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A B S T R A C T   

Excessive protein excretion in human urine is an early and sensitive marker of diabetic nephropathy, primary and 
secondary renal disease. Kidney problems, particularly chronic kidney disease, remain among the few growing 
causes of mortality in the world. Therefore, it is important to develop efficient, expressive, and low-cost method 
for protein determination. Surface-enhanced Raman spectroscopy (SERS) methods are potential candidates to 
achieve those criteria. In this paper, the SERS method was developed to distinguish patients with proteinuria and 
the healthy group. Two types of commercial gold nanoparticles with a diameter of 60 nm and 100 nm were 
employed to prepare substrates for the analysis of 78 samples of unique patients. Data analysis by the PCA-LDA 
algorithm, and the ROC curves, gave results for diagnostic figures of merits. Sensitivity, specificity, accuracy, and 
AUC were 0.79, 0.89, 0.85, and 0.90 for the set with 60 nm Au NPs, respectively. Sensitivity, specificity, ac
curacy, and AUC were 0.79, 0.98, 0.90, and 0.91 for the set with 100 nm Au NPs, respectively. The results show 
the potential of SERS spectroscopy in differentiating between patients with proteinuria and healthy individuals 
for clinical diagnostics.   

1. Introduction 

Human urine is easily accessible while being non-invasive for pa
tients, urine tests provide a plethora of information about patients’ 
health. Health conditions detected by these tests range from cardio
vascular and kidney diseases to various types of cancers [1–3]. Among 
many biomarkers in urine, excessive protein excretion is indicative of 
health conditions. Particularly, albumin (urinary protein) excretion of 
30 to 300 mg a day, which is called microalbuminuria, is an early and 
sensitive marker of diabetic nephropathy [4], cardiovascular and renal 
disease [5]. One of the concerning public health problems worldwide is 
chronic kidney disease (CKD) because, and it remains among the few 
growing causes of mortality which made CKD the 13th leading cause of 
death in 2013 [6]. In 2017, CKD resulted in 1.2 million deaths world
wide, and together, deaths due to CKD or to CKD-attributable CVD 
(cardiovascular disease) accounted for 4.6% of all-cause mortality [7]. 
One of the other renal diseases that can be diagnosed by the protein in 
urine is - diabetic nephropathy, which is the most common cause of CKD 
that is responsible for >30% of the end-stage renal disease (ESRD) [8]. 

Raised albumin excretion of 30-300 mg/day along with the poor gly
caemic control and the high arterial blood pressure are the symptoms of 
diabetic nephropathy [9]. Another important cause of ESRD is the 
glomerular disease, including nephrotic syndrome, that can be charac
terized by the high concentration of proteinuria (≥3.5 g/day) and 
hypoalbuminaemia (serum albumin ≤30 g/L) [10], and nephritic syn
drome with the moderate concentration of proteinuria (<3.5 g/day) and 
hematuria (the presence of red blood cells in urine) [11]. Therefore, it is 
important to develop efficient, expressive, and low-cost method for 
protein content determination [12,13]. 

Surface-enhanced Raman spectroscopy is a technique that enhances 
Raman scattering [14]. The Raman spectrum arises from inelastic scat
tering of the laser light interactions with molecular vibrations, phonons, 
or other excitations in the system, resulting in the corresponding emis
sion of photons. A simple flat metallic surface can already serve as an 
‘amplifier’ of Raman signals for molecules deposited on it, albeit 
achieving a much lower level of amplification than that reached nor
mally in metallic nanostructures [15]. The enhancement of Raman 
scattering is achieved by two mechanisms: typically the strongest one: 
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electromagnetic enhancement (up to 1011–1012) [16], and the chemical 
enhancement by about factor 10–100. [17]. The total SERS enhance
ment can be as high as 1015 and it can allow the detection of a single 
analyte molecule [18]. [19,20]. In the last 40 years, AuNPs on gold, and 
AgNPs on silver have been the most widely employed SERS substrates 
due to providing broad and intense plasmon resonance in the wave
length range of interest for Raman [21]. Au nanoparticles are less sus
ceptible to the oxidation than Ag [22], and more biocompatible [23], 
and demonstrates a strong plasmon excitation at higher wavelength 
closer to the 785 nm laser wavelength. Therefore, gold substrates have 
captured the most interest in its use in biotechnological systems [21]. 

