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INTRODUCTION

One of the goals of time series analysis is to understand the underlying
mechanisms that generate different dynamics for different time series. If a time series is
not a product of random process, then we can assume that some kind of dynamics
govern the time series. The question is what kinds of dynamics are controlling the time
series. For nonlinear time series analysis, our focus is on nonlinear dynamics, and one
of the goals is to characterize those dynamics by applying nonlinear tools. However, it is
important to establish evidence of nonlinearity in a time series first in order to avoid
obtaining possible spurious results by applying nonlinear tools to the system that does
not contain nonlinearity. Second, nonlinearity is considered as one of the key features of
time series that exhibit chaos, which has been shown to have a potential link with
overall health of the biological system (Amato 1992; Buchman et al. 2001; Cavanaugh
et al. 2010; Garfinkel et al. 1992; Goldstein et al. 1998; Orsucci 2006; Slutzky et al.
2001; Toweill and Goldstein 1998; Wagner et al. 1996). Therefore, in terms of detecting
chaos in a time series, identifying the presence of nonlinearity in the system is essential.

NONLINEARITY

Nonlinear analysis characterizes the nonlinear properties of time series data. For
these analysis tools to provide meaningful results, they must be applied to time series
that contain nonlinear structures. When nonlinear tools are used on data without
nonlinear structures, false results are obtained due to practical limitations of nonlinear
measures. Therefore, it is important to establish the evidence of nonlinearity in a time
series prior to applying nonlinear tools.

Before getting into a discussion of methods to identify possible nonlinearity in
data, let us first define a nonlinear system. A nonlinear system is defined as a system
that does not have a linear origin. This includes a system that may contain nonlinearity,
but the underlying dynamics are linear. In this case, the presence of nonlinearity is
caused by some measurement distortion, but it is originally generated by a linear
stochastic process. We will look at such a case in detail later in this chapter.
Furthermore, discussion in this chapter will be limited only to a stationary time series
and will not include nonstationary stochastic processes. A time series is considered
nonstationary if its distribution changes across time. In other words, the mean and
variance of the time series change over different time intervals. Applying surrogate
methods to nonstationary time series can lead to problems regarding the proper
interpretation of results (Breakspear and Terry 2002; Palus 1996). For example, when
the null hypothesis is rejected in a surrogate analysis, there is no way of knowing
whether nonlinearity exists in the data or whether the data were generated by a
nonstationary stochastic process. This problem was noted by Breakspear and Terry
(2002) in their study of electroencephalographic (EEG) data (Breakspear and Terry
2002). The problem of nonstationarity was also highlighted by Peng et al. (1995) in the
analysis of heart rate variability. Specifically, nonstationarity makes it difficult to
determine whether the structure of the time series is the result of the dynamics of the



system or from changes in the external environment. Therefore, we will restrict our
discussion to time series that are stationary.

There are two major approaches to identify the evidence of nonlinearity in a time
series in general. The first approach involves the direct application of nonlinear
measures (Kaplan and Glass 1995; Mitra et al. 1997), while the second approach
involves the application of surrogate methods (Breakspear and Terry 2002; Dingwell
and Cusumano 2000; Palus 1996; Stergiou et al. 2004). Methods commonly used for
the first approach include the application of the correlation dimension or the largest
Lyapunov exponent. The correlation dimension is a measure of self-similarity of a time
series, while the largest Lyapunov exponent quantifies the exponential rate of
divergence of nearby trajectories in the state space (see Chapters 3, 4, and 8). Both of
these measures are applied to attractors reconstructed from an original time series in
the state space. Attractors are often associated with nonlinearity and possibly chaotic
dynamics. However, the use of these two popular nonlinear measures with experimental
data can give spurious results. It has been reported that the correlation dimension of a
time series with linear correlations can mimic low-dimensional behavior of the system by
giving finite noninteger values (Osborne and Provencale 1989). Noise in a time series
can cause the largest Lyapunov exponent to be positive, indicating the presence of
chaos where there is none (Rapp et al. 1993). The use of other nonlinear measures
besides correlation dimension and the largest Lyapunov exponent are also limited in
terms of detecting nonlinearity in a time series since the probability distributions of those
measures on time series with finite data length are unknown (Palus 1995; Pompe 1993;
Prichard and Theiler 1995). Thus, applications of these nonlinear measures alone in
detecting nonlinearity, possibly chaotic behavior in the system have been shown to be
difficult (Miller et al. 2006; Schreiber and Schmitz 2000; Theiler and Rapp 1996).
Moreover, applications of these nonlinear measures often involve subjective judgment
of a researcher such as finding an appropriate scaling region or threshold value and
lack in certainty. We particularly observe such procedures with methods like detrended
fluctuation analyses and recurrence quantification analyses. To compensate for these
weaknesses of the first approach of direct applications of nonlinear measures, the
second approach of applying surrogate methods is often used. The second approach
can be considered as an indirect approach in a sense that attempts to identify the
evidence of nonlinearity by excluding that a time series has a linear origin through
statistical hypothesis testing.

GENERAL PRINCIPLES OF SURROGATION

Surrogate methods were originally developed to prevent misdiagnoses of random
stochastic processes from being characterized as chaotic dynamical processes or vice
versa (Stergiou et al. 2004; Theiler et al. 1992; Theiler and Rapp 1996). They take a
form of hypothesis testing to determine whether a given time series is consistent with a
specific null hypothesis. The general procedure of a surrogate method is as follows
(Figure 5.1). First, a null hypothesis is specified, and from the original time series an



ensemble of surrogate time series is generated that are consistent with this null
hypothesis. The null hypothesis is typically what researchers want to show that is not
true. An example of null hypothesis would be that the time series was generated by a
linear stochastic process. If the data are nonlinear, the test statistic results will be the
difference between the original and surrogate time series and the null hypothesis will be
proven false. If the results are the same, the null hypothesis fails to be proven false, and
the original time series is a linear stochastic process. These surrogate time series must
preserve some properties (mean, variance, and/or power spectra), which correspond to
the underlying null hypothesis. Then, discriminating statistics such as the correlation
dimension are computed for both the original and the ensemble of surrogate time
series. The values of the discriminating statistics between the original time series and
the distribution of values of discriminating statistics obtained from the surrogate time
series are compared. If the value of the discriminating statistics from the original time
series does not fall within the distribution of the discriminating statistics of the
surrogates, the null hypothesis should be rejected. As it is stated differently, if the
results between original and surrogate are different, the null is rejected, and if the
discriminating statistic is the same between original and surrogate, the null is accepted.
The following tools are examples of discriminating statistics that have been used before
for this purpose: the correlation dimension (Diks 1996; Grassberger and Procaccia
1983; Small 2005; Small and Judd 1998; Small and Tse 2002; Yu et al. 2000), the
largest Lyapunov exponent (Kantz and Schreiber 1997; Wolf et al. 1985), approximate
entropy (Miller et al. 2006; Pincus 1991), sample entropy (Lamoth et al. 2010, 2011;
Rathleff et al. 2011), higher and cross moments (Keenan 1985; Tsay 1986), a simple
skewed difference statistic (Theiler et al. 1992), Volterra polynomials (POL) (Barahona
and Poon 1996; Kugiumtzis 1999), and the local average mapping (LAM) (Schreiber
and Schmitz 1997).

Propose a null hypothesis (H) ‘

Hy: The time series is generated
l by a linear stochastic process

Generate surrogate Original time series
time series consistent

with null hypothesis o

Apply some test statistic Campare _l
1 l, ; Surrogate time series

| 1
MNull rejected Mull not rejected o | UYL |

FIGURE 5.1 The general procedure of surrogate methods. These steps can be applied with
one of the surrogate algorithims presented in this chapter. If the discriminant statistics are
significantly different between the original time series and the surrogate time series, the null
is rejected.




This approach to use surrogate methods for determining whether a given time
series is consistent with a specific null hypothesis has been applied to identify the
evidence of nonlinearity in many biological systems such as postural control, ECG,
EEG, gait mechanics, and so forth (Acharya et al. 2005; Breakspear and Terry 2002;
Buzzi et al. 2003; Chang et al. 1994; Cignetti et al. 2009; Collins and De Luca 1995;
Costa et al. 2014; Ehlers et al. 1998; Govindan et al. 1998; Hausdorff et al. 1995;
Ivanov et al. 1996; Janjarasijitt et al. 2008; Kugiumtzis 2001; Kunhimangalam et al.
2008; Kurz et al. 2008; Ladislao and Fioretti 2007; Little et al. 2006; Martinerie et al.
1998; Miller et al. 2006; Myers et al. 2013; Nurujjaman et al. 2009; Palus 1996; Porta
et al. 2007; Preatoni et al. 2010; Rieke et al. 2003; Rombouts et al. 1995; Stam et al.
1997; Stergiou et al. 2004; Zhang et al. 2007; Zhao et al. 2008; Wurdeman et al. 2014).
Table 5.1 details the surrogate methodology and whether determinism was found in
these studies. Throughout the various methods and biological time series utilized in
these studies, a common theme was the presence of nonlinear patterns and
consistence of rejecting the null hypothesis in biological time series.

