
Southern Adventist University Southern Adventist University

Knowledge Exchange Knowledge Exchange

MS in Computer Science Project Reports School of Computing

1-27-2023

CodeBase Relationship Visualizer: Visualizing Relationships CodeBase Relationship Visualizer: Visualizing Relationships

Between Source Code Files Between Source Code Files

Jesse Hines
jessehines@southern.edu

Follow this and additional works at: https://knowledge.e.southern.edu/mscs_reports

 Part of the Graphics and Human Computer Interfaces Commons, and the Systems Architecture

Commons

Recommended Citation Recommended Citation
Hines, Jesse, "CodeBase Relationship Visualizer: Visualizing Relationships Between Source Code Files"
(2023). MS in Computer Science Project Reports. 7.
https://knowledge.e.southern.edu/mscs_reports/7

This Thesis is brought to you for free and open access by the School of Computing at Knowledge Exchange. It has
been accepted for inclusion in MS in Computer Science Project Reports by an authorized administrator of
Knowledge Exchange. For more information, please contact jspears@southern.edu.

https://knowledge.e.southern.edu/
https://knowledge.e.southern.edu/mscs_reports
https://knowledge.e.southern.edu/computing
https://knowledge.e.southern.edu/mscs_reports?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/mscs_reports/7?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu

CODEBASE RELATIONSHIP VISUALIZER: VISUALIZING RELATIONSHIPS

BETWEEN SOURCE CODE FILES

by

Jesse Hines

A THESIS

Presented to the Faculty of

The School of Computing at Southern Adventist University

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Dr. Halterman

Collegedale, Tennessee

January, 2023

CodeBase Relationship Visualizer: Visualizing
Relationships Between Source Code Files

Approved by:

Professor Richard Halterman, Adviser

Professor Scot Anderson

Professor Robert Ordóñez

Date Approved

CODEBASE RELATIONSHIP VISUALIZER: VISUALIZING RELATIONSHIPS

BETWEEN SOURCE CODE FILES

Jesse Hines, M.S.

Southern Adventist University, 2023

Adviser: Richard Halterman, Ph.D.

Understanding relationships between files and their directory structure is a fun-

damental part of the software development process. However, it can be hard

to grasp these relationships without a convenient way to visualize how files are

connected and how they fit into the directory structure of the codebase. In this

paper we describe CodeBase Relationship Visualizer (CBRV), a Visual Studio Code

extension that interactively visualizes the relationships between files. CBRV dis-

plays the relationships between files as arrows superimposed over a diagram of

the codebase’s directory structure. CBRV comes bundled with visualizations of

the stack trace path, a dependency graph for Python codebases, and a hyperlink

graph for HTML and Markdown. CBRV also exposes an API that can be used to

create visualizations for multiple different relationships. CBRV is a convenient and

easy-to-use tool that offers a “big picture” perspective on the relationships within

a codebase.

v

Contents

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 3

1.2 Project Overview . 3

1.3 Motivation . 5

1.4 Outline . 5

2 Background 7

2.1 The Power of Interactive Visualizations 7

2.2 Similar Tools . 8

2.2.1 Algorithm Visualizations . 8

2.2.2 Relationship Visualizations . 9

3 Implementation & Design 11

3.1 The Visualization . 12

3.1.1 Directory Structure Diagram 12

vi

3.1.2 Connections . 13

3.1.3 Interaction . 14

3.1.4 Include & Exclude . 15

3.2 The API . 17

3.3 Minimal Implementation . 17

3.4 Stack Trace Visualization . 17

3.5 Dependency Visualization . 20

3.6 Hyperlink Visualization . 20

3.7 Architecture . 22

4 Tasks Delineation & Deliverables 25

5 Testing & Evaluation 27

6 Future Work 29

7 Conclusion 31

A Detailed Requirements 33

A.1 Non-Functional . 33

A.2 Functional . 34

A.2.1 The Visualization . 34

A.2.1.1 Directory Structure Diagram 34

A.2.1.2 Connections . 35

A.2.1.3 Interaction . 37

A.2.1.4 Include/Exclude . 38

A.2.2 API . 39

A.2.3 Minimal Implementation . 39

vii

A.2.4 Stack Trace Visualization . 39

A.2.5 Dependency Visualization . 41

A.2.6 Hyperlink Visualization . 42

B Acceptance Testing 43

B.1 Sample codebases . 43

B.2 Acceptance Tests . 44

B.2.1 Basic diagram . 44

B.2.2 Basic interaction . 45

B.2.3 Filtering . 47

B.2.4 Hyperlink Visualization and Connections 48

B.2.5 Real-time updates . 50

B.2.6 Symlinks . 50

B.2.7 Large Codebase . 52

B.2.8 Stack Trace Visualization . 52

B.2.9 Dependency Visualization . 55

B.2.10 Empty Codebases . 56

Bibliography 57

ix

List of Figures

3.1 The architecture of CBRV . 11

3.2 A screenshot of the CBRV Hyperlink Visualization 12

3.3 A screenshot of dynamic zoom (on the VSCode docs [1] codebase) . . . 14

3.4 A screenshot showing connection on hover (on the VSCode docs [1]

codebase) . 16

3.5 A screenshot of the CBRV Stack Trace Visualization 18

3.6 A screenshot of the CBRV Stack Trace Visualization with recursion

shown as a merged connection with tooltip 19

3.7 A screenshot of the dependency visualization (on the ShellAdventure

[2] codebase) . 21

xi

List of Tables

3.1 Summary of the protocol between the main extension and the webview 23

4.1 Summary of tasks for the CBRV project 26

1

Chapter 1

Introduction

You have just started a new job and been dropped into a massive codebase. There

are thousands of files of source code, dozens of legacy systems, all interacting with

each other in specific ways and you, of course, have no idea what is going on. But

you are supposed to fix this bug. You dig through the code, running a debugger

and trying to find where exactly everything is going all wrong. How does this

piece of code relate to the others? You are in a stack trace, how exactly did we get

here, and from where, and why? What parts of the code are relevant? Is this file

over here actually used anywhere anymore? What is its purpose? And of course,

you are terrified to change anything until you understand all these connections

since a tiny change can easily affect all kinds of things.

Confusion when working on a new codebase is a nearly universal experience

among software developers. Understanding relationships between systems is a

fundamental part of the software development process. When working on any

new codebase, trying to understand the relationships between all of its parts is

vital, and often the most difficult part of the process [3]. A developer has to know

which components could be affected by their changes. They need to have a mental

2

model of the codebase so that they can see the “big picture” and where this piece

fits in with all the others in the intricate puzzle that is software. Even on a familiar

codebase with a single developer, upon returning to a project after a year or so

they will often encounter the same problem and have to relearn the relationships

in the codebase.

An important, but often neglected, relationship in a codebase is the actual

layout of its files and folders on the filesystem. Without a mental model of

the directory structure of the codebase, a developer will most likely be plagued

with import resolution issues, configuration issues, compiling issues, and more.

Understanding the directory structure is necessary to navigate it and understand

the overall organization and design of the codebase. Logical relationships need to

be understood within the context of the directory structure of the codebase.

