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A B S T R A C T   

Resource estimation is the main and primary step in the development of a mining project. Principally, it is 
necessary to first identify the geological domains through boreholes, model them at unsampled locations, and 
then evaluate the grade(s) of interest inside each built domain. The traditional determination of these categorical 
domains over the sampling points is suboptimal as it considers mostly-one or two variables from core logging. 
This leads to the neglect of the influence of other significant variables. To circumvent the problem of estimation 
domain identification, spatially dependent clustering machine learning algorithms can be of great help in 
detecting such domains. However, one problem that may appear when using these techniques is that the 
resulting geo-domains (geo-clusters) obtained by the clustering technique might be heterogeneous and show a 
non-stationary property. The reason is that the aim of these spatially dependent techniques is to produce compact 
and spatially contiguous clusters, which are well suited to establishing non-stationary geo-domains. This makes 
the procedure of modelling challenging as it necessitates the use of advanced geostatistical techniques to 
propagate the heterogeneous geo-clusters at unsampled locations. 

An algorithm is presented in this study that employs a non-stationary sequential indicator simulation para-
digm to model such complex variability of heterogeneous geo-clusters. Since the spatial trends of underlying geo- 
clusters are required in this simulation method, in this study, we propose the use of multinomial logistic 
regression to infer these trends. The algorithm was tested using an actual case study from a porphyry copper 
deposit in Iran, where Cu, Mo, Au, Rock Quality Designation (RQD), mineralization zones, alteration types, and 
rock types were employed to identify and spatially model the heterogeneous geo-domains in the entire deposit. 
The results were compared with a conventional sequential indicator simulation where no trend was used. An 
examination of the resulting maps using several evaluation criteria including visual inspection of the realizations, 
probability maps, reproduction of proportion of each geo-cluster, connectivity measures, and trend analysis, 
showed that the findings of the proposed algorithm were superior in modelling heterogeneous geo-domains.   

1. Introduction 

Mineral resource modeling is an important task providing a base-
ment in the value chain of mine development (Sinclair and Blackwell, 
2006; Rossi and Deutsch, 2014; Abzalov, 2016). Proper modelling of ore 
grades in a deposit significantly impacts the long-term planning of a 
mining operation (Maleki et al., 2020; Maleki et al., 2021). In a 
geological borehole database, one usually deals with two types of vari-
ables: continuous (e.g., ore grades and mineral grades) and categorical 

(e.g., alteration, mineralization zones, rock types, lithology, weathering, 
and other geological characteristics) variables. A typical act in the 
mining industry is to first split the deposit into categorical sub-domains 
(estimation domains) and then, using geostatistical/interpolation tech-
niques, to model the corresponding continuous variable(s) inside each 
domain separately (Rossi and Deutsch, 2014; Emery and Séguret, 2020). 
The benefit of this technique is that the continuous variable(s) inside the 
domains are deemed homogenous and stationary, which facilitates their 
prediction (Sinclair and Blackwell, 2006; Moon et al., 2005; Yunsel and 
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Ersoy, 2011; Haldar, 2018; Rossi and Deutsch, 2014). These categorical 
domains are the geological equivalent to the stationary distribution of 
mineralization. The latter step (modelling the continuous variable(s)) is 
straightforward, but the former step is challenging because there exist 
different complexities in identifying such “estimation domains”. This 
challenge stems from first recognizing them over the sampling points 
(borehole logs) and, second, modeling them at target or unsampled 
points. For the former, there are different approaches that can be carried 
out based on the geological setting of a deposit, where the interpretation 
of categorical variables plays an important role. For this, geological core 
logging is the foundation for characterizing such geo-domains (Soltani 
and Hezarkhani, 2011; Adeli and Emery, 2017). For instance, in por-
phyry copper deposits, a mineralized zone (oxide/sulfide) or rock types 
can be considered the estimation domains (Madani et al., 2021a; Koike 
et al., 2022), or the use of lithology in iron deposits (Maleki et al., 2021; 
Hosseini et al. 2021). 

Grade domaining is another alternative for defining these geo- 
domains. The grade shells obtained by this method are based on trun-
cating the distribution of a continuous variable using the specified 
thresholds (Emery and Ortiz, 2005; Yunsel and Ersoy, 2011; Iliyas and 
Madani, 2021). To do so, the main element in the deposit is split into the 
categories where each belongs to an interval. The method is simple, but 
the obtained domains should be in agreement with the geological log-
ging interpretation of the sample points. 

However, these methods are labor intensive, time consuming, and 
subject to manual interpretation of the mineral deposits (Fouedjio et al., 
2018). Thus, domaining is a clustering problem; another option is to use 
clustering machine learning algorithms to automatically and quickly 

Fig. 1. Flowchart stating the main steps of the proposed approach in this study.  

Fig. 2. Simplified geological map of Iran (after Mirnejad et al., 2019). The location of known copper deposits in the UDMA are marked. Sarkuh area is marked by red 
star. Abbreviations: A: Qarachilar; B: Sungun; C: Dali; D: Kashan; E: Natanz; F: Kahang; G: Ardestan; H: Nodoushan; I: Ali-Abad; J: Darreh-Zerreshk; K: Iju; L: Miduk; 
M: Sarkuh; N: Sar Cheshmeh; O: Darreh Zar; P: Kerver. 
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identify these geo-domains. Classical clustering algorithms such as hi-
erarchical clustering (Maimon et al., 2005), K-means (Jain, 2010), 
spectral clustering (Jain et al., 1999), and Gaussian mixture (Scrucca 
et al. 2016; Madenova and Madani, 2021) can be used for this purpose. 
For instance, de Sá et al. (2021) used K-means clustering, pluri-Gaussian 
simulation, and a lithotype rule for the cluster numbers. By using the 
lithotype rule, a continuous distribution of each cluster was obtained. 
However, the resulting geo-domains (hereafter, geo-clusters) obtained 
by the classical clustering algorithms may appear spatially patchy and 
unstructured. These geo-domains are usually impractical in mining 
exploitation because, from the mining operational point of view, it is 
always of interest to plan the underlying domains that are spatially 
contiguous, connected, and compact. 

To solve this issue, several clustering algorithms (Oliver and 
Webster, 1989; Ambroise et al. 1997; Scrucca, 2005; Romary et al. 2012; 
Romary et al. 2015; Fouedjio, 2016a; Fouedjio, 2016b; Fouedjio, 2017a; 
Fouedjio, 2017b; Fouedjio et al. 2018; Martin and Boisvert, 2018; 
D‘Urso and Vitale, 2020) were developed to take into account the spatial 
dependency of the data so as to establish reasonable geo-clusters 

suitable for mine planning and exploitation. The application of these 
spatially dependent clustering methodologies has been successfully 
applied in different geo-domain characterizations for ore body 
modeling, as thoroughly discussed in Fouedjio et al. (2018), Martin and 
Boisvert, (2020), and Moreira et al. (2020). One benefit of these methods 
is that they produce compact, spatially connected, and contiguous cat-
egorical domains. This, however, may lead to the generation of non- 
stationary geo-domains that display heterogeneity throughout the de-
posit. This property of the random function model requires the appli-
cation of advanced geostatistical interpolation tools for modeling these 
geo-clusters at unsampled locations in order to provide the corre-
sponding volumes to model the continuous variable(s). 