Since surrogate methods take the form of a null hypothesis testing,
considerations must be given to the selection of discriminating statistics and
discriminating criteria. Hypothetically, it should not matter which discriminating statistic
is used. However, there are two different views on the selection of discriminating
statistics. One view is that all nonlinear statistics should be able to detect the presence
of nonlinearity by rejecting the null hypothesis at different significance levels. The
alternative view is that the mismatch between a surrogate algorithm and discriminating
statistics can lead to a spurious result. There are many different surrogate algorithms,
which will determine which discriminating statistic is appropriate, based on the
origination of the time series data. In general, a discriminating statistic must give
consistent results for both surrogates and original time series if the null hypothesis is
true. If the null hypothesis is not true, the discriminating statistic of the original time
series should be different from the distribution of the discriminating statistics for its
surrogates. The use of multiple discriminating statistics is encouraged in order to
establish the evidence of nonlinearity in a time series since there may be cases where
one discriminating statistic is not sufficient (Kugiumtzis 2001). For example, using
parameters such as the largest Lyapunov exponent, correlation dimension, global false
nearest neighbors, average mutual information and others on both simulated and actual
EEG data, Kugiumtzis (2001) argued that different nonlinear methods characterize
different aspects of data. However, if there is nonlinearity in the data, those different
nonlinear methods should be able to detect the presence of nonlinearity by rejecting the
null hypothesis at different significance levels respectively. On the other hand, it has
been pointed out that the mismatch between surrogate algorithm and discriminating
statistics can occur and can lead to a spurious result (Small et al. 2001, 188101).
Therefore, considerations should be given to the right match between a specific
surrogate algorithm and discriminating statistics (Zhang et al. 2007). We will show some
examples of mismatch between a discriminating statistics and surrogate algorithm later
in this chapter.
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HYPOTHESIS TESTING (DISCRIMINATING CRITERION)

In this section, hypothesis testing will be discussed. The first question that needs
to be answered after computing discriminating statistics for both original time series and
its surrogates is what criteria should be used to determine whether the null hypothesis
should be rejected or not. One way to conduct a hypothesis test is by using a
parametric criterion. The mean (uH) and standard deviation (oH) of discriminating
statistics for surrogate data are used to calculate the significance S with a unit of

“sigma,” which in turn is used to construct a confidence level of inference (Theiler et al.
1992):

5-=|er_“.11| (5.1

T

For example, the rejection of the null hypothesis at the 95% level of confidence is
indicated by significance of about two “sigmas.” The assumption for this criterion is that
the distribution of discriminating statistics is Gaussian. However, it has been shown that
the distributions of many nonlinear measures do not follow a Gaussian distribution
(Schreiber and Schmitz 2000; Theiler et al. 1992).

Therefore, another criterion, the rank-order criterion is often used in the literature
since it is more robust in terms of defining significance. This criterion namely examines
the ranks of discriminating statistics of an original time series and surrogates. Suppose
N surrogate time series were generated from the original time series and the
discriminating statistics Q were computed for each surrogate time series and the
original time series. Then, there are (N + 7) Q’s in total. Let Qp be the discriminating
statistics value for the original time series, and Q1, Qo,..., Qn be the discriminating
statistic’s values for the surrogates. Now, all these (N + 1) discriminating statistic’s
values are ranked in an increasing order. If the original time series is generated by a
process which is consistent with the null hypothesis, the probability of Qp to be the
smallest or the largest will be 7/(N + 1). According to the rank-order criterion, the null
hypothesis is rejected when Qp is the smallest or the largest values among (N + 1) Q’s.
For a one-sided test, 1/(N + 1) is regarded as a false rejection rate while 2/(N + 1) for a
two-sided test. Therefore, in order to conduct hypothesis testing at 95% significance
level, 19 surrogates must be generated for a one-sided test and 39 surrogates for a two-
sided test.

Let us look at an example of a surrogate test using sample entropy (SampEn),
which is a measure of regularity as a discriminating statistics (Example Box 5.1).
Nineteen surrogate time series were generated from an original time series. Twenty
sample entropy (SampEn) values were computed for the original time series and the
nineteen surrogates. After ranking those 20 SampEn values, we may reject the null
hypothesis at 95% confidence level if the SampEn value of the original time series was
the smallest value (Figure 5.2; Appendix 5.A). In this case, the probability of a false
rejection is 5%.



EXAMPLE BOX 5.1 EXAMPLE OF SURROGATE TESTING

This example uses the data from Appendix 5.A to go through the steps of
surrogate testing. For space purposes, only the original and one surrogate time
series are included. For this example, sample entropy (SampEn) will be used as
the discriminant, which is a measure of regularity. The data are a continuous
knee flexion/extension time series from walking.

1. Plot the data and identify the null hypothesis. It is important to plot the
data to quickly inspect that the data are as expected (no missing points,
proper length, etc.). Identifying the null hypothesis will determine which
surrogate algorithm should be implemented. In our example, a knee
flexion/extension time series is used that has inherent periodicity due to
the repetition of gait cycles. The repeating cycles of the time series are
evident in the graph in the following. Therefore, an appropriate null
hypothesis would be that our time series is consistent with a periodic orbit
perturbed by uncorrelated noise. To test this hypothesis, we will need to
use the pseudoperiodic surrogate (PPS) method.

70
~ B0
T 50
= 40
= 3
zZ X
2 10

]

1 2 3 4 5 & 7 & 9 110 11 12

{a) Time (s)

2. Calculate and choose parameters for surrogate method. As mentioned
earlier, the PPS algorithm is appropriate for this data. To implement the
PPS algorithm, the state space must be reconstructed. Thus, the
embedding dimension and the time lag from the original series must be
calculated to generate the surrogate time series. Another parameter that
must be determined is the noise radius, which defines the amount of noise
in a surrogate. The proper p is selected to maximize the number of short
segments that are the same for the original time series and the surrogate.
For this particular time series, the embedding dimension is 6, time lag is
10 and the noise radius is 0.5.

3. . Using the same parameters, a series of 19 surrogates should be
calculated from the original time series. Each of these surrogates should
be plotted to ensure that it was generated correctly. In the example, the
dotted line is the original time series and the 19 surrogates are all plotted



in black. The surrogates resemble the original time series, which is
correct. Only 1.5 s of data is shown for clarity purposes.
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4. Calculate the discriminating statistic. SampEn, a measure of regularity
is our chosen discriminating statistic. To calculate SampEn, some
parameters need to be chosen first. Briefly, SampEn calculates the
logarithmic probability that run patterns that are close (within tolerance r)
for m observations remain close (with the same tolerance r) on the next
incremental comparison. For this example, m = 2 and r = 0.2 will be used
based on previous studies using entropy calculations on kinematic data
(Georgoulis et al. 2006; Myers et al. 2012; Yentes et al. 2013). Next, all
SampEn values from the original and surrogate should be plotted. In our
example, the open circle is the original time series and the solid circles are
the surrogates. It is clear in the graph that the original time series has the
lowest entropy value and therefore is not within the distribution of the
surrogates. The SampEn values for the original and surrogate time series
from Appendix 5.A are 0.373 and 0.401, respectively. Keep in mind,
however, that each time a surrogate series is generated, it adds dynamics
noise. So, a surrogate you generate from the example data will not match
the provided surrogate series. However, you can use the example
surrogate series to test whether your SampEn calculations are correct
using the same parameters used in this example.
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5. Test for significance between the discriminating statistic values of the
original time series and the series of surrogates. There are multiple ways
that determine whether the discriminating statistic values of the original
time series are different from the surrogates. One of the most common
ways as used in this example is a simple rank test. Based on the plot from
step 4, it is clear that we can reject the null hypothesis at 95% confidence
level because the SampEn value of the original time series is the smallest
value. This means that the regularity of the original time series is
significantly different than that of the surrogates. That would leave a 5%
probability that our rejection of the null is false. Remember the null
hypothesis was that our original knee joint flexion/extension time series is
consistent with a periodic orbit perturbed by uncorrelated noise. Since we
rejected the null hypothesis, we have concluded that our time series is not
an orbit with noise, but contains identifiable dynamics.

LINEAR SURROGATE METHODS

As we have mentioned earlier in the chapter, there are many different surrogate
algorithms. In this section, the most commonly applied surrogate algorithms, which are
called linear surrogate methods, will be discussed. Linear surrogate methods were
originally developed by Theiler and colleagues (Theiler et al. 1992; Theiler and Rapp
1996), and later improvements were made by Schreiber et al. (Schreiber and Schmitz
2000). These linear surrogate methods are applied to a stationary irregular time series
without any long-term trend or periodicity. If trends, especially periodic trends, are
present (i.e., gait kinematic data), other algorithms are more appropriate as we will see
later in the chapter. They are known as Algorithm 0, Algorithm 1 or Fourier transform
surrogate, and Algorithm 2 or amplitude adjusted Fourier transform (AAFT), and each
algorithm deals with a different null hypothesis.

Algorithm 0

First, let us examine Algorithm 0, which is used to test whether there is any
evidence that a time series has any dynamics at all. Therefore, surrogate time series
generated by Algorithm 0 should be consistent with the null hypothesis of an
independent and identically distributed (IID) noise with unknown (random) mean and
variance. Such a surrogate time series is generated by randomly shuffling an original
time series, destroying temporal correlations (Example Box 5.2). Since this method
permutes temporal order of a time series without replacement, a surrogate time series
preserves the same probability distribution as the original time series (Figure 5.3).



