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Iterative Design and Prototyping of Computer Vision
Mediated Remote Sighted Assistance

JINGYI XIE, MADISONREDDIE, SOOYEON LEE, SYEDMASUMBILLAH, ZIHANZHOU,
CHUN-HUA TSAI, and JOHN M. CARROLL, Pennsylvania State University

Remote sighted assistance (RSA) is an emerging navigational aid for people with visual impairments (PVI).
Using scenario-based design to illustrate our ideas, we developed a prototype showcasing potential applica-
tions for computer vision to support RSA interactions. We reviewed the prototype demonstrating real-world
navigation scenarios with an RSA expert, and then iteratively refined the prototype based on feedback. We
reviewed the refined prototype with 12 RSA professionals to evaluate the desirability and feasibility of the
prototyped computer vision concepts. The RSA expert and professionals were engaged by, and reacted insight-
fully and constructively to the proposed design ideas. We discuss what we learned about key resources, goals,
and challenges of the RSA prosthetic practice through our iterative prototype review, as well as implications
for the design of RSA systems and the integration of computer vision technologies into RSA.
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1 INTRODUCTION

People with visual impairments are increasingly relying on remote sighted assistants for indoor
or outdoor navigation [88]. This form of assistance is generally called remote sighted assistance

(RSA), a service (e.g., Be My Eyes [4], Aira [1]) in which people with visual impairments (PVI)
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establish a video connection with a remote sighted assistant (namely, RSA agent or simply agent),
who then interprets the video stream coming from the PVI’s smartphone camera, while conversing
with them to provide assistance as needed or requested.

Early RSA services [35, 56, 84, 109] were largely characterized by unidirectional communication,
(e.g., agent to PVI) and narrow scope (e.g., focused only on navigation or identifying objects in a
single static image). Over time, these services adopted new technologies and broadened their scope.
For instance, in the current generation of RSA services (e.g., Aira [1]), agents leverage a variety of
technologies, including pervasive networking infrastructures to create two-way, audio/video com-
munication; location services (e.g., GPS); mapping services (e.g., Google Maps); and information
technology (e.g., Google Search) [88]. Furthermore, with the assistance of remote sighted agents,
PVI can now perform a set of broader and more complex tasks, such as navigating airports and
shopping in large malls [88], which usually required in-person sighted assistance in the past.
As RSA services have broadened in scope, current RSA technologies have become the limiting

factor for the agents, impacting their performance and subsequently degrading the overall quality
of service experienced by PVI. For example, agents face the following challenges in video-mediated
RSA services during their interactions with PVI [77, 88]: (i) they lack confidence due to unfamiliar-
ity of the PVI’s current physical environment; (ii) do not often have indoor maps with fine details;
(iii) need to track the PVI continuously on maps and orient them within their surroundings man-
ually; (iv) need to estimate objects’ depth in the video stream coming from the PVI’s camera and
describe those in real-time; (v) need to detect landmarks visually and track dynamic objects men-
tally; and (vi) need to develop mutual trust and synergy with PVI.
Fortunately, a subset of these challenges are well studied in computer vision (CV) and AI

research under the categories of indoor map construction and localization [37], depth estima-
tion [45, 124], object tracking [131], visual navigation [28, 163], object recognition and scene un-
derstanding [67, 104, 114], and explainable AI [63, 115]. However, problems in the above categories
are generally considered hard, and current solutions are not reliable enough to deploy for people
with visual impairments [120].

Drawing on these rich bodies of literature, we propose to investigate whether RSA agents can
adopt CV technology, complementing their existing technologies, in order to address the aforemen-
tioned challenges. More specifically, we investigate a model of CV-mediated RSA service, where
RSA agents are the immediate users of the CV technology. Our goal is to explore whether inte-
grating CV can produce a new, desirable experience for the agents so that they can provide better
quality service to PVI.
Recent prior work has investigated the perspective of PVI with regard to RSA services [42, 77,

87], and RSA services have traditionally been developed based on PVI’s needs and feedback after
trials by PVI [24, 35, 84, 109, 126]. However, we argue that the agents’ perspective is increasingly
important in designing new RSA systems that depend on their performance. In addition, RSA
agents are experienced professionals who have assisted numerous PVI with diverse preferences
and in diverse contexts and activities [88].
We first identified potential applications for CV to assist RSA agents and proposed design ideas

regarding how to incorporate CV into current RSA interactions. Next, we embedded those design
ideas into different real-world scenarios. For each scenario, we developed a series of low-fidelity
prototypes with static images, animations, and narrations. We presented these prototypes to a do-
main expert as probes and then iteratively refined the prototypes based on feedback. We reviewed
the refined prototypes with 12 RSA agents (i.e., trained professionals) to evaluate the desirability
and feasibility of the prototyped CV concepts and system designs.
Our analysis shows that all of our design ideas with CV concepts have promising potential to

alleviate major navigational challenges and to enhance the RSA assistive experience. Our findings
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suggest that the design ideas proposed will help augment and extend the agents’ vision in different
dimensions, which gives them the ability to see further spatially and predictably as well as holisti-
cally for them to stay ahead and to manage possible risks. Agents also richly describe how helpful
and useful each idea is for mitigating the challenges in their everyday work. Lastly, opportunities
for improvement in the concepts and prototypes are identified.
We note that PVI are beneficiaries of and central stakeholders in CV applications in RSA services,

and as such, should be engaged in the design process. This is, however, beyond the scope of this
article, which is a first step in exploring possibilities for CV to assist RSA agents.

In summary, the contributions of this work are as follows:

— We adopted a scenario-based design to develop low-fidelity prototypes illustrating how com-
puter vision can help remote sighted assistants, who assist blind users in navigation and
other tasks remotely.

— We conducted semi-structured interviews with professional remote sighted assistants to
evaluate the desirability and feasibility of our prototyped computer vision concepts, as well
as discovered key themes that can be addressed by computer vision and related technologies.

2 BACKGROUND AND RELATEDWORK

Researchers have proposed many prototypes to aid people with visual impairments in outdoor and
indoor navigation [112]. They identified that such navigational aids must have two components to
facilitate independent mobility: (i) obstacle avoidance, and (ii)wayfinding [111]. Obstacle avoidance
ensures that visually impaired users can move through space safely without running into objects.
Guide dogs and white canes are often used for this purpose. Wayfinding, on the other hand, allows
them to plan and execute a route to the desired destination. For wayfinding, having a representa-
tion of users’ surroundings (i.e., digital maps, cognitive maps [142], building layouts) is essential,
and so is localization, (i.e., continuously updating their location within that representation).

Recently, smartphone-based wayfinding apps have become mainstream for outdoor navigation
for people with and without visual impairments. These apps, such as Google Maps [6], Blind-
Square [27], SeeingEyeGPS [13], Soundscape [134], and Autour [3], rely on GPS for localiza-
tion and commercial map services (e.g., Google Maps Platform [16], OpenStreet Map [17]) for
wayfinding.

Although blind and visually impaired users can navigate large outdoor distances using these
apps, they struggle to find the last-few-meters [120] due to a wide margin of error in GPS accuracy
(±5 m [61]). They struggle even more during indoor navigation because of the weaker GPS signal
strength in the indoor environment that renders these apps unreliable, and the lack of sufficiently
detailed indoor map data [90, 117].

To overcome these limitations, researchers have proposed fusing GPS signal with smartphones’
built-in sensors, such as motion sensors, Bluetooth [122], Infrared [89], NFC [55], RFID [54],
sonar [44], and camera. Also, they have made a concerted effort to construct indoor maps and
extract the semantic features of the environment [47]. Unfortunately, these solutions require ad-
ditional deployment and maintenance effort to augment the physical environment as well as
significant bootstrapping costs for setting up databases of floorplans [49] and structural land-
marks [22, 108]. Some solutions also require users to carry specialized devices (e.g., an IR tag
reader [89]). For these reasons, no single indoor navigation system is widely deployed. In this work,
we envision that the recent deployment of smartphone-based augmented reality frameworks and
popular human-assisted remote navigation services could pave the way for constructing indoor
maps organically.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 36. Publication date: March 2022.
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2.1 Remote Sighted Assistance Services for People with Visual Impairments

The concept of the RSA service has evolved over time, from the early idea of tele-assistance us-
ing information and telecommunication technology to crowdsourced assistance using smartphone
applications, to paid assistance using smartphones and specialized hardware.
In early prototypes of RSA services, the remote sighted assistants and the blind users commu-

nicated via synthetic speech [109], images [26, 84], one-way video using portable digital cam-
eras [35, 56], and webcams [35]; whereas in recent ones like [1, 4, 24, 70], they are using two-way
video chat with smartphones. In addition, the localization technique used in these services pro-
gressed continuously—starting from GPS-only, later augmented by fusing sensors [111], crowd-
sourcing [26, 85, 111, 160], and CV [34].

Several researchers examined the feasibility of crowdsourced RSA services (e.g., TapTapSee [14],
BeMyEyes [4]) and concluded that this is a promising direction to tackle navigation challenges for
blind users [21, 29]. Burton et al. [36] studied how crowdworkers answer subjective questions
asked by blind participants. They commented on the issue of blind users trusting the responses of
sighted crowdworkers too much, even though some crowdworkers are not experts, and many
are not available at times. Nguyen et al. [103] and Lee at al. [88] studied a paid RSA service,
Aira [1]. They reported that, unlike crowdworkers, Aira agents are always available and trained
in communication terminology and etiquette. Furthermore, they do not provide subjective infor-
mation. In this article, we assume that Aira or a similar RSA service exists to demonstrate our
design.

2.2 Computer Vision Capabilities

The past decade has witnessed the rapid development and commercialization of CV technologies,
thanks to the availability of large-scale visual data and the emergence of new computational tools
(e.g., deep learning). In this section, we review the CV technologies used in our design and proto-
type. Most of them can be classified into the following categories and are en route to maturity in
coming years.

2.2.1 Mature Technologies. Technologies such as real-time object detection and scene text read-
ing are now readily available as commercial products, including those designed to assist PVI (e.g.,
Microsoft Seeing AI [101]).
Object detection can be categorized into two types [62, 91, 159]: identifying specific instances

(e.g., famous paintings and landmarks) and generic object categories (e.g., cat and dog). Both prob-
lems have been addressed successfully. Recently, deep learning methods have increased accuracy
dramatically, especially in the domain of generic object detection [59, 60, 83, 113].

Text recognition has been applied to help PVI for decades, including reading currency [92, 106,
107], signs [99, 128], and document text [48, 78, 129]. Like object detection, deep learning methods
have improved the accuracy of text recognition, by addressing the challenges of text rotation and
perspective changes [68, 96, 162], densely arranged text detection [93, 95, 152], and broken and
blurred text detection [73, 74, 140].

2.2.2 Emerging Technologies. Technologies such as pedestrian detection, path tracking, and
prediction, and obstacle distance estimation play critical roles in emerging applications (e.g., au-
tonomous driving [38], driver-assist [58, 76]). These exist now and are improving rapidly in relia-
bility, stability, and efficiency.
Deep learning has greatly promoted the progress of pedestrian detection [165]. Feature

fusion [156] addressed the problem of detecting small pedestrians. The integration of boosted
decision tree [156] and semantics segmentation [139] is a recent solution to improve hard negative

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 36. Publication date: March 2022.
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detection. Other methods [105, 138, 148, 158] have improved dense and occluded pedestrian
detection.
Path prediction needs to extract more information from video than recognition tasks, including

the information of the surrounding environment and status of prediction targets [69]. Researchers
have used semantic segmentation [23, 79, 86] and convolutional neural network (CNN) [71,
133] to retrieve environmental features. Target features include the orientation of the target [71,
81, 97] and physical attributes (e.g., age and gender). Based on the feature extraction from video,
different methods have been applied for path prediction, such as Bayesian models [23, 81, 127],
energy minimization [71, 145, 150], and deep learning [19, 50, 86, 153].