Fortunately, dynamic visualizations and diagrams are powerful tools to aid in

the understanding of complex relationships in a codebase [4]. A good software

visualization can help a developer in building a strong mental model of a codebase

and the relationships within it. Hand-made architecture diagrams are great tools,

but reality usually deviates from the original plan and a hand-made architecture di-

agram will fail to capture every relationship. Dynamically generated visualizations

help overcome some of the weaknesses of pre-made visualizations. A dynamic

visualization can show the actual state of the codebase, not just the original plan,

and show more complex relationships and information, even including runtime

information.

3

1.1 Problem Statement

Understanding relationships between files and their directory structure is a fun-

damental part of the software development process. We need a convenient way

to visualize these relationships and how they fit within the directory structure of

the codebase. Few existing visualizations place relationships between files within

the context of their directory structure. To address this gap, we created CodeBase

Relationship Visualizer (CBRV), a Visual Studio Code extension that interactively

visualizes the relationships between files. CBRV displays the relationships between

files as arrows superimposed over a diagram of the codebase’s directory structure.

CBRV comes bundled with visualizations of the stack trace path, a dependency

graph, and a hyperlink graph for HTML and Markdown. CBRV also exposes an

API that can be used to create visualizations for multiple different relationships.

CBRV is a convenient and easy to use tool that offers a “big picture” perspective

on the relationships within a codebase.

1.2 Project Overview

CBRV displays the directory structure of a codebase as nested circles in a circle-

packing diagram, with folders represented by circles containing other folder and

file circles. The directory structure diagram is overlaid with the relationships

between the files, such as dependencies or references depending on the specific

visualization, rendered as lines or arrows connecting the files. The circle-packing

display of the filesystem and connections is inspired by Wattenberger’s Repo Visu-

alizer [5], but is interactive, zoomable, and adaptable to any type of relationship

between files.

4

CBRV is distributed as an extension for Microsoft’s popular editor/IDE Visual

Studio Code [6] and available for install from the VSCode extension marketplace

[7]. The CBRV source is published under the GNU GPL and available on GitHub

[8]. CBRV includes 4 bundled visualizations which make use of the the CBRV API:

1. Minimal Implementation

This visualization is a minimal example of using the CBRV API. It has no

connections, and justs shows the file structure diagram.

2. Stack Trace Visualization

This visualization shows the path of the stack trace through the codebase. It

connects to a debugging session in any language that has a VSCode debugger.

It shows a line tracing the call stack through the files on top of the CBRV

diagram at each breakpoint. The goal of this visualization is to help orient a

developer while debugging with a deep stack trace, to show an overview of

what path the code followed to get here.

3. Dependency Visualization

This visualization shows a dependency graph of imports in Python codebases,

visualizing which parts of the codebase depend on each other.

4. Hyperlink Visualization

This visualization shows a graph of the hyperlinks connecting HTML and/or

Markdown files.

5

1.3 Motivation

There are of course many existing tools to visualize various relationships in a

codebase. CBRV adds a new entry to the repertoire of visualization tools for

developers, and complements the existing tools. We think that it offers a unique

perspective of a codebase, allowing developers to visualize the codebase’s directory

tree at the same time as the relationships in the code.

We also want CBRV to be easily accessible and easy to use. While there are

hundreds of fascinating software visualizations out there, getting one to run on

a modern system is a much more daunting task [9]. A visualization is of no use

if no one can figure out how to run it anymore. Making CBRV open source and

available on the VSCode marketplace will make it easy for anyone to install. And

exposing the API will make it easily adaptable to visualize new relationships.

1.4 Outline

This paper reviews the existing tools for software visualization in Chapter 2 and

describes our implementation and design in Chapter 3. Chapter 4 lists the project

tasks and the final deliverables presented. Chapter 5 outlines the test results for

the project. Chapter 6 describes directions for future work and Chapter 7 presents

our conclusions. Detailed requirements for the CBRV visualization and acceptance

testing can be found in Appendices A and B respectively.

7

Chapter 2

Background

There is lots of research on how visualizations helps in program comprehension

and on various software visualization tools. We will briefly look at the theory

behind software visualization, and relevant software visualization tools.

2.1 The Power of Interactive Visualizations

Sight, such as examining source code and diagrams, is the primary means that

software developers use to understand a codebase [3]. Creating and studying

diagrams of a codebase can greatly aid in understanding its overall structure.

However, software visualizations work best when their users can interact and

engage with them [10]. Passively watching a visualization rarely helps unless

users engage in the process [11]. Additionally, combining and overlaying different

styles of visualizations into one can be a powerful tool, allowing users to see a

new perspective on how the different aspects interact [4]. Making interactive and

responsive visualizations that users can play around with will greatly increase

their usefulness as comprehension aids.

8

2.2 Similar Tools

The concept of making software visualizations is certainly not a new one. CBRV

builds upon and adds to the existing set of tools developers can use to visualize

their software.

2.2.1 Algorithm Visualizations

Visualizations of computer algorithms date back at least to 1975 when Baecker de-

scribed his system for making “teaching films containing animated representations

of the execution of computer programs” [12]. Since then the field has grown expan-

sively, with countless tools providing different visualizations of software, sporting

visualizations ranging from 3D program flowcharts [13] to a visual debugger based

on Space Invaders [14].

Existing tools for visualizing and debugging algorithms include DataDisplay-

Debugger [15], which can connect to multiple different debuggers for different

languages and shows data structures as graphs. Another powerful algorithm

visualization tool is visualgo.net, which contains dozens of online interactive visu-

alizations of different algorithms such as quick sort or binary tree insertion [16].

If visualgo does not have a pre-made visualization for an algorithm, algorithm-

visualizer.org allows users to create algorithm visualizations by instrumenting

their code [17].

Dieterichs’ Debug Visualizer [18] is also a fascinating algorithm visualization.

Like CBRV, Debug Visualizer is a VSCode extension. It shows various data

structures graphically in a side pane while debugging a program in VSCode.

Debug Visualizer can show multiple different visualizations, graphs of linked data

structures, array data structures, as well as line, scatter plots, and tables. Debug

https://visualgo.net
https://algorithm-visualizer.org
https://algorithm-visualizer.org

9

Visualizer has full support for Javascript and TypeScript, but can be made to work

in most other languages by instrumenting code with JSON formatted calls to its

API.

2.2.2 Relationship Visualizations

More directly related to CBRV, there are many visualizations of the relationships

between software components. TraceVis by Pieter Deelen [19] shows dynamic

interactions between Java classes, a very similar concept to CBRV, especially

considering that classes and files are nearly synonymous in Java. TraceVis shows

both static and runtime information such as how often one class uses another and

which classes construct others. It displays all this using a graph visualization.

TraceVis is limited to Java applications, and does not appear to have been updated

to work on anything past Java 5. A very similar tool to TraceVis was presented

by Bertuli et. al. [20] which visualizes runtime relationships between object

oriented classes with graphs and charts. Another tool, “Program Explorer” [21]

also visualizes class hierarchy, function calls, variable access, and object usage for

large C++ programs by combining static and runtime information.

Sourcetrail [22] is a useful open source, cross platform “source explorer.”

Sourcetrail can analyze C, C++, and Java codebases. It only takes into account

static information, but can show interactive and navigable inheritance trees, call

graphs, and more. Unfortunately, Sourcetrail was discontinued in the latter part of

2021 and is currently unmaintained.

