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ABSTRACT 

Celiac disease (CD) is an autoimmune disorder of the small intestine in which gluten, an 

energy-storage protein in wheat and other cereals, elicits an immune response leading to villous 

atrophy. Despite a strong genetic component, the disease arises sporadically over the lifetime 

leading us to hypothesize the microbiome might be a trigger. Here, we re-examined 16S rRNA 

data from 3 prior studies examining celiac disease and the microbiome with newer computational 

tools: the dada2 and PICRUSt 2 pipelines. Our results both confirmed findings of previous 

studies and generated new data regarding the celiac microbiome of India and Mexico. The 

datasets were also pooled to determine whether any taxonomic or metabolic features remained 

consistent across the world using a variety of data transformations to control for batch effects. 

Our results showed the celiac microbiome displays dysbiosis without a discernable pattern, likely 

indicating that perturbations in the CD microbiome are a result of the disease rather than a cause 

of the disease. Data from PICRUSt 2 further confirms this, showing connections to the CD 

metabolome which are supported by previous research examining dysbiotic microbiomes.  
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INTRODUCTION 

Celiac Disease (CD) is an inflammatory bowel disease (IBD) of the small intestine, in 

which the protein gluten, found in wheat and barley, causes an inflammatory response that 

degrades the lining of the small intestine, specifically the villi (Valitutti et al., 2019) . If left 

untreated, patients acquire a host of health problems, including malnutrition, osteoporosis and, in 

rare cases, cancer (Valitutti et al., 2019). CD is estimated to affect 1-2% of the world’s 

population, with Western countries having the bulk of those affected; however, many cases go 

undiagnosed (Valitutti et al., 2019). The disease can present at almost any age with intestinal and 

non-intestinal symptoms, such as diarrhea, bloating, pain, nausea, insomnia, and migraines 

(Valitutti et al., 2019). Currently, there exists only one treatment for CD, being on a gluten-free 

diet (GFD), in which patients exclude gluten from their diet to prevent the inflammatory 

response (Valitutti et al., 2019). 

A genetic predisposition for CD is predicted among people with the HLA DQ2 and DQ8 

haplotypes, but recent twin studies found the concordance of these genes is not 100%, suggesting 

environmental factors contribute to the disease (Greco et al., 2002). Furthermore, recent research 

found CD subjects have a dysbiotic gut microbiome, although no clear pattern for the celiac 

microbiome has, as yet, been defined (Valitutti et al., 2019).  In addition, although several studies 

found evidence the celiac microbiome harbors an excess of the bacterial taxa that might cause 

inflammation, no specific bacterium or microbial community configuration has been linked to 
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causing an inflammatory response to gluten (Valitutti et al., 2019). The inflammation 

characteristic of celiac diseases may be caused by metabolic activity of the suspect microbes, 

whereby byproducts of microbial metabolism modulate the immune system. This type of effect 

was demonstrated for the short chain fatty-acid, butyrate, which is a by-product of bacterial 

digestion of fiber. In mice, butyrate was shown to ameliorate symptoms  

of rheumatoid arthritis, another autoimmune disorder, thus demonstrating the ability of 

symbiotes to modulate the immune system (Rosser et al., 2020). 

In addition, it is known that changes in diet can have drastic consequences on microbiota 

composition. Since a gluten-free diet is the treatment for CD, some researchers posited that the 

absence of dietary gluten skews the microbiome profile; in which case the celiac microbiome is 

an effect of diet and not a cause of disease. To address this question, one study examining how 

the microbiota of healthy patients adapts to a gluten-free diet was included (Bonder et al., 2016). 

It found the changes to the microbiota were minimal, although the researchers used “dated” 16S 

rRNA analysis techniques.  

Many other studies examined the role of the microbiome in CD and other IBDs, and used 

the best computational tools available at the time. Yet, bioinformatics and computational biology 

develop rapidly, with new tools constantly being developed that vastly out-perform their 

predecessors. For instance, previous 16S rRNA microbiome analysis was conducted using 

pipelines that generate operational taxonomic unit tables or OTUs. This is a process in which 

sequences are compared and binned based on a user-defined similarity threshold (usually 79% 

similarity), From this bin, a single sequence is pulled, with the entirety of the bin classified as 

this single sequence’s identification. In contrast, newer amplicon sequence variant producing 

pipelines, such as DADA2, use quality scores in conjunction with machine learning to 
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distinguish sequences that differ as little as a single nucleotide, giving a far more granular and 

accurate picture as to what organisms are represented by a given sequence (Callahan et al., 

2017).  Previous investigation into data generated by different pipelines has already 

demonstrated that ASV and OTU generating pipelines result in different counts of ASVs and 

OTUs, and that different pipelines generate different data in regards to sequence taxonomic 

assignment (Allali et al., 2017). PICRUSt2 has a database which is 20 times larger than its 

predecessor, and uses Metacyc pathways as its high level output (Douglas et al., 2020, Babera et 

al 2019, Czech, 2020, Louca, Doebelia, 2018, Caspi et al., 2007). These pathways are 

determined by looking at community-wide aggregations of enzyme counts to predict differences 

in metabolic function. This is in opposition to PICRUSt1 (Langille et al., 2013) which simply 

outputs differentially abundant genes, of which can be active in several metabolic pathways. 

Further evolution of the analysis of microbiome data has led to the development of algorithms 

such as LEFSe, to detect significant differences in community structure. LEFSe differs from 

methods taken to analyze RNA seq data in that it uses a less stringent p-value in association with 

a LEFSe LDA score (a measure of effect size) to determine which taxa are not only significantly 

different between cases, but with a large enough difference to produce an effect on the host, thus 

producing more biologically relevant results (Segata et al., 2011). Several databases exist for 

taxonomic assignment, many previous analyses have utilized Greengenes, last updated in 2013 

(DeSantis et al., 2006). This database has fallen out of favor and has largely been replaced by 

SILVA (Yilmaz et al., 2014). Previous work has shown that while many entries between the two 

databases do indeed overlap, considerable differences do exist (Balvočiūtė, Huson, 2017). This 

begs the question: are conclusions drawn from older analysis methods still relevant? Or should 

data from previous studies be reanalyzed with new tools to obtain the best results possible.  

https://pubmed.ncbi.nlm.nih.gov/?term=Balvo%C4%8Di%C5%ABt%C4%97+M&cauthor_id=28361695
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Here, we reanalyzed data from three previous studies, pooling their results to examine the 

associations between CD and the microbiome, and determine whether any taxa or metabolic 

pathway is associated with CD, and whether previous findings using older analysis techniques 

differ from analysis with new tools. Our analysis was conducted using the dada2 pipeline to 

generate taxonomic classification for each read. This data was then passed off to Phangorn to 

create a phylogenetic tree and PICRUSt 2 to obtain functional analysis of the microbes. These 

data were then analyzed using microbiome analyst, to obtain alpha and beta diversity metrics and 

identify differentially abundant taxa and metabolic pathways.  