These methods can be classified into deterministic and stochastic 
approaches. Deterministic methods only predict a unique geo-cluster at 
unsampled locations, and the uncertainty cannot be quantified. Instead, 
stochastic geostatistical methods are of particular interest for this pur-
pose. Among others, sequential indicator simulation (Alabert, 1987; 
Journel and Alabert, 1990) is a commonly used method that is exten-
sively available in most commercial software programs. However, this 

Fig. 3. Simplified map of the Sarkuh Cu deposit (Company, 2008).  
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method is suboptimal when the geo-domains are heterogeneous (such as 
geo-clusters) and show large-scale geological features. In fact, conven-
tional sequential indicator simulation is poor at reproducing the 
compactness and spatially contiguous geological features, which are 
desired in modeling the geo-clusters. The reason is that conventional 
sequential indicator simulation is built based on the stationary property 
of the random function model and uses only the variogram as two-point 
statistics. In the case of such complex characteristics as those in geo- 
clusters, one possibility is to use secondary information (Deutsch, 
2006). A methodology is developed in this paper that uses the multi-
nomial logistic regression model to produce such secondary data by 

integrating it with a non-stationary sequential indicator simulation to 
model the heterogeneous geo-clusters. The method was tested with a 
real copper deposit. 

The proposed methodology in this study first requires a geo- 
clustering technique to characterize the geo-clusters at the sample 
points, then multinomial logistic regression should be used to produce 
the local probability (secondary information) of each geo-cluster at the 
sample points and target grid nodes, and then a non-stationary 
sequential indicator simulation paradigm is used to stochastically 
model the heterogeneous geo-clusters at the target grid nodes. There-
fore, the aim of this paper is threefold: (a) to develop an algorithm that 

Fig. 4. 2D location maps of boreholes for Cu (ppm) (A), Mo (ppm) (B), RQD (%) (C), Au (ppb) (D), and mineralization zone (E), alteration (F), rock types (G), and 
geo-clusters (H). 

Table 1 
Level of relationship between continuous-continuous variables (upper diagonal: Pearson linear correlation, and lower diagonal: Spearman non-linear correlation); 
categorical-categorical variables (Cramer’s V coefficient); and continuous-categorical variables (Cramer’s V coefficient).   

Cu Mo Au RQD Mineralization Alteration Rock Type Geo-clusters 

Cu 1 0.122 0.731 0.015 W W S S 
Mo 0.276 1 0.131 0.027 W W S M 
Au 0.507 0.047 1 − 0.129 – W W W 
RQD 0.061 0.147 − 0.146 1 S M S VS 
Mineralization W W – S – VS W M 
Alteration W W W M VS – M M 
Rock Type S S W S W M – VS 

W: weak association, M: Moderate association, S: Strong association, VS: very strong association. 
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integrates a non-stationary sequential indicator simulation with multi-
nomial logistic regression; (b) to test the algorithm using an actual case 
study in a porphyry copper deposit; and (c) to compare the results with a 
conventional sequential indicator simulation and discuss them accord-
ing to several evaluation criteria. 

2. Materials and methods 

2.1. Geo-clustering 

Any unsupervised spatially dependent machine learning algorithm 
can be used to infer geo-clusters that are not only compact but also 
contiguous and well structured. A complete review of these methods are 
thoroughly discussed in the work by Fouedjio (2020). However, among 
others, geostatistical hierarchical clustering (Romary et al. 2012; 
Romary et al. 2015) is of particular interest in this study since it employs 
both continuous and categorical variables simultaneously for identifi-
cation of geo-clusters suitable for mineral resource modelling (Madani 
et al. 2021b). The notion of geostatistical hierarchical clustering is dis-
cussed in depth in the work by Romary et al. (2015). As a brief 
description, the sample points in this method should be first linked using 
Delaunay triangulation graphs (Green and Sibson, 1978). Then, the 
agglomerative hierarchical clustering algorithm clusters the sample 
points based on the established connections in the Delaunay network, 
which is based on a matrix of distance between two linked data loca-
tions. This distance is a function of the measured continuous and cate-
gorical variables at the data location associated with the weights 
assigned to each. Among the continuous variables, the coordinates can 
also be embedded in this clustering paradigm. Using the coordinates and 
the established linkage graph, the spatial continuity is taken into ac-
count to obtain the clusters. This is the only improvement to the tradi-
tional hierarchical clustering technique forming the geostatistical 
hierarchical clustering algorithm. 

In addition, this method is easily accessible in commercial software 
programs such as Minestis® and Isatis.neo®. Once the geo-clusters are 
identified thorough the sample locations, the next step is to then model 
and propagate them into the unsampled target grid nodes using the 

Fig. 5. Boxplots between values of each continuous variable and the resulting geo-clusters.  

Table 2 
Statistical parameters for Cu(ppm)/Mo(ppm)/Au(ppb)/RQD(%) in each geo- 
cluster.   

Geo-cluster 

1 2 3 4 

Number 
of data 

2675/ 2675/ 
41/ 2742 

2661/ 2661/ 
10/2670 

2866/ 2866/ 
165/2866 

2739/ 2739/ 
374/2771 

Average 1449.10/ 
39.57/ 63.48/ 
37.08 

1269.29/ 
53.30/ 
66.40/ 79.17 

1303.71/ 
41.69/ 4.83/ 
40.64 

2298.1/ 
51.33/ 13.88/ 
58.49 

Variance 2244389.39/ 
42770.27/ 
1696.25/ 
1010.77 

854962.46/ 
11555.40/ 
1918.84/ 
728.99 

983722.84/ 
4668.91/ 
542.39/ 
772.68 

3973801.16/ 
9271.89/ 
1935.69/ 
1023.08 

Minimum 14/0/0/0 5/0.67/26/0 14/0.82/0/0 56/0/0/0 
Median 890/8.4/48/ 

30.02 
1054/22/57/ 
92.96 

1080/20.7/ 
15.3/36.67 

1795/21.2/ 
24.7/63.51 

Maximum 24600/4843/ 
195/100 

13061/1914/ 
183/100 

15378/1414/ 
206/100 

17937/1462/ 
340/100 

COV* 1.03/5.22/ 
0.64/0.85 

0.72/2.01/ 
0.65/0.34 

0.76/1.63/ 
4.82/ 0.68 

0.86/1.87/ 
3.16/0.54 

*COV: coefficient of variation. 
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Fig. 6. Proportional stacked bar chart illustrating the association between mineralization, alteration, rock type and geo-clusters. The codes are defined in the text.  

Fig. 7. Trend analysis of proportion of each geo-cluster against geographical coordinates (A-C) and vertical proportion curve (D).  
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sequential indicator simulation. 

2.2. Sequential indicator simulation 

A sequential indicator simulation (Alabert, 1987; Journel and Ala-
bert, 1990) is a stochastic technique used to model the N categories. In 
this text, categories refer to the geo-clusters obtained from any unsu-
pervised spatially dependent clustering techniques. These geo-clusters, 
if they are identified deterministically, are mutually exclusive at all 
the sample locations. However, there are some clustering techniques 
that produce a probabilistic allocation of the sample points to the clus-
ters sought, but these techniques are not within the scope of this study. 

Once the sample points are assigned to each geo-cluster (deterministi-
cally), to stochastically model them at unsampled locations, i.e., target 
grid nodes using conventional sequential indicator simulation, first, the 
geo-clusters (hard conditioning data) are transformed into a matrix with 
N columns of hard indicator data: 

Ind(K;n)=
{ 1, if geo − cluster n assigned to sample point K

0, otherwise
n= 1,⋯,N

(1) 

Then, a random path is determined to visit each node of the target 
grid only once. In the next step, a stationary simple kriging (SSK) 
paradigm is used to constitute the conditional probability of the occur-
rence of each geo-cluster n at the target grid node K*: 

Ind*
SSK(K

*; n) =
∑υ

β=1
ΛSSK

β (K*; n)Ind
(
Kβ; n

)
+

[

1 −
∑υ

β=1
ΛSSK

β (K*; n)

]

× μn

(2)  

where data υ consist of the hard and previously simulated indicator geo- 
clusters that are trapped in the neighborhood; μn is the global declus-
tered prior proportion of each geo-cluster n; ΛSSK

β (K*; n) is the weights 
allocated to the indicator geo-cluster Ind

(
Kβ; n

)
at the Kβ(β = 1,⋯, υ) of 

this indicator geo-cluster. The weights Λ are obtained by solving a 
variance–covariance matrix for each K*. 