Research has been conducted to estimate the non-contact distance of objects within the camera’s
field of view. Some methods utilize extra rangefinders, which align laser rangefinders with cam-
eras [57, 125, 157]. Researchers have also used binocular stereo vision setups to track the locations
of objects, which can estimate distance in 3D space [141, 151]. Another approach is to calculate
the distance through CCD cameras [94, 147].

2.2.3 Use of Computer Vision in Navigation for People with Visual Impairments. Budrionis et al.
[34] reported that CV-based navigation apps running on smartphones are a cost-effective solution
for indoor navigation. A primary focus in the CV-based approach is how to make visual infor-
mation more accessible through recognizing objects [164], color-codes, and landmarks (e.g., store-
fronts [120], signage [51]), and through the processing of tags such as barcodes, RFID, or vanishing
points [46, 100, 137]. Extending this focus, researchers have proposed several indoor positioning
and navigation systems [80, 89, 98]. However, Saha et al. [120], who studied the last-few-meters
wayfinding challenge for people with visual impairments concluded that for a deployable level
of accuracy, using CV techniques alone is not sufficient yet. Our work aligns with the findings of
[120]; we propose using CV techniques to assist remote sighted assistants (e.g., RSA agents), rather
than people with visual impairments, who are vulnerable to inaccuracies.
Lately, researchers are exploring the potential of augmented reality (AR) frameworks in in-

door navigation. These frameworks are built into modern smartphones (e.g., ARKit [8] in iOS
devices, ARCore [2] in Android devices), and thus have the potential for widespread deploy-
ment [116]. Based on ARKit, Verma et al. [143] proposed an indoor navigation application and
reported that an AR-based navigation system could provide a better user experience than tradi-
tional 2D maps. Clew [154] demonstrated the potential of constructing indoor 3D maps using
ARKit and localizing blind users on that map with acceptable accuracy. Fusco et al. [51] also re-
ported that with ARKit, users do not need to aim the camera towards an object to recognize it,
which could be convenient for visually impaired users. In this article, we explore challenges in
utilizing AR frameworks in RSA systems to benefit remote sighted assistants.

2.3 Collaboration between Humans and AI

Automatic scene understanding from video streams and 3D reconstruction remains challenging
despite recent CV advancements. Factors, such as motion blur, image resolution, noise, change
of light, scale, and orientation, impact the performance and accuracy of existing systems [75]. To
overcome these challenges, researchers have proposed interactive, hybrid approaches that involve
human-AI collaboration [30]. One variation of hybrid approaches is the human-in-the-loop frame-
work. Branson et al.’s [31] system utilized human responses to questions posed by the computer
to drive up the recognition accuracy while minimizing human effort. Similarly, some researchers
developed interactive 3D modeling in which humans draw simple outlines or scribbles to guide
the process [82, 130]. In this work, we developed a series of low-fidelity prototypes to understand
the challenges in human-AI interaction in RSA services.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 36. Publication date: March 2022.
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2.4 Low-Fidelity Prototyping

Prototyping refers to the development of partial and/or tentative implementations of a system de-
sign. The key motivation for prototyping is to make it more possible to analyze and assess designs
without first incurring the costs and the work of fully implementing the designs. This concern has
encouraged the development of a wide range of low-fidelity prototyping methods, such as article
prototyping [132], where the layout and key interactions of a user interface are mocked up with
bits of article, and Wizard of Oz performative prototyping [39], where a (concealed) human plays
the part of an intelligent agent or other interactive capability.
One strength of low-fidelity prototypes is that they can be implemented relatively quickly and

inexpensively to help designers reflect more concretely on a design, or even to evoke user ex-
periences and reactions to the design. A potential downside of low-fidelity prototyping is that
the prototype may be too crude to evoke experiences in designers and potential users that are
useful in assessing and further developing the design. For example, one would not want to use
a low-fidelity prototype to investigate temporal parameters for rapid input-output interactions.
However, low-fidelity methods have a wide range of fundamental application and user interface
issues [41, 123, 144].

2.5 Crowdsourcing Map Construction

Crowdsourcing has become technologically and logistically possible, and even routine, for 2D
map construction and maintenance. OpenStreetMap [11], an open-source and open-access project
founded in 2004, is widely considered to be the pinnacle of volunteer crowdsourced map construc-
tion [25]. Apart from map-making, OpenStreetMap contributors can annotate maps by adding
labels (e.g., environmental tags) to spatial features. In addition to crowdsourcing of outdoor map-
ping, the ubiquity of mobile devices (i.e., smartphones) has facilitated crowdsourced indoor map-
ping [161]. Researchers have developed several systems for crowdsourcing-based indoor map
construction, such as CrowdInside [20], SAMS [110], and CrowdMap [43]. The success of these
projects attests to the feasibility of crowdsourcing-based 2D map construction for both outdoor
and indoor environments and suggests that our design idea of crowdsourced 3D map construction
may likewise be promising.
Researchers have also probed the use of crowdsourcing in supporting navigational tasks for

PVI, including improving public transit accessibility [65] and providing rich information about
intersection geometry [64]. Hara et al. [65] found that judging landmarks’ proximity to a target
object (a bus stop) from a static image is hard, which leads to mislabeling or over-labeling. They
suggested that using 3D maps is more reliable for estimating physical placement compared with
the 2D imagery used in their study. Guy and Truong [64] indicated that crowdsourced annotations
represent information requested by PVI users and compensate for information not available in
current open databases. This work paved the path for crowdsourcing-based navigation aids for
PVI and supported the rationality of some of the proposed design ideas in this study.
Although prior work supports the technological feasibility of crowdsourced mapping, the moti-

vation and incentives of volunteers have been a concern surrounding crowdsourced map construc-
tion. In the case of OpenStreetMap, researchers have investigated 39 motivations for contributory
behavior in open collaboration [33]. Reciprocity, altruism, the instrumentality of local knowledge,
social relations, and self-actualization are some motivators for volunteers to upload geographic
information and edit and annotate maps. Businesses may be incentivized to map their locations
if their accessibility makes them attractive to visually impaired consumers. Many other types of
organizations, and even local governments, also value accessibility either formally or informally,
which could motivate them to map indoor facilities.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 36. Publication date: March 2022.
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Table 1. A List of Design Ideas for Addressing the Navigation Challenges

ID Design Idea Challenges Addressed

D1 3D map construction C1, C2, C3

D2 Augmenting existing 2D maps C1, C2, C3

D3 Interacting with 2D/3D maps C1, C2, C3

D4 Augmenting video stream C3, C4, C5, C8

D5 Mapping and navigating dynamic scenes C6, C7

3 DESIGN PROTOTYPE

In our previous workwith RSA agents and PVI [88, 155, 166], we identified a number of challenging
navigation scenarios for both agents and PVI. Such scenarios include navigating airports [40, 88],
grocery shopping [155], navigating malls or buildings with coarse or poor maps [88], walking
down crowded streets [88], and walking in parks [40]. In Section 3.1, we summarize the types
of challenges that are characteristic of these difficult scenarios, according to the literature. We
then describe how computer vision-inspired design ideas can potentially benefit RSA agents in
scenarios affected by these challenges based on our prior work in [40]. Finally, we describe our
method to contextualize the design ideas in different real-world scenarios and iteratively refine
our prototype based on review feedback in Section 3.2.

3.1 Navigation Challenges and the Envisioned Design Space

As a first step toward developing CV-mediated remote sighted assistance, we identified root causes
in our prior work [166] that can make a navigation scenario challenging to RSA agents. These
causes or challenges include: (C1) Lack of indoor maps: Unlike outdoor navigation, which can rely
on open maps and GPS, indoor navigation is usually lacking the proper support of an indoor
map [77, 88, 102, 111]. The RSA agent needs to either read the building layout through the camera
or rely on the PVI’s feedback; (C2) Localizing the PVI on the map in real-time: Even equipped with a
map, the agent needs to localize the PVI, which takes considerable, constant effort [24, 56, 88, 102];
(C3) Orienting the PVI in their current surroundings: The agent needs to become familiar with the
surroundings quickly to provide real-time navigation to the PVI. Environmental orientation is
difficult and often time-consuming [35, 56, 111]; (C4) Estimating depth from the PVI’s camera feed:
It is challenging to estimate the actual distance of an object (e.g., to tell the PVI how far away doors
are), due to the variable quality, angle, and stability of the video feed [77]; (C5) Reading signage
and text in the PVI’s camera feed: Sometimes, the agent needs to read signage or text though the
PVI’s video feed; it is difficult to read the text in a hand-held shot video [70]; (C6) Detecting and
tracking moving objects:Moving objects, e.g., vehicles in traffic or pedestrians on the sidewalk, are
hard to detect and track because the PVI needs to hold the phone and follow the object, which
is not realistic [70, 72]; (C7) Projecting or estimating out-of-frame (blocked) objects from the PVI’s
camera feed: If objects are out of the video feed, e.g., the signs or items just passed the PVI, they
are difficult to keep track of [24, 35, 56, 72, 77, 109, 126]; (C8) Unstable network connection: Agents
rely on the real-time video feed to receive necessary information from the PVI, but it is a challenge
if a stable connection cannot be established [42, 56, 70, 72, 77, 88].

To address these challenges, we define our design space as fivemain design ideas, as summarized
in Table 1. The “map” component is essential in multiple challenges above, especially in indoor
navigation (C1), localization (C2), and environmental orientation (C3). In our design space, we
have three design ideas aimed at improving maps for navigation, including 3D map construction
(D1), augmenting existing 2D maps (D2), and enabling interaction with 2D/3D maps (D3).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 36. Publication date: March 2022.
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3D maps (D1) profile real-world objects in 3D space, which is represented by point cloud data.
We can currently use smart devices to generate point cloud data with built-in AR frameworks (e.g.,
ARKit [8] in iOS devices, ARCore [2] in Android devices). Regardless of the layouts of different
buildings, 3D maps can be constructed in the same way: volunteers collect, upload, and update ge-
ographical data collaboratively via the Internet. This approach is an application of crowdsourcing
and detailed procedures are described as follows. Sighted volunteers can scan areas with mobile
devices to generate point cloud data that is uploaded to servers in real-time, and mappings of the
same location can be merged from information provided by different volunteers. Likewise, sighted
volunteers and RSA agents could annotate 3D maps by creating, editing, and deleting labels. In
the absence of financing to construct and maintain 3D maps, crowdsourcing these tasks could
optimally make relatively up-to-date indoor maps available and address C1.
When a PVI enters a building, the offline-built 3D map of the space (if available) will be loaded

automatically to the RSA agent’s dashboard. To enable continuous tracking of the PVI in real-time,
feature points can be detected from the frames of the live camera feed and matched with the 3D
point cloud. We assume that the PVI holds the smart device in a front-facing manner, so the PVI’s
location (C2) and orientation (C3) are the same as that of the camera.
In some situations, a 2D map is available, such as Google Maps [6] for outdoor navigation or

static, offline airportmaps.We use CV to augment thesemaps (D2) so that RSA agents can use them
to better assist PVI. For example, object detection technology can find relevant objects (e.g., trash
cans, benches, vending stands) in a live video feed. We would store the objects in the map, and the
RSA agents could retrieve them later, when needed. As another example, CV can recognize zebra
crossings to help RSA agents find a safe path to a PVI’s destination, and this data can be added to
maps and reused in other RSA interactions in the same location.
Interacting with 2D/3D maps (D3) will allow RSA agents to change the scale and orientation

(e.g., via zoom in/out and rotation), which can help with localization (C2) and orientation (C3).
The envisioned map interaction feature also allows RSA agents to manually draw and edit planned
navigation paths on the maps to facilitate efficient and safe navigation.
We will also enhance and enrich the video stream by integrating information from maps and

using CV recognition features (D4). For instance, we can leverage data from maps to present key,
real-time turn-by-turn directions (C3), and distances (C4), contextualized within the video feed,
with AR technologies. Enhanced text overlaid on the text in the video recognized and read by CV
could alleviate the difficulties RSA agents have reading small, rotated text in live camera feeds (C5),
even when frames are corrupted due to unreliable connections (C8).
Our final design idea is to interpret dynamic scenes to address the challenge of dynamic and out-

of-frame objects (D5). We can use pedestrian trajectory forecasting to avoid potential collisions
with moving objects (C6) and predict the future motion of a person who disappears from the
camera’s field of view (C7).