Surface-enhanced Raman Spectroscopy-based methods are prom
ising tools to be adopted in routine clinical tests in the future due to 
being fast, cheap, and label-free, as was stated in the comprehensive 
review about the quantification of proteins in human urine [3]. SERS 
methods were successful in the differentiation of urine of the control 
(healthy) group and the subject group with different types of cancers, 
such as breast, gastric, and ovarian [7,8]. Aitekenov et al. in the review 
about medical diagnostics and detection of biomarkers in biofluids by IR 
and Raman spectroscopy summarized the research literature on the 
topic in multiple tables [24]. One of those tables reported the calculated 
average diagnostic sensitivity, specificity, and accuracy (SSA) for SERS 
methods performed on human urine, which were calculated as 89%, 
93% and 91% respectively, based on on a number of experimental pa
pers, for example, by Hu et al. [25], Huttanus et al. [26], Ma et al. [27] 
and others. Please, see the full table S1 in the Supplementary Informa
tion. Those relatively good figures of merit were achieved by not only 
focusing on individual analytes and their corresponding peaks in the 
spectrum but rather on the spectrum as a whole. In other words, all 
features in the spectra of the healthy group and the subject group can be 
considered for their respective identification. Since biofluids contain 
hundreds of constituents and their quantity varies widely between in
dividuals, even for healthy individuals, their spectra vary. Rather than 
focusing on individual peaks, they utilized multivariate analysis to take 
into consideration hundreds of variables (peaks), such as PCA-LDA 
(principal component analysis – linear discriminant analysis). In the 
current work, we used the same approach: the obtained SERS spectra 
from the control and the healthy group were analysed by PCA-LDA 
analysis to determine diagnostic sensitivity, specificity, accuracy, and 
other figures of merits. Commercial gold nanoparticles (AuNPs) drop 
casted on the commercially available gold-coated slides film make 
relatively inexpensive (at least in comparison to EBL (electron-beam 
lithography) based and some other nanofabricated substrates) and 
simple to prepare SERS substrate. Moreover, this kind of substrate, based 
on commercial AuNPs @ Au film, already demonstrated good effec
tiveness for the detection of various compounds including biomarkers 
[28–30]. Therefore, we decided to do urine screening for proteinuria on 
these substrates. 

2. Materials and methods 

2.1. Samples 

Overall, 78 of 24-h urine tests of control (healthy) subjects and 
samples from patients with proteinuria were collected by hospital. The 
protein concentrations varied greatly between individuals: 42 in
dividuals had protein concentration below 0.15 g/L, 36 patients had 
protein concentration above 0.15 g/L. Written consent from all patients 
were received. The hospital performed routine urinary tests to deter
mine protein concentrations, volume of urine, and concentrations of 
other substances. The samples were stored at − 20 ◦C. 

2.2. Chemicals and equipment 

Commercial 60 nm gold nanoparticles in PBS and 100 nm gold 
nanoparticles in PBS were purchased from Sigma-Aldrich (USA) with 

reported ranges 61–73 nm and 100–125 nm, respectively. Gold coated 
test slides (gold substrates) were purchased from EMF Dynasil (USA). 
Raman spectra were obtained with the confocal Raman micro- 
spectrometer The Horiba LabRam Evolution. Pictures from a scanning 
electron microscope were obtained from Zeuss Crossbeam 540. 

2.3. SEM characterisation 

SEM acquisition parameters: accelerating voltage EHT = 5.00 kV, 
working distance WD = 5.1 mm, I probe = 139 pA, ESB grid = 833 V. 

