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Chapter 1

Introduction

1.1. Prologue and Preview

With renormalized perturbation theory we are not dealing with

an ordinary power series, but with a more subtle mathematical

structure. A renormalized series, such as

R = a(1 + r1a+ r2a
2 + · · · ), (1.1)

is an expansion in a parameter a that is indefinite, in that there are

infinitely many “a’s,” all fundamentally on an equal footing. They

are related by transformations of the form

a′ = a(1 + v1a+ v2a
2 + · · · ) (1.2)

with arbitrary finite coefficients v1, v2, . . .. The series coefficients are

correspondingly indefinite; they transform as

r′1 = r1 − v1,

r′2 = r2 − 2r1v1 + 2v21 − v2, (1.3)

...

so that R
R = a′(1 + r′1a

′ + r′2a
′2 + · · · ) (1.4)

remains invariant.

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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2 Renormalized Perturbation Theory and Its Optimization

The invariance of R is called “renormalization-group (RG)

invariance.” The essential point is that renormalization — the

procedure for handling ultraviolet divergences in quantum field

theory (QFT) — introduces a “renormalized couplant” a, whose

precise definition — the “renormalization scheme” (RS) — involves

a great deal of arbitrariness. Changing from one RS to another

induces transformations of the form (1.2). However, any physically

measurable quantity R must be RG invariant: that is, independent

of the RS used.

By itself, the mathematical structure just described is too

“floppy” to be of much interest. It is the physical consideration of

Dimensional Analysis that gives the problem a backbone. Any RS

involves choosing a “renormalization scale” μ, which is an arbitrary

parameter with dimensions of mass. The dependence of a on μ is

given by the famous β function:

μ
da

dμ
≡ β(a) = −ba2(1 + ca+ c2a

2 + c3a
3 + · · · ). (1.5)

The β function plays a key role and is needed to connect a to the free

parameter of the theory (a suitably defined Λ parameter). The first

two coefficients, b and c, are numbers that can be unambiguously

calculated in any given QFT. It is straightforward to show (see

Sec. 6.2) that both are invariant under the transformations of

Eq. (1.2). The higher coefficients c2, c3, . . . can also be calculated,

but their values depend on the RS choice. The coefficients r1, r2, . . .

in the perturbative expansion of any specific physical quantity R can

also be calculated (in the same RS). Although the ri’s and the cj ’s

are separately RS dependent, there are certain combinations of them

that are RS invariants. By forming these invariants one distils the

RG-invariant, physical content of the Feynman-diagram calculations

from the scheme artefacts.

Beyond the formal level one must define, at a given order, the

analog of the “partial sum.” In a given RS that involves truncating

both theR and β series at the same order. However, the approximant

thus defined is RS dependent, creating the notorious RS-dependence

problem. Standard QFT textbooks typically mention the issue, and

then mostly ignore it. Yet, without a resolution of the problem, the
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results of perturbative QFT will remain unclear and ambiguous.

(The complacent assumption that the difficulty becomes less and

less severe at higher orders is unsafe because the fixed-scheme series

are divergent.) The problem, it should be stressed, is not with the

theory itself, but arises from the approximation.

The approach in this book is founded on the Principle of Minimal

Sensitivity, which is a philosophy that applies quite generally to any

“non-invariant approximation.” In such situations the exact result

is known to be independent of certain “extraneous parameters,” yet

the approximate result depends upon them. The idea is to choose

the values of the extraneous parameters so that the approximant

is minimally sensitive to small variations of those values. Thus, an

exact symmetry of the exact result is mimicked by a local symmetry

of the approximate result. Applied to RS dependence, this principle

identifies an “optimal” result that is determined, for a given physical

quantity at a given order, by a set of “optimization equations.” From

those equations we can solve for the optimized ri coefficients in terms

of a and the cj coefficients. If we know, from Feynman diagram

calculations, the numerical values of the invariants to that order,

then we may obtain the optimized result for R numerically, by a

suitable iterative procedure.

Optimization has interesting consequences, particularly for the

infrared limit, and also for the question of high-order behaviour,

where we conjecture that optimization may produce a convergent

sequence of approximations, despite the generic divergence of QFT

series in any fixed RS.

1.2. Plan of the Book

The core of the book is Part II, a thorough exposition of “optimized

perturbation theory” (OPT). The impatient reader, already familiar

with QFT and renormalization, may wish to begin there. However,

the chapters making up Part I provide background material intended

to set the RS problem in context and to explain the thinking behind

this approach. It is hoped that students of QFT will find these

chapters helpful in clarifying some key conceptual issues in the RG

and renormalized perturbation theory; issues that can sometimes
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be obscured by technical details in textbooks. The chapters on

non-invariant approximations and induced convergence are relevant

to a huge variety of problems in all areas of physics and applied

mathematics.

Parenthetical remarks, such as this one, are interspersed in the
text in just this format. They may often be ignored without affect-
ing the reader’s understanding of the main line of argument. They
discuss more technical issues, or address questions, complications,
or apparent difficulties that might occur to some readers at that
point.

Chapter 2 discusses Dimensional Analysis in QFT, which is the

key to understanding how a seemingly dimensionless bare coupling

constant turns into an “effective” or “running” coupling constant

that varies with energy. It also explains much about why RG

equations arise.

Chapter 3 discusses renormalization in conceptual terms, sup-

pressing all technical details. It emphasizes that coupling-constant

renormalization, for physical quantities, is essentially a substitution,

a reparametrization of the theory. The ill-defined (infinitesimal) bare

coupling constant is eliminated in favour of a finite renormalized

couplant, thereby re-organizing the perturbation series into a usable

form. However, the freedom inherent in defining a renormalized

couplant leads, at any finite order, to the RS ambiguity.

This RS-dependence problem arises only because we truncate

the perturbation series. It is not fundamentally a QFT issue, but

rather is a problem in “approximology” — the theory and lore

of approximations. We therefore open Chapter 4 with a general

discussion of approximations, stressing that they involve taking a

gamble based on incomplete information. A good gambler, however,

always makes wise use of all available information. For “non-invariant

approximations,” the vital extra information is the knowledge that

the exact result does not depend on certain variables. The Principle

of Minimal Sensitivity, which makes use of this information, is

explained and applied to several examples, in particular the Caswell–

Killingbeck (CK) expansion for the anharmonic oscillator in quantum

mechanics.
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Chapter 5 discusses the phenomenon of “induced convergence”

that can occur in high orders of non-invariant approximations. As

well as the CK expansion, it discusses a toy model involving the

alternating factorial series, where the convergence of the optimized

results can be proved quite simply. We conjecture that OPT in

quantum field theories will also show such induced convergence, even

though the R and β series, in a fixed RS, are factorially divergent.

In Part II the main work begins. Chapters 6 and 7 set out the

formal structure of renormalized perturbation series. They explain

how to parametrize RS dependence and identify the invariants

ρi formed from the coefficients of R and β(a). The discussion,

unfortunately, has to begin with μ dependence, which arises at

the lowest order, but which is, in some ways, the most difficult

and confusing issue. Thus, it is first necessary to discuss several

preliminaries in Chapter 6: the β function; its integration; the

appropriate definition of a boundary-condition parameter Λ̃; and

how Λ̃ depends on RS. Only then can one see that the first of

the RS variables is not μ itself, but the ratio of μ to Λ̃. A special

energy-dependent invariant, ρ1(Q), is involved here. The way is then

clear to discuss, in Chapter 7, the other RS dependences that can

be parametrized by the higher-order β-function coefficients cj for

j = 2, 3, . . .. Here things are in some ways more straightforward. A

set of invariant quantities ρj can be defined as specific combinations

of the coefficients of R and β(a). Only at the end can one see how

the μ/Λ̃ dependence corresponds to the “j = 1” case of the general

formulas.

It is as if a teacher, introducing integral calculus for the first
time, were compelled to first discuss

∫
dx
x , necessitating a lengthy

discussion of the natural logarithm function, lnx, before turning
to the integrals of positive integer powers and deducing the simple
formula

∫
dxxn−1 = xn/n. Only then, by considering n = ε, could

the
∫

dx
x result be seen as part of the general pattern — the subtlety

being that xε ∼ 1 + ε lnx as ε→ 0.

Chapter 8 addresses the issue of finite orders, where series are

truncated and exact RS invariance is lost. It explains how to apply

the Principle of Minimal Sensitivity, from which all later results
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follow. Chapter 9 shows that the resulting optimization equations

can be solved to yield the optimized rm coefficients in terms of

the optimized cj coefficients and the optimized couplant a. It also

outlines algorithms for numerically solving the remaining equations

iteratively. Chapter 10 presents in detail some illustrative numerical

results for the Re+e− ratio in QCD.

Part III discusses various special topics. Chapter 11 explores

the infrared limit, where perturbation theory, for an asymptotically

free theory, is furthest from its comfort zone. Chapter 12 treats the

important topic of factorized quantities, such as moments of the

proton structure function, where one factor, the operator matrix

element, is not perturbatively calculable. Chapter 13 is of more

specialized interest. It considers QCD in the small-b limit (known as

the Banks–Zaks or BZ limit) where one can explore some aspects of

all-orders OPT. Although not addressing the main issue concerning

the “induced convergence” conjecture, because the fixed-RS series in

this limit is not divergent, these explorations do shed some light on

how OPT works at very high orders.

Some issues, falling outside the main narrative, are discussed in

appendices to some of the chapters. A few end-of-chapter exercises

are included; these are mainly intended to enable readers to test and

reinforce their understanding of the material, but sometimes contain

results of interest, though not of central importance. References

have been kept to a bare minimum in the text, though names are

mentioned where important credit is due. More extensive citations

of the prior and contemporaneous literature can be found in the

author’s research papers. These are listed in the bibliography along

with other signposts to the literature. The bibliography also mentions

a selection of other applications of the minimal-sensitivity criterion;

in particular some promising developments in QCD that go beyond

the scope of this book.

1.3. Quantum Chromodynamics

The principal application of OPT is to quantum chromodynamics

(QCD) so we will very briefly describe the theory. This is only
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intended to give readers without much particle-physics background

a general feeling for the theory — we mainly want to show how the

gauge coupling g (and hence the couplant a ≡ g2/(4π2)) enters.

Readers are advised to allow the technical details to “flow over

their heads” if necessary, or to consult other textbooks for a fuller

description.

QCD is a relativistic quantum field theory. Being relativistic,

it is natural to use units where the speed of light is unity, and to

use covariant notation. 4-vectors, such as the space–time position

xμ = (t,x) and energy–momentum pμ = (E,p), have a Lorentz

index μ = 0, 1, 2, 3 that is lowered with the Minkowski metric tensor

gμν = diag(1,−1,−1,−1). An invariant is formed by xμxμ = xμgμνx
ν

(with summation over repeated indices always understood). The

upper or lower index distinction is crucial for Lorentz indices.

Being a field theory, QCD’s degrees of freedom are fields — which,

at the classical level, are just functions of space–time position. The

simplest kind of field is a scalar field φ(x), and the simplest theory,

describing free, spinless particles of mass m, has the Lagrangian

density

L =
1

2
∂μφ∂μφ− 1

2
m2φ2. (1.6)

It can be thought of as the continuum limit of a set of oscillators,

one at each spatial point, each coupled to its nearest neighbours.

Being a quantum theory, the fields are upgraded to operators,

with quantum-oscillator commutation relations. Alternatively, one

can formulate the quantum theory in terms of a functional integral,

over all possible classical field configurations, involving the exponen-

tial of the action,
∫
d4xL.

QCD involves spin- 1
2

particles (quarks) and spin-1 particles

(gluons). Particles with spin are described by multi-component fields.

Spatial rotations and Lorentz boosts result in a mixing of the

components (in a way that we will not attempt to describe here).

A spin-1 field Aμ(x) has four real components, labelled by a Lorentz

index μ that can take the values 0, 1, 2, 3. A spin- 1
2
field ψα(x) has

four complex components, labelled by a Dirac index α.
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The Lagrangian density for a free spin- 1
2
fermion is

L = ψ̄α (i(γ
μ)αβ ∂μ −mδαβ)ψβ . (1.7)

Here γμ are the four Dirac matrices, satisfying an anticommutation

relation {γμ, γν} = 2gμν . Henceforth we will suppress the Dirac

indices entirely, leaving it understood that a matrix multiplication is

involved. The shorthand notation /∂ for γμ∂μ is also convenient, so

we have

L = ψ̄ (i/∂ −m)ψ. (1.8)

ψ̄ is the adjoint of ψ (Hermitian conjugate times the γ0 Dirac matrix).

This Lagrangian is obviously invariant under a change of phase

from ψ to eiθψ, since ψ̄ transforms to e−iθψ̄. Here θ can be any

constant. Suppose, however, that we want to have a gauge symmetry

where θ can be a function of space–time position x. That can be

achieved if we introduce a “covariant derivative”

Dμ = ∂μ + igAμ (1.9)

involving a new vector field Aμ that transforms as

Aμ −→ Aμ − 1

g
∂μθ. (1.10)

In order for the Aμ field to be dynamical we need to add a kinetic

term for it. Näıvely, this would be something like ∂νA
μ∂νAμ, akin to

the kinetic term in Eq. (1.6), but that would not be invariant under

the gauge transformation (1.10). The appropriate term can be found

by considering the commutator of two covariant derivative operators:

[Dμ,Dν ] = ig(∂μAν − ∂νAμ) ≡ igFμν (1.11)

so that the appropriate gauge-invariant kinetic term is − 1
4
FμνF

μν .

If we identify the fields Aμ and ψ with the photon and electron,

respectively, and the gauge coupling with the electric charge e, then

this is Quantum Electrodynamics (QED):

LQED = −1

4
FμνF

μν + ψ̄ (i/D −m)ψ. (1.12)
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Unlike the previous Lagrangians, which were quadratic in the fields

and so were theories of non-interacting particles, the new Lagrangian

has a cubic term coming from the ψ̄ /Dψ term, which is

− gAμψ̄γ
μψ. (1.13)

This term, treated as a perturbation to the free-electron and free-

photon theories, corresponds to a vertex in the Feynman diagrams

where a photon line meets up with an incoming and an outgoing

electron line.

To get QCD we start from a “quark” field, a threefold fermion

field ψa, where a is the “colour” index; a = 1, 2, 3 (or a =red, green,

blue). Summing over colours, as in ψ̄aψa, produces a “colourless”

combination. Crucially, all three fields have the same mass so that

the Lagrangian

ψ̄a(i/∂ −m)ψa (1.14)

has an exact symmetry under ψa −→ ψ′
a, with

ψ′
a = Uabψb, (1.15)

where Uab is any 3 × 3 unitary matrix with unit determinant. This

symmetry is called SU(3) colour symmetry. (There is also a symmetry

under an overall eiθ phase factor, which gives rise to electromagnetic

interactions of the quark with the photon field.) A continuous group,

such as SU(3), is characterized by its “Lie algebra,” the set of

commutators of its generators TA:

[TA, TB ] = ifABCT
C . (1.16)

For SU(3) the index A runs from 1 to 8 (= 32 − 1) and is raised or

lowered with a simple Kroenecker delta δAB . The group’s structure

constants, fABC , are totally antisymmetric in the three indices. The

individual elements are pure numbers. (f123 = 1, f458 = f678 =√
3/2, f147 = f165 = f246 = f257 = f345 = f376 = 1

2 , with the

others fixed by antisymmetry, or otherwise zero.) The generators

should be thought of as abstract objects, but there are various

matrix representations of the Lie algebra. The relevant ones here are

the fundamental representation, where the TA’s are represented by
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3× 3 Hermitian matrices TA
ab, and the adjoint representation, where

they are represented by 8 × 8 matrices TA
BC whose matrix elements

are directly given by −ifABC ’s. A general Uab matrix can be written

as

Uab = exp(iθAT
A
ab) (1.17)

with eight parameters θA multiplying the eight TA
ab matrices.

Again, we wish to make this symmetry into a gauge symmetry

where the θA’s can be functions of x. We need a covariant derivative

Dμ = ∂μ + igTAGμ
A (1.18)

involving an eightfold gauge field Gμ
A (the “gluon” field) that

transforms as

Gμ
A −→ Gμ

A − fABCθ
BGC,μ − 1

g
∂μθA (1.19)

The fABC term is the natural one for the transformation of an object

with an adjoint index A; the additional inhomogeneous term makes

Gμ
A a gauge field.

Again, we need a kinetic term for this gauge field. To find the

right gauge invariant form, we again consider the commutator of two

covariant derivative operators:

[Dμ,Dν ] = igTA
(
∂μGν

A − ∂νGμ
A − gfABCG

B,μGC,ν
)
. (1.20)

Note that the commutator here involves two sorts of non-commuting

objects; derivative operators and generators, with the latter giving

rise to the gfG2 term. The analogue of the Fμν tensor in QED is

thus

Gμν
A ≡ ∂μGν

A − ∂νGμ
A − gfABCG

B,μGC,ν . (1.21)

This object transforms in the “proper” way for an object with an A

index — like Eq. (1.19) but without the derivative term. Thus, when

we form the kinetic term,

− 1

4
GA
μνGA

μν , (1.22)

it is gauge invariant.
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There are various different “flavours” of quarks, so we need yet

another index j to label them that is summed from 1 to nf , the total

number of flavours. In the real world, we know of six flavours called

u, d, s, c, b, t. Each flavour has a different mass. The Lagrangian for

QCD is then

LQCD = −1

4
GA
μνGA

μν +

nf∑

j=1

ψ̄j,a(i/Dab −mjδab)ψb,j . (1.23)

(There are more technicalities about gauge fixing, Fadeev–Popov

ghosts, and BRST invariance that we do not go into here, though

they are crucial for proving the theory’s renormalizability.)

Besides the quark–quark–gluon interaction term of the form

−g(ψ̄γμψ)G from the /D term, there are also three-gluon and four-

gluon interaction terms g(∂μG)G
2 and g2G4. These give rise to

corresponding vertices in the Feynman diagrams.

Feynman-diagram calculations, especially at higher orders, are

much more complicated when masses are included, so it is usual to

approximate “real QCD” by massless QCD with an effective number

of “active” flavours. (Quarks with masses above the relevant energy

scale Q are regarded as “inactive” and the lighter quarks are treated

as massless.)

Other gauge theories can be constructed in a similar fashion,

starting with a different symmetry group, such as SU(N) instead of

SU(3). In all cases, the gauge coupling g is naturally dimensionless

in 4 dimensions.
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Chapter 2

Dimensional Analysis
in Quantum Field Theory

2.1. Physics and Conventions

A quantitative description of a physical process always involves a

convolution of two parts: a Ph part — the physics, the phenomenon,

the “phacts” — and a C part — the conventions, choices of units,

coordinate system, etc., chosen (by committees) for concreteness,

convenience, and clear communication:

= Physics
⊗

.Conventions

Quantitative

description of a

physical process

All the messiness and arbitrariness lies in the C part, while the

beauty resides in the Ph part. The actual physics is fundamentally

independent of the arbitrary choices in theC part. Thus, for instance,

Articles I and II of the Physicist’s Creed are

I. Physics is independent of our choice of units.

II. Physics is independent of our choice of coordinate system.

These points, though elementary, are nevertheless profound.

Article I is fundamental to our discussion of renormalization-group

equations here. Article II, for non-inertial space–time coordinate

systems, leads towards General Relativity. As physics advances,

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.

15



March 14, 2022 10:28 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch02 page 16

16 Renormalized Perturbation Theory and Its Optimization

it is striking that our descriptions tend to involve ever more

sources of redundancy: for instance, physics is independent of our

choice of Lorentz frame, our choice of gauge — and our choice of

renormalization scheme.

Theoretical work can often be done in mathematical formalisms

where these invariances are manifest. However, when it comes to

making concrete, quantitative predictions that can be compared with

experiment, we are forced to adopt some definite system of units,

coordinate system, etc. In doing so it is vital that we do not lose

sight of the fundamental invariance of the physics to those arbitrary

parameters.

2.2. Dimensional Analysis

Let us focus now on Article I: — physics is independent of our choice

of units. Most quantities in physics are not pure numbers. When we

describe a length as “3.2 metres” we mean that the ratio of that

length to another specified length, previously defined to be “1 metre,”

is the number 3.2. Generally, quantities in physics have dimensions

and must be expressed in some well-defined units before they can be

identified with numbers. Traditionally the fundamental dimensions

are taken to bemass, length, time, with the dimensions of other quan-

tities being taken as combinations of these. (For instance, angular

momentum has dimensions (mass)(length)2(time)−1.) Dimensional

Analysis (DA) is based on the fact that it only makes sense to add,

subtract, or equate two terms if they have the same dimensions. This

simple observation — as any good physics student appreciates —

provides a powerful check against mistakes in calculations. It also

provides a way to predict, in advance, much about the form that a

result must take. DA applies to QFT too, of course. In some ways it

is even simpler, though in other ways it is more subtle.

DA in QFT is simpler because the fundamental constants �

(Planck’s constant over 2π) and c (the speed of light in vacuum)

are ubiquitous and provide natural units of angular momentum and

velocity, respectively. Thus, we may reduce the three fundamental

dimensions to just one, which may be taken to be mass (or,

equivalently, energy, or inverse length, etc.) and all quantities can
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be regarded as having dimensions of mass to some power. We will

use the phrase “a massive parameter,” to mean “a parameter with

the dimensions of mass.”

DA in renormalizable QFT’s is more subtle because of the need

for renormalization. This subtlety shows up most clearly in massless

(or, more precisely, classically scale-invariant) theories through the

counter-intuitive phenomenon of “dimensional transmutation.” The

bare Lagrangian of a massless renormalizable theory contains no

parameters with dimensions, only a dimensionless bare coupling

constant g; nevertheless, the theory ends up being characterized by

a scale parameter “Λ” with dimensions of mass. The aim of this

chapter is to explain how dimensional transmutation is consistent

with DA. We will show that much, though not all, the content of the

RG equations presented in QFT textbooks follows simply from DA.

In the following discussion, the theory is assumed to be a massless,

renormalizable QFT with a single bare coupling constant, g, with

massless QCD as a specific example. (Appendix 2.A comments briefly

on theories with masses.)

2.3. The Dimensional Transmutation “Paradox”

For the purposes of discussion, let us picture our theory as a “Black

Box” that provides the answer to any well-posed, physical question

that we put to it. This device — alas, rhetorical not actual — is

employed in order to separate, as far as possible, the theory in itself

and the way it works, from the way in which we work the theory.

Later on we will return to the complications that arise because we are

forced to use approximate methods — indeed, those complications

are the main subject of this book. For the present, however, let us

pretend that we have a “Black Box” that can solve the theory exactly.

The “paradox” of dimensional transmutation can then be described

in the following terms.

The Lagrangian we input to the Black Box is scale-invariant —

it contains no massive constants. Let us ask the theory to give its

prediction for A(Q), a specific, dimensionless, observable quantity,

which can depend only on one massive variable Q. For example,

in QCD we could ask for the dimensionless ratio of cross sections
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Re+e−(Q) ≡ σtot(e
+e− → hadrons)/σ(e+e− → μ+μ−) at a center-of-

mass energy Q. The answer from the Black Box turns out to have a

non-trivial dependence on Q. In QCD, Re+e−(Q) tends to a constant

only as Q → ∞; there are definite sub-asymptotic terms that vary

with Q.

Finding that the dimensionless A(Q) actually depends on Q is

quite a shock because we know that the following is true:

Theorem (Dimensional Analysis). A function f(x, y) which

depends only on two massive variables x and y, and which is

(i) dimensionless,

(ii) uniquely defined,

(iii) whose definition does not involve any massive constants

must be a function of the ratio x/y only.

Corollary. If f(x, y) is independent of y, then it must be a constant.

The question we have asked of the theory is of the type covered

by the corollary: the theory has to define a dimensionless function of

one massive variable, and it has no massive constants available to it.

Thus, the answer to our question must be a constant — and yet, the

answer from the Black Box is certainly not a constant!

The flaw in the “paradox” is the requirement that the function

must be uniquely defined in the theorem above. If this requirement

is dropped, then requirement (iii) can easily be circumvented by

allowing a massive constant to appear, implicitly, as a constant of

integration. The point is that the Lagrangian we input is not one

single theory but a one-parameter set of theories with different (bare)

coupling constants, g. Therefore, our Black Box gives us not just one

answer, but a one-parameter set of answers — that is, it specifies

the dimensionless function A(Q) non-uniquely. The paradox is then

resolved: the DA theorem is correct, but it does not apply, because

the uniqueness requirement is not satisfied.

Dimensional Transmutation is the process whereby a theory

exploits its one-parameter ambiguity so as to evade the dull conse-

quences of the DA theorem. In order to use this mechanism, a theory
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must (i) have at least one free parameter, g, and (ii) have infinities

(or be ill-defined in some other way) so that its predictions cannot be

expressed directly in terms of g. In field theories, the second require-

ment is met by the necessity for renormalization. A field-theoretic

Lagrangian is not a complete description of the theory: in order

to make sense of it one must use some renormalization procedure.

The physics is independent of all the details of the renormalization

prescription, but not of the necessity for renormalization.

To summarize: we asked the Black Box a question: “What is

A(Q)?”, näıvely expecting that the answer would be a constant.

Having now understood that the theory will give us only a one-

parameter ambiguous answer, we can reconsider what DA tells us

about the form that this answer must take.

2.4. The Ambiguous Answer for A(Q)

The Black Box is asked to specify A(Q) and — while it is allowed

a one-parameter ambiguity — there are no massive constants it

can use. So, in order to produce a non-constant A(Q), the theory’s

definition must be somewhat indirect. One can immediately think of

two possibilities: the black box could specify only the first derivative

of A(Q), or it could define A(Q) recursively. These two alternatives

are actually equivalent, as we shall show explicitly.

If the theory specifies the first derivative of A(Q), then this

specification must take the form

dA
dQ

=
B(A)

Q
, (2.1)

where B(A) is a dimensionless function of a dimensionless argument

and must be uniquely defined by the theory. The important point

is that the form of Eq. (2.1) is unique: the explicit Q-dependence is

fixed by DA.

If instead the specification of A(Q) is recursive, then it must have

the form

A(Q) = F

(
Q

μ
,A(μ)

)
for any μ, (2.2)
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where F is a uniquely defined, dimensionless function which must

be independent of the arbitrary massive parameter μ, because no

massive constants are allowed in the specification of A(Q). Again, the

form of the equation is dictated by DA. The one-parameter ambiguity

arises because the theory does not provide a boundary condition for

Eq. (2.1) or Eq. (2.2). This boundary condition must be fixed by an

appeal to experiment.

Let us first analyze Eq. (2.1). Integrating the equation gives

lnQ+ constant =

∫ A

∞

dA

B(A) ≡ K(A). (2.3)

For present purposes a lower limit of∞ is simple and convenient.
However, that choice would not be appropriate in perturbation
theory and a different definition will be discussed later in Sec. 6.3.

The constant of integration can be written in infinitely many

ways, corresponding to different choices of mass units, by writing

“constant = K0−lnμ,” where μ is some arbitrary massive parameter.

By considering the point Q = μ one sees that K0 = K(A(μ)), so that

ln(Q/μ) +K(A(μ)) = K(A(Q)). (2.4)

What has really happened is that a massive constant has crept in as

an integration constant. One way of characterizing this constant, Λ,

is as the value of μ for which K(A(μ)) vanishes (assuming that such

a point exists). Thus Eq. (2.1) is equivalent to

A(Q) = K−1 (K(A(μ) + ln(Q/μ))) for any μ, (2.5)

or to

A(Q) = K−1 (ln(Q/Λ)) for some Λ. (2.6)

Equation (2.5) holds for arbitrary μ, and ∂A/∂μ|Q = 0 for all Q,

as the reader should verify. Equation (2.6), however, holds only

for some fixed, but unspecified constant, Λ. We could have added

“where Λ is defined by K(A(Λ)) = 0,” but this “definition” is mere

tautology, since this information is already contained in Eq. (2.6).

The unspecified nature of Λ reflects the one-parameter ambiguity of

the theory.
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Next let us investigate Eq. (2.2) to show that it also leads to

Eqs. (2.5), (2.6). Changing the variables Q,μ to

z ≡ Q/μ, A ≡ A(μ), (2.7)

the condition that F is independent of μ is

μ
dF

dμ
=
∂F

∂z
(z,A)

∣∣∣∣
A

μ
dz

dμ
+
∂F

∂A
(z,A)

∣∣∣∣
z

μ
dA(μ)

dμ
= 0. (2.8)

Since μ dz
dμ = −z, this becomes

z
∂F

∂z
(z,A)

∣∣∣∣
A

/ ∂F

∂A
(z,A)

∣∣∣∣
z

= μ
dA(μ)

dμ
(2.9)

The right-hand side of this equation is independent of z and is a

function of A only. In fact, it is precisely the function B(A) of

Eq. (2.1). Equating the left-hand side of Eq. (2.9) to B(A) leads

immediately to

∂F

∂(ln z)
=

∂F

∂(K(A))
, (2.10)

where

K(A) ≡
∫ A

∞

dA′

B(A′)
, (2.11)

as before. The solution to Eq. (2.10) is of course that F can depend

only on the single variable K(A) + ln z. Hence, reverting to Q,μ as

the variables,

F (Q/μ,A(μ)) = f (K(A(μ)) + ln(Q/μ)) , (2.12)

where f is a function of a single variable. The left-hand side is, by

definition, A(Q), so by considering μ = Q one sees that A(Q) =

f(K(A(Q))), so f must be K−1. Thus, one recovers Eq. (2.5)

as promised. Equations (2.1) and (2.2) are therefore equivalent

definitions of A(Q). In fact, any answer the Black Box could give

would have to be equivalent to the form (2.1).

Notice the curious feature that the discussion often involves

an arbitrary massive parameter, μ. Its role is that of a conjurer’s
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handkerchief — “Now you see it, now you don’t!” It is necessary in

order to write down certain formulas, but physically it is never really

there.

The massive constant Λ is quite different. Its value does have

physical significance. The theory does not, however, predict its value.

In fact, since Λ is not in its input Lagrangian, the Black Box cannot

ever mention Λ. Nor does it need to: it simply leaves a boundary

condition unspecified. We ourselves introduce Λ as a convenient

means of parametrizing the theory. By expressing the theory’s

predictions in terms of Λ and then fitting these to N experimental

measurements, we can extract the value of Λ and make (N −1) tests

of the theory.

To summarize: There is essentially only one form in which the

Black Box can give the answer to our question “What is A(Q)?”

It must provide a fully specified function B(A), where B and its

argument are dimensionless, together with the statement that A(Q)

is related to B(A) by Eq. (2.1). This is equivalent to Eqs. (2.2),

(2.5), (2.6) as shown above. The Black Box cannot ever mention

a massive constant in its answers. Nevertheless, we can see that

a dimensional constant does creep into the theory because of the

absence of a boundary condition.

2.5. The Form of Other Physical Quantities

Now that we understand the form of its answer for one specific

physical quantity, A(Q), let us ask the Black Box to predict some

other physical quantity. The answer cannot be an independent repeat

of the previous story, since this would introduce a second “Λ”

parameter, and there is only a one-parameter ambiguity in the

theory. Instead, having already given us A(Q), the Black Box can

now give all its other results in terms of A.

Consider some observable quantity σ(q1, . . . , qn) with dimensions

of (mass)D, which depends on n massive variables q1, . . . , qn. Let us

pick one of these variables — say q1, though it could be any qi or

any combination with the dimensions of mass — and rename it “Q,”

and then rewrite the others as dimensionless ratios θ2 ≡ q2/Q, etc.
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If the usual (unique) DA applied, σ would have to take the form

σ(Q, θ2, . . . , θn) = QDS (θ2, . . . , θn) , (2.13)

where the function S is dimensionless and depends only on the (n−1)

ratios. This form will no longer hold because of the one-parameter

ambiguity of the theory, now embodied in A(μ). Reapplying DA with

this in mind the correct form must be

σ(Q, θ2, . . . , θn) = QDS

(
θ2, . . . , θn;

Q

μ
,A(μ)

)
, (2.14)

where S must be independent of μ, the arbitrary massive parameter

which serves as the argument of A.

Let us analyze the form of Eq. (2.14). Firstly, since μ is arbitrary,

we are free to pick μ = Q if we please. Hence, the dependence of S

on Q/μ and A(μ) is equivalent to dependence on the single variable

A(Q).

One can also show this in a more laborious way. Equation (2.14)
is similar in many respects to Eq. (2.2), but without the latter’s
recursive nature, so one can repeat the analysis in Eqs. (2.7)–
(2.12) to show that S depends on Q/μ and A(μ) only through
the combination K(A(μ)) + ln(Q/μ). This variable, by Eq. (2.5),
is just K(A(Q)).

Another way of expressing the μ-independence of Eq. (2.14) is

the following. Define a function S̃ of (n+ 1) independent variables

S̃ = S̃

(
θ2, . . . , θn;

Q

μ
,A

)
, (2.15)

which reduces to S when the extra variable A is set equal to A(μ).

S̃ becomes independent of μ only when A = A(μ). Translated into

mathematics, that statement becomes

dS̃

dμ

∣∣∣∣∣
atA=A(μ)

=

(
∂S̃

∂μ
+
∂S̃

∂A

dA
dμ

)∣∣∣∣∣
atA=A(μ)

= 0. (2.16)

Multiplying by μ and remembering that A(μ) is specified by

μ
dA
dμ

= B(A), (2.17)
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Eq. (2.16) becomes

(
μ
∂

∂μ
+ B(A)

∂

∂A

)
S̃

∣∣∣∣
atA=A(μ)

= 0. (2.18)

The reader will probably recognize this as a renormalization group

(RG) equation of some kind. Indeed, the equation can be applied to

σ itself:

(
μ
∂

∂μ

∣∣∣∣
A
+ B(A)

∂

∂A
)
σ = 0. (2.19)

Here the notation is perhaps a bit sloppy and may need a little

explanation. In Eq. (2.18), it was evident that μ and A were

independent variables, so that each partial derivative is taken with

the other variable held constant. Then, afterwards, one is to replace

A with A(μ). In Eq. (2.19) we dispense introducing A, so we have

added “ . . .|A”as a reminder that the μ partial derivative is to be

taken pretending that A is a constant, despite the fact that A is a

function of μ.

There is nothing magic or mysterious about this renormalization-

group (RG) equation. Solving this partial differential equation only

leads back to Eq. (2.14), together with the verbal statement that

σ is independent of μ. The form (2.14) followed simply from

Dimensional Analysis, the only subtlety being the theory’s one-

parameter ambiguity.

That subtlety requires a distinction between canonical dimen-

sions and scale dimensions. The canonical dimension of σ is just

D, and it counts both the Q and μ-dependences since both are

massive parameters. The scale dimension, however, only counts the

dependence of σ on the physical scale Q:

D(σ) ≡
Q

σ

dσ

dQ
, (2.20)

Since S ≡ σ/QD is a dimensionless function, we know from DA that

it can depend on Q only through the ratio Q/μ, as in Eq. (2.14), so
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that

Q

S

dS

dQ
= − μ

S

dS

dμ

∣∣∣∣
A
. (2.21)

Note that we must holdA(μ) fixed here. Hence, D(σ) can be expressed

as D − μ
σ
∂σ
∂μ

∣∣∣
A
. Using the RG equation (2.19), we then find

D(σ) = D +
B(A)

σ

∂σ

∂A . (2.22)

2.6. Summary

We began by asking our theory, considered as a Black Box, about

a specific, dimensionless physical quantity A(Q). Näıve DA, which

would force the answer to be a constant, does not apply because the

theory’s answer is not unique. Rather, “one-parameter ambiguous

DA” applies, requiring the answer to be of the form of Eq. (2.1):

Q
dA
dQ

= B(A), (2.23)

where the function B(A) is a dimensionless function of a dimen-

sionless argument, and is fully specified by the theory. The one-

parameter ambiguity arises from the missing boundary condition —

which allows a massive constant Λ to creep in. When asked about

other physical quantities, the Black Box specifies them in terms of

the first quantity A(μ) at some arbitrary mass scale μ. The fact that

the new physical quantity, σ, is independent of the arbitrary mass

scale μ is expressed by Eq. (2.19):
(
μ
∂

∂μ

∣∣∣∣
A
+ B(A)

∂

∂A
)
σ = 0. (2.24)

There is an obvious artificial asymmetry in the preceding descrip-

tion of the theory. One particular physical quantity A is singled out

as “special” and all others are expressed in terms of it. This is an

arbitrary choice: we could choose any physical quantity to play the

role of the “special” one. If we had a Black Box that solved the theory

exactly, there would be no problem here: whatever description of the
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theory we adopted, the results would be entirely equivalent. In fact,

the special quantity does not need to be a physical quantity. It could

be defined in theoretical, rather than experimental terms. A natural

choice, especially in the context of perturbation theory, is to use

some kind of “renormalized coupling constant.” If the theory could

be solved exactly, it would not matter how we chose to define it.

At finite orders of perturbation theory, however, there is a problem.

Before we return to that issue — the main topic of this book — let us

digress to consider unphysical quantities, such as Green’s functions.a

2.7. Unphysical Quantities and “Anomalous

Dimensions”

Many of the quantities we deal with in field theories are not,

even in principle, directly measurable quantities. These useful, but

unobservable, quantities, such as Green’s functions or proper vertices,

often suffer from bad diseases. For instance, they can be infrared

divergent, and they can depend on unphysical parameters. In gauge

theories they can depend on the gauge-fixing parameter. (That is

an additional complication, ignored here; it is discussed in Appendix

2.B.) The relevant point here is that such unphysical quantities can

depend on μ.

Of course, the advantage of having the Black Box is that we do

not need to trouble ourselves with unphysical quantities. Such quan-

tities are only needed as intermediate steps in calculating physical

quantities — which our Black Box now enables us to obtain directly,

with no labour. However, out of curiosity, we might like to ask the

Black Box to calculate an unphysical quantity for us. The answer,

though, will depend, not only on the variables we specify, but also on

unphysical variables, including μ. The “meaning” of this variable is

buried in the Manufacturer’s Specification for the Black Box which

describes the technical details of the renormalization prescription,

gauge choice, etc., that the machine uses in its calculations. We need

not be concerned with these details here.

aThe next section is useful background for Part III, but is not needed for Part II.



March 14, 2022 10:28 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch02 page 27

Dimensional Analysis in Quantum Field Theory 27

To begin with, let us consider a hypothetical example in which

a specific unobservable quantity Γ(q1, . . . , qn;μ), with dimensions

of (mass)D, happens to depend on μ in a particularly simple way,

namely

Γ(qi;μ) = μγ G(qi;μ,A(μ)), (2.25)

where the exponent γ is a numerical constant and G is independent

of μ.

The statement that Γ has the form of Eq. (2.25) can be translated

into a RG equation. As in the previous section let us regard Γ as the

special case of Γ̃(qi;μ,A) when A = A(μ), so that, as an identity,

dΓ

dμ
=

⎡
⎣ ∂Γ̃
∂μ

∣∣∣∣∣
A

+
dA
dμ

∂Γ̃

∂A

∣∣∣∣∣
μ

⎤
⎦

∣∣∣∣∣∣
atA=A(μ)

. (2.26)

But, from Eq. (2.25),

μ
dΓ

dμ
= γ Γ. (2.27)

Substituting this in Eq. (2.26), and invoking Eq. (2.17), gives

[
μ
∂

∂μ
+ B(A)

∂

∂A
− γ

]
Γ̃

∣∣∣∣
atA=A(μ)

= 0, (2.28)

which is recognizable as a typical RG equation, containing an

“anomalous dimension” term, γ.

Again, there is no particular magic in having a partial differential

equation. The content of this equation is much better expressed by

its solution, which is Eq. (2.25) together with the verbal statement

that G is independent of μ. However, the virtue of Eq. (2.28) is that

this form generalizes to apply to Γ’s which depend arbitrarily on μ.

For this general case γ must now be regarded as a function defined

by Eq. (2.27).

From DA alone there is no reason why γ cannot depend on
q1
μ ,

q2
q1
, . . . , qnq1 as well as A(μ). If this happened in practice, then

the RG equation would hardly be very useful. Fortunately, in field
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theory the γ’s come from the renormalization constants (the Z’s), so

they have no dependence on any of the physical variables q1, . . . , qn,

and hence, by DA, they can only depend on μ through A(μ);

thus, γ = γ(A(μ)). This happy circumstance is not altogether

surprising: the various unmeasurable quantities must be able to

combine together to produce observable quantities in such a way

that their μ dependence mutually cancels. In consequence, the μ-

dependence of each quantity has to be relatively simple; e.g., in

a Green’s function the μ-dependence must factor into separate μ-

dependences for each external line.

Equation (2.28) is derived field-theoretically by considering the
renormalization of the quantity Γ. The essential ingredients of the
derivation are (i) the μ-independence of the bare quantity, (ii)
the cutoff independence of the renormalized quantity, (iii) their
“proportionality” through some infinite renormalization constant
(Γren = ZΓbare) and (iv) Dimensional Analysis.

The solution of Eq. (2.28) when γ is a function of μ, but not of

q1, . . . , qn, is

Γ(qi;μ) ≡ Γ̃(qi;μ,A(μ)) = μ[γ] G(qi;μ,A(μ)), (2.29)

where G is independent of μ, and the notation μ[γ] means

μ[γ] ≡ exp

∫ μ dμ′

μ′
γ(A(μ′)). (2.30)

It is easily verified that the μ-dependence of Γ satisfies Eq. (2.27), the

defining equation for γ. Using Eq. (2.23), but with μ as the argument

of A, we may express μ[γ] as

μ[γ] = exp

∫ A(μ)

dx
γ(x)

B(x) , (2.31)

where x is a dummy “A” argument.

The scale dimension of Γ,

D(Γ) ≡
Q

Γ

dΓ

dQ
, (2.32)
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is (unlike γ) a physical quantity. That is because the wavefunction-

renormalization constant Z, multiplicatively renormalizing Γ, will

cancel out since it is independent of the momentum arguments qi,

and hence Q independent. Generalizing the discussion leading to

Eq. (2.22) one finds

D(Γ) = D − γ(A) +
B(A)

Γ

∂Γ

∂A , (2.33)

where A = A(Q) here. The −γ(A) term arises from the μ[γ] factor

in Γ.

To summarize: the non-trivial content of the RG equation,

Eq. (2.28), is that the anomalous dimension γ depends on μ only,

and only via A(μ). This implies that the μ-dependence of the

unphysical quantity Γ(qi;μ) factorizes and is not intertwined with

the qi-dependence.

2.8. Illustration: QCD in Leading Order

In this section, we consider leading order in perturbation theory.

For the present pedagogical purposes, we will ignore the fact that

leading order in perturbation theory is not an exact solution of the

theory. (Alternatively, we can view it as effectively exact if we limit

our ambition to predicting only the leading asymptotic behaviour in

the Q → ∞ limit.) Our aim here is to make contact with the usual

textbook treatments of some classic QCD results.

As the reader may well have already observed, the formulas in

the preceding sections look much more familiar if A(Q) is identified

with αs(Q), the QCD running coupling constant at an energy scale

Q. This identification will indeed be made in this section. It does not

matter here that αs(Q) is not a proper observable, in that it is not

defined in experimental terms. Its precise definition will not matter

for the current discussion.

WithA(Q) = α(Q) (we omit the s subscript henceforth) Eq. (2.1)

is immediately recognizable as the relation between the coupling

constant and the “β function”

Q
dα

dQ
(Q) = β(α(Q)). (2.34)



March 14, 2022 10:28 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch02 page 30

30 Renormalized Perturbation Theory and Its Optimization

In the literature there are several variants of this definition of β:
sometimes it is defined in terms of g(Q), where α = g2/(4π), and
sometimes the variable is Q2 rather than Q. We use the above form
in this section because it is perhaps the most common in textbooks.
Later, however, we will adopt a slightly different definition of β in
terms of a ≡ α/π.

The importance of the β function is that it is the theory’s oblique

way of specifying α(Q). Notice that the sign of β governs whether

α(Q) increases or decreases with Q. In QCD, the β function has a

perturbation expansion which begins

β(α) = −β0α2 + · · · , (2.35)

where β0 is a positive number, calculable from Feynman diagrams.

For a theory with nf flavours of (massless) quarks, β0 = (33 −
2nf )/(6π). The K function of Eqs. (2.3), (2.11) is then, to leading

order,

K(α) ≡
∫ α

∞
dα′

−β0α′2 =
1

β0α
. (2.36)

Equations (2.5), (2.6) then yield the familiar results

α(Q) =
α(μ)

1 + β0α(μ) ln(Q/μ)
for any μ, (2.37)

α(Q) =
1

β0 ln(Q/Λ)
for some Λ. (2.38)

As is clear from the earlier discussion, Eq. (2.38) is equivalent to

Eq. (2.37) and not some kind of approximation to it. The decrease

of α(Q) as Q→ ∞, due to β(α) being negative, is the justly famous

“asymptotic freedom” property.

With A(Q) and B(A) replaced by α(Q) and β(α), respectively,

Eq. (2.19) becomes precisely the conventional RG equation for a

physical quantity;
(
μ
∂

∂μ

∣∣∣∣
α

+ β(α)
∂

∂α

)
σ = 0. (2.39)

As remarked before, this equation means that the physical quantity

σ is actually independent of μ; the explicit μ dependence cancels with
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the implicit μ dependence via α(μ). From one-parameter-ambiguous

DA we could have written down immediately the solution of this

partial differential equation as Eq. (2.14).

For example, consider the physical quantity Re+e−(Q) ≡
σtot(e

+e− → hadrons)/σ(e+e− → μ+μ−) at total center-of-mass

energy Q. According to one-parameter-ambiguous DA, this dimen-

sionless function of one massive variable Q must have the form

Re+e−(Q) = f

(
Q

μ
,α(μ)

)
for any μ. (2.40)

Re+e−(Q) has a sensible free-field-theory limit, namely the parton-

model result
(
3
∑

i q
2
i

)
, where qi is the electric charge of the ith quark.

(Note that the parton-model result is a Q-independent constant

because ordinary DA then applies.) If we write

Re+e−(Q) ≡
(
3
∑

i

q2i

)
(1 +R) , (2.41)

then R represents the QCD correction. It must be a function only of
Q
μ and α(μ), and has a perturbation expansion:

R = r0

(
α(μ)

π

)(
1 + r1

(
Q
µ

)(α(μ)
π

)
+ · · ·

)
(2.42)

with coefficients that are calculable from Feynman diagrams (r0
turns out to be 1). The perturbative coefficients, r1, . . ., depend on

the ratio Q
μ . This dependence, as we shall see in the next chapter,

is through ln Q
μ terms, so that if Q becomes very large relative

to μ, the perturbative coefficients become horribly large. Thus, in

practice — not having an exact result, but only the first few terms of

a perturbation series — our choice of the arbitrary scale μ actually

matters. Rather than fixing μ once-and-for-all, we should allow it to

“run” with Q, so that Re+e−(Q) depends only on α(Q):

R =

(
α(Q)

π

)(
1 + r1(μ=Q)

(
α(Q)

π

)
+ · · ·

)
(2.43)
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This is known as “renormalization-group-improved” perturbation

theory. In an asymptotically free theory the “running coupling

constant” α(Q) tends to zero as Q tends to infinity, so that RG-

improved perturbation theory is good at high energies. Thus, we

can definitely say that the leading asymptotic behaviour is R ∼
α(Q)/π ∼ 1/(πβ0 lnQ).

However, the RG/DA argument only sets the scale for the

running coupling constant. One can equally well show, by putting

μ = nQ in Eq. (2.40), that Re+e−(Q) is a function only of α(nQ),

where n could be any constant (or, indeed, any function of α(μ)). If

we had exact results, or if we only asked about Q → ∞, the choice

of n would not matter at all. But in practice, since we want to get

quantitative results from a truncated perturbation series, the choice

of n does matter. This choice is entangled with the other RS choices

involved in the definition of α, and is just one aspect of the wider

RS-dependence problem.

At leading order, when the correction coefficient r1 is unknown,
one can only guess at a “reasonable” n: Leading order is thus only
a qualitative approximation. While good phenomenology can be
done — and was done — with just leading-order results, quantita-
tive results require at least next-to-leading order calculations.

Appendix 2.A: Theories with Masses

Our discussion in this chapter was specific to massless theories. It

might at first seem that, if the Lagrangian contains a mass term,

then all the previous arguments are undermined. However, this is

not true since the bare mass, being ill-defined (infinite or infinitesimal

depending on regularization), cannot directly provide a finite mass

scale, any more than the bare coupling constant could.

In fact, the previous picture still holds, except that the theory

now has a two-parameter ambiguity. Generalizing the previous

procedure, one can isolate these ambiguities in two renormalized

quantities. These are most naturally chosen to be a coupling constant

α(μ) and a “running mass” m(μ). Each of these functions is specified

via a first-order differential equation, whose boundary condition must
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be determined by experiment — through measurements of Λ and the

physical mass mphys, respectively.

Other quantities must then be expressed in terms of α(μ),

m(μ), and μ, leading to generalizations of the RG equations (2.19)

and (2.28) containing an extra −γmm(∂/∂m) term, where γm is

somewhat analogous to the β function: μdm/dμ = −γmm(μ).

This leads naturally to Weinberg’s form of the RG equation. A

proper field-theoretic derivation of this equation gives the vital extra

information that both γm and the β function depend only on α(μ).

To derive the Weinberg RG equation field-theoretically, one

works in a “mass-independent” renormalization scheme (e.g., the MS

scheme), which does not involve the physical mass in its definition.

Alternatively, one may fix the mass to be the physical mass and

use the original formulation due to Callan and Symanzik, but this

involves the specifically field-theoretic concept of mass insertions in

Green’s functions.

Although the focus in this book is mostly on massless theories,

the optimization procedure of Part II can be applied directly to a

massive theory if the mass renormalization uses the physical mass.

However, there might be further advantages in generalizing the

procedure so as to optimize both the running coupling and the

running mass.

Appendix 2.B: Gauge Dependence in Gauge Theories

Here we return to the problem of the gauge dependence of unphysical

quantities which was avoided in Sec. 2.7. This can be treated

by analogy with Appendix 2.A’s discussion of mass terms. To

quantize a gauge theory one must add a gauge-fixing term to the

Lagrangian. This step effectively introduces another sort of bare

coupling constant — the bare gauge parameter ξ — which affects

only unphysical quantities. The bare gauge parameter must itself be

renormalized, leading to a renormalized gauge parameter ξ(μ). The

RG equation for unphysical quantities will contain, in addition to an

anomalous dimension, a term δ(α, ξ)(∂/∂ξ), where δ is the analogue

of the β function: μ∂ξ/∂μ ≡ δ(α, ξ), with the partial derivative taken
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at constant α. Observable quantities, being gauge invariant, do not

depend on ξ(μ), so their RG equations do not need this term.

Some RS’s explicitly involve the gauge choice in their definition.

In such schemes, there are two ways in which one might define the

β function, depending on whether the derivative in μ∂α/∂μ is taken

holding constant the bare or the renormalized gauge parameter. It

is important for our later analysis, which will use only renormalized

quantities, that the latter definition is used.
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Chapter 3

Renormalization as Reparametrization

3.1. Introduction

This chapter aims to describe renormalization conceptually, with

technicalities kept to a minimum. It is intended to complement the

presentations in QFT textbooks, which should be consulted for more

concrete, technical details.

Consider a physical quantity in QFT, such as a scattering cross

section σ, that can be calculated in perturbation theory. It will be

a function, not only of various kinematic variables (the centre-of-

mass energy, the scattering angle, etc.), but also of the parameters

in the theory’s Lagrangian, such as the particle masses and coupling

constants. For simplicity, let us consider a theory with just one mass

parameter m and one coupling constant g.

The physical quantity σ can be calculated in perturbation theory

from the relevant Feynman diagrams. The leading order result

comes from one or more “tree” diagrams, and is seemingly a well-

defined, finite result, σ0. However, the higher-order terms come from

diagrams involving loops. These loops give rise to integrations over

the loop’s 4-momentum and these integrals often fail to converge

in the ultraviolet. Thus, at first sight, the result that emerges from

perturbation theory seems meaningless:

σ = σ0 + g2(∞?!?) + · · · . (3.1)

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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Historically, in quantum electrodynamics (QED), the leading term σ0
was found to agree quite nicely with experiment, but when theorists

calculated the “correction term” and found that it was infinite there

was consternation.

The problem lies entirely in the fact that we are trying to

parametrize σ in terms of the mass and coupling-constant parameters

present in the Lagrangian — and these are not the mass and coupling

strength that one could measure in any actual experiment. We will

henceforth add a “B” subscript to stress that these are “bare”

quantities. They are not measurable quantities at all, and therefore

need not be finite. There is no need to be frightened of this. It is

one of the great lessons of modern physics that only the physically

observable quantities of a theory need be real and finite (and

agree with experiment); successful theories may well involve other,

unmeasurable objects that are complex, or infinite, infinitesimal,

ambiguous, or otherwise bizarre. For example, quantummechanics —

unlike classical mechanics — intrinsically involves complex-valued

amplitudes, but all its predictions for observable quantities are real.

In quantum field theory, there turn out to be various theoretical

objects that are not even finite, but that need not bother us provided

all the physical predictions are finite, real, and sensible (and agree

with experiment).

The bare mass mB is the mass that the particle would have in

the unperturbed theory — that is, in the free-field theory obtained

by setting gB = 0. In the full, interacting theory, however, the

propagator is given by a sum over all possible two-legged Feynman

diagrams – representing the particle interacting with itself and with

fluctuations of the vacuum (see Fig. 3.1). These interactions shift the

position of the propagator’s pole, and hence change the particle’s

mass. The particle’s physical mass mphys — the mass measurable in

an experiment — corresponds to the position of the pole in this full

propagator.