3.2 Method

We adopted the scenario-based design in this article and contextualized our design ideas in five
real-world scenarios. Scenario-based design is to use a future system concretely described at an
early point in the development process. Narrative descriptions of envisioned usage episodes are then
employed in a variety of ways to guide the development of the system that will enable these use
experiences [119]. Our goal is to provide narrative descriptions that can be adopted and used in
future implementations. This method is ideal when the user need is not well-defined or when
adopting new technology in an existing context, e.g., AI-enabled RSA navigation for PVI.
Based on the literature and our experience working with PVI and RSA agents, we developed

several navigation scenarios, which we narrowed down to five. One of our initial scenarios (find
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Iterative Design and Prototyping of Computer Vision Mediated 36:9

Table 2. Scenario-based Design for Expert Review and Design Review Study

Scenario Instantiation of Design Ideas before Expert Review Instantiation of Design Ideas after Expert Review

Walk in the park

D2: use compass to orient the PVI;
D4: estimate distance and show distance bands on

ground;
D5: continuous pedestrian tracking and motion

forecasting on the map; show movement
predictions in video feed.

D2: use compass to orient the PVI; detect relevant
objects in live video feed and store them in the
map;

D3: provide search bar to look up relevant objects;
D4: estimate distance and show distance bands on

ground; detect and highlight obstacles at least
30ft away;

D5: continuous pedestrian tracking and motion
forecasting on the map; identify distracted
people; show movement predictions in video
feed.

Airport navigation

D3: use the indoor location and mapping service
available at an airport (e.g., LocusMaps [7]) to
track the PVI and wayfind;

D4: recognize landmarks (e.g., monitors, moving
walkways) and signage, read scene text (e.g.,
“EXIT”); show distance bands on ground; show
distance to objects; show walking directions;

D5: detect obstacles and crowds; staff recognition.

D3: agents draw and highlight motion path/plan on
2D maps; continuously track the PVI on the
path/plan;

D4: recognize landmarks (e.g., monitors, moving
walkway) and signage, read scene text (e.g.,
“EXIT”); show distance bands on ground; show
distance to object marks; show walking
directions;

D5: detect obstacles and queues; staff recognition.

Office building
navigation

D1: construct and label indoor 3D maps
collaboratively;

D3: show the PVI’s location on the map
continuously; zoom in/out and rotate 3D maps;
double-click to toggle views; first-person views
(side-by-side or overlay display); plan path
(manually or automatically);

D4: show walking directions; show distance bands
on ground; recognize objects and landmarks.

D1: construct and label indoor 3D maps
collaboratively;

D3: show the PVI’s location on the map
continuously; zoom in/out and rotate 3D maps;
double-click to toggle views; first-person views
(side-by-side or overlay display); plan path
(manually or automatically);

D4: show walking directions; show distance bands
on ground; recognize objects and location
marks.

Navigate from
parking lot

D2: recognize cues close to entrance (e.g., zebra
crossing, accessible parking, logos/signs); line
up indoor map and satellite image on Google
Maps;

D4: show walking directions.

D2: recognize cues close to entrance (e.g., zebra
crossing, accessible parking, logos/signs); line
up indoor map and satellite image on Google
Maps;

D4: show walking directions.

Find rideshare
D4: project the pickup vehicle from the rideshare

application map to the video feed.

Grocery store
shopping

D1: construct 3D maps of store structures (e.g.,
sections, aisles);

D2: detect relevant objects in live video feed and store
them in the map;

D4: recognize landmarks and read scene text; localize
the PVI under unstable network connection using
AR points; augment video feed with first-person
view of 3D map.

Items in Italics were developed based on the expert review.

rideshare) was replaced by another deemed more relevant and practical (grocery store) through
discussion during the expert review, described in more detail later. The resulting five scenarios are
important, frequent, and challenging in RSA practice; capture a diversity of contexts, and allow the
insertion of CV technology in ways that we hypothesized that agents would experience as valid
and engaging. In Table 2, we define the name of each scenario and the instantiations of the design
ideas.We proposed low-fidelity prototypes for each scenario, which can be found in Figures 1 and 2.
In this article, we adopted Aira RSA Service as our research platform. Aira [1] is a commercially

available, on-demand RSA subscription service for PVI. As of 2019, Aira has offered service to
thousands of “explorers” (a term that they use to refer to their users), advancing their learning,
performance, and employment opportunities. We conducted two studies to collect feedback from
the expert and the end-users (RSA agents). All interviews were conducted over Zoom (recorded,
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Fig. 1. Our design prototype for the “airport navigation” scenario. (a) PVI is approaching a check-in desk;
(b) PVI is waiting in line to check-in; (c) PVI is navigated to a security check, (d) PVI is finding luggage
in a baggage claim area. The top toolbar in each figure shows buttons to toggle a design feature on or off.
The information on indoor maps and the camera feed is coordinated through color. Rectangles represent
pedestrian detection; lines on the ground are trajectory predictions; intervals between dots symbolize equal
distance; arrows represent orientation; alerts will pop up when collisions may occur; and blue chevron arrows
represent a planned path. Sample images used in the interface are originally drawn from the following sites
(top-left, clockwise): locuslabs.com [9], onemileatatime.com [10], upi.com [15], thepointsguy.com [12], and
locuslabs.com [9].

after consent) and lasted for an hour. We first described a scenario setting in words and asked
participants (RSA agents) whether they had assisted any PVI in that circumstance. All partici-
pants had indeed had experience with all five scenario types. For each scenario, we then presented
our prototypes in PowerPoint slides via screen sharing. All interviews were transcribed by two
researchers.
We used a bottom-up approach in our qualitative data analysis. Two researchers independently

performed inductive thematic analysis [32] on the transcribed interviews. Both of them used open
coding to develop initial codes and generated categories and subthemes through iterative collating
and grouping. The categories and subthemes generated by each researcher were reviewed and
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Fig. 2. Examples of our design prototypes for the other four scenarios. The top toolbar in each figure shows
buttons to toggle a design feature on or off. The information on indoor maps and the camera feed is coor-
dinated through color. Representations of pedestrian detection and tracking: rectangles represent pedestrian
detection; solid lines on the ground mean trajectory prediction; intervals between dots symbolize equal dis-
tance; arrows represent pedestrians’ orientation; alerts will pop up when collisions may occur. Representa-
tions of distance measurements and path planning: dashed lines on the ground represent distances to obstacles,
chevron arrows represent planned paths. Representations of AR tracking: the cube symbolizes the car, arrows
and dashed lines represent predicted orientation and trajectory. Sample images used in Figure 2(c) interface
are originally drawn from maps.google.com [5].

finalized in meetings with all authors. The agreed-upon subthemes shown in Table 3 from both
studies 1 and 2 were further organized into the following overarching five themes: reducing the
agent’s cognitive load, enhancing the agent’s ability to stay ahead, contextualizing object detection,
emphasizing the PVI’s video feed, and managing risk in navigation (as well as managing external
factors in study 1 only) (Table 3).
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Table 3. Themes and Subthemes

Themes Subthemes

Reducing the Agent’s Cognitive Load
(1) Orientation
(2) Reducing Reliance on Scanning
(3) Translation and Conversion

Enhancing the Agent’s Ability to Stay Ahead
(1) Distance Estimation
(2) Path Planning and 3D Maps
(3) Direction Tracking and Prediction

Contextualizing Object Detection

(1) Selective Pedestrian, Object, and Obstacle
Detection

(2) Scene Text Reading
(3) Staff Recognition
(4) Toggling Features On and Off

Emphasizing the PVI’s Video Feed

Managing Risk in Navigation

(1) Parking Lots
(2) Applications to the COVID-19 Pandemic
(3) Unstable Network Connection
(4) Further Opportunities

Managing External Factors

3.2.1 Study 1. In study 1, we interviewed a domain expert, who is the most senior staff member
inmanaging the RSA service and platform at Aira. The first five scenarios in Table 2were presented
to this participant (P0) in the order shown in the table. Once all five scenarios were presented, P0
shared her feedback in an unstructured interview, with five researchers asking follow-up questions
and providing clarifications. This study contained 16 (=3 of the first scenario +3 of the second +7
of the third +2 of the fourth +1 of the fifth) illustrations in total. P0’s feedback was used to improve
our design ideas and prototypes for study 2.

3.2.2 Study 2. In study 2, we showed the improved design ideas and prototypes to the end-users,
the RSA agents. Professional, trained RSA agent volunteers (not compensated for their participa-
tion) were recruited by Aira on our behalf as a part of a continuous research partnership with Aira.
The expert in study 1 (P0) helped us to send out invitation emails and recruit the agents. Only RSA
agents with extensive RSA experience (greater than 1 year) were eligible to participate. A total of
12 agents (P1–P12) participated in this study. The demographic information of the agents can be
found in Table 4. We obtained IRB approval from our institution for the human participants.
Interviews with P1–P12 were semi-structured, with between two and five researchers in each.

The five revised scenarios resulting from the design iteration were presented to P1–P12 in the
order shown in Table 2. The final iteration contained 18 (=4+3+8+2+1) illustrations in total.
At any time during a scenario walkthrough, participants were allowed to ask questions, make

comments, or request to revisit previous slides. We also encouraged them to express their thoughts
and feedback before moving on to the next scenario. Depending on the amount of feedback given
during a walkthrough, researchers then asked about participants’ current methods of coping with
the problems described in the scenario, and whether the prototypes addressed all of the challenges
associated with the scenario type. If time remained in the hour after the discussion of the fifth
scenario, researchers asked follow-up questions, questions about general features that appeared
in multiple scenarios (e.g., the interface presented), if there were any other navigation challenges
not covered by the five scenarios, what participants’ favorite features were, and if any features
appeared problematic or could be improved.
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Table 4. Demographic Information of Aira Agents Participated in Study 2

ID Gender Age Time as
an agent

Work hours (Avg.) Device use Background/Occupation

P1 M 56 1 yr 4–6 hrs a week N/A military, law enforcement, call
center

P2 F 36 3 yrs 4–5 days a week, 7–8
hrs a day

laptop dispatcher, paralegal, bartender

P3 F 27 3.5 yrs previously 40–60 hrs,
now 2 hrs a week

PC Ph.D. occupational therapy

P4 M 31 3 yrs 40 hrs a week laptop (Mac), 2
monitors

health sciences, in-home
healthcare, sales

P5 M 30 1 yr 40 hrs a week PC, single screen “different kinds of work,” likes
helping people

P6 M 31 1 yr 30–40 hrs a week PC, 3 monitors languages, political science,
non-profits

P7 F 28 14 mos about 40 hrs a week laptop, 2 monitors medical technician
P8 F 28 2.5 yrs 40 hrs a week laptop (Mac), 2

monitors
Spanish studies, relations manager

P9 F 25 3 yrs 25 hrs a week laptop (Mac),
single screen

kinesiology, first job

P10 F 28 1.5 yrs 20 hrs a week laptop, 2 monitors psychology, HR
P11 N/A 31 3 yrs 26–29 hrs a week PC and Mac, 3

monitors
global studies, English, Japanese,
health office worker

P12 F 44 3 yrs 4–8 hrs a week laptop, monitor elementary education

4 STUDY 1: EXPERT REVIEW

Our interviewwith the domain expert (P0) validated nearly all of the design ideas thatwe presented
and revealed several themes describing the relationship between RSA practice and our design ideas:
reducing the agent’s cognitive load, enhancing the agent’s ability to stay ahead, contextualizing
object detection, emphasizing the PVI’s video feed, managing risk in navigation, and managing
external factors. These themes illuminate why the design ideas could be beneficial, and the agent
values, goals, and challenges that P0 uses to evaluate the ideas provide further insight into how
the concepts can be optimized and other ways that we may supplement RSA.
According to our findings from the expert review, we further improved the design ideas. The

changes made with respect to each theme are described in the “Design Iteration” subsection of
each theme. Table 2 summarizes the revised designs.