Of particular note is Wattenberger’s Repo Visualizer [5]. Repo Visualizer is

a GitHub action which generates a static SVG of a GitHub repository as a circle

packing diagram. This diagram allows developers to see the overall directory

10

structure of a codebase at a glance, and easily see information such as which

folders have the most content, what types of files are in the repository and where

they are. Wattenberger also described displaying dependencies between files as

potential future work. CBRV was heavily inspired by Repo Visualizer but makes

an interactive visualization that can be run on any codebase and adds the ability

to portray many different relationships using a similar visualization style.

CBRV adds a new tool to the developer’s toolbox of software visualizations,

offering a different perspective on the structure and relationships in a code base,

and offering visualizations for multiple different relationships via the CBRV API.

Additionally, making CBRV a VSCode extension greatly increases its availability

and ease of install and use compared to most existing software visualizations.

11

Chapter 3

Implementation & Design

The CBRV project consists of the CBRV API, which renders the directory structure

diagram and the connections between the files, and 4 bundled visualizations using

the CBRV API: one to visualize just the file structure, one to visualize a stack trace,

one to visualize dependencies, and one to visualize a hyperlink graph. Third party

extensions can also use the CBRV API to create visualizations of more relationships.

A simple architecture diagram of CBRV can be seen in Figure 3.1.

CBRV

API

create(settings: VisualizationSettings): Visualization

Visualization

update(func: (visState: VisualizationState) => void) CodebaseVisualization

StackTraceVisualization

PythonDependencyVisualization

HyperlinkVisualization

VSCode API

External extensions...

Figure 3.1: The architecture of CBRV

12

3.1 The Visualization

Figure 3.2: A screenshot of the CBRV Hyperlink Visualization

3.1.1 Directory Structure Diagram

The base of the visualization is the diagram of the codebase directory structure,

which displays the directory structure of a codebase as nested circles in a padded

circle-packing diagram, as seen in Figure 3.2. Folders are represented by circles

13

containing other folder and file circles, such that each file in the codebase is a “leaf

node” of the diagram. Each folder and file is labeled with their filename if there is

room on the visualization. If there is not enough space, the name is be omitted or

cropped to fit. This diagram displays from the root of the currently open VSCode

workspace.

Like in RepoVisualizer [5], other attributes of the circles are used to visualize

attributes of the files. Files are color-coded by their file extension, allowing

for a quick overview of the distribution of different file types in the codebase.

Each circle’s area is proportional to its respective file’s size, though clamped to

a minimum and maximum bound to avoid tiny and empty files being nearly

invisible or a very large file crowding out everything else.

3.1.2 Connections

An arbitrary set of connections can be defined via the API, representing depen-

dencies, references, or some other relationship. Each connection has a source and

a destination file and can optionally reference line numbers within the source

and destination files as well. CBRV only supports connections between files, not

connections between directories. The directory structure diagram is overlaid with

these connections, rendered as lines connecting their respective files. The connec-

tions can be either directed, which will be rendered as an arrow, or undirected,

which will be rendered as a simple line. The connections can also have color,

weight, and a tooltip defined.

Connections are able to “go out of the diagram” or be “self loops”. If a

connection only has one of source or destination defined, the rendered connection

will start from the edge of the screen and then connect to a single file. This can

14

be useful to indicate the starting location in a stack trace (as in Figure 3.5) or a

reference to something external to the current codebase. If a connection’s source

and destination are the same file it is rendered as a self loop on the diagram (as

seen on file N.md in Figure 3.2).

If there are multiple connections between the same two files those connections

may be merged. The API can set which connections to merge, whether connections

going opposite directions into a double-arrowed connection, and connection weight

and color (See VisualizationSettings.mergeRules in the API docs [23]).

3.1.3 Interaction

Figure 3.3: A screenshot of dynamic zoom (on the VSCode docs [1] codebase)

CBRV is an interactive visualization, allowing users to get much more infor-

mation out of it than with a static visualization. The diagram is zoomable and

draggable, using the mouse wheel to zoom and click and drag to pan. If the

directory structure is large and deeply nested the visualization may not be able

to display all the files at once. In this case, the visualization dynamically hides

15

the content of the deeply nested folders. As seen in Figure 3.3, when the user

zooms in the hidden content is displayed as room becomes available on the screen.

Connections to or from a file that is hidden because of high levels of nesting

instead connect to the first ancestor that is visible.

Symlinks within the codebase are handled by making the circle for the symlink

show a symlink icon, and clicking it highlights and jump the screen to the resolved

file.

Each visualization using the CBRV API can provide context aware information

by adding custom tooltips on the connections. Additionally, each folder and

file has a tooltip which displays the path to the folder relative to the workspace

root. The visualization can also configure settings to only show connections when

hovering over a connected file. An example of this can be seen in Figure 3.4. This is

important if a visualization has a large number of connections, as the visualization

can easily get too crowded to be helpful.

Double-clicking on a file circle opens that file in a VSCode editor tab so that

the user can view and edit it. Double-clicking a folder circle shows that folder

in the VSCode file explorer. There is also a right-click context menu available on

folders and circles. It has the options “Open in new Editor” (for files), “Reveal in

Explorer”, “Copy Path”, and “Copy Relative Path” by default. Each visualization

can add additional items to the context menu if desired.

3.1.4 Include & Exclude

The visualization includes “Include” and “Exclude” inputs and a “Hide Uncon-

nected” checkbox. These are used to filter the files and folders displayed in the

visualization. Users can type in a comma separated list of file paths with wildcards

16

Figure 3.4: A screenshot showing connection on hover (on the VSCode docs [1]
codebase)

and the visualization automatically updates. The “Hide Unconnected” checkbox

toggles whether to show all files or only ones with connections to them.

Connections that reference an excluded file are not shown in the visualization.

And, if all the files in a folder are excluded, that folder is not shown in the

visualization either.

17

3.2 The API

VSCode allows extensions to expose an API via the exports property. CBRV

exports its API using this method and can be accessed from other extensions as

seem below.

let cbrvAPI = vscode.extensions

.getExtension('jesse-r-s-hines.codebase-relationship-visualizer')

.exports;

let vis = cbrvAPI.create({

// ...

});

Other extensions can use the create method of the API to create a visualization

with an arbitrary set of connections. The create method returns a Visualization

object which can be then used to update the visualization dynamically.

Documentation for the CBRV API is published on GitHub pages [23].

3.3 Minimal Implementation

The CBRV extension has a command “Visualize your codebase” accessible via the

VSCode Command Palette. This command opens a new VSCode tab displaying

the directory structure diagram. This visualization is just a minimal example of

using the CBRV API with no connections specified and all settings left as default.

This command is useful if all the user wants is to get an overview of the directory

structure without worrying about additional relationships.

3.4 Stack Trace Visualization

The command “Visualize the stack trace during a debugger session” brings up

the Stack Trace Visualization. This visualization uses the CBRV API to display the

18

Figure 3.5: A screenshot of the CBRV Stack Trace Visualization

stack trace as a line over the directory structure diagram, as seen in Figures 3.5

and 3.6.

VSCode uses the Debug Adapter Protocol (DAP) [24] for its debugger interface.

Most VSCode debugging extensions translate their captured debugging informa-

tion into the Debug Adapter Protocol. This architecture makes it easy to make

VSCode debugging extensions for multiple languages that can all use the same UI.

It also allows extensions to extend debugging functionality in any language that

has VSCode debugger that uses the DAP. VSCode has a very large ecosystem of

extensions and has debuggers for most popular programming languages.