The first study that was reanalyzed, The influence of a short-term gluten-free diet on the 

human gut microbiome, by Bonder et al., examined stool samples from 21 participants to test for 

microbiome changes associated with the transition from a gluten-free (GF) to a gluten-containing 

diet (GD), using QIIME (Caparaso et al., 2010), PICRUSt (Langille et al., 2013) and the 

greengenes database (DeSantis et al., 2006, Bonder et al., 2016). We also re-analyzed data from 

First Insights into the Gut Microbiota of Mexican Patients with Celiac disease and Non-Celiac 

Gluten Sensitivity, by Garcia-Mazcorro et al. (Garcia-Mazcorro et al., 2016). This study 

compared the microbiomes of 12 celiac patients,12 non-celiac, gluten sensitive patients, and 12 

controls on GD and resampled 6 months after strict adherence to the GFD, using QIIME 

(Caparaso et al., 2010), PICRUSt (Langille et al., 2013), and Greengenes (DeSantis et al., 2006) 

analysis of paired stool and duodenum samples. A third dataset we re-analyzed was Comparison 

of Small Gut and Whole Gut Microbiota of First-Degree Relatives With Adult Celiac Disease 

Patients and Controls by Bodkhe et al. (Bodkhe et al., 2019). The original study included 23 

untreated celiac patients, 15 first-degree relatives without celiac disease and 24 controls with 
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hepatitis B or functional dyspepsia with paired stool and biopsy samples taken from each 

participant. To supplement this data, 19 healthy stool samples from Chaudhari et al. (Chaudhari 

et al., 2020) and 17 from Dubey et al. (Dubey et al., 2018) were used in the analysis of the stool 

samples from Bodkhe et al.. It is known that diet (Pace, Crowe, 2016, Human Microbiome 

Consortium, 2012) and environment (Stearns et al., 2017) each play a significant role in shaping 

the gut microbiome. In this work the studies of interest each used patient cohorts from across the 

globe. As geographical location is known to correlate with distinct gut microbial structure 

(Arumaguam et al., 2011), we anticipate seeing some differences across studies among the 

control samples. In addition to standard to standard batch-effects that need to be accounted for 

when performing inter-study analyses, we incorporated additional control samples, where 

applicable, to increase our statistical power to determine CD-specific changes. We also included 

data taken from The influence of a short-term gluten-free diet on the human gut microbiome by 

Bonder et al. Which included 21 healthy patients on a GFD for 4 weeks, and GCD for 4 weeks, 

with participants sampled weekly.  

Across the four studies we were able to incorporate 166 participants, with 31 celiac 

patients, 12 non-celiac gluten sensitive patients, 15 first-degree relatives, 24 patients with 

functional dyspepsia or hepatitis B, and 84 controls, making this work one of the largest meta-

analysis examining CD  across both the duodenal and stool microbiomes. These data were then 

pooled to examine what similarities exist in the celiac microbiome across geographical regions. 



6 

MATERIALS AND METHODS 

Studies with available data were gathered using search queries “celiac microbiome”, 

“celiac disease and the microbiome”, “celiac disease and gut microbiota”, and “celiac disease 

and gut-microbiome”. Studies which were selected examined the v4 variable region of the 16s 

ribosomal subunit (rRNA).  

Collected sequences were prepared for dada2 (Callahan et al., 2016). This was done 

using Cutadapt (Martin, 2011) and the following command “cutadapt -g 

ADAPTERSEQUENCE1 -g ADAPTERSEQUENCE2 -o output input”. Adapter sequences were 

provided by the Materials and Methods sections of the respective parent study. This was done for 

all studies with the exception of Bodkhe et al., in which the adapter sequences were removed 

using the trimLeft = c(20,20) in dada2’s filterAndTrim step. Next, the sequences were passed to 

dada2. We used the same steps as the original paper for Bodkhe et al., since the parent study also 

used dada2. Both Garcia-Mazcarro et al. and Bonder et al. used single-end sequencing; 

adjustments were made to the pipeline in accordance with the developer’s advice on the dada2 

FAQ page for running the pipeline with single-end data. Taxonomy was assigned in dada2 using 

the Silva nr99 v138 training set. 

UPGMA phylogenetic trees for each dataset were then constructed using the R package 

Phangorn (Schliep, 2011, Schliep, 2017) with the following commands
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sequences<-getSequences(seqtab.final) 
alignment <- AlignSeqs(DNAStringSet(sequences), anchor=NA) 
phang.align <- phyDat(as(alignment, "matrix"), type="DNA") 
dm <- dist.ml(phang.align) 
treeUPMA <- upgma(dm) 
Next, the data generated by dada2 was prepared for PICRUSt2 by creating an .fasta file 

of the ASV sequences  and  .biom table using the following R commands:  

biomTable<-make_biom(t(seqtab.nochim), sample_metadata = NULL, 
observation_metadata = NULL   id = NULL,matrix_element_type = "int") 
write_biom(biomTable, biom_file="table.biom") 
asvTable<-seqtab.nochim 
write.table(asvTable, file="ASVTableNewDataDADAbimera.txt", row.names=TRUE , 
sep="\t") 
write.fasta(sequences = as.list(sequences) , names = as.list(sequences), nbchar = 80, 
file.out = "ASV.fasta") 
 
This was then passed to PICRUSt2 (Douglas et al., 2020, Babera et al 2019, Czech, 