4.1 Reducing the Agent’s Cognitive Load

During navigation tasks, agents must continually absorb and process multiple streams of dynamic
information, including obstacles in the PVI’s immediate path, other scenery of interest in the video
feed, the PVI’s location on maps, verbal and nonverbal communication from the PVI, and any
additional information that the PVI has requested. As a result, the agent’s cognitive load can be
quite high, and agents may struggle to keep up with the constant flow of incoming information. P0
explained one example of how she must pay attention to the PVI while determining their location,
searching the internet for information, and path planning.

... while [the PVI is] telling you everything about their day and how they got to the airport
and what it is they’re doing, the agent is actively working to find which airport they’re at...
and start route planning... I’m over on the side, like, frantically looking up the internal
airport map.
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We can see that managing a high cognitive load can be difficult and stressful. P0 appreciated
how some of the design ideas could reduce agent cognitive load. For example, she liked how the
room annotations in the office building scenario (Figure 2(b)) would eliminate the need for her to
look at a map to find a certain office.

I really like the annotated room names... People regularly go to the same place day in, day
out... I just imagined being a brand new Aira agent who had never been to somebody’s
office before, and maybe there’s a map that is marked as, like, ‘my office,’ and so I could
just simply go right in and lead that person there...

P0 also suggested revisions to the features where she perceived high potential cognitive load.
For example, in the airport navigation scenario, we showed a map with each airline’s check-in
area annotated (Figure 1(b)). Rather than labeling specific airline check-in desks on airport maps,
P0 suggested that the general check-in area be marked, and then the text-reading feature could be
employed to help agents find the correct desk to reduce the amount of information the agent must
process at once.

If I know where the check-in desks are, I can get closer to them, and then from there, if
you were able to incorporate the text reading, then we’d be able to kind of fill in some of
those gaps one step at a time versus having that information right away.

Similarly, she commented that we should limit the number of toggle buttons (Figure 2) that we
include so as not to overwhelm agents with too many options.

... as long as it’s not toomany buttons, like, probably less than five would be useful because
that gives me more granular control versus having too many options of things to turn on
or off... some of those aspects could be linked, like, probably you want x and y together
and then a and b together, so being able to turn them both on and off at the same time
would be sufficient.

4.1.1 Design Iteration. We followed P0’s suggestion to remove excessive information from the
map. For example, in the airport navigation scenario, instead of showing annotation of each air-
line’s check-in counter, we highlight the general check-in area during path planning and enable the
text-reading feature to help agents find the correct desk. Note that relying on sign reading [99, 128]
not only helps lower agents’ cognitive load, but sometimes is also a necessity. For certain areas
that are already challenging to navigate, such as security checkpoints, it is also often hard to find
reliable maps.
Following P0’s suggestion, the maximum number of buttons presented in each scenario was

reduced from ten to five. We deleted the compass button and enabled compass on both Google
maps and the live video feed permanently. Similarly, we altered the “change first-person views
(side-by-side or overlay display)” button to an icon, which will be displayed on the top right of the
camera feed when this feature is available on 3D maps. We removed the buttons enabling viewing
the globalmap, destination, and current location on 3Dmaps in the office building scenario. Instead,
we designed the function to double click the current location or destination to switch views on 3D
maps, and zoom out to view global maps. Moreover, the buttons for recognition [59, 60, 83, 113]
and staff recognition were combined.

4.2 Enhancing the Agent’s Ability to Stay Ahead

One of the primary contributors to a quality experience for agents’ clients that P0 identified is the
agent “staying ahead” of PVI.

... the agent is always supposed to be a few minutes ahead of the explorer.
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As mentioned in the previous subsection, P0 told us that she takes advantage of the first minute
of the call to work ahead of PVI. She added that she also opportunistically prepares while PVI is
waiting in queues.

... then while they’re in the queue, I might be doing the next step...

To further support the agent’s ability to stay ahead, P0 recommended that we move our labeled
distance bands (in Figure 2(a)–(b)) further out than five to ten feet to allow for more agent process-
ing time.

I really liked the distance circles at the base of the video camera... however, the five and
ten foot distance is actually– as an Aira agent, we’re always trying to proactively see
further because I need time to visually process information and spit it back out again...
we try to project more to like 30-60 feet out, and then, because if I am noticing something
30-60 feet out, I have time to process and then tell the person that in 20 feet, for example,
they will encounter an obstacle or whatever that might be.

4.2.1 Design Iteration. To provide agents with more processing time, we modified the distance
measure [57, 157] to detect and highlight obstacles at least thirty feet away, with intervals of ten
feet.
While navigating, agents consult multiple sources of information and multitask continuously,

splitting their attention [88]. Better understanding agents’ desire to plan ahead and recognizing the
challenge of keeping up with maps and the video feed simultaneously, we proposed a new way for
agents to interact with 2D maps. This will enable agents to draw and highlight motion paths/plans
on 2D maps manually. Then, CV will locate the PVI on the 2D maps by landmark recognition [59,
60, 83, 113] and scene text reading [146], and project walking directions and destinations from the
map to the video feed. Thus, agents can plan a path early and then track the PVI on maps and
reference the planned path in the live video feed rather than memorizing a path and trying to
mentally contextualize it within the video.

4.3 Contextualizing Object Detection

One of RSA agents’ top priorities is the monitoring and dictation of obstacle-related informa-
tion [88]. In CV, this can be addressed by detecting objects in the PVI’s path. However, P0 ex-
plained that agents are often not concerned with the details or classification of obstacles around
PVI. Rather, she says that she and the PVI just want to know that an obstacle is nearby and where
it is located.

... the thing that is most important to me is that there’s an obstacle there. Unless my
explorer is actively looking for something, what that obstacle is matters less... The most
important aspect is how far away am I from that obstacle and that there is an obstacle
present...

She explains that providing unnecessary details about obstacles can overwhelm PVI’s auditory
channels, which are critical to their orientation and navigation skills.

... to a person who’s blind who’s navigating... particularly in spaces that are very noisy... it
can be a little disorienting if you’re relying on your ears in order to travel through space, so
knowing where those obstacles are allows me to provide that information without needing
to tell you it’s a cabinet...

On some occasions, however, identifying an obstacle can be important. P0 said that some objects
are more likely to be relevant to a PVI’s goals, so labels for some specific object types would be
useful.
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... some types of obstacles are more important than others because the person is more
likely to be looking to use that thing. So, for example, a trash can... I do have to have the
person move the camera around looking for a tower shaped object, and sometimes I miss
it, so then we have to go all the way back around again, so being able to identify maybe a
hierarchy of objects would be very helpful versus having all objects available all the time.

While annotating certain object types seems simple in principle, P0 says that which obstacles
are of interest depends on the context and the task at hand. Sometimes priorities can be predictable,
but agents get calls for a vast array of different activities.

... we do many types of tasks in many different locations. Of course there are always
patterns, so at the park, you’re likely finding a restroom, finding a trash can, taking a
walk through the park... but it could also be having a picnic with friends...

Because of the lack of certainty regarding what a PVI will be doing, P0 emphasized the impor-
tance of the ability to toggle features on and off at the agent’s discretion.

4.3.1 Design Iteration. P0 mentioned that some objects are related to navigation, and that those
should be labeled. Therefore, we developed a feature to detect relevant objects [59, 60, 83, 113], in
which CV continuously detects objects in the camera feed and marks them on the map. Given
that agents are interested in different objects (e.g., trash cans) at different times and that object
detection algorithms may not be able to account for this variability, we also added a search bar at
the top right of the map, where agents can enter the name of an object that they wish to locate.
Then, CVwill project the target object to the camera feed and highlight it so that agents can quickly
find the desired object and guide the PVI to it.
Another related comment is that the importance of certain objects varies by context and task.

We applied the detection of relevant objects to the walk in the park and grocery store scenarios,
which can represent outdoor and indoor navigation respectively. When walking in a park, PVI is
likely to look for a trash can, bench, or vending stand. In the grocery store scenario, agents can
use this feature to find an aisle where desired items are located. If agents enter the item name
in the search bar, the approximate location of the target item will be projected to the camera
feed. This can be achieved by identifying objects with CV and matching annotations on 3D maps.
Landmark recognition and scene text reading are also available in this scenario to facilitate easier
interpretation of information on the signs.

4.4 Emphasizing the PVI’s Video Feed

P0 also conveyed the importance of the live video feed to agents’ work. While maps, satellite
images, and other web-based information are useful, the video and audio feeds from the PVI’s
mobile device are the only sources of information that are real-time and guaranteed to be accurate
and up to date.

... the video feed itself is essentially my lifeline of information to what is happening in
the PVI’s location because, as a remote sighted agent, it is the most real-time information
that I have...

Agents also pay close attention to PVI’s video feeds because the feed gives them a first-person
view of a PVI’s surroundings, which allows them to make decisions based on their natural visual
intuition. For example, P0 said that, at malls, she guides PVI to “where I would expect an entrance
to be” based on the same visual cues that she would use to make sense of the location if she were
there herself. Because of agents’ dependence on the live video feed, P0 became concerned about

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 36. Publication date: March 2022.



Iterative Design and Prototyping of Computer Vision Mediated 36:17

the design ideas that involved overlays of AR features or other information on the video, as shown
in Figures 1(c), 2(a), and 2(b).

So, in some of the scenarios, I noticed that there is a lot of information that has been
superimposed on top of the video feed, which would make it, though very feature rich,
difficult for me to actually see the location where the person is moving through space.

She was wary of the overlaid information obscuring the video and making it more difficult for
her to see the PVI’s surroundings, possibly even such that it could threaten the safety of the PVI.
She suggested separating some of the visual features from the video feed.

The obstacle detection I think might be one of the aspects that might get very visually
cluttered very quickly, so I don’t know if it might be possible to maybe move obstacle
detection out of the immediate video feed and onto the side piece?

The ability to toggle any features that may interfere with or produce an overlay on the video
feed affects her position on their viability. As one example, if she were navigating a PVI through a
parking lot with moving vehicles, she may toggle AR directions and obstacle detection off so that
she always has a clear view of the video feed and any moving cars.

4.4.1 Design Iteration. Because of agents’ dependence on the live video feed, it is critical to
minimize clutter on the video resulting from AR features or other information. Following this
principle, we revised our design to pay special attention to the context and relevance of objects in
navigation tasks, as well as the agents’ needs.
For example, as explained in the previous section, CV is used to continuously detect relevant

objects in the video. Instead of displaying all object labels on the video, we proposed to store the
information on the map. We further provide a search bar for the agents to enter the name of a
target object, and only project the target object to the camera feed.
As another example, instead of detecting and marking all moving objects (e.g., pedestrians, bik-

ers, and so on.) in the video, we focus on identifying people who are more likely to collide with the
PVI [53]. This not only helps remove redundant information from the video, but is also a useful
feature for ensuring PVI’s safety.