The “bare” coupling constant gB is the coupling constant for a

“free” particle, or rather, a particle that is allowed to interact once,

and once only. That is a somewhat absurd and unphysical concept,

because as soon as we “turn on” the perturbation the particle will

interact, with itself and with vacuum fluctuations, arbitrarily many
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Fig. 3.1. The full propagator is a geometric sum of self-energy insertions, where
the self-energy is the sum of all 1-particle irreducible diagrams — ones that cannot
be separated into two pieces by cutting just a single line. (The external legs of
the latter diagrams are “amputated”; they have no propagator factors associated
with them.) For illustrative purposes we show diagrams in a QED-like theory.

Fig. 3.2. The effective coupling strength will be affected by interactions that
“dress” the bare vertex. A few illustrative examples are shown.

times. Thus, any attempt to measure an “effective coupling strength”

geff (however one might choose to define it, experimentally) will be

measuring something that involves a sum of infinitely many Feynman

diagrams (see Fig. 3.2).

For the theory to be viable, the measurable quantities mphys and

geff need to be finite. But there is no reason to demand that mB and

gB be finite — because there is no way, even in principle, to measure

them. The problem of infinities in the calculation of a physical

quantity σ is simply an artefact of the result being parametrized

in terms of mB and gB , which are not themselves finite quantities.

All we need to do is to reparametrize the result for σ in terms of

parameters that are finite, such as mphys and geff . In fact, it is not

necessary to use parameters that are truly measurable quantities; it

is enough that we use suitable “renormalized” parameters mR, gR
that are defined so that they are related in a finite and definite way

to the physically measurable mphys and geff .

RENORMALIZATION = REPARAMETRIZATION

Theory
L(mB , gB)

−→

⎧⎪⎪⎨
⎪⎪⎩

σ1(mB , gB)

.

.

σN (mB , gB)

⎫⎪⎪⎬
⎪⎪⎭

mR = fm(mB , gB)

− − − −→
gR = fg(mB , gB)

⎧⎪⎪⎨
⎪⎪⎩

σ̃1(mR, gR)

.

.

σ̃N (mR, gR)

⎫⎪⎪⎬
⎪⎪⎭

−→ Experiment
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Predictions for N physical quantities σ1, . . . , σN are calculated
from the theory. Initially, when parametrized by mB, gB, they
contain divergences. However, once reparametrized in terms of
suitably defined “renormalized” parameters mR, gR, they become
finite functions of finite parameters. They can then be fitted to
experimental data, providing N − 2 tests of the theory, together
with “best-fit” values for the mR, gR parameters.

If we had a Black Box that could solve the theory exactly,

then this situation would be evident. The physical predictions of

the theory are, in fact, finite, but to make this fact manifest one

must make a substitution, eliminating mB, gB in favour of mR, gR.

It is just a substitution and nothing is being thrown away or “swept

under the rug.” The term “renormalization” is really a misnomer,

and “reparametrization” would be a better name.

The above statement should be qualified by saying that it
applies to the physical quantities of the theory. Green’s functions
are not made finite by reparametrization alone; they also need to
be rescaled by a suitably infinite overall factor. That is, they need
an actual change of normalization, a true renormalization. Each
leg of an n-point Green’s function needs a suitably infinite factor

Z
−1/2
wf , where Zwf is the so-called “wavefunction renormalization”

constant, so that the whole n-point function is rescaled by Z
−n/2
wf .

(See Appendix 3.A.)

If we could solve the theory exactly, it would not matter exactly

how we define the mR, gR parameters. Any definition that does the

job of manifesting the finiteness of the theory’s predictions would be

acceptable. Changing from one definition to another would change

the appearance of our results, but not their content. However, when

we use perturbation theory, our gR parameter plays a double role: It

is not only one of the free parameters of the theory (taking over that

role from gB) it is also the expansion parameter of our approximation

procedure. Because of this second role, the choice of definition of

gR does matter in practice. We return to this central concern in a

moment.
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3.2. Regularization

We have talked quite cavalierly about “divergences” and “infinities,”

but in order to be doing proper mathematics we need a procedure

known as “regularization.” This step involves many technicalities —

which often dominate textbook accounts of renormalization and tend

to obscure what is really going on.

A “regularization” is some systematic, consistent, mathematical

modification of the theory that renders the divergent integrals conver-

gent. One example is some kind of “ultraviolet cutoff” procedure that

puts an upper limit on the magnitude of the momentum allowed in

the loop integrals. We will use “Muv” to denote the ultraviolet cutoff

parameter. Other regularization methods modify the free propagator,

using a large parameter Muv that acts much like a cutoff. Another

type of regularization is dimensional regularization, which formulates

the theory in d space–time dimensions, where d is allowed to be non-

integer and is taken to be 4− ε, with ε→ 0. We will return to discuss

dimensional regularization later.

Regularization is like scaffolding that holds up a rickety building

while its structure is being strengthened. It replaces meaningless

divergent integrals with well-defined mathematical expressions that

are finite, but which would become arbitrarily large in the limit

Muv → ∞. After one has made the reparametrization step —

eliminatingmB, gB in favour ofmR, gR — one finds that cancellations

occur, so that the limit Muv → ∞ can then be taken, yielding

manifestly finite results.

It is not necessary that the regularized theory be a physically

acceptable theory. Indeed, the regularized theory is often very ugly

and may violate some symmetries of the original theory. One has to

take care that important symmetries, such as Lorentz invariance and

gauge invariance, are indeed recovered when the Muv → ∞ limit is

taken.

However, there are some cases of “quantum anomalies,” where
a symmetry of the bare Lagrangian — which would certainly be
a symmetry of the corresponding classical field theory — cannot
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be maintained in the regularized, quantum theory even in the
Muv → ∞ limit. Dimensional transmutation, whereby a scale-
invariant Lagrangian gives rise to a theory with a characteristic
scale Λ, is one example of a quantum anomaly. Chiral symmetry is
another case where anomalies arise.

It is very important to be clear that regularization, though

a technical necessity, is not physics — just as scaffolding is not

architecture. In the end the regularization is removed, revealing the

theory’s finite predictions — just as scaffolding is eventually taken

down to reveal the newly renovated building.

3.3. Defining a Renormalized Coupling Constant

There are many, many ways of going about defining a renormalized

coupling constant gR. One traditional approach, known generically

as “momentum subtraction” (or MOM) schemes, starts from the

observation that, since the bare coupling constant gB corresponds

to the bare 3-particle vertex, it is natural to define gR in terms

of a “dressed” 3-particle vertex, involving a sum over all possible

Feynman diagrams with three (off-shell) legs. Conceptually, this

idea is helpful — but attempting to develop it into a specific

definition of gR leads one into a deep quagmire of technicalities.

For example, in QCD, the bare coupling gB is associated with

various vertices — quark–quark–gluon, 3-gluon, and ghost–ghost–

gluon vertices, as well as the 4-gluon vertex, proportional to g2B .

Which of these vertices, or combination thereof, should we choose?

Then there is the question of the momentum carried by each leg:

Unlike the bare vertex, the dressed vertex depends non-trivially on

the momentum configuration. There are many other technicalities,

such as the spin-index decomposition, etc. As an example, a typical

MOM scheme might define gR as “the coefficient of the Dirac matrix

γμ in the decomposition . . . of the quark–quark–gluon vertex at the

“symmetric point” where the 4-momenta pμ1 , p
μ
2 , p

μ
3 satisfy

p21 = p22 = p23 = − 3
4
μ2, p1.p2 = p2.p3 = p3.p1 = 1

4
μ2, (3.2)

in the Feynman gauge with . . . .” (We have suppressed some of

the more horrific technical details with “. . . ”.) Note that the
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renormalization conditions can be specified without reference to any

particular regularization procedure.

The most important aspect of this, or any such definition, is that

gR will depend on a scale μ, known as the “renormalization point”

or “renormalization scale,” that sets the overall energy-scale of the

dressed vertex. That is

gR = gR(μ, other choices). (3.3)

We will later use the terminology these other choices are the

“renormalization prescription” (RP). When we say that gR depends

on renormalization scheme (RS), we mean that it depends on μ

and the “other choices” made in defining gR. Indeed, for physical

quantities, “specifying a RS” means the same thing as “defining a

renormalized coupling constant, gR.”

One should beware of claims to have defined an “RS-invariant
renormalized coupling constant.” That is simply a contradiction in
terms. The definition of a coupling constant is a renormalization
scheme, and vice versa. We return to this point at the end of the
chapter.

Let us next consider calculating gR in perturbation theory,

assuming that we have adopted some specific RP. The first term is

just gB , but there are then corrections involving Feynman diagrams

with two more vertices (and hence two more powers of gB) and all

contain one loop. These loops result in integrals that are typically

divergent and so will need regularization. That is, we will find a result

of the form

gR = gB(1 + g2B Ĩ(μ) + · · · ), (3.4)

where Ĩ(μ) is some divergent integral, or sum of divergent integrals,

rendered large but finite by the regularization. Ĩ(μ) will depend on

the specific choices in the gR definition adopted; in particular it will

depend on the scale μ. It is convenient to work with the square of g

and absorb some π factors by defining

a ≡ αs

π
≡ g2

4π2
(3.5)
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for both B and R cases. Squaring Eq. (3.4) then leads to

aR = aB(1 + aBI(μ) + · · · ), (3.6)

where I(μ) = 8π2Ĩ(μ). Inverting this equation (“reversion of a power

series”) gives

aB = aR(1− aRI(μ) + · · · ). (3.7)

3.4. Renormalizing a Physical Quantity

Now consider the calculation of some physical quantity, such as

a two-particle scattering cross section σ. It will depend on some

kinematic variables, which we can take to be the total centre-of-

mass energy Q and scattering angle θ. At lowest order the result is

given by a tree diagram, but then there are corrections from one-loop

diagrams, which again will have loop integrations that in general do

not converge, in the absence of regularization. Thus, we will find a

result of the form

σ = (factor)
(
g2B
)P

(1 + g2B J̃(Q, θ) + · · · ), (3.8)

where J̃ is some sum of divergent integrals. (That is, J̃ depends

sensitively on the regularization parameter Muv, and goes to infinity

as Muv → ∞.) For two-particle scattering, the power P would be 2,

but more generally it could take other values and “θ” could represent

a set of several dimensionless variables. Converting from gB to aB ≡
g2B/(4π

2), and removing an overall factor, we can define a physical

quantity R in the general form

R = aPB (1 + aB J(Q, θ) + · · · ) , (3.9)

with J = 4π2J̃ .

Renormalizing this result is simply a matter of eliminating aB
in favour of aR using Eq. (3.7). We spell out the simple algebra

explicitly:

R = (aR(1− aR I(μ) + · · · ))P (1 + aR J(Q, θ) + · · · )
= aPR(1− P aRI(μ) + · · · ) (1 + aR J(Q, θ) + · · · ) (3.10)

= aPR (1 + aR(J(Q, θ)− PI(μ)) + · · · ) .
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The “+ · · · ” terms all have two or more factors of aR relative

to the 1, so that formally they are “O(a2R).” What happens, in

a renormalizable theory, is that the divergences in J(Q, θ) cancel

with those of PI(μ). Thus, we may now take the limit where the

regularization goes away to obtain a finite coefficient

r1 = r1(Q, θ, μ) ≡ lim
Muv→∞

[J(Q, θ)− PI(μ)]. (3.11)

Similar cancellations occur in higher orders, so that the result

appears as a power series in a ≡ aR that has finite coefficients:

R = aP(1 + r1a+ · · · ). (3.12)

Here we have dropped the R subscript, leaving it understood that a

stands for the (renormalized) couplant g2R/(4π
2). We use the word

“couplant” because the phrase “renormalized coupling constant” is

both cumbersome and misleading — a is not a constant; it is a

function of the renormalization scale μ, and of the “other choices”

made in its definition, as indicated in Eq. (3.3).

The proof, first for QED, and then for QCD and other non-
Abelian gauge theories, that the needed cancellations do indeed
occur to all orders is, of course, a highly technical matter. It repre-
sents a triumph of theoretical physics, to which many distinguished
physicists made important contributions. Here, we simply rely on
their result that, in the theories of interest, the needed cancellations
do occur.

3.5. The Renormalized Result and Its Ambiguities

The coefficient r1 in the last equation depends not only on the

physical variables Q, θ, as we would expect, but also on μ. However,

the physical quantity R must ultimately depend only on the physical

variables Q, θ: it cannot depend on μ and the other arbitrary

choices, as is evident from the original “bare” form Eq. (3.9). In

the renormalized result, what happens is that the μ dependence in

the coefficients ri cancels with the μ dependence from the couplant a.
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That fact is expressed by the RG equation

(
μ
∂

∂μ

∣∣∣∣
a

+ β(a)
∂

∂a

)
R = 0, (3.13)

where β(a) ≡ μda/dμ. (Note the slight change in the normalization

of β relative Eq. (2.39) of the previous chapter.) Here the first term

picks up the μ dependence via the ri coefficients while the second

term picks up the μ dependence via a.

From the discussion in the previous chapter, we could have

anticipated that the answer would appear in a form that seemingly

involves an arbitrary scale μ. If we could solve the theory exactly,

there would be no problem, since the exact R is exactly independent

of μ. The difficulty arises because, in practice, we can calculate

only a finite number of terms in the perturbation series. Since

the μ-dependence cancellations occur across different orders, they

are spoiled when we truncate the series, leaving the approximant

dependent on μ.

The same point applies to the “other choices” involved in the

definition of gR. The couplant a and the perturbative coefficients

ri will each depend on these choices, but the exact result cannot.

If we had made different choices when defining gR, our renormalized

couplant, a′, would have been different; instead of Eq. (3.6) we would

have had

a′ = aB(1 + aBI
′ + · · · ), (3.14)

where I ′ has the same divergent part as I, but a different finite part.

Thus, eliminating aB to express a′ in terms of a, we would find

a′ = a(1 + v1a+ · · · ), (3.15)

where v1 = I ′ − I is finite, but otherwise arbitrary.

If we had used the primed RS in the calculation of R we would

have obtained a result

R = a′P(1 + r′1a
′ + · · · ), (3.16)
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where r′1 is a different finite coefficient. It is given by r′1 = r1 − Pv1,

as is easily seen:

R = a′P(1 + r′1a
′ + · · · )

= (a(1 + v1a+ · · · ))P (1 + r′1a+ · · · ) (3.17)

= aP(1 + (r′1 + Pv1)a+ · · · ),

so that r1 must be r′1 + Pv1.

A basic issue, that can cause much confusion, is the following. A

change in μ affects the second-order coefficient r1, but a change of

the “other choices” — the RP — can do so, too. However, there is

only one degree-of-freedom at this order, corresponding to the single

arbitrary coefficient v1 in Eq. (3.15). The resolution of this issue can

only be properly explained later on.

In Chapter 6, when we have properly defined the Λ̃ parameter
that specifies the boundary condition to the β function, we will
find that Λ̃ is RP dependent — in just the right way to make
r1 dependent on RS only through the ratio μ/Λ̃. Any “other
choices” that leave this ratio unchanged will only affect the higher
coefficients r2, . . .. Chapter 7 will explain how to parametrize those
“other choices.”

3.6. The Cancellation of Divergences, Revisited

Let us revisit Eq. (3.6), the expression for the renormalized couplant

in terms of the bare one:

a = aB(1 + aBI(μ) + · · · ). (3.18)

and ask how it can be that the divergent integral I(μ) depends

on a mass-scale μ. The issue is starkest in a massless theory, such

as massless QCD, where there is no dimensionful parameter in the

theory’s Lagrangian: What is there to form a ratio of μ with? The

answer is that I(μ) is a divergent integral and can only be given

a meaning by “regularizing” the theory, and regularization always

introduces a scale — the cutoff Muv. In an actual Feynman-diagram
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calculation, one would find that I(μ) has the following form, for

large Muv:

I(μ) = b ln(Muv/μ) + w + negl. (3.19)

Here b and w are finite coefficients that are independent of μ, and

“negl.” are negligible terms that vanish as Muv → ∞. Note that

there is a logarithmic divergence as Muv → ∞, and the argument of

the logarithm is necessarily a dimensionless ratio of Muv with μ.

The fact that the μ dependence of I is logarithmic could have

been anticipated from Eq. (3.11), where r1 = J(Q, θ) − PI(μ) must

end up as a function of the ratio of Q/μ once Muv has been taken to

infinity. The key cancellation is ln(Muv/μ)− ln(Muv/Q) = ln(Q/μ).

Hence, we can predict the form of J(Q, θ) to be

J(Q, θ) = Pb ln(Muv/Q) + j(θ) + negl′. (3.20)

The coefficient b above is, in fact, the leading coefficient of the β

function, as we can quickly see. Differentiating Eq. (3.19) gives

μ
dI

dμ
= −b, (3.21)

so that differentiating Eq. (3.18) gives

β(a) ≡ μ
da

dμ
= a2B μ

dI

dμ
+O(a3B)

= −ba2B(1 +O(aB)) (3.22)

= −ba2(1 +O(a)), (3.23)

where the last step uses aB = a(1 +O(a)) to eliminate aB in favour

of a, so that no reference to bare quantities remains. In higher orders

we would find a perturbation series for β:

β(a) = −ba2(1 + ca+ c2a
2 + c3a

3 + · · · ), (3.24)

with finite coefficients. The β function represents the “anomalous” μ

dependence of the renormalized couplant arising from the presence

of ultraviolet divergences in the unrenormalized theory.
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3.7. Dimensional Regularization

We have so far framed our discussion in terms of cutoff-type proce-

dures. Those regularization methods have the conceptual advantage,

for our purposes, of cleanly separating the regularization procedure,

and its technicalities, from the RS — the definition of gR and

hence of a— which can be specified by “renormalization conditions”

independent of the particular regularization. However, there is no

doubt that for actual calculations, dimensional regularization, and

its variants, are far more convenient.

Dimensional regularization considers a generalization of the

theory to a non-integer space–time dimension d = 4 − ε. (This

generalization is by no means unique, and a whole set of rather arbi-

trary conventions must be specified.) Removing the regularization

corresponds to taking the limit ε → 0. The divergences — that in

a cutoff regularization appeared as logarithms of the cutoff Muv —

now appear as poles in 1
ε . The unrenormalized perturbation series

for a physical quantity has the form

R = aB

(
1 +

(
R11

ε
+R10

)
aB +

(
R22

ε2
+
R21

ε
+R20

)
a2B + · · ·

)
,

(3.25)

where the Rij’s are various coefficients. (R11 is b, in fact.)

At first sight the fact that the regularization parameter is now

the dimensionless ε would seem to undermine our argument, at the

start of the preceding section, that regularization always introduces

a mass-scale. However, a mass-scale really is involved because in d

dimensions the bare coupling constant gB in the Lagrangian has

dimensions [mass]−d/2+2 = [mass]ε/2. Hence, if the renormalized

couplant, a, is to be dimensionless we will need to write

aB = με0 a(1− Ia+ · · · ), (3.26)

where μ0 is some “unit of mass.” In the same way, in any dimensional-

regularization calculation one repeatedly makes the small-ε expan-

sion of kε, where k is some momentum or other massive variable, as

“ kε = 1 + ε ln k +O(ε2).” (3.27)
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While this is perhaps mathematically valid, it makes no dimensional

sense, and is really

kε = με0(1 + ε ln(k/μ0) +O(ε2)), (3.28)

where, again, μ0 is some “unit of mass.” If one defines a(μ)

by some regularization-independent renormalization conditions, the

I(μ) integral becomes a function of the ratio μ/μ0, while J(Q, θ)

becomes a function of Q/μ0, with μ0 cancelling out in r1.

However, in the well-known renormalization scheme called “min-

imal subtraction” (MS) the story is a bit different. The MS scheme

corresponds to calculating physical quantities, such as σ, in dimen-

sional regularization (with some very specific choices of the details)

and then simply discarding the pole terms 1
ε ,

1
ε2 , . . .. While this might

seem to be a blind disregard of infinitely large quantities, it is in

fact equivalent to an aB-to-a substitution with a definition of a that

involves only the pole terms, with no finite parts. An even more

popular scheme, “modified minimal subtraction” or MS, subtracts

the (ln 4π − γE) terms, where γE is Euler’s constant, that naturally

accompany each 1
ε pole. (This procedure could be recast as a minimal

subtraction in a modified dimensional regularization with a different

convention about the generalization to d dimensions.)

In such schemes the definition of the RS is entwined with the

specification of the regularization procedure. There is nothing wrong

with that, provided the conceptual distinction between regularization

(which is removed in the end) and renormalization (the definition of

the couplant) is kept in mind. One may dispense with the distinction

between μ0 and μ.

In the minimal subtraction framework, as ’t Hooft has shown,

there is a strong formal argument that the bare coupling constant

is infinitesimal, of order ε. (See Exercise 3.2.) The result can be

expressed as

aB = με0
ε

b

(
1 + c

ε

b
ln
ε

b
+O(ε)

)
. (3.29)

Note that the scale parameter μ0 is really unspecified because

changing it by a finite factor only affects the O(ε) correction term.
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We can then understand how the apparently nonsensical “bare”

series, Eq. (3.25), with its divergent series coefficients can actually

be hiding a finite result. Indeed, the bare expansion is akin to the

extreme limit of a very bad RS where the couplant is far too small,

so that the series coefficients are far too big.

3.8. Perturbation Theory, the Cutoff → ∞ Limit,

and Asymptotic Freedom

Perturbation theory in a QFT involves two limits. One is the limit

in which the regularization is removed; that is, ε→ 0 in dimensional

regularization, orMuv → ∞ in cutoff-type regularizations. The other

is the perturbative limit in which, formally, a → 0. We should

perhaps ask if these two limits commute or not.

The answer, we would argue, depends on whether the theory

is asymptotically free or not; that is whether the coefficient b in

β(a) = −ba2 + · · · is positive or not.

As we saw in Sec. 2.8 the leading-order form of the effective

couplant is

a ∼ 1

b ln(Q/Λ)
. (3.30)

Thus, for an asymptotically-free theory the good region for pertur-

bation theory is at large energies, Q � Λ. The formal perturbative

limit, a → 0, corresponds to pretending that Λ → 0, so that

perturbation theory is then good at any Q. The two limits can be

expected to commute since the scales Λ and Muv and are being sent

off in different directions; to 0 and ∞, respectively. See Fig. 3.3(a).

In non-asymptotically-free theories, however, the good region

for perturbation theory is at low energies, Q � Λ. (Recall that

a is proportional to g2 and should be positive, as well as small.)

Thus, here the perturbative limit corresponds to sending both Muv

and Λ to ∞. See Fig. 3.3(b). For the “real” theory we should

send Muv → ∞ first, but perturbation theory takes Λ → ∞
first. Consequently, perturbation theory in non-asymptotically-free

theories is problematic. Indeed for λφ4 theory and QED (viewed as
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(a) (b)

Fig. 3.3. The leading-order effective couplant in (a) an asymptotically-free
theory, and (b) a non-asymptotically-free theory. Perturbation theory is good
in the unshaded region and becomes good at all Q in the limit that the Λ scale
is taken to (a) zero or (b) infinity. In case (b) this limit conflicts with the cutoff
to infinity limit, making perturbation theory dubious in non-asymptotically-free
theories.

a self-contained theory) the “real” theory is believed to be “trivial”

in the technical sense that it can have no interactions.

The present general attitude to perturbation theory in non-

asymptotically-free theories is that it is valid provided that such

theories are viewed as “effective low-energy theories” that approx-

imate some unknown, grander theory with quite different ultraviolet

behaviour that sets in at some finite, but very large, physical energy

scaleMuv. The regularization is then not some mere technical device,

but is a crude representation of some actual physics at very high

energies. (In terms of our “scaffolding” analogy, the scaffolding here

is load-bearing, and it can’t be entirely removed without causing the

collapse of the whole structure.) Perturbation theory in this effective

theory is meaningful provided that the Λ scale is much greater than

the Muv scale. Of course, the uncertainties in what is the right

regularization procedure, which now physically matters, are present

alongside RS ambiguities in such theories. This book is principally

concerned with asymptotically-free theories, where those issues do

not arise.

3.9. “RG-improved” Perturbation Theory and the

RS-dependence Problem

Returning to the renormalized result for the physical quantity R:

R = aP(1 + r1a+ · · · ), (3.31)
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we now have a series with finite coefficients in a finite expansion

parameter, a. However, the triumph of renormalization in rendering

the result manifestly finite is tarnished by the fact that all the

series coefficients ri are ambiguous and completely dependent on

the arbitrary RS choices. That would not matter if all orders could

somehow be calculated and re-summed, because R is RS invariant.

However, there is a serious RS-dependence problem when we truncate

the series, as we must in practice.

As noted earlier, the coefficient r1 depends on μ/Q through a

term b ln(μ/Q). Thus, r1 will have a very large magnitude if the

physical scale Q is much, much larger (or much, much smaller)

than the renormalization scale μ. The apparent convergence of the

perturbation series would then be very bad. Because of this “large

logarithm” problem, it is a bad idea to fix μ once-and-for-all; rather,

it should be allowed to “run” with Q in some fashion. Simply

setting μ = Q leads to “RG-improved” perturbation theory, an idea

originating with Gell Mann and Low and developed and exploited

by the pioneers of QCD.

It is undoubtedly a major improvement — and was hugely

important to the development of physics — but it does not resolve

the ambiguities. Indeed, the idea of avoiding “large logarithms” only

goes so far. Why should we set μ = Q, rather than, say μ = 2Q,

or μ = Q/4, etc.? Indeed, what, precisely, is “Q”? We have only

said that Q is some kinematic variable associated with the physical

quantity R, but which is the “right” one? Equally, we have said

only that the renormalization scale μ is some parameter, with the

dimensions of mass, introduced in the renormalization procedure.

If one tries to address, separately, these three issues — what is

the “right” Q, the “right” μ, and the “right” relationship between

them — one finds oneself sinking into a quagmire of ambiguities.

This is not a useful way to approach the RS-dependence problem.

Moreover, the question of the “other choices” — the RP — would

still remain. A frequent suggestion is to use a physical quantity to

define a “physical” RP: Take some process A with a normalized phys-

ical quantity RA = aP(1+ · · · ) and define aA ≡ R1/P
A . One can then

make predictions for another process B as a truncated perturbation
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series in the “physical couplant,” aA. This is a superficially attractive

idea, but it does not survive scrutiny. Why should we choose process

A as the special one? Why not processes C,D,E, . . .? One is still

left with an infinite number of differing predictions for process B.

This is just the RS-dependence problem all over again: nothing has

been resolved. (To say nothing of the issue raised above: How is the

renormalization scale for process B to be related to the “Q” of process

A?) The definition of aA is just a way of specifying a RP. Indeed,

the phrase “physical couplant” or “scheme-invariant couplant” is a

contradiction in terms.

An analogy with Lorentz invariance may help here. Energy,
by its nature, is not an invariant quantity; it transforms from
one reference frame to another. The rest mass of a particle is
Lorentz invariant, and can be calculated from the energy E and
3-momentum p of the particle in any frame, as the combination√
E2 − p2. Now, there is a particular frame, the rest frame, in

which p = 0 and E = m. Have we then discovered a “Lorentz-
invariant energy”? Of course not: we have just defined a particular
frame. In the same way, a couplant, by its nature, transforms
under changes of RP. The definition of aA above does not define a
“scheme-invariant couplant” — it defines a RP.

It is often tacitly assumed that the RP should be fixed once-and-

for-all. In our view, that is a bad mistake. Just as μ should “run”

with the energy scale Q, so the RP should be free to depend on the

particular quantity R being calculated. This point should become

clearer in the next chapter.

The reader may well find this section rather confusing and

unsatisfactory. Indeed, its purpose is partly to give a flavour of

the fog of confusion that too often surrounds the subject. The RS-

dependence problem can only be discussed more productively when

some fundamental matters — discussed in Chapters 6 and 7 — have

been explained.

All these issues come into much better focus when RS-dependent

perturbation theory is seen as a “non-invariant approximation.” The

quantum field theory itself does not have a problem — its exact

results are RS independent. Thus, the answer is not to be found in
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the theory. The problem is with the approximation: The exact result

is independent of the various RS variables, but the approximant

depends upon those variables. Such “non-invariant approximations”

actually occur in a wide variety of contexts, and much can be learned

from some simple examples. That is the topic of the next chapter.

Appendix 3.A: Renormalization in “Counterterm”

Language

Renormalization is more usually described in “counterterm” lan-

guage. For a renormalizable theory this just means that we make the

reparametrization step in the Lagrangian from the start. To illustrate

in the simplest case we consider a massless scalar theory with a φ4

interaction:

L =
1

2
∂μφB ∂

μφB − λBφ
4
B . (3A.1)

This bare Lagrangian is written in terms of the bare field and bare

coupling constant. (λB is the counterpart to aB in the QCD case.)

We now substitute for these in terms of a renormalized field and

coupling constant:

φB = Z
1/2
φ φ, λB = Z−2

φ Z1λ. (3A.2)

Here the Z’s are called renormalization constants and they will have

a perturbation expansion of the generic from

Z = 1 + z1λ+ z2λ
2 + · · · , (3A.3)

where the z1, z2, . . . coefficients are divergent integrals. With this

substitution the Lagrangian becomes

L =
1

2
Zφ ∂μφ∂

μφ− Z1λφ
4, (3A.4)

which we may then write as

L =
1

2
∂μφ∂

μφ− λφ4 + counterterms. (3A.5)

The counterterms have the same form as the terms in the “renor-

malized Lagrangian” but multiplied by (Zφ − 1) and (Z1 − 1)
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factors, respectively, which start at order λ. From here on we

need never mention the bare quantities. We may proceed to do

Feynman-diagram perturbation theory treating both the λφ4 term

and the counterterms as perturbations. The counterterm coefficients

z1, z2, . . . are to be fixed so that they cancel the divergences. (Of

course, that only fixes the divergent parts of the zi’s; the freedom to

chose the finite parts corresponds to the RS ambiguity.)

This formalism has advantages in organizing the calculation.

Green’s functions with n legs renormalize by

G(n)(pi, λ, μ) = Z
−n/2
φ G

(n)
B (pi, λB ,Muv), (3A.6)

while proper vertices (1-particle irreducible amplitudes) renormalize

with a Z
n/2
φ factor. For physical quantities the field normalization

does not matter and only the composite Z ≡ Z−2
φ Z1 in λB = Zλ

matters. (The counterterm formalism also has the advantage of

generalizing to non-renormalizable theories: There the counterterms

are not of the same form as the terms in the Lagrangian, and more

and more are needed in higher orders.)

Exercise 3.1. Generalize the equations of Secs. 3.4–3.6 keeping
two orders of correction terms and show that one can expect both
ln2(Muv/μ) and ln(Muv/μ) divergences, which — assuming the
needed cancellations do happen — will leave ln2(Q/μ) and ln(Q/μ)
terms in the second-order coefficient r2.

Show also that the second coefficient of the β function can be
found from the coefficient of the subleading ln(Muv/μ) divergence
of the 2-loop term.

Exercise 3.2. This exercise follows the analysis of ’t Hooft. In the
minimal-subtraction scheme, if we group terms by powers of 1/ε,
rather than by powers of a, the expression for the bare couplant in
terms of the renormalized couplant is

aB = με

(
a+

∞∑

i=1

Ai(a)

εi

)
.

Here aB is μ-independent, while μ da
dμ will be β(a) plus corrections

of order ε. Multiply through by μ−ε and take μ d/dμ of both sides.
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Then equate powers of ε to show that

μ
da

dμ
= β(a) − εa,

and that the Ai(a)’s are related to β(a) by

β(a) = aA′
1 −A1,

β(a)A′
j = aA′

j+1 −Aj+1, j = 1, 2, . . ..

Show that these results are equivalent to the equation

daB
da

(β(a) − εa) = −εaB.

Integrate this differential equation to show that

aB = με exp

(
−ε
∫ a

δ

dx
1

β(x) − εx
−
∫ 1

δ

dx

x

)
,

with δ → 0. Alternatively, writing β(x) as −bx2B(x), one may
express the result as

aB = μεa exp

(
−b
∫ a

0

dx
B(x)

ε + bxB(x)

)
.

Hence, noting that B(x) ≈ 1/(1 − cx) will be a sufficient
approximation, obtain

aB = με ε

b

(
1 + c

ε

b
ln
ε

b
+O(ε)

)
.

(Note that ε and b need to have the same sign for aB to be positive.)
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Chapter 4

Non-invariant Approximations and the
Principle of Minimal Sensitivity

4.1. Approximations and Series Expansions

Before turning to non-invariant approximations specifically, some

general consideration of approximations may be warranted. The

discussion may seem insultingly elementary and our remarks rather

trite, but we hope at least to convey that there are issues to be

thought about. Theorists learn the mathematics of limits, asymp-

totics, conditions for convergence of series, etc., but these theorems,

while immensely important, are not quite the same as the question

of what makes a good approximation.

For instance, proving that the asymptotic behaviour of some

function A(Q) as Q → ∞ is A(Q) ∼ lnQ does not really answer

the question What is a good approximation to A(Q) when the energy

Q is some specific, large value? To answer the second question one

must decide, at least roughly, what reference scale Q0 belongs in

the argument Q/Q0 of the logarithm, which fundamentally must be

dimensionless. The choice of Q0 is irrelevant to the mathematical

limit, but it matters quite a lot for the practical question. Similarly,

answering the mathematical question of whether a series converges

does not answer the question of whether, say, the first three terms of

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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the series are likely to give a good approximation. Indeed, the second

question may have very little to do with the first.

Approximations arise in many ways, but the justification always

traces back to the fact that some dimensionless parameter is small.

There is a limit — though it may or may not be realizable

physically — in which the parameter tends to zero and the approx-

imation becomes exact. In many cases the approximation can be

systematically improved and we find ourselves calculating a quantity

f(x) as a power series,

f(x) = f0 + f1x+ f2x
2 + f3x

3 + · · · , (4.1)

with our successive approximations being successive truncations of

this infinite series. (Not all problems lead to such a form — the series

could involve logarithms of x, or still more exotic apparitions — but,

for simplicity, we will not discuss such cases.) When x is small we

can hope that f0 is a crude approximation to f(x), and that f0+f1x

is a better one, with f0 + f1x+ f2x
2 being better still, and so on.

A key mathematical issue is whether the series is convergent; that

is, whether the partial sums
∑n

i=0 fix
i converge to a limit as n →

∞. Convergent series converge in a circular region of the complex

x plane, for | x |< xc, where xc is the radius of convergence. Even

if the series is not convergent it may be asymptotic. A prototypical

example is the alternating factorial series:

f(x) = x(1− 1!x+ 2!x2 − 3!x3 + 4!x4 + · · · ). (4.2)

It has radius of convergence zero, since — no matter how small

x is — the partial sum eventually becomes dominated by the last

term added, with the result then alternating violently between large

positive and negative values. However, for x small, the partial sums

initially appear to converge towards a constant value (around 0.9156

for x = 0.1, for example). Thus we can often get useful, even

remarkably accurate, approximations from divergent series.

It is important to distinguish two questions: Is the series

convergent? (or, more generally, is it summable by such-and-such

a method?) and Is the sum of the series the right answer? The

first question depends only on the series, but the second cannot be

addressed without knowing where the series comes from.
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For example, consider the following fable. Suppose that the exact
answer to some physical problem is given by f(x) at x = 1

5 , and
it is known that f(x) ∼ x as x → 0. A complicated perturbative
method is devised to calculate f(x) as a power series. After long
calculations the first few terms are found to be

f = x(1− x+ x2 + · · · ).
A clever theorist then proves that the series coefficients, to all
orders, are±1 in alternation. Resumming the series he then obtains

f =
x

1 + x
,

which gives f(15 ) = 0.167. Sadly, though, this result disagrees
strongly with the experimental result, 0.433, even though the series
is convergent, and x = 1

5 is well within the radius of convergence.
Another clever theorist then establishes that f(x) satisfies the

differential equation

x3(1 + x)
d2f

dx2
− x(1 − 3x2)

df

dx
+ (1− x)f = 0,

and that for large x there is another boundary condition requiring
f → 1 + 4π2 as x→ ∞. Thus, the actual answer is

f(x) =
x

1 + x
+ 4π2e−

1
x ,

and the mystery is solved.
In fact the equal signs in the earlier equations were quite

inappropriate: The first was not f but the series generated from
it, and the second was not f but the sum of that (convergent)
series. The actual f has a large non-perturbative term, invisible
to perturbation theory (the power series expansion of e−

1
x is

0 + 0 + 0 + · · · ). The moral of our fable is that the possible
existence of such terms is an issue, irrespective of whether the series
is convergent or divergent. Note that there is simply no information
in the coefficients of the series about the non-perturbative term.
No clever resummation method could have led, except by complete
accident, to the true answer.

For divergent series, the question of how to sum the series and

the possibility of non-perturbative terms are somewhat intertwined,

since there can be a natural sense in which non-perturbative terms

arise from the needed resummation procedure, their form being in

a sense implied by the rate of growth of the coefficients. However,
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there are still two distinct issues, since there can always be non-

perturbative terms that are just “tacked on” and about which the

series coefficients know nothing. Thus, a proper discussion must

start, not from the series, but from the mathematical problem

(differential equation, functional integral, or whatever) from which

the series arose. (See also Exercise 4.1.) Such issues will be relevant

in Chapter 5. For now we focus more on approximations obtained

from just a few terms of a series.

4.2. Approximology

Approximations are a gamble. In physics, as in life, we have to act

upon incomplete information. Except in rare instances where rigorous

inequalities can be proved, we can say nothing with certainty.

Nevertheless, our duty is to obtain the best approximation we can,

given limited time and resources. We should be clear, though, we are

making a gamble.

There are, however, good gambles and bad gambles. The guiding

principle must be to make good use of any information we have. One

should not bet on an outcome that is glaringly inconsistent with

some known information. Even the simplest facts can be powerful

information.

For example, consider the classical ballistics problem of the range
of a projectile with air resistance proportional to velocity. The
projectile, massm, is launched with a muzzle velocity v0 at an angle
of elevation α. Neglecting air resistance the range is R0 = 2UV/g
where U = v0 cosα and V = v0 sinα are the horizontal and
vertical components of the initial velocity. Allowing for a drag force
F = −Kv as a first-order perturbation gives an approximant to
the range as

R ≈ R0

(
1− 2

3κ
)
,

where the dimensionless small parameter is

κ =
2KV

mg
.

This provides a satisfactory approximation only when κ is much,
much less than 1. Indeed, we can see that the approximant absurdly
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predicts a negative range if κ > 3
2 . The fact that the exact result

must be positive definite should be made use of. A simple way to
do so is to modify the form of our approximant to

R ≈ R0(
1 + 2

3κ
) ,

which leads to a much more robust approximation. This a simple
example of a Padé approximant, which in general is the ratio of
two polynomials in the small parameter. Padé approximants are
not a universal panacea, but in this case there is a clear reason for
preferring the Padé form.

Approximations are never without uncertainties and ambiguities.

There are always two questions to be decided: Which quantity do we

want to calculate? and What form of approximant will we use? The

two questions are interlinked. For example, in the ballistics example

above the choice of the Padé approximant form is equivalent to

choosing to calculate the reciprocal of the range, rather than the

range itself, as a power series. Another example is the following.

Suppose a quantity f has a power series f0 + f1x + f2x
2 + · · · , but

there are reasons for thinking that f2 is the more natural quantity.

A second-order approximation to f2 would be equivalent to using an

approximant to f of the form (f20 +2f0f1x+(2f0f2+f
2
1 )x

2)1/2 rather

than f0 + f1x+ f2x
2. Similarly, if a quantity f is naturally the ratio

g/h of two other quantities, do we want to calculate f or to calculate

g and h separately? This matters because the approximation to f is,

in general, not exactly the same as the ratio of the approximations

to g and h.

It is hard to give any general guidance on these issues, beyond

saying that one should calculate what seems most natural and is

most directly measured in experiments. The general principle should

always be to make use of all information available in any specific case.

Discipline is needed when making approximations. If a calcula-

tion involves more than one approximation we should carefully dis-

tinguish the primary approximation — which is the unavoidable step

and the main source of error — from secondary approximations that

might be made just for convenience. Such secondary approximations



March 14, 2022 10:28 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch04 page 62

62 Renormalized Perturbation Theory and Its Optimization

are fine provided that they cannot contribute significantly to the

overall error.

In QCD, for example, the primary approximation is the truncation
of the perturbation series. A common practice is to use a secondary
approximation where the couplant is approximated by a truncated
series in 1/ ln(Q/Λ). However that introduces uncontrolled errors
and unnecessary ambiguities, as will be discussed in Chapter 6.

It is always interesting to investigate approximations beyond

their comfort zone. If an approximant becomes manifestly unphysical

beyond some point then perhaps we are not making best use of

our known information, and some modification would cure, or at

least mitigate, the problem — as we saw in the ballistics example

above. Even if the region of applicability of the approximation is

intrinsically and unavoidably limited, it is good to know how and why

it breaks down, if only to better appreciate its likely uncertainties in

the intermediate region.

For instance, QCD perturbation theory is good at high energies,
but is it necessarily useless at low energies? The effective couplant
is guaranteed to be small when Q � Λ, but, in some cases
at least, it may remain small even when Q/Λ is small. That
opens up the possibility — modulo non-perturbative terms — that
perturbation theory may have something useful to say about low
energies. (Note that a secondary approximation of re-expanding in
powers of 1/ ln(Q/Λ) would spoil any such possibility.) This issue
is intertwined with RS dependence, of course, so it is too early to
discuss it further.

4.3. The Principle of Minimal Sensitivity

“Non-invariant approximations” are the focus of the remainder of the

chapter. These are approximations where the results depend on some

“extraneous” parameter(s) that we know the exact result cannot

depend on. Non-invariant approximations can arise in various ways.

Suppose — in the days before computers — a physicist needed to

accurately evaluate an integral on the range 0 to 1, with an integrand

that was singular at the bottom limit, behaving as, say, 1/
√
x, as
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x → 0, but otherwise smooth. He or she might naturally make an

asymptotic expansion about x = 0 and integrate that analytically

up to some small value x0, and then add the result to a numerical

integration from x0 to 1. But, what value of x0 should be used? The

answer is, of course, “it should not matter.” However, while it should

not matter, the uncomfortable fact is that it does. Of course, if one

needed only two-decimal-place accuracy and the results, for a few

plausible values of x0 only differed in the fifth decimal place, then

one would probably be quite happy. But if it were very important

to get the best possible accuracy then it would make sense to think

carefully about what x0 is optimal. Our argument is that, in the

absence of other information, the best choice for x0 is where the result

is least sensitive to small variations in x0. We call this the “Principle

of Minimal Sensitivity.”

If an approximant depends on “extraneous” parameters, then —
in the absence of further information — their values should be
chosen so as to minimize the sensitivity of the approximant to small
variations in those parameters.

We mean this just as an explicit statement of a piece of common

sense. It is a notion that has no doubt been employed many times

in various specific contexts without much fanfare. By calling it a

“principle” we do not mean to suggest that it is on a par with,

say, the Principle of Least Action, but merely to emphasize its great

generality. We regard it almost as a moral principle: “things should

be independent of what things should be independent of.”

There is no theorem here. We are talking about what is the best

gamble to make, given all that we know. The fact that we know

that the exact result is independent of x0 is a valuable piece of

information, and ought to be made use of. One could hardly believe

that the approximation was a good one if it varied a lot under a small

change of x0. Our point is that where the approximate result is least

sensitive to small variations of x0 is where it is most believable. (See

Fig. 4.1.)

Of course, the argument is qualified by the phrase “in the absence

of further information,” since in rare cases we might know a specific
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(a) (b)
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X0 X0

Fig. 4.1. (a) A non-invariant approximation gives a result that is a function of
some extraneous parameter x0. (b) We also know that the exact result, whatever
its value may be, is independent of x0. In what sense is (a) a good approximation
to (b)?

fact that definitely indicated a different choice for the extraneous

parameter. (Even in such cases, we would argue, it is likely that the

alternative choice is quite close to the minimal-sensitivity choice, and

makes only an insignificant difference.) In many cases it is possible

to make intuitive arguments for a good choice of the extraneous

parameter — an example is in Fig. 4.4 — but these arguments are

generally very “fuzzy” and merely corroborate, and provide some

insight into, the PMS choice.

It is possible, of course, for the approximant to have more than
one stationary point, or none. That issue does not arise in the RS-
dependence problem, but it does in other applications of PMS. It
will be discussed when it arises in some of the examples below.

To better understand the above arguments, and to see how non-

invariant approximations work, one can learn a lot from some simple

examples.

4.4. Quartic Oscillator Example: First-Order

Approximation

Consider the classic quantum-mechanical problem of computing the

eigenvalues, En, of an anharmonic oscillator. For maximal simplicity,

we specialize to an oscillator with a purely quartic potential. (The

general case, with both x2 and x4 terms in the potential will be
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discussed later in Sec. 4.8.) The Hamiltonian is

H = 1
2
p2 + λx4, (4.3)

where x and p are operators satisfying the commutation relation

[x, p] = i. Trying to treat the λx4 term as a “perturbation” is

quite hopeless — the unperturbed Hamiltonian would then be just
1
2p

2, which has a continuous spectrum, qualitatively unlike the

discrete spectrum of H. However, following the work of Caswell and

Killingbeck, we may add and subtract an x2 term and write H as

H0 +Hint with

H0 = 1
2

(
p2 +Ω2x2

)
, Hint = − 1

2
Ω2x2 + λx4. (4.4)

Standard quantum-mechanical perturbation theory can now be

applied, generating what we call the Caswell–Killingbeck (CK)

expansion (it is also known as the “linear δ expansion”).

Note that an “extraneous” parameter, Ω, has been introduced.

It is arbitrary, in the sense that the exact eigenvalues of H clearly

do not depend on Ω. However, our approximate results at any finite

order will depend on Ω; hence we describe the approximation as being

“non-invariant.”

The calculation is most easily done by introducing raising
and lowering operators, a†, a, for a simple-harmonic oscillator of
frequency Ω. These have the commutation relation [a, a†] = 1 and
are related to the x, p operators by

x =
1√
2Ω

(a+ a†), p = −i
√

Ω

2
(a− a†),

so that H0 = Ω(a†a+ 1
2 ). The unperturbed eigenvalues are

E(0)
n = (n+ 1

2 )Ω.

The unperturbed states are given by

|n〉(0) = a†n√
n!
|0〉(0),

and satisfy

a†|n〉(0) = √
n+ 1|n+ 1〉(0).
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Straightforward calculations using the commutation relations yield

(0)〈n|(a+ a†)2|n〉(0) = 2n+ 1,

(0)〈n|(a+ a†)4|n〉(0) = 3(2n2 + 2n+ 1).

The first-order correction term for the nth eigenvalue is

E(1)
n = (0)〈n|Hint|n〉(0) = −1

2
(n+ 1

2
) Ω +

3λ

4Ω2
(2n2 + 2n+ 1). (4.5)

Adding this correction to the zeroth-order term gives the first-order

result:

Eres
n = E(0)

n + E(1)
n =

1

2
(n+ 1

2
)Ω +

3λ

4Ω2
(2n2 + 2n+ 1). (4.6)

Note that the first term has a factor 1
2 in front arising from a partial

cancellation, 1− 1
2 , between the zeroth-order term and the part of the

first-order correction produced by the − 1
2
Ω2x2 piece of Hint. Note

also that Eres
n can be written as (0)〈n|H0|n〉(0) + (0)〈n|Hint|n〉(0) =

(0)〈n|H|n〉(0), so that the first-order perturbative result can also be

viewed as a variational estimate using the trial state |n〉(0).
The result (4.6) naturally depends on the physical variable n,

the quantum number labelling the eigenstates, but it also depends

on the extraneous variable Ω. Because of this unphysical dependence

the result has no quantitative meaning unless and until we decide

how Ω is to be chosen. A plot of Eres
n against Ω, Fig. 4.2, shows

that taking Ω too big or too small is clearly bad; the result becomes

infinitely large in either limit. But how, in the absence of further

information, are we to find the “right” value of Ω? (And is it the

same for all energy levels, or does it depend on n?)

We do have one piece of information, however: We know that

the exact nth eigenvalue, En, is independent of Ω. That is surely

a valuable piece of information, and ought to be made use of.

The Principle-of-Minimal-Sensitivity (PMS) argument is that it is

sensible to choose Ω to be in a region where the approximant is

insensitive to small variations of Ω. (Both Caswell and Killingbeck

independently made this argument.) The approximant, Eres
n , is
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Fig. 4.2. Results for the low-lying energy levels E0, E1, E2 to first order in the
CK expansion, as a function of the extraneous variable Ω, in units of λ1/3.

minimally sensitive to Ω at the stationary point where

dEres
n

dΩ
= 0. (4.7)

This is the “minimal sensitivity” or “optimization” condition. Its

solution yields the “optimal” value of the Ω parameter — which

indeed depends on which energy level we are calculating.

Applied to Eq. (4.6) the PMS optimization condition leads to the

equation

1

2
(n+ 1

2
) + (−2)

3λ

4Ω3
(2n2 + 2n+ 1) = 0, (4.8)

whose solution is

Ω̄ =

[
3λ

(2n2 + 2n+ 1)

(n+ 1
2
)

] 1
3

. (4.9)

(Quite generally, we shall use an overbar to denote an “optimized”

value.) Substituting this value into Eq. (4.6) yields the “optimized”
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Table 4.1. The energy levels En of the quartic
oscillator in units of λ1/3. The approximate eigen-
values Ēres

n from first order in the CK expansion,
optimized by the PMS criterion, are compared
with the essentially exact results from Hioe et al.

n Ēres
n Eexact

n Error

0 0.68142 0.667986 2.01%
1 2.42374 2.39364 1.26%
2 4.68500 4.69680 −0.25%
3 7.29111 7.33573 −0.61%
10 31.3587 31.6595 −0.95%
n → ∞ (1.36284) (1.37651) −0.99%

×(n+ 1
2
)4/3 ×(n+ 1

2
)4/3

result:

Ēres
n =

3

4
(n+ 1

2
)

[
3λ

(2n2 + 2n+ 1)

(n+ 1
2
)

] 1
3

. (4.10)

If we compare with precise values from the literature (see Table 4.1),

we find that this simple formula fits all the energy levels to within

2%. The results for n = 0 and n = 1 are slight overestimates, by 2%

and 1%, respectively, while for n = 2 and above the results are slight

underestimates, by less than 1%. (For large n one can compare with

the semi-classical result from Bohr–Sommerfeld quantization.)

4.5. Quartic Oscillator Example: Discussion

The key to this success is the “optimal” choice of Ω, which is

different for different n. For any fixed (n-independent) value of Ω,

the approximate result, Eq. (4.6), would give a very poor description

of the spectrum, so it is crucial that Ω is allowed to “run” with n. The

PMS optimization naturally selects an appropriately n-dependent Ω̄.

Clearly, the PMS optimization condition (4.7) is reminiscent of

the Variational Principle. However, only in a few specific instances

there is a clear-cut connection. For the ground state (n = 0) our

approximation corresponds to a variational calculation, with the

ground state of the harmonic oscillator H0, as the trial wavefunction.
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In this instance we know, from the variational (Rayleigh–Ritz) theo-

rem, that the approximate result Eres
0 is greater than or equal to the

exact eigenvalue E0 for any value of Ω. Therefore by minimizing with

respect to Ω, as the PMS criterion does, we obtain an approximation

to E0 that is unquestionably optimal.

The same statement can be made about the first-excited-state
(n = 1) case, using an extension of the variational theorem which
says that the variational form 〈ψ|H |ψ〉 is greater than or equal to
the exact E1 for all states |ψ〉 that are orthogonal to the exact
ground state. Our trial state |1〉(0) is guaranteed to be orthogonal
to the unknown exact ground state because the former is odd under
parity, x→ −x, whereas the latter is even.

For n ≥ 2, however, there is no variational inequality guaran-

teeing that the approximate result must be greater than the exact

eigenvalue for all values of Ω. Indeed, such an inequality does not

hold; it is violated in a small region of Ω around the Ω̄ value. (See

Fig. 4.3).

Thus, for n ≥ 2, the PMS choice of Ω is not optimal in the

rigorous sense of minimizing the error; there are other values of Ω

that would lead to even more accurate results. Indeed, there are

two “magic” values of Ω, either side of the PMS Ω̄, that would

lead to the exact eigenvalue. Finding those values, however, would

Fig. 4.3. Close-ups of the region around the optimal Ω, showing the comparison
with the exact result. For the ground state, n = 0 the variational inequality
guarantees that the first-order approximant is always greater than the exact
result. For n = 2 and higher there is no such inequality. Nevertheless, in both
cases the PMS choice of Ω gives an approximation of comparable accuracy.
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require some real magic, since that would be equivalent to solving the

quartic-oscillator problem exactly. When we refer to the PMS choice

as “optimal” we clearly cannot — except in special circumstances,

such as the n = 0, 1 cases — claim to be using the word in a

mathematically rigorous way. We mean it in the sense of “the best

choice, in the absence of further information.”

An intuitive understanding of why and how Ω̄ depends on n

can be gained from the following rough argument. For a good

approximation, we want our approximate potential energy, 1
2Ω

2x2

to be a good approximation to the actual potential energy, λx4.

Obviously, this cannot be true for all x, but what we most need,

when considering the nth energy level, is for it to be true where both

potential energies are of order of the unperturbed energy E
(0)
n . (See

Fig. 4.4.) That is we want

(n+ 1
2
)Ω ≈ 1

2
Ω2x2 ≈ λx4. (4.11)

From the above approximate relations, we can eliminate x as x2 ≈
1
2Ω

2/λ and solve for Ω:

Ω ≈ (4(n + 1
2
)λ)1/3 . (4.12)

Fig. 4.4. A sketch illustrating an intuitive argument for why Ω should increase
with n: We wish the zeroth-order potential 1

2
Ω2x2 to be a good approximation

to the actual potential, λx4 for energies of order En. For higher En we will need
larger Ω, corresponding to a steeper quadratic potential.
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This is in rough accord with Eq. (4.9), having the crucial (n+ 1
2
)1/3

behaviour for large n.