2.4. Substrate preparation 

The composite AuNP@gold film substrate was prepared in a similar 
way as it was described previously [28,30]. About of 1 mL of suspension 
of commercial gold nanoparticles of 60 or 100 nm diameter (OD =1.0) 
were centrifuged for 5 min at 3500g and 1500 g respectively, and the 
supernatant was removed and displaced with the similar amount of 
ultra-pure water. This cycle was repeated 3 times. 15 μL (microliters) of 
solution of gold nanoparticles were drop casted on the gold coated test 
slides at the room temperature and let dry. Urine samples were thawed 
after storage in the freezer. Then 15 μL of urine samples were drop 
casted on the obtained solid spots from nanoparticles. Each sample was 
prepared in triplicates to maximize reproducibility of the measurements. 

2.5. Spectra acquisition 

Raman spectra acquisition was performed with the following pa
rameters: laser excitation wavelength 785 nm, range 400 to 1800 cm− 1, 
grating 600 g/mm, magnification x10, ND filter 100%, acquisition time 
16 s. We did systematic, ensemble SERS measurements, when spectra 
from 3 different spots were taken. The first spot was taken near the 
middle of a try droplet, and the second and the third spots were (0,200) 
and (200,0) away from the first in the (x, y) axis respectively measured 
in micrometers. For each spot 12 spectra were averaged, therefore 36 
spectra were averaged for each urine sample. 

2.6. Spectra processing and data analysis 

All spectra processing and data analysis were performed on MAT
LAB. The obtained spectra were processed in the order:  

1. ALS (asymmetric least squares algorithm) – removes fluorescence 
background.  

2. Median filter – removes outliers.  
3. Savitsky-Golay smoothing algorithm – preserves intensities, removes 

unwanted features [31]. 

The processed spectra were analysed by PCA - DA (principal 
component analysis –discriminant analysis) method and ROC (receiver 
operating characteristic) curves to construct a statistical model. The 
statistical model was used for calculations of diagnostic sensitivity, 
specificity, accuracy, and other figures of merits. Diagnostic sensitivity, 
specificity and accuracy are commonly reported in biomedical papers. 
Sensitivity is a measure of how well a test can identify true positives and 
specificity is a measure of how well a test can identify true negatives 
while accuracy is how close or far off a given set of measurements are to 
their true value. The exact formulas are as follows: 

sensitivity =
true positive

positive  

specificity =
true negative

negative  
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accuracy =
true positive + true negative

positive + negative  

3. Results and discussions 

After Raman measurements were performed, some substrates were 
imaged by a scanning electron microscope (SEM), see Fig. 1. Fig. 1 (A) 
and (B) show typical SEM images of the same kind of substrate surface 
but with 60 nm and 100 nm Au NPs respectively, magnification x50000. 
SEM images demonstrate the availability of Au NPs on the sample and 
those nanoparticles are relatively uniform in their size. Statistical 
analysis performed on SEM images gives mean and standard deviation 
for 60 nm nanoparticles as 62 and 3 nm, respectively, and for 100 nm 
nanoparticles as 103 and 11 nm, respectively, more in the Supplemen
tary Information. Other objects in SEM images such as crystals are not 
uniform in size and their mean and standard deviation are 980 and 460 
nm, respectively. 

Also, those SEM images of the substrate demonstrated that gold 
nanoparticles have a bit non-ideal spherical shape, and most nano
particles are associated into dimers, trimers, and larger oligomers. This 
association must increase the total number of active SERS hot spots in 
the substrate and boost its enhancement factor, as it was reported for the 
study of SERS signal on nanoparticle dimers and trimers vs SERS signal 
on single nanoparticles [32,33]. 

