xn}. 

 



7. Calculate the discriminant statistic.  

8. Test for significance between discriminating statistic values of the 
original time series and the series of IAAFT surrogates. 

REJECTION OF NULL HYPOTHESIS  
So far different linear surrogate algorithms have been discussed as well as how 

surrogate time series are generated by preserving some linear properties of an original 
time series while destroying other dynamics (Figures 5.11 and 5.12). The rejection of 
null hypothesis has also been discussed as being an indication of the presence of more 
complex dynamics than linear dynamics in the original time series. However, results of 
surrogate methods do not provide any definite answers regarding the exact nature of 
the underlying dynamics of the original data. The rejection of the null hypothesis only 
indicates that the underlying dynamics of the original time series are not consistent with 
the null hypothesis. In addition, even if there is no significant difference between the 
original and the surrogate time series, it cannot be concluded that they are from the 
same population. It may be simply due to inadequate statistics. Therefore, as is the 
case for other nonlinear methods, multiple nonlinear tools should be applied instead of 
solely depending on the results obtained by a surrogate method for data analysis.  

Another question one may raise is whether the surrogate methods that were 
discussed so far can be applied to biological time series that exhibit inherent trends. In 
fact, many experimental data exhibit strong periodicity such as gait, human speech, 
ECG and so forth (Buzzi et  al. 2003; Miller et  al. 2006; Schreiber and Schmitz 2000; 
Small and Tse 2002; Stergiou et al. 2004; Zhang et al. 2007). What happens if the 
above mentioned surrogate methods are used with such time series? The hypothesis 
tests for linear surrogate methods are not suitable for a time series with periodicity: such 
time series are inconsistent with the null hypothesis of a linearly filtered noise. As a 
result, surrogate time series generated from a time series with periodicity by using linear 
surrogate methods have geometric structures different from that of the original time 
series (Figure 5.13). This would lead to a higher rejection rate of the null hypothesis 
than what should actually occur simply because the structure of the time series in the 
surrogate is changed (Algorithm 0 and 1) or because the surrogate has changed 
geometric structure (AAFT and IAAFT). Therefore, we need another testing hypothesis 
and surrogate algorithm for a time series with regular persistent fluctuations or 
underlying periodicity. 



 

PSEUDOPERIODIC SURROGATE METHOD  
Small et al. (2001) introduced a method called the pseudoperiodic surrogate 

(PPS) algorithm (Small et al. 2001). Pseudoperiodic time series are defined as time 
series that have a noisy periodic orbit perturbed by either dynamical noise or 
observational noise or have an oscillatory chaotic flow. The power spectrum of these 
time series display clear spikes (Small 2005) (Figure 5.14) due to the dominant inherent 
frequencies. Since such a time series already exhibits a deterministic behavior, what is 
actually sought in this case is if there is any type of nonlinear structure on the 
fluctuations that are on top of these inherent dominant frequencies. A human 
electrocardiogram is an example of a signal with periodic orbits that result from 
successive heartbeats. However, there may be additional order within the dynamics of 
the sinus rhythm, or it could be consistent with uncorrelated noise (Small et al. 2001). 
Therefore, the null hypothesis of the PPS states that a time series is consistent with a 
periodic orbit perturbed by uncorrelated noise. To test this null hypothesis, the PPS 
generates a surrogate time series that keeps the large-scale behavior of the original 
time series but does not preserve any additional small-scale dynamics that can be 
regarded as chaotic, linear, or nonlinear deterministic structure. Therefore, intracycle 



dynamics, which are dynamic patterns within one period of a cyclic pattern, are 
preserved, while intercycle dynamics, which are dynamic patterns between different 
periods across a cyclic pattern of the time series, are altered. Two alternative 
hypotheses are suggested: (1) deterministic nonperiodic intercycle dynamics and (2) a 
periodic orbit with correlated noise. In the case of the electrocardiogram, the application 
of the PPS algorithm showed that the sinus rhythm has deterministic nonperiodic 
intercycle dynamics (Small et al. 2001). 