Note that this is a hand-waving, order-of-magnitude argument;

the details and the numerical factors are all debatable. (It is

similar to the argument, in the RS-dependence problem, that the

renormalization scale μ should be chosen to be of order the physical

scale Q. In both cases the argument is correct; good physics; but

inherently vague.) Trying to use such “physical” arguments alone to

fix the value of extraneous parameters is never satisfactory in our

experience. However, they often provide physical insight into why

the PMS optimized value is what it is.

Some authors, faced with a non-invariant approximation, choose
to fix the extraneous parameter, not by PMS, but by a notion that
we call “fastest apparent convergence” (FAC). That approach is
critically discussed in Appendix 4.A.

4.6. Quartic Oscillator Example: Second Order

One may proceed to calculate the energy eigenvalues to the next

order in this perturbation theory. For simplicity, we consider only

the ground state, n = 0. The general formula for the second-order

correction to the ground-state energy is

E
(2)
0 =

∑

j �=0

| (0)〈j|Hint|0〉(0) |2
E

(0)
0 −E

(0)
j

, (4.13)

where the sum runs over all the states except j = 0. In the quartic-

oscillator case, the only non-zero contributions are from j = 2 and

j = 4.

From the a, a† algebra one finds that

(0)〈2|x2|0〉(0) =
√
2

2Ω
, (0)〈2|x4|0〉(0) = 6

√
2

(2Ω)2
,

(0)〈4|x4|0〉(0) =
√
24

(2Ω)2
,
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and from these results one obtains the two terms, which are

| (0)〈2|Hint|0〉(0) |2
E

(0)
0 − E

(0)
2

=
1

(−2Ω)

(
− 1

2Ω
2

(√
2

2Ω

)
+ λ

(
6
√
2

(2Ω)2

))2

,

| (0)〈4|Hint|0〉(0) |2
E

(0)
0 − E

(0)
4

=
1

(−4Ω)
λ2

( √
24

(2Ω)2

)2

.

Hence, the correction is

E
(2)
0 = − Ω

16

(
1− 6λ

Ω3

)2

− 3

8
Ω

(
λ

Ω3

)2

.

This must be added to the result from first order, from Eq. (4.6)
with n = 0.

The second-order result is

E
res[2]
0 =

3

16
Ω

(
1 + 8

(
λ

Ω3

)
− 14

(
λ

Ω3

)2
)
. (4.14)

As a function of Ω this result does not have a stationary point, but it

does exhibit a flat region around a point of inflexion. See the dashed

curve in Fig. 4.5.

Fig. 4.5. Results for E0 to first, second, and third orders in the CK expansion,
as a function of the extraneous variable Ω.
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In such cases, which do not arise in the RS-dependence problem,

the application of PMS is not entirely unambiguous. There are

two reasonable alternative strategies. (a) One may use the point of

inflexion, where

d2Eres
0

dΩ2
= 0. (4.15)

The argument here is that, while we cannot make the slope,

dEres
0 /dΩ, zero, we can find where the slope is minimized, so that

the result is “least sensitive to small variations.” A somewhat

unsatisfactory aspect of this argument is that the result then depends

on selecting Ω as the extraneous parameter, rather than, say 1/Ω, or

Ω3, or some other function of Ω. The usual PMS criterion, Eq. (4.7),

has the nice property of being invariant under such re-definitions,

but the second-derivative does not share that property. However,

this concern is minor, in that, for any remotely reasonable choices of

variable, the result changes only by an amount well within the error

that one would estimate anyway. (b) The other strategy is to allow

complex solutions to the usual PMS condition. Close to the point of

inflexion there will be a complex-conjugate pair of roots to Eq. (4.7).

Evaluating the result at either of these roots will yield an answer

with a small imaginary part, which we can then drop. We could view

this as averaging the results at the two roots, since they will have

equal and opposite imaginary parts. In doing so we are making use of

another piece of information we have about the exact result; namely,

that it is real.

The results of methods (a) and (b) are given in Table 4.2. They

agree quite closely, and each produces a gratifying improvement on

Table 4.2. Optimized results, in first and second order of
the CK expansion, for the ground-state energy of the quartic
oscillator, in units of λ1/3. The exact value is 0.66798626 . . ..

Order Ω̄ Ēres
0 Error

1st 1.81712 0.681420 2.0%
2nd (a) 2.06064 0.668973 0.15%
2nd (b) 2.02015 ± 0.20073i 0.668641 ± 0.002191i 0.10%
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the first-order result, reducing the error from about 2% to less than

0.2%.

We will return in the next chapter to discuss higher orders in the

CK expansion.

4.7. Quartic Oscillator Example: Wavefunctions

One may also obtain accurate approximate wavefunctions with the

same approach, as shown by Kauffmann and Perez (KP), whose work

we follow in this section. The key point is this: Since the wavefunction

is not a single number, but a function of position, x, the “optimal”

Ω will depend on x. Here, we will consider only the ground-state

wavefunction, but the story is similar for the excited states.

The calculation proceeds as follows: The formula for the state
vector of the nth eigenstate, to first order in perturbation theory,
is

|n〉 = |n〉(0) +
∑

j �=n

cnj |j〉(0),

with

cnj =
(0)〈n|Hint|j〉(0)
E

(0)
n − E

(0)
j

.

In the case of the ground state, n = 0, the only non-zero terms in
the sum come from j = 2 and j = 4. From the results in the previ-
ous section, one can obtain the two non-zero coefficients, which are

c02 ≡
(0)〈2|Hint|0〉(0)
E

(0)
0 − E

(0)
2

=
1

(−2Ω)

(
− 1

2Ω
2

(√
2

2Ω

)
+ λ

(
6
√
2

(2Ω)2

))
,

c04 ≡
(0)〈4|Hint|0〉(0)
E

(0)
0 − E

(0)
4

=
1

(−4Ω)
λ

( √
24

(2Ω)2

)
.

The Schrödinger wavefunctions representing the unperturbed
states |0〉(0), |2〉(0), |4〉(0) are

ψ
(0)
0 =

(
Ω

π

)1/4

exp
(− 1

2Ωx
2
)
,
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ψ
(0)
2 =

(
Ω

π

)1/4

exp
(− 1

2Ωx
2
) 1√

2

(−1 + 2Ωx2
)
,

ψ
(0)
4 =

(
Ω

π

)1/4

exp
(− 1

2Ωx
2
) 1

2
√
6

(
3− 12Ωx2 + 4Ω2x4

)
.

The result for the ground-state wavefunction, to first order in
perturbation theory is then

ψres
0 = ψ

(0)
0 + c02ψ

(0)
2 + c04ψ

(0)
4 .

Note that the overall normalization will need to be adjusted at the
end of the calculation.

The result of the perturbative calculation is

ψres
0 =

(
Ω

π

)1/4

exp
(− 1

2
Ωx2

) 1

16

×
(
14 + 4Ωx2 +

λ

Ω3
(9− 12Ωx2 − 4Ω2x4

)
. (4.16)

Optimizing Ω, requiring ∂ψres
0 /∂Ω = 0 at each x, leads to a quintic

equation for the optimal Ω:

2Ω3(7− 4Ωx2 − 4Ω2x4) + λ(−99 + 66Ωx2

+36Ω2x4 + 8Ω3x6) = 0. (4.17)

Picking the right root of this equation requires a little thought, as

we now discuss (see Fig. 4.6).

At x = 0 the unique real root is Ω̄ = (9914λ)
1/3 — similar to, but

not the same as, the optimum Ω for the ground-state energy, which

was (6λ)1/3. For small but non-zero |x | there are two real, positive

roots, but one goes to infinity as x→ 0, so clearly, for continuity, we

want the smaller root that starts from (9914λ)
1/3 at x = 0. This root

persists until x ≈ 0.65λ−1/6, where it meets up with the other, larger

root.

At large |x | there are also two positive, real roots, but one goes to

zero proportional to 1/x2: That would produce a non-normalizable

form for ψ, and so can be rejected. The relevant root has Ω̄ ∼ √
λ |x |

at large |x | — which means that the resulting wavefunction has the
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Fig. 4.6. The optimal value of Ω as a function of | x |, in units where λ = 1.
The relevant root is shown by the solid lines. The segment around | x |≈ 0.7 is
actually the real part of a pair of complex roots. The three other roots, at any
given | x |, are negative or have negative real parts. These, and the roots shown
by the dotted lines, may be discarded as clearly inappropriate.

correct faster-than-Gaussian fall off, with an exp(− 1
2

√
λ |x |3) factor.

By continuity, we can follow this root back to x ≈ 0.75λ−1/6, where

it meets up with the smaller root.

There is region, roughly 0.65 < λ1/6 | x |< 0.75, where there

is no real, positive root. For | x | in this range there is no actual

stationary point in Ω, only a flat region around where ∂2ψ/∂Ω2

vanishes. As discussed above, we can either use this point of inflexion,

or — perhaps better — use either of the complex roots (whose real

part is shown in the figure) and then, at the end, discard the tiny

imaginary part of the resulting wavefunction.

Although the resulting Ω̄ as a function of |x | has an odd-looking

zig-zag (see Fig. 4.6), there is no discernible lack of smoothness in

the resulting wavefunction. This is because ψ is, of course, very

insensitive to the precise value of Ω, provided that it is close to

Ω̄. The resulting optimized wavefunction, plotted either on a linear

or a logarithmic scale, is hardly distinguishable from the exact

wavefunction. (See figures in KP.) Nevertheless, it would be sensible
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to use an Ω that smooths out the zig-zag region of Ω̄, since we know

that the exact wavefunction must be smooth.

4.8. Anharmonic Oscillator and Double-Well Potential

The more general case of an anharmonic oscillator — a sim-

ple harmonic oscillator of unperturbed frequency ω, with an x4

perturbation — can be treated very similarly. The Hamiltonian,

H = 1
2
p2 + 1

2
ω2x2 + λx4, (4.18)

can be written as H0 +Hint with

H0 = 1
2

(
p2 +Ω2x2

)
, Hint = − 1

2

(
Ω2 − ω2

)
x2 + λx4. (4.19)

A simple generalization of the previous calculation yields the first-

order correction term as

E(1)
n = −1

2
(n+ 1

2
)

(
Ω2 − ω2

)

Ω
+

3λ

4Ω2
(2n2 + 2n+ 1). (4.20)

Added to E
(0)
n , this yields the first-order result

Eres
n =

1

2
(n+ 1

2
)

(
Ω2 + ω2

)

Ω
+

3λ

4Ω2
(2n2 + 2n+ 1). (4.21)

Applying the PMS condition dEres
n /dΩ = 0 leads now to a cubic

equation:

(n+ 1
2
)Ω
(
Ω2 − ω2

)− 3λ(2n2 + 2n + 1) = 0, (4.22)

whose positive root is the optimal value, Ω̄. Substituting into Eres
n

yields the optimized result.

Caswell has a nice formalism using a variable β defined by

Ω2 = ω2 +
βλ

Ω
.

which allows a unified treatment of all the cases ω2 positive, zero,
or negative. (β = 6, which is the optimal value for the ground state
at first order, corresponds to the mass renormalization induced by
normal ordering the Hamiltonian.)
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For all positive ω there is not much to say; the results are even

better than for the quartic-oscillator case. Indeed, the larger ω is,

relative to λ1/3, the better the perturbation theory gets, and the less

the optimal Ω differs from ω. Nevertheless, the CK approach still has

significant benefits over ordinary perturbation theory, particularly

when one considers high-n energy levels.

For imaginary ω (negative ω2) the classical potential has a

double-well form. For |ω | small, relative to λ1/3, the CK expansion

remains good. However, for larger | ω | the CK expansion does not

give satisfactory results — unless we are prepared to go to very

high orders. There is a simple cure, however. We may generalize

the method by adding and subtracting a linear term in x: That is,

one takes H0 to be an oscillator of frequency Ω whose equilibrium is

shifted to some value x0:

H0 = 1
2

(
p2 +Ω2(x− x0)

2
)
,

Hint = − 1
2
Ω2(x− x0)

2 + 1
2
ω2x2 + λx4.

(4.23)

There are now two extraneous parameters, Ω and x0, that can be

optimized by the PMS condition.

If we calculate the ground-state energy E0(x0,Ω) and then

optimize Ω, we obtain V̄G(x0), a function of x0 that, for sufficiently

negative ω2, has a local maximum at x0 = 0 and a pair of minima

at x0 = ±x̄0 for some non-zero x̄0. The optimized result for the

ground-state energy Eres
0 is then given by V̄G at x0 = x̄0.

The function V̄G(x0) is called the “Gaussian effective potential.”
It can be calculated for a wide variety of problems H = 1

2p
2+V (x)

with all sorts of classical potentials V (x) and it provides a good
“picture” of how quantum zero-point-energy effects modify the
physics — in the present case, for instance, it shows that, for
ω2 negative but small, quantum effects wash out the hump in
the classical potential. Moreover, the concept generalizes naturally
to QFT, where it has significant advantages over the traditional
one-loop effective potential. See citations in the references for this
chapter.

One may similarly calculate results for the excited states. As n

increases the optimal x0 slowly decreases, until at some sufficiently
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large n there ceases to be a non-zero x̄0 and the optimized result

comes from x0 = 0.

4.9. Conclusions

Approximations are a gamble; we are forced to act upon incomplete

information. It is important to make good use of any and all

information that we do have. Ambiguity is inherent in approximation;

we always have to decide, somewhat arbitrarily, precisely what to

calculate, and what the form of the approximant is to be.

Non-invariant approximations bring in another ambiguity; what

value(s) should the extraneous parameter(s) take? The PMS crite-

rion, once we have decided what we are calculating and what the

form of the approximant is, provides an objective resolution of that

ambiguity. It uses the information that the exact result is known to

be exactly independent of the extraneous parameter(s).

The worst mistake with a non-invariant approximation is to

assume that the extraneous parameter(s) have to be fixed once-and-

for-all. In the quartic oscillator example, for example, one can get

good results for all the energy levels — but only if the value of Ω

is different for the different levels. The PMS criterion automatically

selects a suitable Ω value for each case.

We are now ready to tackle the RS-dependence problem by

viewing it as a non-invariant approximation and applying PMS

optimization. The impatient reader may wish to skip the next chapter

and proceed straight to Part II. The topic of the next chapter is high

orders in examples of non-invariant approximations — the important

point being that the optimal parameter(s) change from one order to

the next, which can give rise to “induced convergence.”

Appendix 4.A: FAC Criteria

A different approach to dealing with non-invariant approximations

is a notion dubbed “fastest apparent convergence” (FAC). The

idea is that, at next-to-leading order, we would obviously like the

correction term to be small in comparison to the leading term —

so let us choose the extraneous parameter to make it so. Often,
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in fact, the correction term can be made to vanish. (Because the

zeroth- and first-order results then agree exactly with each other,

this choice is sometimes called a “self-consistency” criterion — but

that terminology is misleading since there is no logical necessity.)

The FAC approach shares some of the virtues of the PMS

method — crucially it allows the extraneous parameter to be different

in different cases. Sometimes FAC and PMS give quite similar results,

since the curves for two different orders will often intersect in the

flat region. However, the curves can be nearly parallel in the flat

region and bend away together, intersecting only quite far away,

giving a poor result. In the author’s opinion and experience, FAC

is unreliable. It is predicated on a property that one would like the

approximation to have — rapid apparent convergence — whereas

PMS is based on a property that the exact result does have —

invariance under variations of the extraneous parameter.

FAC is certainly inferior in the case of the CK expansion for the

quartic oscillator. Requiring the correction term E
(1)
n , Eq. (4.5), to

vanish gives the equation

− 1

2
(n+ 1

2
) Ω +

3λ

4Ω2
(2n2 + 2n+ 1) = 0, (4A.1)

whose solution is ΩFAC:

ΩFAC =

[
3λ

2

(2n2 + 2n+ 1)

(n+ 1
2
)

] 1
3

, (4A.2)

which is smaller than the PMS Ω̄ by a factor of 2−1/3. The FAC

result is obtained by substituting this value of Ω into Eres
n , which, by

construction, is the same as E
(0)
n = (n+ 1

2
)Ω. Hence, the FAC result

is

Eres
n |FAC = (n+ 1

2
)

[
3λ

2

(2n2 + 2n+ 1)

(n+ 1
2
)

] 1
3

. (4A.3)

It is very similar to the PMS result in form and for all n values it is

larger by a factor of 4
32

−1/3 ≈ 1.06. Consequently, it is a much less

accurate approximation. See Table 4.3.
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Table 4.3. FAC results, to first order in the CK
expansion, for the energy levels En of the quartic
oscillator in units of λ1/3. Compare with PMS
results in Table 4.1.

n EFAC
n Eexact

n error

0 0.721 0.667986 8.0%
1 2.565 2.39364 7.2%
2 4.958 4.69680 5.6%
3 7.716 7.33573 5.2%
10 33.186 31.6595 4.8%
n → ∞ (1.442) (1.37651) 4.8%

×(n+ 1
2
)4/3 ×(n+ 1

2
)4/3

At higher orders there are different ways to interpret the FAC

idea: one could require either (i) that the last correction term

vanishes so that adjacent orders agree, or (ii) that the net correction

vanishes so that kth order agrees with zeroth order. In some examples

the first approach is better than the second; in other examples it is

the reverse. In the CK expansion method (ii) is hopelessly bad, while

in Exercise 4.2 it is method (i) that is poor.

In the RS-dependence problem, because there are multiple

extraneous parameters, it is possible to the choose the RS in (k+1)th

order so that all the perturbative coefficients r1 to rk vanish. Several

authors have advocated use of this FAC or “effective charge”(EC)

scheme. It is certainly useful for formal purposes (see Chapters 7 and

13), but it is doubtful that formal simplicity is a sound argument that

it provides the best approximation. At low orders there is often very

little difference between the FAC/EC and PMS results. However, the

“induced convergence” scenario (to be discussed in the next chapter),

in which R(k+1) tends to a finite limit as k → ∞ because a → 0,

clearly could not work for FAC/EC, where a→ 0 would entailR → 0.

Exercise 4.1. Consider the spatial integral

∫
d3r

(
2

a
3/2
0

e−r/a0

√
4π

)2
1

| �R− �r |
arising from the Coulomb interaction of the electron in a hydrogen
atom with another charged particle at �R. The asymptotic result
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for R → ∞ is 1/R, and one might expect to calculate corrections
as a power series in a0/R by expanding the denominator in powers
of r/R. Show that all such corrections vanish. (Hint: consider the
generating function for Legendre polynomials.) The power series is
thus, trivially, convergent — but it does not give the right answer.
Evaluate the integral exactly and show that there is a correction
exponentially small in a0/R.

Exercise 4.2. Consider the problem of evaluating the integral F ≡∫ B

A dxf(x), between specific endpoints A and B, when nothing is
known about the function f(x) except for the first few terms of its
two Taylor series, about A and about B. The natural approximants
are

F [n,m](ξ) ≡
∫ ξ

A

dxf
[n]
A (x) +

∫ B

ξ

dxf
[m]
B (x),

where f
[n]
A is the series about A, truncated after the (x−A)n term,

and similarly for f
[n]
B . Clearly, these approximants depend on the

extraneous variable ξ, though F itself does not. Show that the PMS
criterion fixes ξ to be where the curves from the two endpoints
cross, if they do.

Consider the specific example f(x) = sinx with A = 0, B = π/2.
Note that the zeroth-order result F [0,0](ξ) = π

2 − ξ is monotonic

in ξ. Find and plot the diagonal approximants F [k,k](ξ) for k = 0
to 5. Apply the PMS criterion and compare and contrast with the
results from a FAC criterion requiring either (i) no change from one
order to the next, so that adjacent orders agree, or (ii) no change
from the zeroth-order result. Verify the results in the table below
and note the following: FAC(i) chooses ξ to be 0 or π/2 and thus
gives very poor results; FAC(ii) typically chooses a ξ around 0.57,
on the outskirts of the flat region; the centre of the flat region, the
PMS choice, yields good results consistently.

1 2 3 4 5
PMS 1.07 0.996 0.9982 1.00005 1.00002
FAC(i) 1.57 1.23 0.925 0.980 1.0045
FAC(ii) 1.57 0.996 0.9921 1.00015 1.0020

Consider other choices of f(x). Note that when the function has a
lot a structure between A and B, the results will inevitably be poor,
until the Taylor series contain enough terms to begin to describe
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the structure adequately. Beyond that point you should find the
PMS criterion giving satisfactory results.

Exercise 4.3.Consider a quantum particle of unit mass that moves
in the x1, x2 plane subject to a potential λx21x

2
2. The Hamiltonian is

1
2p

2
1 +

1
2p

2
2 + λx21x

2
2.

By adding and subtracting a term 1
2Ω(x

2
1 + x22) use first-order

perturbation theory and the PMS to find an approximation to the
energy levels (labelled by n1, n2 quantum numbers).

Exercise 4.4. Consider the effect of an external electric field
E on the n = 2 levels of hydrogen, ignoring spin and fine-
structure effects. Standard first-order degenerate perturbation
theory predicts a pattern where two levels are unaffected, while
two other linear combinations of states are pushed up and down
by an equal energy splitting ±σR ≡ ±3ea0 |E |, where R is the
Rydberg constant, a0 is the Bohr radius, and e is the electron
charge. Experimentally, however, the observed splitting is slightly
asymmetric. That can be predicted by a laborious second-order
calculation, or by an improved version of the first-order calculation
where we write the Hamiltonian as H0(Z) +Hint(Z) with

H0(Z) =
p2

2m
− Ze2

r
,

Hint(Z) = (Z − 1)
e2

r
+ eE.r.

Calculate the matrix elements of Hint(Z) between the four unper-
turbed states and diagonalize. Determine the optimal Z for each
eigenvalue. Show, using a secondary approximation σ � 1, that
the splittings are σ(1 − σ + · · · ) and −σ(1 + σ + · · · ) times R.
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Chapter 5

Induced Convergence

5.1. Three Regions: Diverging, Flat, and Overdamped

In non-invariant approximations the optimized value of the extrane-

ous parameter evolves from one order to the next — and that fact

can be vital to the convergence of the results. For the anharmonic

oscillator, the CK expansion is divergent for any fixed value of the

extraneous parameter Ω. However, as we shall see, the CK results

converge if we use the optimized value of Ω, which steadily increases

with order. We call this phenomenon “induced convergence.”

We begin by considering a very simple example which, while

not actually illustrating “induced convergence,” is nevertheless quite

instructive about high orders in non-invariant approximations. Con-

sider a simple harmonic oscillator of some given frequency ω and a

calculation of its ground-state energy E0 in a CK-like perturbation

theory:

H0 =
1

2
(p2 +Ω2x2), Hint = −1

2
(Ω2 − ω2)x2. (5.1)

That is, we start from an oscillator of a different frequency Ω, and

treat the frequency difference as a perturbation. It is easy to see that

the resulting perturbation series is the expansion of

E0 =
1

2
Ω
√
1− z (5.2)

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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in powers of z, where

z ≡ 1− ω2/Ω2, (5.3)

with finite-order approximations corresponding to successive trunca-

tions of the series

E0 =
1

2
Ω

(
1− 1

2
z − 1

8
z2 − 1

16
z3 − 5

128
z4 + · · ·

)
. (5.4)

Not surprisingly, the optimal choice of Ω in any order is Ω = ω,

and it always yields the exact result, E0 = 1
2
ω. Nevertheless, it is

instructive to plot the results, in kth order, as a function of Ω; see

Fig. 5.1. As the order increases, one sees the curves becoming flatter

and flatter around Ω = ω, with the first to the kth derivatives all

vanishing there in kth order. The connection between the flatness and

the accuracy of the approximation is evident. Note that the results

diverge for Ω < ω/
√
2, reflecting the fact that the series has a radius

of convergence |z |= 1.

The figure illustrates the three regions that seem to be character-

istic of non-invariant approximations. There is a “diverging region”

at small Ω where the results show wild oscillations from one order to

the next; a “flat region” around the optimal Ω; and an “overdamped

region” at large Ω. The extent of the flat region grows with the

order k. Usually the centre of the flat region also moves, but in

Fig. 5.1. Results for E0, as a function of the extraneous variable Ω, in kth order
of a CK-like expansion for a simple harmonic oscillator of unit frequency (ω = 1).
In every order the optimal Ω is 1, as indicated by the arrow. The curves become
flatter and flatter around Ω = 1 as the order is increased.
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this simple case it remains fixed at Ω = ω. In this example, the

results ultimately converge at any Ω, provided it exceeds ω/
√
2.

However, if we choose an Ω that is far too big — in the “overdamped

region” — the convergence will be painfully slow (just as a strongly

overdamped oscillator in classical mechanics takes a long time to

return to equilibrium). Worse still, if we were to choose a too-small

Ω, in the “diverging region” Ω < ω/
√
2, then our initial bad result

only becomes worse and worse as we calculate more and more orders!

In other contexts, the curves in the overdamped region may fall

towards zero, rather than rising up to infinity, as they head away

from the flat region. Also, the three regions may appear from right

to left instead of from left to right; that occurs, for example, if we

redefine the extraneous parameter from Ω to 1/Ω. The three regions

show up in all the examples we study here.

5.2. High Orders in the CK Expansion for the

Quartic Oscillator

The CK expansion is divergent for any fixed Ω, just like ordinary

perturbation theory for the anharmonic oscillator — where it is

known that kth-order correction term behaves as k!AkkBC(1 +

O(1/k))λk with calculable numerical coefficients A,B,C. In kth

order the CK result for E0 can be written as a polynomial in λ/Ω3,

which is the inverse of Caswell’s variable β:

E
[k]
0 = Ω

(
Ak,0 +Ak,1

(
λ

Ω3

)
+ · · · +Ak,k

(
λ

Ω3

)k
)
. (5.5)

The first coefficient Ak,0 comes from just the x2 term in Hint, so it

is predictable from the simple example just discussed. The highest

coefficient Ak,k comes only from the λx4 term in Hint and is the

same as in ordinary perturbation theory. Caswell derives a recursion

relation that allows the Ak,j coefficients to be found efficiently.

This polynomial can be seen as a truncated expansion in an
effective dimensionless coupling constant λ/Ω3. However, it is not
the perturbation series itself, since the terms are not successive
contributions from matrix elements of Hint. Indeed, it is not
successive truncations of a fixed series: the coefficients Ak,j all
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depend upon k. The series (5.5) displays quite good apparent
convergence at the optimal Ω value.

For anyfixedΩ theperturbation series itself diverges, butwhenΩ is

chosen in each order according to the “minimal sensitivity” criterion—

so that it gradually increases with order — one finds the successive

results converging quite nicely. These points are illustrated below.

Figure 5.2 shows orders up to k = 5. One sees the three regions,

with the flat region expanding, but also moving out to larger Ω. It

moves faster than it grows. Thus, for any fixed Ω one gets typical

divergent-asymptotic-series behaviour. For example, with Ω/λ1/3 =

2.1 the initial result is poor, but the results improve steadily for the

next few orders, appearing to converge to a good answer — and then,

quite abruptly, there are wilder and wilder oscillations from one order

to the next; see Fig. 5.3. Choosing Ω a bit smaller would give better

results at first order, but the divergent behaviour would set in almost

immediately. (Choosing Ω too small puts one in the diverging region

right away.) Choosing Ω to be larger one stays in the overdamped

region for a longer time, with worse results at low orders and a more

gradual approach towards settling down — though now to a more

precise value — before the divergent behaviour finally sets in.

Fig. 5.2. Results for E0 to kth order in the CK expansion, as a function of the
extraneous variable Ω, in units of λ1/3. The flat region grows, but it moves faster
than it grows. For any fixed Ω the results diverge, but if we follow the flat region,
finding the PMS optimal Ω in each order, the results converge nicely.
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Fig. 5.3. An illustration of the asymptotic-series behaviour at fixed Ω. Results
for E0 at kth order for k = 1 to 8 at Ω = 2.1.

With PMS optimization we ensure that a suitable Ω is used at

each order, starting with Ω/λ1/3 = 61/3 = 1.82 at k = 1 and steadily

increasing with k, so that we “surf” along with the flat region as it

moves outwards. In fact, we want to “surf the scary edge” of the flat

region, close to the boundary with the diverging region. This point is

illustrated in Fig. 5.4, which shows results for 23rd order. Here, when

we examine the flat region in detail, we find three stationary points.

All give a good approximation, but by far the best approximation

comes from the one closest to the diverging region — which is also

the “flattest” in that it has the smallest second derivative. As k is

increased, each individual stationary point moves off to the right

and new stationary points are born at the “scary edge.” When being

born these new stationary points may appear in embryo as points of

inflexion.

For the proof of convergence we refer the reader to references in

the bibliography. The proof applies also to a φ4 field theory in 1 + 1

dimensions and shows that the convergence is exponentially fast.

The shrinkage of the effective coupling λ/Ω3 with increasing order

is readily understandable intuitively through an extension of the

argument in Sec. 4.5 and Fig. 4.4. Quantum mechanical perturbation

theory for En at kth order involves excursions to various intermediate

states |ni〉, producing a product of matrix elements

〈n |Hint |n2〉〈n2 | · · · |nk〉〈nk |Hint |n〉, (5.6)
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(a)

(b)

(c)

Fig. 5.4. Results for E0 at 23rd order in the CK expansion, as a function of Ω:
(a) shows all three regions; diverging, flat, and overdamped, (b) shows the flat
region on a fine scale, and (c) shows a very fine-scale close up of the front of the
flat region. The vertical ranges are, respectively, (a) 0.667 to 0.670, (b) 0.66796
to 0.668025, (c) 0.6679861 to 0.6679865. The exact result, shown as a dotted line,
is 0.66798626. Of the three stationary points in the flat region the one closest to
the onset of the divergent region is the most accurate.

each with its corresponding energy denominator En − En′ . In

very high orders most of these matrix elements involve high-lying

eigenstates — and for such states, if the unperturbed states and

energies are to mimic the actual ones, the appropriate Ω is large.

Thus, we can expect the optimal Ω to steadily increase with order.

The same intuitive argument applies to the QFT case (provided

we consider only perturbatively calculable, infrared-safe quantities).

If we were to use “old-fashioned perturbation theory” then, again,

the high orders would involve the physics of short-lived, high-energy

intermediate states. In covariant Feynman perturbation theory

the corresponding statement is that the high orders will involve

highly virtual particles. In QCD, of course, the effective couplant
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shrinks only logarithmically with energy scale, rather than the λ/Ω3

behaviour of the oscillator problem.

5.3. A Toy Model Framework

For the remainder of this chapter we consider a toy model. It is a bit

artificial, but has the virtue that the induced convergence property

can be proved relatively easily.

Given a series

R = a0(1 + r1(0) a0 + r2(0) a
2
0 + · · · ), (5.7)

let us make the substitution

a ≡ a(τ) =
a0

1 + τa0
, (5.8)

where τ is some real-valued parameter, and consider the resulting

re-expansions

R = a(1 + r1a+ r2a
2 + · · · ). (5.9)

The coefficients are easily determined to be

rj ≡ rj(τ) =

j∑

i=0

(
j

i

)
τ irj−i(0), (5.10)

where
(
j

i

)
=

j!

i!(j − i)!
, (5.11)

are the binomial coefficients. This simple mathematical system

mimics, to some extent, the RS dependence problem. Both the

expansion parameter a and the coefficients rj in Eq. (5.9) depend on

the extraneous variable τ , which plays the role of the RS. Obviously,

R itself does not depend on τ , and the τ dependences of a and the

rj must cancel in Eq. (5.9). However, this cancellation is spoiled if

the series is truncated.

For the analogy with RS dependence to hold good it is important

that all the expansion parameters should be on an equal footing.

Equation (5.8) is the simplest example of a substitution which



March 14, 2022 10:28 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch05 page 92

92 Renormalized Perturbation Theory and Its Optimization

achieves this. The symmetry between any two expansion parameters

is made manifest by the relation

1

a
− 1

a′
= τ − τ ′. (5.12)

In contrast, a substitution such as a = a0(1 + τa0) would not

have been suitable, since it would have given a0 a unique status.

Equation (5.8) is particularly appropriate since it directly recalls

the (leading-order) QCD running coupling constant formula, if we

identify τ as proportional to the logarithm of the renormalization

scale. Indeed, one has the “β-function equation”

da

dτ
= −a2. (5.13)

The analogy with renormalized perturbation theory is not per-

fect. Here the multiplicity of expansion parameters, the “extraneous”

variable, the “β function,” and the resulting ambiguity of finite-

order results have all been introduced artificially. Moreover, only a

single extraneous variable has been introduced here, whereas the real

problem involves (n − 1) RS parameters at nth order. Nevertheless,

this oversimplified model can be very instructive.

Differentiating Eq. (5.9) and using Eq. (5.13) leads to

dR
dτ

= (−a2)(1 + 2r1a+ 3r2a
2 + · · · ) + (ṙ1a

2 + ṙ2a
3 + ṙ3a

4 + · · · ).
(5.14)

The cancellations required for this to vanish yield

ṙj ≡ drj
dτ

= j rj−1, (5.15)

which determine the τ dependence of the coefficients. Integration of

these equations leads, of course, to Eq. (5.10), previously obtained

by direct substitution.

The nth-order approximant, defined as the truncated series

R(n) ≡ a(1 + r1a+ · · ·+ rn−1a
n−1), (5.16)

is now a known, well-defined function of τ , as soon as we know the

values of a and r1, . . . , rn−1 at some fixed value of τ , such as τ = 0.
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It is not often necessary to have an explicit formula forR(n)(τ), but it

is sometimes helpful. One may write R(n)(τ) as the rational function

R(n)(τ) =
1

(a−1
0 + τ)n

n∑

j=1

τn−ja−j
0

(
n

j

)
R(j)(0). (5.17)

This formula is most easily proved by induction: a direct proof

requires a remarkable identity between binomial coefficients.

The derivative of R(n) is the residuum of the cancellations in

Eq. (5.14):

dR(n)

dτ
= −nrn−1a

n+1. (5.18)

The “optimum” value of τ at nth order, according to the PMS

criterion, is where the right-hand side vanishes, which leads to the

“optimization condition”

rn−1(τ = τ̄n) = 0. (5.19)

(In this instance, the PMS condition is equivalent to a FAC-type

condition that the last calculated coefficient is made to vanish.) After

solving this equation for τ̄n, the “optimized” approximant R(n)
opt can

be found by evaluating R(n)(τ) at the point τ = τ̄n.

If the PMS condition, Eq. (5.19), has no real solution — a
situation that will arise in odd orders in the following example —
one has two reasonable choices, as discussed in Sec. 4.6. One can
consider solutions of d2R(n)/dτ2 = 0, or one can use a complex
solution of Eq. (5.19), finally discarding the small imaginary part
of the resulting R(n). In the real RS-optimization problem, with
multiple RS variables, one always finds a solution to the usual PMS
condition, so we need not dwell on this issue.

Clearly, one can investigate many specific examples within this

framework, simply by beginning with a different initial series in

Eq. (5.7). It is a simple exercise to show that if the initial series

is geometric, then the optimized result in second order, and all

subsequent orders, is exact. This is true irrespective of whether the
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initial series was within its radius of convergence or not. In the next

section we consider a more challenging example in detail.

5.4. Alternating Factorial Series

Consider the alternating factorial series

R = a0(1− 1!a0 + 2!a20 − 3!a30 + · · · ), (5.20)

previously discussed after Eq. (4.2). In the transformed series,

Eq. (5.9), the coefficients are given by

rj = (−1)j j!

j∑

i=0

(−τ)i
i!

= (−1)j j!Tj [e
−τ ], (5.21)

where the notation Tn[F (a)] means “truncate the series for F (a) =

F0 + F1a + · · · immediately after the an term” (i.e., Tn[F (a)] ≡
F0 + F1a + · · · + Fna

n.). If τ is fixed then the coefficients will

eventually behave as (−1)jj!e−τ for sufficiently large j, with e−τ

being a constant. Therefore, the series remains divergent for all fixed

values of τ .

However, if we “optimize” the choice of τ at each order then the

resulting sequence of approximations is convergent. The proof will be

given in the next section. First, we discuss the optimization procedure

in more detail and present a numerical example.

In this case the optimization condition in nth order, Eq. (5.19),

becomes simply

Tn−1[e
−τ̄n ] = 0. (5.22)

For even values of n this equation has a single real root, which grows

approximately linearly with n (see Eq. (5.26) below).

For odd n there is no real root. As mentioned earlier, one may
either use a complex root, or seek to minimize the slope, so that
d2R(n)/dτ2 = 0, which leads to

(
a−1
0 + τ̄n

)
Tn−2[e

−τ̄n ] + (n+ 1)Tn−1[e
−τ̄n ] = 0.
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This equation has two real roots, but the larger corresponds to a
maximum of the slope, and hence is not relevant. The appropriate
root lies just beyond the τ̄ of the previous even order.

Having solved for τ̄n one can immediately evaluate the optimized

values of a, rj and R(n) from Eqs. (5.8), (5.16), (5.21). (Equivalently,

one could substitute in Eq. (5.17).) Some numerical results for the

case a0 = 0.25 are shown in Table 5.1 and Fig. 5.5.

The näıve results, corresponding to the partial sums of Eq. (5.20),

show some initial apparent convergence, but soon develop violent

fluctuations. The optimized results, by contrast, converge in a steady

fashion. This comes about because τ̄n grows with n at just the right

rate. The resulting decrease in the effective expansion parameter ān
counterbalances the potential growth of the coefficients. The radius

of the original series is zero, but asymptotically one is expanding in

powers of a vanishing parameter. Note that it is convergence of a

sequence — the sequence of optimized approximants — that really

matters, not the convergence of any series.

Table 5.1. Approximations to the alternating
factorial series, for a0 = 0.25. The Borel sum
has the value 0.20634565.

Order Naive τ̄ ā Optimum

1 0.250 – – –
2 0.188 1.00000 0.200 0.2000000
3 0.219 1.43845 0.184 0.2061121
4 0.195 1.59607 0.179 0.2054645
5 0.219 2.00000 0.167 0.2062757
6 0.189 2.18061 0.162 0.2061192
7 0.233 2.59875 0.152 0.2063073
8 0.156 2.75900 0.148 0.2062634
9 0.310 3.19736 0.139 0.2063235
10 −0.036 3.33355 0.136 0.2063083
11 0.829 3.79230 0.128 0.2063320
12 −1.550 3.90545 0.126 0.2063259
13 5.588 4.38352 0.119 0.2063367
14 −17.610 4.47541 0.118 0.2063340
15 63.581 4.97148 0.111 0.2063394
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Fig. 5.5. Optimized results for the alternating factorial series example. Even
orders shown by dots, odd orders by squares. The Borel sum is indicated by the
dashed line.

Having said that, it is nevertheless interesting to see how the

terms of the (truncated) series behave numerically at the “optimized”

value of τ . A typical example is 8th order, which looks like

R(8)(τ̄8) = 0.148(1 + 0.260 + 0.090 + 0.028 + 0.011

+0.003 + 0.002 + 0). (5.23)

Thus, the “apparent convergence” of the series in the “optimized”

scheme is perfectly satisfactory. The residual error one might rea-

sonably guess from this, say, about 0.148 × 0.001, is a reasonable

indicator of the actual error (which is, in fact, about half this size).

Note that our estimate here used the trend of the last few terms, not

just the last term alone — because it, of course, was made to vanish

exactly by the optimization condition. (One may also make an error

estimate based on the sequence of optimized results in Table 5.1,

with reasonable results.)

It is also instructive to plot some graphs of R(n)(τ) against τ

for various values of n. This has been done in Fig. 5.6, by utilizing

Eq. (5.17). As before, one can describe each curve in terms of three

main regions: (i) a “diverging region” at small τ where the function

tends rapidly to +∞ or −∞, depending on whether n is odd or even,

(ii) a “flat region” around τ = τ̄n, and (iii) an “overdamped region” at

large τ in which R(n)(τ) is small. The fuzzy boundaries between the

regions move steadily to the right as n increases. They do so at slightly

different rates, so that the width of the flat region slowly grows.
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Fig. 5.6. Approximants R(n)(τ ), n = 10, 11, 12, 14, for the alternating factorial
series example, shown as functions of the extraneous variable τ .

If we sit at some fixed, reasonably large τ , we see each of these

regions in turn, as n increases. Low-order results are too small, but

they grow steadily and begin to settle down to an almost constant

value. Then, quite suddenly, we are overtaken by the diverging region,

and the results start to oscillate increasingly violently from one order

to the next. The view from the “comoving frame” of the optimized τ

is quite different. One sees the approximation converging smoothly,

and becoming flat over an increasing range of τ . From this vantage

point the approximation is not only becoming steadily more accurate,

it is also successfully mimicking the τ -independence property of the

exact result.

5.5. Proof of Convergence

This section outlines the proof that the sequence of optimized

approximants does indeed converge. One first needs to know the

behaviour of τ̄n as n → ∞. For this purpose one needs the integral

representation

Tn−1[e
−τ ] = e−τ

(
1 +

(−1)n−1

Γ(n)

∫ τ

0
dt tn−1et

)
, (5.24)

obtained by repeated integration by parts. In the case that n is even,

the optimization condition Tn−1[e
−τn ] = 0 reduces to

∫ τ̄n

0
dt tn−1et = Γ(n). (5.25)
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One can now consider this as an abstract problem with n ranging

over all real values. One can take the difference of this equation and

the corresponding equation with n→ n+1 and then put bounds on

the remaining integral term. Then, using the asymptotic behaviour

of the Γ function, one finds that

τ̄n ∼ χn+ ξ lnn+O(1), (5.26)

where χ ≈ 0.278 is the solution to

lnχ+ χ+ 1 = 0, (5.27)

and ξ = 1
2
χ/(1 + χ) ≈ 0.109. For odd n an analysis of the

d2R(n)/dτ2 = 0 equation leads to the same result, except that the

coefficient of the lnn term in Eq. (5.26) is altered.

The alternating factorial series, Eq. (5.20), is a classic example

of a Borel-summable divergent series. The sum of the series, in the

sense of Borel, is given by the integral

RB ≡
∫ ∞

0
du e−u/a0 1

1 + u
. (5.28)

Heuristically, the series is generated by expanding 1/(1 + u) as 1 −
u + u2 − u3 + · · · and then integrating term by term. Of course,

the expansion is only valid for |u| < 1 whereas the integral involves

0 < u < ∞. The difficulty is exposed by using the formula for the

sum of a truncated geometric series:

Tn−1

[
1

1 + u

]
=

1− (−u)n
1 + u

. (5.29)

Thus, truncations of Eq. (5.20) correspond to

R(n)(0) =

∫ ∞

0
du e−u/a0

(
1− (−u)n

1 + u

)
, (5.30)

in which the (−u)n term is far from negligible as n → ∞, and is

the cause of the wild oscillations. Recalling that 1/a0 = 1/a − τ ,

one can write down a similar integral representation of the nth-order
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approximant at a general value of τ :

R(n)(τ) =

∫ ∞

0
du e−u/a

Tn−1

[
euτ

1

1 + u

]
. (5.31)

The following algebraic manipulations:

Tn−1

[
euτ

1

1 + u

]
= Tn−1

[
1

1 + u

]
+
uτ

1!
Tn−2

[
1

1 + u

]

+ · · ·+ (uτ)n−1

(n − 1)!
T0

[
1

1 + u

]
=

(
1− (−u)n

1 + u

)

+
uτ

1!

(
1− (−u)n−1

1 + u

)
+ · · · + (uτ)n−1

(n− 1)!

(
1− (−u)1

1 + u

)

=
1

1 + u

(
1 +

uτ

1!
+ · · ·+ (uτ)n−1

(n− 1)!

)
− (−u)n

1 + u

×
(
1 +

−τ
1!

+ · · ·+ (−τ)n−1

(n− 1)!

)

=
1

1 + u

(
Tn−1[e

uτ ]− (−u)nTn−1[e
−τ ]
)
, (5.32)

then lead to

R(n)(τ) =

∫ ∞

0
du

e−u/a

1 + u

(
Tn−1[e

uτ ]− (−u)nTn−1[e
−τ ]
)
. (5.33)

The optimization condition chooses τ such that Tn−1[e
−τ ] = 0, and

so it eliminates the troublesome (−u)n term. (Let us restrict the

discussion to even values of n for the moment.) If Tn−1[e
uτ ] could be

replaced by euτ as n→ ∞, then one would have established that the

sequence of optimized approximants converges to RB.

However, that replacement is not valid when τ is τ̄n, which

is linearly increasing with n. Each term in the difference (euτ̄n −
Tn−1[e

uτ̄n ]) generates only an O(1/n) correction, but the sum of those

corrections is finite. To show that fact one can use the representation

equation (5.24) to rewrite Eq. (5.33), for τ = τ̄n, as

R(n)
opt = RB −

∫ ∞

0
du

e−u/a0

1 + u

γ(n, uτ̄n)

Γ(n)
, (5.34)
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where γ(n, z) is the incomplete Γ function

γ(n, z) ≡
∫ z

0
dv vn−1e−v, (5.35)

and Γ(n) is, of course, γ(n,∞). One requires the large-n behaviour

of γ(n, z(n)) when z behaves as uχn + O(lnn). Applying Laplace’s

method, one finds the result (see references in the Bibliography)

lim
n→∞

(
γ(n, χun)

Γ(n)

)
=

{
0, uχ < 1,

1, uχ > 1.
(5.36)

Laplace’s method can also be used to show that the result is

unchanged when the ξ lnn term in τ̄n, Eq. (5.26), is included. (This

indicates, incidentally, that the flat region grows at least as fast

as lnn.) From the above equation, we see that the second term in

Eq. (5.34) receives contributions only for u > 1/χ ≈ 3.591, and its

integrand has exactly the same form as that of RB. Thus, the limit

of the sequence of optimized approximants is not the same as the

Borel sum: Instead,

lim
n→∞R(n)

opt =

∫ 1/χ

0
du e−u/a0 1

1 + u
. (5.37)

The difference from RB lies only in the upper limit of the integral —

something that does not affect the series expansion. The difference

is exponentially small, O(a0e
−1/(χa0)) for small a0. In the numerical

example of Table 5.1 with a0 = 0.25, the difference is 3×10−8. (This

difference is far too small to be visible in the figures earlier.)

The above proof was actually restricted to the case n even. When
n is odd we also need to consider the Tn−1[e

−τ ] term in Eq. (5.33).
One can show, by an extension of Laplace’s technique, that this
term gives a contribution that is suppressed by a 1/n factor, so
that odd orders converge to the same limit as even orders. (The
1/n factor was unfortunately mislaid in Ref. [10], which erroneously
stated that odd orders converged to a different limit.)

We caution that one should not necessarily assume that the Borel

sum is “right” and the optimized limit is slightly “wrong” — nor vice

versa. As pointed out in Sec. 4.1 that issue can only be meaningfully
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addressed given a specific context in which the original divergent

series arose. One of the most unsatisfactory features of our “toy

model” framework is just that it has no such context, since we began

with “Given a series . . .”. Also, here one expansion parameter is

actually a bit special, because the expansion in a0 has a particularly

simple and regular form, compared to general a — whereas in the

real problem all a’s are fundamentally on an equal footing, with the

counterpart to a0 being the ill-defined bare coupling constant.

5.6. Conclusions

This chapter has only scratched the surface of a large subject that

raises difficult mathematical challenges. The conditions under which

induced convergence will occur, and whether it works in the context

of OPT applied to QCD remain unanswered questions.

Exercise 5.1. Prove the claim at end of Sec. 5.3 that if the initial
series is a geometric series, then the optimized result in second
order, and all subsequent orders, is exact — irrespective of whether
the initial series is within its radius of convergence or not.

Exercise 5.2. Prove Eq. (5.17) by induction.

Exercise 5.3. Prove Eq. (5.26) for the high-n behaviour of τ̄n.

Exercise 5.4. Find how Fig. 5.6 would appear for very large n, if
R(n) is plotted as a function of t ≡ τ/n. By considering the second
term of Eq. (5.33), show that the boundary between the divergent
and flat regions is at t = χ, so that the optimized result “surfs the
scary edge.”
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Chapter 6

Preliminaries: RG Invariance,
int-β Equation, Λ̃ Definition,

and CG Relation

6.1. Physical Quantities and Their RG Invariance

QFT involves many theoretical objects — Green’s functions, for

instance — that are not physically measurable and are not RG

invariant. While these are very important, they are not directly

relevant to our concern here. Ultimately, it is only the theory’s

predictions for physical, experimentally measurable quantities that

will matter. For our purposes then, Green’s functions, etc., are merely

intermediate steps in calculating physical quantities and we shall

focus our discussion on the physical quantities themselves.

Some physical quantities, such as hadron masses, are inherently

inaccessible to perturbation theory. Others have a factorized form

where one factor is non-perturbative; such quantities will be dis-

cussed in Chapter 12. (Other physical quantities, such as the QCD

pressure at high temperature, have a still more complex structure.)

Here we focus on quantities with a normal perturbation series. These

have the form A1R + A0 with a leading-order coefficient A1 and,

sometimes, a zeroth-order term A0. The coefficients A0 and A1

(which carry the dimensions of mass to the appropriate power) are

RS invariant, so we may focus on dimensionless physical quantities

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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R of the form:

R = aP(1 + r1a+ r2a
2 + · · · ), (6.1)

where a is the renormalized couplant g2R/(4π
2). The power P is

typically 1 or 2 or 3, but may be left general. At the level of formal

power series there would be no loss of generality in taking P = 1, since

one could always replace R with another physical quantity R1/P.

However, that trick would not be natural when R is to be truncated

at finite order. In some places, to simplify the presentation, we will

first discuss the case P = 1, before generalizing to any P.

Often R is not a single quantity but is a function of several

experimentally defined parameters. We may always single out one

parameter with the dimensions of mass that we will call the “physical

energy scale” and denote by “Q.” All the other experimental

parameters can be taken to be dimensionless: if they were not

originally we may scale them with an appropriate power of Q to make

them so. We will need “Q” only in order to discuss which quantities

are, and which are not, Q dependent. Thus, we may leave the specific

definition of Q in any particular case to the reader’s choice, without

creating any ambiguity.

The dependence of R on Q is of great interest. When the original

Lagrangian of the theory contains no parameter with dimensions

of mass, but only a dimensionless bare coupling constant, gB , then

Dimensional Analysis would seem to imply that the dimensionless R
must be independent of Q. As discussed in Chapter 2, that conclusion

is false because of the need for renormalization — which necessarily

introduces a renormalization scale, μ. A calculation of the coefficient

r1 reveals that it depends logarithmically on the ratio of Q to μ

(and r2 involves a log-squared, etc.). Although the μ dependence

ultimately cancels in R, the Q dependence survives. Specification of

a boundary condition for the β-function equation (see Sec. 6.3 below)

introduces a mass parameter Λ̃, and R is ultimately a function of the

ratio Q/Λ̃. The phenomenon that a theory, seemingly involving only

a dimensionless constant gB , ends up specified by a characteristic-

scale parameter Λ̃ is known as “Dimensional Transmutation.”

The key property of a physical quantity is that of “Renormaliza-

tion Group” (RG) invariance, which means that a physical quantity
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is independent of the renormalization scheme (RS); that is, of the

precise definition of the renormalized couplant, a. Heuristically, this

property might be expressed symbolically as

0 =
dR

d(RS)
=

∂R
∂(RS)

∣∣∣∣
a

+
da

d(RS)

∂R
∂a

, (6.2)

where the total RS dependence is separated into two sources: (i) RS

dependence from the series coefficients, ri (differentiation pretending

that a is constant), and (ii) RS dependence from the couplant, a.

A note on notation: The partial derivative ∂R
∂a is the derivative

regarding the coefficients ri as constant, and so is just the ordinary
derivative of R’s power series. There is a reason we do not write it
as dR/da; see Sec. 8.3.

A particular case of Eq. (6.2) is the familiar RG equation

expressing the renormalization-scale independence of R:
(
μ
∂

∂μ

∣∣∣∣
a

+ β(a)
∂

∂a

)
R = 0, (6.3)

which involves the famous “β function,” defined as

β(a) ≡ μ
da

dμ
. (6.4)

It is important to stress that there is not a unique β function

characteristic of a given theory. The β function, like a, is an RS-

dependent object. We shall write the β function, in some arbitrary

RS, in the form

β(a) = −ba2(1 + ca+ c2a
2 + · · · ). (6.5)

As shown in the next section, the coefficients b and c are invariants,

but all the higher coefficients c2, c3, . . . depend on RS.

Note that an explicit minus sign is included in front of the
expansion of β in Eq. (6.5) so that b is a positive number in
the most interesting (“asymptotically free”) QFTs. However, all
our discussion applies equally to theories with negative b, with
the understanding that then the infrared and ultraviolet limits
exchange roles. (For the special case of theories with b = 0 see
Exercise 6.1.) The reason for factoring out b in β(a)’s expansion



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch06 page 108

108 Renormalized Perturbation Theory and Its Optimization

is that it is then absent, or scales out of, almost all subsequent
equations.

What exactly is the “renormalization scale” μ? In defining a

particular RS many arbitrary choices are made that, explicitly or

implicitly, introduce many arbitrary parameters. One of these param-

eters necessarily has the dimensions of mass and may be singled out

as “μ;” any other parameters involved can be taken as dimensionless

since otherwise we could always scale them with the appropriate

power of μ. It is sometimes helpful to use the terminology that a

“renormalization prescription” (RP) is a set of renormalization con-

ventions that fixes all the RS choices, including defining the “mean-

ing” of μ, but does not fix the value of μ. (The MS scheme is really

a “prescription” in this terminology.) Often “RP” and “RS” can be

used interchangeably, but sometimes the distinction is useful to make.