U IG61 'S0 ) riopy Cua e S snou g wiody pagdepyg ) an)ea psas0] a0 100 1 e sy oy anpea ugdumeg o) p
._....u._.__._..uu..__ﬂ 2| [T I 2 L RSN EA SIS ..u._.._.m_.._..._._ T 2] Jad | o 20| A ] 528d] 2] ST 520125 (T m—_._._.. 2] 4 _._u._.._.“__.._.muu__ ._....u._u..u_...u._ 2] PN SIS ..u_._._._.z.._ .n_._ [
P L U g 15 280] 301 S0 S30IRE S| EUTELI0 201 ] AJLIRA 01 PREN 511521 J3P00 U yowmp syl oy aetdosdd e aq o1 paunumap s1wnpuodpe uened
=OLLINS LT A% o __.:..u_._.-._..._.m_...u._ LS 211 5T SaIa8 2] ..“_._.._ﬂ.—._.-._.__._: Gl m_._.__._ﬂ._u_._..uﬂ._.u____.- :__...u..z.-._.__._ =21 1. ...u._.._.—..q._.-._.__._r. L[ L _.._._.__m_.___.- ST 0] PEna e S _._E...._:_ﬂm. e
PARIIUAE 200 EPE0LNS §] JO (R0 Y CINSTIRE WUeuTssip s s ugdums) Adonus sidures sy qus Sunss amdonns Jo aduess vy 720 34N

OOOCODOOODO COOOOOOOD -
OOOODOOOOPOOOODOOOD

159RITT - - JEI[[ELLY

paraalaa o s odiy [osg 0 gy 09
pagoaia sEagtodiy oy & ge =gy
sap1aE 3wy a1 jo (35 Adonua apdures s aq a1

YR

G1 = W S s aefionng .

LICKLI LI _w___ FUTILLIS1]



| Original time series |

OROOOOYOOLOLLLLOLOOL®

I Surrogate time series: Randomly shuffle |

HLOLLLLOLLBOLEOLB®OOLE

| The distribution is preserved |

(%)
()

(+)
G
OO
385580
+ oy
SS00
FIGURE 5.3 A graphical representation of the Theiler et al. Algorithin 0 surrogate. The

original and surrogate (created using the Algorithm 0) time series have the same frequency
distribution, even though they now have completely different time structure.

EXAMPLE BOX 5.2 NUMERICAL EXAMPLE OF THEILER ET AL.
ALGORITHM 0 SURROGATE METHOD

This example uses the following 20 data points from 20 s of standing
posture sampled at 1 Hz. {0.76, 0.64, 0.34, 0.60, 0.55, 0.27, 0.29, —-0.39, 0.04,
-0.19, -0.21, -0.51, -0.93, -0.48, 0.69, 1.63, 0.13, 1.5, 1.26, 1.5}.

1. Plot the data and identify the null hypothesis. The null hypothesis for A0
is that the data are consistent with independent and identically distributed
noise with unknown mean and variance.

i
= U k3

=

1 2 3 4 5 & 7 9 10-11.12 13 1415 16 17 18 19 20
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Center of pressure
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2. Randomly shuffle the original time series. This can be done with the
randn function in MATLAB®. After shuffling, our time series is as follows:



{0.60, 0.13, -0.19, -0.48, 1.5, -0.93, 0.76, 1.26, 1.63, 0.29, 0.04, 0.64,
-0.21, 0.69, 1.5, 0.27, 0.34, -0.39, 0.55, -0.51}

8 9 10 11 12 13 14 15 16 17 lvﬂ/lkeﬂ

Time (s)

Center of pressure
anterior posteriar (cm)
- =
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This step would be repeated so that a total of at least 19 surrogates are
generated to be able to reject the null with 95% confidence that the
original time series is not within the distribution of the surrogates.

3. Calculate the discriminant statistic. For this example, the discriminant is
not calculated because the 20 points data series would be too short to
provide meaningful results, but this would be the next step.

4. Test for significance between the discriminating statistics values of the
original time series and the series of A0 surrogates.

Suppose, surrogate time series are generated by Algorithm 0 and some
discriminating statistic is applied, and the null hypothesis of the test is rejected. What
does this indicate? The rejection of the null hypothesis of IID noise implies the evidence
of some structure in a time series. If the null is accepted, it means that the original time
series has no determinable dynamics, that is, there are no correlations among the data
points of the time series. Thus, the next step is to test whether this structure has a linear
origin or not by using Algorithm 1 or Algorithm 2.

Algorithm 1 (Fourier Transform)

The null hypothesis in Algorithm 1 addresses that a time series is generated
from a linear Gaussian stochastic process, which is equivalent to a linearly filtered
noise. Algorithm O involves random shuffling of a time series. This process destroys
both linear and nonlinear correlations among data points. In order to preserve linear
correlations, shuffling must be done in the frequency domain. Therefore, the first step of
generating surrogate time series by Algorithm 1 is to perform a Fourier transform, that
is, taking data from the time domain to the frequency domain, where Fourier
transformed data have corresponding amplitudes and phases. The next step is to
shuffle the phases while preserving the amplitudes in the frequency domain. The final
step is to take the inverse Fourier transform in order to transform back the data to the



time domain from the frequency domain (Figure 5.4; Example Box 5.3). A surrogate
time series generated by Algorithm 1 preserves the linear correlations, which are
represented by the discrete Fourier power spectrum as the original time series while
any additional structure should be destroyed. However, surrogate time series does not
preserve the probability distribution of the original data, which can lead to a false
rejection of the null hypothesis. There is an especially obvious discrepancy in the
probability distribution between a coarsely grained time series and its surrogate
generated by Algorithm 1.

Time domain Frequency domain Time domain
Amplitudes
El vEd Surrogate
|:> time series
FIGURE 5.4 The original time series undergoes fast Fourier transformation (o move the series
from the time domain to the frequency domain. Then phase randomization is performed.
Inverse Fourier transformation provides the resulting surrogate time series.

EXAMPLE BOX 5.3 NUMERICAL EXAMPLE OF THEILER ET AL.
ALGORITHM 1 SURROGATE METHOD

This example will use the same 20 data point time series as Example Box 5.2,
but continue through the steps for the A1 algorithm.

1. Plot the data and identify the null hypothesis. The appropriate null
hypothesis for the A1 algorithm is that the time series is generated from a
linear Gaussian stochastic process equivalent to a linearly filtered noise.
The time series is: {0.76, 0.64, 0.34, 0.60, 0.55, 0.27, 0.29, -0.39, 0.04,
-0.19, -0.21, -0.51, -0.93, -0.48, 0.69, 1.63, 0.13, 1.5, 1.26, 1.50}.
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2. Perform a Fourier transform. Since randomly shuffling the time series
removes linear and nonlinear correlations among data points, shuffling
must be done in the frequency domain. This can be done with the fft



function in MATLAB®. After the transform, the series is “moved” from the
time domain to the frequency domain. The result is a list of coefficients
representing real and imaginary parts. The coefficients represent the
amount that each frequency contributes to the overall signal. Plots of the
real and imaginary parts of each Fourier coefficient are as follows:
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3. Shuffle the phases while preserving the amplitudes. The graphs in the
following are the real and imaginary amplitudes of the Fourier coefficients
after the phases have been shuffled. It is clear that the frequency
contributions are different from the original.
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4. Take the inverse Fourier transform. This step takes the data back into
the time domain. The surrogate time series is {1.00, 1.10, 1.09, 0.72, 0.65,
0.64, -0.14, -0.42, -0.52, -0.63, -0.83, -0.16, 0.06, 0.44, 0.44, 1.11,
1.05, 0.37, 0.57, 0.98}. The new time series is plotted:
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5. Calculate the discriminant statistic. For this example, we will not
calculate the discriminant because the 20 data point time series would be
too short to provide meaningful results, but this would be the next step.

6. Test for significance between the discriminating statistics values of the
original time series and the series of A1 surrogates.

Let us look at an example. An autoregressive time series with length N = 2000 called
AR is generated by the following Equation 5.2:

X1 =09X,+95 (5.2)

where 0 is an error term.

AR is generated by the linear Gaussian stochastic process. Thus, the null
hypothesis of Algorithm 1 should not be rejected. Another time series called AR2 is
created by making AR coarse (removing the precisions). Even though little difference is
visually observed between the plots of the two time series, the number of unique values
each time series has is quite different (Figure 5.5a). The number of unique values of AR
is the same as its data length (2000) while AR2 only has 71 unique values, even though
it is still 2000 data points long. Nineteen surrogate time series are generated from AR
and AR2, respectively, but again it is hard to differentiate between the surrogate time
series of each time series by a visual inspection (Figure 5.5b). However, the results of
the null hypothesis testing using the SampEn as discriminating statistics are different
between AR and AR2 (Figure 5.5¢). For AR, the SampEn value of the original time
series falls within the distribution of the SampEn values of the surrogates, and this is
what we have expected, that is, not rejecting the null hypothesis. However, the SampEn
value of AR2 is the smallest SampEn values among the SampEn value of its surrogate
time series. As a result, we may reject the null hypothesis at 95% confidence level. The
discrepancy in the results between AR and AR2 hypothesis testing seems to be due to



an increase in the number of values in surrogate time series generated from AR2. The
SampEn value of AR2 is much lower than the SampEn value of AR since AR2 has
fewer numbers of unique values than that of the AR2. However, the process of
generating surrogate time series using the Fourier transform preserves the frequency
distribution (Figure 5.6), but not the probability distribution (Figure 5.7). Thus, Algorithm
1 increases the number of unique values in surrogate time series generated from AR2:
they all have 2000 unique values. This jump in the increase in the number of values in
the surrogate time series is reflected in the value of SampEn of surrogates generated
from AR2. It created discrepancies in the SampEn values between AR2 and its
surrogates, causing the false rejection of the null hypothesis. In order to avoid statistical
bias, it is better that the probability distribution of an original time series and surrogate
are the same. Therefore, for a coarsely grained time series, Algorithm 1 may not be an
appropriate surrogate method to apply.