The order relation problem is anticipated once the conditional 
probability of the occurrence of all N geo-clusters are estimated using 
Eq. (2). This means that the estimated conditional probabilities are not 
always equal to one and some of the values might show negative values. 

Table 3 
Statistical parameters for evaluation of the goodness of fitted multinomial lo-
gistic regression model.   

Standard error  
ρp ρ1p ρ2p ρ3p 

p = 1  0.395 6.93× 10− 4 4.81×

10− 4 
5.50×

10− 4 

p = 2  0.364 4.23× 10− 4 4.23×

10− 4 
3.98×

10− 4 

p = 3  0.392 4.56× 10− 4 4.55×

10− 4 
5.11×

10− 4 

Mean of raw 
residuals  

− 0.23× 10− 14 − 0.34×

10− 14 
0.56×

10− 14 
0.02×

10− 14 

mean of Pearson 
residuals  

0.120 − 0.046 0.005 0.023 

mean of deviance 
residuals  

1.131  

Fig. 8. Error over the confidence bounds calculated at each sampling point for geo-cluster 1 (A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D).  
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Then, this deviation should be corrected. The last step involves simu-
lating a geo-cluster at the target grid node using a random number 
drawn from a uniform distribution in [0, 1] by a Monte Carlo simulation. 
After these steps, the simulated value is added to the hard conditioning 
data and then the algorithm proceeds to the following target node, the 
order of which is already identified by a random path. To generate 
another realization at location K*, one needs to repeat the previous steps 
to draw another random value from the conditional distribution, leading 
to the production of another simulated geo-cluster. However, this 
traditional paradigm of a sequential indicator simulation is suitable for 
strictly stationary scenarios. 

In the following, the proposed methodology is discussed where the 
stationary simple kriging is replaced with non-stationary simple kriging 
in a conventional sequential indicator simulation, and an updated 
variant of this algorithm is given in conjunction with multinomial lo-
gistic regression. 

2.3. Multinomial logistic regression 

Multinomial logistic regression is a supervised classification machine 
learning algorithm that is a generalization of logistic regression to 
multiclass problems (Long, 1997; Long and Freese, 2006). In logistic 
regression, one deals with binary dependent variables, whereas in 
multinomial logistic regression, there are N (more than two) possible 
outcome for dependent variables. In this multiclass logistic regression 
algorithm, each sample point β = 1⋯τ (τ total number of observations) 
consists of a categorical variable Y with N possible outcomes where its 

variation depends on a set of K independent variables, which uses the 
multinomial logit model. In this model, to obtain the multinomial logit 
model for each geo-cluster n, one geo-cluster was selected as reference 
category, usually the last one N, and then the other N − 1 geo-clusters 
were separately regressed against the reference geo-cluster. This can 
be formulated as follows if geo-cluster N is chosen as the reference 
category: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ln
μ
(
Yβ = 1

)

μ
(
Yβ = N

) = ρ1 + ρ11K1 + ρ12K2 + ⋯ + ρ1pKp

Ln
μ(Yβ = 2)
μ(Yβ = N)

= ρ2 + ρ21K1 + ρ22K2 + ⋯ + ρ2pKp

⋯

Ln
μ(Yβ = N − 1)

μ(Yβ = N)
= ρN− 1 + ρ(N− 1)1K1 + ρ(N− 1)2K2 + ⋯ + ρ(N− 1)pKp

(3)  

where μ(.) is the probability of the corresponding category; p = 1,⋯P is 
the number of independent variables and ρnp is a regression coefficient 
associated with the nth category and the p independent variables. All of 
the N – 1 equations are solved simultaneously to estimate the co-
efficients ρnp. One possible solution is to use the maximum likelihood 
approach. 

Based on the nominal dependent model, and the assumption that the 
coefficients of the last category are zero, then the probability of being in 
each category at each sample point β and the probability of the Nth 
category are: 

Fig. 9. Variogram analysis of residuals for geo-cluster 1 (A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D). Blue points and line: vertical variogram, and 
black points and line: horizontal variogram. Dotted and solid lines are experimental and theoretical variogram, respectively. 
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ
(
Yβ = n

)
=

eρn+
∑p

l=1
ρnlKl

1 +
∑N− 1

n=1
eρn+

∑p

l=1
ρnlKl

,

μ
(
Yβ = N

)
=

1

1 +
∑N− 1

n=1
eρn+

∑p

l=1
ρnlKl

,

n = 1,⋯,N − 1 (4) 

The probability of being in each category at each target grid node 
and the probability of the Nth category are: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ(Y* = n) =
eρn+

∑p

l=1
ρnlKl

1 +
∑N− 1

n=1
eρn+

∑p

l=1
ρnlKl

,

μ(Y* = N) =
1

1 +
∑N− 1

n=1
eρn+

∑p

l=1
ρnlKl

,

n = 1,⋯,N − 1 (5) 

In order to evaluate the goodness of fit over the regression formula 
obtained from Eqs. (4) and (5), different statistical parameters related to 
the regression coefficients ρnp and the probability of being in each 
category μ can be quantified. For the former, the standard error of the 
coefficient estimate ρnp is the estimated standard deviation of the error 
in measuring it. The evaluation of these coefficients can also be 
accompanied with examination of the residuals. In this matter, the raw 
residual is the observed category minus the fitted category at the cor-
responding location; the Pearson residual is the raw residual scaled by 
the estimated standard deviation, and the Deviance residual can be 
computed as the square root of twice the difference between the logli-
kelihood of the nth observation in the actual data and the loglikelihood 
of the nth observation in the fitted model. For the latter, the error bounds 

on the predicated probabilities obtained from Eq. (5) can be calculated. 
This can be obtained by using the statistical parameters calculated over 
Eq. (4) to compute the lower and upper confidence bounds. The differ-
ence between these two values can return the error over the confidence 
bound. Lower values of these parameters (errors) in the regression 
model signify better estimated coefficients associated with lower errors. 

2.4. Proposed simulation approach 

In the case of geo-clusters with heterogeneous behavior, using sta-
tionary simple kriging in the conventional sequential indicator simula-
tion is suboptimal. To circumvent this difficulty, an alternative can be 
used to replace the simple kriging paradigm in Eq. (2) by a non- 
stationary simple kriging (N-SSK), using the residuals from locally 
varying mean probabilities (Deutsch, 2006): 

Ind*
N− SSK(K

*; n) =
∑υ

β=1
ΛN− SSK

β (K*; n)[Ind
(
Kβ; n

)
− μ

(
Yβ = n

)]
+ μ(Y* = n)

(6) 

with the same notation as above except μ
(
Yβ = n

)
and μ(Y* = n), 

which are estimated probabilities at the conditioning data points and 
locally varying mean probabilities at the target grid nodes, respectively. 
The former helps calculate the residuals, and the latter is the trend 
component. The conditioning data points consist of hard and previously 
simulated indicator geo-clusters. In fact, the final estimated value 
Ind*

N− SSK(K*; n) is obtained by adding the estimated residuals 
Ind

(
Kβ; n

)
− μ

(
Yβ = n

)
to the trend component μ(Y* = n). To obtain the 

Fig. 10. Estimated probability maps for geo-cluster 1 (A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D) obtained from multinomial logistic regres-
sion function. 
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residuals for each geo-cluster n = 1, ..N, a regression function must be 
fitted over the sample data points by using Eq. (3). Since the spatial 
variation of each category depends on the geographical coordinates of 
the sample points in heterogeneous geo-clusters, then a regression 
function can be fitted using the coordinates as independent variables 
and the geo-cluster as a dependent variable. Linear regression in this 
case is ineffective since the dependent variable includes categories that 
are characterized by integers. 