The precise definition of μ in any specific RP, and the particular

choice of Q for any specific physical quantity, may be left to the whim

of the reader. The results of optimized perturbation theory will be

the same, in content, whatever choices are made.

6.2. RP Invariance of b and c

A key fact, first appreciated by ’t Hooft, is that the first two

coefficients, b and c, of the β function are RP invariant, while the

higher coefficients are not. The proof is straightforward: Two RP’s

(that is, two schemes with the same value of μ) are related by a

general transformation

a′ = a(1 + v1a+ v2a
2 + · · · ), (6.6)

where the vi coefficients cannot depend on μ, for dimensional reasons.

In the primed RP the β function:

β′(a′) ≡ μ
da′

dμ
= −b′a′2(1 + c′a′ + c′2a

′2 + · · · ) (6.7)

will not be the same as the original β function. The two are related

by

β′(a′) ≡ μ
da′

dμ
=
da′

da
μ
da

dμ
=
da′

da
β(a). (6.8)
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With da′/da evaluated from Eq. (6.6) this gives

β′(a′) = (1 + 2v1a+ 3v2a
2 + · · · )β(a). (6.9)

Expanding the right-hand side then leads to

(1 + 2v1a+ 3v2a
2 + · · · )(−ba2)(1 + ca+ c2a

2 + · · · )
= −ba2(1 + (2v1 + c)a+ (3v2 + 2v1c+ c2)a

2 + · · · ),
(6.10)

while eliminating a′ in favour of a in the left-hand side gives

−b′ (a(1 + v1a+ v2a
2 + · · · ))2 (1 + c′a(1 + v1a+ · · · ) + c′2a

2 + · · · )
= −b′a2(1 + (2v1 + c′)a+ (2v2 + v21 + 3v1c

′ + c′2)a
2 + · · · ).

(6.11)

Equating coefficients of a2 and a3 shows that

b′ = b and c′ = c. (6.12)

Note that the higher coefficients are not invariant; for instance c′2 =
c2 + v2 − v21 − v1c, as one can see from equating coefficients of a4

above.

In gauge theories some RP’s are said to be “gauge dependent.”
This just means that the RP is not fully defined until the gauge
choice is specified. As mentioned in Appendix 2.C, in such RP’s the
β function should be defined with the μ∂a/∂μ derivative taken at
constant renormalized gauge parameter, ξ, not at constant bare ξB .
With the other definition the second coefficient of the β function
would not be invariant because the renormalized ξ would then be a
source of implicit μ dependence in the vi coefficients. Note also that
there is no need for a dξ

d(RS)
∂R
∂ξ term in the RG equation, Eq. (6.2),

because ∂R
∂ξ = 0, since physical quantities are gauge invariant.

In any specific renormalizable QFT the invariants b, c can be

calculated and we regard them here as givens. For instance, in

Quantum Chromodynamics (QCD) with nf flavours of massless

quarks one has

b =
33 − 2nf

6
, c =

153 − 19nf
2(33 − 2nf )

. (6.13)
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6.3. Integrated β-Function Equation; Definition of Λ̃

The β-function equation

μ
da

dμ
= β(a), (6.14)

integrates immediately to

lnμ =

∫
da

β(a)
+ const. (6.15)

However, specifying the constant of integration is a slightly tricky

task and requires a careful discussion. The first step is to write

the constant of integration as ln Λ̃ + C, where Λ̃ has dimensions of

mass, so that we can convert the lnμ to a logarithm with a properly

dimensionless argument. Next, since β(a) is known only as a small-a

expansion, we naturally want the range of integration to be 0 to a.

That gives us

ln(μ/Λ̃) =

∫ a

0

dx

β(x)
+ C, (6.16)

but the integral is then divergent — so the constant C must also

be divergent in a compensating fashion. A precise specification of

C amounts to a definition of the Λ̃ parameter. (That will define Λ̃

within the specific RP we are using. Later on we will need to ask if

Λ̃ depends on the RP choice.) One convenient choice of C is to write:

ln(μ/Λ̃) = lim
δ→0

(∫ a

δ

dx

β(x)
+ C(δ)

)
, (6.17)

with

C(δ) =
∫ ∞

δ

dx

bx2(1 + cx)
. (6.18)

Note that C(δ) involves only b and c and so is RS invariant.

The tilde in “Λ̃” is included to distinguish it from another
widely-adopted definition of the Λ parameter in the literature. The
two definitions are related by an RS-invariant factor: ln(Λ/Λ̃) =
(c/b) ln |2c/b|. See the discussion in section 6.4 below.
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It is convenient to introduce the variable

τ ≡ b ln(μ/Λ̃) (6.19)

and to define

B(x) ≡ β(x)

−bx2 = 1 + cx+ c2x
2 + · · · . (6.20)

Equation (6.17) then becomes, after splitting the C(δ) integral into

two pieces,

τ = lim
δ→0

(∫ a

δ

dx

−x2B(x)
+

∫ a

δ

dx

x2(1 + cx)
+

∫ ∞

a

dx

x2(1 + cx)

)
.

(6.21)

This equation gives τ as a function of a, which we shall name K(a):

τ = K(a) ≡
∫ ∞

a

dx

x2(1 + cx)
−
∫ a

0

dx

x2

(
1

B(x)
− 1

1 + cx

)
.

(6.22)

Note that the second term is now a well-defined integral,

convergent at the lower limit x→ 0. The first term gives the second-

order approximation to K(a) and is easily evaluated using partial

fractions:

K(2)(a) =

∫ ∞

a

dx

x2(1 + cx)

=

∫ ∞

a
dx

(
1

x2
− c

x
+

c2

1 + cx

)
(6.23)

=
1

a
+ c ln

∣∣∣∣
ca

1 + ca

∣∣∣∣ .

To summarize: the integrated β-function equation — which we

will henceforth refer to as the “int-β equation” — is given by

τ = K(a), (6.24)

with

K(a) =
1

a
+ c ln

∣∣∣∣
ca

1 + ca

∣∣∣∣−Δ(a), (6.25)
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where

Δ(a) ≡
∫ a

0

dx

x2

(
1

B(x)
− 1

1 + cx

)
. (6.26)

The above form is quite satisfactory when c is positive (which

is the case for “real-world QCD,” where nf ≤ 6). However, if c is

negative, which occurs in hypothetical theories with a large number

of fermions, there is a slight problem with a pole at x = −1/c. In

that case, we need to specify the Cauchy principal value for the C(δ)
integral in Eq. (6.18). The easiest way around the problem is to

rewrite K(a) in the form

K(a) =
1

a
+ c ln |ca| − Δ̃(a), (6.27)

where

Δ̃(a) ≡
∫ a

0

dx

x2

(
1

B(x)
− 1 + cx

)
. (6.28)

(For further discussion of this integral, see Appendix 9.A.) The

equivalence between the two forms of K(a) can easily be checked

by verifying that

Δ̃(a)−Δ(a) =

∫ a

0

dx

x2

(
−1 + cx+

1

1 + cx

)

=

∫ a

0
dx

c2

1 + cx
(6.29)

= c ln |1 + ca|. (6.30)

Thus, Eqs. (6.25) and (6.27) correspond to the same definition of Λ̃.

6.4. Inverting the int-β Equation

Ideally, one would like to invert the int-β equation to express the

couplant a as a function of τ . Alas, that step cannot be carried out

analytically. One might attempt to use an analytic approximation,

such as an expansion in inverse powers of τ , but that procedure

has serious drawbacks. For one thing the expansion is ugly, involving

logarithms of τ . Also, it applies only when μ� Λ̃ and thus precludes
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any attempt to go to low energies. Most seriously, the errors it

introduces, even at high energies, are hard to estimate and control.

The routine matter of inverting a transcendental equation should

not be allowed to contribute significantly to the error in the final

prediction. Instead, one should respect the τ = K(a) equation,

solving it numerically whenever necessary, taking care that the

numerical solution is accurate to several more decimal places than

the minimum required for the final prediction to stay within its

associated error estimate.

There is another important reason not to use a series in powers of

1/ ln(μ/Λ̃): truncating such a series introduces a spurious dependence

on exactly how one chooses to define Λ̃. The definition of Λ̃ made

earlier corresponds to the particular choice for the constant of

integration C(δ) in Eq. (6.18). That choice is quite elegant and

convenient, but it is not unique and is just a convention. One could

well have chosen some other C(δ), differing by a finite, RS-invariant

number. Indeed, the historical definition of Λ (without the tilde) is an

example of a different choice. The existence of different conventions

for how to define the Λ or Λ̃ parameters creates no problem, since one

can convert exactly between the different definitions. Using truncated

series in 1/ ln(μ/Λ) or 1/ ln(μ/Λ̃) would spoil that exactness and

introduce a new source of ambiguity. That ambiguity is wholly

avoidable, and it is sensible to avoid it.

The original definition of the Λ parameter, by Buras et al.,
was such that the series expansion of the couplant a as a series in
1/ ln(μ2/Λ2) had the form (in the original notation)

g2 =
1

β0 ln(μ2/Λ2)
− [β1 ln(ln(μ

2/Λ2)) + C]

β3
0 ln

2(μ2/Λ2)
+ · · · ,

with the constant C chosen to be zero. Converting to our notation
a = g2/(4π2), b = 8π2β0, c = 4π2β1/β0, one can check that this
corresponds to an approximate inversion of

1

a
+ c ln

∣∣∣∣
ba

2

∣∣∣∣+O(a) = b ln(μ/Λ),

instead of our form

K(a) =
1

a
+ c ln |ca|+O(a) = b ln(μ/Λ̃),
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which follows from Eqs. (6.25) or (6.27), because Δ(a) or Δ̃(a)
are O(a). Comparing the above equations shows that ln(Λ/Λ̃) =
(c/b) ln |2c/b|, as stated earlier.

6.5. RP Dependence of Λ̃: The CG Relation

Having defined Λ̃ we should now ask; is it RP dependent? The

answer is “yes,” but in a simple and definite way, described by the

Celmaster–Gonsalves (CG) relation.

Theorem (Celmaster and Gonsalves). If two prescriptions (two

schemes with the same value of μ) are related by

a′ = a(1 + v1a+ · · · ), (6.31)

then

ln(Λ̃′/Λ̃) = v1/b. (6.32)

This result is exact and does not involve the v2, v3, . . . coefficients.

Proof. We start from Eq. (6.17) and the corresponding equation in a

different, primed, RS. Subtracting those two equations, with μ′ = μ,

yields

ln(Λ̃′/Λ̃) = lim
δ→0

(∫ a

δ

dx

β(x)
−
∫ a′

δ

dx′

β′(x′)

)
. (6.33)

Evaluating for small a leads to

ln(Λ̃′/Λ̃) =
1

b

(
1

a
− 1

a′

)
+O(a) = v1/b+O(a). (6.34)

Now, since the left-hand side is independent of μ, we can choose to

evaluate the right-hand side at any value of μ. Choosing μ→ ∞ (if b

is positive), or μ→ 0 (if b is negative), makes a→ 0 and so completes

the proof.

This proof, though it is sound, can seem too slick. The following

alternative proof (due to Osborn) is instructive. First, one splits each
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of the integrals in Eq. (6.33) into two pieces:

ln(Λ̃′/Λ̃) = lim
δ→0

(∫ ε

δ

dx

β(x)
+

∫ a

ε

dx

β(x)
−
∫ ε′

δ

dx′

β′(x′)
−
∫ a′

ε′

dx′

β′(x′)

)
.

(6.35)

Then one chooses ε′ to be related to ε by

ε′ = ε(1 + v1ε+ · · · ), (6.36)

with exactly the same coefficients as in Eq. (6.31). The second and

fourth terms in (6.35) can then be shown to cancel exactly by making

the change of variables

x′ = x(1 + v1x+ · · · ), (6.37)

and using the relation of β′ to β of Eq. (6.8). One can now take the

limit ε → 0 (choosing, say, ε = 2δ or ε =
√
δ) and use the fact that

β(x) ∼ −bx2 as x→ 0 to obtain the result (6.32). This proof makes

plain that the result is non-zero only because of the 1/x2 singularity

of the 1/β integrands and that the behaviour of β(x) away from the

infinitesimal neighbourhood of x = 0 plays no role.

The importance of the Celmaster–Gonsalves relation is its

exactness. It means that, although the Λ̃ parameter is prescription

dependent, the Λ̃’s of different prescriptions can be related exactly

by a straightforward Feynman-diagram calculation of the single

coefficient v1 in the relation between the two prescriptions. Hence,

the Λ̃ parameter of any convenient “reference RP” can be adopted,

without prejudice, as the one free parameter of the theory, taking

over the role of the “bare coupling constant” in the theory’s

original Lagrangian. This allows us to do the proper “book-keeping”

when comparing theory and experiment for many different physical

quantities. If two people choose to use different RP’s as the “reference

RP,” that is not a problem: one can convert exactly between the Λ̃’s

of the two conventions — and that is true in a practical sense, not

just in principle.

By contrast, reporting experimental results fitted to QCD pre-
dictions in terms of an extracted numerical value for “αMS

s (MZ)”
creates a quagmire of unnecessary ambiguities. The MS scheme,
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while convenient for diagrammatic calculations, is an arbitrary
choice and leaves open the question of how to fix μ. The conversion
from aMS(MZ) to the couplant of another RP can only be made
approximately, with an uncontrolled error — for instance, does
one express the new a as a truncated series in aMS, or the other
way around? Even to convert the scale from MZ (the Z-boson
mass) to some other scale is ambiguous: It is not clear how many
terms of the MS β function should be used, especially when the fit
has been made to various quantities, some of which are known to
higher orders than others. For systematic comparisons of theory
and experiment it would be sensible to use, say, Λ̃MS as the
free parameter of QCD. If one ever wanted to convert to the Λ̃
parameter of a different reference RP then that conversion could
be done exactly, with no ambiguity.

Of course, the value of Λ̃MS extracted from even very precise
experiments tends to have a large error estimate, so one might
diplomatically adopt the convention to quote, say, the value of
ln(1GeV/Λ̃MS).

Exercise 6.1. Consider a “delicate” theory in which b = 0, so that
the β function starts at order a3:

μ
da

dμ
= β(a) = ha3(1 + g1a+ g2a

2 + · · · ).

(Assume h is non-zero.)

(i) Repeat the ’t Hooft argument in Sec. 6.2 to show that h and
g ≡ g2 − g21 are invariants.

(ii) Show that a suitable constant of integration for the int-β
equation (6.17) (with limδ→0 understood) is

C(δ) = − 1

h

(
1

2δ2
− g1

δ
+ g ln δ

)
.

Note that this C(δ) is now RS dependent (unlike the usual
case), though in a simple way: ∂C/∂g1 = 1/(hδ).

(iii) Show that the equivalent to the CG relation is

h ln(Λ̃′/Λ̃) = −v2 + g1v1 +
1

2
v21 ,

so that the Λ̃’s of different RP’s are related exactly by a 2-loop
calculation.
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(iv) Revisit Exercise 3.2 and show that for a “delicate” theory the
’t Hooft analysis implies that the bare coupling constant aB
is of order

√
ε.

(See also Exercise 7.7 at the end of the next chapter.)
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Chapter 7

Parametrization of RS Dependence
and the ρn Invariants

7.1. β Function Coefficients as Scheme Labels

To make progress we now need to identify the “extraneous variables”

associated with RS dependence: That is, we need a parametrization

of all possible choices of RS. At first sight, the task might appear

hopeless: There are all sorts of ways to define an RS, and they usually

relate to very technical details of Feynman-diagram calculations, and

involve lots of arbitrary choices and conventions. Looked at in the

right way, however, the problem of how to parametrize RS’s has a

quite simple solution.

First, recall the int-β equation, (6.17):

ln(μ/Λ̃) = lim
δ→0

(∫ a

δ

dx

β(x)
+ C(δ)

)
≡ “

∫ a

[0]

dx

β(x)
”. (7.1)

Since the integration constant C(δ) is RS invariant, it is clear that

a can depend on RS only through τ ≡ b ln(μ/Λ̃) and the scheme-

dependent coefficients c2, c3, . . . of the β function, because these are

the only RS-dependent quantities (besides a itself) involved in the

equation. The next step is to observe that a physical quantity R
cannot possibly depend on any other RS parameters, because the

cancellation expressed by the symbolic equation (6.2) could not occur

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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if the R coefficients depended on some RS variable that a did not

depend on. Thus, as far as physical quantities are concerned, these

variables must provide a complete RS parametrization:

RS = {τ, c2, c3, . . .} . (7.2)

Note the important point that μ and Λ̃ do not enter separately, but

only through τ ≡ b ln(μ/Λ̃).

The importance of this simple argument takes some time to

appreciate, but it is crucial for all that follows. The reader is urged

to re-read the preceding paragraph carefully and critically.

Note that the claim that the parametrization by τ, c2, c3, . . .
is complete is qualified by saying as far as physical quantities
are concerned: Non-physical quantities, such as Green’s functions,
can depend on other aspects of the renormalization procedure.
That is because Green’s functions depend on the wavefunction-
renormalization constant, which cancels out in physical quantities.
Equivalently, we can say that a Green’s function G has an “anoma-
lous dimension,” μ

G
dG
dμ , that will depend on the renormalization

procedure in ways other than through τ, c2, c3, . . .. This point
is relevant to the problem of factorization-scheme dependence,
discussed in Chapter 12.

Because μ and Λ̃ do not enter separately, but only through τ ≡
b ln(μ/Λ̃), it is neither necessary nor sensible to fix, separately, the
RP and the value of μ in order to fix the RS. For instance, two
RP’s that have the same c2, c3, . . . and differ only in their value
of Λ̃, could be made entirely equivalent simply by redefining the
μ parameter of one of them. (MS and MS are two such RP’s.) As
shown in the next chapter, “optimization” determines the optimal
τ for a given quantity at a given order, but it does not determine
an “optimal μ;” nor is one needed. (More informally, one might
speak of an “optimal μ,” if it is understood as relative to the Λ̃
parameter of some specified reference RP.)

In gauge theories some RP’s, particularly momentum-
subtraction schemes, are “gauge dependent.” One might worry that
the parametrization by τ, c2, c3, . . . is then somehow incomplete,
but that it not so. In such cases, the RP is not fully specified until
the gauge choice is made. Two such prescriptions, differing only in
gauge choice, are not a single gauge-dependent RP, but are just
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two different RP’s — and they are labelled by different values of
c2, c3, . . ..

The parametrization of RS dependence by the set of variables

τ, c2, c3, . . . is not the only possible parametrization (see Exercise 7.2),

but it does provide a convenient “Cartesian coordinate system.”

The partial derivative with respect to any one of these variables is to

be taken holding the other variables of the set constant. That is, ∂/∂τ

is taken with all the ci’s held constant, which corresponds to varying

the renormalization scale μ while holding the RP constant. Similarly,

∂/∂cj is taken with τ and the other ci (i �= j) held constant.

The symbolic RG-invariance equation (6.2) can now be written

out explicitly as the following set of equations:

∂R
∂τ

=

(
∂

∂τ

∣∣∣∣
a

+
β(a)

b

∂

∂a

)
R = 0,

∂R
∂cj

=

(
∂

∂cj

∣∣∣∣
a

+ βj(a)
∂

∂a

)
R = 0, j = 2, 3, . . . ,

(7.3)

involving some new functions βj(a) defined by

βj(a) ≡ ∂a

∂cj
. (7.4)

These βj(a) functions are fixed in terms of the β(a) function, as we

show in the next section.

7.2. The βj(a) and Bj(a) Functions

Consider the int-β equation in the form (7.1). The left-hand side is

τ/b and depends only on τ , not on the cj ’s. The constant C(δ) is also
independent of the cj ’s. Therefore, applying the partial derivative
∂
∂cj

to the equation leads to

0 =
βj(a)

β(a)
+

∫ a

0
dx

( −1

β(x)2

)(−bxj+2
)
, (7.5)

where the first term arises from the cj dependence of the limit

of integration a, and the second term arises from the explicit cj
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dependence of the integrand. Rearranging this equation gives us

βj(a) = −bβ(a)
∫ a

0
dx

xj+2

β(x)2
, (7.6)

for j = 2, 3, . . ..

The βj functions begin at order aj+1 (see Appendix 7.A for their

series expansions). It is convenient to define Bj(a) functions whose

series expansions begin 1 +O(a):

Bj(a) ≡ (j − 1)

aj+1
βj(a). (7.7)

For j = 1, it is natural to define

B1(a) ≡ B(a) ≡ β(a)

−ba2 = 1 + ca+ c2a
2 + · · · =

∞∑

i=0

cia
i, (7.8)

with the convention that c0 ≡ 1 and c1 ≡ c. Equation (7.6) can then

be rewritten as

Bj(a) =
(j − 1)

aj−1
B(a)Ij(a), (7.9)

where

Ij(a) ≡
∫ a

0
dx

xj−2

B(x)2
. (7.10)

(Note that this formula for Bj(a) even holds for j = 1 if the right-

hand side is interpreted as the limit j → 1 from above. See also

Exercise 7.3.)

The Bj(a) functions have the power-series expansions

Bj(a) ≡
∞∑

i=0

W j
i a

i, (7.11)

withW j
0 ≡ 1. The otherW j

i coefficients are fixed in terms of the ci’s.

A convenient formula expressing that fact can be obtained as follows.

Differentiating Eq. (7.6) with respect to a (holding the cj coefficients

constant) yields the differential equation

β′j(a)β(a) − βj(a)β
′(a) = −baj+2. (7.12)
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(This equation may also be obtained by considering the commutation

of the second derivatives, ∂2a/∂τ∂cj = ∂2a/∂cj∂τ ; see Exercise 7.1.)

In terms of the B and Bj functions this becomes

(j − 1)BjB + a(B′
jB −BjB

′) = (j − 1). (7.13)

Equating powers of a leads to the relation

i∑

m=0

(i+ j − 1− 2m)cmW
j
i−m = (j − 1)δi0 (7.14)

for i = 0, 1, 2, . . . and j = 1, 2, . . .. In the special case j = 1, one has

W 1
i ≡ ci and the above equation reduces to

i∑

m=0

(i− 2m)cmci−m = 0, (7.15)

which is true identically, since the left-hand side is

i∑

m=0

(i−m)cmci−m −
i∑

m=0

mcmci−m (7.16)

and the first sum, by changing the summation variable from m to

n = i−m, is seen to cancel the second.

7.3. The ρn Invariants

The RG equations (7.3) determine how the coefficients ri of R must

depend on the RS variables {τ, cj}. To show explicitly how this works

we specialize to the P = 1 case, where

R = a(1 + r1a+ r2a
2 + · · · ) (7.17)

and write out the lowest-order terms to obtain
(
a2
∂r1
∂τ

+ a3
∂r2
∂τ

+ · · ·
)
− a2(1 + ca+ · · · )(1 + 2r1a+ · · · ) = 0,

(7.18)

(
a2
∂r1
∂c2

+ a3
∂r2
∂c2

+ · · ·
)
+ a3(1 +W 2

1 a+ · · · )(1 + 2r1a+ · · · ) = 0,

(7.19)
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and so on. (In fact, the coefficient W 2
1 is zero.) Equating powers of

a, one sees that r1 depends on τ only, while r2 depends on τ and c2
only, etc., with

∂r1
∂τ

= 1, (7.20)

∂r2
∂τ

= 2r1 + c,
∂r2
∂c2

= −1, (7.21)

etc. Upon integration one will obtain ri as a function of τ, c2, . . . , ci
plus a constant of integration that is RS invariant. Thus, certain com-

binations of series coefficients and RS parameters are RS invariant.

From Eqs. (7.20) and (7.21), one sees that

ρ1(Q) ≡ τ − r1 (7.22)

and

ρ2 ≡ c2 + r2 − cr1 − r21 (7.23)

are invariants.

The first invariant, ρ1(Q), is unique in being dependent on the

physical energy scale, Q. (Recall the discussion in Sec. 6.1, and

Chapters 2 and 3.) A QFT calculation of the coefficient r1, in some

arbitrary RS, yields a result of the form

r1 = b ln(μ/Q) + r1,o, (7.24)

whose μ dependence indeed conforms with Eq. (7.20). For dimen-

sional reasons, the μ and Q dependences are tied together in r1. (The

QFT calculation of r1 does not “know” what boundary condition

will later be applied to the β-function equation, so the parameter

Λ̃ cannot explicitly appear.) Similarly, the higher coefficients r2, . . .

depend on ln(μ/Q), but not on μ or Q separately. Hence, for the

invariants ρ2, ρ3, . . . the cancellation of μ dependence also implies the

cancellation of Q dependence. However, ρ1(Q) is different because its

definition explicitly involves τ :

ρ1(Q) = b ln(μ/Λ̃)− (b ln(μ/Q) + r1,o)

= b ln(Q/Λ̃)− r1,o, (7.25)
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where Λ̃ is the Λ̃-parameter of the RP in which the QFT calculation

of r1,o was done. Note that ρ1(Q) is both μ independent and RP

independent: If a is changed to a(1+v1a+ · · · ) then r1,o changes, but
so does b ln Λ̃ by a compensating amount, thanks to the Celmaster–

Gonsalves relation. Indeed, we may write

ρ1(Q) = b ln(Q/Λ̃R), (7.26)

where Λ̃R is a characteristic scale specific to the particular physical

quantity R. Knowing r1,o, we can relate it exactly to the Λ̃ of the

original prescription.

Some convention must be adopted to uniquely define the higher

invariants ρj (for j ≥ 2) because, of course, any sum of invariants is

also an invariant. For example, one might quite naturally add some

multiple of c2 to Eq. (7.23).

Indeed, a different definition was employed in the author’s early
papers, with ρold2 = ρ2 − 1

4c
2 and ρold3 = 1

2ρ3. In later papers, the
definition described below was used and distinguished by a tilde
(“ρ̃j”). Here we shall dispense with the tildes.

To define the ρj ’s we proceed as follows: For any given physical

quantity R, one can always define an RS (known either as the “fastest

apparent convergence” (FAC) or “effective charge” (EC) scheme)

such that all the series coefficients ri vanish in that scheme, so that

R = aEC(1 + 0 + 0 + · · · ). Since the β functions of any two RS’s are

related by Eq. (6.8), we must have

βEC(R) =
∂R
∂a

β(a). (7.27)

The ρn invariants are defined to coincide with the coefficients of the

EC-scheme β function:

βEC(R) ≡ −bR2
∞∑

n=0

ρnRn = −ba2 ∂R
∂a

B(a), (7.28)

where ρ0 ≡ 1 and ρ1 ≡ c (not to be confused with the independent

invariant ρ1(Q) ≡ τ − r1, which will always be written with its Q
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argument). Rearranging this equation as

B(a) =
∞∑

n=0

ρna
n

(R
a

)n+2 1
∂R
∂a

(7.29)

and then equating powers of a yields

cj =

j∑

i=0

ρiCj−i

[(R
a

)i+2 1
∂R
∂a

]
, (7.30)

where Cn[F (a)] means “the coefficient of an in the series expansion

of F (a).”

The first few invariants, for P = 1, are as follows:

ρ1 = c, and ρ1(Q) = τ − r1,

ρ2 = c2 − cr1 + r2 − r21,

ρ3 = c3 − 2c2r1 + cr21 + 4r31 − 6r1r2 + 2r3, (7.31)

ρ4 = c4 − 3c3r1 + c2(4r
2
1 − r2) + c(−2r1r2 + r3)

− 14r41 + 28r21r2 − 5r22 − 12r1r3 + 3r4.

The generalization to any P is as follows:

ρ1 = c, and ρ1(Q) = τ − r1
P
,

ρ2 = c2 − c
r1
P

+
r2
P

− (P + 1)

2P2
r21,

ρ3 = c3 − 2c2
r1
P

+ c
r21
P2

+
2(P + 1)(P + 2)

3P3
r31 −

2(P + 2)

P2
r1r2 +

2r3
P
,

(7.32)

ρ4 = c4 − 3c3
r1
P

+ c2

(
(P + 7)

2P2
r21 −

r2
P

)

+ c

(
(P − 1)(2P + 5)

6P3
r31 −

(P + 1)

P2
r1r2 +

r3
P

)
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− (P + 1)(2P + 5)(3P + 5)

8P4
r41 +

(2P + 5)(3P + 5)

2P3
r21r2

− (3P + 7)

2P2
r22 −

3(P + 3)

P2
r1r3 +

3r4
P
.

Equation (7.30) generalizes to

cj =

j∑

i=0

ρiCj−i

[(R
aP

)(i+P+1)/P 1

S

]
, (7.33)

where S ≡ 1
PaP−1

∂R
∂a . An inverse formula giving the ρn’s in terms of

the cj and rj coefficients is

ρn = Cn

[
B(a)

(R
aP

)−(n+2P+1)/P

S2

]
. (7.34)

Appendix 7.A: Expansions of the βj(a) Functions

The opening terms of the series expansions of the first few βj(a)

functions are given below. Note that the Bj(a) functions are given by

the series in parentheses, whose coefficients are the W j
i of Eq. (7.11):

β2(a) = a3
(
1 + 0 +

c2
3
a2 +

3c3 − cc2
6

a3

+
18c4 − 9cc3 − 2c22 + 3c2c2

30
a4 +O(a5)

)
,

β3(a) =
1

2
a4
(
1− c

3
a+

c2

6
a2 +

6c3 + 2cc2 − 3c3

30
a3 +O(a4)

)
,

β4(a) =
1

3
a5
(
1− c

2
a+

3c2 − 2c2
10

a2 +O(a3)

)
,

β5(a) =
1

4
a6
(
1− 3c

5
a+O(a2)

)
,

β6(a) =
1

5
a7 (1 +O(a)) .

These expansions of βj(a) are useful for formal purposes. How-

ever, the approximate forms needed later are not truncated series,
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but correspond to the definition, Eq. (7.6), with β(a) replaced by its

truncated series.

Exercise 7.1. Show that requiring commutation of the second
derivatives, ∂2a/∂τ∂cj = ∂2a/∂cj∂τ , leads to

β′
j(a)β(a) − βj(a)β

′(a) = −baj+2,

where the prime indicates differentiation with respect to a, regard-
ing the coefficients cj as fixed. (Note that the coefficients of βj(a)
cannot depend on μ by dimensional analysis.) Verify that the
solution of this differential equation is Eq. (7.6).

Exercise 7.2. Consider a more general way of labelling RS’s
than the τ, c2, c3, . . . “coordinate system.” Make the following
minimal set of assumptions about these RS labels u1, u2, u3, . . .:
(i) the dependence of a on uj starts at order aj+1, and (ii) these
parameters are mutually independent. Also assume that u1 = τ ,
which loses no real generality since we know that ∂a/∂τ = β(a)/b
starts at order a2, and that the renormalization scale μ must be
involved in the RS labelling. Assumption (i) implies that

∂a

∂uj
= Nja

j+1
(
1 + W̃ j

1 a+ W̃ j
2a

2 + · · ·
)
,

with some normalization Nj and coefficients W̃ j
i . From assumption

(ii) we must have

∂2a

∂τ∂uj
=

∂2a

∂uj∂τ
.

Show that this leads to the conclusion that

∂cj−i

∂uj
= 0,

∂cj
∂uj

= Nj(j − 1),

and

∂cj+i

∂uj
= Nj

i∑

r=0

(i+ j − 1− 2r) crW̃
j
i−r ,

for j = 2, 3, . . . and i = 1, 2, . . ., with c1 ≡ c and c0 ≡ W̃ j
0 ≡ 1.
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Note the important conclusion that cj is linearly dependent on uj .

Check that if one chooses uj = cj then the W̃ j
i coefficients reduce

to the W j
i coefficients of the Bj(a) functions. See Eqs. (7.11) and

(7.14).

Exercise 7.3. Show that the RG equations for the cj ’s, written in
terms of the Bj(a) functions

(
∂

∂cj

∣∣∣∣
a

+
aj+1Bj(a)

(j − 1)

∂

∂a

)
R = 0,

can be taken to apply even for j = 1 if we consider “c1” to be the
invariant c plus an infinitesimal part proportional to τ , in the sense
that

“c1” = lim
j→1

(c− (j − 1)τ)

so that

∂

∂c1
→ − 1

(j − 1)

∂

∂τ
.

(Note that, as discussed in Sec. 7.2, the formula for Bj naturally
leads to the identification of B1(a) with B(a).)

Exercise 7.4. Find the first three coefficients in the conversion
between the couplants of two RS’s, a and ã:

ã = a(1 + V1a+ V2a
2 + V3a

3 + · · · ).
The two RS’s are labelled by τ, c2, c3, . . . and τ̃ , c̃2, c̃3, . . ., respec-
tively, where τ = b ln(M/Λ̃) and τ̃ = b ln(M̃/Λ̃), and M and M̃
are the renormalization-scale choices in the two schemes. (Without
loss of generality, we can assume that the two RP’s are defined so
that their Λ̃’s are the same.)

Solution: The result will be needed in Chapter 12. V1 is easily
found from considering the τ and τ̃ derivatives. The other coeffi-
cients can best be found from the relation (see Eq. (6.8)) between
the two β functions:

β̃(ã) =
dã

da
β(a).

Indeed, the calculation is algebraically the same as that for finding
the ρ invariants from Eq. (7.27), with the replacements R → ã,
ρj → c̃j , and ri → Vi. Thus, we may use Eq. (7.30) with those
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replacements, and then rearrange to solve for Vi. The first three
are

V1 = τ − τ̃ ,

V2 = (τ − τ̃ )2 + c(τ − τ̃ )− (c2 − c̃2),

V3 = (τ − τ̃ )3 +
5

2
c(τ − τ̃)2 + (−2c2 + 3c̃2)(τ − τ̃)− 1

2
(c3 − c̃3).

Note that Vi is independent of all cj ’s with j > i. Note also that
the τ and τ̃ dependence is only through the difference τ − τ̃ , so
that the Vi’s depend on M and M̃ only through the dimensionless
ratio M/M̃ , as required dimensionally. However, note that the
dependence on the cj , c̃j is not always through the difference cj−c̃j.
This fact, first seen in the c2, c̃2 dependence of V3, might seem oddly
asymmetrical, but is in fact necessary for overall a↔ ã symmetry.
Reversion of a power series gives the inverse relation:

a = ã(1 + Ṽ1ã+ Ṽ2ã
2 + Ṽ3ã

3 + · · · ),
with

Ṽ1 = −V1
Ṽ2 = −V2 + 2V 2

1 ,

Ṽ3 = −V3 + 5V2V1 − 5V 3
1 .

One can check that, after substituting the above results for
V1, V2, V3, one indeed finds that Ṽ1, Ṽ2, Ṽ3 are given by those same
expressions with all tilde and plain variables exchanged.

Exercise 7.5. Consider the successive logarithmic derivatives of a
physical quantityR = aP(1+r1a+· · · ) with respect to the physical
energy scale Q:

R[n+1] ≡ Q
dR[n]

dQ
,

for n = 1, 2, 3, . . . , where R[1] ≡ R. These must all be physical
quantities themselves.

(i) In a fixed RS, the Q dependence comes only from the ri
coefficients’ dependence on Q/μ. Use the μ RG equation to
show that

R[2] = β(a)
∂R
∂a

.
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(ii) Apply the result again to get R[3] and hence show that the
quantity

γ ≡ R[3]

R[2]
= 1 + Q

d2R
dQ2

/
dR
dQ

is given by

γ =
dβ

da
+ β(a)

∂2R
∂a2

/
∂R
∂a

.

(γ is an “effective exponent” in the sense that R is locally
described, in the near neighbourhood of some particular energy
Q, by a power law R ≈ const. + CQγ . It is particularly
interesting in the infrared limit, as we discuss in Chapter 11.)

Exercise 7.6. (i) Continuing from the previous exercise, find
the first few perturbative coefficients of R[2] and hence find
the invariants associated with it. Show that these are simply
combinations of the usual ρ1(Q) and ρn invariants for the original
R. (Note that R[2] has a different leading-order power from R,
namely P + 1 instead of P.)

(ii) The result is rather simpler for R[2]/R, which is the scale
dimension of R:

D(R) ≡ Q

R
dR
dQ

.

Show that the invariants for D are related to those of R by

ρD
1 (Q) = ρ1(Q)− c,

ρD2 = 2ρ2 − 2c2,

ρD3 = 3ρ3 − 8cρ2 + 5c3,

ρD4 = 4ρ4 − 14cρ3 − 6ρ22 + 30c2ρ2 − 14c4,

for any P. (These last results are relevant in Chapter 12.)

Exercise 7.7. Continue considering the “delicate” theory with
b = 0 from Exercise 6.1.

(i) Show that the μ RG equation for R gives μ∂r1/∂μ = 0. Thus,
as one may also see from the discussion in Sec. 3.6, there are
no ultraviolet divergences at next-to-leading order.
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(ii) Show that the RS parameters can be chosen to be

g1 with
∂a

∂g1
= O(a2),

τ ≡ h ln(μ/Λ̃) with
∂a

∂τ
=
β(a)

h
= O(a3),

g3, g4, . . . with
∂a

∂gj
= O(aj+1),

and that the analogues of the ρn invariants, defined via the
EC β function, are

σ1 = g1 − r1,

σ2 = g2 − 2g1r1 + r21 ,

σ3 = g3 − 3g2r1 + 4g1r
2
1 − g1r2 − 2r1r2 + r3,

and so on, together with a Q-dependent invariant

σ2(Q) = h ln(μ/Λ̃) + r2 − r21 −
1

2
g21 .

Note that σ2 − σ2
1 = g, where g ≡ g2 − g21 is the invariant

found in Exercise 6.1. Note also that g2 is not an independent
scheme parameter; it is fixed in terms of g1 by g2 = σ2 −
σ2
1 + g21 .

(iii) Show that the analogues of the Bj(a) functions, defined now
as

Bj(a) ≡ (j − 2)

aj+1

∂a

∂gj
= 1 +O(a),

are

B1(a) = B(a)
(
1− a

∫ a

0

dx

x2

(
(1 + 2g1x)

B(x)2 − 1

))
,

and

Bj(a) =
(j − 2)

aj−2
B(a)

∫ a

0

dx
xj−3

B(x)2 , (j ≥ 3),

where

B(a) ≡ 1 + g1a+ g2a
2 + · · · .

Since g2 is not an independent variable, there is no B2(a). (In
a sense it is B(a).)
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Chapter 8

Finite Orders and Optimization

8.1. Finite-Order Approximants

So far the discussion has been at the level of formal power series. We

now need, for the renormalized series case, something corresponding

to the notion of the partial sum of an ordinary power series. Here

two truncations are involved, for R itself and for β. A definite

approximation to β is needed because it is the int-β equation that

relates a back to the theory’s one free parameter, the Λ̃ parameter

of some reference renormalization prescription.

The (k+1)th order, or (next-to)k-leading order (NkLO) approx-

imant is naturally defined with both R and β truncated after k + 1

terms:

R(k+1) ≡ aP(1 + r1a+ · · ·+ rka
k), (8.1)

where a here is shorthand for a(k+1), the solution to the int-β

equation with β replaced by β(k+1):

β(k+1) ≡ −ba2(1 + ca+ · · · + cka
k). (8.2)

It is straightforward to check that the order of the error term

R−R(k+1) is determined by whichever truncation, of R or β, is

the more severe. Thus, it is natural to use the same number of terms

in each. See Exercises 8.1 and 8.2.

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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Other types of approximant can, of course, be defined: For
example, one could use Padé approximant forms for R and/or for
β. The issue of the RS dependence of such approximants, and
how to “optimize” them, would require a fairly straightforward
generalization of the following discussion for truncated power series.

8.2. Optimization in Low Orders

While the exact R is RG-invariant, the finite-order approximants are

not, since the truncations spoil the cancellations in the RG equations

(7.3). If R in those equations is replaced by R(k+1) then the right-

hand side is not zero but is some remainder term O(aP+k+1). The

idea of “optimized perturbation theory” is to choose an “optimal”

RS in which the approximant R(k+1) is stationary with respect to RS

variations; i.e., the RS in which R(k+1) satisfies the RG equations,

(7.3), with no remainder:

(
∂R(k+1)

∂τ

∣∣∣∣∣
a

+
β(a)

b

∂R(k+1)

∂a

)

opt.RS

= 0, “j = 1” (8.3)

(
∂R(k+1)

∂cj

∣∣∣∣∣
a

+ βj(a)
∂R(k+1)

∂a

)

opt.RS

= 0. j = 2, . . . , k. (8.4)

We assume here that the QFT calculations of the R and

β-function coefficients up to and including rk and ck have been done

in some calculationally convenient RS. From those results, the values

of the invariants ρ1(Q) and ρ1 ≡ c and ρ2, . . . , ρk can be obtained.

The “optimized” result can be expressed solely in terms of those

invariants, and thus has no dependence whatsoever on the choice of

RS used for the Feynman-diagram calculations.

First order (leading order), as mentioned in Chapter 2, is only a
qualitative approximation. It is monotonic in the RS variable τ and
so is not optimizable. There are no invariant quantities, besides b.
One cannot do better than to guess at a suitable μ “of order Q.”
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Let us now consider the second-order (next-to-leading-order)

approximant:

R(2) = aP(1 + r1a), (8.5)

β(2) = −ba2(1 + ca), (8.6)

where a here is short for a(2), the solution to the int-β equation (6.24)

with β replaced by β(2):

τ = K(2)(a) =
1

a
+ c ln

∣∣∣∣
ca

1 + ca

∣∣∣∣ . (8.7)

Since R(2) depends on RS only through the variable τ , only the

“j = 1” equation (8.3) above is non-trivial. Thus, the optimized R(2)

is determined by a single optimization equation:

∂r1
∂τ

āP+1 − ā2(1 + cā)(PāP−1 + (P + 1)r̄1ā
P) = 0. (8.8)

(Overbars are used to indicate the value in the optimum RS.) As

discussed in Sec. 7.3, the aP+1 terms must cancel in any RS, which

fixes ∂r1
∂τ = P, leaving

P − (1 + cā)(P + (P + 1)r̄1ā) = 0. (8.9)

This equation determines the optimized coefficient r̄1 in terms of the

invariant c and the optimized couplant ā:

r̄1 = − P

(P + 1)

c

(1 + cā)
. (8.10)

But r̄1 is related to τ̄ by the definition of the ρ1(Q) invariant in

Eq. (7.32):

ρ1(Q) ≡ τ̄ − r̄1
P
. (8.11)

Eliminating r̄1 between these last two equations and substituting into

the second-order int-β equation, (8.7), gives

1

ā

(
1 + cā ln

∣∣∣∣
cā

1 + cā

∣∣∣∣+
1

(P + 1)

cā

(1 + cā)

)
= ρ1(Q). (8.12)
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If we are interested in a specific Q value then we need to solve this

equation numerically for ā (to a precision comfortably better than our

estimated error for R(2)). We can then substitute back in Eq. (8.10)

and hence obtain the optimized approximant R̄(2) = āP(1 + r̄1ā).

However, if we are interested in a range of Q then we may just pick

many ā values, in a suitable range, and evaluate the left-hand side

to find the ρ1(Q), and hence the Q value, corresponding to each of

those ā’s.

Note that the only approximations made here are the truncations

of the R and β series, leading to Eqs. (8.5), (8.7) that define

the second-order approximant is some general RS. We do not, for

instance, approximate Eq. (8.10) as r̄1 ≈ − P
(P+1)c (which corresponds

to the PWMR approximation, discussed later). Nor do we make some

uncontrolled analytic approximation to Eq. (8.12). At this order

optimization, in practical terms, is no more complicated than the

fixed-RS case, where we would have the int-β equation to solve.

We now turn to third order. The third order approximant is

R(3) = aP(1 + r1a+ r2a
2), (8.13)

where now a is short for a(3), the solution to the int-β equation

with β truncated at third order. R(3) depends on RS through two

parameters τ and c2, so there are two optimization equations coming

from Eqs. (8.3), (8.4). Those equations will mirror Eqs. (7.18), (7.19),

generalized to general P. Using the counterparts to Eqs. (7.20), (7.21)

they become

1 +

(
(P + 1)

P
r̄1 + c

)
ā− B̄(3)(ā)

(
1 +

(P + 1)

P
r̄1ā+

(P + 2)

P
r̄2ā

2

)
= 0,

(8.14)

1− B̄
(3)
2 (ā)

(
1 +

(P + 1)

P
r̄1ā+

(P + 2)

P
r̄2ā

2

)
= 0. (8.15)

Here B̄(3)(ā) is the B(a) function truncated at third order in the

optimum scheme:

B̄(3)(ā) ≡ (1 + cā+ c̄2ā
2
)
, (8.16)
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while the other function B̄
(3)
2 (ā) is obtained from Eqs. (7.9), (7.10)

with B(x) replaced by (1+cx+c̄2x
2). (Note that the only truncations

made are the initial truncations of the R and B series that define

the third-order approximant.) The two optimization equations can

be combined to yield equations for r̄1 and r̄2 in terms of the integral

Ī
(3)
2 ≡

∫ ā

0

dx

(1 + cx+ c̄2x2)2
(8.17)

and ā and c̄2. Combining those equations with the definition of the

invariant ρ2 will then determine c̄2 in terms of ā. Finally, ā itself can

be determined by combining the definition of the ρ1(Q) invariant

with the int-β equation. In the next chapter, we will explain a

systematic method for solving the optimization equations in third

and higher orders.

Note that the “optimal RS” is not the same from one order to

the next; for instance r̄1 at third order is not the same as r̄1 at second

order (so, strictly we should have distinguished r̄
(2)
1 and r̄

(3)
1 in the

above).

8.3. Perturbative Approximants as a Function of the

RS Variables

The following discussion is not essential, but the reader may find it

helpful to see pictures of the low-order approximants as a function

of the RS variables — akin to the figures in Chapters 4 and 5. (For

illustrative purposes, we choose the case studied in Example 3 of

Chapter 10, but the qualitative features are generic.)

The (P = 1) second-order approximant R(2) = a(1+ r1a), at any

given Q, is a function of just one RS variable, τ . The coefficient r1
depends linearly on τ and is τ−ρ1(Q), while a is a function of τ found

by inverting the second-order int-β equation, Eq. (8.7). Figure 8.1

shows R(2) as a function of τ . The single maximum corresponds to

the optimized result.

One can avoid the inversion step by simply using the int-β

equation to swap the variable τ for a itself. (This may be a little

mind-boggling at first, but is mathematically quite straightforward.)

The approximant R(2) can then be expressed explicitly as a function
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Fig. 8.1. The second-order approximant as a function of the RS variable τ in
the case corresponding to Example 3 of Chapter 10.

of the new “extraneous parameter” a as

R(2)(a) = a(1 + (K(2)(a)− ρ1(Q))a)

= a

(
2 + ca ln

(
ca

1 + ca

)
− ρ1(Q)a

)
. (8.18)

It is nicer to plot this against 1/a, rather than a itself; the qualitative

behaviour is then similar to the previous figure. Figure 8.2 shows

a close-up of the region near the maximum. The optimized result

corresponds to the maximum of this curve. Thus, in this sense, the

optimization condition is dR/da = 0. It is for this reason that we

write ∂R/∂a for the derivative taken with the ri coefficients held

constant. The total derivative dR/da here takes into account that the

r1 coefficient depends on τ — and hence, from the current viewpoint,

is a function of a.

At third order there are two RS variables τ and c2. It is again

mathematically convenient to swap τ for a. Now we must distinguish

the usual ∂R/∂a from ∂R/∂a|c2 , which must take into account the τ

dependence, and hence a dependence, of r1, r2. Similarly, ∂R/∂c2|a
is distinct from the usual ∂R/∂c2, which is at constant τ . (See also

Exercise 8.3.)

Figure 8.3 shows the third-order approximant R(3) as a function

of 1
a and c2. For a fixed c2 value the curves generically have two

stationary points or none. However, the optimal result, stationary in
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Fig. 8.2. As the previous figure, but with 1/a used as the RS variable, and
zooming in on the region near the maximum. The optimized result is 0.106 with
an error estimate of ±0.011.

Fig. 8.3. The third-order approximant as a function of the RS variables 1/a, c2,
in the same case, and shown on the same scale, as the previous figure. The curves
are for c2 = 0, 1

2
, 1, 3

2
times the optimal c2 value, which is −15.9. The optimal

1
a
, c2 are indicated by the black dot and give the optimized result R(3) = 0.095,

with an error estimate of ±0.005.

both 1/a and c2, is unique and corresponds to a saddle point of the

function.

It is instructive to compare this figure with those of Chapter 5.

One sees the pattern of diverging, flat, and overdamped regions —

and their characteristics show up both going from one order to the

next and in the dependence on the other extraneous parameter, c2.

Also note that the optimal value of 1/a has increased relative to the

previous order, in accord with the induced convergence phenomenon.
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8.4. The Optimization Equations

We now formulate the optimization equations at some general, (k +

1)th, order. It is convenient to define

S =
1

PaP−1

∂R
∂a

, (8.19)

whose series expansion

S = 1 + s1a+ s2a
2 + · · · (8.20)

has coefficients

sm ≡
(

P +m

P

)
rm. (8.21)

As will be seen below, the use of the sm coefficients absorbs all the P

dependence of the optimization equations. (However, P will reappear

later when we need to combine their solution, obtained in the next

chapter, with the P-dependent ρn invariants.)

Generalizing the discussion in Sec. 7.3 to any P, it must be true

that all terms in the RG equations up to and including O(aP+k)

cancel automatically in any RS. In the first optimization equation,

(8.3), the ∂R(k+1)

∂τ

∣∣∣
a
term is a polynomial which must cancel the first

k terms of β(a)
b

dR(k+1)

da . A similar observation applies to the other

optimization equations, (8.4). Hence, we may reduce the optimization

conditions to

B̄
(k+1)
j (ā)S̄(k+1)(ā)− Tk−j[B̄

(k+1)
j (ā)S̄(k+1)(ā)] = 0, (8.22)

for j = 1, 2, · · · , k, where, as in Sec. 5.4, the notation Tn[F (a)] means

“truncate the series for F (a) = F0 +F1a+ · · · immediately after the

an term” (i.e., Tn[F (a)] ≡ F0 + F1a+ · · ·+ Fna
n.)

For future reference, note that the j = k equation, where the

T0[. . .] term is just unity, gives

S̄(k+1)(ā) =
1

B̄
(k+1)
k (ā)

. (8.23)
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We emphasize again that the B
(k+1)
j (a) functions are not poly-

nomials, but are given by Eqs. (7.9), (7.10) with B(a) replaced by

B(k+1)(a) ≡ 1 + ca+ · · ·+ cka
k.

Exercise 8.1. Verify that the R and β series should be truncated
after the same number of terms to have a formally consistent
approximation. As discussed in Sec. 6.4, the int-β equation τ =
K(a) can be used to express a as a series in 1/τ (with coefficients
involving logarithms of τ). By using ρ1(Q) ≡ τ − r1/P, one can
then express a, and hence R, as a series in 1/ρ1(Q). Verify that
the number of valid terms in the resulting series is controlled by
whichever truncation, of R or β, is the more severe.

Show explicitly that if two terms of β are kept and at least two
terms of R are kept, then

R =

(
1

ρ1

)P (
1− Pc lnρ1/c

ρ1

+O

(
logs

ρ2
1

))
.

Keeping three terms of β and R, and noting that Δ̃(a) in
Eqs. (6.27), (6.28) is (c2− c2)a+O(a2), the result can be extended
to the next order in 1/ρ1. For P = 1 the result is

R =
1

ρ1

(
1− c lnρ1/c

ρ1

+
ρ2 + c2

(
ln2 ρ1/c− lnρ1/c− 1

)

ρ2
1

+O

(
logs

ρ3
1

))
.

Note that the r1, r2, c2 coefficients only appear in the invariant
combination ρ2.

[This expansion in 1/ρ1(Q) is suitable for the present formal
purpose: It is not, however, a solution to the RS-dependence
problem. The expansion parameter 1/ρ1(Q), though it is RS
invariant, is rather arbitrary because the Λ̃ definition is merely
a convention.]

Exercise 8.2. Show that “mixed-order” approximants, where R
and β are truncated at different orders, are not optimizable because
they have a monotonic dependence on one or more of the RS
parameters τ, c2, c3, . . . and hence have no stationary point.

Exercise 8.3. Show that the optimized result is independent of
the particular choice of RS “coordinate system” used: that is, the



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch08 page 142

142 Renormalized Perturbation Theory and Its Optimization

result for the optimized approximant R(k+1)
is the same whether

one uses τ, c2, c3, . . . as scheme parameters or the more general
parameterization by u1, u2, . . . as in Exercise 7.2. (This is just
the obvious fact that the value of a function f(x1, x2, . . .) at a
stationary point is invariant under changes of variable x1, x2, . . .→
x′1, x′2, . . ., but it is perhaps instructive to check this.) Consider the
case of R(3) explicitly; the generalization to any order will then be
obvious. Show first that the optimization equations ∂R(3)/∂ui for
i ≥ 3 are identically satisfied, and that those for i = 1 and i = 2
are a linear combination of the corresponding τ and c2 equations.
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Chapter 9

Solution for the Optimized rm Coefficients
and Optimization Algorithm

9.1. Definition of the Hi(a) Functions

In this chapter, it is implicit that all quantities are in the optimal RS

at (k+1)th order; overbars and (k+1) superscripts will be omitted.