Again, let us suppose surrogate time series are generated by Algorithm 1 and
some discriminating statistics are applied, and the null hypothesis is rejected. What
does the rejection of the null hypothesis of a linearly filtered noise imply? It may be
indicating evidence of a more complex structure in a time series such as nonlinearity.
However, even though a time series contains nonlinearity, it may be due to some
distortion caused by a measurement procedure, and the origin of underlying dynamics
may be linear stochastic. To test such a case, Algorithm 2 can be used.

Algorithm 2

Algorithm 2 deals with the null hypothesis of a static and monotonic nonlinear f-
ilter. Here, a measurement procedure is regarded as a nonlinear filter and enhances
fluctuations in a system with linear dynamics as this linear stochastic system passes
through the filter. Therefore, the time series contains nonlinearity, which enhances the
system with linear dynamics as it goes through the filter, but this nonlinearity is not in
the dynamics. This process is known as nonlinear distortion and is described by the
following equation where h (-) is an invertible, static measurement function, {x»} is the
underlying linear stochastic process, and {y»} is the observed data:

v =Hix,) (5.3)

A time series in test is assumed to have failed a test for originating from a Gaussian
process by Algorithm 1 and therefore shown that it is not generated by a linear
Gaussian stochastic process. However, if the invertible, static measurement function
may be able to explain this deviation from the Gaussian distribution, then it may be
shown that the underlying dynamics are a linear Gaussian stochastic process. Algorithm
2 deals with such a scenario. Since the underlying dynamics are considered as a linear
Gaussian stochastic process, part of the procedure to generate surrogate time series by
Algorithm 2 also involves Algorithm 1. It is necessary to rescale the time series first so
that the distribution will be Gaussian, and we can apply Algorithm 1. Example Box 5.4



goes through the procedure of generating a surrogate time series by Algorithm 2 by

using a simple 10 data point time series.
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EXAMPLE BOX 5.4 NUMERICAL EXAMPLE OF THEILER ET AL.
ALGORITHM 2 OR THE AAFT SURROGATE METHOD

This example will illustrate the process of generating a surrogate time series by
Algorithm 2.

1. Plot the data and identify the null hypothesis. The appropriate null
hypothesis for the A2 algorithm is that the time series is generated from a
static and monotonic nonlinear filter. The original time series for this
example is: {xn} = {125.00, 67.37, 46.33, 49.64, 49.83, 172.36, 188.22,
157.40, 138.77, 276.97}.

Original series
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2. Rank order {xn} and make a time series of rank. If we rank order the
time series, it would be: {46.33, 49.64, 49.83, 67.37, 125.00, 138.77,
157.40, 172.36, 188.22, 276.97}. So, the rank order time series would take
the position of these numbers as 1-10, in the order of the original series.
The time series of the ranks would be: Rank_original = {5, 4, 1, 2, 3, 8, 9,
7,6, 10}.

3. Generate a random time series which has the same length as {xn} and
has a Gaussian distribution. We call this random time series {yn} ={1.50,
-0.28, 0.50, 1.034, -1.51, -2.34, 0.26, —-0.52, 0.23, 0.32}.

4. Sort {yn} in an ascending order, which is called Sorted_{yn}.
Sorted_{yn} = {-2.34, -1.50, -0.52, -0.28, 0.23, 0.26, 0.32, 0.50, 1.03,
1.50}

5. Reorder Sorted_{yn} according to Rank_original and let it be called
Reordered_{yn}. Reordered {yn} = {0.23, -0.28, -2.34, -1.51, -0.52,
0.50, 1.03, 0.32, 0.26, 1.50}. Reordered_{yn} has the same time evolution
as the {xn}, but the distribution is Gaussian.

6. Apply Algorithm 1 on Reordered_{yn}. That is taking the Fourier
transform and shuffling phases while keeping the amplitudes and then
applying the inverse Fourier transform. This series is called
Surrogate_{yn} = {1.07, 1.19, -0.55, -1.06, -1.48, -0.06, 0.17, —-0.12,
-0.28, 0.30}.



7. Rank order Surrogate_{yn}. This results in Rank_Surrogate {yn} = {5, 4,
3,9,8,6,7,10, 1, 2}.

8. Reorder Rank_Surrogate {yn}. This sequence is called Final_reorder =
{9,10,3,2,1,6,7,5, 4, 8}.

9. Arrange {xn} according to the Final_reorder. Now, a surrogate has been
generated as Surrogate = {188.22, 276.97, 49.83, 49.64, 46.33, 138.77,
157.40, 125.00, 67.37, 172.36}. By plotting the series in the following, it is
clear that the surrogate contains the same values as the original, but in a
different order.

A2 surrogate series

300
200 -
100 1
0+ T — ; . - T
(b)
The chart following further illustrates how the surrogate series has changed from
the original series. Two highlighted values show 46.33 moving from position 3 in

the original series to position 5 in the surrogate series and 188.22 moving from
position 7 to position 1.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
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(c)

A surrogate time series generated by Algorithm 2 preserves the amplitude
distribution of the original time series and linear correlations among data points or
power spectrum of the original time series. Algorithm 2 deals with more realistic
situations than Algorithm 1. However, limitations with Algorithm 2 have also been



reported (Kugiumtzis 2001; Schreiber and Schmitz 1997). When a time series is short
and strongly correlated, rescaling of the inverse Fourier transformed data can change
the linear correlations of the time series, causing a discrepancy between the power
spectrum of the original time series and the surrogate time series (Figure 5.8). This
discrepancy can lead to a false rejection of the null hypothesis, especially with a
discriminating statistic which is sensitive to correlations among data points such as
polynomial and local average fit, mutual information, and largest Lyapunov exponent
(Kugiumtzis 2001). To deal with this problem, Schreiber et al. (1996) proposed an
improved method known as the iterated amplitude-adjusted Fourier transform (IAAFT),
and this has been widely used (Lehnertz et al. 2001; Poggi et al. 2004; Rieke et al.
2003).

Iterated Amplitude-Adjusted Fourier Transform

The steps to generate surrogate time series by the iterated amplitude-adjusted
Fourier transform (IAAFT) are as follows (Figure 5.9). Let {x»} be the original time series
wheren=1,2,..., N

1. Sort {xn} in an ascending order and store this sorted time series Sorted_{xx}.
2. Take the Fourier transform of {x,} and store the squared, the amplitudes of
the Fourier transform of {x,}, Xz = |Zx"e2™knIN |2

Shuffle {x»} and take the Fourier transform and call it FTRandomized {xx}.

4. To adjust the power spectrum, replace the squared amplitudes of
FTRandomized {x»} by { Xi}. The phases are kept unchanged. Then
transform back by taking the inverse Fourier transform.

5. The procedure at step 4 will change the amplitude distribution. Therefore,
adjust the amplitudes by ranking the values of this time series and replacing
them by the values of Sorted_{xx}.

6. However, again the procedure at step 5 may alter the power spectrum,
so step 4 and step 5 are repeated until some convergence is achieved.

w

A surrogate time series generated by IAAFT preserves the power spectrum of an
original time series much better than the other surrogate algorithms (Figure 5.10). For a
numerical example, please see Example Box 5.5. This algorithm is trying to maintain
the underlying linear correlations. However, there is no guarantee that iterations will
eventually converge. Furthermore, there is also a concern that surrogate time series
generated by IAAFT for a data with short length may not have
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A surrogate time series generated by IAAFT preserves the power spectrum of an
original time series much better than the other surrogate algorithms (Figure 5.10). For a
numerical example, please see Example Box 5.5. This algorithm is trying to maintain
the underlying linear correlations. However, there is no guarantee that iterations will
eventually converge. Furthermore, there is also a concern that surrogate time series
generated by IAAFT for a data with short length may not have enough randomization,
which makes hypothesis testing against a specific system rather than a general class of
the system (Small and Judd 1998; Small and Tse 2002). Or, put another way, the
surrogate time series may not be different enough from the original.

Algarithm 0 Algorithm 1
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FIGURE 5.10 These plots of a portion of the power spectra of the original time series

(gray) and 19 surrogate time series generated by Algorithm O (black), Algorithm 1 (black),
AAFT (black). and LAAFT (circles). It is visually clear that the spectra are altered the least
in IAAFT.

EXAMPLE BOX 5.5 NUMERICAL EXAMPLE OF THE IAAFT

This example will use the same 10 data point time series as Example Box 5.4,
which is: {x»} = {125.00, 67.37, 46.33, 49.64, 49.83, 172.36, 188.22, 157.40,
138.77, 276.97}.