 



 
The first step of generating a surrogate time series by the PPS algorithm involves 

the reconstruction of the state space. Therefore, the embedding dimension (m) and the 
time lag (τ) need to be defined. The embedding parameters to compute discriminating 
statistics, which require the reconstruction of the state space, are usually set to be the 
same for the entire data sets. However, for generating a surrogate time series, the 
embedding parameters should be specific to each data set (Small and Tse 2002). The 
other parameter the PPS requires is the noise radius (ρ), which defines the amount of 
noise in a surrogate (Small et al. 2001). If noise radii are too large, then the surrogate 
time series will be too distinct from the original while if noise radii are too small, the 
original and surrogate time series will be too similar, which may result in a false positive 



result for the hypothesis testing (Figure 5.15). Noise radii should be chosen such that 
the fine intercycle dynamics are removed, but the intracycle dynamics are preserved. 
Small et al. (2001) suggested selecting a ρ that maximizes the number of short 
segments (length ≥2) that are the same for the original time series and the surrogate. 
These segments represent the amount of correlation between the surrogate and the 
original data sets (Small et al. 2001). If ρ is too large, surrogate time series will be too 
different from the original time series because the dynamics were poorly approximated. 
If ρ is too small, surrogate time series will be too similar to the original time series. 

 
Let us look at the procedure of generating a surrogate time series with the PPS:  



1. Select the embedding dimension (m) and time lag (τ) for time delay embedding 
reconstruction.  

2. Randomly select an embedded point as an initial condition (Figure 5.16a). This 
embedded point is a delay vector that has m elements, and we call it v1. 

3. Randomly select a neighboring vector to v1 and call it v2 (Figure 5.16b). 
The neighbors are chosen with a certain probability equation.  

4. Randomly select a neighboring vector to v2 and call it v3 (Figure 5.16c).  

5. Repeat this procedure until the number of vectors that we select reaches the 
length of the original time series (Figure 5.16d).  

6. A surrogate time series is generated by taking the first element of the selected 
delay vectors. 

 



The surrogate time series generated by the PPS can be considered as a random 
walk on the attractor; therefore, it follows the same vector field as the original time 
series but is contaminated with dynamic noise (Figures 5.17 and 5.18). This addition of 
dynamic noise destroys subtle deterministic intercycle dynamics, including periodic 
dynamics with correlated noise, pseudoperiodic chaos or any deterministic nonperiodic 
intercycle dynamic behavior (Small and Tse 2002; Zhao et al. 2008). The PPS algorithm 
has been applied to gait kinematics data (Miller et al. 2006). 

 

Specifically, knee angle kinematic time series from healthy subjects were 
evaluated using the PPS algorithm, and Theiler et al. algorithm 0. The average time lag 
for the series was 9.833 and the average embedding dimension was 6.333. The noise 
radii that maximized the number of short segments that are the same for the original 
time series and the surrogate was 3.351. The paper demonstrated that Theiler et al. 
algorithm 0 destroyed the intracycle dynamics of the gait time series by changing the 
overall shape, which resulted in a false rejection of the null hypothesis. The PPS 



algorithm did not alter the intracycle dynamics of the original time series, which made it 
more appropriate to explore the presence of underlying processes within these 
dynamics. Example Box 5.1 shows the general surrogation procedure using the PPS 
algorithm. The data for a knee flexion and extension angle, along with one surrogate 
generated using the PPS algorithm are included in Appendix 5.A. The SampEn values 
of the original and surrogate series, along with the parameters used are included in 
Example Box 5.1. 