Also, we make the convention that

r0 ≡ s0 ≡ c0 ≡ 1, and c1 ≡ c. (9.1)

Next — for reasons that will become clear in the next section —

we define some functions H1(a), . . . ,Hk(a) that are combinations of

the B1(a), . . . , Bk(a) functions:

Hi(a) ≡
k−i∑

j=0

cja
j

(
i− j − 1

i+ j − 1

)
Bi+j(a), i = (1), 2, . . . , k. (9.2)

For i = 1 this definition, as it stands, is ambiguous; it should be

interpreted as

H1(a) = B1(a)−
k−1∑

j=1

cja
jBj+1(a), (9.3)

corresponding to

lim
i→1

(
i− j − 1

i+ j − 1

)
=

{
1, j = 0,

−1, j �= 0.
(9.4)

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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Table 9.1. The Hi functions at low orders. (H0 = 1.)

k H1 H2 H3 H4

1 B 0
2 B − caB2 B2 0
3 B − caB2 − c2a

2B3 B2 B3 0
4 B − caB2 − c2a

2B3 − c3a
3B4 B2 − 1

3
c2a

2B4 B3 +
1
3
caB4 B4

It is also convenient and natural to define

H0(a) ≡ 1 and Hk+1(a) ≡ 0. (9.5)

Note that for the case i = k, the definition (9.2) gives Hk(a) = Bk(a).

The H functions in low orders are given explicitly in Table 9.1.

In general, the H’s are combinations of the B’s. It turns out that

there is a simple formula for the inverse relationship, giving the B’s

as combinations of the H’s.

Lemma.

Bj(a) =

k−j∑

q=0

W j
q a

qHj+q(a), j = 1, . . . , k, (9.6)

where the W j
i coefficients are those of the series expansion of Bj(a),

Eq. (7.11). (One might describe this result as follows: Take the power

series for Bj(a) and truncate it after the ak−j term. Now reweight

each term, replacing aq by aqHj+q(a), and the result is the full series

for Bj(a).)

Proof. (We assume j �= 1 for the present.) Using the definition of

the H’s, Eq. (9.2), the right-hand side becomes

k−j∑

q=0

W j
q a

q
k−j−q∑

p=0

cpa
p (j + q − p− 1)

(j + q + p− 1)
Bj+q+p(a). (9.7)

Reorganizing the double sum by defining n = q + p converts this

expression to

k−j∑

n=0

anBj+n(a)

(j + n− 1)

n∑

p=0

(n+ j − 1− 2p)cpW
j
n−p. (9.8)
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The inner sum reduces to (j − 1)δn0 by virtue of Eq. (7.14). Thus,

only the n = 0 term of the outer sum survives, the (j − 1) factors

cancel, and one is left with just Bj(a), as claimed.

In the j = 1 case Eq. (9.6) becomes

B1(a) =

k−1∑

q=0

cqa
qHq+1(a). (9.9)

Using Eq. (9.3) for H1(a) and Eq. (9.2) for the other H’s, the right-

hand side becomes

B1(a)−
k−1∑

j=1

cja
jBj+1(a) +

k−1∑

q=1

cqa
q
k−q−1∑

j=0

cja
j (q − j)

(q + j)
Bq+j+1(a).

(9.10)

Reorganizing the double sum by defining n = q + j yields

B1(a)−
k−1∑

j=1

cja
jBj+1(a) +

k−1∑

n=1

an

n
Bn+1(a)

⎛

⎝
n∑

q=1

(2q − n)cqcn−q

⎞

⎠.

(9.11)

The inner sum, in parentheses, after adding and subtracting a q = 0

term becomes

ncn +
n∑

q=0

(2q − n)cqcn−q, (9.12)

which reduces to ncn since the summation term vanishes, as noted

in Eq. (7.15). Thus, the two series terms in (9.11) cancel leaving just

B1(a), as claimed. �

9.2. Formula for the Optimized sm Coefficients

We are now ready to state the main result; an exact, analytic

expression for the optimized sm, and hence the rm = P
P+msm,

coefficients, for m = 0, 1, . . . , k, in terms of the (optimized values

of) a and the β-function coefficients c2, . . . , ck:
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Theorem.

sm =
a−m

Bk(a)
(Hk−m(a)−Hk−m+1(a)), m = 0, 1, . . . , k. (9.13)

Proof. In the case j = k, as noted in Eq. (8.23), the optimization

equation reduces to

S =
1

Bk(a)
. (9.14)

We first prove that this equation is satisfied. Substituting Eq. (9.13)

into the series for S gives

S ≡
k∑

m=0

sma
m =

1

Bk(a)

k∑

m=0

(Hk−m(a)−Hk−m+1(a)). (9.15)

The H’s cancel in pairs leaving

S =
1

Bk(a)
(H0 −Hk+1) =

1

Bk(a)
, (9.16)

since we defined H0 ≡ 1 and Hk+1 ≡ 0 above.

Using this result and writing out the truncated-series term

explicitly, the remaining optimization equations of Eq. (8.22) can

be rewritten as

Bj(a)

Bk(a)
=

k−j∑

i=0

ai
i∑

m=0

smW
j
i−m j = 1, . . . , k − 1. (9.17)

We now need to prove that these equations are satisfied by Eq. (9.13).

The right-hand side becomes

k−j∑

i=0

ai
i∑

m=0

W j
i−m

a−m

Bk(a)
(Hk−m(a)−Hk−m+1(a)). (9.18)

Reorganizing the double summation, defining q = i−m and thereby

replacing i with m+ q yields

1

Bk(a)

k−j∑

q=0

aqW j
q

k−j−q∑

m=0

(Hk−m(a)−Hk−m+1(a)). (9.19)



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch09 page 147

Solution for the Optimized rm Coefficients and Optimization Algorithm 147

The inner summation reduces to Hj+q(a) since the H’s again cancel

in pairs (and Hk+1 ≡ 0). Thus, the right-hand side of (9.17)

reduces to

1

Bk(a)

k−j∑

q=0

aqW j
qHj+q(a) =

Bj(a)

Bk(a)
, (9.20)

where the last step uses the lemma, Eq. (9.6), and produces the left-

hand side of (9.17), completing the proof. �

9.3. An Identity and the PWMR Approximation

It is worth noting the following set of “complete-sum identities:”

k∑

j=0

cja
j

(
i− j − 1

i+ j − 1

)
Bi+j(a) = 1, i = (1), 2, . . . , k, (9.21)

with the i = 1 case interpreted using (9.4). The proof is given

in Appendix 9.A, which discusses various properties of the Ij(a)

integrals related to the Bj(a) functions.

These identities reveal a remarkable property of the Hi(a)’s,

which are defined as a “partial sum” (over j = 0, . . . , k − i) of the

same terms. Hence, we can write

Hi(a) = 1−
k∑

j=k−i+1

cja
j

(
i− j − 1

i+ j − 1

)
Bi+j(a), i = (1), 2, . . . , k,

(9.22)

which, unlike the Hi definition, involves Bj’s with j greater than k.

Since the Bj ’s all start 1 +O(a) we see that the series for Hi(a)− 1

begins only at order ak−i+1:

Hi(a)− 1 =
k − 2i+ 2

k
ck−i+1a

k−i+1 (1 +O(a)). (9.23)

Substituting this result into Eq. (9.13) leads to

sm = a−m

(
(1 +O(am+1))−

(
1 +

(−k + 2m)

k
cma

m

))
1

1 +O(a)

(9.24)
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and hence

sm =
k − 2m

k
cm +O(a). (9.25)

This result was first obtained — in a quite different manner — by

Pennington, Wrigley, and Mignaco and Roditi (PWMR). The result-

ing PWMR approximation (see Exercise 9.1) can be useful when

a� 1 (one also needs a� a∗ if a finite infrared limit a∗ exists) and

it provides a good starting point for the full optimization procedure.

(Obviously, post-PWMR, post-post-PWMR, . . . approximations can

be obtained by expanding further in powers of a; see Exercise 9.3.)

9.4. Results in Terms of the Ij Integrals

Recalling that the Bj(a) functions are related to the Ij ’s by Eq. (7.9),

we may rewrite the H’s as sums of I’s rather than B’s:

Hi(a) =
B(a)

ai−1

k−i∑

j=0

(i− j − 1)cjIi+j , i = 2, . . . , k, (9.26)

and

H1(a) = B(a)

⎛

⎝1−
k−1∑

j=1

jcjIj+1

⎞

⎠. (9.27)

Note that at (k+1)th order only I2, . . . , Ik arise. The sm coefficients,

from Eq. (9.13), can thus be expressed in terms of the Ij ’s (see

Exercise 9.3). The result, defining c−1 ≡ 0, is

sm =
1

(k − 1)Ik

m∑

j=0

Ik−m+j

(
(k −m− j − 1)cj

− (k −m− j + 1)
cj−1

a

)
, (9.28)

for m = 1, . . . , k− 2. The cases m = k− 1, k, involving H1,H0, need

special treatment. Those results are

sk−1 =
1

(k − 1)Ik

⎛

⎝1−
k−1∑

j=1

Ij+1

(
jcj − (j − 2)

cj−1

a

)
⎞

⎠ (9.29)



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch09 page 149

Solution for the Optimized rm Coefficients and Optimization Algorithm 149

Table 9.2. The sm coefficients at low orders, in the terms of the Ij integrals.
B ≡ ∑k

j=0 cja
j .

k sm coefficients

1 s1 = − c
B
.

2 s1 = −c− 1
a
+ 1

I2
, s2 = c

a
+ 1

aI2

(
1
B

− 1
)
.

3 s1 = − 1
a
+ I2

2I3
, s2 = −c2 +

1
2aI3

(a− (1 + ca)I2),

s3 = c2
a
+ 1

2aI3

(
1
B

− 1 + cI2
)
.

4 s1 = c
3
− 1

a
+ 2I3

3I4
, s2 = − (c+c2a)

3a
+ 1

3aI4
(aI2 − 2I3),

s3 = (c2−3c3a)
3a

+ 1
3aI4

s4 = c3
a
+ 1

3aI4

(
1
B

− 1 + cI2 + 2c2I3
)
.

(a− (1 + ca)I2 − 2c2aI3),

and

sk =
1

(k − 1)aIk

⎛

⎝ 1

B
− 1 +

k−1∑

j=1

jcjIj+1

⎞

⎠. (9.30)

For low orders, the results are collected in Table 9.2. The Ij integrals

are readily evaluated by computer algebra; see Table 9.3. Properties

of the I’s are discussed in Appendix 9.A.

9.5. Optimization Algorithm

The optimization problem at (k+1)th order involves 2k+1 variables,

namely, a, τ, c2, . . . , ck, and r1, . . . , rk. These are connected by 2k+1

equations, namely, the int-β equation, the k optimization equations,

and the k formulas for the invariants ρ1(Q) and ρ2, . . . , ρk (whose

numerical values we assume are given — in the case of ρ1(Q) the

numerical value will depend on the value of Q being considered).

We shall use a, c2, . . . , ck as the principal variables. The solution

to the optimization equations just discussed gives the coefficients

r1, . . . , rk directly in terms of the principal variables. The int-β

equation explicitly fixes τ in terms of the principal variables. The

ρ1(Q) = τ − r1 equation can be used at the end to relate a to

Q, so the remaining task is to use the formulas for ρ2, . . . , ρk to

determine, self-consistently, by some convergent iterative procedure,
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Table 9.3. Mathematica notebook to evaluate the I2,I3, and Δ̃
integrals for the k = 3 case. The output expressions are not shown for
reasons of space. (To avoid ConditionalExpressionConditionalExpressionConditionalExpression forms, it is tacitly
assumed that a is less than the smallest positive root of B(x), as must
be true in the present context.)

In[ # ] $Assumptions = {c ∈ Reals, c2 ∈ Reals, c3 ∈ Reals, a > 0};$Assumptions = {c ∈ Reals, c2 ∈ Reals, c3 ∈ Reals, a > 0};$Assumptions = {c ∈ Reals, c2 ∈ Reals, c3 ∈ Reals, a > 0};
In[ # ] B = 1 + c x + c2 x∧2 + c3 x∧3;B = 1 + c x + c2 x∧2 + c3 x∧3;B = 1 + c x + c2 x∧2 + c3 x∧3;

In[ # ] int2 = Integrate
[

1
B∧2

, x
]
;int2 = Integrate

[
1

B∧2
, x

]
;int2 = Integrate

[
1

B∧2
, x

]
;

In[ # ] Ii2 = (int2 /. x → a)− (int2 /. x → 0)Ii2 = (int2 /. x → a)− (int2 /. x → 0)Ii2 = (int2 /. x → a)− (int2 /. x → 0)

Out[# ]

In[ # ] int3 = Integrate
[

x
B∧2

, x
]
;int3 = Integrate

[
x

B∧2
, x

]
;int3 = Integrate

[
x

B∧2
, x

]
;

In[ # ] Ii3 = (int3 /. x → a)− (int3 /. x → 0)Ii3 = (int3 /. x → a)− (int3 /. x → 0)Ii3 = (int3 /. x → a)− (int3 /. x → 0)

Out[# ]

In[ # ] Deltwint = Integrate[(1/x∧2)(1/B− 1 + c x), x];Deltwint = Integrate[(1/x∧2)(1/B− 1 + c x), x];Deltwint = Integrate[(1/x∧2)(1/B − 1 + c x), x];

In[ # ] Deltw = (Deltwint /. x → a)− (Deltwint /. x → 0)Deltw = (Deltwint /. x → a)− (Deltwint /. x → 0)Deltw = (Deltwint /. x → a)− (Deltwint /. x → 0)

Out[# ]

the c2, . . . , ck variables. One such algorithm is the following (recall

sm ≡ (P+m
P

)
rm):

(1) Choose a numerical value for a.

(2) Make an initial guess for the numerical values of s1, . . . , sk.

(3) Find values for the cj ’s from the invariants using Eq. (7.33).

(4) Obtain new values for the sm from the formulas of the preceding

section.

(5) Iterate from step 3 until the results converge to the desired

precision.

(6) Finally, use

ρ1(Q) =
1

a
+ c ln |ca| − Δ̃(a)−

(
P

P + 1

)
s1 (9.31)

(from the definition of ρ1(Q) as τ − r1 combined with the int-β

equation τ = K̂(a) in the form of Eq. (6.27)) to find the value of

Q that corresponds to the chosen a value. One can then repeat the

whole procedure with different initial a values to cover the desired

range of Q values — or to home in on one particular Q value.
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It is usually convenient to start at a very small a value and use the

PWMR approximation (see Exercise 9.1) for the initial sm values.

One can then move step-by-step to larger a values (and hence lower

Q’s) using the previous sm’s as the initial guess for the next step.

To illustrate the algorithm we show, in Table 9.4, a Mathematica

notebook for the fourth-order (k = 3, P = 1) case. The desired values

of c, ρ2, ρ3 and a should be entered in place of those used there (which

correspond to Example 3 in Chapter 10).

Various details of the algorithm can be refined. It appears to be

quite robust and efficient except in the far-infrared region, where

more elaborate numerical analysis techniques may be needed. The

infrared limit can be analyzed analytically, as will be discussed in

Chapter 11.

In the case of a fixed-point limit, where the β function has
a zero at a = a∗, one can avoid the worst problems at low Q by
iterating at a fixed B(a) value rather than at a fixed a value. That
is, after step 3, one constructs the new B(x) function and solves
for a new a from B(a) = B0, where B0 is the value obtained in the
first iteration.

Is the optimal solution determined uniquely? This seems
very likely, due to the fact that k extraneous parameters are
involved at (k + 1)th order. A general proof appears difficult,
but at large Q, where the PWMR approximation is good, the
uniqueness can be proved easily: The PWMR cj coefficients are
fixed directly by the values of the ρn invariants (see Exercise 9.1),
leaving Eq. (9.31) to fix the optimal a. The right-hand side is easily
seen to be a monotonic-decreasing function of a, while the left-hand
side is a-independent; hence, their intersection point is unique.

Appendix 9.A: Properties of the Ij and Jj Integrals

In this appendix, we discuss some properties of the integrals

Ij(a) ≡
∫ a

0
dx

xj−2

B(x)2
, Jj(a) ≡

∫ a

0
dx
xj−2

B(x)
. (9A.1)

It should be understood that we are considering (k + 1)th order, so

that “B(x)” is really shorthand for B(k+1)(x) ≡ 1 + cx+ · · ·+ ckx
k.

Unless otherwise stated, we assume j ≥ 2, so that the integrals
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Table 9.4. A basic program to implement the optimization algorithm for P = 1
at fourth order (k = 3). Expressions for I2,I3, Δ̃ should be cut-and-paste into the
opening lines from the outputs of Table 9.3.

In[ # ] Ii2 = ...; Ii3 = ...; Deltw = ...;Ii2 = ...; Ii3 = ...; Deltw = ...;Ii2 = ...; Ii3 = ...; Deltw = ...;

In[ # ] c = 115/58; ρ2 = −9.92498; ρ3 = −115.21021;c = 115/58; ρ2 = −9.92498; ρ3 = −115.21021;c = 115/58; ρ2 = −9.92498; ρ3 = −115.21021;

In[ # ] c2frinv = ρ2− (
r2− c r1− r12

)
/. {r1 → s1/2, r2 → s2/3};c2frinv = ρ2− (

r2− c r1− r12
)
/. {r1 → s1/2, r2 → s2/3};c2frinv = ρ2− (

r2− c r1− r12
)
/. {r1 → s1/2, r2 → s2/3};

c3frinv = ρ3− (−2 c2 r1 + c r12 + 4 r13 − 6 r1 r2 + 2 r3
)
/.c3frinv = ρ3− (−2 c2 r1 + c r12 + 4 r13 − 6 r1 r2 + 2 r3

)
/.c3frinv = ρ3− (−2 c2 r1 + c r12 + 4 r13 − 6 r1 r2 + 2 r3

)
/.

{r1 → s1/2, r2 → s2/3, r3 → s3/4};{r1 → s1/2, r2 → s2/3, r3 → s3/4};{r1 → s1/2, r2 → s2/3, r3 → s3/4};
In[ # ] reslist = {};reslist = {};reslist = {};
In[ # ] (* Initial guesses for s1, s2, s3. PWMR used here. *)(* Initial guesses for s1, s2, s3. PWMR used here. *)(* Initial guesses for s1, s2, s3. PWMR used here. *)

s1 = c
3
; s2 = − 3

8

(
ρ2 + 7

36
c2
)
;s1 = c

3
; s2 = − 3

8

(
ρ2 + 7

36
c2
)
;s1 = c

3
; s2 = − 3

8

(
ρ2 + 7

36
c2
)
;

s3 = −2
(
ρ3 + 1

4
ρ2 c + 1

432
c3
)
;s3 = −2

(
ρ3 + 1

4
ρ2 c + 1

432
c3
)
;s3 = −2

(
ρ3 + 1

4
ρ2 c + 1

432
c3
)
;

In[ # ] (*%%%%*)(*%%%%*)(*%%%%*)

In[ # ] aa = 0.0899359; n = 0;aa = 0.0899359; n = 0;aa = 0.0899359; n = 0;

In[ # ] (*####*)(*####*)(*####*)

n = n + 1;n = n + 1;n = n + 1;

c2 = c2frinv; c3 = c3frinv;c2 = c2frinv; c3 = c3frinv;c2 = c2frinv; c3 = c3frinv;

Bval = 1 + c a + c2 a∧2 + c3 a∧3 /. a → aa;Bval = 1 + c a + c2 a∧2 + c3 a∧3 /. a → aa;Bval = 1 + c a + c2 a∧2 + c3 a∧3 /. a → aa;

Ii2val = Re[Ii2 /. a → aa];Ii2val = Re[Ii2 /. a → aa];Ii2val = Re[Ii2 /. a → aa];

Ii3val = Re[Ii3 /. a → aa];Ii3val = Re[Ii3 /. a → aa];Ii3val = Re[Ii3 /. a → aa];

s1 = −1/aa + Ii2val/(2 Ii3val);s1 = −1/aa + Ii2val/(2 Ii3val);s1 = −1/aa + Ii2val/(2 Ii3val);

s2 = −c2 + (aa− (1 + c aa) Ii2val)/(2 aa Ii3val);s2 = −c2 + (aa− (1 + c aa) Ii2val)/(2 aa Ii3val);s2 = −c2 + (aa− (1 + c aa) Ii2val)/(2 aa Ii3val);

s3 = c2/aa + (1/Bval− 1 + c Ii2val)/(2 aa Ii3val);s3 = c2/aa + (1/Bval− 1 + c Ii2val)/(2 aa Ii3val);s3 = c2/aa + (1/Bval− 1 + c Ii2val)/(2 aa Ii3val);

RR[ n ] = a(1 + (s1/2)a + (s2/3)a∧2 + (s3/4)a∧3) /. a → aa;RR[ n ] = a(1 + (s1/2)a + (s2/3)a∧2 + (s3/4)a∧3) /. a → aa;RR[ n ] = a(1 + (s1/2)a + (s2/3)a∧2 + (s3/4)a∧3) /. a → aa;

(*####*)(*####*)(*####*)

In[ # ] (* Evaluate the preceding cell several times until satisfactorily converged.(* Evaluate the preceding cell several times until satisfactorily converged.(* Evaluate the preceding cell several times until satisfactorily converged.

Use ListPlot[Table[RR[i], {i, 1, n}]] to view convergence. *)Use ListPlot[Table[RR[i], {i, 1,n}]] to view convergence. *)Use ListPlot[Table[RR[i], {i, 1, n}]] to view convergence. *)

In[ # ] rho1Q = (1/a + cLog [Abs [c a] ]− Re [Deltw ]− s1/2) /. a → aa;rho1Q = (1/a + cLog [Abs [c a] ]− Re [Deltw ]− s1/2) /. a → aa;rho1Q = (1/a + cLog [Abs [c a] ]− Re [Deltw ]− s1/2) /. a → aa;

In[ # ] AppendTo [ reslist, {aa, rho1Q, RR[ n ], c2, c3, s1, s2, s3}]AppendTo [ reslist, {aa, rho1Q, RR[ n ], c2, c3, s1, s2, s3}]AppendTo [ reslist, {aa, rho1Q, RR[ n ], c2, c3, s1, s2, s3}]
Out[# ] {{0.0899359, 6.02383, 0.0913479,−7.42689,−230.263,

−0.125903,−7.85684, 233.94}}
In[ # ] (*Return to (*%%%%*) and enter a somewhat larger aa value,(*Return to (*%%%%*) and enter a somewhat larger aa value,(*Return to (*%%%%*) and enter a somewhat larger aa value,

thereby moving to lower Q. *)thereby moving to lower Q. *)thereby moving to lower Q. *)



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch09 page 153

Solution for the Optimized rm Coefficients and Optimization Algorithm 153

are convergent. These integrals may be evaluated analytically by

expressing the polynomial B(x) as a product of its factors and using

partial fractions. (The resulting expressions are cumbersome, and

complicated by the possible presence of complex roots in pairs, but

are readily handled by computer algebra programs. Note that, in the

present context, a will naturally always be smaller than any positive

root of B(x).)

The J ’s are given by a sum of I’s:

Ji =

k∑

j=0

cj Ii+j. (9A.2)

The proof is simple: The right-hand side is

k∑

j=0

cj

∫ a

0
dx
xi+j−2

B(x)2
=

∫ a

0
dx

xi−2

B(x)2

k∑

j=0

cjx
j, (9A.3)

and the sum gives B(x), which cancels with one of the B(x) factors

in the denominator, so that the integral reduces to Ji.

A set of “complete-sum identities” follows from the fact that
∫ a

0
dx

d

dx

(
xi−1

B(x)

)
=

ai−1

B(a)
. (9A.4)

The left-hand side is
∫ a

0
dx

(
(i− 1)

xi−2

B(x)
− xi−1

B(x)2
dB

dx

)
= (i− 1)Ji −

k∑

j=0

jcj

∫ a

0
dx
xi+j−2

B(x)2

= (i− 1)
k∑

j=0

cjIi+j −
k∑

j=0

jcjIi+j

=
k∑

j=0

(i− j − 1)cjIi+j. (9A.5)

Thus, we obtain a set of complete-sum identities:

k∑

j=0

(i− j − 1)cjIi+j =
ai−1

B(a)
, i = (1), 2, 3, . . .. (9A.6)
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In the special case i = 1, the result should more properly be written

as

k∑

j=1

(−j)cjIj+1 =
1

B(a)
− 1, (9A.7)

where the sum starts with j = 1. (As a mnemonic, one can regard

the j = 0 term, which has a vanishing coefficient times a divergent

I1, as producing a 1 that is taken to the right-hand side.)

Recalling that the Bj(a) functions are related to the Ij’s, we can

rewrite the complete-sum identities, Eq. (9A.6), in terms of Bj ’s to

get

k∑

j=0

(i− j − 1)cj
ai+j−1

(i+ j − 1)

Bi+j(a)

B(a)
=

ai−1

B(a)
, (9A.8)

which, when divided by ai−1/B(a), gives the result in Eq. (9.21).

(The i = 1 case needs special consideration, but can be easily

checked.)

In the factorization-scheme-dependence problem, discussed in

Chapter 12, we also encounter the integrals Jk+1 and I2k+1 at

(k + 1)th order. These can also be reduced to combinations of

I2, . . . , Ik by the earlier formulas plus the identity

k∑

j=1

jcjJj+1 = lnB(a), (9A.9)

which follows from

∫ a

0
dx

1

B(x)

dB(x)

dx
=

∫ a

0
dx

1

B(x)

k∑

j=0

jcjx
j−1 =

k∑

j=1

jcj

∫ a

0
dx
xj−1

B(x)
.

(9A.10)

For cases involving Ij or Jj for j = 1 or 0, we may define

“regulated” versions of the integrals by subtracting off the inverse

powers of x in a Laurent expansion of the integrand. However, the
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only such case we really need mention is

Δ̃ ≡ J reg
0 ≡

∫ a

0
dx

(
1

x2B(x)
− 1− cx

x2

)
, (9A.11)

which is the integral occurring in the int-β equation (see Eqs. (6.27)

and (6.28).) In practice, this integral is best evaluated directly, but

it is noteworthy that it can be expressed as a sum over convergent

J integrals:

Δ̃ =

∫ a

0
dx

1

x2B(x)

(
1− (1− cx)

k∑

i=0

cix
i

)

=

∫ a

0
dx

1

x2B(x)

(
k∑

i=2

(cci−1 − ci)x
i + cckx

k+1

)

=
k−1∑

j=1

(ccj − cj+1)Jj+1 + cckJk+1. (9A.12)

The last term, by using the J complete-sum identity, Eq. (9A.9), can

be expressed as

cckJk+1 =
c

k

⎛

⎝lnB(a)−
k−1∑

j=1

jcjJj+1

⎞

⎠, (9A.13)

so that

Δ̃ =
c

k
lnB(a) +

k−1∑

j=1

(
(k − j)

k
ccj − cj+1

)
Jj+1. (9A.14)

Note that the J ’s involved can be expressed, using Eq. (9A.2), as

a sum of Ij’s with j = 2, . . . 2k. Then, by using the complete-sum

identities to substitute for Ik+1, . . . , I2k, one can reduce the result to

a sum over just I2, . . . , Ik. (See Exercise 9.4.)

Exercise 9.1. Combine the PWMR result, Eq. (9.25), with the
formulas for the ρi invariants to solve for the PWMR rm coefficients
in terms of the invariants for second, third, and fourth orders.
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For P = 1 you should find r1 = − 1
2 c at second order; r1 = 0,

r2 = − 1
2ρ2 at third order; and r1 = 1

6c, r2 = − 1
8

(
ρ2 +

7
36 c

2
)
,

r3 = − 1
2

(
ρ3 +

1
4ρ2c+

1
432c

3
)
at fourth order.

Exercise 9.2. Express the formula for the sm coefficients,
Eq. (9.13), in matrix form, with the column vector of ŝm’s (with
ŝm ≡ sma

m and ŝ0 ≡ 1) given by 1/Bk times a matrix of 0’s and
1’s times a column vector of Hi’s. Then find the matrix inverse.
Substitute in the lemma, Eq. (9.6), to show that the column vector
of (1, B,B2, . . . , Bk) is given by the matrix

Bk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1 1

Tk−1(B) Tk−2(B) Tk−3(B) . . . 1 0

: : : . . . : :

T2(Bk−2) T1(Bk−2) 1 . . . 0 0

T1(Bk−1) 1 0 . . . 0 0

1 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

times the column vector (1, ŝ1, ŝ2, . . . , ŝk).

Exercise 9.3.

(i) Derive Eq. (9.28).
(ii) Obtain Eqs. (9.29, 9.30) for the special cases sk and sk−1.
(iii) Use the complete-sum identities (9A.6), to obtain the formula

sm =
1

(k − 1)Ik

⎛

⎝(k − 2m)cm
Ik+1

a
+

k∑

j=m+1

cj

×
(
(k −m− j)

Ik−m+j+1

a
− (k −m− j − 1)Ik−m+j

))
,

which gives compact results for sk, sk−1, . . ., but is more
cumbersome for s1, s2, . . .. Note that it involves integrals
beyond Ik, up to I2k−m+1 (and so up to I2k for m = 1).
The first term directly yields the PWMR approximation.

(iv) Use the series expansion of the Ij ’s to obtain the post-PWMR
approximation

sm =
(k − 2m)

k
cm

(
1− 2ca

k(k + 1)

)
+

2(m+ 1)

k(k + 1)
cm+1a.
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Exercise 9.4. From Eqs. (9A.14) and (9A.2) show that for k = 2

Δ̃ =
c

2
lnB(a) +

(
c2

2
− c2

)
(I2 + cI3 + c2I4).

Using the complete-sum identities of Eq. (9A.6), eliminate I3 and
I4 and hence express Δ̃ in terms of I2:

Δ̃ =
c

2
lnB(a)− (c2 − 2c2)

4c2

(
(c2 − 4c2)I2 − a

B(a)

(
c2 − 2c2 + cc2a

))
.
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Chapter 10

Numerical Examples for Re+e− in QCD

10.1. Re+e− and Its QCD Corrections

We turn next to illustrative numerical results for a specific physical

quantity, namely the QCD corrections to the ratio

Re+e− ≡ σtot(e
+e− → hadrons)

σ(e+e− → μ+μ−)
. (10.1)

In the parton model, where quarks are treated as free particles, the

cross section to produce a quark–antiquark pair, of a specific flavour,

is exactly the same as that for production of a μ+μ− pair, except

for a factor of the quark charge squared, q2i , and a factor of 3, since

each flavour quark comes in three colours. It is assumed that the

quarks will later “fragment” into hadrons. How that happens does

not matter; it happens with probability one, and does not affect the

cross section, which is determined by the probability of producing

the qq̄ pair in the first place. Thus, neglecting masses, the parton

model prediction is just

Rpartonmodel
e+e− = 3

∑

i

q2i , (10.2)

where the sum is over all flavours.

Quarks, however, are not free; they may radiate gluons and

exchange virtual gluons, giving rise to QCD corrections. The

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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leading-order correction has a coefficient of unity times the QCD

couplant, a, so we may write

Re+e− =

(
3
∑

i

q2i

)
(1 +Re+e−), (10.3)

where Re+e− is a normalized physical quantity whose QCD pertur-

bation series has the form

Re+e− = a(1 + r1a+ r2a
2 + · · · ). (10.4)

It depends upon the energy scale Q by the magic of Dimensional

Transmutation, as discussed in Chapter 2. (In this specific context,

we choose to define “Q” as the total e+e− centre-of-mass energy.)

The coefficients r1, r2, and r3 have been calculated, as have the

β-function coefficients c2, c3 (all in the MS scheme), and are quoted

in Appendix 10.A. Thus, we are able to obtain second-, third-, and

fourth-order approximants. Our focus here will not be on comparison

with experimental data (which would require discussion of other

issues) but on the apparent convergence, or otherwise, of results from

one order to the next.

In the real world, quarks have masses. Calculating QCD radia-
tive corrections including quark masses is much harder, so generally
quark masses are neglected. This means that one is approximating
“real QCD” with a set of effective theories, each with a different
number of massless quarks. The number of “active quarks,” nf ,
depends on the physical energy scale Q being considered. Near a
flavour threshold, at Q = 2mi, the quark mass needs to be allowed
for, at least kinematically. For Re+e− , the result including masses
at first order (where R ≈ a) is

Re+e− = 3
∑

i

q2i T (vi) (1 + g(vi)R) ,

where

vi =
√
1− 4m2

i /Q
2,

T (v) = v(3 − v2)/2,

g(v) =
4π

3

[
π

2v
−
(
3 + v

4

)(
π

2
− 3

4π

)]
.
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(The formula for g(v) is a simplified approximation to the actual,
rather cumbersome, formula.) At higher orders, we may use the
above form but with the R calculated to higher orders in the mass-
less effective theory with the appropriate nf . The Λ̃MS parameters
of the different effective theories then need to be matched at the
flavour threshold so that R is continuous. For a fuller discussion of
the phenomenological issues, see Ref. [15].

10.2. Procedure

We shall compare the optimized results with the conventional

approach, which is to use the “modified minimal subtraction”

(MS) prescription with the renormalization scale μ chosen equal to

the centre-of-mass energy, Q. (Properly speaking, then, the RS is

“MS(μ = Q).”) We will essentially presume that the value of Λ̃MS

is known from fitting other experimental data. However, to avoid

committing to any specific value, we label our examples, not by Q,

but by the ratio of Q to Λ̃MS. At each order we proceed as if only the

coefficients to that order had been calculated.

To obtain the MS results, at a given Q/Λ̃MS value, the first step is

to evaluate the numerical value of the τ parameter of the MS(μ=Q)

scheme:

τMS = b ln(Q/Λ̃MS). (10.5)

One must then numerically solve the int-β equation. At second order,

whereB(a) is approximated by 1+ca, that equation is τMS = K(2)(a),

with K(2)(a) given by Eq. (6.23). With the resulting a, one then

evaluates R(2)
MS

= a(1 + rMS
1 a). At third order one must numerically

solve

τMS = K
(3)
MS

(a) ≡ 1

a
+ c ln |ca| − Δ̃

(3)
MS

(a), (10.6)

where Δ̃(a) is given by Eq. (6.28) with, in this case, B(x) approxi-

mated by 1+ cx+ c2x
2 with c2 = cMS

2 . With the resulting a one then

evaluates R(3)
MS

= a(1+ rMS
1 a+ rMS

2 a2). At fourth order, the procedure

is the same, except that one now includes a cMS
3 term in B(x) and an

rMS
3 term in R.
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To obtain the optimized results, one first needs to calculate the

numerical values of the invariants. At a given Q/Λ̃MS, one finds τMS

from Eq. (10.5) and then obtains ρ1(Q) as τMS − rMS
1 . The ρ2 and

ρ3 invariants, which are Q-independent, are similarly obtained by

evaluating their definitions in Eq. (7.31) using the MS-scheme ri
and cj coefficients: The ρ2, ρ3 results are quoted in Appendix 10.A.

The optimized result to second order is obtained from Eqs. (8.12)

and (8.10) with P = 1. At higher orders, one can use the algorithm

described in the preceding chapter.

At each order one wants, not only a result for R but also an

estimate for its likely error. There is no rigorous way of doing this.

However, it is reasonable to expect that the “apparent convergence”

of the series (i.e., the behaviour of the terms that have been

calculated) is some sort of guide. We shall adopt the common practice

when dealing with asymptotic series of viewing the magnitude of the

last calculated term, |rkak+1 |, as the error estimate. We do this both

for the MS and the optimized results. The change in the R results

from one order to the next — which for optimization is not the same

thing — provides another indication of the likely error; it seems quite

consistent with our error estimate.

We will give two sets of examples; one set at moderately high

energies, and the other at low energies. For the first set of examples

the phenomenologically appropriate number of flavours is nf = 5

(u, d, s, c, b quarks), while for the second set it is nf = 2 (u, d quarks

only). Results for (k + 1)th order (k = 1, 2, 3) in both the MS and

optimized schemes are presented in the tables and figures below.

10.3. High-Energy Examples

For nf = 5 the β-function’s leading, RS-invariant coefficients are

b =
23

6
, c =

29

23
. (10.7)

In the MS scheme, its next two coefficients are

cMS
2 =

9769

6624
= 1.474789, (10.8)
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cMS
3 = −26017

31104
+

11027

1242
ζ3 = 9.835916, (10.9)

where ζs is the Riemann zeta function. The MS coefficients in

R(e+e−) are

rMS
1 = 1.409230, rMS

2 = −12.80463, rMS
3 = −80.43373.

(10.10)

(The exact values, involving ζ2, ζ3, ζ5 and ζ7, see Appendix 10.A,

were used in our calculations.) Inserting these values in Eq. (7.31)

yields

ρ2 = −15.0926, ρ3 = −33.2216. (10.11)

Our first two examples are cases that have been discussed previously

in the literature.

The history of these two examples is interesting. Back in 1988,
after publication of a result for rMS

2 , it had seemed that “opti-
mization” gave very unsatisfactory results; the optimized couplant
increased from second to third order, the apparent convergence was
poor, and the error estimate was large; worse than MS. It turned
out, though, that the original calculation of rMS

2 was incorrect.
When the correct result was published in 1991, the situation was
transformed. This unfortunate history does at least illustrate the
fact that the improvement provided by “optimization” is not trivial
or accidental. The more recent result for rMS

3 provides further
confirmation that optimization works as advertised.

At these energies, the perturbation series seems well behaved.

The MS results are quite satisfactory and optimization provides only

a slight improvement. It should be borne in mind, though, that the

popularity of the MS scheme — over the original minimal-subtraction

scheme, for instance — was in part due to it giving sensible-looking

results for Re+e− when μ equals the centre-of-mass energy. Applying

MS to other quantities requires, each time, some new ad hoc guess for

the appropriate μ, whereas optimization is systematic. While opti-

mization here offers only a small improvement, it is an improvement:

there is slightly greater precision, with smaller expected errors that

shrink more rapidly with increasing k. It is also noteworthy that
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while aMS slightly increases with k, the optimized couplant ā shrinks,

consistent with the “induced convergence” scenario.

Example 1: Q/Λ̃MS = 340.

Table 10.1. Results for R, the QCD corrections to Re+e− , in
(k+1)th-order (NkLO) at an energy Q/Λ̃MS = 340. The upper and lower
subtables list, respectively, the MS and optimized results. The columns
give the couplant value, the rough form of the series, and the result for
R with an error estimate corresponding to | rkak+1 |, the magnitude of
the last term included in the perturbation series.

Order aMS RMS series RMS

k = 1 0.0381237 0.04(1 + 0.05) 0.04017[205]

k = 2 0.0382058 0.04(1 + 0.05− 0.02) 0.03955[71]

k = 3 0.0382161 0.04(1 + 0.054 − 0.019− 0.004) 0.03939[17]

Order ā R̄ series R̄
k = 1 0.0414570 0.04(1 − 0.02) 0.04043[103]

k = 2 0.0394420 0.04(1 − 0.01 + 0.01) 0.03944[47]

k = 3 0.0391507 0.04(1 + 0.003 + 0.002 + 0.001) 0.03941[4]

Q/
V~

MS = 340

k

R

Fig. 10.1. Results for R, the QCD corrections to Re+e− , in (k + 1)th-order
(NkLO) at an energy Q/Λ̃MS = 340. The larger, blue points displaced leftwards
are in the MS scheme, while the smaller, red points displaced rightwards are the
optimized results. In both cases, the error bars correspond to |rkak+1 |.
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Example 2: Q/Λ̃MS = 68.

Table 10.2. Results for Q/Λ̃MS = 68.

Order aMS RMS series RMS

k = 1 0.0507097 0.05(1 + 0.07) 0.05433[362]

k = 2 0.0509032 0.05(1 + 0.07− 0.03) 0.05287[169]

k = 3 0.0509356 0.05(1 + 0.07− 0.03 − 0.01) 0.05236[54]

Order ā R̄ series R̄
k = 1 0.0568587 0.06(1 − 0.03) 0.05496[190]

k = 2 0.0525541 0.05(1 − 0.02 + 0.02) 0.05256[112]

k = 3 0.0520416 0.05(1 + 0.002 + 0.003 + 0.002) 0.05245[13]

Q/
V~

MS = 68

k

R

Fig. 10.2. Results for Q/Λ̃MS = 68.

10.4. Low-Energy Examples

Next we turn to lower-energy examples, where the differences

between MS and OPT become more dramatic. With nf = 2 the

β-function’s leading coefficients are

b =
29

6
, c =

115

58
, (10.12)
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and

cMS
2 =

48241

8352
= 5.77598, (10.13)

cMS
3 =

18799309

902016
+

68881

12528
ζ3 = 27.45054. (10.14)

The R coefficients, in the MS scheme, are

rMS
1 = 1.755117, rMS

2 = −9.14055, rMS
3 = −123.18799.

(10.15)

(Again, the exact values were used in our calculations.) Inserting

these values in Eq. (7.31) yields

ρ2 = −9.92498, ρ3 = −115.21021. (10.16)

Examples 3–7 give results at successively lower energies;

Q/Λ̃MS = 5, 2, 1.7, 1.5 and 0. One sees in the MS results the char-

acteristic symptoms of an asymptotic series; after initially seeming

to converge, the series starts to go bad, with the error estimate

increasing with order. In Example 3, the effect is just visible in the

k = 3 result, but it becomes more dramatic in Examples 4 and 5.

In Example 6, there is no k = 3 MS result at all since there is no

positive-a solution to the k = 3 int-β equation. At still lower values of

Q/Λ̃MS, the k = 2 and k = 1 MS int-β equations have no acceptable

solution.

In contrast, the optimized results show a monotonic decrease in

the expected error at higher orders. The k = 1 results, in Examples

5 and 6 particularly, are very uncertain at low energies — indeed, for

Q/Λ̃MS < 1.438 (corresponding to ρ1(Q) < 0) there is no solution to

the k = 1 optimal int-β equation, Eq. (8.12). However, for k = 2 and

3 the optimized results improve very significantly — and continue

smoothly down to zero energy.

A Landau pole is said to occur when the solution for a goes to
infinity at some finite Q value and becomes negative at smaller Q.
In MS the Landau pole is at Q = Λ̃MS at k = 1, and at Q/Λ̃MS =
1.396 and 1.645 at k = 2, 3, respectively. In OPT, because c here
is positive, there is a Landau pole when k = 1, but it is absent for
k = 2, 3. These matters will be discussed in the next chapter.
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Example 3: Q/Λ̃MS = 5.

Table 10.3. Results for Q/Λ̃MS = 5.

Order aMS RMS series RMS

k = 1 0.0862557 0.09(1 + 0.15) 0.099[13]

k = 2 0.0902494 0.09(1 + 0.16 − 0.07) 0.098[7]

k = 3 0.0911287 0.09(1 + 0.16 − 0.08 − 0.09) 0.090[8]

Order ā R̄ series R̄
k = 1 0.117285 0.12(1 − 0.09) 0.106[11]

k = 2 0.0952429 0.10(1 − 0.05 + 0.05) 0.095[5]

k = 3 0.0899359 0.09(1 − 0.01 − 0.02 + 0.04) 0.091[4]

Q/
V~

MS = 5

k

R

Fig. 10.3. Results for Q/Λ̃MS = 5.
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Example 4: Q/Λ̃MS = 2.

Table 10.4. Results for Q/Λ̃MS = 2.

Order aMS RMS series RMS

k = 1 0.1626471 0.16(1 + 0.29) 0.209[46]

k = 2 0.1963533 0.20(1 + 0.34− 0.35) 0.195[69]

k = 3 0.2193679 0.22(1 + 0.39− 0.44 − 1.30) −0.08± 0.29

Order ā R̄ series R̄
k = 1 0.3648099 0.36(1 − 0.21) 0.288[77]

k = 2 0.1725913 0.17(1 − 0.17 + 0.18) 0.173[31]

k = 3 0.1421756 0.14(1 − 0.08− 0.09 + 0.17) 0.143[25]

Q/
V~

MS = 2

k

R

Fig. 10.4. Results for Q/Λ̃MS = 2. (The k = 3 MS result is slightly negative;
only its error bar is visible.)
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Example 5: Q/Λ̃MS = 1.7.

Table 10.5. Results for Q/Λ̃MS = 1.7.

Order aMS RMS series RMS

k = 1 0.1966624 0.20(1 + 0.35) 0.265[68]

k = 2 0.2691684 0.27(1 + 0.47− 0.66) 0.218[178]

k = 3 0.4153849 0.42(1 + 0.73− 1.58 − 8.83) −3.60± 3.67

Order ā R̄ series R̄
k = 1 0.6669931 0.67(1 − 0.28) 0.477[190]

k = 2 0.1970393 0.20(1 − 0.24 + 0.25) 0.199[49]

k = 3 0.1530735 0.15(1 − 0.11− 0.11 + 0.22) 0.153[34]

Q/
V~

MS = 1.7

k

R

Fig. 10.5. Results for Q/Λ̃MS = 1.7. (Only the tip of the huge error bar for the
k = 3 MS result is visible.)
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Example 6: Q/Λ̃MS = 1.5.

Table 10.6. Results for Q/Λ̃MS = 1.5.

Order aMS RMS series RMS

k = 1 0.236877 0.24(1 + 0.42) 0.335[98]

k = 2 0.431322 0.43(1 + 0.76 − 1.70) 0.02 ± 0.73

k = 3 no solution

Order ā R̄ series R̄
k = 1 2.4690661 2.5(1− 0.42) 1.4± 1.0

k = 2 0.2173977 0.22(1− 0.31 + 0.33) 0.221[71]

k = 3 0.1605183 0.16(1− 0.13 − 0.13 + 0.26) 0.161[42]

Q/
V~

MS = 1.5

k

R

Fig. 10.6. Results for Q/Λ̃MS = 1.5. (There is no k = 3 MS result in this case.)
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Example 7: Q = 0 (fixed point).

Table 10.7. Results for the infrared fixed-point limit, Q = 0. There
are no MS results in this case.

Order ā R̄ series R̄
k = 1 no solution — —

k = 2 0.2635259 0.26(1− 0.76 + 1.01) 0.330[267]

k = 3 0.1800794 0.18(1− 0.25 − 0.16 + 0.44) 0.185[79]

Q = 0

k

R

Fig. 10.7. Results for the infrared fixed-point limit, Q = 0. There are no MS
results in this case, and no k = 1 optimized result.

10.5. Discussion

Let us summarize the lessons of these numerical examples, which

compared the MS(μ = Q) and optimized results. At moderately

high energies, the differences are small — well within the error

estimates. The main advantage of optimization here is to achieve

better precision — and, very importantly, to have a systematic

method that applies to other physical quantities, without the need

for new ad hoc choices of μ in each case.

At low energies, however, there are more striking differences.

While the optimized results show steady convergence, the MS results

begin to exhibit the typical pathologies of a divergent asymptotic
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series (compare, for example, with Fig. 5.3). One can expect those

pathologies to show up in the MS results at higher energies when

the series is taken to high enough order. In this sense, the low-

energy examples are a “preview” of the divergent-series problems

to be expected in MS or any fixed RS.

Whether or not the optimized results in QCD will exhibit

“induced convergence” is a matter of conjecture at present. The

examples here certainly show a consistent shrinking of the optimized

couplant from one order to the next.

The good convergence of the optimized results remains true even

in the Q→ 0 limit, where the third-order finding of a limitR → 0.3±
0.3 is confirmed and made more precise; R → 0.2±0.1. This result is

important because there are many indications from phenomenology

that the QCD couplant does “freeze” at low energies. Usually freezing

is something put in by hand, but here it is an outcome, a prediction.

There is nothing in the optimization approach that forces freezing

to occur; the fact that it does for Re+e− is due to the ρ2, ρ3 values

resulting from the Feynman-diagram calculations. The next chapter

will discuss the topic of the infrared limit in more detail and more

generality.

Appendix 10.A: β Function and Re+e− Coefficients

in MS

The β-function coefficients, bcj , and the Re+e− coefficients, ri, in

the MS scheme are polynomials in nf , with each fermion loop in a

diagram being associated with an nf factor. We choose to swap nf
for b

b =
33− 2nf

6
, (10A.1)

both because it makes the results a little more compact and because it

is convenient when investigating the large-b and small-b (Banks-Zaks)

approximations. Here ζs is the Riemann zeta-function. References to

the original calculations are given in the Bibliography.
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The β-function coefficients, in the MS prescription, are as follows:

c = −
(
107

8

)
1

b
+

19

4
,

cMS
2 =

(
−37117

768

)
1

b
+

243

32
+

325

192
b,

cMS
3 =

(
53981

1152
+

5335

32
ζ3

)
1

b
+

(
−1544327

13824
− 16171

288
ζ3

)

+

(
2587

96
+

809

144
ζ3

)
b− 1093

3456
b2.

The Re+e− series coefficients, in the MS(μ=Q) scheme, are as

follows:

rMS
1 =

1

12
+

(
11

4
− 2ζ3

)
b,

rMS
2 =

(
−12521

288
+ 13ζ3

)
+

(
401

24
− 53

3
ζ3 +

25

3
ζ5

)
b

+

(
151

18
− 19

3
ζ3 − 1

2
ζ2

)
b2 +

(
(
∑
qi)

2

3
∑
q2i

)(
55

72
− 5

3
ζ3

)
,

rMS
3 =

(
−3963761

20736
+

677833

3456
ζ3 − 275

24
ζ5

)

+

(
−38969

128
+

535

32
ζ2 +

6907

96
ζ3 +

165

2
ζ23 +

9595

144
ζ5 − 665

24
ζ7

)
b

+

(
236089

1728
− 97

16
ζ2 − 13859

96
ζ3 +

15

2
ζ23 +

445

12
ζ5

)
b2

+

(
6131

216
− 33

8
ζ2 − 203

12
ζ3 + 3ζ2ζ3 − 15

2
ζ5

)
b3

+

(
(
∑
qi)

2

3
∑
q2i

)(
995

576
− 905

72
ζ3 +

175

36
ζ5

+

(
745

144
− 65

8
ζ3 − 5

2
ζ23 +

25

4
ζ5

)
b

)
.
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The ρ2, ρ3 invariants for Re+e− are therefore

ρ2 =

(
−12087

256

)
1

b
+

(
143

288
− 55

4
ζ3

)

+

(
937

192
− 47

6
ζ3 +

25

3
ζ5

)
b+

(
119

144
− 1

2
ζ2 +

14

3
ζ3 − 4ζ23

)
b2

+

(
(
∑
qi)

2

3
∑
q2i

)(
55

72
− 5

3
ζ3

)
,

ρ3 =

(
252613

4608
+

5335

32
ζ3

)
1

b
+

(
−2217005

10368
+

121613

864
ζ3 − 275

12
ζ5

)

+

(
−7913

576
+

535

16
ζ2 − 3619

9
ζ3 +

535

2
ζ23 +

9295

72
ζ5 − 665

12
ζ7

)
b

+

(
15683

576
− 95

8
ζ2 +

3599

24
ζ3 − 174ζ23 − 190

3
ζ5 + 100ζ3ζ5

)
b2

+

(
665

432
− 61

6
ζ3 + 56ζ23 − 32ζ33 − 15ζ5

)
b3

+

(
(
∑
qi)

2

3
∑
q2i

)(
295

96
− 875

36
ζ3 +

175

18
ζ5

+

(
−325

144
+

245

12
ζ3 − 25ζ23 +

25

2
ζ5

)
b

)
.

For numerical values, neglecting the
∑
qi terms, see Table 11.1 in

Chapter 11.

Note that, while ρ2, ρ3, . . . and c have definite decompositions
in terms of b, and hence in terms of nf , the same is not true of

ρ1(Q), which involves Λ̃, whose nf dependence could be anything,
especially since its specific definition is just a convention.

One more coefficient of the β function has been calculated. We

cannot make use of it for optimization until the r4 coefficient is
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calculated:

cMS
4 =

(
1081830511

663552
+

17251949

13824
ζ3 − 191675

192
ζ5

)
1

b

+

(
−1452057293

1327104
− 48015

512
ζ4 − 4489165

27648
ζ3 +

856625

2304
ζ5

)

+

(
33737869

221184
+

16171

512
ζ4 − 176837

2304
ζ3 − 88415

2304
ζ5

)
b

+

(
471499

110592
− 809

256
ζ4 +

39409

2304
ζ3 − 345

128
ζ5

)
b2

+

(
1205

18432
− 19

64
ζ3

)
b3.
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Chapter 11

Infrared Limit: Fixed and Unfixed Points

11.1. QCD Perturbation Theory in the Infrared?

The ultraviolet region, for an asymptotically-free theory, is the natural

domain of perturbation theory: The effective couplant tends to zero

as Q → ∞, so when Q is large enough one can confidently expect

perturbation theory to give a good approximation. As Q decreases

the effective couplant increases and perturbation theory becomes less

accurate and less reliable. Moreover, so-called “higher-twist” terms—

terms exponentially small in the couplant, and hence suppressed by

positive powers of Λ̃/Q— become ever more important. Thus, it may

be foolish to consider perturbation theory in the infrared.

On the other hand, it may not be. While the effective couplant

grows as Q decreases, it does not necessarily grow without limit, and,

in some circumstances, it may remain quite small even in the Q→ 0

limit. That, indeed, seems to be the case for Re+e− in QCD, as was

seen in the numerical examples in the last chapter.

Of course, one should recognize that the infrared behaviour of

perturbation theory will not predict the actual infrared behaviour

of the theory, because of the “higher-twist” terms invisible to

perturbation theory. Experimentally, physical quantities, such as

Re+e− , show a lot of structure at low energies, related to hadronic

resonances, whereas the perturbative prediction varies smoothly with

Q (at least, if quark masses are neglected). Nevertheless, it has long

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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been thought that the perturbative result represents a sort of average

through the resonant peaks, so that it can be meaningfully compared

with a smoothed or “smeared” version of the experimental data. Such

ideas, and the successes of various phenomenological models that

invoke a “freezing” of the QCD coupling constant, suggest that low-

energy perturbation theory may have some limited predictive power.