2020, Louca, Doebelia, 2018) and run using the default parameters. The resulting data was then 

passed to microbiomeAnalyst (Dhariwal et al., 2017, Chong et al., 2020) . Filtering in 

microbiomeAnalyst was done in accordance with each respective parent study’s methods in 

mind, and no transformation or refraction was performed. For weighted unifrac, unweighted 

unifrac, Shannon diversity index, Simpson diversity index, Chao1 diversity index, RNA seq, 

metagenome seq, and random forest default parameters were used. For LEFSe, features with a P-

value (unadjusted) less than 0.1 and LDA score with an absolute value of 2 or more were 

identified as significant. For the pooled analysis, ASV tables from each study were merged using 

dada2’s mergesequencetables. This ASV table was then assigned a taxonomy and used for the 

downstream processing. The pooled datasets were too large to generate an alignment using 

phangorn. Clustal-o (Lee et al., 2022) was used locally, with the alignment being passed off to 

FastTree (Price et al., 2010) using the -gtr and -nt options. Studies with paired stool samples and 
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biopsies were split into biopsy and stool sample sets, and analyzed separately. Before filtering, 

ASVs without taxonomic assignment below Kingdom level were excluded. This removed 23,336 

sequences. The data was filtered, removing ASVs with a count less than 4 or prevalence in less 

than 10% of samples. Features with a variance of less than 10% based on the interquartile range 

were also removed. This removed 5065 ASVs leaving 1619 ASVs for the remaining analysis. 

Samples with a library size of less than 3000 ASVs were removed, the data was then analyzed 

without filtering, normalization or scaling, with filtering, with filtering and with total sum 

scaling, and with the procedure described in Gibbons et al. (Gibbons et al., 2018). Taxa without 

a phylum assignment were removed from the pooled analysis. Analysis of pathway data was 

conducted using default parameters for each parent study, and default parameters plus refraction 

for the pooled analysis. Analysis of pathway data was done using Bray-curtis, RNA seq, 

metagenomeSeq, LEFSe and random forest, all of which were run using default parameters. 

A phyloseq (McMurdie, Holmes, 2013) object was created and used to merge ASVs with 

identical taxonomy using phyloseq’s glom_taxa method. ASVs were collapsed at the genus level, 

leaving only ASVs with genus level assignments. This reduced the original unfiltered ASV table 

from 57,943 ASVs to 799. The resulting ASV table was then uploaded to microbiomeAnalyst 

using the same protocol as above.  

Discrepancies were found with the original controls in Bodkhe et al. To remedy this, new 

controls were found by searching for studies with accessible data using search queries: “Indian 

microbiome” and “Indian gut-microbiota”. Only studies examining the 16S v4 variable regions 

were used. One study from the Delhi area of India, the same as Bodkhe et al., and the other from 

populations of Indians living in both rural and urban areas. These sequences were prepared and 
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analyzed using the protocol described above. All three datasets had a large number of ASVs with 

unassigned taxonomy. To determine the identity of these sequences, ASVs without taxonomic 

assignment and those with no taxonomic assignment below the kingdom level were tabulated 

using a proprietary python script. ASVs with no taxonomic assignment were removed and added 

to a fasta file. ASVs with kingdom level assignment (bacteria) were allowed to remain. 10% of 

the sequences were then pulled from the resulting fasta file and clustered in mega using 95% 

similarity threshold (Kumar et al., 2018). This threshold was chosen as it represents the 

variability of the v4 16s variable region. One sequence was then pulled from each cluster and 

assigned an identity using BLAST with default parameters(Altschul et al., 1990).  

Garcia-Mazcarro et al. contained data on GFD and GCD. The data was first analyzed 

looking only at disease state (celiac, NCGS or control) then looking at differences due to disease 

state and diet (celiac GCD, celiac GFD, etc).  

Comparison in ASV assignment between Greengenes and Silva was carried out by 

assigning taxonomy to the Garcia-Mazcorro ASV table using both Silva nr99 v138 and 

Greengenes v12 databases. The resulting taxonomy tables were then analyzed for differences 

using a proprietary python script. 
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RESULTS OF INDIVIDUAL ANALYSIS  

Bonder et al.  

Bonder et al. had a small but significant change in alpha diversity indexes for Shannon (p 

= 0.0448 ANOVA) and Simpson diversity indexes(p =0.0039 ANOVA), but not Chao1 (p = 

0.2743. Figure 1A), with the GFD having a higher alpha diversity compared to GCD. 

 

No clustering was apparent for both weighted and unweighted unifrac values (unweighted 

unifrac p > 0.42,  weighted unifrac p < 0.0508; PERMANOVA, Figure 1B). A single ASV was 

identified as being differentially abundant. This ASV corresponded to the genus 

Faecalibacterium, and was higher on GFD (Figure 2, FDR corrected  p < 0.1, LEfSe LDA > 

2.0). This ASV was noted as being significant in both metagenome-Seq and RNA-seq (DeSeq2, 

Love et al 2014) as well. Additionally, this ASV was noted as being the best predictor for diet 

status from the random forest analysis, however this model had a class error rate of 0.226 for 

GCD and 0.487 for GFD. No differentially abundant pathways, as predicted by PICRUSt2 were 

identified (Douglas et al., 
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2020). Random Forest class error rates for this model were 0.36 for GCD and 0.5 for GFD with 

an OOB error of 0.35. 

 

Garcia-Mazcorro et al.  

Duodenal analysis  

Duodenum biopsies from Garcia-Mazcorro et al. showed lowered alpha-diversity in CD 

patients compared to controls, with NIBD having the highest diversity, though these results were 

not significant for Chao1  (Figure 3A, Chao1 p = 0.1922, Shannon  p = 0.046243, Simpson p = 

0.09176 ANOVA). No clustering was evident using weighted and unweighted unifrac (Figure 

3B, unweighted unifrac, weighted unifrac  p < 0.034, PERMANOVA). The duodenum of celiac 

patients was characterized as having elevated ASVs belonging to Phyllobacterium, Azospira, and 

Stenotrophomonas, while the duodenum of NCGS patients had elevated ASV corresponding to 

the genera Neisseria and Streptococcus, with celiac and controls having similar average ASV 
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counts for each. NCGS and control biopsies had similar levels of the genus Fusobacterium, with 

celiac patients having lowered ASVs corresponding to Fusobacterium (Figure 4). 

 

RNA-seq (edgeR Robinson et al., 2010) analysis of pathways showed that the bacteria of 

celiac patients contained fewer taxa capable of menaquinone biosynthesis with pathways 1,4-

dihydroxy-6-naphthoate biosynthesis II (PWY 7371) superpathway of demethyl menaquinone -

6-biosynthesis II (PWY 7373), and superpathway of menaquinone-8 biosynthesis II(PWY 6263) 

being lowered in celiac patients. All features had LEfSE LDA scores greater than 2.0 and p-

values below 0.1 for RNA-seq (EdgeR ), but were not identified as significant using 
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metagenome-Seq (Figure 5).These pathways had similar average counts for healthy and NCGS. 