 

 



DISCRIMINATING STATISTICS FOR PPS  
As for discriminating statistics to be used with the PPS, it was reported that for 

both theoretical and experimental time series, the correlation dimension performed the 
best compared to other nonlinear tools such as the Shannon’s entropy, prediction error, 
mutual information, kurtosis and skewness (Small and Tse 2002). However, Zhang 
et al. (2007) reported that the correlation dimension and the PPS algorithm failed to 
differentiate between a chaotic system and a noisy periodic orbit. In this study, a 
theoretical time series of the chaotic Rossler system (Equation 5.4) was used as the 
original time series. If the correlation dimension was an appropriate discriminating 
statistic, then the null hypothesis should have been rejected. However, the correlation 
dimension of the original time series lied within the dimension distribution of the 
surrogates and could not differentiate between the original and the surrogate time 
series. This is due to the fact that the correlation dimension characterizes the 
distribution of the points in the state space; however for the PPS algorithm, the 
distribution of the original and surrogate time series should follow the same pattern. 
Thus, an alternative discriminating statistic must be used when implementing PPS 
surrogation:    

 
Zhang et al. (2007) introduced alternative new methods to be used as discriminating 
statistics with the PPS. Those methods do not require the reconstruction of the state 
space but take the cycle in the time series as the basic processing unit. The 
discriminating statistics depend on the correlation coefficient between cycles and are 
supposed to be more robust to nonstationarity in data and different kinds of noise. 
There are separate methods for detecting the temporal, or time index, correlation and 
the spatial, or configuration of cycles, correlation. The basic ideas of the methods 
proposed by Zhang et al. (2007) are the following:  

1. Divide a pseudoperiodic time series into consecutive cycles Ci (i = 1, 2,…, m).  

2. Find correlation coefficients (ρ) between cycles as a measure of their distance 
in phase space.  

3. Characterize the similarity of wave form between a pair of cycles. A large ρ 
means there is a higher level of similarity. Two cycles will also be close in the 
phase space with a higher ρ.  

For chaotic systems, the distance between two nearby cycles will increase exponentially 
over time due to sensitivity to initial conditions, whereas the correlation will drop 
exponentially. More specifically, Zhang et  al. presents two specific alternative surrogate 
methods. The first is average cycle divergence rate, which detects a correlation 



between the temporal cycles. For chaotic systems, the distance between two nearby 
cycles will increase exponentially over time, due to the sensitive dependence on initial 
conditions. The correlation between two cycles is expected to drop exponentially as the 
number of cycles increase. The second alternative method investigates the fluctuation 
of the degree of distribution of cycles in the phase space and is quantified through the 
variance of the normalized derivative. In this method, the degree distribution curve and 
the variance of the normalized derivative distribution are calculated. The degree 
distribution curve provides the distribution of cycles in the phase space. A chaotic 
system will show multiple distribution peaks, whereas a noisy periodic system will show 
a Poisson distribution of peaks. The peaks or smoothness of the distribution are 
quantified by the variance of the normalized derivative. A chaotic system will have a 
high value, and a noisy periodic system, which has more homogeneous smoothness, 
will have a low value. 

A more recent surrogate method called the small shuffle surrogate was 
introduced by Nakamura and Small (2005) to investigate whether there are dynamics in 
irregular fluctuations (short term variability), even if the fluctuations are modulated by 
trends or periodicities. This algorithm generates surrogates that preserve long-term 
behaviors but destroys local structures. The null hypothesis is that irregular fluctuations 
are independently distributed (temporally uncorrelated) random variables. This 
algorithm changes the flow of information in the data and can be used to detect whether 
dynamics are present or not, regardless of whether the time series are linear or 
nonlinear. The authors propose that autocorrelation or average mutual information are 
appropriate to use as the discriminating techniques. The autocorrelation function and 
average mutual information answer the question regarding how much future data points 
are determined by past data points. To test the hypothesis, 39 surrogate time series are 
developed (two-sided test) and discriminating statistics calculated for the original and 
surrogate time series. If the values of the discriminating statistics of the original fall 
within the distribution of the surrogates, the null is not rejected. Time series with no 
dynamics (random process) have autocorrelation function, and average mutual 
information values fall within the distribution of the small surrogate shuffle distribution. 
Time series that contain dynamics will result in autocorrelation function and average 
mutual information values that are separate from the surrogate distribution. This method 
was robust in systems that contain long-term trends and those contaminated by 
stochastic noise.  