1. Plot the data, identify the null hypothesis, and Sort {x»} in an ascending
order. The appropriate null hypothesis for this algorithm is that the time
series is generated from a linear Gaussian stochastic process.
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The new time series is Sorted_{xn} = {46.33, 49.64, 49.83, 67.37, 120.00, 138.77,
157.40, 172.36, 188.22, 276.97}.

2. Take the Fourier transform of {x,} and store the squared amplitudes of
the Fourier transform of {xn}, Xg = |Zxne2™knN |2,

Power spectrum {x, |
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(b} Frequency (Hz)

Amplitude

The transform moves the series from the time domain to the frequency domain.
The power spectrum of {xn} is shown. The Fourier transform results in a list of
real and imaginary coefficients in the different frequencies. The plots of the
frequency components from the Fourier transform are shown in the following.
The stored squared amplitudes of the Fourier transform of {x,} that are stored as
follows: {XZ } = {1271.89, 396.23, 170.51, 222.24, 77.16, 175.59, 77.16, 222.24,
170.51, 396.23}. The amplitude distribution of {x} is shown on the next page.
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3. Shuffle {x»} and take the Fourier transform of the shuffled series. This
series is called FTRandomized {x»}. Shuffled {x,} = {49.64, 276.97,
172.36, 188.22, 120.00, 46.33, 49.83, 157.40, 138.77, 67.37}. The
FTRandomized {xn} results in the following real and imaginary coefficients:
Real coefficients FTRandomized {x }
200,000
-
=
= 100,000
5
0
0 0.2 0.4 0.6

(f) Fequency (Hz)



Imaginary coefficients FTRandomized {x,}
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The power spectrum of Shuffled { x» } is different from the spectrum of { x» }, so
needs to be adjusted. However, the amplitude distribution Shuffled { x» } is similar

with that of the {x, }.
Amplitude distribution shufiled {x_}

Probability

(i)

4. The power spectrum is adjusted by replacing the squared amplitudes of
FTRandomized {x»} with {X? }. This randomizes the series without
changing the phases. Then, the series is transformed back by using the
inverse Fourier transform. That results in a surrogate {102.19, 281.05,



185.90, 187.87, 139.30, 65.28, 13.55, 111.26, 107.20, 78.28}. This time
series now looks like:

Surrogate series
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Now, the power spectrum of the adjusted surrogate series is similar with the
power spectrum as {x»}. However, the amplitude distribution of the surrogate is
different from that of {x»}. Keep in mind that although the differences are small,
our example time series is only 10 data points. Thus, these differences would be
magnified for longer series.

Amplitude distribution surrogate

Probability

(1)
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5. Adjust the amplitude distribution. The procedure from Step 4 will
change the amplitude distribution. The amplitudes are adjusted by ranking
the values of the surrogate time series and replacing them by the values
of Sorted_{x»n}. Rank order of the surrogate is {13.55, 65.28, 78.28,
102.19, 107.20, 111.26, 139.30, 185.90, 187.87, 281.05} which results in
the Rank_surrogate = {7, 6, 10, 1, 9, 8, 5, 3, 4, 2}. Now, the rank is sorted
and ranked according to its position. For example, you can see that rank
number 1 of Rank_surrogate was in the 4th position, rank number 2 in the
10th position, etc., which results in Sorted__ rank_surrogate = {4, 10, 8, 9,
7,2,1, 6,5, 3}. The final part of this step is to replace them with the
values of Sorted_{x»}. From step 1, Sorted_{x,} = {46.33, 49.64, 49.83,
67.37, 120.00, 138.77, 157.40, 172.36, 188.22, 276.97}. When the
Sorted_rank_surrogate is replaced with the values from Sorted_{x»}, the
4th number from Sorted_{xxs}is placed 1st in our new series, the 10th
number from Sorted_{x»} 2nd, and so on, resulting in the
Amplitude_adjusted_surrogate = {67.37, 276.97, 172.36, 188.22, 157.40,
49.64, 46.33, 138.77, 120.00, 49.83}.

Amplitude adjusted surrogate series

6. The procedure in step 5 may again alter the power spectrum. Thus,
step 4 and step 5 are repeated until some convergence is achieved and
both the power spectrum and the amplitude distribution are close to being
preserved. By examining the amplitude distribution shown in the following,
it is clear that the amplitude distribution has changed and is (again) similar
with {xn}, but the power spectrum has changed (again). However, the
differences between this power spectrum and {x»}, are less than between
the spectrum of Shuffled {x,} and {xn}.

Power spectrum amplitude adjusted surrogate
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7. Calculate the discriminant statistic.

8. Test for significance between discriminating statistic values of the
original time series and the series of IAAFT surrogates.

REJECTION OF NULL HYPOTHESIS

So far different linear surrogate algorithms have been discussed as well as how
surrogate time series are generated by preserving some linear properties of an original
time series while destroying other dynamics (Figures 5.11 and 5.12). The rejection of
null hypothesis has also been discussed as being an indication of the presence of more
complex dynamics than linear dynamics in the original time series. However, results of
surrogate methods do not provide any definite answers regarding the exact nature of
the underlying dynamics of the original data. The rejection of the null hypothesis only
indicates that the underlying dynamics of the original time series are not consistent with
the null hypothesis. In addition, even if there is no significant difference between the
original and the surrogate time series, it cannot be concluded that they are from the
same population. It may be simply due to inadequate statistics. Therefore, as is the
case for other nonlinear methods, multiple nonlinear tools should be applied instead of
solely depending on the results obtained by a surrogate method for data analysis.

Another question one may raise is whether the surrogate methods that were
discussed so far can be applied to biological time series that exhibit inherent trends. In
fact, many experimental data exhibit strong periodicity such as gait, human speech,
ECG and so forth (Buzzi et al. 2003; Miller et al. 2006; Schreiber and Schmitz 2000;
Small and Tse 2002; Stergiou et al. 2004; Zhang et al. 2007). What happens if the
above mentioned surrogate methods are used with such time series? The hypothesis
tests for linear surrogate methods are not suitable for a time series with periodicity: such
time series are inconsistent with the null hypothesis of a linearly filtered noise. As a
result, surrogate time series generated from a time series with periodicity by using linear
surrogate methods have geometric structures different from that of the original time
series (Figure 5.13). This would lead to a higher rejection rate of the null hypothesis
than what should actually occur simply because the structure of the time series in the
surrogate is changed (Algorithm 0 and 1) or because the surrogate has changed
geometric structure (AAFT and IAAFT). Therefore, we need another testing hypothesis
and surrogate algorithm for a time series with regular persistent fluctuations or
underlying periodicity.
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FIGURE 5.11 Original time series of center of pressure (COP) data from standing pos-
ture in the anterior-posterior (AP) direction and surrogate time series generated by different

algorithms.

PSEUDOPERIODIC SURROGATE METHOD

Small et al. (2001) introduced a method called the pseudoperiodic surrogate
(PPS) algorithm (Small et al. 2001). Pseudoperiodic time series are defined as time
series that have a noisy periodic orbit perturbed by either dynamical noise or
observational noise or have an oscillatory chaotic flow. The power spectrum of these
time series display clear spikes (Small 2005) (Figure 5.14) due to the dominant inherent
frequencies. Since such a time series already exhibits a deterministic behavior, what is
actually sought in this case is if there is any type of nonlinear structure on the
fluctuations that are on top of these inherent dominant frequencies. A human
electrocardiogram is an example of a signal with periodic orbits that result from
successive heartbeats. However, there may be additional order within the dynamics of
the sinus rhythm, or it could be consistent with uncorrelated noise (Small et al. 2001).
Therefore, the null hypothesis of the PPS states that a time series is consistent with a
periodic orbit perturbed by uncorrelated noise. To test this null hypothesis, the PPS
generates a surrogate time series that keeps the large-scale behavior of the original
time series but does not preserve any additional small-scale dynamics that can be
regarded as chaotic, linear, or nonlinear deterministic structure. Therefore, intracycle



dynamics, which are dynamic patterns within one period of a cyclic pattern, are
preserved, while intercycle dynamics, which are dynamic patterns between different
periods across a cyclic pattern of the time series, are altered. Two alternative
hypotheses are suggested: (1) deterministic nonperiodic intercycle dynamics and (2) a
periodic orbit with correlated noise. In the case of the electrocardiogram, the application
of the PPS algorithm showed that the sinus rhythm has deterministic nonperiodic
intercycle dynamics (Small et al. 2001).
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FIGURE 5.12 The probability distribution (a) and power spectra (b) of the original
time series and all surrogate time series generated by the different algorithms from
Figure 5.11.
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FIGURE 5.13 Applying linear surrogate methods is not suitable for time series with inher-
ent periodicity. Knee flexion and extension angle data from human gait produces cycles that
correspond to steps. Using Algorithms, Al and Al would result in false rejection of the null
hypothesis because these methods change the structure of the ime series. Similarly, AAFT
and IAAFT algorithms change the geometric structure of the time series and would also lead
to false rejection of the null.