The Stack Trace Visualization uses the DAP to connect to any active VSCode

debugging session in any language that has a VSCode debugger. Arrows jump

19

Figure 3.6: A screenshot of the CBRV Stack Trace Visualization with recursion
shown as a merged connection with tooltip

between the files in the current stack trace, displaying a line following the current

path of execution though the code base. The first file in the stack trace has an

arrow going into it starting from outside the view window as seen in Figure 3.5.

If there are duplicate arrows (i.e. recursion) the arrows are merged into a single

connection as seen in Figure 3.6. The arrows are only merged if they have the

same source and destination files. The width of the connection and a tooltip on

the connection indicate the depth of the recursion. The stack traces internal to a

file are displayed as self loops.

20

Stack frames in files that are not included in the visualization are skipped.

For example, the stack trace main.py:8 → tutorial.py:78 → excluded.py:4 →

tutorial_docker.py:34 the visualization would display arrows from main.py →

tutorial.py → tutorial_docker.py.

The visualization is linked with the debugger in real time, as the user steps

though the debugger the visualization updates to match the current stack trace.

In the case of multithreading, multiple stack trace lines are rendered, each

color-coded by thread. This can be seen in Figure 3.5 where two threads are shown

by green and orange stack trace lines. The extension is only able to show stack

traces for threads that are currently stopped on a breakpoint in the debugger.

3.5 Dependency Visualization

The command “Visualize the dependencies between Python files” brings up the

Dependency Visualization. This visualization uses the CBRV API to display

dependencies between files in Python codebases. It displays a directed arrow

for any imports in .py files. It only show connections to/from a file on hover

over that file by default. This visualization is very similar to the one proposed

in RepoVisualizer [5]. The visualization uses the handy pydeps [25] package to

extract the dependencies from the source files. A screen shot of the Dependency

Visualization can be seen in Figure 3.7.

3.6 Hyperlink Visualization

The command “Visualize a hyperlink graph” brings up the Hyperlink Visualization.

This visualization uses the CBRV API to display references between HTML and

21

Figure 3.7: A screenshot of the dependency visualization (on the ShellAdventure
[2] codebase)

Markdown files. It displays a directed arrow for any href in an HTML document

or links in a Markdown document that reference another file in the workspace.

The visualization only shows connection to/from a file on hover over that file by

default to prevent the visualization getting overly crowded. Screenshots of the

22

Hyperlink Visualization can be seen in Figures 3.2 and 3.4.

3.7 Architecture

Most of VSCode’s extension API consists of hooks into standard VSCode func-

tionalities. These are very useful and sufficient for most tasks. But, they are not

flexible enough to implement extensions such as CBRV which need to build their

own interface and have complex visual aspects. For these kinds of extensions,

VSCode provides “webviews” which give extension writers a panel where they

they can use the full suite of web development tools. However, for security and

performance reasons, VSCode webviews are run in a sandboxed environment, and

communication in and out of them is limited to JSON message passing [26].

The sandboxing of the webview requires CBRV to be split into two sections,

almost resembling a client server architecture. The extension proper runs in the

normal VSCode environment. It contains the API and code to launch, update, and

manage the CBRV visualization. The rendering of the diagram runs within the

sandboxed webview. The two communicate using a simple messaging protocol,

summarized in Table 3.1. Since messages must JSON serializable, we are unable to

send complex objects like functions into the webview. This forces the API to do

things such as merge rules using configuration objects rather than callbacks.

23

Message Source Arguments Response Descrption
ready webview none set The webview is loaded
tooltip-request webview id, content tooltip-set Fetch the results of the

tooltip callback
tooltip-set extension id, content none Return the results of the

tooltip callback
open webview file none The user requested to open

a file
reveal webview file none The user requested to re-

veal a folder in the explorer
context-menu webview action, file none The user selected a context

menu action
update-settings webview settings set/none The user changed settings

via the ui, triggers a set
with the new file list if up-
dating filters

set extension settings,
codebase,
connection

none Update the settings, file list,
and/or connection list

Table 3.1: Summary of the protocol between the main extension and the webview

The visualization itself is implemented using the powerful D3 [27] visualization

library. D3 contains many useful tools for visualization, including circle packing

logic, SVG curve path calculations, color scaling, and much more. D3 is low

level and very flexible, making it perfect for implementing the combination circle-

packing and link diagram required for CBRV.

25

Chapter 4

Tasks Delineation & Deliverables

Work progressed on the project between October 2021 and December 2022. A

summary of the major tasks for the project along with rough time estimates is listed

in Table 4.1. Many of the tasks were worked on in parallel. Detailed requirements

are listed in Appendix A.

The following deliverables have been provided:

• CBRV API extension, along with the 4 built-in visualizations, is available on

the VSCode marketplace

– https://marketplace.visualstudio.com/items?itemName=jesse-r-s-hin

es.codebase-relationship-visualizer

• The source is published on GitHub

– https://github.com/jesse-r-s-hines/CodeBaseRelationshipVisualizer

• API documentation is hosted on GitHub pages

– https://jesse-r-s-hines.github.io/CodeBaseRelationshipVisualizer

https://marketplace.visualstudio.com/items?itemName=jesse-r-s-hines.codebase-relationship-visualizer
https://marketplace.visualstudio.com/items?itemName=jesse-r-s-hines.codebase-relationship-visualizer
https://github.com/jesse-r-s-hines/CodeBaseRelationshipVisualizer
https://jesse-r-s-hines.github.io/CodeBaseRelationshipVisualizer

26

• This final project report

Milestone Time Estimate
1 Research & Prototyping 100

2 Proposal 50

3 Interactive Directory Structure Diagram 75

4 Context Menu & Actions from Diagram 5

5 Rendering Basic Connections 75

6 Customizing and Merging Connections 35

7 Dynamically Updating Connections and Files 20

8 Include/Exclude Settings 10

9 Positioning Algorithm 5

10 Stack Trace Visualization - Basic 20

11 Stack Trace Visualization - Multithreading 2

12 Dependency Visualization 20

13 Hyperlink Visualization 30

14 Testing & Evaluation 65

15 Polishing & Bugfixes 65

16 API Documentation 8

17 Publish & Project Report 15

Totals 600

Table 4.1: Summary of tasks for the CBRV project

27

Chapter 5

Testing & Evaluation

CBRV has an automated testing suite that can be run using npm run test. It

passes, and tests any non-graphical portions of the code, including geometric

logic, connection merging logic, and getting hyperlink and dependency graphs.

However, since CBRV is primarily a visualization project, much of the code cannot

easily be tested automatically. The visualization rendering itself was tested using

manual acceptance testing.

There are several sample codebases provided for testing in the CBRV source

code under the test/sample-codebases directory. These include a small mark-

down codebase, a python codebase, a codebase containing many types of symlinks,

as well as a copy of the official VSCode docs repository [1] to test how CBRV scales

to a large codebase.

There is a detailed list of manual acceptance tests that were performed in the

CBRV GitHub repository as well as in Appendix B.

29

Chapter 6

Future Work

We believe that CBRV shows promise for helping developers understand rela-

tionships between software files. Because of the API CBRV exposes, anyone can

make their own extensions that uses the CBRV API to make visualizations for

different types of relationships. Some potential extensions include expanding the

dependency visualization to work with different languages or showing variable

usage graphs.

Future work on the CBRV extension itself could include improvements to

the file and connection positioning to reduce connections crossing each other.

Additionally more transitions and animations when the file system or connection

list is updated could make the visualization look smoother.