One limitation of the small shuffle surrogate method is that it cannot distinguish 
between linear or nonlinear phenomena, as both types of systems exhibit some type of 
dynamics, which would lead to rejecting the null hypothesis. Nakamura et al. (2006) 
proposed a modification to the small shuffle surrogate that would test for the presence 
of nonlinearity in time series containing long-term trends and short-term fluctuations 
called truncated Fourier transform surrogate. This method assumes that the frequencies 
of irregular fluctuations are higher than the long-term trends and that when the data are 
linear, all phases can be treated as linear data when the power spectrum is preserved. 



The null hypothesis for this algorithm is that irregular fluctuations are generated by a 
stationary linear system. The algorithm destroys nonlinearity in the irregular fluctuations 
and preserves the trends or periodicities. This is done by randomizing those phases 
from the power spectrum in the higherfrequency domains while maintaining the low-
frequency phases. Thus, the major difference from the previous small shuffle surrogate 
is that not all phases are randomized, but only those in the higher-frequency domain. 
This algorithm requires the selection of a parameter to determine which frequencies will 
be randomized. This limitation of the truncated Fourier transform surrogate led Rios 
et al. (2015) to develop two new methods using decomposition to improve the 
surrogation techniques. The new techniques are the empirical mode decomposition–
Fourier transform and empirical mode decomposition–amplitude-adjusted Fourier 
transform. These techniques rely on decomposing the data into a set of 
monocomponents plus residuals, with the residuals demonstrating the time series trend. 
Next, traditional surrogate methods are applied on each monocomponent, which results 
in a set of monocomponent surrogates. Finally, the set of surrogates is combined and 
retrended by adding the residuals back into the time series from the first step. This 
algorithm allows testing for the presence of linear and nonlinear behaviors in both 
stationary and nonstationary time series.  

SUMMARY  
In this chapter, we have discussed surrogate methods, which take the form of 

hypothesis testing. We examined several different surrogate algorithms, four linear 
surrogate methods, the pseudoperiodic surrogate method, and the small shuffle 
surrogate. The linear surrogate methods are designed to be applied to a stationary 
irregular time series without any long-term trend or periodicity, while the pseudoperiodic 
is applied to time series with periodicity. The small shuffle surrogate provides 
information regarding dynamics in irregular fluctuations, even if the fluctuations are 
modulated by trends or periodicities. Each algorithm generates a surrogate time series, 
which is consistent with a specific null hypothesis. Surrogate methods are used as an 
indirect approach to identify the nature of a time series. They try to narrow down the 
possibility of what a time series is by eliminating the possibilities of what a time series is 
not. Surrogate methods can identify whether a “hidden” structure exists within the data, 
but not necessarily tell if chaos exists. A surrogate method alone cannot decide what 
the time series is but is an extremely helpful tool when used with other nonlinear tools.  

EXERCISES  
 

1. State the general procedure of conducting a surrogate test.  

2. State the null hypothesis of Algorithm 0.  

3. State the null hypothesis of Algorithm 1.  

4. State the null hypothesis of Algorithm 2.  



5. What is the difference between Algorithm 2 and IAAFT?  

6. Can we use linear surrogate methods when a time series exhibits strong  
periodicity? Why or why not?  

7. State the null hypothesis of the PPS algorithm.  

8. What three parameters are necessary for the PPS algorithm?  

9. Can you determine what a time series is by using surrogate methods?  

10. Explain two kinds of discriminating criteria.  

 

APPENDIX 5.A: KNEE JOINT FLEXION/EXTENSION ANGLE 
(DEGREES)  
 