The first step of generating a surrogate time series by the PPS algorithm involves
the reconstruction of the state space. Therefore, the embedding dimension (m) and the
time lag (1) need to be defined. The embedding parameters to compute discriminating
statistics, which require the reconstruction of the state space, are usually set to be the
same for the entire data sets. However, for generating a surrogate time series, the
embedding parameters should be specific to each data set (Small and Tse 2002). The
other parameter the PPS requires is the noise radius (p), which defines the amount of
noise in a surrogate (Small et al. 2001). If noise radii are too large, then the surrogate
time series will be too distinct from the original while if noise radii are too small, the
original and surrogate time series will be too similar, which may result in a false positive



result for the hypothesis testing (Figure 5.15). Noise radii should be chosen such that
the fine intercycle dynamics are removed, but the intracycle dynamics are preserved.
Small et al. (2001) suggested selecting a p that maximizes the number of short
segments (length =2) that are the same for the original time series and the surrogate.
These segments represent the amount of correlation between the surrogate and the
original data sets (Small et al. 2001). If p is too large, surrogate time series will be too
different from the original time series because the dynamics were poorly approximated.
If p is too small, surrogate time series will be too similar to the original time series.
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FIGURE 5.14 Knee flexion and extension angle time series have a periodic orbit that cycles
with every step. The power spectrum displays a clear spike, which demonstrates the fre-
guency of the dynamics in the time series. Such time series already exhibit deterministic
behavior, so a different algorithm, the pseudopeniodic surrogate method, 15 required to iden-
tify whether additional determinism exists in the system.

Let us look at the procedure of generating a surrogate time series with the PPS:



1. Select the embedding dimension (m) and time lag (1) for time delay embedding
reconstruction.

2. Randomly select an embedded point as an initial condition (Figure 5.16a). This
embedded point is a delay vector that has m elements, and we call it v1.

3. Randomly select a neighboring vector to v1 and call it v2 (Figure 5.16b).
The neighbors are chosen with a certain probability equation.

4. Randomly select a neighboring vector to v2 and call it v3 (Figure 5.16c).

5. Repeat this procedure until the number of vectors that we select reaches the
length of the original time series (Figure 5.16d).

6. A surrogate time series is generated by taking the first element of the selected
delay vectors.
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FIGURE 5.15 The noise radius is an important parameter for implementing the pseudope-
riodic surrogate algorithm. If the noise radius is too small, the original and surrogate time
series will be too similar. If the noise radius 1s too large, the surrogate time series will be too
distinet from the original. Noise radin should be chosen such that the fine intercycle dynamics
are removed, but the intracycle dynamics are preserved.



The surrogate time series generated by the PPS can be considered as a random
walk on the attractor; therefore, it follows the same vector field as the original time
series but is contaminated with dynamic noise (Figures 5.17 and 5.18). This addition of
dynamic noise destroys subtle deterministic intercycle dynamics, including periodic
dynamics with correlated noise, pseudoperiodic chaos or any deterministic nonperiodic
intercycle dynamic behavior (Small and Tse 2002; Zhao et al. 2008). The PPS algorithm
has been applied to gait kinematics data (Miller et al. 2006).

FIGURE 5.16 The process of the pseudoperiodic surrogate algorithm includes (a) picking
an embedded point on the attractor as an initial condition, (b) identifying the neighbors within
a certain probability equations, (c) randomly picking one neighboring vector and identifying
its neighbors, and (d) randomly picking one neighbor’s neighboring vector. This process 1s
repeated until the number of vectors selected equals the length of the original time series.
In (a). the initial condition is shown as a circle and its neighbors are diamonds in (b). The
neighbors of a randomly selected neighboring vector are shown in (c) and one neighbor’s
neighboring vector is shown as a circle in (d).

Specifically, knee angle kinematic time series from healthy subjects were
evaluated using the PPS algorithm, and Theiler et al. algorithm 0. The average time lag
for the series was 9.833 and the average embedding dimension was 6.333. The noise
radii that maximized the number of short segments that are the same for the original
time series and the surrogate was 3.351. The paper demonstrated that Theiler et al.
algorithm 0 destroyed the intracycle dynamics of the gait time series by changing the
overall shape, which resulted in a false rejection of the null hypothesis. The PPS



algorithm did not alter the intracycle dynamics of the original time series, which made it
more appropriate to explore the presence of underlying processes within these
dynamics. Example Box 5.1 shows the general surrogation procedure using the PPS
algorithm. The data for a knee flexion and extension angle, along with one surrogate
generated using the PPS algorithm are included in Appendix 5.A. The SampEn values
of the original and surrogate series, along with the parameters used are included in
Example Box 5.1.

FIGURE 5.17 The phase portrait of the original Rossler attractor is plotted as a solid black
line. The trajectories of the original attractor are indicated with open circles, while the tra-
Jjectories of the pseudoperiodic surrogate attractor are indicated with asterisks. Clearly, the
surrogate attractor follows the same vector field as the original, but since it has been con-
taminated with dynamic noise, the trajectory is not identical to that of the original attractor.
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FIGURE 5.18 The plot of the original and pseudoperiodic surrogate time series (a) and two
dimensional vector phase portraits (b) from the Lorenz attractor. The surrogate is a random
walk in the same vector field as the original time series but is contaminated with dynamic noise.



DISCRIMINATING STATISTICS FOR PPS

As for discriminating statistics to be used with the PPS, it was reported that for
both theoretical and experimental time series, the correlation dimension performed the
best compared to other nonlinear tools such as the Shannon’s entropy, prediction error,
mutual information, kurtosis and skewness (Small and Tse 2002). However, Zhang
et al. (2007) reported that the correlation dimension and the PPS algorithm failed to
differentiate between a chaotic system and a noisy periodic orbit. In this study, a
theoretical time series of the chaotic Rossler system (Equation 5.4) was used as the
original time series. If the correlation dimension was an appropriate discriminating
statistic, then the null hypothesis should have been rejected. However, the correlation
dimension of the original time series lied within the dimension distribution of the
surrogates and could not differentiate between the original and the surrogate time
series. This is due to the fact that the correlation dimension characterizes the
distribution of the points in the state space; however for the PPS algorithm, the
distribution of the original and surrogate time series should follow the same pattern.
Thus, an alternative discriminating statistic must be used when implementing PPS
surrogation:

x=—(y+1)
y=x+ay (5.4)

1=24z{x-4)

Zhang et al. (2007) introduced alternative new methods to be used as discriminating
statistics with the PPS. Those methods do not require the reconstruction of the state
space but take the cycle in the time series as the basic processing unit. The
discriminating statistics depend on the correlation coefficient between cycles and are
supposed to be more robust to nonstationarity in data and different kinds of noise.
There are separate methods for detecting the temporal, or time index, correlation and
the spatial, or configuration of cycles, correlation. The basic ideas of the methods
proposed by Zhang et al. (2007) are the following:

1. Divide a pseudoperiodic time series into consecutive cycles Ci (i =1, 2,..., m).

2. Find correlation coefficients (p) between cycles as a measure of their distance
in phase space.

3. Characterize the similarity of wave form between a pair of cycles. A large p
means there is a higher level of similarity. Two cycles will also be close in the
phase space with a higher p.

For chaotic systems, the distance between two nearby cycles will increase exponentially
over time due to sensitivity to initial conditions, whereas the correlation will drop
exponentially. More specifically, Zhang et al. presents two specific alternative surrogate
methods. The first is average cycle divergence rate, which detects a correlation



between the temporal cycles. For chaotic systems, the distance between two nearby
cycles will increase exponentially over time, due to the sensitive dependence on initial
conditions. The correlation between two cycles is expected to drop exponentially as the
number of cycles increase. The second alternative method investigates the fluctuation
of the degree of distribution of cycles in the phase space and is quantified through the
variance of the normalized derivative. In this method, the degree distribution curve and
the variance of the normalized derivative distribution are calculated. The degree
distribution curve provides the distribution of cycles in the phase space. A chaotic
system will show multiple distribution peaks, whereas a noisy periodic system will show
a Poisson distribution of peaks. The peaks or smoothness of the distribution are
quantified by the variance of the normalized derivative. A chaotic system will have a
high value, and a noisy periodic system, which has more homogeneous smoothness,
will have a low value.

A more recent surrogate method called the small shuffle surrogate was
introduced by Nakamura and Small (2005) to investigate whether there are dynamics in
irregular fluctuations (short term variability), even if the fluctuations are modulated by
trends or periodicities. This algorithm generates surrogates that preserve long-term
behaviors but destroys local structures. The null hypothesis is that irregular fluctuations
are independently distributed (temporally uncorrelated) random variables. This
algorithm changes the flow of information in the data and can be used to detect whether
dynamics are present or not, regardless of whether the time series are linear or
nonlinear. The authors propose that autocorrelation or average mutual information are
appropriate to use as the discriminating techniques. The autocorrelation function and
average mutual information answer the question regarding how much future data points
are determined by past data points. To test the hypothesis, 39 surrogate time series are
developed (two-sided test) and discriminating statistics calculated for the original and
surrogate time series. If the values of the discriminating statistics of the original fall
within the distribution of the surrogates, the null is not rejected. Time series with no
dynamics (random process) have autocorrelation function, and average mutual
information values fall within the distribution of the small surrogate shuffle distribution.
Time series that contain dynamics will result in autocorrelation function and average
mutual information values that are separate from the surrogate distribution. This method
was robust in systems that contain long-term trends and those contaminated by
stochastic noise.