4.5 Managing Risk in Navigation

P0 brought up PVI safety as a critical consideration in the development of new CV-mediated RSA
features. In the parking lot scenario, this meant identifying safe walking paths including sidewalks
and crosswalks, and path planning so as to minimize time spent outside of these designated areas.

... best practice is always keep an explorer on a pedestrian walkway, so that would be a
sidewalk, but that also means identifying in a parking lot where those crosswalks are...

In our prototype, we depicted CV recognizing and marking every pedestrian in the PVI’s video
feed. P0 pointed out that some pedestrians are more dangerous to the PVI’s safety than others
and that the relative risk can be determined visually. She said that people who see a PVI generally
make an effort to move out of the way, but people that do not see the PVI because they are turned
away, looking at their cell phone, or otherwise not paying attention do not.

... I don’t know if it would be possible to identify maybe, like, a distraction risk, but to
me as an agent, those really are the individuals who are a higher threat versus somebody
who is walking directly at the blind or visually impaired explorer.

4.5.1 Design Iteration. To address these safety concerns, it is important to understand risk fac-
tors and safest practices. For example, P0 pointed out that people who do not see the PVI are more
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dangerous to the PVI’s safety. Thus, we proposed to detect distracted people and alert the agent
if a potential collision is imminent. For example, CV may detect pedestrians who are facing away
from the PVI or taking photos in the revised walk in the park scenario.

4.6 Managing External Factors

Many other factors that are out of the agents’ direct control affect the PVI experience of RSA
and the possibilities for CV in RSA. For example, when presented with the rideshare scenario, P0
described how ridesharing services have been progressively restricting third-party app integration
capabilities. She explained that Aira has had some integration with popular ridesharing services
but that functionalities have been becoming more limited and less useful.

... both services have removed their sandbox [test environment], so engineers can’t even
play around with the app integration before having to deploy it, and also, they have
started to block a lot of the incoming information.

Agents can also no longer summon rides for PVI. For these reasons, P0 suggested that we aban-
don this scenario. We found her expert opinion on this issue to be compelling and agreed that the
trend toward increasing integration restrictions presented a significant obstacle to the one design
idea presented in the scenario, which relied on having the rideshare’s location information. We
then probed for whether there was another common and challenging scenario dissimilar to the
others that we had presented. P0 recommended that we develop a grocery store scenario because
of the pervasive lack of up-to-date store maps, the frequent movement of items and sections and
difficulty of locating some items and sections, and the connectivity issues caused by large refrig-
erators. We believed that our design ideas would apply to a grocery shopping scenario in cogent
ways and would manifest in unique manners compared to our other four scenarios. Additionally,
we were motivated to analyze and include such a scenario because grocery shopping is a necessary
and regular activity. We therefore substituted a grocery store scenario for the rideshare scenario
for the design review study.
As P0 mentioned when discussing challenges in grocery stores and while reflecting on other

scenarios, another problematic external factor is map accuracy. When we proposed that agents
make use of interactive airport maps, P0 informed us that she has found that, “Unfortunately, a
lot of airport maps are intentionally incorrect for security...” In particular, she noted that security
checkpoints are often marked incorrectly. For that reason, she suggested that we not assume that
all detailed information on airport maps is accurate and that we label only general areas.
Where possible, some agents do go out of their way to work around external constraints. For

example, P0 told us that pet relief areas do not have standardized indicators and are rarely marked
on maps. To provide a quality experience to PVI despite this challenge, P0 said that agents have
begun keeping track of the locations of pet relief areas in airports by identifying them on maps
and then storing those annotated maps so that other agents can reference them. They make this
extra effort because “ it is so impacting for our customers.” CV may be able to help agents further
overcome challenging external factors, for example by recognizing a variety of pet relief indicators.

4.6.1 Design Iteration. We replaced the rideshare scenario with a grocery store scenario. P0
indicated three major challenges in this scenario, namely the lack of the updated store maps, dif-
ficulty locating specific items, and the connectivity issues exacerbated by large refrigerators and
metal displays. Similar to the office building scenario, we construct a 3Dmap of the store to address
the lack of indoor maps in indoor navigation. Because the locations of individual items change fre-
quently, the 3D maps of grocery stores will not include individual items but keep 3D structures of
sections and aisles only.
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The 3D map is also effective for localizing PVI under unstable network connections because the
PVI’s device only needs to send AR points, rather than a video feed. CV can localize the PVI by
matching AR points with points on 3D maps. To further visualize the PVI’s surroundings, the live
video feed on the agent’s dashboard can be augmented by the first-person view of a 3D map. As
shown in Table 2, we also apply object detection, landmark recognition, and scene text reading to
this scenario.

5 STUDY 2: DESIGN REVIEW STUDY

Next, we present our findings from the interviews with 12 professional agents and discuss the
desirability and feasibility of our revised design ideas as well as agents’ suggestions. The method
of this study is described in Section 3.2.2.

Our bottom-up data analysis identified 15 themes in the findings of this study, which are or-
ganized into five high-level themes. These high-level themes solidify the first five themes in
Section 4: Reducing the agent’s cognitive load, enhancing the agent’s ability to stay ahead, contextual-
izing object detection, emphasizing the PVI’s video feed, and managing risk in navigation. Moreover,
findings in this section supplement important context and details within each of these themes.

5.1 Reducing the Agent’s Cognitive Load

Agents are tasked with processing a large volume of information while navigating PVI, including
checking landmarks on the live video feed, referring to the map to localize and orient the PVI,
describing surroundings, and guiding the PVI to avoid obstacles. Thus, it is vital to reduce agent
cognitive load by providing concise, timely information.

5.1.1 Orientation. Seven agents (P2, P3, P5, P8, P9, P11, P12) indicated that orientation is one
of the most difficult tasks in navigation. The compass allows agents to determine PVI’s orientation
in real-time, saving them time and energy.

Being able to orient and explore with the compass would make things far easier. (P5)

Agents explained that orienting a PVI is generally their first task when they get a navigation
calls. Using their current tools, they cannot easily deduce a PVI’s orientation, especially in homo-
geneous surroundings, like in a parking lot or at an intersection.

... just orientation would be a huge help in parking lots, you know, because you always
want to get them out of the parking lot as soon as possible... the first thing you want to
do, like, know, is which way they’re facing, and which way they’re going... (P11)

Additionally, by projecting walking AR directions onto the video feed, there is no need to reori-
ent the PVI if the call is disconnected or the PVI turns around.

I think that’s incredible because sometimes, if a call gets cut off, or if [a PVI] gets turned
around, we have to orient them again, but if that line is there, all we have to do is turn
around and be like, ‘There it is.’ So cool. I like this. (P5)

5.1.2 Reducing Reliance on Scanning. Sometimes agents need PVI to scan an area with their
camera in order to find objects or visual cues of interest. P6 gave an example of how he uses this
strategy in grocery stores.

First thing that I try and do is I get them as kind of far away from the aisle signs as I can
and then angle their cameras up and then over so I can try and read each sign, each aisle
marking, and, you know, that usually takes about five minutes if I’m lucky to get it done
that fast. (P6)
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Guiding PVI to scan the appropriate areas at the correct angle can be challenging and time-
consuming. Agents believed that having the text read for them quickly and regardless of orienta-
tion would make navigation more efficient for both the agent and PVI, as it reduces reliance on
precise scanning of the PVI’s surroundings. Eight agents (P1, P2, P6, P7, P8, P10, P11, P12) consid-
ered it to be a beneficial feature.

I love the signage because that is... another huge thing that a lot of times is hard for agents
to guide a [PVI] to get their cameras to the right angle to get that picture and read those
signs, so I love that. (P8)

It can also be difficult for agents to identify information if the feed is fuzzy while the PVI moves
the camera or if the connection is unstable.

I love the idea of reading some of those signs because, again, sometimes the signal can be
a little problematic, and so we have to do a lot of maneuvering with the cameras just to
see those signs over each [aisle], and if we’re reading it for the agent, I can save a huge
amount of time. (P1)

Two agents also suggested that the scene text reading feature could be utilized to smooth out
the navigation process under an unstable network connection if the text could be read even when
the video is of poor quality.

If that video is going in and out, having it still pop up with information... would be very
helpful as well, rather than, ‘Okay, pause, let’s wait for it to reload. Okay let’s go again,’
and so that would just speed up the whole process again. (P3)

The first-person view constructed from the video feed embedded in a 3D map can also reduce
the need for PVI to scan their surroundings by displaying out-of-frame objects.

... then they’ll be able to see things, potentially, that were outside of the camera view,
which would help a lot... There’s no guarantee that [PVI scanning is] going to give you
the information that you need... so not having to rely so much on that, I think would be
really great and really beneficial and make it a lot easier for the agent to know... what’s
in that direction. (P8)

Furthermore, P10 described the view provided by the 3Dmap as more natural, as it is wider than
the video feed alone and includes more information, closer to the way a sighted person would see
their environment.

... expanding the view... as if we’re standing there because often... our vision is limited to
this little section here... Sometimes the door that they need is just out of the view. (P10)

5.1.3 Translation and Conversion. Aira serves clients in the US, the UK, Canada, New Zealand,
and Australia, and within those countries, clients can be accustomed to different regions and use
regional language. Some agents experienced cases in which they were unfamiliar with language
or terms used, such as “level crossing,” meaning an intersection with railroad tracks in Australia.
Thus, three agents (P1, P6, P9) suggested adding real-time translation and a key of terms for the
same objects in different cultures. P9 said that lack of familiarity with local terminology could be
especially problematic when agents try to search for certain objects or landmarks.

... if we’re working with [PVI] who are in different countries or different cultures or some-
thing like that, their term for trash can... might be different... having to think of the word
that we would use to search for that... that might take a little bit of extra time to find in
that specific scenario...(P9)
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Similarly, American agents struggle with converting distance from imperial to metric units, and
P10 suggested that distances be able to be displayed in metric or imperial.

... feet are easy for me as an American, but when we’re working in Canada or countries
that use the metric system, it’s a little bit harder for my brain to switch as easily to those
distances, so if those bands were shown in the correct measurements for them, that would
make my life easier, for sure. (P10)

5.2 Enhancing the Agent’s Ability to Stay Ahead

Staying ahead is one factor that contributes to a seamless experience for PVI because, as one agent
put it, “ some people just don’t like waiting.” Agents said that distance estimation, path planning
on 2D maps and 3D maps, and AR directions would help them to stay ahead of PVI.

5.2.1 Distance Estimation. It is difficult for agents to estimate distance through a video feed,
especially considering differences in camera height and angle. We presented distance information
in three different ways: as circular bands on the video feed radiating out from the PVI’s position,
as labels on obstacles and pedestrians, and as a grid overlaid on maps. Nine agents (P1, P2, P5, P7,
P8, P9, P10, P11, P12) gave positive feedback about the distance measurement features, and there
were positive reactions to all three modes of distance information.

That’s... very helpful. I mean, distance measures, because that’s, it’s always tough, you
know, and especially when you’re trying to project things ahead of time. (P2)

Being aware of the distances from the PVI to other things in the video feed helps agents to work
ahead of PVI and prepare them for approaching obstacles, making them more confident in their
navigation.

... providing them, even providing with rough estimates... would again be a leap forward
because it would give them a lot more confidence. (P1)

Finally, calculating distances for agents frees them to focus on other aspects of their task and
work faster.

... the less that [agents] have to think about it, so that they can put that mental energy into
other parts of their agent-ing, the better... the boxes that come up and tell them exactly
how far it is, like, they don’t have to think about it. They don’t have to do any math. I
don’t have to look at any grids, you know, it’s really straightforward. (P8)

5.2.2 Path Planning and 3D Maps. Agents can employ path planning on both 2D maps and
3D maps. We received more positive feedback about 3D maps because they allow agents to path
plan and explore the PVI’s location when 2D maps are unavailable or the network connection is
unstable (P1, P3, P5, P6, P10, P12).