There are a number of works showing higher enhancement factor for 
nanoparticles with bigger size [34,35]. We would expect that increasing 
gold nanoparticles particle size from 40 to 100 nm produces stronger 
LSPR for an excitation of 785 nm and produces larger SERS signals due 
to optical absorption and scattering of the substrates, while the same 
trend was experimentally observed for 35 to 65 nm silver nanoparticles 
with 633 nm laser excitation, as reported by He et al. [34], the same 
trend for Au(core)-Ag(shell) nanoparticles within 38, 53, and 90 nm was 
observed by Sugawa et al. [35]. We chose 60 nm and 100 nm Au NPs 
also because our preliminary measurements of 10 patient samples, 
demonstrated lower performance with smaller particle size (40 nm), 
please see the Supplementary Information. 

The typical collected spectra for samples with high and low protein 
concentration before and after background subtraction are shown on 
Fig. 1 in the Supplementary Information. Fig. 2 shows three averaged 
SERS spectra: one of urine samples with low protein concentration, 

another one of samples with high protein concentration and the spec
trum of their difference. The initial threshold to distinguish between 
high and low protein concentration in urine is 150 mg/L of protein, 
making 36 patient samples in “low” and 42 patient samples in “high” 
protein concentration category. The wavelength range is 960–1700 
cm− 1. The figures look similar for both substrates made of 60 and 100 
nm diameter gold nanoparticles, demonstrating strong band in the re
gion 1310–1400 cm− 1. We have noticed in our Raman spectra an arti
fact: a periodic interference that mostly affected spectra in the range 
400–900 cm− 1. The signal artifact in this range, likely from reflected 
light reaching the CCD is present even in the spectra of bare gold film, 
which should be flat, but nevertheless creates an oscillating signal as 
demonstrated on Fig. 2 in the Supplementary Information. Partially 
because of the mentioned problem we have analysed Raman intensities 
in the range higher than 900 cm− 1 for statistical discrimination. Also, 
statistical models processing our data, showed better performance in 
terms of AUC (area under the curve in the ROC curve) values when the 
range 960–1700 cm− 1 was selected in comparison to ranges starting 
from lower wavenumbers. Moreover, we believe that this range contains 
the most important vibrational frequencies for protein determination as 
explained further in the text, particularly in Table 1. 

Comprehensive band assignment in the human urine matrix was 
performed by Moreira et al. [36], see Table 1. Dingari et al. experi
mentally showed strong peaks for drop coated albumin for the following 
wavenumbers: 1655 cm− 1 amide-I band, 1447 cm− 1 CH2 deformation 
band, 1002 cm− 1 phenylalanine band [37]. Though specific correlations 
with substances were not provided, Zong et al. suggest that peaks at 
1079, 1185, 1287, and 1383cm− 1 are specific to the population with 
CKD since these peaks were not reported in some other research groups 
that studied human urine with individuals with other health conditions 
[38]. In another similar research dedicated to proteinuria by Chen et al., 
the peaks at ~1150 and 1585 cm− 1 are the most intense peaks [39]. 
While authors did not assign the peak at 1150 cm− 1 to protein sub
stances, they assigned peaks at 1230–1282 to amide III, 1447 cm− 1 to 
phospholipids, and the peaks at 1585, 1615, 1654 cm− 1 for tyrosine and 
tryptophan. Saatkamp et al. experimentally showed that the peaks at 
527, 1006, and 1160 cm− 1 indicate the presence of urea, with attribu
tion assigned to the symmetric stretching peak C–N for the peak at 
1006 cm− 1 and C–NH2 and C––O stretching and confirmed by their 
literate study [40]. Mukanova et al. reported the similar strong peak at 

Fig. 1. SEM pictures of urine solids on 60 nm and 100 nm Au NPs on the gold substrate. (A) The SEM image of a sample with 60 nm Au NPs with magnification of 
50.000. (B) The SEM image of a sample with 100 nm Au NPs with magnification of 50.000. Statistical analysis performed on SEM images gives mean and standard 
deviation for 60 nm nanoparticles as 62 and 3 nm, respectively, and for 100 nm nanoparticles as 103 and 11 nm, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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1007 cm− 1 for urea [30]. In the Supplementary Info, we attached some 
figures with SERS/Raman spectra of albumin and urea. Overall, the most 
intense peak in urine samples is located at ~1003 cm− 1 which corre
sponds to C–N symmetric stretching, that primarily comes from urea, 
other peaks in urine are much weaker and located at 1178, 1466, 1540, 
1576, and 1630 cm− 1 [41]. 