One limitation of the small shuffle surrogate method is that it cannot distinguish
between linear or nonlinear phenomena, as both types of systems exhibit some type of
dynamics, which would lead to rejecting the null hypothesis. Nakamura et al. (2006)
proposed a modification to the small shuffle surrogate that would test for the presence
of nonlinearity in time series containing long-term trends and short-term fluctuations
called truncated Fourier transform surrogate. This method assumes that the frequencies
of irregular fluctuations are higher than the long-term trends and that when the data are
linear, all phases can be treated as linear data when the power spectrum is preserved.



The null hypothesis for this algorithm is that irregular fluctuations are generated by a
stationary linear system. The algorithm destroys nonlinearity in the irregular fluctuations
and preserves the trends or periodicities. This is done by randomizing those phases
from the power spectrum in the higherfrequency domains while maintaining the low-
frequency phases. Thus, the major difference from the previous small shuffle surrogate
is that not all phases are randomized, but only those in the higher-frequency domain.
This algorithm requires the selection of a parameter to determine which frequencies will
be randomized. This limitation of the truncated Fourier transform surrogate led Rios

et al. (2015) to develop two new methods using decomposition to improve the
surrogation techniques. The new techniques are the empirical mode decomposition—
Fourier transform and empirical mode decomposition—amplitude-adjusted Fourier
transform. These techniques rely on decomposing the data into a set of
monocomponents plus residuals, with the residuals demonstrating the time series trend.
Next, traditional surrogate methods are applied on each monocomponent, which results
in a set of monocomponent surrogates. Finally, the set of surrogates is combined and
retrended by adding the residuals back into the time series from the first step. This
algorithm allows testing for the presence of linear and nonlinear behaviors in both
stationary and nonstationary time series.

SUMMARY

In this chapter, we have discussed surrogate methods, which take the form of
hypothesis testing. We examined several different surrogate algorithms, four linear
surrogate methods, the pseudoperiodic surrogate method, and the small shuffle
surrogate. The linear surrogate methods are designed to be applied to a stationary
irregular time series without any long-term trend or periodicity, while the pseudoperiodic
is applied to time series with periodicity. The small shuffle surrogate provides
information regarding dynamics in irregular fluctuations, even if the fluctuations are
modulated by trends or periodicities. Each algorithm generates a surrogate time series,
which is consistent with a specific null hypothesis. Surrogate methods are used as an
indirect approach to identify the nature of a time series. They try to narrow down the
possibility of what a time series is by eliminating the possibilities of what a time series is
not. Surrogate methods can identify whether a “hidden” structure exists within the data,
but not necessarily tell if chaos exists. A surrogate method alone cannot decide what
the time series is but is an extremely helpful tool when used with other nonlinear tools.

EXERCISES

1. State the general procedure of conducting a surrogate test.
2. State the null hypothesis of Algorithm 0.
3. State the null hypothesis of Algorithm 1.
4. State the null hypothesis of Algorithm 2.



5. What is the difference between Algorithm 2 and IAAFT?

6. Can we use linear surrogate methods when a time series exhibits strong

periodicity? Why or why not?

7. State the null hypothesis of the PPS algorithm.

8. What three parameters are necessary for the PPS algorithm?

9. Can you determine what a time series is by using surrogate methods?

10. Explain two kinds of discriminating criteria.

APPENDIX 5.A: KNEE JOINT FLEXION/EXTENSION ANGLE

(DEGREES)

Original Series
8.9612
9.7076
10.999
12.622
14.419
17.115
20.207
24.619
29.044
34.142
39.573
44.759
49.739
54.843
58.542
60.774
62.389
62.196
62.171
61.575
59.821
57.643
54.715
51.169
47.151
42.075

12.578
14.736
17.075
19.491
21.488

22.29
22.265
22.061
21.629
21.241
20.817

21.04
20.637
19.316
18.678
17.495
16.124

14.93

13.69
12.439
11.267
10.207

9.302
8.5962
7.7525
7.2274

25.092
30.052
34.983

40.42

45.34
50.399
54.797
57.619
59.679
60.858
61.133
60.848
59.408
57.758
55.071
51.788
48.584
43.881
39.086
33.177
26.737
20.074
13.561
8.1246

4.782
2.8538

PPS Surrogate Series

16.558
17.772
16.352
15.246
12.269
11.255
10.341
8.8039
7.7423
9.302
8.5962
7.7525
7.2274
6.8028
39.086
33.177
28.6
23.003
17.55
12.775
8.3107
4.782
4.7991
5.4521
7.252
10.041

6.6854
7.0044
7.5202
8.3092
9.5507
10.634
12.254
14.471
17.542

21.09
25.092
30.052
34.983

40.42
13.089
15.602
18.385
25.092
26.077
34.983

40.42

45.34
50.399
54.797
57.619
59.679

45.34
49.475
54.155
56.516
58.711
59.818
60.459
60.116
58.864
56.819

54.73
51.788
48.584
43.881
16.833
15.748
14.811
13.767
12.133
10.818
10.144
9.6492
9.1698
8.8224
9.3043
8.6863



35.762
29.722
23.035
16.215
11.144
6.6787
4.3748
3.4397
4.6151
7.3564
10.249
20.485
20.501
20.069
19.438
19.219
18.51
17.474
16.718
15.219
14.25
13.251
12.093
11.015
9.7966
8.6375
8.0029
7.4718
7.0539
7.0923
7.624
7.991
8.9692
10.382
12.074
14.513
17.673
21.398
25.6
30.065
34.683
39.781
45.339

6.8028
6.6854
7.0044
7.5202
8.3092
9.5507
10.634
12.254
14.471
17.542
21.09
34.294
28.575
22.217
15.664
10.865
6.7063
4.36
3.2073
3.9469
6.542
8.452
11.194
13.136
14.735
16.063
18.232
19.856
20.942
21.685
21.156
20.515
20.305
19.543
18.632
17.751
17.33
15.568
14.439
12.788
11.664
10.341
8.8039

2.8926
4.4985
7.0089
9.2506
10.876
12.778
15.692
18.496
20.266
20.526

20.45
18.385
22.163
26.077
30.343

34.79
39.653
44.762
49.475
54.155
56.516
58.711
59.818
60.459
60.116
58.864
56.819

54.73
51.357
47.767
43.319

38.25
31.784

25.41
18.241
12.775
8.3107
5.7746
4.7991
5.4521

7.252
10.041
12.566

12.566
14.798
17.933
20.797
23.074
23.312

22.75
21.821
21.809
21.635
21.346
20.976
20.004
19.105
17.911
16.509
15.515
15.515
14.619
14.001
11.015
8.8039
7.7423
6.3726
5.5298
4.9179
4.9681
4.9942
5.4474
5.7399
6.7546
7.8583

9.234
11.085
7.4885
8.1968
5.4572
7.9289
13.743
16.208
18.112

19.88
22.265

61.933
61.578
59.408
57.758
55.071
51.788
48.584
43.881
39.086
33.177
26.737
20.331
14.562

10.1
6.2972
7.4885
8.1968
10.589
13.886
16.381
18.542
20.648
20.571
22.131
22.771
22.457
22.075
21.818
21.668
21.053
20.976
20.004
18.694
17.514
57.409
59.772
60.752
61.196
59.528
60.719
59.582
57.577
55.071

8.6412
8.9573
9.8134
8.9071
9.8471
10.48
12.879
18.64
22.644
26.84
31.358
36.497
41.339
46.514
51.32
55.239
58.468
59.867
59.928
61.25
61.654
59.089
56.91
54.625
51.881
48.264
45.083
40.315
34.958
28.6
22.251
15.247
10.459
8.0987
8.2302
8.2302
7.3732
8.0175
9.3349
10.395
11.618
13.484
15.74



49.923
54.053
57.503
59.414
60.413
60.424
60.287
59.089

56.91
54.625
51.825
47.954
44.343
39.828
16.833
15.748
14.811
13.767
13.046
12.233
11.395
11.043
10.098
9.3043
8.6863
8.6412
8.9573
9.8134
11.062
13.032
15.424

18.64
22.644

26.84
31.358
36.497
41.339
46.514

51.32
55.239
58.468
59.867
60.618

7.7423
6.3726
5.5298
4.9179
4.9681
4.9942
5.4474
5.7399
6.7546
7.8583

9.234
11.085
13.089
15.602

6.172
8.7978
11.818
14.175
16.626
19.409
21.455

22.41

21.86
21.326

21.17
20.953
20.711
19.943
19.012
17.888
16.889
15.826
14.575
13.611
12.269
11.255
9.9009

9.164
7.9652
7.6236
6.8844
6.7978
6.8674

14.798
17.933
20.797
23.074
23.312

22.75
21.821
21.809
21.635
21.346
20.976
20.004
18.694
17.514
59.904
60.064
59.735
59.006
57.236
55.149
51.881
48.264
45.083
40.315
34.958
29.086
23.003

17.55
12.304
8.9619
7.1428
6.5955
7.6152
9.3094
11.563
13.711

15.32
18.008
20.571
22.131
22.771
22.457
22.075

22.589
23.685
23.955
23.039
22.423
21.961
21.158
20.332
19.148
17.707
16.558
15.607
14.216
13.369
12.272
11.467
10.876
9.6281

8.833
8.2302
7.1681
8.6673
8.6682
5.7399
9.4577

10.94
12.879
15.348
18.331
21.913
26.323
30.906
34.676
38.509
43.778
48.795
53.255
18.232
19.856