We did not find a practical way to implement the “Editor Decorations” de-

scribed in the original proposal via the VSCode extension API. Future work could

explore different methods to implement editor decorations, or other alternatives for

showing relationships within a single file. Another area for improvement would be

to make the include/exclude interface match more closely with VSCode’s built-in

search functionality. This would likely require modifying the VSCode API itself to

30

expose hooks into the search functionality.

31

Chapter 7

Conclusion

Comprehending relationships within a codebase is a vital part of the software

development process. CodeBase Relationship Visualizer (CBRV) offers an easy

to install and extendable tool to display relationships between files in a codebase

superimposed over a diagram of the codebase’s directory structure. It allows

developers to get a big picture of the relationships within a codebase and how

the relationships fit into the overall directory structure of the codebase. The Stack

Trace, Dependency, and Hyperlink Visualizations use the CBRV API to make

useful visualizations for developers working on a different types of codebases.

The extension can be installed by anyone via the VSCode marketplace [7] and the

source is published under the GNU GPL on GitHub [8]. We believe that CBRV is

a valuable addition to the repertoire of tools for visualizing and understanding

codebases.

33

Appendix A

Detailed Requirements

This appendix shows a detailed list of requirements for the CBRV project. Most

requirements have a reference to the corresponding task from Table 4.1.

A.1 Non-Functional

1. The project will be a Visual Studio Code extension

2. The project will support VSCode 1.70.0+ [6]

3. The project will be made available on the VSCode extension marketplace [28]

4. The project will be open source and available on Github [29]

5. The project will be written using TypeScript 4.9 [30]

34

A.2 Functional

A.2.1 The Visualization

A.2.1.1 Directory Structure Diagram

6. (3) Will display the directory structure of a codebase using a circle packing

diagram

• Will display nested circles

• Each folder is a circle containing other circles

• Each file is a “leaf” of the diagram, at the most deeply nested level

• Circles will have padding between them (as in Figure 3.2)

7. (3) Will display files and folders starting from the root of the current workspace

8. (3) File and folder circles will display their names if they fit

• The name will display inside the circle for files

• The name will display along the circumference of the circle for folders

(positioned near the top of the circle)

• If the name will not fit, either hide the name or clip it to fit and add an

ellipsis

9. (3) The color of file circles will be based on their file extension

10. (3) Folder circles will just be outlines

11. (3) The area of file circles be proportional to their actual file size

• Displayed size will have min and max cap, to ensure small files are

visible and large files do not use up to much screen space

35

• This prevents images and such being over emphasized, when text source

files are what we are interested in

12. (3) Empty folders will not be shown

13. (3) Symlinks will link to actual location in diagram

• Symlinks that link to files within the visualization will show a symlink

icon and clicking them will jump and highlight the canonical location of

the file

• Symlink circles’ size will be fixed, not based on the linked file size

• Symlink circles’ color will be based on the linked file extension

14. (7) The diagram will automatically update to match changes to the filesystem

A.2.1.2 Connections

15. (5) Connections can connect two files, from and to

• Connections can optionally have line numbers within the files

• Connections can only be between files, not directories

16. (5) The connections specified will render overlaying the directory structure

diagram

• Connections will render as lines or arrows connecting two file circles

17. (5) If files are hidden because of deep nesting (see Req. 26) connections will

connect to the first ancestor folder that is shown

• Connections between files within the folder will become self loops

36

• The connections will render normally when the user zooms in enough

to see the individual files

• See Figure 3.3

18. (5) Connections can go “out of the visualization”

• If connection from is omitted, the line will start from “outside” the

visualization

• If connection to is omitted, the line will end “outside” the visualization

• See Figure 3.5

19. (5) Connections can have self-loops

• A connection between lines in a single file will render as a loop connect-

ing the file to itself

• The showSelfLoops option can be used to hide these loops instead

20. (5) Connections to a missing file will not be shown

21. (5) Connections will always connect to the canonical path of a file in case of

symlinks

22. (6) Connections can be customized

• Will render as arrows if directed is set in the API, as lines otherwise

• Connections’ color, and weight can be specified

• Connections can have a tooltip

23. (6) Duplicate connections may be merged based on merge options instead of

drawing multiple duplicate connections

37

• Merging can be disabled or configured in API settings

• The API can configure which connections to merge, whether to merge

opposite direction arrows into one double-headed arrow, and how to

merge properties of the connections

24. (7) Connections in an existing visualization can be updated via the API

A.2.1.3 Interaction

25. (3) The display will be zoomable and draggable

• Mouse wheel to zoom, drag and pan to move

• Also bind keyboard shortcuts Ctrl +, Ctrl -, and arrows

26. (3) The display will dynamically display content based on zoom level

• If the directory structure is deeply nested, only show folder content for

the levels that fit on the screen

• The lowest folder that fits will show without content but with a ellipsis

indicator to indicate that it is collapsed

• The size of the folder without content will match the size of the total

content but capped the same as files (see Req. 11)

• As the user zooms in to the display, more deeply nested files and folders

will be displayed

27. (4) On hover over a folder or file circle path relative to workspace root will

display in a tooltip

28. (4) Double-clicking a file circle will open it in a VSCode editor

38

29. (4) Double-clicking on a folder circle will show it in the VSCode file explorer

30. (4) Context menu

• A context menu (on right click) should be available on folders and circles

• It should have the options:

– Reveal in Explorer

– Open in New Editor (only for files)

– Copy Path

– Copy Relative Path

• The context menu will also include any additional commands listed via

the API

31. (6) If showOnHover is set it will hide all connections but those connected to

the hovered file/folder

• Can be set to show only connections “in”, “out”, or “both”

A.2.1.4 Include/Exclude

32. (8) There will be inputs for “Include” and “Exclude”

• Will filter files displayed in the visualization

• Specified as comma separated list of file paths with wildcards

33. (8) There will a toggle for “Hide Unconnected”

• Will not show if there are no connections

• Will hide any files/folders that do not have any connections to them

39

34. (8) Visualization will dynamically update to match new Include/Exclude

settings

35. (8) Folders will not be shown if all contents are excluded

36. (8) Connections to files that are excluded will not be displayed

37. (8) Default Include/Exclude settings can be specified via the API

A.2.2 API

38. The API will be used by other extensions to display connections between files

39. See https://jesse-r-s-hines.github.io/CodeBaseRelationshipVisualizer

for API documentation

A.2.3 Minimal Implementation

40. (3) CBRV will have a command “Visualize your codebase”, accessible via the

VSCode Command Palette

• The command will open up a new VSCode tab displaying the directory

structure diagram

• It will just be a minimal example of using the API with no connections

specified and all settings left as default

A.2.4 Stack Trace Visualization

41. (10) The Stack Trace Visualization extension will have a command “Visual-

ize the stack trace during a debugger session”, accessible via the VSCode

Command Palette

https://jesse-r-s-hines.github.io/CodeBaseRelationshipVisualizer

40

• Command will open up a new VSCode tab containing the visualization

for the current workspace and debug session

• Attempts to connect to any active debugging session

• If there is no active debugging session, it will notify the user that they

need to start a session and bring up the visualization without any debug

info

• Once a debug session starts it should connect it to the visualization

automatically

42. (10) Will use the Debug Adapter Protocol [24] to get debug information

• This will make it work with any language that has a VSCode debugger

43. (10) The visualization will be linked with the debugger real-time

• As the user steps through the debugger the visualization will update

44. (10) Will display arrows between files representing the stack trace

• Arrows will jump between the files in the current stack trace, displaying

a line following the current path of execution though the code base

• The stack trace line can loop back on itself if there are circular depen-

dencies in the code

45. (10) The first file in the stack trace will have an arrow going into it starting