This chapter will not discuss the phenomenological issues but will

study the infrared limit of optimized perturbation theory, motivated

by the above considerations.

New methods that introduce variational mass parameters for the
quark and/or gluon fields, analogous to the CK expansion, and then
optimize these, as well as the RS, offer a very promising approach
to the infrared region. While it is beyond the scope of this book
to discuss such methods (see references in the bibliography), the
lessons learned here in “pure” perturbation theory should be useful
background for those endeavours.

One possibility is that there may be no infrared limit at all:

There may be a “Landau pole” at some finite Q of order Λ̃ where

the effective couplant, and hence the perturbative result for R, goes

to infinity. Such is the case at first order (a qualitative approximation

only), where the effective couplant is a ≈ 1/(b ln(Q/Λ̃)). In second

order, if the coefficient c is positive (as it is for 8 or fewer quark

flavours in QCD), then a Landau pole also occurs. However, if c is

negative, then the second-order β function, −ba2(1+ ca) vanishes at

a positive value a = −1/c, and the couplant approaches this value

as Q→ 0. At higher orders, whatever the sign of c, it might happen

that the β function (in the optimized scheme) has a zero at some

value a = a∗, and if a∗ is quite small one can hope that perturbation

theory in the infrared is meaningful.

A simple zero of the β function is known as a “fixed point.” There

is a body of conventional lore about fixed points that we examine

next, before turning to an analysis of OPT in the infrared limit.

11.2. “Fixed-Point Lore” and Its Limitations

The key properties of a renormalizable field theory, according to

many accounts, follow simply from a graph of its β function.
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Fig. 11.1. Conventional sketch of “the β function” in an asymptotically free
theory with an infrared fixed point. The couplant flows to zero in the ultraviolet
and to a∗ in the infrared.

Figure 11.1, for instance, supposedly represents an asymptotically

free theory with an infrared fixed point at a = a∗.
The problem with this lore is that there is no such thing as the β

function! The β function is not a physical quantity; it is not a unique,

well-defined function characterizing the theory. It is RP dependent,

and — unlike the case of physical quantities — its RP dependence

would remain an issue even if we could magically calculate all orders

of perturbation theory.

In the literature there are sometimes claims to have calculated
“the exact β function” of some theory. However, since β is RP
dependent, one is always free to define β(a) to be any desired
function, provided that its power-series expansion starts −ba2(1 +
ca+O(a2)). For example, there is an RP, once used by ’t Hooft, in
which β(a) is defined to be −ba2(1 + ca). Another example of an
“exact β function” might be −ba2/(1− ca), and there are infinitely
many other possibilities. Of course, if one could show that some
particular RP, associated with some particular form of the all-
orders β function, also led to some specific all-orders form for one or
more physical quantities, then that would be a major achievement.
However, without that, claims for an “exact β function” are
empty.

The RP dependence of the β function is, of course, acknowledged

in conventional accounts, and the effects of RP transformations

a′ = a(1 + v1a+ v2a
2 + · · · ), (11.1)
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with β transforming as

β′(a′) =
da′

da
β(a), (11.2)

are discussed. It is observed that if β(a) vanishes at a = a∗, then
β′(a′) will vanish at some corresponding a′ = a′∗ — pictorially,

consider a graph of β(a) and imagine a stretching, or other distortion,

of the horizontal axis. Thus — it would seem — the statement that

a certain theory “has a fixed point” is basically an RP-independent

one. (Another claim, that the slope of the β function at a fixed point

is RP invariant, will be discussed later.)

Following those remarks about RP dependence, though, most

accounts then proceed as if “the β function” were a well-defined,

unique function characteristic of the theory — implicitly assuming

that one can choose a “good” RP once-and-for-all. However, as

stressed in Chapters 4 and 5, with non-invariant approximations it

is a mistake to assume that the extraneous variables must have fixed

values. Just as the renormalization scale, μ, should “run” with Q, the

other aspects of the RS can and should be chosen differently in differ-

ent cases. Because β(a) changes under optimization, the usual fixed-

point lore, though undoubtedly valuable, will need re-examination.

The fact that we are doing perturbation theory and using trun-

cations of the β function is crucial. Under a scheme transformation

(11.1) the new approximate β function is not given by Eq. (11.2),

but by a truncation thereof. That fact spoils the argument that,

generically, β′(a′) will have a zero if β(a) does. Thus, at finite orders,

fixed points can appear or disappear under RP transformations. The

existence or non-existence of a fixed point, being RP dependent in

that sense, is not necessarily a property of the theory but may depend

on which physical quantity R is being calculated, and to what order.

In QCD with nf = 2 the MS β function is −ba2(1 + 1.98a +
5.78a2 + 27.5a3 + · · · ), and has no zero in second, third, or fourth
orders. Thus, the MS results must go to infinity at some finite Q.
However, the optimized β function for Re+e− in the Q → 0
limit turns out to be −ba2(1 + 1.98a − 22a2) at third order,
and −ba2(1+1.98a− 5.62a2− 199a3) at fourth order, giving fixed-
point values a∗ = 0.264 and 0.180, respectively. Thus, as was seen in
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the numerical examples of the last chapter, the optimized results
for Re+e− continue smoothly down to Q = 0. However, there is
no guarantee that other physical quantities will necessarily show
similar behaviour.

It should not be assumed that this point will become less and

less important as we go to higher orders of perturbation theory —

because of the divergence of the fixed-scheme power series for R
and β(a). While the fixed-scheme R results will presumably show

asymptotic-series behaviour, “settling down” temporarily to a good

approximation to the true R, the same need not be true of β(a),

which is not a physical quantity and has no “true value.” In OPT,

while we can hope that successive approximations to R will show

“induced convergence,” we should not necessarily expect convergence

of the associated results for the optimized β-function: It need not

have an infinite-order limit (not even in a re-summed sense) since

it is not a physical quantity, and inherently depends on the order

index k.

The optimized β function also inherently depends on what

physical quantity R one is calculating. Thus, it is not necessarily

true that the physical quantities in a certain theory either all have,

or all do not have, a finite infrared limit. One should be cautious of

speaking of the theory having, or not having, a fixed point.

One should also re-examine the usual lore that “if a theory has

an infrared fixed point then all physical quantities show the same

power-law behaviour as Q→ 0.” The conventional argument goes as

follows: Near the fixed point, β(a) is approximately linear:

β(a) ∝ a− a∗, (11.3)

with the constant of proportionality being the slope of the β function

at the fixed point:

β̇∗ ≡ dβ

da

∣∣∣∣
a=a∗

. (11.4)

For reasons explained below, β̇∗ is claimed to be RS invariant. Thus,

any RS may be used, and in the EC scheme (assuming for simplicity
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that R has P = 1) we have, at low Q,

Q
dR
dQ

= βEC(R) ≈ β̇∗(R−R∗). (11.5)

When integrated, this equation implies a power law

R∗ −R ∝ Qγ∗
, (11.6)

with the critical exponent γ∗ = β̇∗ being the same for all physical

quantities R. (The generalization to any P is straightforward; see

Exercise 11.1.)

The argument that β̇∗ is RS invariant goes as follows. Consider

two RS’s, primed and unprimed, whose couplants are related by

a general scheme transformation, Eq. (11.1). Formally, their β

functions are related by Eq. (11.2) and hence the derivative of the β

function will transform as

dβ′

da′
=
dβ

da
+ β(a)

d2a′

da2

/da′
da
. (11.7)

Since β(a) vanishes at the fixed point, it would seem that β̇∗ is

the same in both primed and unprimed schemes. Careful authors

qualify this result with the proviso that da′/da must not vanish and

d2a′/da2 must not be singular at a = a∗. Those conditions might

seem pedantic, but they cannot be entirely disregarded, as Chýla was

the first to warn. (See Exercise 11.2.) The subtleties at the formal

level are discussed in Appendix 11.A.

Because of these subtleties we suggest that, within a given theory,

there may be different classes of physical quantities: One class might

have a Landau-pole, precluding any continuation to Q = 0 without

explicitly including higher-twist, non-perturbative terms. Another

class might have a finite infrared limit, with a common power-law

approach to the Q → 0 limit. Other classes might also have finite

infrared behaviour, but with a qualitatively different approach to

the Q→ 0 limit and/or a markedly different infrared couplant.

Furthermore, formal results may or may not apply when some

particular approximation method is used. In OPT at any order

(except second) it turns out — for non-trivial reasons explained



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch11 page 185

Infrared Limit: Fixed and Unfixed Points 185

in Appendix 11.B — that the slope of the optimized β function

at a fixed point does indeed give the γ∗ exponent governing the

Q→ 0 behaviour of the optimized approximation to R(Q). However,

it is an open question whether the OPT results for the γ∗’s of

all physical quantities are approximately the same. Moreover, as

discussed later on, in OPT a finite infrared limit can occur at an

“unfixed point” where β(a) does not vanish (but ∂R/∂a does). In

that case R∗ −R is not given by a power law, but is proportional to

1/(lnQ)2.

11.3. Infrared Behaviour in OPT at Second Order

Before embarking upon a more general analysis of OPT in the

infrared, we first examine the case of second order (k = 1). Here

the β function is just −ba2(1 + ca). When the invariant coefficient

c is positive, β(a) has no zero: Thus, a Landau pole will occur, with

a and the R result going to infinity at some finite Q. However, when

c is negative (which would happen in QCD if nf > 8 1
19 ) the β function

has a zero at a∗ = −1/c. One might therefore expect typical fixed-

point behaviour, with a finite infrared limitR∗ of order a∗P. However,
in OPT things are more subtle because the optimized r1 coefficient,

obtained in Eq. (8.10), is

r̄1 = − P

(P + 1)

c

(1 + cā)
, (11.8)

which goes to infinity at the fixed point. Thus, the OPT result for

R̄(2) = āP(1 + r̄1ā), though finite at any finite Q, tends to infinity

as Q → 0. At low values of Q, of order Λ̃R, where ρ1(Q) ≈ 0 there

is a plateau, with R̄(2) of order a∗P. It is only at ultra-low Q, when

ρ1(Q) becomes large and negative, that there is a narrow “spike”

proportional to − lnQ as Q → 0. This behaviour is illustrated in

Fig. 11.2.

Of course, the error estimate also diverges asQ→ 0, so the height

and width of the spike are extremely uncertain. Similar “spiking,”

for nf � 8, occurs in higher orders, as we shall see, though there the

spike does not extend to infinity.



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch11 page 186

186 Renormalized Perturbation Theory and Its Optimization

Fig. 11.2. Second-order OPT results for Re+e− with nf = 10 at low energies.
The energy Q is in units of Λ̃R. The shaded region indicates the error estimate.
In this case P = 1 and a∗ = −1/c = 26/37 ≈ 0.7. There is a plateau at Q ∼ Λ̃R
where R is roughly a∗, but there is a spike, extending to infinity, as Q → 0.

11.4. Finite Infrared Limits in OPT: Two Mechanisms

Beyond second order, the optimization procedure involves deter-

mining optimal values for the higher-order β-function coefficients,

c2, c3, . . . , and these evolve as the energy Q is changed. Thus, the

optimized β function is not a fixed function of a, but itself evolves

with Q.

In some cases, this evolution makes little qualitative difference

and the infrared limit of OPT arises in basically the usual way from

a simple zero of the (optimized) β function. In QCD with nf = 2

one finds such behaviour for Re+e− in both third and fourth orders,

as seen in the last numerical example of the previous chapter. The

fourth-order result, as a function of Q is shown in Fig. 11.3. The

approach to the Q → 0 limit is characterized by a γ∗ exponent of

about 3, so that R is nearly constant at low energies.

When the γ∗ exponent is greater than 1 it is natural to speak
of a “freezing” of the effective couplant. When γ∗ is less than one,
however, it would be more descriptive to speak of a “spiking” of
the couplant in the infrared limit.

In some cases, however, the evolution of the optimized β function

with Q plays a crucial role and a finite infrared limit in OPT occurs

in a quite different way. This was quite unanticipated, and turned up
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Fig. 11.3. Fourth-order OPT results for Re+e− for nf = 2. The energy Q is in
units of Λ̃R. The shaded region indicates the error estimate. This case illustrates
infrared “freezing” of the couplant, due to a fixed point of the optimized β
function.

in numerical investigations of QCD at higher nf values. The infrared

limit here arises by a “pinch mechanism.” The evolving β function

develops a minimum that, as Q → 0, just touches the axis at ap (the

“pinch point”), while the infrared limit of the optimized couplant is

at a larger value, a� (the “unfixed point”). This mechanism produces

an “extreme” or “logarithmic” spiking of the couplant as Q → 0; see

Fig. 11.4.

The next sections examine the fixed-point mechanism and pinch

mechanism, respectively.

11.5. Fixed-Point Mechanism

A finite Q → 0 limit for R(Q) can occur by essentially the familiar

fixed-point mechanism, with the optimized B(a) function manifesting

a simple zero at a = a∗ (see Fig. 11.5). The limiting behaviour can

be analyzed as follows. For a close to a∗ one can linearize B(a) as

B(a) ≈ σ(a∗ − a), (11.9)
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Fig. 11.4. As Fig. 11.3 but for nf = 8. The arrow indicates the infrared limit.
This case illustrates “logarithmic spiking” of the couplant due to the “pinch”
mechanism discussed in Sec. 11.6.

Fig. 11.5. The evolving optimized B(a) ≡ β(a)/(−ba2) function at fourth order
for nf = 2. The upper, solid curve is the Q = 0 limiting form with a fixed point
at a∗ = 0.180844. The two lower curves correspond to larger Q values, and are
shown dashed when a > ā.
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where σ is some positive constant (directly related to the slope of

the β function at its fixed point; β̇∗ = ba∗2σ). The integrals Ij(a) of

Eq. (7.10) will then diverge in the infrared limit, a→ a∗:

Ij(a) →
∫ a

0
dx

xj−2

σ2(a∗ − x)2
→ a∗j−2

σ2
1

(a∗ − a)
. (11.10)

Substituting in Bj(a), Eq. (7.9), one finds that the 1
(a∗−a) factor is

cancelled by the (a∗ − a) factor in B(a), yielding

Bj(a) → (j − 1)

σa∗
. (11.11)

This result corresponds to

∂a

∂cj

∣∣∣∣
∗
=
a∗j

σ
, (11.12)

which indeed follows directly by asking how the root a∗ of the

equation
∑

i c
∗
i a

∗i = 0 changes as one specific c∗j is varied (see

Exercise 11.3). The slope parameter σ is given by

σ = −B′(a)
∣∣
a=a∗ = −

k∑

j=0

jc∗ja
∗j−1 =

k−1∑

j=0

(k − j)c∗ja
∗j−1, (11.13)

where the last step uses the fixed-point condition
∑k

j=0 c
∗
ja

∗j = 0 to

eliminate c∗k.
With the limiting Bj’s from Eq. (11.11) one can construct the

limiting Hi’s:

Hi → 1

σa∗

k−i∑

j=0

c∗ja
∗j(i− j − 1). (11.14)

Hence, in the fixed-point limit, the formula for the sm ≡ (P+m
P

)
rm

coefficients, Eq. (9.13), becomes (for k > 1)

s∗ma
∗m =

1

(k − 1)

⎛

⎝
m∑

j=0

c∗ja
∗j(k−m− j− 1)−

m−1∑

j=0

c∗ja
∗j(k−m− j)

⎞

⎠.

(11.15)
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Writing k −m− j as k − 2m+ (m− j) and noting that the (m− j)

terms will cancel between the two summations, one may simplify the

result to

ŝm =
1

(k − 1)

[
(k − 2m− 1)t̂m − (k − 2m)t̂m−1

]
, (11.16)

or, equivalently,

ŝm =
1

(k − 1)

[
(k − 2m)ĉm − t̂m

]
, (11.17)

where

ŝm ≡ s∗ma
∗m, ĉm ≡ c∗ma

∗m, t̂m ≡
m∑

i=0

ĉj . (11.18)

One may substitute Eq. (11.17) for the optimal-scheme r∗m’s into

the expressions for the ρi invariants. From the resulting ρ2 one can

solve for the optimal-scheme c∗2 in terms of a∗, c, ρ2. Then, making

use of that result, one may solve for c∗3 in terms of a∗, c, ρ2, ρ3, and
so on up to c∗k. Substituting in the fixed-point condition B(a∗) = 0

then produces an equation for a∗ that involves only the invariants

c, ρ2, . . . , ρk. One can then find a∗ numerically as the smallest positive

root of that equation. Finally, the expressions for the c∗j ’s in terms

of a∗ and the invariants can be substituted back into Eq. (11.17)

to determine the r∗m’s. Hence, one can find R∗ in terms of invariant

quantities.

We now specialize to low orders and to the P = 1 case.

At third order (k = 2) one finds from Eq. (11.17)

ŝ1 = −(1 + ĉ), ŝ2 = −2ĉ2, (11.19)

and hence

r∗1 = −(1 + ca∗)
2a∗

, r∗2 = −2

3
c∗2. (11.20)

Substituting in the definition of ρ2 and solving for c∗2 yields

c∗2 =
3

4a∗2
(1 + (4ρ2 − c2)a∗2). (11.21)
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Then substituting in the fixed-point condition B(a∗) = 1 + ca∗ +

c∗2a∗
2 = 0 gives

7

4
+ ca∗ + 3

(
ρ2 − 1

4
c2
)
a∗2 = 0. (11.22)

The relevant a∗ is the smallest positive root of this equation. The

result for R∗ at third order can then be expressed as

R∗ = a∗
(
7

6
+

1

6
ca∗
)
. (11.23)

At fourth order (k = 3) one obtains

ŝ1 = −1

2
, ŝ2 = −1

2
(1 + ĉ+ 2ĉ2), ŝ3 = −3

2
ĉ3, (11.24)

and hence

r∗1 = − 1

4a∗
, r∗2 = −(1 + ca∗ + 2c∗2a∗

2)

6a∗2
, r∗3 = −3

8
c∗3. (11.25)

By substituting in the definitions of ρ2, ρ3, one can then find c∗2, c∗3
in terms of a∗ and those invariants:

c∗2 =
11− 4ca∗ + 48ρ2a

∗2

32a∗2
, (11.26)

c∗3 =
5 + 3ca∗ + 16ρ3a

∗3

4a∗3
. (11.27)

The fixed-point condition can then be expressed entirely in terms of

invariants as

83

32
+

13

8
ca∗ +

3

2
ρ2a

∗2 + 4ρ3a
∗3 = 0. (11.28)

The final result for the limiting value of R at fourth order can then

be simplified to

R∗ = a∗
(
249

256
+

13

64
ca∗ +

1

16
ρ2a

∗2
)
. (11.29)

Results for the Re+e− case will be discussed in Sec. 11.7. At third

order fixed-point behaviour is found at all nf ’s, though for low nf the

error estimates are large. At fourth order a fixed point is found for
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nf up to 6, and also for nf = 16. However, there is no positive root

of Eq. (11.28) when nf is 7, . . . , 14, while for nf = 15 a positive root

exists but it gives a negative σ, which is unacceptable (see Exercise

11.10(iii)). Nevertheless, at those nf ’s the optimization procedure

yields results that remain bounded as Q→ 0; it does so, however, by

a quite different mechanism.

11.6. Pinch Mechanism

The essence of the pinch mechanism is illustrated in Fig. 11.6, which

shows the evolution of the optimized B(a) function in the nf = 8

case. As Q is lowered the optimized c2, c3 coefficients change so that

B(a) develops a minimum — which, in the limit Q→ 0, just touches

the horizontal axis at a “pinch point,” ap. Although this point is then

a double root of B(a) = 0, it does not represent a fixed point. The

infrared-limit of the optimized couplant is not ap but a larger value,

a�, dubbed the “unfixed point” to stress that it is not a zero of the

β function.

The infrared limits of a or the rm, cj coefficients will be indicated
by � rather than * when they arise from an unfixed point, not a
fixed point.

Fig. 11.6. The evolving optimized B(a) ≡ β(a)/(−ba2) function at fourth order
for nf = 8. The curves, from top to bottom, are for descending Q values. They
are shown dashed for a > ā. The lowest curve is the infrared-limiting form, with
the pinch point at ap = 0.3094 and the unfixed point at a� = 0.432267.
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One can understand this infrared behaviour analytically as

follows. B(a) can be approximated around its minimum (at, or nearly

at, the pinch point ap) by

B(a) ≈ η
(
(a− ap)

2 + δ2
)
, (11.30)

where δ → 0 as Q → 0 and η is some positive constant. Thus the

integral for the K(a) function in Eq. (6.22) becomes dominated by a

“resonant peak”:

−
∫
dx

x2
1

η ((x− ap)2 + δ2)
≈ − 1

a2pη

π

δ
+ finite. (11.31)

Therefore, in the Q → 0 limit (where ρ1(Q) = K(a) − r1 tends

to −∞), the δ parameter vanishes ∝ 1/(− lnQ). (Appendix 11.B

discusses the approach to the Q→ 0 limit in more detail.)

The integrals Ij(a) of Eq. (7.10) are also dominated by a huge

peak in their integrands around ap:

Ij(a) ≈
∫
dx

xj−2

(η ((x− ap)2 + δ2))2
≈ aj−2

p

η2
π

2δ3
. (11.32)

One can thus see that the Bj and Hj functions, diverge like 1/δ3

as δ → 0. Note that the B(a)/aj−1 factor in Eq. (7.9) will involve

the limiting value of a, which is a� and not ap. Although the Bj’s

and Hj’s diverge, the optimized r�m coefficients are finite, because the

1/δ3 factors cancel out, as does η, in Eq. (9.13).

Since the Bj ’s diverge, the ck optimization equation S = 1
Bk(a)

,

Eq. (8.23), means that ∂R/∂a ≡ PaP−1S vanishes at the unfixed
point a = a�. Thus the second term in the τ optimization equation:

∂R
∂τ

=
∂R
∂τ

∣∣∣∣
a

+
β(a)

b

∂R
∂a

= 0

vanishes in both the fixed-point case, where β(a) = 0, and in the
unfixed-point case, where ∂R/∂a = 0. This corresponds to the scale
dimension of R vanishing when R tends to a constant. (See also
Exercise 11.4.)
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Instead of Eq. (11.17) of the fixed-point case, the formula for the

s�m coefficients can be written as (see Exercise 11.5)

s�ma
m
p =

1

(k − 1)

⎡

⎣
m∑

j=0

(k −m− j − 1)c�ja
j
p

−
(ap
a�

)m−1∑

j=0

(k −m− j)c�ja
j
p

⎤

⎦, (11.33)

where sm ≡ (
P+m
P

)
rm. The pinch point ap is where the limiting

form of the B(a) function touches the a-axis (see Fig. 11.6) and

hence satisfies the two equations

B�(a)
∣∣∣
a=ap

=
k∑

j=0

c�ja
j
p = 0 and

dB�

da

∣∣∣∣
a=ap

=
k∑

j=1

jc�ja
j−1
p = 0.

(11.34)

Using these equations one may write an alternative form of sm
formula that is more convenient when m is large:

s�ma
m
p = − 1

(k − 1)

⎡

⎣
k∑

j=m+1

(k −m− j − 1)c�ja
j
p

−
(ap
a�

) k∑

j=m

(k −m− j)c�ja
j
p

⎤
⎦. (11.35)

There are various ways of proceeding to combine the rm’s, the pinch-

point conditions, and the ρj definitions to determine ap, a
� in terms of

invariants. One general strategy is to use Eq. (11.33) for all the rm’s

except for rk, for which Eq. (11.35) is simpler. Then, substituting in

the ρ2, . . . , ρk definitions one may solve, successively, for c2, . . . , ck
in terms of ap, a

� and the invariants. Substituting in the pinch-point

conditions in the form

k−1∑

j=0

(k − j)c�jap
j = 0 and

k∑

j=1

jc�ja
j−1
p = 0 (11.36)
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(so that the highest power of ap involved is ak−1
p ) gives a pair of

equations that determine ap and a� in terms of the invariants alone.

We do not go further with the general case, but now specialize

to low orders and the P = 1 case.

At third order the pinch mechanism can occur, but only under

certain restrictive conditions (which are never satisfied in the e+e−

QCD case, but for other physical quantities, or other theories, the

possibility could arise.) At third order the B(a) ≡ 1 + ca + c2a
2

function can obviously be rewritten in the form

B(a) = η
(
(a− ap)

2 + δ2
)
, (11.37)

with

η = c2, −2apη = c, η(a2p + δ2) = 1. (11.38)

If η = c2 is positive and c is negative, B(a) has a minimum at a

positive ap = −c/(2c2) that can become a pinch point if the evolution

of the optimized c2 coefficient results in δ tending to zero as Q→ 0.

From Eqs. (11.33) and (11.35), respectively, one finds

r�1 = −1 + ca�

2a�
, r�2 = −2

3

ap
a�
c�2. (11.39)

From Eq. (11.38) with δ → 0 (or, equivalently, from Eq.(11.34)) one

obtains

ap = −2

c
, c�2 =

c2

4
. (11.40)

(Using these one may rewrite r�2 as − c
3a� .) Substituting in the

definition of ρ2 yields a quadratic equation for a�:

1− 4

3
ca� + 4

(
ρ2 − c2

2

)
a�2 = 0. (11.41)

The infrared limit of R can be written, using Eq. (11.39), as

R� =
1

6
a�(3− ca�). (11.42)
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As noted above, the pinch mechanism requires c to be negative,

so Eq. (11.41) will only have a positive root if ρ2 − c2

2 is negative.

Finally, the pinch mechanism requires a� > ap which requires ρ2/c
2 >

13/48 (and for smaller ρ2’s the fixed-point mechanism takes over).

In summary, the pinch mechanism can operate at third order if and

only if

c < 0 and
13

48
<
ρ2
c2
<

1

2
. (11.43)

At fourth order (k = 3) one finds

r�1 =
(a� − 2ap)

4a�ap
,

r�2 = − 1

6a�ap
(1 + ca� + 2c�2a

�ap), (11.44)

r�3 = −3

8

ap
a�
c�3.

Following the strategy outlined above (but see Exercise 11.6 for an

alternative method) we use the ρ2 and ρ3 expressions to solve for c�2
and c�3:

c�2 =
3a�2 − 4a�ap(1− 5ca�) + 12a2p(1 − 2ca� + 4ρ2a

�2)

32a�2a2p
, (11.45)

c�3 =
−a�3 + a�2ap(2− 5ca�)− 4a�a2p(1− 3ca�) + 4a3p(2 − ca� + 4ρ3a

�3)

4a�2(4a� − 3ap)a3p
.

(11.46)

Substituting into 3 + 2cap + c2a
2
p = 0 and c + 2c2ap + 3c3a

2
p = 0

(which are equivalent to B′(ap) = B(ap) = 0) yields

99a�2 − 4(1− 21ca�)a�ap + 12(1 − 2ca� + 4ρ2a
�2)a2p = 0, (11.47)

− a�2(1− 84ca�) + 12(1 − 5ca� + 16ρ2a
�2)a�ap

+12(5 + 2ca� − 12ρ2a
�2 + 16ρ3a

�3)a2p = 0. (11.48)
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Eliminating a2p between these equations gives ap in terms of a� as

ap =
a�(62 + 14ca� + (21c2 − 148ρ2)a

�2 − 6(7ρ2c− 33ρ3)a
�3)

2(2− 31ca� + 3(4ρ2 − c2)a�2 + 4(6ρ2c+ ρ3)a�
3 + 12(4ρ22 − 7ρ3c)a�

4)
.

(11.49)

Substituting back into either equation yields a 6th-order polynomial

equation that determines a� in terms of the invariants:

0 = 11680 + 2224ca� + 3(5997c2 − 17264ρ2)a
�2

+ 2(8235c3 − 33624ρ2c+ 36976ρ3)a
�3

+ 18(147c4 − 2184ρ2c
2 + 4640ρ22 + 502ρ3c)a

�4

+ 324(−49ρ2c
3 + 152ρ22c+ 161ρ3c

2 − 528ρ3ρ2)a
�5

+ 108(−147ρ22c
2 + 528ρ32 + 343ρ3c

3 − 1386ρ3ρ2c+ 1089ρ23)a
�6.

(11.50)

The final result for the infrared limit of R at fourth order can be

expressed as

R� =
a�(2a�ap + 12ap

2 + 3a�2(2 + cap))

24ap2
. (11.51)

Note that a� ≥ ap is needed for this solution to be relevant. One

can check that the special case a� = ap is indeed the boundary

between the pinch mechanism and the fixed-point mechanism, and

corresponds to where γ∗ = 0. From such an analysis one can

determine the precise (non-integer) nf values where the switchover

from one mechanism to the other takes place.

11.7. Numerical Results for Re+e−

In this section, we present the numerical results from OPT in the

infrared limit for Re+e− in QCD with nf flavours of massless quarks.

We consider integer nf from 0 up to 16. (At higher nf ’s the theory

would not be asymptotically free.) The inputs to the numerical

calculations are collected in Table 11.1, which lists the RS-invariant

quantities c, ρ2, ρ3. These values are obtained from the formulas

quoted in Appendix 10.A. The Feynman-diagram calculations used
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Table 11.1. Values of the invariants for Re+e−
(with

∑
qi = 0) found from the formulas quoted

in Appendix 10.A, obtained from the Feynman-
diagram calculations cited in the Bibliography.

nf c ρ2 ρ3
0 2.31818 −7.066723 −184.37823
1 2.16129 −8.397865 −147.27522
2 1.98276 −9.842342 −113.85683
3 1.77778 −11.417129 −83.83139
4 1.54 −13.144635 −56.87785
5 1.26087 −15.055062 −32.63303
6 0.928571 −17.190118 −10.67155
7 0.526316 −19.609073 9.52688
8 0.029412 −22.399086 28.63336
9 −0.6 −25.693806 47.57023

10 −1.42308 −29.709122 67.70445
11 −2.54545 −34.817937 91.25169
12 −4.16667 −41.724622 122.21944
13 −6.71429 −51.938541 168.96670
14 −11.3 −69.384046 252.90695
15 −22.0 −108.450422 452.02327
16 −75.5 −298.641242 1466.56390

are cited in the Bibliography. In order to simplify the comparison of

different nf cases — and to avoid having to assign specific electric

charges to fictitious extra quarks — we have chosen to drop the terms

proportional to
∑
qi. Those terms were included in the examples in

Chapter 10, but they make very little difference to the infrared limit

in the phenomenologically relevant case of nf = 2.

At third order only the c and ρ2 information is used. The

OPT results are given in Table 11.2. The quoted error estimate on

R corresponds to the last term, r2a
3, of the truncated perturbation

series, evaluated in the optimized RS. Also listed are values of the

fixed-point couplant and the exponent γ∗. The R∗ results are plotted
in Fig. 11.7. At low nf ’s the uncertainty is very large, about 100%,

but at larger nf ’s the results become increasingly precise.

At fourth order the results are given in Table 11.3. The

quoted error estimate on R corresponds to the last term, r3a
4,

of the optimized perturbation series. Also listed are values of the

fixed-point, or the unfixed-point and pinch-point. The fixed-point
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Table 11.2. Third-order OPT results for the
infrared-limit of Re+e− (with

∑
qi = 0) for

different nf values. The last column gives
values for the critical exponents γ∗ which
characterize the power-law approach of R to
its fixed-point limit; R∗ −R ∝ Qγ∗

.

nf a∗ R∗ γ∗

0 0.31328 0.40 ± 0.36 4.70
1 0.28746 0.37 ± 0.31 3.89
2 0.26466 0.33 ± 0.27 3.23
3 0.24422 0.30 ± 0.23 2.68
4 0.22559 0.28 ± 0.20 2.21
5 0.20837 0.25 ± 0.18 1.81
6 0.19218 0.23 ± 0.15 1.47
7 0.17669 0.21 ± 0.13 1.17
8 0.16160 0.19 ± 0.11 0.92
9 0.14658 0.17 ± 0.09 0.70

10 0.13132 0.15 ± 0.07 0.52
11 0.11542 0.13 ± 0.05 0.36
12 0.09846 0.11 ± 0.04 0.23
13 0.07998 0.086 ± 0.025 0.14
14 0.05954 0.063 ± 0.013 0.066
15 0.03691 0.038 ± 0.005 0.022
16 0.01249 0.0126 ± 0.0005 0.002

Fig. 11.7. Infrared limiting values of Re+e− (with
∑

qi = 0) in third-order OPT
as a function of nf . The shaded region indicates the error estimate.
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Table 11.3. Infrared-limit results for Re+e− (with
∑

qi = 0) in OPT
at fourth order for different nf values. For nf = 0, . . . , 6 and nf = 16
the limit is governed by a fixed point at a∗: For nf = 7, . . . , 15 it arises
from the pinch mechanism, with an “unfixed point” at a� and a “pinch
point” at ap. (The a� equation has solutions outside this range, giving
the values in parentheses, but these violate the a� > ap requirement.
Also, the fixed-point equation has a solution for nf = 15, but one that
violates the γ∗ ≥ 0 requirement.) The last column gives values for the
critical exponents γ∗ which characterize the power-law approach of R
to its fixed-point limit; R∗ −R ∝ Qγ∗

. In the unfixed-point case, one
finds instead R� −R ∝ 1/(lnQ)2 so that, in a sense, γ∗ vanishes.

nf a∗ a� ap R∗ γ∗

0 0.158279 (0.1334) (2.50) 0.164 ± 0.083 3.28
1 0.168688 (0.1465) (1.20) 0.174 ± 0.083 3.20
2 0.180844 (0.1633) (0.832) 0.185 ± 0.080 3.09
3 0.195462 (0.1857) (0.651) 0.199 ± 0.073 2.94
4 0.213910 (0.2162) (0.540) 0.214 ± 0.059 2.73
5 0.239369 (0.2588) (0.462) 0.235 ± 0.028 2.40
6 0.282493 (0.3164) (0.402) 0.266 ± 0.051 1.76
7 — 0.383293 0.3525 0.35 ± 0.37 0
8 — 0.432267 0.3094 0.48 ± 0.64 0
9 — 0.429519 0.2702 0.52 ± 0.75 0

10 — 0.376034 0.2341 0.44 ± 0.61 0
11 — 0.301883 0.2001 0.32 ± 0.38 0
12 — 0.229746 0.1673 0.21 ± 0.21 0
13 — 0.166832 0.1346 0.14 ± 0.11 0
14 — 0.112784 0.1007 0.08 ± 0.05 0
15 (0.0674) 0.065248 0.0642 0.043 ± 0.015 0
16 0.020058 (0.0215) (0.0228) 0.013 ± 0.001 0.001

mechanism operates for nf < 6.727, then the pinch mechanism takes

over until nf = 15.191, when the fixed-point mechanism returns and

operates until nf = 16 1
2
when a∗ → 0.

Table 11.3 also gives the values of the exponent γ∗ in the power

law R∗ −R ∝ Qγ∗
that applies at a fixed point. At fourth order it is

given by

γ∗ = ba∗(3 + 2ca∗ + c2
∗a∗2). (11.52)

Note that γ∗ is around 2 or 3 for 0 ≤ nf ≤ 6, so the resulting

low-Q behaviour (Fig. 11.3) is appropriately described as “freezing”
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Table 11.4. Terms in the optimized β-function and R series in the infrared
limit (a = a∗ or a�, as appropriate).

nf ca c2a
2 c3a

3 r1a r2a
2 r3a

3

0 0.36692 0.032328 −1.39925 −0.25 −0.238596 0.524718
1 0.364583 −0.060272 −1.30431 −0.25 −0.20734 0.489117
2 0.35857 −0.183906 −1.17466 −0.25 −0.165126 0.440499
3 0.347489 −0.353982 −0.993507 −0.25 −0.106587 0.372565
4 0.329421 −0.599622 −0.729799 −0.25 −0.021696 0.273674
5 0.301813 −0.987899 −0.313913 −0.25 0.112331 0.117717
6 0.262315 −1.74675 0.484438 −0.25 0.371865 −0.181664
7 0.201733 −3.98554 2.80955 −0.228168 1.11073 −0.968966
8 0.012714 −5.89311 5.48146 −0.150668 1.72852 −1.47106
9 −0.257711 −6.75979 7.37992 −0.102638 2.05663 −1.74115

10 −0.535126 −6.02116 6.90794 −0.098434 1.8826 −1.61273
11 −0.768429 −4.50798 5.11621 −0.122888 1.44444 −1.27189
12 −0.957273 −3.02694 3.3723 −0.156741 0.999204 −0.921032
13 −1.12016 −1.83192 2.08731 −0.190139 0.635461 −0.631526
14 −1.27446 −0.907359 1.20999 −0.220064 0.353673 −0.405223
15 −1.43545 −0.183663 0.619584 −0.245711 0.135041 −0.228425
16 −1.51438 0.352822 0.161556 −0.25 −0.031878 −0.060584

of the couplant. However, when γ∗ is very small one sees instead

a “spiking” at Q → 0. Thus, the nf = 16 case, although it has

a fixed point, is qualitatively similar to the “logarithmic spiking,”

R� −R ∝ 1/(lnQ)2, of the unfixed-point case.

Table 11.4 gives the optimized coefficients, weighted by the

appropriate power of ā, in both the β function and R series. This

information shows the behaviour of the truncated series for both

R and B(a) — which is, at best, only marginally satisfactory:

Clearly, by going to the Q → 0 limit we are pushing low-order

perturbation theory well beyond its comfort zone. Nevertheless, all

things considered, we believe that the results are credible within the

large uncertainties quoted in Table 11.3 and illustrated in Figs. 11.3

and 11.4. In particular, we believe that the dramatic Q → 0 spike

produced by the pinch mechanism is real; the very large error

estimate just cautions that the height of the spike is very uncertain; it

might be somewhat smaller, or it might well be considerably bigger.
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Fig. 11.8. Infrared limiting values ofRe+e− (with
∑

qi = 0) in fourth order OPT
as a function of nf . The OPT points are shown as blue circles when they arise
from a fixed point and as red squares when they arise from an “unfixed point.”
The shaded region indicates the error estimate on R∗. (The huge uncertainties for
7 � nf � 12 are because the height of the “spike” is so uncertain; error estimates
at low, but finite Q values are much more modest.) The smaller orange points
are the corresponding results in the EC scheme. The fourth-order Banks–Zaks
expansion about nf = 16.5 is shown by the pink dashed curve. The dotted blue
curve represents R∗ = 0.84/b, the asymptotic behaviour of fourth-order OPT for
large-b.

Figure 11.8 plots the infrared limiting R values against nf . The

large “bump” around nf ≈ 9 is where the pinch mechanism produces

really dramatic spiking of R as Q → 0, as seen in Fig. 11.4 for nf = 8.

If, instead of R∗, we had plotted R(Q) for some low, but finite Q —

say around 1
2
Λ̃R — the bump would not have appeared and the points

would have been close to the smaller, orange points. Moreover, the

error estimates would have been much less.

Those smaller, orange points are the infrared-limiting results in

the FAC/EC scheme, defined such that all the rm coefficients vanish,

giving R = aEC(1 + 0 + 0 + · · · ). The EC β function’s coefficients

then coincide with the ρn invariants (and so can be read off from

Table 11.1). Since those coefficients do not evolve withQ, the infrared

limit in EC is simply obtained by finding the fixed point of the EC

β function. Many authors have observed that, at low orders, the EC

results are very similar to those of OPT. That observation holds
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true at low nf and close to nf = 16 1
2
. It also holds in the range

7 � nf � 13 at energies Q � 1
2
Λ̃R. However, there is a notable

difference at the very lowest energies: The EC scheme does not see

the extreme spiking at Q = 0. While it is still true, because the error

estimates (see Table 11.3) are so large in this region, that OPT and

EC infrared results agree within the error estimate, it is fair to say

that the presence or absence of the spike is a qualitative difference

in the predictions of the two schemes.

11.8. Discussion

We now briefly discuss the implications of these results for QCD.

The abrupt change around nf = 7 (and clearly associated with the

change of sign of c occurring at nf = 8 1
19 ) seems indicative of a phase

transition. For nf ≤ 6 the phase is presumably the one we are familiar

with in the real world; colour is confined and chiral symmetry is

broken, with the associated Goldstone bosons (pions) being massless

when quark masses are neglected. Vector mesons (ρ’s, etc.) have

masses of order Λ̃ and their resonant contribution dominates e+e− →
hadrons at low energies. Although the actual Re+e− ∝ 1 + R is

very different from the smooth perturbative prediction, the two agree

well after Poggio–Quinn–Weinberg smearing is applied to both (see

Ref. [15] and other references in the Bibliography).

An interesting possibility is that the low-nf theories can be

understood through the “large-b approximation.” That approach

can be viewed as an extrapolation from nf = −∞ (remember that

b = (33 − 2nf )/6 must be positive for asymptotic freedom). We

shall not discuss the large-b approximation here, since it involves

highly technical all-orders Feynman-diagram issues. The technical

subtleties in the infrared region are particularly difficult, but there

are good reasons to expect that R∗ ∝ 1/b, where the constant of

proportionality is not universal but should, in principle, be calculable

for any specific physical quantity. The large-b limit of fourth-order

OPT (see Exercise 11.7) isR∗ ≈ 0.84/b, which is shown by the dotted

blue line in Fig. 11.8. Intriguingly, it well describes the OPT results

up to nf = 6.
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For nf > 7 the infrared limit is described by an unfixed point. The

effective low-energy theory here seems to be a renormalizable theory

with the energy scale Q appearing only in logarithms. The extreme

spiking of R as Q→ 0 (Fig. 11.4), if viewed as a resonant peak in the

vector channel, hints that massless vector bosons are now present.

These might be the gluons of an unconfined phase, or they might be

massless, colourless vector mesons of a confined phase, perhaps with

unbroken chiral symmetry. This phase presumably persists until nf =

16 1
2
(beyond which asymptotic freedom is lost). Although the OPT

results switch back to a fixed-point limit for nf = 16, there is hardly

any qualitative difference between the extreme (logarithmic) spiking

of the unfixed-point case and the very strong (fractional power-law)

spiking of a fixed-point with a very small γ∗. Note that the theory

with 16 flavours (or 16.4999, for that matter) is not exactly scale and

conformal invariant. Moreover, the phrase “approximately conformal

invariant” needs to be used with care. While there is a huge range

of Q over which R is nearly constant (at a value about 0.78 of its

infrared limit, as will be discussed in Chapter 13), it does fall to zero

(very slowly) as Q→ ∞ and it does rise (very abruptly) as Q→ 0.

The approach to nf = 16 1
2

is very interesting. Indeed, one

can make an expansion about that limit, as first noted by Banks

and Zaks. This Banks–Zaks (BZ) expansion is essentially a small-

b expansion. We return to discuss it, and to consider its regime as

a playground to explore some aspects of OPT at arbitrarily high

orders, in Chapter 13.

Before concluding this chapter we remark that it is an open

question whether the fixed-point and pinch mechanisms are the only

two ways that a finite infrared limit can occur in OPT. Possibly, there

might be still more exotic possibilities, especially in higher orders, for

certain ranges of values of the c and ρj invariants.

Appendix 11.A: Effective Exponents and the

Slope of β(a)

According to the usual lore, the slope of the β function at a fixed

point, β̇∗, is scheme invariant. Moreover, it supposedly can be



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch11 page 205

Infrared Limit: Fixed and Unfixed Points 205

identified with the critical exponent γ∗ that governs the power-law

approach of any physical quantity R to its fixed-point value:

(R∗ −R) ∝ Qγ∗
(11A.1)

as Q→ 0. These statements are sort-of true, but not quite.

Indeed, a stark contradiction arises if the slope of the β
function at the fixed point, is taken to be a scheme-invariant
quantity. See Exercise 11.2.

The formal issue can be resolved by defining an “effective

exponent” γ(Q) associated with a specific physical quantity R. It

is related to the slope of the β function but has an extra term that

is crucial for its RS invariance. The following discussion will be at

the formal level. In the next appendix, we comment on issues arising

from the need to approximate and discuss the approach to Q→ 0 in

OPT.

As usual, we consider a dimensionless physical quantity R with

the perturbation expansion

R = aP(1 + r1a+ · · · ). (11A.2)

Since R is a physical quantity and Q is a physical parameter, the

successive logarithmic derivatives of R:

R[n+1] ≡ Q
dR[n]

dQ
(11A.3)

for n = 1, 2, 3, . . . , with R[1] ≡ R, must be RS-invariant quantities,

for any Q. In particular, the combination

γ(Q) ≡ R[3]

R[2]
= 1 +Q

d2R
dQ2

/dR
dQ

(11A.4)

is RS invariant. It is the exponent of the local-power-law form of

R(Q) in the following sense: Take the first three terms of the Taylor

expansion of R about Q = Q0 and fit them to the power-law form

R ≈ K + CQγ (11A.5)
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to find

R0 ≡ R|Q=Q0
= K + CQγ

0 ,

R′
0 ≡

dR
dQ

∣∣∣∣
Q=Q0

= γCQγ−1
0 , (11A.6)

R′′
0 ≡ d2R

dQ2

∣∣∣∣
Q=Q0

= γ(γ − 1)CQγ−2
0 .

These algebraic equations can be inverted to find the three param-

eters K,C, and γ. (Note that K is not R0 in general, though it is

when Q0 → 0, assuming γ > 0.) In particular,

γ = 1 +Q0
R′′

0

R′
0

, (11A.7)

which is the γ(Q0) of Eq. (11A.4).

Note that R[2]/R is D(R), the scale dimension of R, while γ(Q)
is (Q/R[2])dR[2]/dQ, and hence is the scale dimension of R[2].

At high energies, where R ∝ (1/ lnQ)P, one has a negative γ,

but as Q is lowered γ becomes positive. As Q → 0 it becomes the

critical exponent γ∗ that (for any P) governs the approach of R to

its fixed-point value R∗:

(R∗ −R) ∝ Qγ∗
as Q→ 0. (11A.8)

In the perturbative expansion of R, in some specific RS with

renormalization scale μ, the only Q dependence resides in the series

coefficients ri. For dimensional reasons, these can only depend on Q

through the ratio Q/μ. Thus, we have

Q
dR
dQ

=
∑

i

Q
dri
dQ

aP+i = −
∑

i

μ
dri
dμ

aP+i = − μ
∂R
∂μ

∣∣∣∣
a

, (11A.9)

where the μ partial derivative is taken holding a constant. The μ RG

equation says that the total μ derivative of R vanishes:

0 = μ
dR
dμ

= μ
∂R
∂μ

∣∣∣∣
a

+ β(a)
∂R
∂a

, (11A.10)
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so that one has

R[2] ≡ Q
dR
dQ

= β(a)
∂R
∂a

. (11A.11)

Since R[2] is itself a physical quantity, we can apply the same

argument to it to get

R[3] = β(a)
∂R[2]

∂a
= β(a)

(
dβ

da

∂R
∂a

+ β(a)
∂2R
∂a2

)
. (11A.12)

Dividing Eq. (11A.12) by Eq. (11A.11) yields the key result:

γ(Q) =
dβ

da
+ β(a)

∂2R
∂a2

/∂R
∂a

. (11A.13)

We digress briefly to recall a similar issue for the anomalous
dimension of a Green’s function or proper vertex, Γ, which is
defined as

γ(Γ) ≡ μ

Γ

dΓ

dμ
=

1

Γ

(
μ
∂Γ

∂μ

∣∣∣∣
a

+ β(a)
∂Γ

∂a

)
.

It is not a physical quantity, but a physical quantity, the scale
dimension of Γ, can be defined (echoing the discussion at the end
of Sec. 2.7) as

D(Γ) ≡ κ

Γ

d

dκ
Γ(κqi, μ, a(μ))

∣∣∣∣
κ=1

.

(This could be written as Q
Γ

dΓ
dQ in terms of an overall physical

scale Q.) The important point here is that the wavefunction-
renormalization constant Z(Γ) that multiplicatively renormalizes
Γ is independent of the momentum arguments qi and cancels
out in the equation above. By the dimensional argument leading
to Eq. (11A.9), modified to allow for Γ having an overall mass
dimension of D, we see that

D(Γ) = D − γ(Γ) +
β(a)

Γ

∂Γ

∂a
,

which is analogous to Eq. (11A.13).
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Returning to γ(Q), it is instructive to check directly that

Eq. (11A.13) is invariant under scheme transformations. The deriva-

tives of R transform as

∂R
∂a′

=
∂R
∂a

/da′
da
,

∂2R
∂a′2

=
∂

∂a

(
∂R
∂a

/da′
da

)/da′
da

=

(
∂2R
∂a2

− ∂R
∂a

d2a′

da2

/da′
da

)
1

(
da′
da

)2 . (11A.14)

Hence, the second term in Eq. (11A.13) transforms as

β′(a′)
∂2R
∂a′2

/∂R
∂a′

= β(a)
∂2R
∂a2

/∂R
∂a

− β(a)
d2a′

da2

/da′
da
. (11A.15)

Adding this to Eq. (11.7) we see that

dβ′

da′
+ β′(a′)

∂2R
∂a′2

/∂R
∂a′

=
dβ

da
+ β(a)

∂2R
∂a2

/∂R
∂a

, (11A.16)

confirming that γ(Q) is genuinely scheme independent.

Further insight into γ(Q) is the following observation. Specialize

to the case P = 1 (or define Rnew = R1/P
old ) and consider the “effective

charge” (EC) renormalization scheme defined so that R = a(1 + 0+

0 + · · · ). In this scheme ∂2R/∂a2 = 0, so Eq. (11A.13) reduces to

γ(Q) =
dβEC(R)

dR . (11A.17)

Thus γ(Q), at any Q, is the slope of the EC β function at the

corresponding R. In particular, in the infrared limit, the critical

exponent γ∗ is the derivative of the EC β function at the fixed point.

Moreover, from Eq. (11A.13), we can say that γ∗ is the derivative

of the β function at the fixed point in any scheme for which ∂R
∂a is

non-zero and ∂2R
∂a2

is non-singular at a = a∗. That includes a large

class of possible RS’s, but by no means is this “almost all” schemes.

In general we must go back to Eq. (11A.13) and carefully consider its

infrared limit. For an instance where this subtlety arises see Sec. 13.5.
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An important open question concerns the “universality,” or

otherwise, of γ∗. Is it the same for all perturbative physical quantities

R? The question hinges on whether the EC couplants a and a′ for
two different physical quantities R and R′ always have da′/da|∗ non-
zero and d2a′/da2

∣∣∗ non-singular. Possibly yes, but it may well be

that physical quantities segregate into distinct classes, each with a

characteristic value of γ∗. It is this point — that γ∗ is not necessarily
the same for all perturbative physical quantities of a given theory —

that is perhaps the most important lesson to be drawn here.

The discussion so far has been entirely at the formal level. When

we approximate R and β(a) a whole set of other issues arises. These

are discussed in the following appendix.

Appendix 11.B: Approach to the Q → 0 Limit

When approximating γ(Q), or its infrared limit γ∗, the most

meaningful result is just the original definition, Eq. (11A.4), with

R replaced by its approximation. For some approximation method-

ologies that is the same as using the formal result, Eq. (11A.13), with

the R and β(a) replaced by their approximations — but that is not

always the case.

Let us first consider R[2] ≡ QdR/dQ in (k + 1)th order.

(Henceforth R and β(a) should be understood as R(k+1) and

β(k+1)(a), respectively.) In fixed-RS perturbation theory, where theQ

dependence resides in the Q/μ dependences of the ri coefficients, the

argument in Eqs. (11A.9) holds, except that the series are truncated.

The next step, using the μ RG equation, will therefore not yield

β(a)∂R/∂a, but only the truncated series thereof — which does not

factorize, and does not vanish when the approximated β function

vanishes. In RG-improved perturbation theory, where μ is set equal

to Q, the Q dependence is transferred to a(Q), so the factorized form

β(a)∂R/∂a is regained, with each factor being a truncated series.

In general, if the RS choice evolves with Q then

Q
dR
dQ

= Q
dR
dQ

∣∣∣∣
fixedRS

+
dR

d(RS)

d(RS)

dQ
, (11B.1)
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where

dR
d(RS)

d(RS)

dQ
≡ ∂R

∂τ

dτ

dQ
+

k∑

j=2

∂R
∂cj

dcj
dQ

. (11B.2)

In OPT ∂R/∂τ and ∂R/∂cj vanish by the optimization equations.

Thus, all the complications of the optimized ri and cj coefficients

evolving with Q can be ignored, and the fixed-RS result, Eq. (11A.9)

holds. Then, by using the τ optimization equation in the role of

Eq. (11A.10), one obtains the result

Q
dR
dQ

= β(a)
∂R
∂a

, (11B.3)

where β(a) and R have their optimized forms.

However, when it comes to R[3] the same argument cannot be

repeated, because the optimal scheme forR is not the optimal scheme

for R[2]. Thus, γ(Q) in OPT is not given by the formal expression,

in general. At a fixed point, however, the näıve expression for γ∗ is

valid, as we now show.

First, we note a subtlety that one must beware of. (In the

following, all scheme-dependent quantities should be understood to

take their optimized values.) A convenient small quantity is ε ≡ B(a),

which goes to zero in the fixed-point limit. The difference R∗−R will

turn out to be of order ε. However, the optimized a, rm, and cj all

have ε ln ε corrections as they approach their fixed-point limits. The

B function (which we write with a dummy argument x, reserving

“a” for the optimized couplant) evolves as shown in Fig. 11.9. At

some small Q the B function has a zero at some value az, slightly

larger than a itself. Clearly, az−a is proportional to ε, the two being

related by the finite slope of B. However, the B(x) function evolves,

shifting nearly parallel to itself, so that a∗−az, and hence a∗−a are

of order ε ln ε.