Our experimental results show two strong peaks at 1094 and 1355 
cm− 1, a medium intensive peak at 1044 cm− 1, and weak peaks at 1167, 
1454 and 1493 cm− 1, see in Fig. 2. Our peaks at 1094 and 1355 cm− 1 are 

relatively close to that of reported by Zong et al. at 1079 and 1383 cm− 1, 
respectively. Those peaks might be specific to the group with protein
uria. Close to our weak peaks at 1167, 1454 and 1493 cm− 1 are reported 
for healthy subjects as well, for example [41]. 

Discrimination between the low protein group and the high protein 
group was further conducted by PCA-LDA and ROC curves [57,58]. 
Fig. 3 shows PC related graphs for the set with 60 nm Au NPs. Graphs of 
the first 9 PC coefficients versus Raman shift are presented in Fig. 3 (A) 
since they account for the most amount of the explained variability. 

Fig. 2. Mean SERS spectra of urine samples with the low and the high protein groups with the spectrum of their difference. The protein threshold is 150 mg/L. (A) 
Urine samples with the gold substrate with 60 nm Au NPs. (B) Urine samples with the gold substrate with 100 nm Au NPs. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Together first 9 coefficients account for 97.0% of the explained vari
ability. Some high protein samples in Fig. 3 (B,C) are located away from 
the rest, while most samples are clustered around the line. The area 
under the ROC curve (AUC) was taken as the main measure of test 
performance. In our analysis, the protein threshold was set to 150 mg/L 
and 300 mg/L for three reasons. The first reason is that, historically, 
protein excretion of >150 mg/day was regarded as abnormal [59]. 
Though a man excretes about 1.5 L of urine a day, the threshold of 150 
mg/L divides samples into roughly equal groups – 42 for the high protein 
group, and 36 for the low protein group making 78 samples in total, 
while the threshold of 300 mg/L divides samples into 44 for the high 
protein group, and 34 for the low protein group. Lastly, urine reagent 
strip devices that are commonly used in medical diagnostics have a 
higher threshold of about 300 mg/L [60], and we chose to pick threshold 
values lower and equal to 300 mg/L. 

Firstly, we used ROC (receiver operating characteristic) curves to 
decide on number of PC components. Particularly, AUC values greatly 
depend on multiple factors, and one of them is PC components. As an 
example, Fig. 4 shows ROC curves of urine samples on the gold substrate 
with 60 nm and 100 nm Au NPs at the protein threshold of 150 mg/L. 
Table 2 below shows how sensitivity, specificity, accuracy, AUC, and 
other variables varies with number of PC components for experimental 
sets with the protein threshold of 150 mg/L. Similar information for the 
threshold of 300 mg/L is given in Supplementary information. Those are 
with 60 nm Au NPs and 100 nm Au NPs on the gold substrate with two 
protein threshold numbers 150 mg/L and 300 mg/L. Also, those tables 
contain information on a confusion matrix. A confusion matrix is a 
summary of prediction results on a classification problem that are 
divided into True Positives (TP), True Negatives (TN), False Positives 
(FP) and False Negatives (FN). Sensitivity, specificity, accuracy, and 
confusion matrices were calculated from respective ROC curves by 
maximizing sum of sensitivity and specificity. For example, Fig. 4 rep
resents a ROC curve that shows relationship between sensitivity and 1- 
specificity. By taking the sum of sensitivity and specificity from that 
curve, the maximum sensitivity and specificity could be found, along 
with values for accuracy and values for a confusion matrix. 