Random forest analysis of pathways identified pwy 7371 and 6263 as being important predictors 

of disease state, with mean decrease in accuracy of 0.00024 and 0.0002 respectively. The random 

forest model had an OOB error of 0.662 and class errors of 0.583 for celiac, 0.789 for controls, 

and 0.478 for NCGS.   
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Fecal analysis  

Fecal samples from Garcia-Mazcorro et al. showed no significant differences in alpha 

diversity ( Chao1 p = 0.79019, Shannon p = 0.61687, Simpson p = 0.58068 ANOVA, Figure 6A) 

or beta diversity, with no clusters forming for weighted and unweighted unifrac (p < 0.145 

unweighted unifrac, p< 0.179 weighted unifrac PERMANOVA, Figure 6B). Stool samples of 

celiac patients had elevated levels of ASVs corresponding to Pseudomonas and Novispirillum, 

and lowered ASVs corresponding to Haemophilus while NCGS had elevated ASVs 

corresponding to Clostridia and Collinsella. Control samples had an abundance of 

Ruminococcus and Bifidobacterium ( p < 0.1, LDA > 2.0, Figure 7), with NCGS and celiac 

having reduced ASV counts.  
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114 differentially abundant pathways were identified with edgeR, none were shared between 

LEFSe, metagenomeSeq and RNA seq, however 14 were shared between LEFSe and EdgeR. 

319 differentially abundant KEGG orthologs were identified as being differentially abundant 

between LEFSe and RNA seq, with none being identified as significant using metagenomeSeq 

(Ogata et al., 1999).  

Greengenes vs SILVA taxonomy 

This data was also analyzed using the Greengenes database version 12 to determine to 

what extent pipeline choice impacts the results. Of the top 10 largest effect sizes producing taxa 

in the duodenum, 2 were assigned different taxonomy between Greengenes v12 and Silva nr99 
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v138 (DeSantis et al., 2006, Yilmaz et al., 2014). ASV 14 was identified by Silva as 

Stenotrophomonas, while Greengenes assigned it as Clostridiales and ASV 20 was identified as 

Neisseria by Silva and Actinobacillus by Greengenes (Table 1A). 

 For stool samples, the only one ASV had a mismatching assignment with ASV 124 being 

identified as Oscillospriaceae and Ruminococcaceae by Silva and Greengenes respectively. 

Despite this seeming consensus among the 

largest effect size producing taxa, there 

was only a 6.3% overall similarity in ASV 

assignment (Table 1B). Both analyses had 

the same overall similarity as the ASV 

table used in each case was the same.  

Pre and post-treatment Mexican CD 

microbiome  

Garcia-Mazcarro et al. was then 

analyzed looking at disease state and diet 

together, dividing each category into GFD 

and GCD time points, to look for 

differences in taxa which remained the 

same regardless of diet. There were no 

discernible differences in alpha or beta 

diversity for both stool samples and 

biopsies between disease states. ASVs corresponding to Pseudomonas and Stenotrophomonas 

(LEFSe LDA > 2.0) were elevated in celiac biopsies and stool regardless of dietary status. No 
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significant pathways were identified as being differentially abundant between time points for 

both stool and biopsies. No KEGG orthologs identified biopsies or feces. 

Bodkhe et al. 

Stool analysis  

For the individual study analysis of Bodkhe et al., biopsies and non-celiac samples were 

removed, leaving just stool samples to be analyzed with controls taken from other datasets. The 

stool samples showed an elevated Shannon diversity index at the feature level in celiac patients, 

however at every taxonomic level (genus through phylum) celiacs were characterized by lowered 

alpha diversity (Shannon index feature p = 1.0071 *10-12 ANOVA, Shannon genus p = 

3.3627*10-31ANOVA, Shannon family p = 6.7394 *10-28ANOVA, Shannon order p = 

3.0946*10-29ANOVA,  Shannon Class, p = 2.9985*10-31ANOV,  Shannon Phylum p = 

9.7104*10-31ANOVA,  Figure 8A). Beta-diversity analysis showed clustering for controls on a 

basis of region, with celiac samples clustering distinctly from either control cluster (p< .05, 

Bray-Curtis index PERMANOVA, Figure 8B). Unifrac also displayed clustering at the feature 

level for both weighted and unweighted measures ( p< 0.001 PERMANOVA, Figure 8C). Upon 

investigation of the abundance plots, it was noted that many sequences from the three studies had 

a large degree of unassigned reads (Figure 8D). Of the original 38,005 ASVs, 4710 had no 

taxonomic assignment and 11527 had only phylum level assignment. Those without taxonomic 

assignment were removed, leaving 33,295 ASVs (87%). 10% of the reads without taxonomic 

assignment (both unclassified and without assignment below phylum) were pulled for clustering 

in mega. This created 32 clusters, with one cluster comprising 96% of the data. 97% of the DNA 

in the clusters correspond to uncultured 16S bacterial DNA, 1% was determined to be 

contaminating human DNA and the remaining 1% was split between viral DNA, fungal DNA 
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and gDNA from Bacteroidetes, Akkermansia, and Bifidobacterium. Reanalysis of the data with 

unassigned bacteria removed (only those without taxonomic assignment) showed a similar trend 

as earlier, with the CD alpha diversity being elevated when compared to controls at the feature-

level, and lowered in higher taxonomic (Shannon feature p = 1.6529*10-5 ANOVA, Shannon 

genus p = 1.6491*10-24ANOVA, Shannon Family p = 9.4673*10-21ANOVA, Shannon order p = 

4.4937*10-16ANOVA, Shannon class p = 5.527*10-10 ANOVA, Shannon phylum p = 2.7197*10-

13 ANOVA, p < .05, Figure 8D, Figure 8E). Indicating that the increase in diversity was due to 

the presence of unclassified bacteria. Weighted and unweighted unifrac displayed similar results 

as previously as well, however clustering was no longer noted at taxonomic levels genus and 

higher (p< 0.001, PERMANOVA, Figure 8F).]