This is definitely a huge pain point as far as navigating in an unfamiliar building and
kind of having to just take a look around, and just explore that with them, but if there
was an option to have a kind of global map like you have here, already set up, that would
be really great. (P9)

Agents were particularly excited about the prospect of path planning using 3D maps in grocery
stores. We learned from agents that just identifying the right aisles can take more than half of the
total time that they spend assisting PVI in grocery stores.

... it probably takes longer to find the aisle, and then that’s probably the most work... with
maps, they would be so much easier. (P11)
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P5 told us that grocery shopping can be greatly expedited if he is able to plan an efficient path
through the store based on the items that PVI are looking for.

A lot of times the [PVI] will send us that list of what they want to shop for. If I have
the list... I can build my whole... route to get to wherever I have to get to right from the
beginning. (P5)

To further improve the agent’s ability to stay ahead and reduce the PVI’s waiting time, P3 sug-
gested storing 3D maps in a database and automatically loading relevant maps based on the PVI’s
location.

... if I try and search for a map online, I’m wasting their time, often, looking for the map
that doesn’t exist, so having a way to get to a 3Dmap quickly that’s updated and accurate
and helpful is good. (P3)

Annotations on 3D maps make the path planning process more efficient because room numbers
in office buildings and aisles and sections in grocery stores provide important details about building
layouts and possible paths. Even beyond planning specific paths, agents said that learning about
the general layout of locations like airports and grocery stores helps them to guide PVI more
effectively.

This map here, in conjunction with having the labels of the next slide, I think is very
helpful just to get a sense for the location and the store... getting oriented with where the
checkout area is, how the... aisles are formatted... (P9)

Agents considered crowdsourcing a promising way to construct and annotate 3D maps. This
would entail agents and sighted volunteers scanning the insides of buildings and labeling relevant
locations (e.g., service desks, bathrooms, pet relief areas, checkout counters). Based on their current
practice of tracking pet relief areas in airports described by P0, we were not surprised to hear that
agents would be willing to annotate maps.

... a lot of [PVI] have guide dogs... It is very important for a lot of [PVI] to be able to get
there [pet relief areas] and a lot of maps, they don’t have that, so if we are able to, like,
let’s say that we encountered a relief station, that we can add a label in there and it will
save it into the database... (P7)

In parking lot scenarios, planning a path to a specific entrance and navigating PVI in uniform
surroundings can be challenging and time-consuming for agents, as they may have to reference
Google Maps, mall maps, and satellite views. Map alignment and identifying elements likely to
be close to entrances using CV are potential solutions, especially for finding entrances that are
unmarked on Google Maps and out of frame. Eight agents (P2, P3, P5, P8, P9, P10, P11, P12) re-
acted positively to the map alignment concept. In addition to conveniently finding entrances and
planning paths, aligning maps provides agents with a comprehensive view of store locations in a
consolidated fashion.

Sometimes [agents] will have several maps open, because one map doesn’t have all the in-
formation, so the ability to bring all that information into one place without them needing
to have the two monitors and looking at three or four different maps would be amazing.
(P12)

When agents do have to find and reference multiple maps, it requires attention that could be
better used to guide PVI and work ahead. Searching for and making sense of several different maps
also demands a significant amount of time.
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Overlapping multiple maps to identify points of interest, such as entrances or specific
stores, that’s huge because that would save us a lot of time. (P10)

In the same way that labeled 3D maps can familiarize agents with airports and grocery stores,
agents also said that seeing these maps can help them get a feel for the layouts of malls.

5.2.3 Direction Tracking and Prediction. AR directions show walking directions using AR ar-
rows projected onto the video feed and notify agents of direction changes in advance. With the
help of AR directions, agents can deliver directional information farther ahead than they can man-
age on their own using the video feed. This feature is of value because agents prefer to dictate
directions to PVI before they reach the points where they need to change directions so that they
have extra time in case of connectivity-related lags.

I do love the AR directions... sometimes with connectivity and things like that, you know,
you have a little glitch, it’s– we always try to give them information ahead of time. (P2)

Having distances and directions provided to them also allows agents to direct PVI without dis-
ruption to their other tasks, such as paying attention to the video feed or describing surroundings.

... it lets you quickly see where you need to go, which makes you focus more on the sur-
roundings to give that person a more robust experience because then you’re not wasting
your time trying to figure out exactly where this turn is or anything like that. (P4)

5.3 Contextualizing Object Detection

5.3.1 Selective Pedestrian, Object, andObstacle Detection. Our design ideas included features for
obstacle and pedestrian detection, object detection and recognition, landmark and signage recog-
nition, scene text reading, and staff recognition. Agents expressed different views and preferences
regarding these features. However, one thing is certain: there is no need to detect and identify ev-
erything in every scenario. “Prioritizing and coming up with a few vital ones for each [scenario]”
is more sensible.
Agents were split on the pedestrian detection and tracking feature. P5 and P6 believed that it

would help them to prevent collisions in highly trafficked areas.

I think the obstacle detection is great in bigger cities and on walks, as you’re saying, if
there are crowds, everyone is on their phones, so not a lot of people are looking up, so you
do have collisions... (P5)

Referring back to agent cognitive load, P6 told us that he would like to have pedestrians tracked
for him so that he can focus on other mental tasks.

It’d be incredibly helpful to have that, like open up that additional kind of processing
power in the brain to not have to worry about [collisions]. (P6)

Other agents were doubtful of the benefits of pedestrian detection and tracking. P7 was con-
cerned that the feature could overwhelm her and overpopulate the video feed in busy locations.

... if you have, like, 20 people... it’ll be people, people, people, people, and then it’ll, like,
just cloud your view for navigation. (P7)

P2 pointed out that most people will not be collision risks, so she tends not to worry too much
about other pedestrians and their trajectories.

A lot of times with pedestrians, especially when they’re kind of walking towards each
other, that’s something that we tend not to describe becausemost of the time the pedestrian
will see this person and move out of the way... (P2)
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The variety of reactions and cases described with respect to pedestrian tracking suggests that it
is a useful feature in some situations, but having the ability to quickly toggle it off is also important
to agents.
Object detection and the search bar through which agents could have the CV highlight relevant

objects in the feed were widely well-received. One common use case agents identified was locating
trash cans for PVI with guide dogs who are walking in parks.

The video signal itself that we’re using might not be that good, and so with the computer
to pick out something like the garbage can, where if the garbage can is dark green, it’s
blending in with the rest of the foliage, and so... the computer vision, that could help a lot.
(P1)

Agents also liked the idea that the search bar could help them to find specific objects through
the visual “noise” in busy environments like crowded grocery store shelves or popular park paths.

... since there’s so much information that will pop up, especially like when reading those
big signs at the store... if you are able to, like, quickly search and it’ll show you right then
and there, that’s something that’s very, very neat. (P7)

The search bar, being a more passive feature (not active until an agent decides to utilize it), did
not elicit objections like the other detection concepts.
Queue recognition again split the agents, with positive responses from six agents (P5, P7, P8, P10,

P11, P12). Because of limitations on video feed quality and frame size, agents described struggling
to identify queues from a distance, especially where the PVI needs to go to either walk around the
crowd or join the end of the queue.

The queue, like I said, I love that just because those are things that are standing still all
the time, so... it’s going to be easy for the camera recognition to just know, ‘Okay, this is
it. We need to avoid this area.’ (P7)

P9, on the other hand, believed this feature to be unnecessary because she does not have a
problem recognizing queues herself. Variance in reactions to queue recognition may stem from
different experiences with PVI in locations that were more or less crowded and with signals that
were more or less strong.

5.3.2 Scene Text Reading. Scene text reading was well-liked in the grocery store scenario be-
cause of the connectivity problems common in grocery stores.

... for the most part, we’re able to have them look up and right and look at the sign, but
it might not be clear, so if it were able to detect and read the sign even though the video
feed’s not clear, that would be excellent. (P3)

P5 suggested that this feature could also be used to read “one-way” signage, which has been
more common during the COVID-19 pandemic, in the airport scenario, where there are “ so many
things happening at the same time...” P5 expressed having difficulty examining surrounding details,
especially when PVI are in a hurry and moving fast. He described an experience navigating a PVI
through a one-way area in the wrong direction because he did not recognize one-way signage.

... [PVI] are always always in a hurry... If you walk next door, which has happened before
and has happened to agents, youwalk and explore past a certain area, they are not allowed
to walk back in that area. They have to walk all the way around, which is a huge, huge
problem. It’s very frustrating on both our parts and everything, but it’s obviously more
frustrating them. (P5)
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Although P5 pointed out the feasibility of recognizing one-way signage in the airport scenario,
sign scene text reading was less appreciated for identifying signs that tend to be larger or follow
a sequential numbering pattern. P8 suggested that airport gate numbers could be easily found
online and therefore would not need to be read and displayed. P9 worried that the large number
of signs in airports could lead to too much signage text being read and highlighted on the video
feed, leading to excessive clutter.

Having a lot of information at once kind of distracts from the central information that is
most important. (P9)

5.3.3 Staff Recognition. Staff recognition was also controversial but for different reasons. Five
agents (P2, P3, P8, P10, P12) thought that the feature would be useful when PVI need assistance
from staff members.

[PVI] don’t always need a staff member, but in the times that they do, it can be difficult
to find those people, so if there was staff recognition, that would be, that would be pretty
darn cool. (P10)

Three other agents (P1, P5, P9) pointed out that finding staff is not a priority. P9 said that she
just looks for a service desk when PVI needs assistance. P1 and P5 explained that the feature could
be useful but that many PVI expect agents to help them achieve their objective rather than find
staff to help.

One of the reasons they utilize our service is so they don’t have to interact with a staff
member for something like getting their luggage or anything like that... they consider
that it means the agent’s skill must be lacking if they have to find a staff member... It’s
still possible if they do definitely want assistance... (P1)

Two agents (P7, P8) expressed concern about staff recognition. They worried about CV’s ability
to correctly identify staff that may not be in full uniform and distinguish people in similar clothing
from staff. P8 thought that agents may even become dependent on this feature and seek staff more
often than necessary.

One thing I think of with the staff recognition is I wouldn’t want our agents to become
dependent on that... I think that a lot of our agents would probably suggest that more often
than is needed... I wouldn’t want that to take away from the [PVI] feeling as independent
as they want to... (P8)

5.3.4 Toggling Features On and Off. The variability in different agents’ opinions on the features
we presented and individual agents’ preferences for various features in different scenarios high-
light the importance of the ability to easily toggle features on and off.

Again, just having options to be flexible with that. If that’s something that automatically
comes up and it’s not really relevant or it’s too distracting, that can take away from the
work that is trying to be done... (P9)

P7 recommended saving agents’ preferences regarding showing annotations, and P9 suggested
“having an option to to be able to focus in on one point” and showing recognition in a selected area.

5.4 Emphasizing the PVI’s Video Feed

Like P0, agents emphasized the centrality of the live video feed in the interviews. When online
maps are unavailable or lack detail, agents’ current method of compensating for missing informa-
tion is to absorb as much information as possible from the video and match it to what they are
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able to see on maps. P4 provided an example of how he helps PVI navigate in newer, unmapped
residential developments.

I would say definitely relying more on the live video feed and then using the surrounding
map of that property to lead them to either a driveway, sidewalk, or what have you, that
we know does connect to that plot of land, and then it’s strictly live video feed to kind of
navigate through that new development... (P4)

Landmark recognition and scene text reading were well-liked because they facilitate easy recog-
nition and interpretation of critical information that is missing from maps.