We now show that az − a, and hence ε, is proportional to Qγ∗
,

where γ∗ is indeed β̇∗ = ba∗2σ, the slope of the optimized β function

at the fixed point. From ρ1(Q) ≡ τ − r1 and the int-β equation
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Fig. 11.9. Sketch of the B function, with dummy argument x, in the optimal RS
as it evolves in the case of a fixed-point infrared limit. (Compare with Fig. 11.5.)
Here we are showing a close-up view of the region near the fixed point. At some
small Q value the optimal couplant is a, and the value of B(x) at x = a is some
small value ε. The optimal B(x) function at this Q is shown in blue, with its
continuation to x > a shown dashed. It has a zero at az. At Q = 0 the optimal
B(x) function is shown in red, and the optimal infrared couplant is a∗, where B
vanishes. The subtlety is that while az − a is of order ε, both a∗ − a and a∗ − az

are of order ε ln ε. The evolving B(x) is shifting nearly parallel to itself, so that
the slope of B(x) is almost constant throughout the region shown.

τ = K(a), we have

ρ1(Q) = K(a)− r1, (11B.4)

which gives

b ln(Q/Λ̃R) = b

∫ a

[0]

dx

β(x)
− r1, (11B.5)

where “[0]” is shorthand for a lower limit of 0 with the appropriate

infinite-constant subtraction, as in Eq. (6.17). At sufficiently low Q

we may approximate β(x) by −γ∗(az−x). Note that we need az here,
and not a∗, see Fig. 11.9. Thus,

b lnQ = − b

γ∗

∫ a

0

dx

(az − x)
+ const., (11B.6)

where “const.” is finite as Q → 0. Multiplying through by γ∗/b gives

γ∗ lnQ = ln(az − a) + const′., (11B.7)

and exponentiating gives

az − a ∝ Qγ∗
. (11B.8)
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Next we note that ∂R/∂a tends to a constant value — which is

easily found (see Exercise 11.8), but is not needed. Thus, at low Q

Q
dR
dQ

= β(a)
∂R
∂a

∝ −(az − a) ∝ −Qγ∗
. (11B.9)

Integrating this with dQ/Q, we find the expected power law:

(R∗ −R) ∝ Qγ∗
, (11B.10)

for Q → 0. Note that the result corresponds to

Q
dR
dQ

∼ −γ∗(R∗ −R), (11B.11)

for R close to R∗.
The case of second order is exceptional (see Exercise 11.8): There

the Q → 0 behaviour is not governed by the slope of the β function

at a∗. The same is true of the unfixed-point case, to which we now

turn.

Approaching an unfixed point the natural small parameter is the

δ of Eq. (11.30). As before, the int-β equation and ρ1(Q) definition

give Eq. (11B.5), so, using Eq. (11.31) we have

δ =
π

ba2pη

1

(− lnQ/Λ̃R)
as Q→ 0. (11B.12)

When we consider R[2] in Eq. (11B.3) it is now β(a) that tends to

a constant, while ∂R/∂a vanishes, since it is proportional to 1/Bk,

and hence to δ3. Thus, as Q→ 0,

Q
dR
dQ

∝ 1

(lnQ)3
. (11B.13)

Integration with respect to lnQ then gives

R� −R =
1

b2ir

1

(lnQ)2
, (11B.14)

where the proportionality constant 1/b2ir can easily be found (see

Exercise 11.9):

bir =
ba2p
π

√
(k − 1)η

Pa�P

(ap
a�

)k
. (11B.15)
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It involves the constant η of Eq. (11.30) which is one-half the second

derivative of B at its pinch point ap:

η =
1

2

d2B

dx2

∣∣∣∣
x=ap

=
1

2

k−2∑

j=0

(k − j)(k − j − 1)cja
j−2
p , (11B.16)

where we have used B = B′ = 0 at ap to eliminate ck and ck−1, in a

similar fashion to Eq. (11.13) for σ in the fixed-point case.

One way to look at the result is to note that R[2] as a function

of R has the form

Q
dR
dQ

∼ −2bir(R� −R)3/2 (11B.17)

for R close to R�. Thus, it has neither a simple nor a double zero,

but something in between. An even more intriguing interpretation is

to see the low-energy prediction as

R = R� − λ2 (1 +O(λ)) (11B.18)

with λ ∼ 1/(−bir lnQ) viewed as the running coupling constant of

some infrared effective theory whose β function starts birλ
2(1+O(λ)).

Exercise 11.1. Show that the formal argument around Eqs. (11.5)
and (11.6) generalizes to any P, where, in the EC scheme,

R = aPEC and βEC(aEC) = Q
daEC

dQ
.

Exercise 11.2. Show that a stark contradiction arises if the slope
of the β function at the fixed point,

β̇∗ ≡ dβ

da

∣∣∣∣
a=a∗

,

is taken to be a scheme-invariant quantity. Write the β function as

β(a) = −ba2
∑

i

cia
i,

with c0 ≡ 1 and c1 ≡ c, and the i sum extends to infinity for this
formal exercise. If β̇∗ = −b∑i ic

∗
i a

∗i+1 were a physical quantity
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then we would have

∂β̇∗

∂c∗j

∣∣∣∣∣
a∗

+
∂a∗

∂c∗j

dβ̇∗

da∗
= 0.

Using ∂a∗/∂c∗j = a∗j/σ (see Exercise 11.3), show that this would
reduce to

j −
∑

i

i(i+ 1)cia
∗i
/∑

i

icia
∗i = 0.

But this equation would have to be true for all j = 2, 3, . . . , which
is clearly impossible since the second term is independent of j.

Exercise 11.3. Show that the result ∂a/∂cj|∗ = a∗j/σ,
Eq. (11.12), obtained by considering the Ij(a) integrals as a→ a∗,
is the same as ∂a∗/∂c∗j obtained from ∂

∂c∗j
(1+ca∗+· · ·+c∗ka∗k) = 0.

Exercise 11.4. The form of the optimization equations in the
fixed-point and unfixed-point infrared limits is worth considering.
(Because we used the formula for the sm coefficients — which solves
those equations — we did not need this discussion earlier.) A simple
argument is that, if the couplant a tends to a constant value a∗ (or
a�) in the infrared limit then the whole ∂R/∂τ should be the same
as the partial variation with a held constant:

∂R
∂τ

→ ∂R
∂τ

∣∣∣∣
a

=

k∑

m=1

∂rm
∂τ

am.

Thus the τ optimization equation reduces to this term set equal to
zero. This is indeed true since the other term β(a)∂R∂a vanishes: in
the fixed-point case β(a) vanishes, while in the unfixed-point case
∂R
∂a vanishes. However, this simple argument is not valid for the
other optimization equations. Why not?

In the fixed-point case define a new RS variable

c′2 ≡ c2 + c3a
∗ + · · ·+ cka

∗k−2,

and change variables from {τ, c2, c3, . . . , ck} to {τ, c′2, c3, . . . , ck}.
Now the RS variations with respect to cj for j ≥ 3 are at constant
c′2. Show that the simple argument is valid for the new cj equations,
though not for the c′2 equation. Show that this result corresponds
to the fact that βj(a)− a∗j−2β2(a) vanishes at a = a∗.
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Verify that a similar result holds in the unfixed-point case holds
if we define

c′2 ≡ c2 + c3ap + · · ·+ ckap
k−2,

in that case.

Exercise 11.5. Derive Eq. (11.33), the formula for the sm
coefficients in the pinch-mechanism case. First, from the form of
the Ij integrals in Eq. (11.32), find the asymptotic forms of the Bj ,
and hence the Hi functions, remembering that the infrared limit of
a is a�, which is distinct from the pinch point ap. Then substitute
in the general formula, Eq. (9.13), and simplify.

Exercise 11.6. An alternative method for treating the pinch
mechanism in fourth order is as follows. First, use the two
conditions, Eq. (11.34), satisfied by the pinch point ap to show
that

c�2 = − (3 + 2cap)

a2p
,

c�3 =
(2 + cap)

a3p
.

Then substitute these and Eq. (11.44) into the definitions of the
ρ2 and ρ3 invariants to obtain two equations for ap and a�: The
first is Eq. (11.47) and the second is a linear combination of it
and Eq. (11.48). (Direct manipulation of these equations leads to
a result for ap that is more cumbersome than Eq. (11.49).)

Exercise 11.7. Using the results for the ρ invariants for Re+e−

quoted in Appendix 10.5, find the large-b (nf → −∞) limit of the
fourth-order OPT formulas, Eqs. (11.28), (11.29), and show that
these yield R∗

e+e− ∼ 0.84/b. Show also that γ∗ tends to a finite
limit of about 2.76. (Both these results extrapolate quite well as
far as nf ∼ 6.)

Exercise 11.8. Near a fixed point, as discussed in Appendix 11.B,
∂R/∂a tends to a constant value. Show that, in (k + 1)th order of
OPT (for k ≥ 2)

∂R
∂a

∣∣∣∣
∗
= Pa∗P

σ

(k − 1)
,
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and that

R∗ −R ∼ Pa∗P

(k − 1)
ε.

The case of second order (k = 1) is exceptional. As discussed in
Sec. 11.3, for negative c the β function has a zero at a∗ = −1/c,
but the optimal r1 coefficient and R diverge as Q → 0. From Eq.
(11B.3) show that

Q
dR
dQ

= −PbaP+1,

and hence show that

R ∼ Pba∗P+1 (− lnQ)

as Q→ 0.

Exercise 11.9. Find the constant of proportionality in
Eq. (11B.13) and hence obtain the result for bir in Eq. (11B.15).
Show that, for the P = 1 case at fourth order (k = 3) it reduces to

bir =
√
2ap(3 + cap)

(
ap
a�

)2
b

π
.

Also show that, approaching an unfixed-point infrared limit,

R� −R ∼ Pa�P

(k − 1)
η

(
a�

ap

)k

δ2.

Exercise 11.10. Consider third order (k = 2). The nature of the
infrared limit depends on the two invariants c and ρ2. (The former
depends only on the theory, while the latter depends on the specific
physical quantity being considered.) The object of this exercise is
to map out, in the c, ρ2 plane, the regions of different infrared
behaviour.

(i) First, consider the EC scheme. The fixed point, if one exists,
is the smaller positive root of 1+ ca+ c2a

2 = 0, with c2 = ρ2.
Show that contours of fixed a∗ are straight lines in the c, ρ2
plane, whose envelope gives the boundary of the fixed-point
region. That boundary is the positive c-axis (ρ2 = 0) and the
half-parabola ρ2 = 1

4c
2 for c < 0. Above this boundary there

is Landau-pole behaviour.
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(ii) Repeat the analysis for OPT. It is somewhat simpler to
consider the c, ρ′2 plane, where ρ′2 ≡ ρ2 − 1

4 c
2, since then

the contours of fixed a∗, given by Eq. (11.22), remain straight
lines. Show that the envelope of these straight lines, for c < 0,
is ρ′2 = 1

21c
2.

(iii) However, for a viable fixed-point solution a∗ must not only
be the smallest positive root of the a∗ equation, it must be
the smallest positive root of B∗(x) = 1 + cx + c∗2x

2. At this
order, with only two roots, it suffices to check that the slope
parameter σ is positive. Show that this requires a∗ < 2

(−c)

and hence ρ′2 < 1
48c

2. The pinch mechanism operates for
1
48c

2<ρ′2<
1
4c

2 for negative c, see Eq. (11.43). There the
contours of fixed a� are given by Eq. (11.41).
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Chapter 12

Optimization of Factorized Quantities

12.1. Introduction

Factorized quantities have one non-perturbative factor and another

that is perturbatively calculable. The factorization itself requires

arbitrary choices, which give rise to a “factorization-scheme-

dependence problem” in addition to, and intertwined with, the

renormalization-scheme-dependence problem. The difficulties ini-

tially appear formidable and have only recently been clarified, but

when the smoke clears the resulting optimization procedure is only

slightly more complicated than for purely perturbative quantities.

The prototypical case arises in deep-inelastic leptoproduction,

where a high-energy lepton collides with a proton, or other hadron,

exchanging a virtual photon of large virtuality Q2. Neglecting power-

suppressed terms, the nth moment,
∫ 1
0

dx
x x

nF (x,Q), of the non-

singlet proton structure function can be factorized into the form

Fn(Q) = 〈On(M)〉Cn(Q,M), (12.1)

where 〈On(M)〉 is an operator matrix element, Cn is a coefficient

function, and M is some arbitrary “factorization scale.” (From now

on the moment index n will be suppressed.)

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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The operator matrix element 〈O(M)〉 has an M dependence

given by its anomalous dimension

M

〈O〉
d〈O〉
dM

≡ γO. (12.2)

While 〈O(M)〉 itself cannot be calculated perturbatively, its anoma-

lous dimension, γO, has a calculable perturbation series of the form

γO(a) = −bga(1 + g1a+ g2a
2 + · · · ). (12.3)

The leading-order coefficient is written as −bg for later convenience.

While g is invariant, the other coefficients, g1, g2, . . . are scheme-

dependent. The expansion parameter here, a = a(M), is the couplant

in some arbitrary RS whose renormalization scale is M .

The coefficient function C can be calculated as a perturbation

series:

C(Q,M) = 1 + r1ã+ r2ã
2 + · · · , (12.4)

where ã is the couplant of some other arbitrary RS — which can

be different from the RS used to define a. It can have a different

renormalization scale M̃ , and different RS labels c̃2, . . .. Perhaps the

easiest way to understand that the RS’s for a and ã can be distinct,

without inconsistency, is to imagine that first both 〈O〉 and C are

calculated in the same RS and then a substitution ã = a(1 + v1a +

v2a
2 + · · · ), with arbitrary v1, v2, . . ., is made in the result for C.

In terms of renormalization constants, the ZO constant needed for

the renormalization of the operator O (which is genuinely an infinite

change of normalization) must be consistent between the calculations

of C and γO, but the reparametrization step — the substitution of

a = Zaabare and ã = Z̃aabare in the bare forms of γO and C, respec-

tively — can involve distinct Za and Z̃a renormalization constants.

Thus, what we shall call “RS/FS dependence” involves a choice

of factorization scheme (FS), parametrized by g1, g2, . . ., and two,

independent, choices of RS for a and ã that are labelled, respectively,

by τ , c2, c3, . . . and by τ̃ , c̃2, c̃3, . . ., where

τ ≡ b ln(M/Λ), τ̃ ≡ b ln(M̃/Λ). (12.5)
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In this chapter we shall omit the tildes over Λ, used previously
to distinguish our definition from the more conventional one. Note
that, without loss of generality, we may assume that the two
RP’s, for a and ã, are defined so that their Λ parameters are the
same: If this were not the case initially, we could trivially redefine
the renormalization-scale parameter in one of the schemes by a
compensating factor.

12.2. The Form of 〈O〉 and the Invariance of Its

Normalization Constant

Integrating Eq. (12.2), utilizing the β-function equation

M
∂a

∂M
= β(a) = −ba2(1 + ca+ c2a

2 + · · · ), (12.6)

gives

〈O〉 = (const.) exp

(∫ a

dx
γO(x)

β(x)

)
. (12.7)

(Note that the M dependence of 〈O〉 comes solely from the M

dependence of a.) The constant of integration may be written as

a constant A defined by

〈O〉 = A exp

(∫ a

0
dx
γO(x)

β(x)
−
∫ ∞

0
dx

gx

x2(1 + cx)

)
, (12.8)

where, as with the definition of Λ, the lower limit of x → 0 in each

integral produces a divergence that cancels between the two integrals.

The normalization constant A is not calculable from perturbation

theory, but is RS/FS invariant, as we now show.

Theorem (Politzer and Stevenson). The normalization constant

A in Eq. (12.8) is RS/FS invariant.

Proof. The proof is directly analogous to the proof of the

Celmaster–Gonsalves (CG) relation (see Sec. 6.5). Let primed and

unprimed quantities refer to two different schemes (both with the

same value M for their scale argument). Then we have

a = a′
(
1 + v1a

′ + · · · ),
〈O〉 = 〈O′〉 (1 + w1a

′ + · · · ),
(12.9)
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where the coefficients v1, w1, . . . can have arbitrary values. Taking

the logarithm of Eq. (12.8), after dividing through by A, and then

subtracting the corresponding equation in the primed scheme, gives

ln

(〈O〉
A

)
− ln

(〈O′〉
A′

)
=

∫ a

0
dx

γO(x)

β(x)
−
∫ a′

0
dx
γ′O(x)
β′(x)

. (12.10)

The left-hand side is

ln

(
A′

A

)
+ ln

( 〈O〉
〈O′〉

)
= ln

(
A′

A

)
+ ln(1 + w1a

′ + · · · )

= ln

(
A′

A

)
+O(a), (12.11)

and the right-hand side of Eq. (12.10) is easily shown to be of order a.

(The key difference from the Λ case is that the γO factors make the

integrands less singular at the x = 0 endpoint; 1
x rather than 1

x2 .)

As in the CG argument, we may now consider the limit M → ∞, if

b > 0 (or M → 0 if b < 0) so that all terms of order a tend to zero.

Thus, we see that

ln

(
A′

A

)
= 0, (12.12)

so that A′ = A. Thus A is the same in all schemes. As with the

CG argument, the M → ∞ limit is merely a convenient trick;

the unwanted terms actually cancel for any M . One can show this

explicitly by using the method of Osborn’s proof of the CG relation

(see Exercise 12.1). �

The notation conceals the fact that A depends on the moment

index n and on the specific hadron whose structure function one

is considering. For any given hadron the set of An’s provides a

scheme-independent characterization of the hadronic wavefunction

information. The An’s can be fitted to the data for one experiment

(say, deep-inelastic leptoproduction) and used to make predictions

for another process (say, Drell–Yan). Given the An’s one can use

perturbation theory to predict the structure-function moments —

or, inversely to find the An’s from experimental structure-function

data. One will need perturbative calculations, for each n, of the ri
coefficients in C and the gi coefficients in γO, as well as the β-function
coefficients.
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12.3. Second-Order Approximation

We first discuss the second-order approximation, which corresponds

to truncating the series (12.3), (12.4), and the β-function after two

terms. The integrals in Eq. (12.8) become

∫ a

0
dx

−bgx(1 + g1x)

−bx2(1 + cx)
−
∫ ∞

0
dx

gx

x2(1 + cx)

= gg1

∫ a

0
dx

1

1 + cx
− g

∫ ∞

a
dx

(
1

x
− c

1 + cx

)

= g
(g1
c
ln(1 + ca) + ln |ca| − ln(1 + ca)

)
, (12.13)

which exponentiates to

|ca|g(1 + ca)−g(1−g1/c). (12.14)

Substituting in Eq. (12.1), one obtains the second-order approxima-

tion to F as

F (2) = A|ca|g(1 + ca)−g(1−g1/c)(1 + r1ã). (12.15)

This approximant depends on RS/FS choices through three variables,

τ , τ̃ , and g1. Partial differentiations of Eq. (12.15) yield

1

F (2)

∂F (2)

∂τ̃
=

1

(1 + r1ã)

(
−ã2(1 + cã)r1 + ã

∂r1
∂τ̃

)
, (12.16)

1

F (2)

∂F (2)

∂τ
= −ga(1 + g1a) +

ã

(1 + r1ã)

∂r1
∂τ

, (12.17)

1

F (2)

∂F (2)

∂g1
=
g

c
ln(1 + ca) +

ã

(1 + r1ã)

∂r1
∂g1

. (12.18)

Self-consistency of perturbation theory requires these variations to

be of order a2. Noting that ã = a(1 +O(a)), we see that

∂r1
∂τ̃

= 0,
∂r1
∂τ

= g,
∂r1
∂g1

= −g, (12.19)
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so that r1 has the form

r1 = g (τ − g1 − σ1(Q)), (12.20)

where σ1(Q) is an invariant.

Substituting Eq. (12.19) back into Eqs. (12.16)–(12.18) and

equating to zero produces the optimization conditions. Since ∂r1/∂τ̃

vanishes, the solution to the optimization equation (12.16) is simply

ropt1 = 0. (12.21)

The second optimization equation, from (12.17), then reduces to

ã = a(1 + g1a), (12.22)

and (12.18) gives

ln(1 + ca) = cã. (12.23)

Eliminating ã between these last two equations gives us the optimal

g1 in terms of a:

gopt1 =
ln(1 + ca)− ca

ca2
. (12.24)

Also, from the int-β equation at second order, we have

τ =
1

a
+ c ln

∣∣∣∣
ca

1 + ca

∣∣∣∣ . (12.25)

Substituting for τ and for g1 in Eq. (12.20) and equating to zero,

since ropt1 = 0, we find

ln(1 + ca)− (ca)2 ln

∣∣∣∣
ca

1 + ca

∣∣∣∣ = ca (2− aσ1(Q)), (12.26)

which determines the optimized a in terms of the invariant quantities

c and σ1(Q). Substituting back in Eq. (12.24) then fixes gopt1 . The

final optimized result, from Eq. (12.15), is

F
(2)
opt = A|ca|g(1 + ca)−g(1−gopt1 /c). (12.27)

Note that the optimization condition ropt1 = 0 means that Copt = 1,

so that all perturbative corrections are effectively exponentiated
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and reabsorbed into the anomalous dimension by the optimization

procedure. As we shall see later, this property holds at any order, as

first noted by Nakkagawa and Niégawa.

Also note that while the value of ã (and hence τ̃) is determined,

it is not needed to obtain the result for F
(2)
opt.

12.4. RG Equations

As discussed above the RS/FS variables are τ , cj , τ̃ , c̃j , and the

gi coefficients. We now write down the RG equations expressing the

fact that the physical quantity F is independent of all these variables.

Symbolically, we have

1

F

∂F

∂X
= 0, (12.28)

where X stands for any of the set of variables {τ, cj , τ̃ , c̃j , gj}.
Recalling the factorized form F = 〈O〉C of Eq. (12.1), and noting

that 〈O〉 is manifestly independent of M̃ , we see that

1

F

∂F

∂τ̃
=

1

C

∂C

∂τ̃
. (12.29)

The same argument applies to the c̃j derivatives, since 〈O〉, while it

depends on a and its RS variables τ, cj , is manifestly independent of

ã and its RS variables τ̃ , c̃j . Thus, the first two RG equations have

the familiar form
(
∂

∂τ̃

∣∣∣∣
ã

+
β̃(ã)

b

∂

∂ã

)
C = 0, “j = 1” (12.30)

(
∂

∂c̃j

∣∣∣∣
ã

+ β̃j(ã)
∂

∂ã

)
C = 0, j = 2, 3, . . . , (12.31)

where the first term collects dependence from the ri coefficients of C,

while the second term collects the compensating dependence via ã.

The other RG equations all take the form

1

C

∂C

∂X
+

1

〈O〉
∂〈O〉
∂X

= 0, (12.32)
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whereX is any of the variables τ, cj or gj . The first term only involves

dependence via the ri coefficients — indeed we are tempted to add

“|ã” (meaning “with ã held constant”) to the notation, to match

Eqs. (12.30), (12.31), but it is unnecessary since ã is manifestly

independent of τ, cj and gj . The second term can be evaluated as

follows. In the case X → τ , we may simply use the definition of γO,

Eq. (12.2), to get

1

〈O〉
∂〈O〉
∂τ

=
γO

b
. (12.33)

For X → cj we can first write

1

〈O〉
∂〈O〉
∂cj

=
1

〈O〉
∂〈O〉
∂cj

∣∣∣∣
a

+
1

〈O〉
d〈O〉
da

∂a

∂cj
, (12.34)

and then use Eq. (12.8) to obtain

1

〈O〉
∂〈O〉
∂cj

=

∫ a

0
dx

γO(x)

β(x)2
bxj+2 +

γO(a)

β(a)
βj(a). (12.35)

Although we return to this form later, for the present we rewrite it as

1

〈O〉
∂〈O〉
∂cj

=

∫ a

0
dx
βj(x)

β(x)
γ′O(x), (12.36)

where γ′O(x) ≡ dγO/dx. The equivalence to Eq. (12.35) can be shown

by integrating by parts and then using the differential equation

satisfied by the βj functions, Eq. (7.12). (See Exercise 12.2.) Finally,

for X → gj we find, from Eq. (12.8),

1

〈O〉
∂〈O〉
∂gj

= −bg
∫ a

0
dx
xj+1

β(x)
. (12.37)

Thus, the RG equations, in addition to Eqs. (12.30), (12.31), are

1

C

∂C

∂τ
+
γO

b
= 0, “j = 1” (12.38)
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1

C

∂C

∂cj
+

∫ a

0
dx
βj(x)

β(x)
γ′O(x), = 0, j = 2, 3, . . . , (12.39)

1

C

∂C

∂gj
− bg

∫ a

0
dx

xj+1

β(x)
= 0, j = 1, 2, . . . , (12.40)

As usual, the RG equations determine how the coefficients ri
must depend on the RS/FS variables. We now rewrite the RG

equations to facilitate finding these dependences. First, we use the

series for γO and C:

γO(a) = −bg
∑

i=0

gia
i+1, C =

∑

i=0

riã
i, (12.41)

with r0 ≡ g0 ≡ 1. Second, we convert the β, βj functions to the

B,Bj functions of Sec. 7.2 (whose series begin 1 + · · · ). A third

simplification, concerning the lower limit of the i summations, is

discussed below. We obtain

∑

i=1

∂ri
∂τ̃

ãi − ã2B̃(ã)
∑

i=1

iriã
i−1 = 0, (12.42)

∑

i=j+1

∂ri
∂c̃j

ãi + ãj+1 B̃j(ã)

j − 1

∑

i=1

iriã
i−1 = 0, (12.43)

1

C

∑

i=1

∂ri
∂τ

ãi − ga
∑

i=0

gia
i = 0, (12.44)

1

C

∑

i=j

∂ri
∂cj

ãi +
g

j − 1

∫ a

0
dxxj−1Bj(x)

B(x)

∑

i=0

(i+ 1)gix
i = 0, (12.45)

1

C

∑

i=j

∂ri
∂gj

ãi + g

∫ a

0
dx
xj−1

B(x)
= 0. (12.46)

The i summations of the ∂ri/∂X terms inherently begin with i = 1,

but in the cj and gj equations, where the second term starts only at

order aj, it is immediately evident that ri cannot depend on cj or

gj for i < j. Thus, we may begin those i summations at i = j. For

the c̃j equation a stronger result holds, since ∂ri/∂c̃j must vanish
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for i = j as well as for i < j. This observation is crucial for the

“exponentiation theorem” proved in Sec. 12.6.

In (k + 1)th order all the sums would go up to i = k only and

the equations would be satisfied, in an arbitrary RS/FS, only up to

remainder terms of order ak+1. The vanishing of all terms up to and

including ak fixes the RS/FS dependence of the ri coefficients, and

leads us to identify a set of invariants, σj, as discussed in the next

section.

12.5. Invariants

The scheme dependences of r1 were already found in Eq. (12.19) and

led us to the first invariant

σ1(Q) = τ − g1 − r1
g
. (12.47)

It is Q dependent because r1, when calculated from Feynman

diagrams, will contain a term −bg ln(Q/M). As in the discussion

of Sec. 7.3, one can write σ1(Q) as b ln(Q/ΛF ), where ΛF is a scale

specific to the quantity F , but related in an exactly calculable way

to the Λ of some universal, reference RS.

The earlier literature used an “invariant” κ1 given by

κ1 = r1 + gg1 + bg ln(Q/M).

It is true that κ1 is invariant under changes of FS and renormal-
ization scale, with the explicit g1 and M dependences cancelling
the implicit g1 and M dependences of r1. Where κ1 fails to be
invariant is under a change of RS/FS that leaves g1 and the
renormalization scale M unchanged, but changes the RP, so that
a′ = a(1 + v1a + · · · ), with some arbitrary v1. Under such a
transformation the ag factor in 〈O〉, see Eq. (12.14), becomes
(a′)g = ag(1 + gv1a + · · · ), so the coefficient r1 must become
r′1 = r1 − gv1 to leave F = 〈O〉C invariant. Thus, κ′1 = κ1 − gv1.
Since our σ1(Q) is

σ1(Q) = b ln(Q/Λ)− κ1/g,

this change in κ1 cancels with the change from Λ to Λ′, by the
Celmaster–Gonsalves relation.
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The higher invariants, σ2, σ3, . . ., can be defined to be Q-

independent. As with the ρj invariants, it is convenient to define the

σj ’s so that they reduce to the β-function coefficients cj in “effective

charge” schemes, defined by the RS/FS choices gj = 0, ri = 0. The

invariants, so defined, depend on τ and τ̃ only via the difference τ̃−τ
and have no dependence on Q or Λ.

To find the invariants we will need the conversion between ã and

a; either ã = a(1 + V1a+ V2a
2 + · · · ) or its inverse

a = ã(1 + Ṽ1ã+ Ṽ2ã
2 + · · · ). (12.48)

As discussed in Exercise 7.4 in Chapter 7, the Vi or Ṽi coefficients

can most easily be found from the relation between the β functions:

β̃(ã) = (dã/da)β(a). (In fact, the calculation mirrors that for the ρi
invariants.) The first three coefficients are

Ṽ1 = τ̃ − τ,

Ṽ2 = (τ̃ − τ)2 + c(τ̃ − τ)− (c̃2 − c2),

Ṽ3 = (τ̃ − τ)3 +
5

2
c(τ̃ − τ)2 + (−2c̃2 + 3c2)(τ̃ − τ)− 1

2
(c̃3 − c3).

(12.49)

Note that the Ṽi’s do not only involve differences cj − c̃j . It is

true, though, that the Vi coefficients of the inverse relationship are

obtained by exchanging all plain and tilde variables.

We now turn to a calculation of the invariant σ2. Expanding

Eqs. (12.42)–(12.46) in powers of a and ã and using the above

relations we can extract the self-consistency conditions. From the

lowest-order terms we recover Eqs. (12.19) for r1’s derivatives, plus

confirmation that r1 does not depend on the other RS/FS variables

(c2, c̃2, or g2). From the next-order terms we find

∂r2
∂τ̃

= r1,
∂r2
∂τ

= g (r1 + g1 + τ̃ − τ),

∂r2
∂c̃2

= 0,
∂r2
∂c2

= −g
2
,

∂r2
∂g1

= −g
(
r1 − c

2
+ τ̃ − τ

)
,

∂r2
∂g2

= −g
2
.

(12.50)
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Integrating each of these equations individually is easy, but com-

bining the results consistently is a little tricky. However, it is

straightforward to check our result that r2 has the form:

r2 =
1

2

(
−gc2 + gg1c+ gg21 − gg2 + 2g1r1 + r21 +

r21
g

+ 2r1(τ̃ − τ)

)

+const., (12.51)

where the constant is independent of all the RS/FS variables. The

constant can be conveniently written as g
2σ2 so that the invariant σ2

is given by

σ2 = c2+g2−g1c−g21+
2r2
g

−2g1
r1
g
− r21
g2

(1+g)− 2r1
g

(τ̃−τ). (12.52)

This reduces to c2 in the “effective charge” scheme mentioned earlier.

An easier and more systematic way to calculate the σi invariants

is to find them as the ρi invariants associated with the physical

quantity (the scale dimension of F )

D ≡ Q

F

dF

dQ
. (12.53)

The perturbation series for D can be found in terms of the C and γO
series in various ways. Perhaps the simplest is the following. First,

note that all the Q dependence resides in the coefficients of C. For

dimensional reasons such Q dependence can come only via the ratios

Q/M and Q/M̃ . Thus,

D =
Q

C

dC

dQ
= − 1

C

(
M

dC

dM
+ M̃

∂C

∂M̃

∣∣∣∣
ã

)
. (12.54)

The M dependence of C must cancel out with that of 〈O〉 in the

product F = 〈O〉C, so that

M

C

dC

dM
= − M

〈O〉
d〈O〉
dM

= −γO, (12.55)

while C is independent of M̃ , so that

0 = M̃
dC

dM̃
= M̃

∂C

∂M̃

∣∣∣∣
ã

+ β̃(ã)
∂C

∂ã
. (12.56)
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From these observations we see that

D = γO +
β̃(ã)

C

∂C

∂ã
. (12.57)

Thus, D is, in a sense, a “physicalized” version of γO.

Substituting in the above formula we find

D = −bga(1 + g1a+ g2a
2 + · · · )

+ (−bã2)(1 + cã+ · · · )(r1 + 2r2ã+ · · · )
(1 + r1ã+ · · · ) . (12.58)

We could now expand out in terms of ã, converting a to ã using

Eq. (12.48). Alternatively, we can eliminate ã and find the series

expansion in terms of a. The results are more compact in the a

scheme:

D = −bga(1 + rD1 a+ rD2 a
2 + · · · ), (12.59)

with

rD1 = g1 + r1/g, (12.60)

rD2 = g2 +
1

g

(
2r2 + cr1 − r21 − 2r1(τ̃ − τ)

)
, (12.61)

and so on. Note that these coefficients are independent of the FS and

independent of the tilde RS variables, with the explicit gi and τ̃ , c̃j
dependences exactly cancelling with the implicit dependences from

the ri coefficients; see Eqs. (12.19), (12.50). Thus, the rDi coefficients

only depend, in the usual way, on the RS variables τ, cj associated

with a.

As usual, we can construct the ρj invariants for the quantity D:

ρD
1 (Q) = τ − rD1 , (12.62)

ρD2 = c2 + rD2 − crD1 − (rD1 )
2, (12.63)

and these coincide with the σ’s. Indeed, it is easy to see that

the “effective-charge-type” RS/FS used in the definition of the

σ’s corresponds to the usual effective-charge scheme for D, so the

equivalence of ρDj to σj is true for all j.
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The calculation can be straightforwardly extended to higher

orders. Defining

Δ ≡ τ̃ − τ = b ln(M̃/M), si ≡ ri
g
, (12.64)

the first three invariants are

σ1(Q) = τ − g1 − s1, (12.65)

σ2 = c2 + g2 − g1c− g21 + 2s2 − 2g1s1

− s21(1 + g)− 2s1Δ, (12.66)

σ3 = c3 + cg21 + 4g31 − 6g1g2 + 2g3 − 2c2g1

+6c̃2s1 − 4cg1s1 + 12g21s1

− 6g2s1 − 5cs21 − 2cgs21 + 12g1s
2
1

+6gg1s
2
1 + 4s31 + 6gs31 + 2g2s31

− 6c2s1 + 4cs2 − 12g1s2 − 12s1s2 − 6gs1s2 + 6s3

+(12g1s1 − 10cs1 + 12s21 + 6gs21 − 12s2)Δ + 6s1Δ
2.

(12.67)

Using these formulas the values of the invariants can be found from

Feynman-diagram calculations performed in any convenient RS/FS.

12.6. The Exponentiation Theorem

The (k+1)th-order approximation is defined by truncating the series

for C, γO, and B. The resulting approximant, in general, will have

a residual RS/FS dependence that is formally of order ak+1. The

optimization conditions correspond to requiring the RG equations to

be exactly satisfied, with no remainder. (To avoid notational clutter,

we leave it understood that, henceforth, any RS/FS-dependent

symbol (a, ã, ri, etc.) stands for the optimized value of that quantity.)

At second order we saw that the τ̃ optimization equation gave

r1 = 0. In third order (k = 2) the τ̃ equation (12.42), in which
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∂r2/∂τ̃ = r1, reduces to

(1 + cã+ c̃2ã
2)(r1 + 2r2ã)− r1 = 0. (12.68)

Also, the c̃2 equation (12.43), in which the B̃2(ã) factor cancels out

because ∂r2/∂c̃2 = 0, becomes just

r1 + 2r2ã = 0. (12.69)

Substituting this back into the previous equation gives r1 = 0.

Substituting that result back into the second equation then gives

r2 = 0. The result generalizes to all orders.

Theorem (Nakkagawa and Niégawa). The solution to the τ̃ and

c̃j optimization equations is

r1 = r2 = · · · = rk = 0. (12.70)

Thus, C = 1 in the optimal scheme, and all perturbative corrections

are effectively exponentiated and reabsorbed into the anomalous

dimension γO.

Proof. The c̃j optimization equation follows from Eq. (12.43):

k∑

i=j+1

∂ri
∂c̃j

ãi + ãj+1 B̃j(ã)

j − 1

∂C

∂ã
= 0, (12.71)

where ∂C/∂ã =
∑k

i=1 iriã
i−1. Recall that all terms up to and

including ãk must cancel in any RS, thus determining ∂ri/∂c̃j . By

starting the sum at i = j + 1 we have already used the fact that

∂ri/∂c̃j must vanish for i < j and for i = j, as noted at the end of

Sec. 12.4.

We begin by considering the case j = k. The first term vanishes,

as there are no terms in the sum, so we find that in the optimal

scheme

∂C

∂ã
= 0. (12.72)
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Next, consider the case j = k− 1. In any scheme, cancellation of the

ãk terms requires

∂rk
∂c̃k−1

= − r1
k − 2

. (12.73)

In the optimal scheme the left-hand side must vanish, since ∂C/∂ã

vanishes in the optimization equation (12.71). Thus, in the optimal

scheme, r1 = 0. Proceeding to the case j = k − 2 we can find

∂rk/∂c̃k−2 as a sum of r1c and r2 terms. In the optimal scheme

this must vanish, and since we already have r1 = 0, we now find that

r2 = 0, too. We may then proceed to successively lower j cases to see

that other ri’s vanish. Finally, we reach j = 1, where we are dealing

with the τ̃ equation, which gives us rk−1 = 0. Substituting back into

∂C/∂ã =
∑k

i=1 iriã
i−1 = 0 then shows that rk = 0. �

12.7. The Optimization Equations

The fact that C = 1 in the optimal scheme allows us to simplify the

remaining optimization equations, which follow from Eqs. (12.44)–

(12.46) with the i summations truncated at i = k.

We first recall that the Bj(a) functions are related by

Bj(a) =
(j − 1)

aj−1
B(a)Ij(a) (12.74)

to the Ij(a) integrals

Ij(a) ≡
∫ a

0
dx

xj−2

B(x)2
. (12.75)

(See Sec. 7.2.) The gj optimization equations involve a related set of

integrals

Jj(a) ≡
∫ a

0
dx
xj−2

B(x)
, (12.76)

while the cj optimization equations involve

Ij,i(a) ≡ (i+ 1)

∫ a

0
dxxiIj(x), (12.77)
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which can be simplified by interchanging the order of the two

integrations, as follows:

Ij,i(a) = (i+ 1)

∫ a

0
dxxi

∫ x

0
dy

yj−2

B(y)2

=

∫ a

0
dy

yj−2

B(y)2

∫ a

y
dx(i+ 1)xi

=

∫ a

0
dy

yj−2

B(y)2
(
ai+1 − yi+1

)
, (12.78)

giving us

Ij,i(a) = ai+1Ij(a)− Ii+j+1(a). (12.79)

(This corresponds to going back to the form in Eq. (12.35) rather

than Eq. (12.36); compare with Exercise 12.2.)

Thus, the τ , cj , and gj optimization equations can be written as

k∑

i=1

∂ri
∂τ

ãi − ga
k∑

i=0

gia
i = 0, “j = 1” (12.80)

k∑

i=j

∂ri
∂cj

ãi + g
k∑

i=0

giIj,i(a) = 0, j = 2, . . . , k, (12.81)

k∑

i=j

∂ri
∂gj

ãi + gJj+1(a) = 0. j = 1, . . . , k. (12.82)

In each of these equations the first term is a polynomial in ã

that must precisely cancel out the terms up to and including ãk

present in the second term, if it were expanded out in a power

series in ã. Previously, we have used the notation Tn[G(a)] ≡
G0 + G1a + · · · + Gna

n. Here we will need T̃n as the equivalent

operation in the expansion parameter ã. Thus, we may rewrite the

equations (swapping the order of the two terms and dividing out
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a g factor) as

a

k∑

i=0

gia
i − T̃k

[
a

k∑

i=0

gia
i

]
= 0, “j = 1” (12.83)

k∑

i=0

giIj,i(a)− T̃k

[
k∑

i=0

giIj,i(a)

]
= 0, j = 2, . . . , k, (12.84)

Jj+1(a)− T̃k [Jj+1(a)] = 0. j = 1, . . . , k. (12.85)

However, note that the arguments of the T̃k’s are all functions of a,

rather than ã, so it is best to think of the T̃k[G] operation in three

stages (i) expand G as series in a up to ak, (ii) convert a to ã using

Eq. (12.48):

a = ã(1 + Ṽ1ã+ Ṽ2ã
2 + · · · ), (12.86)

(iii) re-expand as a series in ã, and truncate after the ãk term.

A further simplification results from the realization that, since

C = 1, we do not need to know the optimized value of ã; nor do we

need to know the c̃j ’s or τ̃ : they do not enter into the optimized result

for F , which just involves evaluating 〈O〉 in the optimal scheme.

Thus, what we need to do is to take combinations of the optimization

equations in which ã and the Ṽi’s cancel out. From the resulting

equation combinations we can solve for the gj coefficients in terms of

the “principal variables” a, c2, . . . ck. (Note that the I and J integrals

are functions of these principal variables.) Finally, we can use the

invariants, σi and σ1(Q), and the int-β equation to determine the

optimized result. Note that when ri=0 the σj’s have exactly the same

form as the usual ρj invariants with gi’s in place of ri’s.

The optimization equations involve I’s up to I2k+1 and J ’s up
to Jk+1. However, using relations between the J ’s and I’s and the
complete-sum identities obeyed by the I’s, these integrals can all
be expressed in terms of I2 to Ik. (See Appendix 9.A.)

It may be possible to find a general solution for the gj coefficients

in (k+1)th order, akin to the results of Chapter 9. However, we will
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content ourselves with illustrating the above observations in the case

of third order.

12.8. Third-Order Approximation

In third order (k = 2) we have four remaining optimization equations,

in the variables τ , c2, g1, and g2. From Eqs. (12.83)–(12.85) these are

a(1 + g1a+ g2a
2)− ã− (g1 + Ṽ1)ã

2 = 0, (12.87)

(aI2 − I3) + g1(a
2I2 − I4) + g2(a

3I2 − I5)

−1

2
ã2 = 0, (12.88)

J2 − ã−
(
− c
2
+ Ṽ1

)
ã2 = 0, (12.89)

J3 − 1
2 ã

2 = 0. (12.90)

Taking the g1 equation minus the τ equation cancels the ã terms

and, not coincidentally, the Ṽ1 terms, leaving

J2 − a(1 + g1a+ g2a
2) +

( c
2
+ g1

)
ã2 = 0. (12.91)

An ã2 term remains, but we can substitute from the g2 equation to

obtain

J2 + (c+ 2g1)J3 − a(1 + g1a+ g2a
2) = 0. (12.92)

Taking the g2 equation minus the c2 equation cancels the ã2 terms,

giving

J3 −
(
(aI2 − I3) + g1(a

2I2 − I4) + g2(a
3I2 − I5)

)
= 0. (12.93)

We may solve these last two equations for g1, g2 in terms of the

principal variables a, c2.

As mentioned above, we can express all the integrals involved
at (k + 1)th order in terms of just I2 to Ik. In this case, then, all
the integrals can be expressed in terms of I2 alone. The resulting
expressions are rather cumbersome, though.
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From the four original equations we have extracted just two

equations that give us the g1, g2 coefficients that we need. There are

effectively two other equations that we can just ignore; they would

determine ã and Ṽ1 (which gives τ̃ and, combined with the int-β̃

equation of the tilde scheme, would then fix c̃2), but we have no need

to obtain values for these variables.

To relate the principal variables to Q and the invariants (whose

values are to be obtained from Feynman-diagram calculations per-

formed in any convenient scheme), we substitute the optimal-scheme

quantities into the expressions for σ2 and σ1(Q), combining the latter

with the int-β equation to eliminate τ . In the optimal scheme, since

ri (and hence si ≡ ri/g) vanish, the formula for σ2 reduces to

σ2 = c2 + g2 − g1c− g21 , (12.94)

which is the familiar form of a ρ2 invariant, but with gi’s as the

coefficients. Similarly, in the optimal scheme

σ1(Q) = τ − g1 = K(3)(a)− g1, (12.95)

where K(3)(a) is the third-order approximation to the K(a) function

of Sec. 6.3. (It can also be expressed in terms of I2; see Appendix

9.A.)

12.9. A Simpler Approach

In fact, there is a simpler approach that allows us to get directly to

the equations determining the optimal gi’s. Consider the physical

quantity D defined in Eq. (12.53), which we showed is given by

Eq. (12.57), so that D = γO when C = 1. That suggests that we

consider F in the form:

F = A exp

∫ a

[0]
dx

D(x)

β(x)
, (12.96)

where “[0]” is a shorthand for the same “lower limit of 0 with

subtraction of the suitable infinite scheme-independent constant,” as

in Eq. (12.8). Formally, this expression for F is valid quite generally,

and is independent of the RS used, so it satisfies RG equations saying
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that the total dependences on τ and cj all vanish. What we are doing

in RS/FS optimization is equivalent to a normal RS optimization

applied to F , except that the approximants being optimized are not

truncations of the perturbation series for F , but are approximants

formed by truncating the perturbation series for D and β. That is,

the (k + 1)th approximant to F is given by substituting

D̂(x) ≡ D(x)

(−bg) = x
k∑

i=0

rDi x
i, β(x) = −bx2

k∑

j=0

cjx
k (12.97)

into Eq. (12.96). The optimization equations follow from requiring

the τ and cj derivatives to vanish. (Note that when we take such

derivatives the infinite constant plays no role and the “[0]” lower limit

can safely be replaced by 0, since the resulting integrals converge.)

For τ we have

0 =
1

F

∂F

∂τ
=
∂a

∂τ

D(a)

β(a)
+

∫ a

0
dx

∂D
∂τ

∣∣∣∣
x

1

β(x)

= −g
(
D̂(a)−

k∑

i=1

∂rDi
∂τ

Ji+1

)
, (12.98)

while for cj

0 =
1

F

∂F

∂cj
=

∂a

∂cj

D(a)

β(a)
+

∫ a

0
dx

(
∂D
∂cj

∣∣∣∣
x

1

β(x)
+

D(x)

β(x)2
bxj+2

)

= g

⎛

⎝−D̂(a)Ij −
k∑

i=j

∂rDi
∂cj

Ji+1 +

k∑

i=0

rDi Ii+j+1

⎞

⎠.

(12.99)

Substituting the series form for D̂(a) leads to

−
k∑

i=1

∂rDi
∂τ

Ji+1 +

k∑

i=0

rDi a
i+1 = 0, (12.100)

k∑

i=j

∂rDi
∂cj

Ji+1 +

k∑

i=0

rDi Ij,i = 0, (12.101)
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where Ij,i(a) = ai+1Ij(a) − Ii+j+1(a) arises from the first and third

terms of Eq. (12.99).

The derivatives ∂rDi /∂τ and ∂rDi /∂cj are the usual RS depen-

dences of perturbative coefficients, and can be quickly found from

the expressions for the ρDi invariants. Thus,

∂rD1
∂τ

= 1,
∂rD2
∂τ

= c+ 2rD1 ,
∂rD2
∂c2

= −1. (12.102)

Using these results, and recalling that in the FS/RS optimal scheme

the optimized rDi ’s equal the optimized gi’s, the reader can quickly

check that at third order (k = 2) Eqs. (12.100) and (12.101) lead

directly to Eqs. (12.92) and (12.93).

At fourth order (k = 3) the τ, c2, c3 equations reduce to

J2 + (c+ 2g1)J3 + (c2 + 2cg1 + 3g2)J4

−a(1 + g1a+ g2a
2 + g3a

3) = 0, (12.103)

J3 + 2g1J4 − (I2,0 + g1I2,1 + g2I2,2 + g3I2,3) = 0, (12.104)

1

2
J4 − (I3,0 + g1I3,1 + g2I3,2 + g3I3,3) = 0. (12.105)

One can explicitly check that these are indeed the equations one

would obtain from appropriate combinations of Eqs. (12.83), (12.84),

(12.85).

Note that Eq. (12.96) can be written just as

F = AQ[D]

in the notation used in Sec. 2.7. The scale dimension D is a physical
quantity that depends on a single massive variable Q by the magic
of dimensional transmutation, as discussed in Chapter 2. As Q →
∞ one finds F ∝ (lnQ)−g, while in the infrared limit, if D tends to a
constantD∗, one will have F ∝ QD∗

asQ→ 0 (see Appendix 12.A).

12.10. Conclusions

The optimization approach to the problem of RS/FS dependence is

less daunting than it appears at first sight. There are 3k scheme
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variables at (k + 1)th order and k coefficients, ri. However, k of

the optimization equations lead to r1 = · · · = rk = 0, so that

C = 1, so that another k variables (τ̃ , c̃2, . . . , c̃k) need not be solved

for. That leaves just k combinations of optimization equations that

can be solved for g1, . . . , gk in terms of the “principal variables”

a, c2, . . . , ck. In fact, these equations can be obtained more directly by

the approach in the last section. By substituting in the expressions

for the invariants, one can then solve for all the needed quantities.

The last step will require an iterative algorithm, as in ordinary

optimization (see Chapter 10).

The RS/FS optimization of F described in this chapter is not the

same as optimizing D as a perturbative physical quantity and then

exponentiating the integral of D with respect to dQ/Q. However,

there are strong indications that the two approaches generally give

very similar results. At high energies a PWMR-like approximation

to the RS/FS optimization equations gives the same result as the

PWMR approximation to D; see Exercise 12.5. In the infrared limit,

if a fixed-point limit occurs, then again the results are the same

as for optimizing D; see Appendix 12.A. However, as discussed in

that appendix, in the pinch-mechanism case there are interesting

differences.

There are applications to various quantities, besides structure-

function moments — for example, heavy quarkonium decays to

hadrons, B decays to charmonium, or Higgs-boson decay to hadrons.

Such quantities have a factorized form involving the wavefunction at

the origin or, in the last case, the quark masses. For applications

involving parton distribution functions and fragmentation functions

there is more work to be done. We have only considered the non-

singlet case; the flavour-singlet case involves matrices describing

quark–gluon mixing. Also, our analysis has used the language of

structure-function moments, which is convenient theoretically since

it reduces a convolution integral to a simple product. However,

phenomenologically, it seems preferable to deal directly with the

parton distributions using parton-evolution (DGLAP) equations. It

would be valuable to see if the moments-based optimization approach

can be reformulated in that language and put into practice.
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Appendix 12.A: Infrared Limit for Factorized

Quantities

If a fixed-point limit occurs, the generalization of the analysis in Sec.

11.5 is straightforward. For a near to a∗ one has B(x) ≈ σ(a∗ − a),

so that Ij is given by Eq. (11.10) and hence, from Eq. (12.77), one

finds

Ij,i ≈ −(i+ 1)
a∗i+j−2

σ2
ln(a∗ − a). (12A.1)

One also has

Jj ≈ −a
∗j−2

σ
ln(a∗ − a). (12A.2)

At third order the optimization equations (12.92), (12.93) are

potentially dominated by divergent ln(a∗−a) terms. Requiring these

to vanish gives

1 + (c+ 2g∗1)a
∗ = 0, (12A.3)

−σa∗ + (1 + 2g∗1a
∗ + 3g∗2a

∗2) = 0, (12A.4)

which, when solved for g∗1 , g
∗
2 , the limiting values of the coefficients

of D, yield the equivalent of Eq. (11.20) with r’s renamed as g’s.

Thus, the fixed-point result for F gives F ∝ QD∗
, where D∗ is

exactly the same infrared limit as that obtained by optimizing D
as a perturbative physical quantity. It may similarly be shown that

the fixed-point limit of the fourth-order equations (12.103)–(12.105)

leads to results for g∗1 , g∗2 , g∗3 that are the equivalent of Eq. (11.25).

It seems likely that this result will hold at any order.

If a pinch mechanism operates, however, things are more subtle

and the result is not the same as obtained by applying ordinary

optimization to D. The Ij integral is now divergent proportional to

1/δ3, given by Eq. (11.32), so that, from Eq. (12.79),

Ij,i ≈ (a�i+1 − ai+1
p )

(
aj−2
p

η2
π

2δ3

)
+O

(
1

δ

)
. (12A.5)
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The Jj integrals also diverge, but only like 1/δ:

Jj ≈
∫
dx

xj−2

η((x − ap)2 + δ2)
≈ aj−2

p

η

π

δ
. (12A.6)

The third-order optimization equations, (12.92), (12.93), are domi-

nated, respectively, by J terms and I terms, giving

1 + (c+ 2g�1)ap = 0, (12A.7)

(a� − ap) + g�1(a
�2 − a2p) + g�2(a

�3 − a3p) = 0. (12A.8)

In the latter equation a factor of a� − ap may be discarded since

the pinch mechanism requires that a� > ap (and we can expect the

limit a� → ap to correspond to the interface with the fixed-point

mechanism). Solving for g�1 , g
�
2 yields results distinct from Eq. (11.39).

As before the conditions B(ap) = B′(ap) = 0 lead to Eq. (11.40) so

ap = −2/c and c�2 = c2/4. Hence,

g�1 = − c
4
, g�2 = −c

2

4

(6− ca�)

(4− 2ca� + c2a�2)
. (12A.9)

Substituting in the definition of the σ2 invariant gives

σ2 = −c
2

4

(6− ca�)

(4− 2ca� + c2a�2)
+

7

16
c2, (12A.10)

which leads to a quadratic equation for a� in terms of the invariants

c, σ2. For the pinch mechanism to operate we must have ap > 0 and

a� > ap, which requires

c < 0 and
13

48
<
σ2
c2

<
7

16
. (12A.11)

The lower limit is the same as in Eq. (11.43), since it is the interface

with the fixed-point mechanism, but the upper limit is slightly

smaller. Another difference from the ordinary case is that the result

for D̂�:

D̂� =
a�(4− 3ca�)

(4− 2ca� + c2a�2)
(12A.12)
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means that it is restricted to the range

5

3
< −cD̂� < 3. (12A.13)

(Recall that c here must be negative, and that D ≡ −bgD̂.)