 

 

LEFSe 

LEFSe analysis had mixed results with ASVs corresponding to Prevotella 9 and 

Bifidobacterium elevated or reduced levels depending upon ASV. Healthy samples had elevated 
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Pseudobutyrivibrio and Acinetobacter, while celiac patients had an elevated ASV identified as 

Bacteroidales (Figure 9). All taxa had LDA scores larger than 2.0 and P-values below or equal to 

0.1. 

 

Pathways  

Analysis of pathways showed that samples clustered in accordance with region, with a 

mixed control/celiac cluster forming (both sets of data taken from the Delhi region of India) and 

control cluster. No clustering occurred on a basis of disease state. 69 pathways were identified as 

significant between EdgeR, LEFSe and metagenomeSeq. The top 10 pathways with the largest 

effect size included anaerobic gondoate biosynthesis (PWY 7663), incomplete reductive TCA 

cycle (P42 PWY), L-lysine biosynthesis II (PWY 2941), cis-vaccenate biosynthesis (PWY 

5973), super pathway of adenosylcobalain salvage from cobinamide II (PWY 6269) 
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adenosylcobalamin biosynthesis from adenosylcobinamide -GDP I (PWY 5509)(Figure 10), lipid 

IVA biosynthesis (E. coli)(NAGLIPASYN), superpathway of adenosylcobalaimin salvage from 

coinamide I(COBALSYN PWY)(Figure 12), preQ biosynthesis (PWY 6703) and Kdo transfer of 

lipid IVA (Chlamydia)(PWY 6467) with all pathways but PWY 2941 being lowered in CD 

compared to controls. All pathways had an LDA score greater than or equal to 4.14 and P-values 

less than 0.1 (Figure 10).   Random forest analysis of pathways produced an OOB error of 

0.0755 with class errors of 0.235 and 0 for celiac and healthy respectively. None of the best 

predictors matched what was identified as significant in the combined LEFSe-rna- seq(EdgeR)-

metagenome-Seq analysis.  
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RESULTS OF POOLED DUODENUM ANALYSIS 

Pooled Raw Duodenum  

Community Structure Analysis 

6684 ASVs were included in the raw analysis, after the removal of unassigned taxa. 

Chao1 alpha diversity showed that CD and NIBD had similar alpha-diversities with healthy 

samples having a lower and less varied distribution. Shannon showed that CD had a similar 

average alpha -diversity compared to the other study groups and Simpson showed CD having a 

lowered average alpha-diversity, however this was not significant. (Figure 11A). When 

examining CD versus non-CD a similar trend was observed, with Chao1 showing an increased 

diversity for CD versus non-CD, similar levels for Shannon, and lowered alpha-diversity for CD. 

Once again these results were not significant. (Figure 11B). When looking at samples as a factor 

of geographic region it was observed that Indian samples had a higher alpha diversity across 

metrics, though this was only significant for Chao1 (p = 0.0014783 ANOVA , Figure 11C). 

Clustering was only achieved as a basis of region rather than disease or CD status using 

unweighted unifrac (p< 0.001 PERMANOVA). A similar trend was observed for weighted 

Unifrac, with segregation of samples only occurring on a basis of geographic region( p< 0.001 

PERMANOVA, Figure 11D-F). 
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Stacked area bar plots of percentage abundance showed significant differences in 

community structure as a factor of both disease and region of isolation. Indian CD patients had 

more Fusobacteria compared to NIBD counterparts with Mexican CD patients having less 

compared to NIBD and controls.

 

Mexican CD patients tend to have less Bacteroidota compared to non-CD counterparts, with the 

opposite trend being observed in Indian samples. In most cases, samples tended to look more like 

those taken from the same region as opposed to those from the same disease (Figure 12). 
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 LEFSe  

When looking at a factor of disease, LEFSe identified 25 differentially abundant taxa. 4 

ASVs corresponding to Acinetobacter were identified, with all being enriched only in CD. 3 

ASVs of Fusobacterium were found to be reduced in CD and found in similar abundance in 

controls and NIBD patients as well as 2 ASVs of Haemophilus following a similar trend.  

 

One ASV of Rothia was found to be abundant in both CD and controls with a lowered 

abundance in NIBD. 2 ASVs of Pseudomonas were also identified with both being elevated in 

CD and controls compared to NIBD (Figure 13A). When examining CD versus non-CD, 9 taxa 

were identified, all of which were enriched in CD compared to non-CD. 8 of the 9 ASVs were 

identified as Acinetobacter with the remaining being identified as Moraxellaceae (Figure 13B). 

149 taxa were identified as significant when looking at the region, with only two genera 

matching those from the diseased (CD vs. NIBD vs. healthy) . With Pseudomonas being elevated 
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in Indian samples and Haemophilus in Mexican (Figure 13C).

 

Random Forest 

Random forest as a factor of disease had an OOB of 0.5 with class erros of 0.964, 1.0 and 

0.0208 for CD, NIBD and healthy respectively. When looking at a factor of CD versus non-CD 

the model had an OOB of 0.302 with class errors of 0.966 and 0.0149 for CD and non-CD 

respectively. When looking at a factor of geographic region, the model had an OOB of 0.0833 

with class errors of 0.195 for the Indian data  and 0.0 for Mexican data. 
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Pooled Filtered Duodenum  

Filtering removed 4681 low abundance features and 201 low variance features leaving 

1802 features for analysis.  

Community Structure Analysis 

Chao1 showed that CD and NIBD had higher alpha-diversity than healthy, though this 

was not significant (p = 0.37608 ANOVA). Shannon index showed that NIBD had the highest 

diversity followed by healthy then CD. This once again was not significant (p = 0.48161 

ANOVA). Simpson index showed that CD had the lowest alpha diversity with NIBD having the 

highest, although this also was not significant (p = 0.19143 ANOVA, Figure 14A).  

Chao1 and Shannon indices showed that CD and non-CD had similar alpha-diversities (p = 

0.19143, p = 0.91247, ANOVA). Simpson showed that CD had a lowered average alpha-

diversity, however this was not deemed significant (p =0.30967 ANOVA, Figure 14B). Chao1 (p 

= 0.031825 ANOVA), Shannon (p = 0.24744 ANOVA) and Simpson (p = 0.664 ANOVA) 

indices all showed that Indian samples had a greater alpha-diversity, though this was only 

significant for Chao1 (Figure 14C). 