Original Series  PPS Surrogate Series 
8.9612 12.578 25.092  16.558 6.6854 45.34 
9.7076 14.736 30.052  17.772 7.0044 49.475 
10.999 17.075 34.983  16.352 7.5202 54.155 
12.622 19.491 40.42  15.246 8.3092 56.516 
14.419 21.488 45.34  12.269 9.5507 58.711 
17.115 22.29 50.399  11.255 10.634 59.818 
20.207 22.265 54.797  10.341 12.254 60.459 
24.619 22.061 57.619  8.8039 14.471 60.116 
29.044 21.629 59.679  7.7423 17.542 58.864 
34.142 21.241 60.858  9.302 21.09 56.819 
39.573 20.817 61.133  8.5962 25.092 54.73 
44.759 21.04 60.848  7.7525 30.052 51.788 
49.739 20.637 59.408  7.2274 34.983 48.584 
54.843 19.316 57.758  6.8028 40.42 43.881 
58.542 18.678 55.071  39.086 13.089 16.833 
60.774 17.495 51.788  33.177 15.602 15.748 
62.389 16.124 48.584  28.6 18.385 14.811 
62.196 14.93 43.881  23.003 25.092 13.767 
62.171 13.69 39.086  17.55 26.077 12.133 
61.575 12.439 33.177  12.775 34.983 10.818 
59.821 11.267 26.737  8.3107 40.42 10.144 
57.643 10.207 20.074  4.782 45.34 9.6492 
54.715 9.302 13.561  4.7991 50.399 9.1698 
51.169 8.5962 8.1246  5.4521 54.797 8.8224 
47.151 7.7525 4.782  7.252 57.619 9.3043 
42.075 7.2274 2.8538  10.041 59.679 8.6863 



35.762 6.8028 2.8926  12.566 61.933 8.6412 
29.722 6.6854 4.4985  14.798 61.578 8.9573 
23.035 7.0044 7.0089  17.933 59.408 9.8134 
16.215 7.5202 9.2506  20.797 57.758 8.9071 
11.144 8.3092 10.876  23.074 55.071 9.8471 
6.6787 9.5507 12.778  23.312 51.788 10.48 
4.3748 10.634 15.692  22.75 48.584 12.879 
3.4397 12.254 18.496  21.821 43.881 18.64 
4.6151 14.471 20.266  21.809 39.086 22.644 
7.3564 17.542 20.526  21.635 33.177 26.84 
10.249 21.09 20.45  21.346 26.737 31.358 
20.485 34.294 18.385  20.976 20.331 36.497 
20.501 28.575 22.163  20.004 14.562 41.339 
20.069 22.217 26.077  19.105 10.1 46.514 
19.438 15.664 30.343  17.911 6.2972 51.32 
19.219 10.865 34.79  16.509 7.4885 55.239 

18.51 6.7063 39.653  15.515 8.1968 58.468 
17.474 4.36 44.762  15.515 10.589 59.867 
16.718 3.2073 49.475  14.619 13.886 59.928 
15.219 3.9469 54.155  14.001 16.381 61.25 

14.25 6.542 56.516  11.015 18.542 61.654 
13.251 8.452 58.711  8.8039 20.648 59.089 
12.093 11.194 59.818  7.7423 20.571 56.91 
11.015 13.136 60.459  6.3726 22.131 54.625 
9.7966 14.735 60.116  5.5298 22.771 51.881 
8.6375 16.063 58.864  4.9179 22.457 48.264 
8.0029 18.232 56.819  4.9681 22.075 45.083 
7.4718 19.856 54.73  4.9942 21.818 40.315 
7.0539 20.942 51.357  5.4474 21.668 34.958 
7.0923 21.685 47.767  5.7399 21.053 28.6 

7.624 21.156 43.319  6.7546 20.976 22.251 
7.991 20.515 38.25  7.8583 20.004 15.247 

8.9692 20.305 31.784  9.234 18.694 10.459 
10.382 19.543 25.41  11.085 17.514 8.0987 
12.074 18.632 18.241  7.4885 57.409 8.2302 
14.513 17.751 12.775  8.1968 59.772 8.2302 
17.673 17.33 8.3107  5.4572 60.752 7.3732 
21.398 15.568 5.7746  7.9289 61.196 8.0175 