Since Ind
(
Kβ; n

)
is known at the sample points, as an alternative, 

multinomial logistic regression can provide these estimated probabili-
ties μ

(
Yβ = n

)
at these locations so as to calculate the corresponding 

residuals. In addition, by using the derived parameters of the multino-
mial regression function, one can computing the locally varying mean 
probability or trend component μ(Y* = n) at the target grid nodes. To 
obtain such a model in our proposed study, the observations, dependent 
categorical variable, N possible outcomes, and K independent variables 
in Eqs. (4 and 5) refer to the sample points, geo-clusters obtained from 
unsupervised machine learning,N possible number of geo-clusters, and 
geographical coordinates, respectively. 

In Eq. (6), since the simple kriging is based on the residuals over the 
conditioning data Ind

(
Kβ; n

)
− μ

(
Yβ = n

)
, a variogram analysis should be 

implemented over the residual values at the sample data locations for 
each n geo-cluster. The estimated value is then added to the locally 
varying mean probability or trend component of geo-cluster n. As long as 
the conditional probability Ind*

N− SSK(K*; n) for each geo-cluster n is 
estimated at the target locations, the subsequent simulation steps of the 
geo-clusters will be similar to those of the conventional sequential in-
dicator simulation. 

The workflow for modelling non-stationary geo-clusters is as follows:  

1- Identification of geo-clusters at the sample data locations using an 
unsupervised machine learning algorithm.  

2- Trend analysis to check for trend identification of the categorical 
variable. Nearest neighborhood can be an option for this purpose.  

3- Fit multinomial logistic regression models to each geo-cluster, derive 
the coefficients, and compute the estimated probabilities at the 
sample points.  

4- Calculate the residuals over the sample points using the fitted 
multinomial logistic regression models and infer the variogram 
models of the residuals.  

5- Calculate the locally varying mean probability over the target grid 
nodes for each geo-cluster to obtain the trend component using the 
fitted multinomial logistic regression models.  

6- Implement the sequential indicator simulation using non-stationary 
simple kriging and generate the realizations. 

A brief flowchart also is provided in Fig. 1. 
In order to test the proposed algorithm, an actual porphyry copper 

deposit was selected, and the results were compared to the conventional 
sequential indicator simulation where a stationary simple kriging was 
used. 

2.5. Case study 

2.5.1. Geological setting 
The Urumieh–Dokhtar magmatic arc (UDMA) of Iran, which is 

formed due to the subduction of the Neotethys Ocean underneath Eur-
asia (Berberian and King, 1981; Berberian and King, 1981; Berberian 
et al., 1982; Ghasemi and Talbot, 2006; Hosseini et al., 2017), stretches 
along the length of the Zagros Orogenic Belt and is made up of a linear 
magmatic belt. The main types of plutonic rocks within this zone are 
diorite, granodiorite, gabbro, and granitoids. The volcanic rocks are 
generally trachy-basaltic (nearly shoshonitic), andesitic, and dacitic in 
composition. Additionally, agglomerates, ignimbrites, and tuffs are 
other volcanic products (Alavi, 1994). The UDMA covers an area about 
1700 km long × 4–50 km wide (StScklin, 1968). The arc contains most of 
the copper deposits of Iran (Fig. 2) (Boomeri et al., 2010; Aghazadeh 
et al., 2015). 

The Sarkuh porphyry Cu ± Mo deposit is one of the copper deposits 
that is located in the southern part of the UDMA. It is located about 10 

Fig. 11. Three random realizations obtained from SIS-N-SSK (A-B-C), SIS-SSK (D-E-F). Left: realization #17, middle: realization #39, and right: realization #71.  

N. Madani et al.                                                                                                                                                                                                                                



Ore Geology Reviews 150 (2022) 105132

11

Fig. 12. Probability maps obtained with 100 realizations for SIS-N-SSK (A-B-C-D) and SIS-SSK (E-F-G-H); Geo-cluster1 (A & E), Geo-cluster 2 (B & F), Geo-cluster 3 
(C & G), Geo-cluster 4 (D & H). 

N. Madani et al.                                                                                                                                                                                                                                



Ore Geology Reviews 150 (2022) 105132

12

km northeast of Pariz city, Iran. A distance of six kilometers separates it 
from the largest copper deposit in Iran, the giant Sarcheshmeh deposit. 
The Sarkuh region is composed mostly of Eocene volcanic sedimentary 
assemblages, which are the oldest rock types in the region (Fig. 3). The 
volcanic units in the area mainly consist of tuffs, andesite, andesi-
te–basalt, and pyroclastic breccias. There are a number of intrusive 
bodies that protrude in the SarkKuh deposit. The oldest intrusive body 
among them is the Oligocene Band-e-Mamzar pluton (Nourali and 
Mirnejad, 2012; Mirnejad et al., 2013; Aghazadeh et al., 2015). In the 
southern part of the deposit, an outcrop of pluton can be observed. It 
consists of diorite, tonalite, granodiorite, and monzogranite rock types 
(Nazarinia et al., 2019). Shallow-level intrusive bodies also intrude into 
the older rocks. These intrusive bodies played the most important role in 
the mineralization and formation of alteration zones (Malekshahi et al., 
2018). Their outcrops can be observed in the central part of the deposit 
(Aghazadeh et al., 2015) and consist of granodiorite (SarkKuh porphyry) 
and monzodiorite porphyry stocks and granite, monzodiorite, and 
granodiorite porphyry dykes. Among all the above-mentioned intrusive 
rocks, the SarkKuh porphyry is the most widespread and is primarily 
responsible for mineralization (Malekshahi et al., 2018). Additionally, 
several dioritic, granitic, and granodioritic post-mineralization dykes 
cut into older intrusive and volcanic units (Aghazadeh et al., 2015). In 
the Sarkuh deposit, five different types of veins can be distinguished 
based on their mineralogy and their crosscutting relationships. They can 
be categorized into three classes: (1) pre-mineralization barren veins 
including quartz + K-feldspar and quartz + biotite veins, (2) mineralized 
veins including quartz + biotite + chlorite ± magnetite ± pyrite ±
chalcopyrite quartz + pyrite + chalcopyrite ± bornite + chalcocite- 
sericite, and (3) post-Mineralization barren quartz ± calcite veins 
(Zarasvandi et al., 2019). 

2.6. Presentation of the dataset 

The dataset belongs to the SarkKuh copper porphyry drilling 

campaign consisting of 50 boreholes distributed in a semi-regular sam-
pling pattern covering an approximate volume of 283 km3. The borehole 
assaying reported Cu (ppm), Mo (ppm), Au (ppb), and Rock Quality 
Designation (RQD) (%) as the main continuous variables, for which Cu 
and Mo act as co-products and Au acts as a by-product in this deposit. 
RQD is a measure of the quality of rock core taken from a borehole. RQD 
signifies the degree of jointing or fracture in a rock mass measured in 
percentage, where an RQD of 75 % or more shows good-quality hard 
rock and an RQD of less than 50 % shows low-quality weathered rocks. 
Based on this definition, the rock mass can be classified into excellent, 
good, fair, poor, and very poor when the RQD is between 90 % and 100 
%, 75 % and 90 %, 50 % and 75 %, 25 % and 50 %, 0 % and 25 %, 
respectively. 

To preserve the confidentiality, the continuous variables were 
multiplied by a scale factor and the local coordinates were reported on 
the maps. This calc-alkaline porphyry copper deposit is characterized by 
three categorical variables (recognized by core logging), composed of 
seven mineralization zones: leached (LEA), oxidized (OXI), hypogene 
(HYPO), oxidized hypogene (OXI-HYP), oxidized supergene (OXI-SUP), 
supergene (SUP), and supergene hypogene (SUP-HYP); seven alteration 
types: propylitic (PRP), potassic (POT), phyllic (PHY), argillic (ARG), 
chlorotic (CHL), sericitic (SER), and siliciclastic (SLC); and six rock 
types: andesite (ANS), diorite (DIO), granite (GNT), monzodiorite 
(MZD), quartz diorite (QDI), and granodiorite (GRD). Fig. 4A-G show 
the location maps of the ore grades, the RQD, and the geo-domain 
variables. From the geological perspective, the mineralization in this 
deposit is mainly associated with GRD and the POT zone. In other words, 
HYP, POT, and GRD are the dominant mineralization, alteration zone, 
and rock types in this deposit. 