Clustering was only achieved as a basis of geographic region rather than disease or CD 

status using unweighted unifrac (p< 0.001 PERMANOVA) A similar trend was observed for 

weighted unifrac, with segregation of samples only occurring as a basis of region ( p< 0.001 

PERMANOVA, Figure 14D-F). Stacked area bar plots of percentage abundance once again 

showed differences in community structure as both a factor of disease and region, with Indian 

samples having large proportions of Verrucomicrobitoa. Indian CD samples were characterized 

by an abundance of Bacteriodata with Mexican CD samples having the opposite trend. Mexican 
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samples Contained Fusobacteriota, which appeared to be largely absent from Indian samples, 

with Mexican CD samples having lowered abundance compared to NIBD and controls. 

 

Once again, samples from the same region tended to have a similar community structure 

compared to those of a similar disease state (Figure 15). 

 

 

LEFSe  
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47 differentially abundant taxa were identified using LEFSe. 3 ASVs of Akkermansia 

were identified as being elevated in both CD and NIBD. 3 ASVs of Fusobacterium were 

identified as being lowered only in CD. Two genera of Pseudomonas were found to be elevated 

in both controls and CD with a lowered relative abundance in NIBD. 

 

Haemophilus was found to be elevated in both NIBD and CD and lowered in CD. 1 ASV of 

Moraxellaceae and  two Acinetobacter (a member of the family Moraxellaceae) were identified 

as being elevated in CD only (Figure 16A). CD versus non-CD showed 16 differentially 

abundant ASVs, all of which were elevated in CD. 14 of the ASVs corresponded to 

Acinetobacter with a single ASV belonging to the family Moraxellaceae (Figure 16B). Regional 
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analysis identified 155 differentially abundant taxa with 3 overlapping from the previous 

analysis. Neisseria was associated with Mexican samples while Pseudomonas and Akkermansia 

were associated with Indian samples (Figure 16C) All identified taxa had LEFSe LDA scores of 

2.0 or greater and FDR/p-values less than or equal to 0.1.   

 

Random Forest 

When looking at a factor of disease, random forest analysis had an OOB of 0.453 with 

class errors of 0.821 for CD, 0.85 for control, and 0.0638 for NIBD. When looking as a factor of 

cd versus non-CD, the model had an OOB of 0.253 with class errors of 0.793 for CD and 0.0152 



31 

 

for non-CD. When looking at a factor of region the model had an OOB of 0 as well as class 

errors of 0 for both Mexican and Indian samples.  

Pooled Filtered and Scaled Duodenum 

The data was next analyzed using the same filtering parameters as earlier with total sum 

scaling applied.  

Community Structure analysis 

When looking at a factor of disease, Chao1 showed the NIBD had the highest alpha 

diversity and healthy samples having a lowered diversity, with CD in between. This however, 

was not significant (p = 0.27608 ANOVA) . Shannon showed that CD and healthy samples had 

similar alpha diversities with NIBD having the highest, however this was not significant (p = 

0.48161 ANOVA). Simpson diversity index showed that CD had the lowest average alpha 

diversity with healthy and NIBD having elevated averages, once again this was not significant (p 

=0.19143 ANOVA, Figure 17A). Chao1 and Shannon indices showed that CD and non-CD had 

similar alpha-diversities ( p = 0.83982, p =  0.91247 ANOVA) with Simpson showing CD with a 

lowered average alpha diversity, however this was not significant (p = 0.30967 ANOVA, Figure 

17B). Chao1, Shannon and Simpson showed that Indian samples had greater alpha-diversity, 

though this was only significant for Chao1 ( p = 0.027265 ANOVA, Figure 17C).  

Clustering was only achieved as a basis of geographic region rather than disease or CD 

status using unweighted unifrac (p< 0.001 PERMANOVA). A similar trend was observed for 

weighted Unifrac, with segregation of samples only occurring as a basis of region ( p< 0.001 

PERMANOVA, Figure 17D-F). No clustering was apparent as a factor of disease or CD status 
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(unweighted unifrac disease p< 0.001, weighted unifrac disease p < 0.001, unweighted unifrac 

CD status p < 0.133, weighted unifrac p < 0.124 PERMANVOA ) 

 

Stacked area percentage abundance box plots showed similar trends as earlier with 

samples differing as both a factor of disease and region of isolation. Similar to previous results of 

the pooled duodenum community structure analysis, samples isolated from the same geographic 

region were more similar to each other compared to samples isolated from the same disease 

(Figure 18).  
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LEFSe 

When looking at a factor of disease, LEFSe identified 107 differentially abundant taxa. 4 

ASVs of Pseudomonas were identified as being elevated in CD and controls but lowered in 

NIBD. Three ASVs of Neisseria were identified as being lowered in CD and elevated in controls 

and NIBD. Two ASVs of Haemophilus were identified as being elevated in controls, and for 

NIBD two ASVs of Fusobacterium were lowered in abundance for CD and two ASVs of 

Akkermansia were elevated in CD and NIBD, (Figure 19A). 25 ASVs were identified as 

differentially abundant when looking at CD versus non-CD. Of the 15 LDA highest score taxa, 

13 ASVs were identified as Acinetobacter, and two as belonging to the family Moraxellaceae 

(Figure 19B). When looking at a function of the region of isolation, 500 significant ASVs were 

identified, with overlap of previously identified genre occurring with Haemophilus and 

Neisseria, both of which were associated with the Mexican cohort microbiome and Akkermansia 

which was associated with the Indian cohort microbiome (Figure 19C). All ASVs had LDA 

scores of 2.0 or greater and FDR-adjusted p-values less than or equal to 0.1. 
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Random Forest 

When looking at a factor of disease the model had an OOB 0.463, with class errors for 

CD of 0.786, 0.85 for healthy and 0.106 for NIBD. When looking at a factor of CD status the 

model had an error of 0.242 with class errors of 0.759 for CD and 0.0152 for non-CD. When 

looking at a factor of region, the model had an OOB of 0.0105 with class errors of 0 for India 

and 0.0182 for Mexico.  
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Pooled Normalized Duodenum  

Community structure analysis 

The normalization procedure from Gibbons et al. left 799 ASVs out of a total of 6684 

ASVs . After filtering 719, taxa remained with 80 low variance features removed.  