25.6 14.439 4.7991  13.743 59.528 9.3349 
30.065 12.788 5.4521  16.208 60.719 10.395 
34.683 11.664 7.252  18.112 59.582 11.618 
39.781 10.341 10.041  19.88 57.577 13.484 
45.339 8.8039 12.566  22.265 55.071 15.74 



49.923 7.7423 14.798  22.589 51.788 12.254 
54.053 6.3726 17.933  23.685 48.584 14.471 
57.503 5.5298 20.797  23.955 40.315 17.542 
59.414 4.9179 23.074  23.039 34.958 21.09 
60.413 4.9681 23.312  22.423 27.034 25.092 
60.424 4.9942 22.75  21.961 20.331 30.052 
60.287 5.4474 21.821  21.158 13.561 34.983 
59.089 5.7399 21.809  20.332 10.865 40.42 

56.91 6.7546 21.635  19.148 6.7063 45.34 
54.625 7.8583 21.346  17.707 4.36 50.399 
51.825 9.234 20.976  16.558 3.2073 54.797 
47.954 11.085 20.004  15.607 3.9469 57.619 
44.343 13.089 18.694  14.216 6.542 59.679 
39.828 15.602 17.514  13.369 9.2506 60.858 
16.833 6.172 59.904  12.272 10.876 60.459 
15.748 8.7978 60.064  11.467 12.778 60.116 
14.811 11.818 59.735  10.876 14.735 59.582 
13.767 14.175 59.006  9.6281 16.063 57.577 
13.046 16.626 57.236  8.833 18.232 54.643 
12.233 19.409 55.149  8.2302 23.398 48.584 
11.395 21.455 51.881  7.1681 23.498 43.881 
11.043 22.41 48.264  8.6673 23.151 39.086 
10.098 21.86 45.083  8.6682 23.046 31.784 
9.3043 21.326 40.315  5.7399 21.959 25.41 
8.6863 21.17 34.958  9.4577 21.603 18.241 
8.6412 20.953 29.086  10.94 21.213 12.775 
8.9573 20.711 23.003  12.879 20.607 8.3107 
9.8134 19.943 17.55  15.348 19.525 5.7746 
11.062 19.012 12.304  18.331 18.704 4.7991 
13.032 17.888 8.9619  21.913 17.439 5.4521 
15.424 16.889 7.1428  26.323 16.742 7.252 

18.64 15.826 6.5955  30.906 15.858 10.041 
22.644 14.575 7.6152  34.676 15.029 12.566 

26.84 13.611 9.3094  38.509 13.786 14.798 
31.358 12.269 11.563  43.778 13.241 17.933 
36.497 11.255 13.711  48.795 9.302 14.735 
41.339 9.9009 15.32  53.255 8.5962 16.063 
46.514 9.164 18.008  18.232 54.73 18.64 

51.32 7.9652 20.571  19.856 51.357 22.644 
55.239 7.6236 22.131  20.45 47.767 26.84 
58.468 6.8844 22.771  20.45 43.319 31.358 
59.867 6.7978 22.457  20.485 40.315 36.497 
60.618 6.8674 22.075  20.501 34.958 41.339 



60.685 7.3732 21.818  20.515 29.086 46.514 
59.528 8.0175 21.668  20.305 23.003 51.32 
58.682 9.0707 21.053  19.543 17.55 55.239 
56.665 10.739 20.497  18.632 12.304 58.468 
54.062 12.226 20.088  17.751 8.9619 59.867 
51.362 14.413 19.105  17.33 7.1428 60.618 
47.681 17.15 17.911  15.219 6.5955 60.685 
43.842 20.42 16.509  14.25 10.589 61.22 
38.084 24.323 15.515  13.251 13.886 59.521 
32.691 28.578 14.619  12.093 16.381 57.577 
26.653 33.036 14.001  11.015 18.542 54.643 
20.583 37.901 12.752  9.7966 20.648 51.513 
14.562 43.144 11.41  7.7423 23.207 45.418 

10.1 47.896 10.876  9.6281 24.454 40.387 
6.719 52.56 9.6281  8.833 23.568 37.955 