It can be observed that Cu is mostly concentrated in the center of the 
deposit and is abundant in shallow elevations, but it tends to decrease 
with the increasing depth of this deposit. The spatial behavior of Mo, 
however, is somewhat different. It shows a high variance with an 
irregular disseminated pattern in the entire deposit. Au is undersampled 

Fig. 13. Cumulative geo-cluster proportions over 100 realizations obtained with SIS-N-SSK (A) and SIS-SSK (B). Solid green lines indicate the declustered proportions 
calculated from the borehole (sample points). 

Table 4 
Error calculated by using indicator variograms of the original data and the resulting simulations.   

Geo-cluster 1 Geo-cluster 2 Geo-cluster 3 Geo-cluster 4  

Horizontal vertical Horizontal vertical Horizontal vertical Horizontal vertical 

SIS-N-SSK  0.0006  − 0.0162  − 0.0246  0.0091  0.0265  0.0134  − 0.0610  0.0195 
SIS-SSK  0.006  0.0076  0.0552  0.0522  0.0298  0.0530  0.6690  0.0340  
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as compared with other variables, with only 590 sample points assayed 
for this element. The Au grade is measured only through a few boreholes 
and, as can be seen, it is abundant in the west part of the deposit, and its 
variation is in agreement with the spatial distribution of Cu. The RQD is 
high in the center and increases by depth. This means that the rocks 
close to surface (mostly in the corners) are poorer compared to those at a 
large depth. 

In order to quantitatively investigate the relationship among the 
continuous variables, the correlation coefficient was calculated. For 
categorical data, however, the linear correlation coefficient is imprac-
tical. An alternative is to use Cramer’s V coefficient (Cramér, 2016), 
which is a measure of the association between such discrete variables, 
interpreted as a measure of dependency. This coefficient can be obtained 
as follows (Cramér, 2016): 

V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
χ2

n(q − 1)

√

(7)  

where χ2 is the Chi-squared test statistic computed from the contingency 
table; q is the smaller number of rows and columns in the contingency 
table; and n is the total number of sample locations. This coefficient 
ranges from 0 (poor association) to 1 (perfect association): no associa-
tion (V < 0.05), weak association (0.05 ≤ V < 0.10), moderate associ-
ation (0.10 ≤ V < 0.15), strong association (0.15 ≤ V < 0.25), and very 
strong association (0.25 ≤ V < 1). To infer the level of the association 
between continuous and categorical variables in this deposit, the 
continuous variables are converted into categorical data using the 

thresholds equivalent to their quartiles. This allows one to use Cramer’s 
V coefficient to identify the potential strength of the association between 
categorical-converted continuous and other categorical variables. 
Table 1 reports the levels of the interdependencies and associations. 

As can be seen, Cu is strongly correlated with Au, and there is a 
moderate correlation between Cu and Mo. Mineralizations are associ-
ated very strongly with alteration but weakly with rock type. The reason 
is that the HYP zone is highly associated with POT alteration and occurs 
as quartz-sulfide veinlets, dissemination, and stockwork. Alteration is 
moderately associated with rock type. It also can be observed that Cu, 
Mo, and RQD are associated strongly with rock type, while Au does not 
show any significant association with these three geo-domains. There-
fore, following a common practice in resource modelling of copper de-
posits, rock type appears to be a remarkable variable to be identified as 
the estimation domains in this deposit to model the continuous variables 
inside them. However, the problem in this technique is that one may 
ignore the influence of mineralization zones and alteration in definition 
of the target estimation domains. To circumvent this problem, machine 
learning-based algorithms can be used to determine such domains, 
which are resulted by incorporating more than one variable. To do so, a 
machine learning clustering-based approach was used in this study to 
determine the estimation domains, and it not only considers the rock 
type but also takes into account the influence of Cu, Au, Mo, RQD, 
mineralizations, and alteration zones simultaneously. Three ore grades 
were important because they directly impact the mine plan for this de-
posit. The RQD was also included so that the rock quality of the geo- 
clusters could be evaluated. This is important for mine planning when 

Fig. 14. Connectivity measures as a function of lag separation along vertical direction for geo-cluster 1 (A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D). 
Dashed lines: average of connectivity functions obtained with 100 realizations. 
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dealing with bench design in open-cast mining or stope stability analyses 
in underground mining activities. In addition, this approach can provide 
indirect insights regarding the quality of the rock for crushing and 
grinding to optimize the mineral processing plants. In practice, the RQD 
can be considered as indirect geo-metallurgical parameter. 

The geostatistical hierarchical clustering algorithm method is 
available from Isatis.neo, and it was also used to obtain the target geo- 
clusters in this study. The Cu, Mo, Au, RQD, mineralization, alter-
ation, and rock types associated with their geographical coordinates 
were then inputted into this algorithm. A different number of clusters 
were tested, and, finally, four geo-clusters were obtained, as shown in 
Fig. 4H. The reason for choosing four as the optimum number of clusters 
for this dataset was because this number allowed us to better partition 
the deposit into sub-domains with better interpretability of the contin-
uous variables inside each, which is applicable for better mine planning. 
The associations between the resulting geo-clusters and all seven 
continuous and categorical variables showed that there were very 
strong, strong, medium, and weak associations between the RQD and 
rock type; Cu; mineralization, alteration, and Mo; and Au geo-clusters, 
respectively (Table 1). Fig. 5 shows the boxplot of the continuous vari-
ables and the resulting geo-clusters, where the statistical parameters of 
each continuous variable are reported (Table 2) and can help interpret 
the obtained domains. A stacked bar chart (Fig. 6) is also presented 
showing the coverage of each geo-cluster by each mineralization zone, 
alteration, and rock type. The geo-clusters can be interpreted as follows:  

- Geo-cluster 1: This cluster is located in the north-west of the deposit, 
has a relatively high concentration of Cu, a medium concentration of 
Mo, and a high concentration of Au, and mostly includes rocks of 
poor quality based on an average RQD of 37.08 %. Most of this 

cluster is dominated by GRD and MZD, with POT and SER being the 
main rock types and alteration types, respectively, associated with 
the HYP zone. Therefore, this cluster can be targeted for high 
extraction of Cu and Au, which are contained in soft and poor rocks.  

- Geo-cluster 2: This cluster covers the bottom of the deposit, where it 
shows high RQD values, signifying the presence of rocks with good 
and excellent qualities. This domain possess the lowest concentration 
of Cu and a high concentration of Mo and Au. This domain is covered 
mostly by GRD, and POT–SER–PHY as the main rock types and 
alteration zones, associated fully with the HYP zone. Therefore, this 
cluster can be a significant source of Mo and Au, which are mainly 
embedded in rocks with strong and good qualities.  

- Geo-cluster 3: This cluster offers a medium concentration of Cu and 
Mo and a low concentration of Au. Most of the rocks in this domain 
have poor qualities, which dominate in the north-east part of the 
region and, to a small extent, in the center of the deposit. GRD and 
POT are the main rock types and alterations in this group and are 
mostly trapped in the HYP zone. This cluster possess the maximum 
coverage of POT. Therefore, this domain, while possessing rocks with 
poor qualities, can be investigated as a target for extracting Cu and 
Mo.  

- Geo-cluster 4: This cluster is located in the center of the deposit 
somewhat close to the surface, where there is a very high concen-
tration of Cu, a relatively high concentration of Mo, and a medium 
concentration of Au with fair rock qualities. This cluster is highly 
dominated by GRD and POT as the main rock types and alterations 
and is associated with the HYP zone. This cluster indicates the 
maximum coverage of GRD and the least coverage of POT. The 
characteristics of this cluster are most likely related to the secondary- 
enriched zone formed by oxidation of initial sulfide minerals, which 

Fig. 15. Trend analysis reproduction along elevation over the simulation results for geo-cluster 1 (A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D). Solid 
line: original trend; dashed line: average of trends over 100 realizations obtained with SIS-N-SSK; and dotted line: average of trends over 100 realizations obtained 
with SIS-SSK. 
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is commonly seen in porphyry copper deposits. Therefore, this 
cluster can be a significant source of Cu and Mo (Au) with fair rock 
qualities. 