 Both the control normalized and non-CD normalized duodenum samples had 

significantly lowered alpha-diversity for both CD and NIBD patients (Shannon control 

normalized p = 7.8156*10-8, Simpson control normalized p = 7.8156*10-5 , Shannon non-CD 

normalized p = 3.5834*10-6,  Simpson non-CD normalized p = 0.0001319, Shannon non-CD 

normalized p = 0.034427 ANOVA, Figure 20A-B ). No significant clustering was achieved 

using weighted unifrac for either normalization group (p > 0.05 PERMANOVA). Interestingly, 

the results from unweighted unifrac showed many samples plotted on the same point in the plane 

plotting the first two principal coordinates.This was true for both the control normalized set and 

non-CD normalized set and most dramatic for controls; where all samples were collapsed as a 

single point. This resulted in disease samples being plotted around the controls in a far less 

organized structure. To determine whether this represented clustering, other analysis methods 

were used (Bray-Curtis, Shannon-Jenson, Jaccard). All of these clustering methods did not 

generate significant clusters. Furthermore, none the clusters were significant (p> 0.05 

PERMANOVA,  Figure 20A,C)  

No differences were noted in the stacked percent abundance bar plots for the control duodenum 

normalized data set nor the non-CD normalized dataset (Figure 21A, B). 
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LEFSe and Random Forest  

After normalization no significant taxa were identified using LEFSe for either 

normalization group. Random forest for control normalization had an OOB error of 0.66 with 
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class errors of 0.929 for CD, 0.879 for control and 0.25 for NIBD. Random forest for non-CD 

normalized had an OOB of 0.309 with class error of 1 for CD and 0.0147 for non-CD. The 

control normalized set had an OOB of 0.0722 for geographic region with class errors of 0.143 for 

Indian cohort samples and 0.0182 for Mexican cohort samples. Geographic region analysis of the 

non-CD normalized data  had an OOB of 0.0309 with class errors of 0.0476 and 0.0182 for 

Indian and Mexican samples respectively.  

Duodenum PICRUSt 2 Pathways  

The PICRUSt 2 data was analyzed using microbiomeAnalyst’s default parameters. This 

dataset was much smaller and far less noisy than the ASVs data generated by DADA2; thus 

repeated analysis using different transformations was not necessary. No samples had to be 

excluded due to low library size. 12 low abundance features were removed and 41 low variance 

features were removed using default settings, leaving 368 features.  

Clustering  

Clustering by Bray-Curtis using MetaCyc pathway data was unable to generate accurate 

clusters for disease state, CD status or geographic region (Bray-Curtis disease p < 0.034, Bray-

Curtis CD status p < 0.097, Bray-Curtis region p < 0.001 PERMANOVA).  

Differentially abundant pathways  

MetaCyc pathway analysis identified 16 shared pathways between RNA-seq (EdgeR), 

metagenomeSeq and LEFSe with pathways for norspermidine biosynthesis (PWY 6562), L-

lysine fermentation to acetate and butanoate (P163 PWY ) , methylaspartate cycle (PWY 6728), 

L-glutamate degradation V (P162 PWY), UDP-2, 3-acetamido-2, 3-dideoxy-a-D-mannuronate 

biosynthesis (PWY 7090) and  glycogen degradation III (PWY 5767) lowered in CD. Pathways 
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L-ornithine biosynthesis I (GLUTORN), L-histidine biosynthesis (HISTSYN), methanogenesis 

from acetate (METH-ACETATE PWY), dTDP-N-acetylhomosamine biosynthesis (PWY 7315), 

L-tryptophan biosynthesis (TRPSYN), guanosine deoxyribonucleotides de novo biosynthesis II 

(PWY 7222) were elevated in CD/ NIBD and lowered in controls. All features were identified as 

significant between LEFSe, RNA seq (EdgeR), and metagenomeSeq (RNA seq/ metagenomeSeq 

p < 0.1, LEFSe LDA > 2.0, Figure 22A) 

When looking at CD vs non-CD 9 features , UMP biosynthesis (PWY 5686), L-glutamate 

degradation V (via hydroxyglutarate)(P162 PWY, guanosine deoxyribonucleotides de novo 

biosynthesis (PWY 6125), and superpathway of purine nucleotides de novo biosynthesis I (PWY 

841) were higher in CD, while pathways superpathway of arginine and polyamine biosynthesis 

(ARG+polyamineSYN), tetrapyrrole biosynthesis I from glutamate (PWY 5188), L-lysine 

fermentation to acetate and butanoate (P163 PWY), reductive acetyl coenzyme A pathways I 

(homoacetogenic bacteria)(CODH PWY), and tetrapyrrole biosynthesis from glycine (PWY 

5189) were elevated in non-CD. All pathways had LDA scores with an absolute value of 2.5 or 

greater and RNA(EdgeR)/metagenomeSeq p < 0.1 (Figure 22).  

Random forest 

Random forest analysis of duodenum MetaCycMetaCyc pathways had an OOB error rate 

of 0.469 with class error rates of 0.464 for CD, 0.6 for control, and 0.394 for NIBD. Random 

forest using CD vs non-Cd had an OOB error rate of 0.272 with class error rates of 0.552 for CD 

and 0.115 for Non-CD. When looking at the region the sample was taken from, the model had an 

OOB error of 0.037 with class errors of 0.0769 for Indian samples and 0.0182 for Mexican 

samples.   
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RESULTS OF POOLED FECES ANALYSIS  

Raw Analysis 

Community Structure Analysis 

6684 ASVs were included in the raw analysis. Chao1, Shannon and Simpson indices 

showed that CD and NIBD had a higher alpha diversity than controls (p = 1.7268-27,p = 

5.2366*10-15, p = 2.7*10-7ANOVA , Figure 23A). Chao1, Shannon, and Simpson all showed that 

CD had higher alpha diversity than non-CD (p =0.0066874, p = 9.0994*10-5, p = 2.2775*10-

10ANOVA , Figure 23B). When filtering as a function of  geographic region, it was found that 

Indian cohort samples had the highest alpha diversity across metrics, with Mexican and 

American cohorts following respectively (p =3.0216*10-30, p = 8.2875*10-16,  8.2946*10-7 

ANOVA , Figure 23C). Both weighted and unweighted unifrac analysis failed when using the 

raw pooled datasets, likely due to dataset size.
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Stacked area bar plots of percentage abundance showed differences in community 

structure in accordance with both region and disease, with Healthy American stool having a far 

less varied community than either Mexican or Indian cohort cohort stool. Mexican cohort cohort 

CD samples appeared to have a more uniform constructruction compared to Indian samples with 

an abundance of Proteobacteria compared to their NIBD and healthy counterparts This was 

similar in Indian cohort cohort samples. Similar to the duodenum analysis, samples were more 

similar to those from the same region as opposed to those of the same condition (Figure 24).  
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LEFSe  