If we look solely on AUC vs PC for an individual experimental set, 
AUC values are rising, but that results in overfitting data because AUC 
one-leave-out starts to decrease from certain PC values. One-leave-out 
algorithm was used for avoidance of over-optimization the model with 
excessive numbers of PC components. For 150 mg/L, AUC values are 
better for 60 nm Au NPs, than for 100 nm Au NPs, at least for up to 13 PC 
components. As a result, sensitivity, specificity, and accuracy tend to be 
better for 60 Au NPs in this case. However, for 300 mg/L, AUC values are 
better for 100 nm Au NPs than for 60 nm Au NPs. In general, though, 
results for both nanoparticles are similar. 

The best results were picked by the reference to the sum of AUC and 

AUC leave-out-values along with the total variance explained. For 60 nm 
Au NPs, the best results were picked for 15 PC components for both 
thresholds. As for 100 nm Au NPs, 13 PC components were picked. For 
150 mg/L and 60 nm Au NPs sensitivity, specificity, accuracy, and AUC 
are 0.976, 0.667, 0.833, 0.905, respectively. For 150 mg/L and 100 nm 
Au NPs sensitivity, specificity, accuracy, and AUC are 0.762, 0.972, 
0.859, 0.890, respectively. For 300 mg/L and 60 nm Au NPs sensitivity, 
specificity, accuracy, and AUC are 0.794, 0.886, 0.846, 0.899, respec
tively. For 300 mg/L and 100 nm Au NPs sensitivity, specificity, accu
racy, and AUC are 0.794, 0.977, 0.897, 0.913, respectively. Among 
those four sets of diagnostic figures, some contain high sensitivity and 
some high specificity. Moreover, we performed three additional statis
tical tests. For the first test, the data for sets with 60 nm and 100 nm 
were combined. The results were largely the same. Sensitivity, speci
ficity, accuracy, and AUC were 0.857, 0.778, 0.821, 0.884, respectively. 
The second test consists of omitting samples within 130 and 170 mg/L 
because there might be problems of how accurate the protein concen
tration in urine can be measured. Only 3 samples were between that 
range and omitting them did not change diagnostic figures meaning
fully. In this case, for 150 mg/L and 60 nm Au NPs sensitivity, speci
ficity, accuracy, and AUC are 0.968, 0.69, 0.838, 0.909, respectively. 
Lastly, we applied the same calculation principles to analyze whether 
the peak of 1355 cm− 1 is predictive by itself. SERS intensities between 
the Raman shift range of 1355 ± 10 cm− 1 with 15 PC components 
yielded AUC values of 0.66 and 0.58 for the data sets obtained with 60 
and 100 nm Au NPs respectively. Therefore, the Raman spectrum, which 
we used (960 to 1800 cm− 1), has much better predictive power. 

To understand the competitiveness of our results we performed a 
literature search among studies containing SERS/Raman analysis of 
urine or detection of proteinuria. Table 3 is a summary of experimental 
papers on protein detection in human urine and Raman analysis of 
human urine. Firstly, we compared our results for the detection of 
proteinuria with other techniques like the dipstick test, spot urine 
protein-creatinine ratio, and 1H NMR. Comparison with commonly used 
urine dipstick test showed that our method outperforms it both in terms 
of sensitivity and specificity with the higher area under the ROC curve 
[61]. The alternative method for detection of proteinuria with protein to 
creatinine ratio by Beckman Synchron also showed lower figures of 
merit than our method [62]. And more novel method of proteinuria 
detection with 1H NMR yielded slightly lower accuracy than our method 
and significantly lower AUC [63]. In addition, we were able to get a 
lower threshold value of 150 mg/L compared to these methods, which 
reported protein concentration thresholds of 300 mg/L [61,62], and 
3000 mg/day [63]. Thus, the use of SERS for the detection of proteinuria 
is not only more sensitive and accurate but also can distinguish lower 
protein concentrations. 