As can be seen from Fig. 4H, the spatial distribution of the geo- 
clusters is likely to be non-stationary. This is clear when inspecting 
the approximate locations of each geo-cluster in this map. As already 
mentioned, geo-cluster 1, geo-cluster 2, geo-cluster 3, and geo-cluster 4 
approximately cover the north-west, bottom, north-east, and center of 
the deposit, respectively. In order to examine this concept quantita-
tively, a trend analysis was implemented. To do so, first, the deposit was 
discretized into the rectangular blocks with a mesh size of 5m × 5m ×

5m to construct 2,558,400 blocks in total for the entire deposit. Second, 
the geo-clusters were allocated to the nearest neighbor block in order to 
establish a deterministic visualization of the geo-clusters in this deposit. 
The obtained categorical model was then transformed into the in-
dicators. A lag of 5 m was selected to calculate the proportion of each 
indicator along the easting, northing, and elevation (Fig. 7A-C). The 
proportion of geo-cluster 1 was found to be high in the west and close to 
the surface, but substantially decreased toward the east and at depth, 
while along the northing, it was almost homogenous. Geo-cluster 2 
showed a sharp trend along the elevation, implying that this geo-cluster 
is only present at higher depths and it is quite unlikely for this domain to 
be displayed close to the surface, while not much significant non- 
stationary trend variability is expected along the easting. Geo-cluster 3 
seems to be the most heterogeneous geo-domain in this deposit ac-
cording to the sharp trend analysis along all three directions. Geo-cluster 
4 also shows a very sharp trend along the northing and elevation, 
meaning that the presence of this domain at higher depths and in the 
north of the region is unexpected, and it mostly dominated the center 

and upper part of the deposit. A vertical proportion curve (Matheron 
et al. 1987) was also computed. This simple tool is suitable for quanti-
fying the variability of geo-clusters based on the proportion of each geo- 
cluster as a function of depth. Fig. 7D shows the proportion of each geo- 
cluster at each level, where it reflects the progression obtained from the 
clustering approach along elevation. By linking this vertical progression 
to the interpretation of geo-clusters (above), one may deduce that the 
concentrations of Cu (main source: geo-clusters 1 and 4), Mo (main 
source: geo-clusters 2 and 4), and Au (main source: geo-clusters 1 and 2) 
decrease, increase, and increase at higher depths, respectively. The same 
trend was observed for rock strength (main source: geo-cluster 2) in that 
its quality increased with the increasing depth, changing from poor and 
fair rocks in the surface into good and excellent rocks at higher depths. 
In brief, the quality of the rocks improves with increasing depth. 

3. Results 

3.1. Geostatistical modelling of geo-clusters 

The method proposed in this study, a non-stationary sequential in-
dicator simulation using the residuals from locally varying mean prob-
abilities, was then applied to stochastically model the geo-clusters in the 
entire copper deposit using the same block model identified earlier for 
nearest neighborhood prediction. Following the steps of our proposed 
approach, once the geo-clusters are identified at the sample points 
(boreholes) using the geostatistical hierarchical clustering method 
(Fig. 4H), as extensively explained, the next step is to fit multinomial 
logistic models over these points for each geo-cluster and derive the 
coefficients. 

In this model, there is one dependent variable (i.e., four geo-clusters) 

Fig. 16. Experimental variogram analysis of indicators for geo-cluster 1(A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D). Blue dashed line: vertical 
variogram, and black dashed line: horizontal variogram. 
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and three independent variables as geographical coordinates. Generally 
speaking, we are interested in inferring multinomial logistic regression 
models to predict the geo-clusters Y as the function of geographical 
coordinates K. To do so, the last geo-cluster (geo-cluster 4) was selected 
as the reference category, and the other geo-clusters were separately 
regressed against geo-cluster 4. The sub-routine “mnrfit” in MATLAB 
R2021b was used to derive these functions: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ln
μ(Yβ = 1)
μ(Yβ = 4)

= 14.690 − 0.035K1 − 0.013K2 + 0.003K3

Ln
μ
(
Yβ = 2

)

μ
(
Yβ = 4

) = 12.998 − 0.013K1 − 0.017K2 − 0.004K3

ln
μ
(
Yβ = 3

)

μ
(
Yβ = 4

) = 17.936 − 0.051K1 − 0.012K2 − 0.021K3

(8)  

where β = 1,⋯τ (β is the number of sample points), and K1, K2, and K3 
correspond to the geographical coordinates of the sample points: 
easting, northing, and elevation, respectively. This fitting procedure 
assumes that the coefficients of geo-cluster 4 (acting as the reference 
category) are all zero. To infer the coefficients, “mnrfit” uses the itera-
tively weighted least squares algorithm to find the maximum likelihood 
estimates. In order to evaluate the goodness of fit, standard errors of the 
regression coefficient ρ, the mean of the raw residuals, the mean of the 

Pearson residuals, and the mean of the deviance residuals were calcu-
lated and are reported in Table 3. As can be seen, they were compara-
tively small and reasonable for the fitted model. 

The next step is to estimate the probability of each geo-cluster at 
sample points Yβ,β = 1,⋯τ: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
(
Yβ = 1

)
=

14.690 − 0.035K1 − 0.013K2 + 0.003K3

1 + 45.625 − 0.064K1 − 0.043K2 − 0.022K3

μ
(
Yβ = 2

)
=

12.998 − 0.013K1 − 0.017K2 − 0.004K3

1 + 45.625 − 0.064K1 − 0.043K2 − 0.022K3

μ
(
Yβ = 3

)
=

17.936 − 0.051K1 − 0.012K2 − 0.021K3

1 + 45.625 − 0.064K1 − 0.043K2 − 0.022K3

μ
(
Yβ = 4

)
=

1
1 + 45.625 − 0.064K1 − 0.043K2 − 0.022K3

(9) 

The coefficients in the model express the effects of the geo-clusters on 
the relative risk or the log odds of being in geo-cluster 1, 2, and 3 versus 
geo-cluster 4. For instance, the coefficient 0.003 indicates that the 
probability of the geo-cluster being in category 1, as compared to the 
probability of being in category 4, increases e0.003 times for each unit 
increase along the elevation. The same interpretation is used for the 
other directions and parameters. 

To assess the precision of the obtained probabilities deduced from 

Fig. 17a. Connectivity measures as a function of lag separation along easting direction for geo-cluster 1 (A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D). 
Dashed lines: average of connectivity functions obained with 100 realizations. 
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Eq. (9), a histogram of the error confidence bound for each geo-cluster 
was calculated (Fig. 8). As can be observed, the errors were low and 
mostly frequent around zero. Small values of these statistical parameters 
signify that the regression formulas of the proposed multinomial logistic 
regression model are reliable and can be utilized in further analyses. 

The estimated probabilities at the sample points enable one to 

calculate the residuals Ind
(
Kβ; n

)
− μ

(
Yβ = n

)
. For this purpose, the geo- 

clusters were converted into the indicators Ind
(
Kβ; n

)
using Eq. (1), then 

they were subtracted from the estimated probabilities μ
(
Yβ = n

)
. Since 

the input (hard conditioning data) to the proposed algorithm should be 
the residuals sought, the variogram analysis needs to be inferred. After 
quantifying the anisotropy of each geo-cluster in the region, we deter-
mined two directions of anisotropies over the horizontal and vertical 

directions (Appendix, Fig. 16). Therefore, spherical variogram models 
with a proper nugget effect considering the maximum and minimum 
continuities along the vertical and horizontal directions, respectively, 
were fitted to the experimental variograms of the residuals (Fig. 9): 

γRes− 1 = 0.007nugget+ 0.051Sph(153m, 20m, 20m)

As can be seen, the variograms of the residuals showed a finite sill, 
implying a stationary hypothesis for these variables. However, as can be 
observed, the horizontal variogram did not show a satisfactory structure 
as compared to the vertical variogram, particularly for geo-clusters 2 
and 3. A possibility for this is the existence of many inclined boreholes 
that caused the experimental variogram in a horizontal direction to be 

Fig. 17b. Connectivity measures as a function of lag separation along northing direction for geo-cluster 1 (E), geo-cluster 2 (F), geo-cluster 3 (G), and geo-cluster 4 
(H). Dashed lines: average of connectivity functions obtained with 100 realizations. 