4.9821 55.894 8.833  8.2302 23.362 32.211 
4.8589 58.446 8.2302  7.1681 22.61 25.922 
7.1681 23.498 47.993  7.5316 22.823 20.583 
7.5316 23.151 42.995  7.6462 21.783 14.671 
7.6462 23.046 37.955  8.155 20.661 10.459 

8.155 22.685 32.211  9.0405 19.748 8.0987 
9.0405 22.416 25.922  10.48 18.595 7.3227 

10.48 22.112 19.329  12.019 17.153 6.8289 
12.019 21.613 13.066  14.143 16.45 7.6683 
14.143 20.718 8.1002  16.536 15.826 10.584 
16.536 19.749 4.9102  20.392 16.124 12.135 
19.937 18.704 3.4886  24.59 15.246 14.628 
23.942 17.439 3.7459  28.798 14.534 16.402 

28.48 16.742 5.4572  33.379 13.217 18.799 
33.381 15.858 7.9289  38.638 12.099 20.716 
38.509 15.029 10.387  43.54 11.107 23.362 
43.778 13.786 12.289  48.942 10.065 24.356 
48.795 13.241 14.95  53.917 9.5547 23.884 
53.255 12.462 18.168  57.409 9.081 23.039 
57.514 11.624 20.786  59.772 7.6539 22.423 
59.803 11.14 22.191  60.413 7.8662 21.961 
60.379 10.688 22.535  60.424 7.0044 21.158 
60.745 10.094 22.263  60.116 11.062 21.814 
61.129 10.217 22.175  58.864 13.032 21.437 
59.998 10.508 21.973  56.819 15.424 20.085 

58.18 11.127 21.959  19.294 16.208 60.848 
56.05 12.127 21.603  17.772 18.112 59.408 

52.888 13.695 21.213  14.216 19.88 56.819 



49.539 15.538 20.607  12.272 22.265 54.73 
45.418 17.848 19.525  11.467 23.548 51.357 
40.387 20.735 18.82  10.207 23.685 47.767 
35.095 24.59 17.654  9.302 22.263 43.319 

28.6 28.798 16.639  8.5962 22.175 38.25 
22.251 33.379 15.502  9.0675 21.973 31.784 
15.247 38.638 14.507  8.6673 21.959 25.41 
10.352 43.54 13.862  8.6682 21.603 18.241 
6.2817 48.942 12.873  7.0044 21.213 12.775 

4.618 53.522 12.018  6.7546 20.607 8.1246 
4.2304 57.697 10.793  12.226 16.889 6.2817 
5.4652 59.845 10.054  18.64 15.826 4.618 
8.1121 61.454 9.0675  22.644 14.575 3.2073 
10.589 61.933 8.6673  26.84 13.611 6.172 
12.855 61.578 8.6682  31.358 13.767 8.7978 
14.994 61.012 8.7991  36.497 13.046 9.2506 
17.341 59.332 9.3349  41.339 12.233 10.876 
19.835 57.317 10.757  46.514 11.395 14.994 

21.98 54.946 12.119  51.32 11.043 18.008 
23.398 51.479 14.471  55.239 10.098 20.571 
16.985 20.085 10.92  58.468 9.3043 22.131 
20.392 19.294 8.6063  59.867 8.6863 22.771 
24.368 17.772 7.0982  60.752 8.6412 22.457 
28.529 16.352 6.5939  61.196 8.9573 22.075 
33.403 15.246 8.1424  59.528 9.8134 21.818 
38.097 14.534 10.584  58.682 11.127 21.668 
43.153 13.217 13.743  59.332 10.48 21.053 
48.927 12.099 16.208  57.317 14.368 20.497 
53.825 11.107 18.112  54.946 12.254 18.632 
57.878 10.065 19.88  51.479 14.471 19.105 
60.481 9.5547 22.265  47.993 17.542 16.889 
61.898 9.081 23.548  42.995 21.09 15.826 
62.526 8.6737 24.356  37.955 25.092 13.894 
62.566 8.5694 23.884  33.049 30.052 13.174 
61.809 8.8998 23.039  27.394 34.983 12.269 
60.491 9.3981 22.423  21.394 40.42 13.046 
58.281 10.395 21.961  13.066 45.34 11.467 
55.879 11.618 21.158  9.3651 50.399 10.7 