from outside of the view window

46. (10) Multiple consecutive stack frames within the same file will not be

displayed on the main visualization

47. (10) If there are duplicate arrows (i.e. recursion) merge the connections

41

• Duplicate arrows have the same source and destination line numbers

• Tooltip on connection should show number of times of recursion

48. (10) Stack frames in files that are not part of the visualization will not be

displayed

• E.g. if stack trace goes fileA.py → excludedFile.py → fileB.py, we

just display fileA.py → fileB.py

49. (11) Multithreading will show multiple color coded stack trace lines

• Display a stack trace for each stopped thread in the debugger

• Connections will be color coded by thread

• Connections from different threads will never merge

A.2.5 Dependency Visualization

50. (12) The Dependency Visualization extension will have a command “Visualize

the dependencies between python files”, accessible via the VSCode Command

Palette

• Command will open up a new VSCode tab containing the dependency

graph for the current workspace

51. (12) Will display dependencies between Python files

• Show a directed arrow for any import statement in a .py file

52. (12) Will only show references to/from a file on hover over that file (see

Req. 31)

53. (12) Will merge all connections that go between the same files

42

• Merge opposite direction connections into one double-headed arrow

A.2.6 Hyperlink Visualization

54. (13) The extension will have a command “Visualize a hyperlink graph”,

accessible via the VSCode Command Palette

• Command will open up a new VSCode tab containing the hyperlink

graph for the current workspace

55. (13) Will display a directed arrow for any link that points to another file in

the workspace

• Any href on a a, link, or area tag in HTML

• [example](http://example.com), <http://example.com>, and raw

http://example.com links in Markdown

56. (13) Will only show references to/from a file on hover over that file Req. 31

57. (13) Will merge all connections that go between the same files

• Merge opposite direction connections into one double-headed arrow

• Will display internal links (i.e. #Header1) as connections within the file

preview

58. (13) If a link goes to an external URL or to an excluded file do not show it

43

Appendix B

Acceptance Testing

This appendix shows a list of manual acceptance tests for the CBRV project.

B.1 Sample codebases

These sample codebases are CBRV repository under test/sample-codebases.

1. minimal

A codebase that’s just a set of files and directories. Contains some long names

to show name cropping. Used to test the minimal codebase visualization.

2. python

A simple python codebase containing a stack trace 8 levels deep and recursion

cycles whithin a single file and between two files. Used to test the stack trace

and dependency visualizations.

3. simple

A simple markdown codebase to test the hyperlink visualization and basic

connections and iterations.

44

4. symlinks

A codebase that contains internal and external symlinks to test symlink

rendering and handling.

5. symlink

A codebase where the root folder is a symlink to simple-hyperlink-graph.

6. vscode

This sample codebase is taken from the official VSCode docs repository [1]. It

used to test the hyperlink visualization and test how CBRV scales to a large

and interconnected codebase.

7. empty

A codebase that is just an empty folder. Since git can’t commit empty

directories this codebase will have to be created manually by the tester.

B.2 Acceptance Tests

B.2.1 Basic diagram

1. Open the minimal codebase in VSCode

2. Run the “Visualize your codebase” command

• (View > Command Palette or Ctrl + Shift + P) and type and select

“Visualize your codebase”

3. A circle packing diagram containing 7 leaf files should be shown

4. File names should show on files and folders

45

5. deoxyribonucleicAcid folder and Supercalifragilisticexpialidocious

file should have their names cropped

• May depend on your screen and font size settings

6. E.txt should be the largest circle, deoxyribonucleicAcid/I should be the

smallest

7. Files should be color coded by extension (should be 4 different colors shown)

B.2.2 Basic interaction

1. Open the minimal codebase in VSCode

2. Run the “Visualize your codebase” command

3. Zoom and pan should work use mouse wheel and click and drag

4. Use keyboard shortcuts ctrl +, ctrl - to zoom and pan

• May need to click on the svg to make sure its focused first

5. Hover over the smallest file

• It should show deoxyribonucleicAcid/I in a tooltip

6. Double click A/F.md

• The file should open in a VSCode editor panel

7. Double click A

• The folder should be selected in the explorer panel

8. Right click on A/E.txt

46

• A context menu should show containing:

– Reveal in Explorer

– Open in editor

– Copy Path

– Copy Relative Path

9. Use the context menu on A/E.txt to “Reveal in Explorer”

• Should select A/E.txt in vscode explorer

10. Use the context menu on A/E.txt to “Open”

• Should open A/E.txt in the editor

11. Use the context menu on A/E.txt to “Copy Path”

• Should copy full path .../sample-codebases/minimal/A/E.txt to clip-

board

12. Use the context menu on A/E.txt to “Copy Relative Path”

• Should copy A/E.txt to clipboard

13. Right click on A

• A context menu should show containing:

– Reveal in Explorer

– Copy Path

– Copy Relative Path

14. Use the context menu on A to “Reveal in Explorer”

47

• Should select A in vscode explorer

15. Use the context menu on A to “Copy Path”

• Should copy full path .../sample-codebases/minimal/A to clipboard

16. Use the context menu on A to “Copy Relative Path”

• Should copy A to clipboard

B.2.3 Filtering

1. Open the minimal codebase in VSCode

2. Run the “Visualize your codebase” command

3. Type A/** in “Files to Include” input, press Enter

• Diagram should change to only include E.txt, F.txt, G.txt

4. Type **/*.txt in “Files to Exclude”

• Diagram should change to only include G.md

5. Clear both inputs

• View should go back to what it was before showing everything

6. Type **/*.txt,**/*.md into “Files to Include”

• Diagram should change to include only C.txt, D.txt, E.txt, F.txt,

G.txt

7. Clear both inputs

8. Type A/** in “Files to Exclude”

48

• Folder A and all contents should be hidden

B.2.4 Hyperlink Visualization and Connections

1. Open the simple-hyperlink-graph codebase in VSCode

2. Run the “Visualize a hyperlink graph” command

• Should show the codebase diagram, but no connections at first

3. Hover over O.md

• Connections for Q.md and P.md should show

4. Hover over P.md

• Connection from P.md rightarrow O.md should show

5. Change the “Show on hover” dropdown to “in only”

6. Hover over P.md again

• No connection should show

7. Hover over O.md

• Connections for Q.md and P.md should show.

8. Change the “Show on hover” dropdown to “out only”

9. Hover over P.md

• Connection from P.md rightarrow O.md should show

10. Hover over O.md

49

• No connections should show

11. Change the “Show on hover” dropdown to “off”

• Connections accross the diagram should appear.

12. One double headed arrow should show between M.md and R.md

13. A single self loop connection should show on N.md

14. Uncheck the “Show self loops” checkbox

• The loop on N.md should disappear

15. Check the “Show self loops” checkbox

• The loop on N.md should come back

16. Check “Hide unconnected”

• View should change to only include files with connections

17. Uncheck show self loops

• N.md’ should disappear

18. Check show shelf loops

• N.md’ should reappear

19. Uncheck “Hide unconnected”

• All files should show again

20. Hover over the connection between M.md and R.md

• Tooltip should show containing

50

– “A/D/M.md” -> “A/D/R.md”

– “A/D/R.md” -> “A/D/M.md” x2

B.2.5 Real-time updates

1. Open the simple-hyperlink-graph codebase in VSCode

2. Run the “Visualize a hyperlink graph” command

3. Open A/F/Q.md and delete the first line.

• Link between Q.md and O.md should disappear.