γRes− 2 = 0.017nugget + 0.036Sph(153m, 20m, 20m) + 0.083Sph(801m, 801m, 195m)

γRes− 3 = 0.084Sph(153m, 20m, 20m) + 0.032Sph(801m, 801m, 195m)
(10)   

γRes− 4 = 0.013nugget+ 0.036Sph(153m, 20m, 20m)+ 0.011Sph(801m, 801m, 195m)
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rather more irregular. 
The next step is to compute the locally varying mean probabilities or 

trend components μ(Y* = n)n = 1,⋯4 that are obtained using the fitted 
multinomial regression function (Eq. (8)), but, this time, the indepen-
dent variables are the geographical coordinates of the target grid nodes 
Y*: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(Y* = 1) =
14.690 − 0.035K*

1 − 0.013K*
2 + 0.003K*

3

1 + 45.625 − 0.064K*
1 − 0.043K*

2 − 0.022K*
3

μ(Y* = 2) =
12.998 − 0.013K*

1 − 0.017K*
2 − 0.004K*

3

1 + 45.625 − 0.064K*
1 − 0.043K*

2 − 0.022K*
3

μ(Y* = 3) =
17.936 − 0.051K*

1 − 0.012K*
2 − 0.021K*

3

1 + 45.625 − 0.064K*
1 − 0.043K*

2 − 0.022K*
3

μ(Y* = 4) =
1

1 + 45.625 − 0.064K*
1 − 0.043K*

2 − 0.022K*
3

(11)  

where K*
1, K*

2, and K*
3 correspond to the geographical coordinates of the 

target grid nodes: the easting, northing, and elevation, respectively. 
Therefore, the estimated trend component μ(Y* = n) at each node can be 
used in Eq. (6). These maps are shown in Fig. 10. As can be observed, the 
estimated probable area of each geo-cluster was compatible with their 
spatial distribution over the borehole dataset as explained in Fig. 4H. 
Geo-clusters 1, 2, 3, and 4 had a high probability of being found in the 
west, bottom, east, and the upper-central part of the deposit, respec-
tively. This is perfect secondary information that can be used as a trend 
component for simulations using the proposed approach by adding 
conditional probabilities of the residuals to the estimation to produce 
the final estimated geo-clusters based on Eq. (6). 

The residuals were calculated over the sample points, and the local 

mean probability for each geo-cluster was calculated. These two, in 
addition to the derived model of the variograms for each residual, were 
inputted into the proposed sequential indicator simulation algorithm, 
and the results were compared with those of the conventional sequential 
indicator simulation. Therefore, two cases are compared hereafter:  

1- SIS-N-SSK: The proposed sequential indicator simulation using non- 
stationary simple kriging integrated with multinomial logistic 
regression;  

2- SIS-SSK: The conventional sequential indicator simulation using 
stationary simple kriging. 

The modelling was implemented over the same constructed block 
model with the same size and number of blocks as discussed earlier. An 
identical moving neighborhood was also considered in both cases for 
original data and previously simulated grid nodes. This was an ellipsoid 
with maximum elongation along the vertical direction with 40 data in 
total. No octant was used, and a similar random path sequence was taken 
into account for both SIS-SSK and SIS-N-SSK to generate 100 realizations 
for each. Fig. 11 shows three random realizations of each method. As can 
be seen in this figure, the proposed approach, SIS-N-SSK, was able to 
reproduce the potential heterogeneity of the geo-clusters, while the 
traditional approach, SIS-SSK, failed to reproduce the desired compact 
and non-stationary characteristics of the geo-clusters. SIS-SSK produced 
patchy and unstructured results, as was expected. Therefore, the results 
of SIS-N-SIS are more compatible with the spatial distribution of geo- 
clusters as discussed in Fig. 4H. 

The uncertainty in the geo-clusters’ grid node by grid node can be 
computed using probability maps. These maps can be created by 
computing the proportion of each geo-cluster over the 100 realizations 

Fig. 18a. Trend analysis reproduction along easting over the simulation results for geo-cluster 1 (A), geo-cluster 2 (B), geo-cluster 3 (C), and geo-cluster 4 (D). Solid 
line: original trend; dashed line: average of trends over 100 realizations obtained with SIS-N-SSK; and dotted line: average of trends over 100 realizations obtained 
with SIS-SSK. 
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(Fig. 12). The areas showing low uncertainty are linked to a given geo- 
cluster painted in red, signifying that there is a small risk of not locating 
this geo-cluster, and the areas linked to a very low probability indicate 
that one can be sure of not being able to locate this geo-cluster, while 
other areas, painted in light blue, green, or yellow, are more uncertain. 
The SIS-N-SSK provides more reasonable results, which are more in 
agreement with the reproduction of trends that are strikingly similar to 
those in the conceptual model of the spatial distribution of geo-clusters 
in this deposit. 

3.2. Statistical validation 

In Fig. 13, the cumulative reproduction of the proportions of the geo- 
clusters are provided together with the declustered proportions calcu-
lated from the boreholes. The experimental proportions are equivalent 
to 0.170, 0.438, 0.259, and 0.132 for geo-clusters 1, 2, 3, and 4, 
respectively. The proportions of geo-clusters 1 and 2 are slightly 
underestimated in SIS-N-SSK, while in SIS-SSK, the underestimation of 
the proportion of geo-cluster 2 is more significant. Concerning geo- 
cluster 3, SIS-N-SSK outperformed SIS-SSK. In general, the reproduc-
tion of the proportion of geo-clusters is better in SIS-N-SSK than in SIS- 
SSK. 

Another criterion by which to evaluate the performance of the pro-
posed approach is to check the reproducibility of the original variograms 
for each geo-cluster. For this purpose, the indicator variogram was 
calculated over the indicators linked to each geo-cluster along the hor-
izontal and vertical directions. The experimental indicator variograms of 
the indicators over the boreholes were compared with those obtained 
from individual realizations resulting from SIS-N-SSK and SIS-SSK. To do 
so, the average variograms were computed over the individual 

variograms of the realizations, and then an error was calculated at each 
lag separation distance by subtracting the indicator variogram of the 
corresponding average variogram from the indicator variogram of the 
original data. The errors are reported in Table 4. As can be seen, the 
reproduction of the original indicator variograms resulted in smaller 
errors for SIS-N-SSK in the majority of the geo-clusters. 