I think that is a really, really great feature and that is one of the main tools that we do
use to navigate when in an airport, if the airport map that we find online isn’t very good
or comprehensive... (P9)

Even if quality maps are available, some agents prefer to rely on the video feed to save time and
effort associated with finding maps and localizing PVI on maps. P5 liked that scene text reading
could replace maps by making directions easier to determine from the video feed.

... I like to do as much as I can without the map because, as I said, it takes a little bit of time
to bring it up and then to sit there and try to orient where they are and everything. (P5)

P8 also had a positive response to scene text reading, especially the idea of “all signage labels
coming in the same format.” In most cases, the formats and locations of signs are variable, which
can cause agents to miss some signs if they are not in the color or spots that they expect. This
feature helps agents to not miss information when signs look different or are “hung on a wall or
hung from the ceiling.”

Reiterating what P0 told us about the centrality of the video feed in navigation, P10 indicated
that her main focus is on the real-time feed. For that reason, she liked that the distance bands were
overlaid on the video so that she could see both distance and everything happening in the feed at
the same time.

... our main focus is on that camera feed because that’s, that’s real-time, so the [distance]
bands to me, that are actually on the camera feed would be most helpful... We try not to
take our eyes off the camera... (P10)

5.5 Managing Risk in Navigation

PVI’s safety is paramount to the agents’ practice, especially during navigation. In parking lots,
leading PVI to crosswalks or sidewalks is considered a best practice. We also received positive
reviews of queue recognition, and some agents observed that it could be utilized for safety practices
during COVID-19.

5.5.1 Parking Lots. To ensure the PVI’s safety in parking lots, agents’ current practice is to
guide PVI in crosswalks, along the edges of parking lots, or on raised sidewalks between rows of
parked cars, as stated by six agents (P2, P3, P8, P10, P11, P12).

When we navigate explorers to parking lots, we try our very best to find sidewalks within
the parking lot if we can, or if not, to kind of keep them along edges or the most direct
walking route, whatever makes the most sense to keep them the safest. (P10)

Agents wished to see CV support that likewise prioritized safe paths.

Ideally, we always follow crosswalks... just for safety... but that’s not necessarily the most
direct route... so I would be hesitant to use something that didn’t automate that way... (P3)
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In our presentation, we depicted AR directions showing the most expedient path through a
parking lot, which P3, P10, and others took issue with. P7 suggested adding the option to draw a
path manually, as we presented with 2D maps in the airport navigation scenario.

We’re not supposed to, like, walk [PVI] through cars and stuff like that... if we have the
option to, like, change it around just like we did in the... airport... that would be a great
idea just because we still have to follow all of the rules that are, like, you know, being safe
in a parking lot area. (P7)

As in other scenarios, agents said that the video feed is of the utmost importance in parking lots
for agents looking out for vehicles, people, and curbs. P3 and P10, therefore, suggested making the
AR directions semi-transparent in the parking lot scenario to prevent the overlays from obscuring
any important visual information.

I could see it being a distraction in a tense situation... If the overlay were transparent
enough to not affect what’s coming in from out of screen, because that’s the most common
thing in parking lots, is people pushing their carts, kids walking, cars moving... (P3)

5.5.2 Applications to the COVID-19 Pandemic. Two agents suggested extending the application
of queue recognition to today’s unusual circumstances. They believed that it could be useful for
facilitating social distancing and preventing PVI from running into crowds during the pandemic.

... with the, the social distancing and wanting, people wanting to stay, you know, far
enough away from everybody... I think it would be useful. (P8)

Moreover, P11 pointed out that she alerts PVI if “ there’s a person not wearing a mask on the
left in 15 feet.” Others suggested that distance bands set six feet out could help agents keep PVI
from coming within six feet of others. P12 believed that it would be helpful to track and predict
pedestrians’ movement continuously during COVID-19 to avoid close contact.

I think during social distancing, that [continuous movement tracking and prediction]
would also be very helpful to know front, back, left, and right where they’re at. (P12)

Two agents (P5, P7) indicated that it is difficult to find open entrances during the pandemic be-
cause fewer entrances/exits are in operation. They valued the feature of finding invisible entrances
and believed it could potentially alleviate challenges associated with new business operations dur-
ing the COVID-19 pandemic.

Especially when nowadays, I need to find more entrances because a lot of stores, because
of COVID-19, have closed many of their entrances. They only have a particular entrance,
I need that entrance. (P5)

5.5.3 Unstable Network Connection. We proposed that agents may utilize a first-person view
of 3D maps that keeps up with PVI’s movement by matching AR points when PVI’s video feeds
are compromised by a poor network connection. Most agents liked having the option of using AR
points to see where PVI are in buildings or stores, but some were concerned about not being able
to see unpredictable obstacles from the 3D maps alone.

... replacing the live feed with this video or this 3D map, it would take out the agent’s
ability to identify obstacles, so the [PVI] might run into things without the agent even
knowing that they’re there... (P8)

P9 informed us that agents are typically able to send PVI text messages even when the video
cuts out, though. She figured that as long as she was able to tell PVI that she was no longer using
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the video feed and would not be able to tell them about unmapped obstacles that tracking them
via AR points would be beneficial.

5.5.4 Further Opportunities. Agents also mentioned other challenging situations that our de-
sign ideas did not address that may pose risks to PVI. P4 and P12 indicated that elevation changes
like small steps and ramps are difficult to distinguish in the video feed. P7 suggested detecting
weather-related obstacles, such as mud, water, or snow on sidewalks. P9 said that agents might
miss short or low objects near the ground depending on how PVI positions their camera. If PVI
holds the camera higher, “we aren’t able to see, like, if someone has a box kind of outside of their
front door.” P3 and P9 recommended detecting the stanchion lines used to structure queues in
airports since they are difficult to see in the video. PVI may run into these barriers because “ the
cane goes underneath it, so they’re thinking that they are free to continue traveling.”

6 DISCUSSION

In study 1, we presented low-fidelity prototypes for five real-world navigation scenarios to a RSA
domain expert. Through a thorough analysis of the data, we developed six high-level themes
that revealed how our design ideas might affect RSA practice and how they could be improved:
(1) reducing the agent’s cognitive load, (2) enhancing the agent’s ability to stay ahead, (3) contex-
tualizing object detection, (4) emphasizing the PVI’s video feed, (5) managing risk in navigation,
and (6) managing external factors.
After a design iteration based on these results, we evaluated the revised prototypes with 12

RSA agents in study 2. Using a bottom-up approach, we identified 15 themes, which can be orga-
nized into five high-level themes that reflect the first five found in study 1. Findings from study
2 supplemented details within each of these themes regarding how design ideas could smooth
out the navigation process, how agents’ views and preferences on some design ideas conflict, and
additional challenging situations that our design ideas did not address.
In this section, we identify several opportunities for and limitations of CV-mediated remote

sighted assistance. The design concepts presented can be further improved through integration
with PVI clients’ profiles. We also discuss ways in which our findings can inform the development
of CV applications for RSA beyond our design concepts, the ethics of a CV-mediated RSA system,
practical realities of crowdsourced map construction, the promising applications of the proposed
designs to COVID-19 safety practices, the advantages of CV supporting RSA agents rather than
directly supporting PVI, the effectiveness and challenges of using low-fidelity CV prototypes to
present design ideas, and reasons for studying emerging CV technologies. Finally, we present the
limitations of our research and the directions for future work.

6.1 Integrating Functions with PVI’s Profiles

Each of Aira’s visually impaired clients has a profile that agents can access containing relevant
personal information (e.g., whether they are a cane or guide dog user) and RSA preferences (e.g.,
preference for more or less scenery description while navigating). If our proposed design ideas
were integrated with these profiles, agents could employ CV features based on PVI’s specific wants
and needs to provide rich, meaningful experiences without having them take the time to fine tune
the system for each PVI during every call. For example, as P0 suggests in Section 4.1, map anno-
tations could include locations and labels that are personal to PVI, such as “my office.” Preferred
paths for frequent trips including points of interest along the way like restrooms, or pet relief areas
for guide dog users, could also be saved to these profiles. Certain features could automatically be
toggled on or off at the beginning of a call depending on the preferences recorded in the PVI’s
profile to quickly calibrate the system for the agent. For example, if a PVI’s profile shows that they
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prefer not to consult staff for help, the system could toggle staff recognition off at the start of the
call.

6.2 Opportunities for CV Algorithms in RSA

The high-level themes identified in the first and second studies provide general insights into the
practices, goals, and challenges of remote sighted assistants and can therefore inform directions
for CV support in RSA beyond the scope of the limited set of scenarios and design ideas presented
here. Through the expert review and design review study, we learned that, in almost all cases, RSA
agents wish to minimize their cognitive load while also continually working ahead of PVI. These
themes, articulated by end-users, define broad, relevant objectives for future CV technology in
RSA. Further design and development of CV for RSA can be motivated by these objectives, and
the potential value of early concepts can be assessed based on to what extent they advance these
objectives.
First, tasks identified by agents as being cumbersome or cognitively demanding in Lee et al. [88]

and the studies here, of which there are many, outline some specific opportunities for CV to en-
hance RSA services. For example, path planning with limited information regarding PVI’s sur-
roundings is a challenging and tedious problem. Currently, agents typically gather environmental
information by asking PVI to scan their surroundings repeatedly. In the future, we envision that
CV algorithms could learn to perform path planning with incomplete environmental information,
leveraging a large set of historical video data associated with the actual paths taken by PVI. Re-
searchers can also ideate and develop other CV functions that reduce agents’ cognitive load and
help them to work ahead of PVI and feel confident that such systems will be of some value, even
if the jobs that they do are not yet documented agent challenges.
Second, the fact that they need to identify various types of objects is contextual represents fur-

ther considerations, and some opportunities, for CV augmentations of RSA technologies. Begin-
ning with object detection, which objects are of interest depends heavily on the scenario, context,
and the preferences of the PVI and agent, and labeling all visible objects can result in information
overload. However, given the large number of influential factors, it is virtually impossible to pre-
determinewhich objects to identify.While the associationwith PVI’s profiles may help, it would be
laborious to explicitly specify one’s preference for a large range of possible activities. Thus, it is de-
sirable to learn such information on-the-fly aswe deploy systems in real-world applications. To this
end, AI can be employed to automatically adjust the importance of features for each agent and PVI.
Further, AI can be used to mine frequent patterns in user data and recommend additional objects
to discover, similar to systems that recommend products based on a consumer’s shopping history.
Likewise, the importance of the raw video feed to agents’ practice suggests some constraints and

opportunities for CV in RSA. Agents were critical of features that obscured or cluttered the video
feed in dynamic (navigational) scenarios despite their potential to consolidate relevant information.
CV designers should therefore explore methods of presenting information that do not interfere
with the video feed but that still save agents time and do not add to their cognitive load (e.g.,
placing directions just above the video feed on the RSA interface). Researchers may also consider
using CV technologies to enhance the user’s video. For example, rather than adding opaque text
tags below or next to signage, a system might read text from signage and portray the text clearly
on top of the signage text in a similar color and style to clarify the text in a less distracting way.
Finally, future CV designs for RSA, especially applications that make decisions for agents (e.g.,

path planning functions), should more intentionally promote PVI’s safety. For instance, per agents’
feedback, path planning applications should prioritize safety over expedience by maximizing the
use of marked crosswalks and sidewalks. Other technologies may be developed to identify or track
safety hazards, such as puddles (as suggested by P7), large cracks in sidewalks, or other obstacles
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that are near or on the ground and leave the video frame as the user approaches them. Safety is of
the utmost importance to agents (and presumably to RSA users as well), so CV applications that
take some of the safety monitoring burden off of agents or extend their ability to protect PVI’s
safety is another promising design direction.