4. Undo the line change

• Link between Q.md and O.md should come back.

5. Delete or move folder A out of the codebase

• Visualization should immediately update to remove the A folder

6. Put A back

• git reset --hard HEAD or copy A back into codebase

• Visualization should immediately update to show A again

B.2.6 Symlinks

1. Open the symlinks codebase in VSCode

2. Run the “Visualize a hyperlink graph” command

3. Symlinks files should show as colored circles with an arrow icon inside

51

4. link folder should show as a circle outline with an arrow icon inside

5. externalLink.md and E.txt should show as different colors

• The color is based on the resolved filepath’s extension

6. Zoom in until you can only see link.md in the screen

7. Double-click link.md

• View should jump to center on and fit B.md

• B.md should flash

8. Zoom out all the way and double-click on link folder

• A should flash

• View shouldn’t change

9. Double-click on external.md

• Nothing should happen

10. Hover over B.md

• Connections should show to C.md and link.md

11. Open the symlink-root codebase in VSCode

12. Run the “Visualize a hyperlink graph” command

• Should show a codebase containing several files

13. Hovering over P.md

• Should show connection to O.md

52

B.2.7 Large Codebase

1. Open the vscode-docs codebase in VSCode

2. Run the “Visualize a hyperlink graph” command

3. Deep folders should have their contents hidden and replaced with ellipses

• Exact results will depend on your screen size

4. Zoom in on one of the folders with hidden content

• Contents should show up as you zoom.

5. Hover over hidden folders and regular files

• Connections show on hover, and connect to the first visible parent folder

of their target

B.2.8 Stack Trace Visualization

1. Open the python codebase in VSCode

2. Install the “Python” extension from the VSCode marketplace for python

debugging if you don’t already have it

3. Run the “Visualize the stack trace during a debugger session” command

• Notification saying “No active debug session” should show

4. Type **/*.py in “Files to Include”

• .pyc files should be hidden

5. Add breakpoints (Click in gutter) at

53

• b/fact.py:3

• b/e.py:3

• b/j.py:3

• a.py:26

6. Open a.py in a split panel so you can see both the visualization and the

editor

7. Open “Run and Debug” panel in VSCode’s side panel

8. Focus a.py editor view

9. Click “Run and Debug” in the side panel and select “Python File”

• Debugger should stop at b/fact.py:3

• Connections: out of screen rightarrow a.py rightarrow fact.py rightarrow

fact.py (self loop)

10. Click continue

• Debugger should stop at b/e.py:3

• Connections: out of screen rightarrow a.py rightarrow c.py rightarrow

d.py rightarrow e.py

11. Type b/d.py in “Files to Exclude”

• Connections: out of screen rightarrow a.py rightarrow c.py rightarrow

e.py

12. Clear “Files to Exclude”

54

• Connections: out of screen rightarrow a.py rightarrow c.py rightarrow

d.py rightarrow e.py

13. Click continue

• Debugger should stop at b/j.py:3

• Connections: out of screen rightarrow a.py rightarrow c.py rightarrow

d.py rightarrow e.py rightarrow f.py rightarrow g.py rightarrow h.py

rightarrow i.py rightarrow j.py

14. Remove breakpoint at b/j.py:3 (click the red dot in the gutter)

15. Click continue

• Debugger should stop at a.py:26

• Connections: out of screen rightarrow a.py

16. Click continue.

17. Should stop at either thread1 b/fact.py:3 or thread2 b/j.py:3

18. In the debugger side panel select the other thread

• If you are stopped on b/fact.py select the thread that starts at thread2

in the stack trace,

• If stopped on b/e.py select the thread that starts on thread1

19. Click continue again

• Should stop at the other thread.

• You should now see two lines in the stack trace of different colors

55

– Out of screen rightarrow a.py rightarrow c.py rightarrow d.py

rightarrow e.py

– Out of screen rightarrow a.py rightarrow fact.py rightarrow fact.py

(self loop)

20. Click stop

• Debugging session will end to end the debugging session,

• Connections should clear

B.2.9 Dependency Visualization

1. Open the python codebase in VSCode

2. Run the “Visualize the dependencies between python files” command

• If this is your first time running the command, it should show an

“Installing pydeps...” progress notification

• Wait for any progress notifications to complete

3. Hover over a.py

• Connections should show to b/c.py, b/__init__.py and b/fact.py

4. Hover over b/h.py

• Connections should show to b/i.py, b/__init__.py, __init__.py

• Connections should show from b/g.py

56

B.2.10 Empty Codebases

1. Open empty codebase (may need to create an empty folder)

2. Run the “Visualize your codebase” command

• Should just show an empty circle

3. Run the “Visualize a hyperlink graph” command

• Should just show an empty circle

4. Run the “Visualize the stack trace during a debugger session” command

• Should just show an empty circle

5. Run the “Visualize the dependencies between python files” command

• Should just show an empty circle

57

Bibliography

[1] Microsoft, “Microsoft/vscode-docs: Public documentation for visual studio

code.” [Online]. Available: https://github.com/microsoft/vscode-docs

(document), 3.3, 3.4, 5, 6

[2] J. Hines, “Jesse-r-s-hines/shelladventure: A tool for making tutorials to teach

the linux command line.” [Online]. Available: https://github.com/jesse-r-s-h

ines/ShellAdventure (document), 3.7

[3] Y.-G. Guéhéneuc, “Taupe: Towards understanding program comprehension,”

in Proceedings of the 2006 Conference of the Center for Advanced Studies on

Collaborative Research, ser. CASCON ’06. USA: IBM Corp., 2006, pp. 1–es.

[Online]. Available: https://doi.org/10.1145/1188966.1188968 1, 2.1

[4] J. Seyster, “Techniques for visualizing software execution,” Stony Brook Uni-

versity, Tech. Rep., 2008. 1, 2.1

[5] A. Wattenberger, “Visualizing a codebase,” 2021. [Online]. Available:

https://next.github.com/projects/repo-visualization 1.2, 2.2.2, 3.1.1, 3.5

[6] Microsoft, “Visual studio code - code editing. redefined,” 2021. [Online].

Available: https://code.visualstudio.com/ 1.2, 2

https://github.com/microsoft/vscode-docs
https://github.com/jesse-r-s-hines/ShellAdventure
https://github.com/jesse-r-s-hines/ShellAdventure
https://doi.org/10.1145/1188966.1188968
https://next.github.com/projects/repo-visualization
https://code.visualstudio.com/

58

[7] J. Hines, “Codebase relationship visualizer.” [Online]. Available: https:

//marketplace.visualstudio.com/items?itemName=jesse-r-s-hines.codebas

e-relationship-visualizer 1.2, 7

[8] ——, “Jesse-r-s-hines/codebaserelationshipvisualizer: A vscode extension

to display relationships between files in a codebase, overlayed on

a circle packing diagram of the file structure.” [Online]. Available:

https://github.com/jesse-r-s-hines/CodeBaseRelationshipVisualizer 1.2, 7

[9] C. D. HUNDHAUSEN, S. A. DOUGLAS, and J. T. STASKO, “A meta-study

of algorithm visualization effectiveness,” Journal of Visual Languages

& Computing, vol. 13, no. 3, pp. 259–290, 2002. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1045926X02902375 1.3

[10] T. L. Naps, J. R. Eagan, and L. L. Norton, “JhavÉ—an environment to actively

engage students in web-based algorithm visualizations,” in Proceedings of the

Thirty-First SIGCSE Technical Symposium on Computer Science Education, ser.