It also might be of interest to examine the spatially contiguous 
characteristics of the resulting geo-clusters within the deposit. This is an 
important aspect because it significantly impacts the downstream ac-
tivities of a mining practice from the perspective of exploitation. Indeed, 
the chosen approach of geostatistical modelling should be able to model 
the geo-clusters with better interconnectivity or better spatially conti-
guity. This leads to having more compact and contiguous simulated 
clusters at the target grid nodes, which are better suited to mine plan-
ning and exploitation. To test this, an indicator correlogram can be used 
(Moreira et al. 2020). In this study, the connectivity function (Renard 
and Allard, 2013), as a multiple-point statistic, was taken into account to 
quantify this as a measure of the probability that a grid node is con-
nected with another grid node located at a lag separation distance (h) in 
such a way that both belong to the same geo-cluster. Therefore, the 
probability that any two grid nodes are connected can be quantified as a 
function of h. As an example, this is shown for the corresponding geo- 
clusters as the function of the separation of h along the vertical direc-
tion (Fig. 14). The probability of connectivity within the geo-clusters for 
the simulation results obtained with SIS-N-SSK was higher, particularly 
at a large h. This means that the clusters obtained using the proposed 
approach, SIS-N-SSK, produces more probable contiguous and compact 
domains. Connectivity measures along the east and north directions are 
provided in the Appendix (Figs. 17a, b). The reproducibility of ideal 
connectivity for geo-clusters 1, 2, and 3 was remarkably better in SIS-N- 

Fig. 18b. Trend analysis reproduction along northing over the simulation results for geo-cluster 1 (E), geo-cluster 2 (F), geo-cluster 3 (G), and geo-cluster 4 (H). Solid 
line: original trend; dashed line: average of trends over 100 realizations obtained with SIS-N-SSK; and dotted line: average of trends over 100 realizations obtained 
with SIS-SSK. 

N. Madani et al.                                                                                                                                                                                                                                



Ore Geology Reviews 150 (2022) 105132

20

SSK along all the directions. However, the difference in the reproduced 
connectivity for geo-cluster 4 was slightly better in SIS-N-SSK. In fact, 
this geo-cluster is not as contiguous and compact as the other geo- 
clusters. This is the reason why the difference between the two 
methods is small. 

The next step is to check the reproduction of original trends for each 
geo-cluster. For this purpose, the trend is computed for each realization 
obtained with each method, and then their averages are plotted against 
the coordinates. As an example, Fig. 15 shows these trends when 
considering this reproducibility versus elevation. The trend reproduced 
by SIS-K-SSK was more in agreement with the original trend as 
compared to that reproduced by SIS-SSK. The trend analysis for the east 
and north directions is presented in the Appendix (Figs. 18a, b). In the 
majority of the trend analysis results, SIS-K-SSK was superior and it 
showed that with a stronger trend component, better reproducibility of 
the trend along the coordinate can be expected. The reason for SIS-K- 
SSK’s better performance is connected to the incorporation of the trend 
component in the simulation algorithm that is informed by multinomial 
logistic regression. 

4. Discussion 

In this study, four geo-clusters were deduced using the geostatistical 
hierarchical clustering technique. From a geological perspective, the 
relatively high concentration of Cu in geo-cluster 1 is most likely char-
acterized by micro quartz diorite porphyry and veinlets within quartz 
veins. The low grade of Cu in geo-cluster 2 is most likely related to the 
emplacement of the Mamzar stock that leads to the low dissemination of 
vein stockworks in this area. In addition, the presence of a PHY zone in 
this geo-cluster might be another reason for the low concentration of Cu 
since PHY is essentially not a significant alteration zone for ore bearing 
in this deposit. Geo-cluster 3 is mostly associated with the POT zone in 
north-east part of the region with a medium concentration of Cu and 
poor rock qualities. This geo-cluster should be the next target for further 
resource estimation. The SER, ARG, and PRP are three most important 
alterations in geo-cluster 4. The characteristics of this cluster are most 
likely related to the secondary-enriched zone formed by oxidation of 
initial sulfide minerals, which is commonly seen in porphyry copper 
deposits. 

The geostatistical simulation method proposed in this study can also 
be applied to modelling any heterogeneous geo-domains, particularly 
those obtained from recently developed approaches resulting in the 
inference of geo-clusters. For instance, the geo-clusters modelled using 
this method can be incorporated for the purpose of resource estimation, 
mine planning, and geo-metallurgical domaining. The proper identifi-
cation of domains and the use of suitable modelling approaches can help 
better determine the downstream analyses of a mining project, which 
can lead to the production of more achievable business plan for a mine. 
For instance, in resource estimation, these geo-clusters can be used to 
model the continuous variables (in this study, Cu, Mo, Au, and RQD) 
separately in each. Attention must be paid to considering the condition 
of continuous variable variation across the boundaries of two adjacent 
geo-clusters as a hard boundary. The estimated grades can be used to 
calculate the metal quantity in each part of the deposit where their RQD 
evaluations (one of the advantageous descriptions of rock in a general 
sense) can provide useful insights for preliminary slop design in the case 
of early open-pit mine planning. In the case of the early planning of an 
underground mine, the RQD measures can also be utilized to locate the 
structures in the best rock area away from weak zones that may result in 
savings of millions of dollars in construction costs. 

The quality of rocks according to the RQD within each geo-cluster 
can also be a major indirect indication of rock hardness for the opti-
mization of mineral processing plants and energy consumption for rock 
crushing, grinding, and blastability. Nevertheless, this needs to be 
accompanied by other geo-metallurgical parameters such as the Work 
Index and further micro texture analyses of the mineralogical 

assemblage configurations in each geo-cluster. However, further inves-
tigation is needed to verify whether low RQD values are related to poor 
drilling technique or core breakage upon handling. This is useful to 
corroborate whether RQD values really dictate the quality of the rock. 

Since the core of this algorithm uses the sequential indicator simu-
lation, difficulties related to the order relation problem and neighbor-
hood (Emery, 2004; Deutsch, 2006) still persist. A possible future 
research direction is to develop other non-stationary approaches that 
use plurigaussian simulation or multiple-point statistics. There is still 
room for further improvement of the proposed approach. The existence 
of plenty of hard data makes the simulation process very slow. To solve 
this issue, an alternative is to use parallel computing. The proposed 
method can also be tested in other deposit types. 

5. Conclusion 

The method presented in this study can be used to model heteroge-
neous geo-domains that result from spatially dependent clustering ma-
chine learning algorithms. Multinomial logistic regression was used to 
model the secondary information to instruct the modelling of the trend 
component in a non-stationary sequential indicator simulation. The re-
sults were then compared with those of a conventional sequential in-
dicator simulation, and it was observed that the proposed method is 
superior based on the evaluation criteria in which the visual represen-
tation of the geo-clusters in the resulting maps and the reproduction of 
geo-cluster proportions, indicator variograms, connectivity measures, 
and trend components were extensively examined. The produced re-
alizations showed that the proposed approach is able to produce 
compact geo-clusters as expected, compared with traditional method 
that produced patchy and unstructured domains of the geo-clusters. The 
local uncertainty calculated in the form of probability maps also verified 
the reproduction of the desired trend of geo-clusters in the region. It also 
showed that the reproduction of geo-cluster proportions in the proposed 
approach is generally better and slightly closer to the original declus-
tered proportion of geo-clusters computed over the borehole data. The 
indicator variogram reproduction of geo-clusters in the proposed 
approach is also slightly better in the proposed approach. However, the 
differences between the reproduction of geo-cluster proportions and 
original indicator variograms in both simulation methods are small. This 
signifies that both simulation algorithms produce similar results for the 
reproduction of original proportions and original variograms. Connec-
tivity measures from the results produced by the proposed method 
showed more continuous and compact domains, which are desired for 
the purpose of better resource estimation and mine planning. 

The realizations obtained by the proposed method were able to 
produce the expected non-stationary characteristics of the geo-clusters, 
which were quantitatively investigated using trend analyses. This is 
trivial as the proposed approach incorporates the trend component in 
the simulation algorithm. 

The proposed method is capable of modelling any geo-domains 
including geo-clusters with a trend component, and it is intended to 
produce compact and spatially contiguous domains. However, the re-
alizations might appear slightly patchy across the border of two adjacent 
geo-domains, or some tiny spots of geo-clusters may appear in the maps 
(Fig. 11). To solve this issue, image cleaning based on a maximum a 
posteriori selection (Deutsch, 1998) can be applied. The results in this 
study are presented without the use of any cleaning algorithms so as to 
allow for a better comparison of the results. 
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Appendix 

The following figures show the experimental variogram analysis of 
indicators; connectivity measures along northing and easting; trend 
analysis along easting and northing for geo-clusters. 
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