20.45

20.45
20.485
20.501

51.788
48.584
40.315
34.958
27.034
20.331
13.561
10.865
6.7063
4.36
3.2073
3.9469
6.542
9.2506
10.876
12.778
14.735
16.063
18.232
23.398
23.498
23.151
23.046
21.959
21.603
21.213
20.607
19.525
18.704
17.439
16.742
15.858
15.029
13.786
13.241
9.302
8.5962
54.73
51.357
47.767
43.319
40.315
34.958

12.254
14.471
17.542

21.09
25.092
30.052
34.983

40.42

45.34
50.399
54.797
57.619
59.679
60.858
60.459
60.116
59.582
57.577
54.643
48.584
43.881
39.086
31.784

25.41
18.241
12.775
8.3107
5.7746
4.7991
5.4521

7.252
10.041
12.566
14.798
17.933
14.735
16.063

18.64
22.644

26.84
31.358
36.497
41.339



60.685
59.528
58.682
56.665
54.062
51.362
47.681
43.842
38.084
32.691
26.653
20.583
14.562
10.1
6.719
4.9821
4.8589
7.1681
7.5316
7.6462
8.155
9.0405
10.48
12.019
14.143
16.536
19.937
23.942
28.48
33.381
38.509
43.778
48.795
53.255
57.514
59.803
60.379
60.745
61.129
59.998
58.18
56.05
52.888

7.3732
8.0175
9.0707
10.739
12.226
14.413

17.15

20.42
24.323
28.578
33.036
37.901
43.144
47.896

52.56
55.894
58.446
23.498
23.151
23.046
22.685
22.416
22.112
21.613
20.718
19.749
18.704
17.439
16.742
15.858
15.029
13.786
13.241
12.462
11.624

11.14
10.688
10.094
10.217
10.508
11.127
12.127
13.695

21.818
21.668
21.053
20.497
20.088
19.105
17.911
16.509
15.515
14.619
14.001
12.752

11.41
10.876
9.6281

8.833
8.2302
47.993
42.995
37.955
32.211
25.922
19.329
13.066
8.1002
4.9102
3.4886
3.7459
5.4572
7.9289
10.387
12.289

14.95
18.168
20.786
22.191
22.535
22.263
22.175
21.973
21.959
21.603
21.213

20.515
20.305
19.543
18.632
17.751

17.33
15.219

14.25
13.251
12.093
11.015
9.7966
7.7423
9.6281

8.833
8.2302
7.1681
7.5316
7.6462

8.155
9.0405

10.48
12.019
14.143
16.536
20.392

24.59
28.798
33.379
38.638

43.54
48.942
53.917
57.409
59.772
60.413
60.424
60.116
58.864
56.819
19.294
17.772
14.216

29.086
23.003

17.55
12.304
8.9619
7.1428
6.5955
10.589
13.886
16.381
18.542
20.648
23.207
24.454
23.568
23.362

22.61
22.823
21.783
20.661
19.748
18.595
17.153

16.45
15.826
16.124
15.246
14.534
13.217
12.099
11.107
10.065
9.5547

9.081
7.6539
7.8662
7.0044
11.062
13.032
15.424
16.208
18.112

19.88

46.514

51.32
55.239
58.468
59.867
60.618
60.685

61.22
59.521
57.577
54.643
51.513
45.418
40.387
37.955
32.211
25.922
20.583
14.671
10.459
8.0987
7.3227
6.8289
7.6683
10.584
12.135
14.628
16.402
18.799
20.716
23.362
24.356
23.884
23.039
22.423
21.961
21.158
21.814
21.437
20.085
60.848
59.408
56.819



49.539
45.418
40.387
35.095
28.6
22.251
15.247
10.352
6.2817
4.618
4.2304
5.4652
8.1121
10.589
12.855
14.994
17.341
19.835
21.98
23.398
16.985
20.392
24.368
28.529
33.403
38.097
43.153
48.927
53.825
57.878
60.481
61.898
62.526
62.566
61.809
60.491
58.281
55.879
52.87
49.361
45.07
40.907
35.457

15.538
17.848
20.735

24.59
28.798
33.379
38.638

43.54
48.942
53.522
57.697
59.845
61.454
61.933
61.578
61.012
59.332
57.317
54.946
51.479
20.085
19.294
17.772
16.352
15.246
14.534
13.217
12.099
11.107
10.065
9.5547

9.081
8.6737
8.5694
8.8998
9.3981
10.395
11.618
13.484

15.74
18.586
21.849
25.907

20.607
19.525

18.82
17.654
16.639
15.502
14.507
13.862
12.873
12.018
10.793
10.054
9.0675
8.6673
8.6682
8.7991
9.3349
10.757
12.119
14.471

10.92
8.6063
7.0982
6.5939
8.1424
10.584
13.743
16.208
18.112

19.88
22.265
23.548
24.356
23.884
23.039
22.423
21.961
21.158
20.332
19.148
17.707
16.558
15.607

12.272
11.467
10.207

9.302
8.5962
9.0675
8.6673
8.6682
7.0044
6.7546
12.226

18.64
22.644

26.84
31.358
36.497
41.339
46.514

51.32
55.239
58.468
59.867
60.752
61.196
59.528
58.682
59.332
57.317
54.946
51.479
47.993
42.995
37.955
33.049
27.394
21.394
13.066
9.3651
7.3227
6.8289
7.6683
10.584
13.743

22.265
23.548
23.685
22.263
22.175
21.973
21.959
21.603
21.213
20.607
16.889
15.826
14.575
13.611
13.767
13.046
12.233
11.395
11.043
10.098
9.3043
8.6863
8.6412
8.9573
9.8134
11.127

10.48
14.368
12.254
14.471
17.542

21.09
25.092
30.052
34.983

40.42

45.34
50.399
54.797
57.619
59.679
60.858
61.133

54.73
51.357
47.767
43.319

38.25
31.784

25.41
18.241
12.775
8.1246
6.2817

4.618
3.2073

6.172
8.7978
9.2506
10.876
14.994
18.008
20.571
22.131
22.771
22.457
22.075
21.818
21.668
21.053
20.497
18.632
19.105
16.889
15.826
13.894
13.174
12.269
13.046
11.467

10.7
9.7143
8.8553
9.3043
8.6863
8.6412



29.854
23.848
17.678
13.003
9.3651
7.3227
6.8289
7.6683
9.6401
12.135
14.628
16.402
18.799
20.716
22.589
23.685
23.955
23.613
23.391
22.926

22.43
21.814
21.437
46.206
50.497
54.896
58.094
59.928
60.787
61.003
60.438
59.521
57.651
55.088
51.606
48.204
44.285

39.07
33.371
27.034
20.331
14.671
10.459

30.262
34.676
39.309
44134
49.565
53.917
57.409
59.772
60.752
61.196

61.22
60.719
59.112
56.994
54.797
51.513
47.928

43.74
38.666
33.049
27.394
21.394
15.337
24.454
23.568
23.362

22.61
22.823
21.783
20.661
19.748
18.595
17.153

16.45
14.902
13.894
13.174
12.133
10.818
10.144
9.6492
9.1698
8.8224

14.216
13.369
12.272
11.467
10.7
9.7143
8.8553
8.6787
7.9992
7.6539
7.8662
7.9757
8.4738
9.4577
10.94
12.879
15.348
18.331
21.913
26.323
30.906
35.439
40.819
16.796
19.678
23.314
27.119
32.058
37.112
42.176
47.556
52.439
56.779
59.074
60.953
61.25
61.654
60.786
59.582
57.577
54.643
51.619
47.6

7.5316
8.8998
11.062
13.032
15.424
15.538
17.848
20.735
24.368
28.529
36.497
41.339
46.514

51.32
55.239
58.468
59.867
60.618
59.528
58.281
55.879

52.87
49.361

45.07
40.907
35.457
29.854
23.848
17.678
13.003
9.3651
7.3227
6.8289
7.6683
7.9289
10.387
12.289

14.95
18.168
20.786
22.191
23.498
23.884

21.158
20.332
19.148
19.525

18.82
17.654
16.639
13.369
12.233
11.395
11.043
7.6236
8.2302
7.1681
8.6412
8.9573
9.8134
8.4738
9.4577

10.94
12.019
14.143
16.536
19.937
23.942

28.48
33.381
38.509
44.134
49.565
53.522
57.697
59.845
61.454
61.933
61.578
61.012
58.281
52.888
49.539
45.418
40.387
35.095

8.9619

4.618
4.2304
5.4652

6.542

8.452
11.194
13.136
14.735
16.063
18.232
19.856
22.457
21.821
21.809
21.635
21.346
20.976
20.004
18.694
17.514
16.833
15.748
14.811
13.767
12.752
13.786
13.241
12.462
11.624

11.14
10.688
10.094
10.217
11.127
12.127
13.695
15.538
17.848
20.735
24.368
28.529
33.403



8.0987 8.5052 43.06 23.039 28.6 38.097
7.4885 8.4115 37.446 22423 23.003 43.153
8.1968 8.2302 31.552 21.961 14.562  48.927
10.589 8.8595 24.704 53.825 58.682  38.084
13.886 8.9071 18.513 57.878 56.665 32.691
16.381 9.8471 12.488 60.481 54.062 26.653
18.542 10.919 8.4084 61.898 51.825 20.583
20.648 12492 6.2972 61.196 47.954 14.562
23.207 14.368 61.22 43.842
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