52.87 13.484 20.332  7.3227 54.797 9.7143 
49.361 15.74 19.148  6.8289 57.619 8.8553 

45.07 18.586 17.707  7.6683 59.679 9.3043 
40.907 21.849 16.558  10.584 60.858 8.6863 
35.457 25.907 15.607  13.743 61.133 8.6412 



29.854 30.262 14.216  7.5316 21.158 8.9619 
23.848 34.676 13.369  8.8998 20.332 4.618 
17.678 39.309 12.272  11.062 19.148 4.2304 
13.003 44.134 11.467  13.032 19.525 5.4652 
9.3651 49.565 10.7  15.424 18.82 6.542 
7.3227 53.917 9.7143  15.538 17.654 8.452 
6.8289 57.409 8.8553  17.848 16.639 11.194 
7.6683 59.772 8.6787  20.735 13.369 13.136 
9.6401 60.752 7.9992  24.368 12.233 14.735 
12.135 61.196 7.6539  28.529 11.395 16.063 
14.628 61.22 7.8662  36.497 11.043 18.232 
16.402 60.719 7.9757  41.339 7.6236 19.856 
18.799 59.112 8.4738  46.514 8.2302 22.457 
20.716 56.994 9.4577  51.32 7.1681 21.821 
22.589 54.797 10.94  55.239 8.6412 21.809 
23.685 51.513 12.879  58.468 8.9573 21.635 
23.955 47.928 15.348  59.867 9.8134 21.346 
23.613 43.74 18.331  60.618 8.4738 20.976 
23.391 38.666 21.913  59.528 9.4577 20.004 
22.926 33.049 26.323  58.281 10.94 18.694 

22.43 27.394 30.906  55.879 12.019 17.514 
21.814 21.394 35.439  52.87 14.143 16.833 
21.437 15.337 40.819  49.361 16.536 15.748 
46.206 24.454 16.796  45.07 19.937 14.811 
50.497 23.568 19.678  40.907 23.942 13.767 
54.896 23.362 23.314  35.457 28.48 12.752 
58.094 22.61 27.119  29.854 33.381 13.786 
59.928 22.823 32.058  23.848 38.509 13.241 
60.787 21.783 37.112  17.678 44.134 12.462 
61.003 20.661 42.176  13.003 49.565 11.624 
60.438 19.748 47.556  9.3651 53.522 11.14 
59.521 18.595 52.439  7.3227 57.697 10.688 
57.651 17.153 56.779  6.8289 59.845 10.094 
55.088 16.45 59.074  7.6683 61.454 10.217 
51.606 14.902 60.953  7.9289 61.933 11.127 
48.204 13.894 61.25  10.387 61.578 12.127 
44.285 13.174 61.654  12.289 61.012 13.695 

39.07 12.133 60.786  14.95 58.281 15.538 
33.371 10.818 59.582  18.168 52.888 17.848 
27.034 10.144 57.577  20.786 49.539 20.735 
20.331 9.6492 54.643  22.191 45.418 24.368 
14.671 9.1698 51.619  23.498 40.387 28.529 
10.459 8.8224 47.6  23.884 35.095 33.403 



8.0987 8.5052 43.06  23.039 28.6 38.097 
7.4885 8.4115 37.446  22.423 23.003 43.153 
8.1968 8.2302 31.552  21.961 14.562 48.927 
10.589 8.8595 24.704  53.825 58.682 38.084 
13.886 8.9071 18.513  57.878 56.665 32.691 
16.381 9.8471 12.488  60.481 54.062 26.653 
18.542 10.919 8.4084  61.898 51.825 20.583 
20.648 12.492 6.2972  61.196 47.954 14.562 
23.207 14.368   61.22 43.842  
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