SIGCSE ’00. New York, NY, USA: Association for Computing Machinery,

2000, pp. 109–113. [Online]. Available: https://doi.org/10.1145/330908.331829

2.1

[11] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen,

A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A. Velázquez-Iturbide,

“Exploring the role of visualization and engagement in computer science

education,” SIGCSE Bull., vol. 35, no. 2, pp. 131–152, jun 2002. [Online].

Available: https://doi.org/10.1145/782941.782998 2.1

[12] R. Baecker, “Two systems which produce animated representations of the

execution of computer programs,” in Proceedings of the Fifth SIGCSE Technical

https://marketplace.visualstudio.com/items?itemName=jesse-r-s-hines.codebase-relationship-visualizer
https://marketplace.visualstudio.com/items?itemName=jesse-r-s-hines.codebase-relationship-visualizer
https://marketplace.visualstudio.com/items?itemName=jesse-r-s-hines.codebase-relationship-visualizer
https://github.com/jesse-r-s-hines/CodeBaseRelationshipVisualizer
https://www.sciencedirect.com/science/article/pii/S1045926X02902375
https://doi.org/10.1145/330908.331829
https://doi.org/10.1145/782941.782998

59

Symposium on Computer Science Education, ser. SIGCSE ’75. New York, NY,

USA: Association for Computing Machinery, 1975, pp. 158–167. [Online].

Available: https://doi.org/10.1145/800284.811152 2.2.1

[13] T. Okamura, B. Shizuki, and J. Tanaka, “Execution visualization and

debugging in three-dimensional visual programming,” in Proceedings. Eighth

International Conference on Information Visualisation, 2004. IV 2004., 2004, pp.

167–172. [Online]. Available: https://doi.org/10.1109/IV.2004.1320140 2.2.1

[14] S. Deitz and U. Buy, “From video games to debugging code,” in Proceedings of

the 5th International Workshop on Games and Software Engineering, ser. GAS ’16.

New York, NY, USA: Association for Computing Machinery, 2016, pp. 37–41.

[Online]. Available: https://doi.org/10.1145/2896958.2896964 2.2.1

[15] A. Zeller and D. Lütkehaus, “Ddd—a free graphical front-end for unix

debuggers,” SIGPLAN Not., vol. 31, no. 1, pp. 22–27, jan 1996. [Online].

Available: https://doi.org/10.1145/249094.249108 2.2.1

[16] “Visualgo.net.” [Online]. Available: https://visualgo.net/ 2.2.1

[17] “Algorithm visualizer.” [Online]. Available: https://algorithm-visualizer.org/

2.2.1

[18] H. Dieterichs, “Hediet/vscode-debug-visualizer: An extension for

vs code that visualizes data during debugging.” [Online]. Available:

https://github.com/hediet/vscode-debug-visualizer 2.2.1

[19] P. Deelen, F. van Ham, C. Huizing, and H. van de Wetering, “Visualization

of dynamic program aspects,” in 2007 4th IEEE International Workshop on

https://doi.org/10.1145/800284.811152
https://doi.org/10.1109/IV.2004.1320140
https://doi.org/10.1145/2896958.2896964
https://doi.org/10.1145/249094.249108
https://visualgo.net/
https://algorithm-visualizer.org/
https://github.com/hediet/vscode-debug-visualizer

60

Visualizing Software for Understanding and Analysis, 2007, pp. 39–46. [Online].

Available: https://doi.org/10.1109/VISSOF.2007.4290698 2.2.2

[20] R. Bertuli, S. Ducasse, and M. Lanza, “Run-time information visualization for

understanding object-oriented,” 4th International Workshop on Object-Oriented

Reengineering, pp. 10–19, 12 2003. 2.2.2

[21] D. B. Lange and Y. Nakamura, “Program explorer: A program visualizer for

c++,” in Proceedings of the USENIX Conference on Object-Oriented Technologies

on USENIX Conference on Object-Oriented Technologies (COOTS), ser. COOTS’95.

USA: USENIX Association, 1995, p. 4. 2.2.2

[22] E. Gräther and M. Langkabel, “Sourcetrail - free and open-source interactive

source explorer.” [Online]. Available: https://github.com/CoatiSoftware/S

ourcetrail 2.2.2

[23] J. Hines, “Codebaserelationshipvisualizer api docs.” [Online]. Available:

https://jesse-r-s-hines.github.io/CodeBaseRelationshipVisualizer/ 3.1.2, 3.2

[24] Microsoft, “Dap,” 2021. [Online]. Available: https://microsoft.github.io/de

bug-adapter-protocol/ 3.4, 42

[25] TheBjron, “Thebjorn/pydeps: Python module dependency graphs.” [Online].

Available: https://github.com/thebjorn/pydeps 3.5

[26] Microsoft, “Vscode webview,” Mar 2022. [Online]. Available: https:

//code.visualstudio.com/api/extension-guides/webview 3.7

[27] M. Bostock, “Data-driven documents.” [Online]. Available: https://d3js.org/

3.7

https://doi.org/10.1109/VISSOF.2007.4290698
https://github.com/CoatiSoftware/Sourcetrail
https://github.com/CoatiSoftware/Sourcetrail
https://jesse-r-s-hines.github.io/CodeBaseRelationshipVisualizer/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://github.com/thebjorn/pydeps
https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview
https://d3js.org/

61

[28] “Visual studio marketplace.” [Online]. Available: https://marketplace.visual

studio.com/vscode 3

[29] Microsoft. [Online]. Available: https://github.com/ 4

[30] ——, “Typescript.” [Online]. Available: https://www.typescriptlang.org/ 5

https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/vscode
https://github.com/
https://www.typescriptlang.org/

	CodeBase Relationship Visualizer: Visualizing Relationships Between Source Code Files
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Project Overview
	Motivation
	Outline

	Background
	The Power of Interactive Visualizations
	Similar Tools
	Algorithm Visualizations
	Relationship Visualizations

	Implementation & Design
	The Visualization
	Directory Structure Diagram
	Connections
	Interaction
	Include & Exclude

	The API
	Minimal Implementation
	Stack Trace Visualization
	Dependency Visualization
	Hyperlink Visualization
	Architecture

	Tasks Delineation & Deliverables
	Testing & Evaluation
	Future Work
	Conclusion
	Detailed Requirements
	Non-Functional
	Functional
	The Visualization
	Directory Structure Diagram
	Connections
	Interaction
	Include/Exclude

	API
	Minimal Implementation
	Stack Trace Visualization
	Dependency Visualization
	Hyperlink Visualization

	Acceptance Testing
	Sample codebases
	Acceptance Tests
	Basic diagram
	Basic interaction
	Filtering
	Hyperlink Visualization and Connections
	Real-time updates
	Symlinks
	Large Codebase
	Stack Trace Visualization
	Dependency Visualization
	Empty Codebases

	Bibliography