At fourth and higher orders we will actually need the subleading

1/δ terms in the Ij and Ij,i integrals. In Eq. (11.32), expanding the

xj−2 numerator about the pinch point ap gives

Ij ≈ aj−2
p

η2

∫
dx′

1

(x′2 + δ2)2

(
1 + (j − 2)

x′

ap

+
(j − 2)(j − 3)

2

x′2

a2p
+ · · ·

)
, (12A.14)

where x′ ≡ x− ap and the limits of integration may be taken as −∞
to ∞, effectively, since we only need the terms divergent as δ → 0.

Hence, we find

Ij ≈ aj−2
p

η2
π

2

(
1

δ3
+

(j − 2)(j − 3)

2a2p

1

δ

)
+O(1). (12A.15)

Using this result and Eq. (12.79) we can then obtain, for a combina-

tion of Ij,i’s in which the leading terms cancel, that

Ij+1,i − Ij,iap ≈ π

2η2δ
aj−3
p ((j − 2)a�i+1 − (i+ j − 1)ai+1

p ).

(12A.16)

At fourth order, the first optimization equation, (12.103), is

dominated by J terms and gives

1 + (c+ 2g�1)ap + (c�2 + 2cg�1 + 3g�2)a
2
p = 0, (12A.17)

while the other two are each dominated by 1/δ3 terms whose

cancellation requires

(a� − ap) + g�1(a
�2 − a2p) + g�2(a

�3 − a3p) + g�3(a
�4 − a4p) = 0.

(12A.18)
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If we take Eq. (12.105) minus ap times Eq. (12.104) the leading

divergences cancel, leaving 1/δ terms whose cancellation requires

ηa2p(1 + 4g�1ap)− (1 + 2g�1ap + 3g�2a
2
p + 4g�3a

3
p) = 0. (12A.19)

From the pinch-point conditions B(ap) = B′(ap) = 0 and the η

definition as η ≡ 1
2
B′′(ap) we have

c�2 = −(3 + 2cap)

a2p
, c�3 =

(2 + cap)

a3p
, η =

(3 + cap)

a2p
. (12A.20)

From these equations and the σ2, σ3 definitions one may proceed to

solve for the g�1 , g
�
2 , g

�
3 coefficients in terms of the invariants and ap,

and find a sixth-order polynomial that determines ap. Finally, the

infrared limit D� can be found.

The infrared behaviour of F is then F ∝ QD�
, where the exponent

is D(a) with gi = g�i and a = a�. However, returning to Eq. (12.96)

involving
∫
dxD(x)/β(x) and taking β(x) to have the pinch-point

form one would find that the exponent is given by D�(a) at ap,

rather than at a�. All is well, however, because the optimization

equation (12A.18), or Eq. (12A.8) in the third-order case, is precisely

the condition that D�(ap) and D�(a�) are the same.

Exercise 12.1. Give an alternative proof of the theorem that the
normalization constant A in Eq. (12.8) is RS invariant by suitably
adapting Osborn’s proof of the Celmaster–Gonsalves relation (see
Sec. 6.5).

Exercise 12.2. Show the equivalence of Eqs. (12.36) and (12.35)

for 1
〈O〉

∂〈O〉
∂cj

in two ways:

(i) Integrate by parts in Eq. (12.35) and use the differential
equation satisfied by the βj functions, Eq. (7.12).

(ii) In the right-hand side of Eq. (12.36), express βj(x) in terms of
the integral Ij(x) (see Eq. (12.75) and Sec. 7.2) to get

1

〈O〉
∂〈O〉
∂cj

= −1

b

∫ a

0

dx Ij(x)γ
′(x).

Write Ij(x) as an integral over another dummy variable y and
then perform the x, y integrations in the other order.
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Exercise 12.3. Show that the τ RG equation (12.44) can be seen
as the j → 1 limit of the cj RG equation (12.45) in the same sense,
“c1” → c − (j − 1)τ , as in Exercise 7.3. Show that the same goes
for the corresponding τ̃ and c̃j equations with “c̃1” → c− (j− 1)τ̃ .

Exercise 12.4. Show that F can be expanded out as a perturba-
tion series

F = A|ca|g(1 + rF1 a+ rF2 a
2 + · · · )

and find the first few coefficients. Calculate the invariants for F
(using the form for a physical quantity with the power P = g).
Show that these are related to the σj ’s, which are the ρDj invariants
associated with D ≡ (Q/F )dF/dQ in just the way expected from
the results of Exercise 7.6.

Exercise 12.5. Consider the equivalent of the PWMR approxima-
tion for the optimized gi coefficients in the factorized case. Show
that the results, for k = 1, 2, 3 are the same as for the ri coefficients
of the ordinary case; see Eq. (9.25). (It seems likely that this result
will hold for all k.)
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Chapter 13

Exploring All-Orders OPT in the
Small-b (BZ) Limit

13.1. Introduction

The constant b is (33−2nf )/6 in QCD, which means that asymptotic

freedom is lost once nf exceeds 16 1
2
. The constant c, although positive

at low nf , changes sign at nf = 8 1
19 . Thus, as we saw in Chapter 11,

when nf approaches 16 1
2
from below one finds fixed-point behaviour,

with the infrared couplant a∗ proportional to 16 1
2
−nf . That property

was noted by Caswell, and later Banks and Zaks proposed making an

expansion about nf = 16 1
2
. (The idea generalizes to an SU(N) theory,

and to other gauge theories; in some of those cases the critical nf
can be an integer value.)

The BZ expansion is a distinctly unusual sort of expansion. It

is not like a typical perturbative method, where a theory with some

parameter λ is exactly soluble at λ = 0 and one can step away

from λ = 0 in a Taylor-series fashion. Here the theory with nf =

16 1
2
is not soluble; it would be a non-asymptotically-free “delicate”

theory in which the β function starts at order a3 (see Exercises 6.1

and 7.7). That non-trivial special theory is not actually relevant,

This is an open access book chapter published by World Scientific Publish-
ing. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 (CC BY-NC) License.
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Fig. 13.1. If the couplant at some finite energy scale lies in the region 0 to a∗,
then it is trapped in that region at all energies. In the BZ limit a∗ tends to zero.
(Note, however, that if a > a∗ then we would be, in the limit, in the non-trivial
“delicate” theory.)

either. One must begin, not at nf = 16 1
2
, but infinitesimally below

that value. Also, one must assume that the couplant, at some finite

energy scale, lies in the range 0 to a∗ ∼ −1/c. It is then trapped in

that infinitesimal region at all energy scales. See Fig. 13.1.

The BZ expansion is normally discussed — as we shall do

in the next section — only within a restricted class of “regular”

renormalization schemes, where perturbative coefficients have a

simple, polynomial dependence on nf . However, infinitely many

schemes — and in some sense most schemes — are not “regular.”

In particular, the “optimal” scheme is not. In “regular” schemes

one needs only k terms of the perturbation series to obtain k terms

of the BZ expansion, but in other schemes the information needed

is distributed among higher-order terms. In general all orders are

required. Turning that observation around, the BZ expansion can be

viewed as a “playground” in which one can analytically investigate

arbitrarily high orders of OPT in QCD. Admittedly, this adopts the

“drunk-under-the-lamppost” principle of looking, not where we really

want to, but where there is enough light to make a search. The deep

and difficult issues that we would like to study – “renormalons” and

factorially growing coefficients — are simply absent in the BZ limit.

Nevertheless, this exploration provides some interesting insights and

employs some methods that may have wider applicability.

In this chapter, we only consider quantities R with P = 1.
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13.2. BZ Expansion in “Regular” Schemes

For nf just below 16 1
2
the β function has a zero at a very small a∗,

proportional to (16 1
2
− nf ). Its limiting form,

a0 ≡ 8

107
b =

8

321
(16 1

2
− nf ), (13.1)

serves as the expansion parameter for the Banks–Zaks (BZ) expan-

sion. To proceed, one first rewrites all perturbative coefficients,

eliminating nf in favour of a0. The first two β-function coefficients,

which are RS invariant, become:

b =
107

8
a0, (13.2)

c = − 1

a0
+

19

4
. (13.3)

Note that c is large and negative in the BZ context.

We will consider a class of “primary” physical quantities for which

the ρi invariants have the form

ρi =
1

a0

(
ρi,−1 + ρi,0a0 + ρi,1a

2
0 + · · · ). (13.4)

This class includesRe+e− , if we ignore the
∑
qi terms. Note, however,

that not all physical quantities have ρi’s of this form; the scale

dimension D of Re+e− , for instance, would not (see Exercise 7.6).

Within the class of so-called “regular” schemes, the β-function

coefficients, bci, are polynomial in nf , and hence polynomial in a0,

so that

ci =
1

a0

(
ci,−1 + ci,0a0 + ci,1a

2
0 + · · · ). (13.5)

Note that this equation is a property of the scheme, irrespective of

the physical quantity, whereas Eq. (13.4) is a property of the physical

quantity, irrespective of the scheme. For “primary” quantities in

“regular” schemes we have

ri = ri,0 + ri,1a0 + ri,2a
2
0 + · · · . (13.6)

In fact, for certain quantities the numerator of Eq. (13.4) is a
polynomial whose highest term is ρi,ia0

i+1, and in certain “rigid”
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schemes, such as MS, the a0 series for ci and ri truncate after the
ci,i−1 and ri,i terms. These properties are unimportant here, but
are crucial in the opposite limit, the large-b approximation.

Expanding in powers of a0 the zero of the β function is found

to be

a∗ = a0(1 + (c2,−1 + c1,0)a0 + · · · ), (13.7)

and hence the infrared limit of R is

R∗ = a0(1 + (r1,0 + c2,−1 + c1,0)a0 + · · · ). (13.8)

Since the BZ expansion parameter a0 is RS invariant, the coefficients

in the R∗ series are RS invariant and can be written in terms of the

ρi,j:

R∗ = a0(1 + (ρ2,−1 + ρ1,0)a0 + · · · ). (13.9)

Note, though, that a∗ is not a physical quantity and its a0 expansion

has RS-dependent coefficients.

At a finite energy Q the result for R to nth order of the BZ

expansion can be expressed as the solution an equation of the form

ρ1(Q) =
1

R +
1

γ̂∗(n)
ln

(
1− R

R∗(n)

)
+ c ln (|c| R) (13.10)

for n = 1, 2, 3. (For n ≥ 4 there are additional terms; see Appendix A

for details.) Here R∗(n) and γ̂∗(n) are the nth-order approximations

to R∗ and γ̂∗ ≡ γ∗
b . As discussed in Chapter 11, the critical exponent

γ∗ governs the manner in which R approaches R∗ in the Q→ 0 limit:

(R∗ −R) ∝ Qγ∗
. (13.11)

In the present context it is safe to identify γ∗ with the slope of the

β function at the fixed point and so its BZ expansion is

γ̂∗ ≡ γ∗

b
= a0(1 + g1a0 + g2a

2
0 +O(a30)), (13.12)

where the gi’s are the universal invariants of Grunberg:

g1 = c1,0 = ρ1,0,
(13.13)

g2 = c21,0 − c22,−1 − c3,−1 = ρ21,0 − ρ22,−1 − ρ3,−1.
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Fig. 13.2. Schematic picture ofR as a function of Q close to the BZ limit showing
the three regions (i) the “spike” at very low energies, (ii) the huge flat region where
the theory is “nearly scale invariant,” and (iii) the slow approach to asymptotic
freedom at very high energies. (Region (iii) is shown on a log scale.)

They are universal in that they do not depend on the specific physical

quantity R being considered, and invariant because they can be

expressed as combinations of the invariants ρi,j (combinations in

which all the ri,j terms cancel).

Close to the BZ limit R remains almost constant over a huge

range of Q about Λ̃R. This constant value is not R∗ but 0.78R∗.
More precisely, it is R∗/(1 + χ) where lnχ + χ + 1 = 0, a result

that follows from Eq. (13.10) to leading order in a0 with ρ1(Q) = 0,

corresponding to Q = Λ̃R. Only when Q/Λ̃R becomes extremely

small does R have a “spike” that rises up to R∗, and only when

Q/Λ̃R becomes extremely large does R very slowly decrease to zero,

as required by asymptotic freedom: See Fig. 13.2. The plateau region,

where R stays within 10% of the value 0.78R∗, is roughly for Q/Λ̃R
in the range from exp(−0.04/a20) to exp(+0.04/a20).

Since Eq. (13.10) completely characterizes the Q dependence of

R in low-orders of the BZ expansion, it suffices to consider R∗ and

γ̂∗, both of which are quantities defined in the Q→ 0 limit.

13.3. Low Orders of OPT in the BZ Limit

The procedure for obtaining the (k + 1)th-order OPT result for the

fixed-point limit R∗ described in Sec. 11.5 requires, of course, the

numerical values of the invariants up to ρk. The great simplification

in the BZ limit is that we can effectively set almost all the invariants

to zero: this can be seen as follows. As a0 → 0 the most singular

term in any of the ρi is of order 1/a0, but each ρi enters the analysis
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along with a factor of a∗i that is of order ai0. Thus, to find the leading

term in the BZ limit, we can effectively set to zero all the invariants

except c. (Furthermore, only the −1/a0 piece of c will contribute.)

To obtain the next-to-leading correction in a0 we would also need

the 19
4 piece of c along with the ρ2,−1/a0 piece of ρ2 (whose value

depends on the specific R quantity under consideration).

For k = 2 the OPT fixed-point results are given by Eqs. (11.20)–

(11.22). In the BZ limit, we can set ρ2 = 0 so that the a∗ equation

becomes

(ca∗ + 1)(ca∗ − 7
3) = 0. (13.14)

Hence, we find a∗ = −1/c→ a0. The coefficients c∗2, r∗1, r∗2 all vanish,

so, in an a posteriori sense, the k = 2 OPT scheme is “regular” in

the fixed-point limit. The final result for R∗ is

R∗ = −1

c
→ a0. (13.15)

Thus, exactly as in any “regular” scheme, both a∗ and R∗ tend to

a0 in the BZ limit. The same is true for γ̂∗, obtained from the slope

of the optimized β function at the fixed point.

At higher orders, though, the OPT scheme is not “regular” — the

optimized r∗m coefficients, for instance, have 1/am0 pieces — and the

story is more complicated. For k = 3 we have Eqs. (11.25)–(11.29).

The a∗ equation in the BZ limit (where ρ2 = ρ3 = 0) reduces to

83 + 52ca∗ = 0. (13.16)

Thus, we do not get a∗ = −1
c → a0, but a

∗ → 83
52a0 = 1.596a0.

The final result for R∗ is not a0 but is 6889
6656a0 = 1.035a0, which is

remarkably close.

Results for higher orders are shown in Tables 13.1 and 13.2. The

even-k results are significantly better than those for odd k. Note

that a∗/a0 increases, apparently towards 4. It is perfectly acceptable

for a∗ to differ from a0, since a
∗ is inherently scheme dependent.

However, R∗ is a physical quantity so it is reassuring that R∗/a0 is

always close to 1. In Sec. 13.5, we will find a simple explanation for

a∗/a0 → 4 and R∗/a0 → 1 as k → ∞.
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Table 13.1. OPT results in the
BZ limit for k = even.

k a∗
a0

R∗
a0

γ̂∗
a0

2 1 1 1
4 1.85035 1.00370 0.9841
6 2.30294 1.00214 0.9742
8 2.58980 1.00137 0.9671
10 2.78928 1.00096 0.9614
12 2.93666 1.00071 0.9565
14 3.05030 1.00055 0.9523
16 3.14081 1.00043 0.9485
18 3.21470 1.00035 0.9451

Table 13.2. OPT results in the
BZ limit for k = odd.

k a∗
a0

R∗
a0

γ̂∗
a0

3 1.59615 1.03501 0.5602
5 2.17343 1.01119 0.5886
7 2.51313 1.00544 0.6071
9 2.73950 1.00319 0.6206
11 2.90228 1.00209 0.6311
13 3.02550 1.00147 0.6397
15 3.12231 1.00108 0.6468
17 3.20056 1.00083 0.6530
19 3.26522 1.00066 0.6583

The situation with γ̂∗ is less clear. This is also a physical quantity

(with the caveats of Appendix 11.8) so we should have γ̂∗/a0 → 1

as k → ∞. The numerical results in the tables cannot be said to

support that contention, but neither are they inconsistent with it;

one can make good fits to the data with functions of k that very

slowly approach 1 as k = ∞ for both even and odd k.

It is hard to go to much larger k with the method described in

this section, so we turn to an analytic approach in the next sections.

Our results — albeit in approximations to OPT rather than true

OPT — support the claim that a∗/a0 → 4 and that both R∗/a0 and
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γ̂∗/a0 tend to 1 as k → ∞: they also provide valuable insight into

the workings of OPT at arbitrarily high orders.

13.4. Analytic Tools for OPT at All Orders

To make progress analytically with OPT in (k + 1)th order it helps

greatly to deal with functions and differential equations rather than

with 2k individual ri and ci coefficients. The set of ρi invariants — see

the discussion following Eq. (7.27) — naturally follow from a single

“master equation,” since they are obtained by equating coefficients in

BEC(R) =
a2

R2

∂R
∂a

B(a), (13.17)

which we shall refer to as the “invariants master equation.”

What we need is to formulate the k optimization conditions

also as a “master equation.” For general Q this would be a more

daunting task, but in the fixed-point limit it is relatively simple —

and, happily, that suffices since, as noted earlier, in the BZ limit

(and for the first three terms of the BZ expansion), the entire Q

dependence of R is characterized by the two infrared quantities R∗

and γ̂∗.
We now show that the optimization conditions in the fixed-point

limit, Eq. (11.16), follow from equating coefficients in the following

“fixed-point OPT master equation:”

∂R
∂a

= B(a)− a

(k − 1)

(
2
∂B(a)

∂a
+

B(a)

(a∗ − a)

)
. (13.18)

(Superscripts “(k+1)” on R and B(a) are omitted for brevity.) Note

that a here is merely a dummy variable, while a∗ is the optimized

couplant in the infrared limit.

The first step of the proof is to note that, by the definition of a∗,
the polynomial B(a) has a factor of a∗ − a and can be written as

B(a) =
(a∗ − a)

a∗

k−1∑

n=0

( a
a∗
)n
t̂n, (13.19)



March 14, 2022 10:29 Renormalized Perturbation Theory. . . - 9in x 6in b4644-ch13 page 255

Exploring All-Orders OPT in the Small-b (BZ) Limit 255

where t̂n is a partial sum of β-function terms:

t̂n =

n∑

j=0

ĉj (13.20)

with ĉj ≡ cja
∗j. Note that t̂n − t̂n−1 = ĉn and that t̂k = 0 by virtue

of the fixed-point condition. To show Eq. (13.19), expand the right-

hand side, then use t̂k = 0 and define t̂−1 ≡ 0 to get

k∑

n=0

( a
a∗
)n
t̂n −

k−1∑

n=−1

( a
a∗
)n+1

t̂n. (13.21)

Now put n = n′ − 1 in the second sum and recombine the sums to

get

k∑

n=0

(
t̂n − t̂n−1

)( a
a∗
)n

=
k∑

n=0

ĉn

( a
a∗
)n

=
k∑

n=0

cna
n, (13.22)

which is B(a), as claimed.

To prove Eq. (13.18), equate powers of (a/a∗)m, using Eq. (13.19)

to write B(a)/(a∗ − a) as a polynomial. This leads to

ŝm = ĉm − 1

(k − 1)

(
2mĉm + t̂m−1

)
. (13.23)

Using t̂m − t̂m−1 = ĉm again and simplifying leads to the fixed-point

optimization conditions, Eq. (11.16), completing the proof.

Unfortunately, Eq. (13.18) proves difficult to deal with. To make

progress we have resorted to two approximations, designated PWMR

and NLS. The former was discussed in Sec. 9.3 and corresponds to

dropping the O(a) terms in Eq. (9.25), giving

sm =
k − 2m

k
cm, (13.24)

which is easily formulated as a “master equation”:

∂R
∂a

= B(a)− 2

k
a
∂B(a)

∂a
(PWMR). (13.25)
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Looking at the above equation, or the original equation (13.18),

it is tempting to suppose that, as k → ∞, they reduce to

∂R
∂a

= B(a) (NLS). (13.26)

We shall refer to this as the “näıve limiting scheme” (NLS). It

corresponds to a well-defined RS in which sm = cm, so that the

coefficients rm = sm/(m + 1) of the R series decrease by a factor

1/(m + 1) relative to the coefficients of the B series.

Clearly, this idea is very näıve. In the PWMR case, the actual

relation only reduces to sm ≈ cm for m 	 k; that is, for the early

part of the series only. Nevertheless, there may be a kernel of truth

here, for if the series are “well behaved” the early terms should

dominate. In any case, adopting this näıve idea leads us in a fruitful

direction. Our investigations below will lead us to conclude that, at

least in the BZ context, the NLS does yield the all-orders limit of

OPT, although it is a poor guide to how fast results converge to that

limit.

Using the NLS equation above to eliminate B(a) in the invariants

master equation (13.17) leads directly to

BEC(R) =
a2

R2

(
∂R
∂a

)2

. (13.27)

Taking the square root leads to

∂R
∂a

=
R
a

√
BEC(R), (13.28)

which is immediately integrable. (Recall that the partial derivative

notation merely means that the coefficients of R are regarded as

constant. For our purposes here it can be replaced by an ordinary

derivative without creating confusion.)

The BZ limit provides us with a nice “playground” for exploring

further, since it effectively corresponds to the case BEC(R) = 1+cR.

We continue this analysis in the next section.
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13.5. All-Orders NLS in the BZ Limit

In the BZ limit the only one of the ρn invariants that contributes

is c, which is negative: c = −1/a0 + O(1) as a0 → 0. We may

set BEC(R) = 1 + cR in this limit. (The terms neglected can only

contribute to O(a0) corrections, as argued in Sec. 13.3.) It is

convenient to define

u ≡ −ca
4
, v ≡ −cR. (13.29)

In these variables, the NLS condition is B = 1
4
dv
du and Eq. (13.28)

becomes

dv

du
=
v

u

√
1− v, (13.30)

which leads to
∫

dv

v
√
1− v

=

∫
du

u
. (13.31)

Performing the integral and then exponentiating both sides gives

1−√
1− v

1 +
√
1− v

= u, (13.32)

where the constant of integration has been fixed by requiring v → 4u

as u → 0, corresponding to the R series beginning R = a(1 + · · · ).
Inverting this equation (assuming u ≤ 1) gives

v =
4u

(1 + u)2
. (13.33)

Hence, B = 1
4
dv
du is given by

B =
1− u

(1 + u)3
. (13.34)

(The two formulas above are key results. They show an interesting

u→ 1/u duality that we shall discuss in Sec. 13.8.)

The fixed point, where B = 0, is at u∗ = 1. Recalling Eq. (13.29),

we see that a∗ is −4/c → 4a0. Nevertheless, because u∗ = 1 in

Eq. (13.33) leads to v∗ = 1, we find R∗ = −1/c → a0, in agreement

with the regular-scheme result.
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Evaluating the slope of the β function at the fixed point gives

− b

(
−4

c

)
u2

d

du

(
1− u

(1 + u)3

)∣∣∣∣
u=1

=
−b
2c

→ ba0
2
, (13.35)

which seemingly gives γ̂∗ ≡ γ∗/b = 1
2a0. Here the subtlety discussed

in Appendix 11.8 comes into play, since γ∗ is really the infrared limit

of the “effective exponent”

γ(Q) =
dβ

da
+ β(a)

d2R
da2

/dR
da

. (13.36)

Normally the second term drops out in the infrared limit because β(a)

vanishes at the fixed point. However, in the NLS the denominator
dR
da also vanishes because it is B(a) = β(a)/(−ba2). Therefore, in
the NLS case the second term contributes −ba2 d2R

da2
= −ba2 dBda which

contributes an equally with the first term, thus rescaling the previous

result by a factor of 2. Hence, we find γ̂∗ = a0, in accord with the

regular-scheme result.

The preceding discussion corresponds to the NLS result

resummed to infinite order. One must now ask: Do the finite-order

NLS results converge to their infinite-order form — and, if so, how

fast? At (k + 1)th order the B and v series are truncated, and v∗ is

found by evaluating at u∗, the zero of the truncated B. Luckily, as

with a simple geometric series, the sum of finite number of terms can

be expressed fairly simply. The truncated B series is

B(k+1) =

k∑

j=0

(j + 1)2(−u)j = 1− u

(1 + u)3
+ (−1)kk2

uk+1

(1 + u)

×
(
1 +O

(
1

k

))
. (13.37)

Only for odd k do we get a zero. (We will discuss even k near the

end of this section.) The zero of the truncated B is just before u

reaches 1. If we put

u = u∗ ≡ 1− η(k)

k
(13.38)
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with η(k) 	 k, we find (noting that uk+1 → e−η(k)) that

η(k) = 3 ln k − ln(ln k)− ln(3/4) +O

(
ln ln k

ln k

)
. (13.39)

The truncated v series is

v(k+1) = 4u

⎛

⎝
k∑

j=0

(j + 1)(−u)j
⎞

⎠

= 4u

(
1

(1 + u)2
+ (−1)kk

uk+1

(1 + u)

(
1 +O

(
1

k

)))
.

(13.40)

When we substitute u = u∗ we find a cancellation of the η(k)/k terms

which leaves

v∗ ≈ 1− 9

4

ln2 k

k2
. (13.41)

This is in good accord with the numerical results in Table 13.3.

A similar analysis for γ̂∗ (including the factor of 2 discussed

above) leads to

γ̂∗ = a0(1 + 3(−1)k+1 ln k + · · · ), (13.42)

which indicates that the NLS results for γ̂∗ do not converge — the

nominal limit of a0 is “corrected” by a ln k term arising from the

series-truncation effects. We indeed see this in the numerical results

in Table 13.3.

Table 13.3. NLS results in the BZ
limit.

k 4u∗ = a∗
a0

v∗ = R∗
a0

γ̂∗
a0

3 1.41825 0.69455 3.67
11 2.26825 0.90345 7.14
19 2.65953 0.95010 8.79
51 3.25059 0.98737 11.70
101 3.53265 0.99555 13.66
601 3.88410 0.99976 18.71
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Returning to Eq. (13.37) we see that the truncated B(u) function

closely approximates its limiting form 1−u
(1+u)3 until u gets close to 1.

For odd k the (−1)k “truncation effect” term causes B to suddenly

dive down, producing a zero. For even k this term causes B to

suddenly shoot upwards and there is no zero. This means that there

is no finite infrared limit in these orders; the “spike” in R goes all

the way up to infinity. However, since B has a minimum very close to

zero the running of the couplant “almost stops” here and if we were

to evaluate v at this value of u we would find a result close to the

R∗/a0 obtained in the previous odd-k order. A related observation

is that, with only a slight change of RS, we would find an infrared

limit arising from a pinch mechanism (see Appendix B).

We conclude that the NLS provides a lot of insight into OPT as

k → ∞, but is only a rather crude approximation to true OPT. We

move on to the PWMR approximation in the next section.

13.6. All-Orders PWMR in the BZ Limit

As before we have BEC(R) = 1 + cR in the BZ limit and we use

u ≡ −ca
4 and v ≡ −cR. In these variables, the invariants master

equation (13.17) becomes

B =
v2

4u2
(1− v)

dv
du

, (13.43)

and the PWMR master equation (13.25) becomes

1

4

dv

du
= B − 2

k
u
dB

du
. (13.44)

We will proceed to solve these two coupled differential equations,

treating k as an ordinary parameter: only later we will consider the

other k dependence coming from the truncations of the resulting

series at (k + 1)th order. (One can explicitly check that at low k

this two-step approach does produce the same results as a PWMR

version of the OPT procedure described in Sec. 13.3.)
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We begin by making an ansatz:

B =
1

4

dv

du

1

ξ2
, (13.45)

where ξ depends on u. (We will actually want to view it as a function

of a new variable X, introduced below, that itself is a function of u.)

Substituting in Eq. (13.43) leads, in the same way as in the NLS

case, to

∫
dv

v
√
1− v

=

∫
du

u
ξ, (13.46)

which leads to

v =
4X

(1 +X)2
, (13.47)

with the new variable X defined by

X ≡ exp

∫
du

u
ξ, (13.48)

or more specifically, enforcing X → u as u→ 0,

X ≡ u exp

∫ u

0

dū

ū
(ξ − 1). (13.49)

Note that

dX

du
=
X

u
ξ, (13.50)

so that the inverse relationship is

u = X exp

∫ X

0

dX̄

X̄

(
1

ξ(X̄)
− 1

)
. (13.51)

We will now want to consider ξ as a function of the new variable X.
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We can now find dv
du as dv

dX
dX
du and substitute back in the ansatz

(13.45) to get

B =
(1−X)

(1 +X)3
X

uξ
. (13.52)

From this we can calculate dB
du , which, after some algebra, reduces to

dB

du
=
B

u

(
(1− 4X +X2)

(1−X2)
ξ − 1−X

dξ

dX

)
. (13.53)

Substituting this, and 1
4
dv
du = ξ2B from the ansatz (13.45), into

Eq. (13.44), leads, after cancelling a factor of B, to an equation for

ξ(X):

1− ξ2 =
2

k

(
(1− 4X +X2)

(1−X2)
ξ − 1−X

dξ

dX

)
. (13.54)

Remarkably, this nonlinear, first-order differential equation is soluble.

The trick is to write ξ in the form

ξ = 1− 2

k

X

F
dF
dX

. (13.55)

This substitution, because of a cancellation of (F ′/F)2 terms, leads

to a linear second-order equation for F . A further substitution,

F = (1−X)2F, (13.56)

leads to a Gauss hypergeometric equation, revealing that

F = 2F1

(
−n, 3

2
,−n− 1

2
;X2

)
, (13.57)

where n ≡ k/2 − 1. We will focus on the case of even k. (Curiously,

the roles of odd and even k are reversed relative to the NLS case.)

For even k, the F function is a polynomial of degree n in X2:

F =
n!

(2n + 1)!!

n∑

i=0

(2i+ 1)!!

i!

(2(n − i) + 1)!!

(n− i)!
(X2)i. (13.58)

The first few F ’s are shown in Table 13.4. Note the “reflexive”

symmetry i → n − i, meaning that the coefficients are symmetric
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Table 13.4. The first few F polynomials
and their form for large k = 2n+ 2.

k n F

2 0 1

4 1 1 +X2

6 2 1 + 6
5
X2 +X4

8 3 1 + 9
7
X2 + 9

7
X4 +X6

10 4 1 + 4
3
X2 + 10

7
X4 + 4

3
X6 +X8

∞ ∞ (1−X2)−3/2 (X �= 1)

√
n3

√
π
2

e−xI1(x)
x

(X = 1− x
n
)

about the middle. In the n → ∞ limit F approaches (1 −X2)−3/2,

except near X = 1, where its behaviour involves a modified Bessel

function I1 (see Table 13.4).

To find u in terms of X it is helpful to use another representation

of ξ, namely

1

ξ
= 1− 1

n+ 2

X

P
dP
dX

, (13.59)

so that Eq. (13.51) will immediately lead to

u = XP− 1
(n+2) . (13.60)

Substituting the above form for 1
ξ into the ξ equation (13.54) leads

again to a linear equation. One can verify that this equation is

satisfied by setting

P = (1 +X)4P (13.61)

with

P =
1

(n + 1)

1

(1 +X)

(
[n+ 1− (n − 1)X]F − 2(1 −X)X2 dF

d(X2)

)
.

(13.62)
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Table 13.5. The first few P polynomials and their form for large
k = 2n+ 2.

k n P

2 0 1

4 1 1−X +X2

6 2 1− 4
3
X + 26

15
X2 − 4

3
X3 +X4

8 3 1− 3
2
X + 15

7
X2 − 15

7
X3 − 15

7
X4 − 3

2
X5 +X6

10 4 1− 8
5
X + 12

5
X2 − 8

3
X3 + 62

21
X4 − 8

3
X5 + 12

5
X6 − 8

5
X7 +X8

∞ ∞ (1−X)−1/2(1 +X)−5/2 (X �= 1)

√
n

√
π
4

e−xI0(x) (X = 1− x
n
)

The numerator turns out to have a (1 + X) factor, so that P is

a polynomial of degree 2n in X. The first few P ’s are shown in

Table 13.5. These polynomials also have a “reflexive” property.

Yet another expression for ξ is

ξ =
(1 +X)

(1−X)

P

F
, (13.63)

which can be proved by substituting for P and simplifying to reach

Eq. (13.55). Using this form of ξ in Eq. (13.52) gives

B = (1−X)2F P−(n+1
n+2). (13.64)

As noted in the tables, both F and P polynomials have simple

limits as k → ∞, provided that X �= 1. It is easy to see that X → u

and that all formulas revert to their NLS forms in this limit. Thus, it

is clear that v∗ must ultimately tend to 1, so that R∗ = a0 in accord

with the BZ limit.

However, to go further analytically and determine how fast the

finite-order PWMR results approach their infinite-order form is beset

with difficulties; the subtleties when X ∼ 1 are crucial. The theory

of hypergeometric functions when two parameters go to infinity is

formidably complicated. Moreover, in any finite order we need to

re-express both B and v as series, not inX but in u; then find u∗ from
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the zero of the truncated B series; and then evaluate the truncated v

series at u = u∗. Nevertheless, we can explore these issues numerically

with Mathematica. We have been able to explore up to k ≈ 100 and

the numerical results are presented in Table 13.6. It appears that v∗

approaches 1 significantly faster than in the NLS case:

v∗ ∼ 1−A
ln k/k0
k2

, (13.65)

with A ≈ 0.08 and k0 ≈ 2.5, roughly.

The ratio of v to its NLS form vNLS ≡ 4u
(1+u)2 stays very close to 1

in the entire relevant range 0 < u < u∗, although it strongly deviates

thereafter. See Fig. 13.3

Table 13.6. PWMR results in the
BZ limit.

k 4u∗ = a∗
a0

v∗ = R∗
a0

γ̂∗
a0

2 1 1 1
4 1.56878 0.99743 1.0526
10 2.41100 0.99893 1.1064
18 2.88641 0.99952 1.1371
50 3.46514 0.99990 1.1869
100 3.69257 0.99997 1.2183

Fig. 13.3. Plot of v divided by vNLS ≡ 4u
(1+u)2

as a function of u for PWMR at

k = 100. The curve is shown dashed beyond u = u∗ = 0.92314.
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The v series is also much better behaved than in NLS, where

the magnitude of the coefficients increased in arithmetic progression:

vNLS = 4u
∑

j(j+1)(−u)j . In the PWMR case, the coefficients vj in

v = 4u

k∑

j=0

vj(−u)j (13.66)

are plotted in Fig. 13.4 for k = 100. The initial (j + 1) growth

is suppressed by a more-than-exponential decay (a crude fit is

(j + 1) exp(−0.019j3/2)). The middle coefficient j = k
2 is exactly

zero because of the k − 2j factor in the PWMR relation between sj
and cj coefficients, Eq. (13.24). The coefficients remain very small

thereafter. The somewhat bad behaviour of the last few coefficients

is almost entirely suppressed by the uj factor, even at u = u∗, the
largest relevant u, and it actually plays a beneficial role. This can

be seen in Fig. 13.5 which plots the partial sums of nmax terms

of the v series, Eq. (13.66), at u = u∗ in the case k = 100. The

series has pretty well converged after 50 terms, but including 25 more

terms significantly reduces the error. The very last term makes an

Fig. 13.4. Coefficients vj in the series expansion of v(u) = 4u
∑k

j=0 vj(−u)j , for
PWMR with k = 100. The inset shows the higher-order coefficients on a finer
scale.
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(a)

(b)

(c)

Fig. 13.5. The partial sums 4u
∑nmax

j=0 vj(−u∗)j versus nmax for the v∗ series in
the case k = 100. The plots use three different scales, so as to show that (a)
the series has crudely converged after 50 terms but (b) a slight adjustment from
50 to 75 terms reduces the error quite significantly, and (c) the last term makes
an unexpectedly large change, given the trend of the preceding terms, but this
further improves the result and means that the last term is, within a factor of 2,
a good measure of the actual error.
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unexpectedly large correction, but this further reduces the error and

means that the last term provides quite a realistic error estimate.

The series for γ̂∗, which is just dβ/da|∗, is much worse behaved.

Also the sequence of results for γ̂∗ in Table 13.6 appear to diverge,

though at a much slower rate than in NLS. It is reasonable to hope

that the extra subtleties in full OPT would lead to γ̂∗ converging to

a0, albeit very, very slowly, in view of the low-order OPT results in

Tables 13.1 and 13.2.

We have not been able to extend the analysis to the full fixed-

point master equation, (13.18). One can get to an equation similar to

Eq. (13.54), but with an extra term involving u/(u− u∗) that seems

intractable. Moreover, the parameter u∗ can only be fixed after the

B(u) function is found, and expressed as a truncated series, so the

interaction between analytic subtleties and truncation effects is even

more complicated and delicate.

13.7. BZ Expansion in All-Orders OPT

Setting aside the difficult issue of how fast results converge as k → ∞,

the results of the last section confirm that the simple NLS formulas

from Sec. 13.5,

v =
4u

(1 + u)2
, (13.67)

B =
1− u

(1 + u)3
, (13.68)

represent the all-orders limit of PWMR — and presumably of true

OPT too — in the BZ limit. As previously noted, these formulas give

the same BZ limit for R∗ and γ̂∗ as “regular” schemes. We now show

that higher terms in the BZ expansion are reproduced correctly by

all-orders NLS.

Before discussing the general proof it is instructive to look at

next-to-leading order in the BZ expansion. At this level, we now

need two of the invariants, c and ρ2 so we take

BEC = 1 + cR+ ρ2R2. (13.69)
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(In fact, only the ρ2,−1 piece of ρ2 would contribute when we

re-expand the results in powers of a0. However, it will not be

necessary to carry out that step explicitly, since once we show

equivalence to the EC scheme, a “regular” scheme, we are bound

to get the same BZ expansion to the corresponding order in a0.)

Recall that the NLS condition and the invariants master equation

together lead to Eq. (13.28),

dR
da

=
R
a

√
BEC(R), (13.70)

which now gives
∫

dR
R
√
1 + cR+ ρ2R2

=

∫
da

a
. (13.71)

Integration yields

ln

(
4R

2 + cR+ 2
√

1 + cR+ ρ2R2

)
= ln a, (13.72)

where the constant of integration has been fixed so that R → a as

a→ 0. One can now exponentiate and solve for R, and then B(a) can

be found from dR/da. As before we define u = −ca/4 and v = −cR.

The zero of B is at

u∗ =
1√

1− 4ρ2
c2

, (13.73)

and in terms of these variables we find

v =
4u

(1 + 2u+ u2

u∗2 )
, (13.74)

B =
1− u2

u∗2

(1 + 2u+ u2

u∗2 )2
. (13.75)

It is now straightforward to check that v evaluated at u = u∗ gives

R∗ = −v
∗

c
= − c

2ρ2

(
1−

√
1− 4ρ2

c2

)
, (13.76)
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which is the root of BEC(R) = 0. Thus, the R∗ of all-orders NLS

agrees with theR∗ of the EC scheme. Also, γ̂∗, defined as the infrared

limit of Eq. (13.36), which leads to

γ̂∗ = −2a2
dB

da

∣∣∣∣
∗
, (13.77)

with the factor-of-2 subtlety as in Sec. 13.5, can be shown to reduce

to

γ̂∗ = −R2 dBEC

dR
∣∣∣∣
∗
, (13.78)

which is the γ̂∗ of the EC scheme.

The general proof is really just a special case of the general formal

arguments that R∗ and γ̂∗ (properly defined) are invariant under RS

transformations. From Eq. (13.70) we can see immediately that B(a),

equal to dR/da in NLS, must vanish when BEC vanishes; thus the R
evaluated at a = a∗ in NLS must agree with the R∗ defined as the

zero of the EC β function. Furthermore, the equivalence of the two

equations for γ̂∗ above can be proved just from the NLS condition

B = dR/da and Eq. (13.70), without assuming any specific form for

BEC.

13.8. a → a∗2/a Duality

It is easily verified that under u→ u∗2/u the v of Eq. (13.74) remains

invariant, while the B of Eq. (13.75) transforms to −(u2/u∗2)B.

These properties are even easier to spot in Eqs. (13.67), (13.68),

in the BZ-limit case, where u∗ = 1.

Let us try to trace the origin of these properties. Consider a

transformation

a −→ λ2

a
, (13.79)

with some positive constant λ. We postulate that R and all the

ρi invariants remain invariant and that the β-function equation,
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μ da
dμ = β(a) maintains its form. The latter condition means that

da

dτ
= −a2B(a), (13.80)

where τ = b ln(μ/Λ̃), must transform to

d

dτ

(
λ2

a

)
= −

(
λ2

a

)2

BT(a), (13.81)

where BT(a) ≡ B(λ
2

a ). This requires

BT(a) = −a
2

λ2
B(a). (13.82)

If B(a) vanishes at a = a∗ then BT(a) must too. Thus λ2/a∗ must

be a zero of B(a). If we assume that there is only one zero, then we

must take λ = a∗.
The transformation of dR

da would be

dR
da

−→ dR
d(λ

2

a )
= −a

2

λ2
dR
da

. (13.83)

Note that this is the same transformation rule as for B above. Thus,

the NLS scheme-fixing condition, dR
da = B(a), transforms into itself.

It is straightforward to check that the same is true of the invariants

master equation (13.17). It thus seems that an a→ a∗2/a duality is

not special to the BZ limit, but is a general property of all-orders

NLS and hence of all-orders OPT.

13.9. Conclusions

While BZ results are most simply obtained in a restrictive class of

“regular” schemes, the same results emerge from “irregular” schemes,

though they then require consideration of all orders of perturbation

theory. Results in OPT for the fixed-point value R∗ are never far

from the BZ result and converge quite nicely to it. The error at

(k+1)th order shrinks as ln2 k/k2 in NLS, as ln k/k2 in PWMR, and

probably slightly faster in true OPT. These results provide some
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insight into how the subtle features of OPT conspire to improve

finite-order results.

Of course, in the BZ limit the EC scheme, or any “regular”

scheme, is clearly better than OPT; their results converge immediately

to the right result. The BZ limit is a case where we have an extra

piece of information — and the general principle that we should

make use of all available information takes precedence here over the

Principle of Minimal Sensitivity. One should keep in mind, though,

that the BZ limit, nf → 16 1
2
, is not a physical one. It is an open

question whether or not OPT gives better results than the EC scheme

for nf = 16, the closest physical case.

The situation with the critical exponent γ∗ is much less satisfac-

tory. While the all-orders NLS formulas produce the correct result,

the finite-order NLS and PWMR results do not actually converge.

In true OPT the results might converge but, if so, the convergence is

extremely slow. The problem may stem from trying to obtain γ∗ as a
by-product of the optimization of R∗. If one is principally interested

in γ∗ itself, then one should construct its own perturbation series

and optimize that. However, our reason here for studying γ∗ was

not for its own sake, but as a shortcut to obtaining R(Q) at non-

zero Q, relying on Eq. (13.10), which holds for the first three orders

of the BZ expansion. That was very convenient because we only

needed the optimization conditions at the fixed point, and these are

analytically much simpler than for general Q. However, the natural

procedure is to optimize R(Q) itself. There is no reason to suppose

that the convergence of OPT for R(Q) at non-zero Q is significantly

worse than for R∗; indeed, as Q gets larger we expect convergence

to become much better. Thus, our difficulties with γ∗ are probably

a technical, mathematical issue, rather than a problem of physical

concern.

A key result is the “fixed-point OPT master equation” (13.18)

which opens a route to an analytical treatment of arbitrarily high

orders of OPT, given knowledge of the ρi invariants — although

here we have only been able to make progress in two simplifying

approximations, NLS and PWMR. It appears that the simple NLS

approximation does yield the all-orders limit of OPT, although it
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is a poor guide to the rate of approach to that limit. The NLS

formulas, (13.33), (13.34) at leading order in the BZ expansion,

and (13.74), (13.75) at next-to-leading order, are remarkably simple.

They illustrate a general a → a∗2/a duality property of all-orders

OPT that is intriguing and deserves further study.

Appendix 13.A: BZ Expansion at General Q

We first examine the BZ limit. Here, the first two terms of the β

function dominate, so we may use the int-β equation in the second-

order form

b ln(μ/Λ̃) =
1

a
+ c ln

∣∣∣∣
ca

1 + ca

∣∣∣∣. (13A.1)

Combining this equation with the definition of ρ1(Q) yields the latter

in terms of a. Recalling that in the BZ limit c ∼ −1/a0, R∗ ∼ a∗ ∼
a0, and R ∼ a, the limiting form is

ρ1(Q) =
1

R +
1

R∗ ln
(R∗ −R

R
)
. (13A.2)

Inverting this equation (numerically) gives R as a function of

ρ1(Q) = b ln(Q/Λ̃R), and hence as a function of Q. This is the

function sketched in Fig. 13.2. It is universal, at least within the

class of “primary” physical quantities.

To go beyond this limiting form and develop a systematic BZ

expansion for R at a general Q is not a completely unambiguous

matter. R(Q) is not expressible as a simple power series in a0, so

some thought is required in deciding how precisely to define the nth-

order approximant. The important point, as with any approximation,

is to reconcile and make best use of all available information. Simply

taking the int-β equation and then expanding it in powers of a0
produces correction terms with (a0−R) denominators. Higher orders

bring in ever more singular terms. However, these terms simply arise

from an expansion of ln(R∗ − R), reflecting the fact that the fixed

point R∗ does not stay at a0, but is itself a series in a0. Therefore,

it is sensible to organize the expansion to reflect this fact.
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Thus, before performing the integration of 1/β̂(x), where β̂(x) ≡
β(x)/b, one should first rewrite it as

1

−x2(1 + cx+ c2x2 + · · · ) =
−a∗

x2(a∗ − x)P (x)
, (13A.3)

ensuring that the pole is in the right place, and then express it in

partial fractions as

1

β̂(x)
= − 1

x2
+
c

x
− 1

γ̂∗(a∗ − x)
+H(x). (13A.4)

The coefficients of the first three terms are determined by the x→ 0

and x → a∗ limits. Hence γ̂∗ is γ∗/b, where γ∗ is the slope of the β

function at the fixed point. The remainder term can be expanded as

a power series, H(x) = H0 +H1x+ · · · .
In nth order of the BZ expansion one may truncate the β function

after n+1 terms. In that case H(x) is initially of the formQ(x)/P (x),

where P (x) and Q(x) are polynomials of degree n − 1 and n − 2,

respectively. (For n = 1, Q(x) vanishes.) The coefficients of P (x) are

of order unity as a0 → 0. The coefficients of Q(x) are of order a0
because of cancellations that make both c + 1/γ̂∗ and a∗/γ̂∗ − 1 of

order a0. For instance, H0 = a0(c4,−1 + 2c2,−1c3,−1 + c32,−1) +O(a20).

In the BZ expansion to nth order (n ≥ 4) one needs coefficients up

to Hn−4: for the first three orders one can drop H(x) altogether.

It is now straightforward to integrate 1/β̂(x) in the form of

Eq. (13A.4) and hence obtain ρ1(Q) in terms of a and a∗. One

may then eliminate a and a∗ in favour of R and R∗, working to

the appropriate order. The last step can be short circuited by noting

that the final result must be RS invariant, and so, without loss of

generality, one may choose to work in the EC scheme in which R = a.

Thus, the result to nth order in the BZ expansion can be expressed as

ρ1(Q) =
1

R +
1

γ̂∗(n)
ln

(
1− R

R∗(n)

)
+ c ln (|c| R) +

n−4∑

i=0

HEC
i Ri+1

i+ 1
,

(13A.5)
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where R∗(n) and γ̂∗(n) are the nth-order approximations to R∗ and

γ̂, respectively. For small R (i.e., at large Q) this formula will agree

with (n+1)th-order perturbation theory to the appropriate order in

R and a0.

Appendix 13.B: Pinch Mechanism Infrared Limit

As discussed in Sec. 11.6, a finite infrared limit in OPT can occur

through a pinch mechanism: The evolving B(a) function of the

optimized scheme develops a minimum that “pinches” the horizontal

axis at a “pinch point” ap, which ultimately becomes a double zero of

B(a). The infrared limit of the couplant, however, is at an “unfixed

point” a� > ap that is not a zero of the β function. The approach to

Q = 0 involves 1/(lnQ)2, and so is characterized by γ∗ = 0.

In the BZ limit, nf → 16 1
2
, the pinch mechanism does not seem

to occur in true OPT, at least as far as we have been able to explore

it in Sec. 13.3. However, the mechanism is very close to being relevant

because in the BZ limit the critical exponent γ∗ ∼ ba0 tends to zero.

A small or zero γ∗ gives rise to a sharp infrared “spike” in R plotted

versus Q, as in Fig. 13.2 or Fig. 11.4

The NLS and PWMR approximations to OPT seem to have fixed

points only in every other order (for odd k in NLS, and even k in

PWMR). In these orders, as discussed in Sec. 13.5, the B(u) function

closely approximates its limiting form (1 − u)/(1 + u)3 until u gets

close to 1, when it suddenly dives down, producing a zero. In the

alternating orders B(u) suddenly shoots upwards and there is no

zero. However, B(u) then has a minimum very close to the horizontal

axis, so only a slight modification of the scheme would produce a

“pinch point.”

We first show that, in circumstances where the pinch mechanism

does govern the infrared limit of OPT, the master equation that

replaces Eq. (13.18) is

dR
da

=

(
1− a/a�

1− a/ap

)[
B(a)− a

(k − 1)

(
2
dB(a)

da
+

B(a)

(ap − a)

)]
.

(13B.1)
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(Superscripts “(k + 1)” on R and B(a) are omitted for brevity.)

Except for the prefactor, and the fact that ap (not a�) replaces a∗ in

the last term, this equation is identical to (13.18).

The derivation starts from Eq. (11.33) for the sm coefficients in

infrared limit and uses a dummy variable a to form the function

S(a) = dR
da

=

k∑

m=0

sma
m. (13B.2)

Reorganizing the resulting double summation over m and j so that

the latter becomes the outer summation, the inner summations

become finite geometric series or derivatives thereof. The outer j

summation then produces terms that are B(a) or dB/da or B(ap)

or dB/da|a=ap
. The last two vanish in the infrared limit since ap is

then a double zero of the B(a) function. After some further algebraic

tidying up the result reduces to Eq. (13B.1) above.

Note that the näıve large-k limit of Eq. (13B.1) is not the NLS

condition (13.26) but

dR
da

=

(
1− a/a�

1− a/ap

)
B(a) (NLS′). (13B.3)

If we proceed in parallel with the analysis in Sec. 13.5 we find, instead

of Eq. (13.31),

∫
dv

v
√
1− v

=

∫
du

u

√
1− u/u�

1− u/up
. (13B.4)

Note that the above equations correspond to the ansatz form used

in the PWMR analysis of Sec. 13.6 with ξ replaced by

ξ →
√

1− u/u�

1− u/up
. (13B.5)

Doing the integrations, exponentiating both sides, and solving for v

leads to

v =
4U

(1 + U)2
, (13B.6)
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where

U =

(
4u�up
u� − up

)⎛

⎝

√
1−u/u�

1−u/up
− 1

√
1−u/u�

1−u/up
+ 1

⎞

⎠
(√

u� − u+
√
up − u√

u� +
√
up

)2
√

up
u�

.

(13B.7)

Note that when u > up (which is relevant since u ranges from 0 to

u�, which must exceed up) this formula for U develops an imaginary

part. However, recall that both v and B,

B =
(1− U)

(1 + U)3
U

u

√
1− u/up
1− u/u�

(13B.8)

(cf. Eq. (13.52)), have to be expanded as series in u and then

truncated after k terms, making them inevitably real.

These formulas are hard to deal with, even at low orders,

especially since up and u� have to be determined by the requirements

that the truncated B and its derivative vanish at the pinch point up.

For k = 2, 4 there does not seem to be any viable solution, but for

sufficiently large k it appears there is. Anticipating that both up and

u� will tend to 1 as k → ∞, we define

δ ≡ 1

up
− 1

u�
(13B.9)

and proceed to expand to lowest non-trivial order in δ. This gives

U ≈ u

(
1− δ

2
ln(1− u)

)
, (13B.10)

v ≈ 4u

(1 + u)2
− 2δu

(1− u)

(1 + u)3
ln(1− u), (13B.11)

and

B ≈ 1− u

(1 + u)3
− δ

2

(
u

(1 + u)3
+

(1− 4u+ u2)

(1 + u)4
ln(1− u)

)
.

(13B.12)
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Table 13.7. NLS′ results, to lowest-order in δ, in
the BZ limit.

k up u� δ v� = R�

a0

100 0.95018 0.97735 0.02925 0.71485
600 0.98819 0.99292 0.00482 0.95982
10,000 0.99895 0.99924 0.00029 0.99856

Remarkably, one can find analytic expressions for the truncated-

series versions of v and B and thereby explore numerical results up to

very high k values. These results (see Table 13.7) show that indeed

there is a valid solution (with u� > up) with δ tending to zero as

δ ∼ (2/ ln 2)(1/k) and R�/a0 tending to 1.
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Chapter 11: This chapter is based largely on [18], which builds
upon [11, 14, 15]. For fixed point lore see the reviews cited under the
“Renormalization Group” heading above, or any modern quantum-
field-theory textbook.
The ideas referred to in the third paragraph are exemplified

by Bloom–Gilman duality [89] and Poggio–Quinn–Weinberg (PQW)
smearing [90]. For the “new methods,” see Refs. [43–45] above.
Appendix 11.A is based on [19]. The issue of whether β̇∗ is truly

an invariant was raised by Chýla [91]. (Note that some other remarks
in that paper were predicated upon the incorrect result for the MS r2
coefficient discussed below.)
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