Finally, we compared the performance of our method with studies 
analyzing urine by Raman spectroscopy, like ours. The figures of merit 
of these studies used for comparison can be seen in Table 3. For example, 
a study by Zong et al. about the diagnosis of chronic kidney disease by 
SERS analysis of urine showed a bit lower level of accuracy than accu
racy calculated in our research (82% vs 86% average for the current 
paper) [38]. Moreover, our results were at least on par or a bit better in 
comparison with results for the detection of chronic renal failure (ac
curacy 85%) [64], coronary heart disease, where reported accuracy was 
83% [65], and bladder cancer where accuracy was 80% [66]. This 
suggests that the use of Raman spectroscopy for urine analysis has 
similar performance in detection across different diseases/conditions 
and thus there is a potential for simultaneous screening for different 
pathologies. Also, since apparently, we have obtained comparatively 
high AUC, accuracy and other FOMs, the Table 3 demonstrates a relative 
efficiency of our SERS method for the screening of proteinuria. 

4. Conclusion 

The results show the potential of SERS spectroscopy in 

Table 1 
Spectra interpretation of the human urine by Moreira et al. [36].  

Peak position, 
cm− 1 

Component, attribution, and literature found 

983 Phosphate (P–H bending and P–O stretching) [42] 
1006 Urea (N-C-N stretching) [43–46] 

1050 
Creatine (1054); hydroxybutyrate (1060) from ketone bodies 
[47–50] 

1079 
Nitrogenous compounds (CN stretching from primary amines) 
[51,52] 

1159 Urea (NH2 rocking) [43–45,53] 
1344 Hydroxybutyrate from ketone bodies [47,51,54] 

1420 Creatinine (1420); creatine (1424); acetoacetate (1422) from 
ketone bodies [48,49,53,55] 

1456 
Hydroxybutyrate (1443 and 1456) and acetoacetate (1444) 
from 
ketone bodies [49,50,56] 

1608 Urea [44,45] 
1650 Water (H-O-H bending mode) [54]  
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Fig. 3. PC related graphs for the set with 60 nm Au NPs. Protein threshold is 150 mg/L. Low protein samples are colored in blue. High protein samples are colored in 
red. (A) Graphs of the first 9 PC coefficients versus Raman shift. The corresponding PC component is written above each graph. (B) PC1 vs PC2 graph with a line 
separating low protein (blue) and high protein (red) samples. (C) PC1 vs PC2 vs PC3 graph. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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differentiating between patients with proteinuria and the healthy group 
for clinical diagnostics. The employed approach with 60 nm and 100 nm 
Au NPs achieved good discrimination values as measured with AUC in 
the ROC curves. Data analysis by PCA-DA algorithm, and the ROC 
curves, gave results for diagnostic figures of merits. Using diagnostic 
threshold protein concentration 300 mg/L we obtained sensitivity, 
specificity, accuracy, and AUC: 0.79, 0.98, 0.90 and 0.91, respectively, 
for the measurements on 100 nm Au NPs@gold film substrate. The same 
FOMs are a bit lower for the measurement on 60 nm Au NPs: 0.79, 0.89, 
0.85 and 0.90, respectively. Decreasing diagnostic protein threshold to 
150 mg/L for measurements on 60 nm Au NPs can bring some 
improvement in sensitivity (to 0.976) at the expense of decreasing 
specificity (to 0.67), while accuracy and AUC do not show significant 
change (0.83 and 0.905 respectively). Overall, 300 mg/L protein 

diagnostic threshold and 100 nm diameter gold nanoparticles on gold 
film measured with 785 nm laser excitation appears as an optimal 
combination providing the best balance between sensitivity and speci
ficity in this SERS based method of proteinuria diagnostics. 

Finally, the described SERS method of protein content analysis in 
human urine is relatively inexpensive and fast. However, as an alter
native to gold film in Au NPs@gold film substrate, we are planning to 
test less expensive and more available substrates with this method of 
protein urea detection, such as silicon or/and aluminum foil. 
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