6.3 Collaborative Map Construction

We proposed constructing and annotating indoor 3D maps using crowdsourcing (Section 3.1) due
to crowdsourcing’s potential to make indoor 3D maps available and keep them up to date without
significant financial investment from an RSA platform. Although prior work attests to the feasibil-
ity and importance of crowdsourcing for 3D map construction (Section 2.5), there are also some
limitations of crowdsourcing 3D map construction. First, although a crowdsourcing system pro-
vides a convenient way to collect a 3D maps and label data, it fails to guarantee data quality. In
terms of the quality of map data, one potential issue is loss of detail, such as a missing scan of an
aisle in a grocery store. We envision that this problem might be gradually mitigated over time by
the strength of crowdsourcing, merging information of the same location and supplementing more
details. However, label data requires additional verification. Our system relies solely on manual la-
beling, where errors and imperfections are inevitable. Inaccurate labels influence the functionality
of other features included in our design ideas. For example, spelling errors in labels and incom-
pleteness of label data can affect the performance of a search bar for looking up relevant objects.
Inappropriate placement of labels might occlude other important information on the 3D maps.
Previous studies indicate that intrinsically motivated crowd workers give extraordinary effort in
terms of both quantity and quality, whereas extrinsically motivated crowdworkers that value mon-
etary reward will prioritize completion speed instead of quality [118, 135]. Researchers hypothe-
sized that increasing the intrinsic motivation of a task (e.g., altruism) may succeed in improving
quality [118]. Sometimes even trustworthy crowd workers may provide inaccurate responses be-
cause of their inattentiveness, fatigue, or boredom [52], or because of poor instructions or task
design [118]. The verification of accuracy can be supported by mechanisms studied in the area of
CV, specifically obtaining high-quality labels for training object detection algorithms [136, 149].
To avoid errors attributed to the poor instructions, we can provide detailed instructions of what to
label (e.g., contextualization of object detection) and how to label (e.g., drawing bounding boxes
around objects [136]).
Second, data age is an additional limitation. Unlike other crowdsourcing projects based on of-

ficially maintained datasets (e.g., Google Street View) [65, 66, 121], this proposition depends on
volunteers creating 3D maps and editing labels. As we learned from agents in this study, maps
lose their usefulness when they are out of date, and some types of locations (e.g., grocery stores)
change frequently. Maintenance of useful 3Dmaps may therefore be difficult to ensure and require
continuous efforts by crowd workers. Similar to approaches to improving data quality, we can seek
to maximize and emphasize intrinsic motivation, particularly framing the task of collecting map
and label data as helping PVI and RSA agents. Based on prior research [118, 135], we believe that
intrinsically motivated volunteers would be willing to update the 3D map and label information
once they find out it is out of date, thus alleviating this problem to some degree. Institutional
motivations for businesses, organizations, and local governments may also apply to this issue.

6.4 Extending the Proposed Design to COVID-19 Safety Practices and Beyond

Our scene text reading and 3D map annotation concepts can be applied to COVID-19 safety prac-
tices. One-way walking paths are one of the protocols currently being used to minimize close
contact. We can use scene text reading to recognize one-way signage and direction arrows on
the ground, especially for indoor navigation (Section 5.3.2). Finding entrances/exits in operation
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is challenging during the COVID-19 pandemic. Apart from utilizing the feature locating invisible
entrances (Section 5.5.2), crowdsourcing is a relevant promising direction to update entrance/exit
information. Sighted volunteers (e.g., government entities, employees of businesses) can upload
annotations for entrances/exits to 3D maps to expedite the identification of viable entrances and
exits for PVI.
The proposed design ideas can also be implemented for social safety practices beyond current

pandemic conditions. Agents suggested that queue recognition and distance bands could facilitate
social distancing and prevent PVI from running into crowds (Section 5.5.2), whichmay be desirable
for a variety of reasons (e.g., avoiding distracted pedestrians and collisions, preventing unwanted
touching of guide dogs). These design ideas can also help PVI avoid shoulder surfers, a criminal
practice involving invasion of personal privacy and theft of personal data (e.g., passwords, ATM
PIN). This common crime can be committed easily by spying over a PVI’s shoulder when they use
a laptop, ATM, kiosk, or other electronic devices in public. Design ideas that help maintain social
distancing can assist PVI with keeping distance from pedestrians, thereby preventing shoulder
surfers.

6.5 The Shift from CV Assisting PVI to CV Assisting RSA Agents

Our discussions with agents supported our hypothesis regarding the increased viability of CV as-
sisting RSA agents compared to CV directly assisting RSA users. Agents explained how they often
use their judgement and make frequent adjustments based on their context and PVI’s changing
preferences and needs to deliver RSA. They are also able to quickly recognize when amap is not up
to date or when computer-generated directions might pose a safety hazard and use their problem-
solving skills to deal with such situations. Human cognition and judgement is central to agents’
practice and what agents classify as a quality RSA experience.
Throughout the interviews, agents pointed out several nuances to their practice that demon-

strate how agents filter available information to suit particular scenarios and PVI’s goals. For ex-
ample, P0 said that she is more wary of unnecessarily verbally identifying objects if the PVI’s lo-
cation is especially noisy, a characteristic that might be transient (Section 4.3). Additionally, some
agents opt to not search for a map if they feel like they can navigate the PVI’s location using the
video feed alone to save time. The rapid decisions that agents make to optimize their assistance
based on their subjective interpretation of the entire context are surprisingly common. Any CV
algorithm that accounts for as many factors as agents do in decision-making would be extraordi-
narily complex. Agents can use the continuous stream of visual cues from the video feed, outside
information (e.g., maps), their understanding of their abilities and what the current client needs,
and their ideas about what certain PVI might be interested in based on their personalities to judge
what information is useful and what is not on-the-fly. A CV system, on the other hand, may over-
whelm PVI or create poor experiences because it is not able to adapt as quickly as human agents.
CV supporting agents can enhance agents’ information collection and interpretation abilities and
speed while still delegating them decision-making power. No agents suggested that any feature
provide information directly to PVI, even though that could potentially reduce their own cogni-
tive load. Agents seemed to recognize the limitations of CV and their would-be role as a safety
net in an RSA system with CV, as they often reacted positively to CV features but emphasized the
importance of being able to quickly toggle features on and off or ignore the system to effectively
adapt and maintain their standard of quality, personalized assistance.

6.6 Effectiveness and Challenges of Low-Fidelity Prototypes

In this article, we prototyped and presented CV designs as low-fidelity, static, nonfunctional rep-
resentations of an RSA interface. We evaluated the desirability of the prototyped CV concepts and
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user interface before putting extensive efforts into implementing CV technologies in a high-fidelity
prototype or even creating awireframe. Becausewe conducted the design reviewwith RSA experts,
participants were familiar with the cases presented and the challenges targeted. They demon-
strated a thorough understanding of the design ideas despite the prototypes being low-fidelity.
This approach was therefore appropriate and turned out to be highly effective and efficient for our
purposes of reviewing core functionalities rather than design details.
First, by working with low-fidelity prototypes, we were able to explore the potential of less

mature technologies while exercising a high degree of control over their presentation. Viewing
nonfunctional prototypes, agents were not distracted by technological flaws and provided focused
and constructive feedback on the usefulness of the design concepts. Second, the low prototyping
cost allowed us to evaluate bolder design ideas and iterate quickly. Third, the low-fidelity proto-
types made agents feel comfortable critiquing them honestly, knowing that they were not asking
us to rethink months of work, evidenced by P0’s recommendation to get rid of one of the five
scenarios presented to her.
However, there are also challenges to portraying CV in low-fidelity prototypes. First, finding

appropriate scenes and pictures is difficult. The researchers need to ensure that the low-fidelity
prototype looks realistic enough that participants can look past its limited interactivity and react
constructively to it. To achieve this goal, the researchers searched for visual resources online and
filtered them in terms of size, angle, resolution, brightness, and content. For example, we illustrated
queue recognition by highlighting a group of people standing still in front of airport check-in desks.
When searching for pictures of airport check-in areas, the researchers did not select pictures that
were too bright or too dim, pictures without queues of passengers, or images that did not appear
to be taken from between waist and eye level. Second, although recognizing and labeling items on
pictures manually is necessary, it is laborious when targets are numerous, clustered, and hard to
identify. It is also challenging to coordinate and illustrate several CV capabilities simultaneously
(e.g., constructing an image depicting obstacle detection, pedestrian detection, distance measure-
ment, and AR directions simultaneously). In this case, the researchers used various colors and
shapes to demonstrate different CV capabilities. Colors and shapes were chosen to be distinctive
so that participants could distinguish labels for different features from the background and from
each other easily. In addition to selecting proper colors and shapes for annotations, it is difficult
to create, edit, or delete a label if it overlaps with the other one.

6.7 Reasons for Studying Emerging Technologies

While some of the technologies underlying the CV functionalities designed and prototyped here
are not yet mature and ready for deployment, we found it valuable to explore future possi-
bilities for CV in RSA with RSA experts. By studying emerging technologies in this way, we
learned about general objectives and considerations for any type of CV implementation in RSA
(Section 6.2), and we have defined directions for future CV research and development that have
commercial desirability. Understanding which emerging technologies are in demand from vari-
ous sources can influence CV research priorities and give researchers an idea of in what kinds of
applications and domains CV technologies may be used, which may inform their development.

6.8 Limitations and Future Work

We had the unique opportunity to work with some of the few people who have specialized RSA
expertise; the people we interviewed are literally the prospective users of the services we proto-
typed. However, our participants were all professionals working within the same RSA platform.
Thus, they might be homogeneous in ways we do not intend or even understand. RSA is still a
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start-up area, but as it develops, we need to be on the lookout for opportunities to access other
groups of RSA professionals.
We tried to address diverse settings in the scenarios represented in our prototype, and agents

regarded them as typical and affirmed that we had addressed “huge pain points” in their pro-
fessional practice. Still, we examined a relatively small set of real-world navigation tasks. This
kind of limitation is inevitable in early-stage research. Broadening the set of scenarios we address
and the diversity of navigational interventions we envision and investigate is an important future
trajectory.
It is a limitation of our work that we designed and studied low-fidelity prototypes; through

accompanying narrative we described interaction scenarios, but our participants were not able to
actually interact with the computational support suggested by the prototypes. Our future direction
is to implement and study higher fidelity prototypes and systems to more thoroughly explore and
develop the functionality of CV-mediated remote sighted assistance with feedback from not only
RSA agents but also PVI.
Prior work [18] has investigated the privacy concerns of PVI associated with using RSA, such as

inadvertently revealing sensitive and personally identifiable information to RSA agents, including
medical prescriptions, credit card numbers, and emails. These privacy concerns are valid and im-
portant but are beyond the scope of this particular work, which has focused on agent’s perceptions
of early-stage conceptual design ideas. We also believe that personally identifiable information is
protected at least in part by the professional RSA organization, Aira, where our participants work.
Aira has a privacy policy and trained RSA professionals, characteristics that engender “institu-
tional trust,” as proposed by Akter et al. [18]. Although trained RSA professionals generally garner
more trust than untrained RSA volunteers, these privacy concerns exist and warrant greater con-
sideration in future studies of professional RSA services.
We understand and acknowledge the limitations of current technology in the context of the pro-

posed design ideas. The concepts we presented integrate mature and emerging CV technologies
that we envision will support RSA agents in navigation tasks and provide a better user experi-
ence for PVI. However, leveraging so many capabilities simultaneously requires a great deal of
processing power and time with current technology. It could slow down RSA systems and exacer-
bate latency during poor network connections, though processing would occur on the agent’s side,
not the PVI’s. We expect advancement in hardware and computation platforms (e.g., 5G networks,
cloud computing) to continue to expand the boundaries of the possible and grow increasingly close
to meeting the computational needs of the designs proposed here.
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