LEFSe identified 138 differentially abundant ASV. Of the top 15 ASVs reported by 

LEFSe, 8 were Bifidobacterium, 2 were Akkermansia, 2 were Enterobactericeae, 1 was 

Prevotella, and 1 Klebsiella, which were all reduced in controls compared to other disease states 

(Figure 25A). 72 ASVs were identified as a factor of CD. Of the top 15 reported, all were 

enriched in CD compared to non-CD with 5 corresponding to Prevotella, 3 to Lactobacillus, 2 to 

Proteobacteria, 2 to Escherichia-Shigella, 1 to Bifidobacterium, and 1 to Oscillospiraceae UCG-

002 (Figure 25B).  189 ASVs were identified as a factor of geographic region. None were 

enriched in American controls. Of those enriched on the basis of regions that overlapped with the 

diseased results, Prevotella, Bifidobacterium were also enriched in Indian samples (Figure 25C). 

All features had LEFSe LDA scores of 2.0 or greater and FDR corrected  p-values below 0.1.  
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Random forest 

When looking at a factor of disease, the model had an OOB of 0.156 with class errors of 

0.963, 0.001 and 0.306 for CD, healthy and NIBD respectively. When using CD status, the 

model had an OOB of 0.0942 with class errors of 0.963 for CD and 0 for non-CD.  

Filtered analysis 

Filtering removed 4689 low abundance features and 200 low variance features leaving 

1795 ASVs.  

 

Community structure analysis 
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Chao1 showed that NIBD had the highest alpha-diversity, followed by CD and controls 

(p = 7.1026 *10-28) Shannon and Simpson indices had a similar trend (p = 8.006*10-23, p = 

3.789*10-13, Figure 26A) Chao1 showed that CD samples had higher alpha diversity compared to 

non-CD (p =0.0090813). A similar trend was observed for both Shannon (p = 0.0015761) and 

Simpson (3.3357*10-7,figure 28). Chao1 showed that Indian samples had the highest alpha-

diversity, followed by Mexican and American samples (p = 3.1866*10-21). This trend was 

mirrored by Shannon (1.3147*10-11) and Simpson (p = 8.9321*10-7, Figure 26C). Unweighted 

and weighted unifrac showed no separation as a factor of disease (Figure 28D). Unweighted and 

weighted unifrac failed to produce clustering on the basis of CD status (Figure 26E) Unweighted 

unifrac showed clear segregation of samples on the basis of geographic region, while weighted 

unifrac showed that Mexican and Indian cohort samples overlapped with clear segregation from 

American cohort cohort stool samples (p< 0.001 PERMANOVA, Figure 26F).  
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Stacked area plots of percent abundance showed that Indian samples had the most varied 

community structure with healthy samples having larger proportions of Bacteriodota with NIBD 

having a larger proportion of Actinobacteria and CD having Proteobacteria. Mexican CD 

patients also had elevated Proteobacteria compared to other samples from the same region, 

however not to the same extent as Indian cohort cohort samples. Healthy samples from the 
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United States had a rather homogenous community structure characterized by a dominance of 

both Bacteroidetes and Fimicutes with small populations of Proteobacteria (Figure 27). 

 

LEFSe 

LESe identified 132 taxa associated with disease. Of the top 15 LDA score producing 

taxa, all of them were reduced in healthy samples and increased in both NIBD and CD. 9 ASVs 

correspond to Bifidobacterium, 2 to Akkermansia, and 1 ASV each of Escherichia-Shigella, 

Eubacterium coprostanoligenes and Prevotella, (Figure 30A). 76 ASVs were identified as a 

function of CD versus non-CD. Of the top 15 effect size producing taxa, all were reduced in non-
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CD samples with Escherichia-Shigella made up 3 of the 15 ASVs, Prevotella making up 3, 

Lactobacillus 2, and Oscillospiraceae UCG-002, Proteobacteria, Akkermansia, Eubacterium 

copropstaoligenes, Enterobacteriaceae, Bifidobacterium and Catenibacterium making up 1 ASV 

each (Figure 28B). 183 as a function of the region of sample origin.Of these, 

Bifidobacterium,and Prevotella overlapped with diseased results (Figure 28C). All taxa had LDA 

scores greater than 2.0 and P/FDR values less than 0.1.  
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Random forest  

Random forest had an OOB of 0.108 when using CD, NIBD and healthy with class errors 

of 0.704, 0.143 and 0.0197 respectively. When using CD versus non-CD, the model had an OOB 

of 0.0789 with class errors of 0.815 for CD and 0 for non-CD respectively. When looking at a 

factor of geographic region, the model had an OOB of 0.0251 with class errors of 0.0519 for CD 

0.125, for Mexico, and 0 for the United States.  

Filtered and scaled analysis 

Community structure analysis 

Chao1, Shannon, and Simpson showed NIBD having an elevated alpha diversity 

compared to both CD and healthy, followed by CD and healthy respectively (p = 7.1026*10-28,p 

= 8.0086*10-23, p = 3.3789*10-13, ANOVA, Figure 29A). CD had higher alpha diversity 

compared to non-CD for Chao1, Shannon, and Simpson (p =0.0090813,p = 0.0015761,p = 

3.357*10-7 ANOVA, Figure 29B). Chao1 found that Indian samples had the highest diversity 

followed Mexican and American samples respectively. This was mirrored by Shannon and 

Simpson (p = 3.1866*10-21p = 1.31478*10-11, p = 8.9231*10-7 ANOVA, Figure 29C).  

Unifrac analysis only produced clustering for geographic region using unweighted unifrac, 

indicating that low abundance taxa were mainly responsible for the separation seen (p< 0.001, 

Figure 29D-F). 
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Stacked area bar plots of abundance showed a similar trend as what was noted in the filtered 

analysis (Figure 30).  
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LEFSe 

LEFSe identified 500 significant features when examining CD, NIBD and healthy 

samples. Healthy samples had an abundance of Bacteroides (2 ASVs), Prevotella, 

Ruminococcaceae, Oscillospiraceae UCG 002, Alistipes, Lachnospiraceae (2 ASVs), 

Subdoligranulum(2 ASVs), Dialister, and Eubacterium eligens (Figure 31A). When looking at 

CD versus non-CD, 415 taxa were identified with Escherichia-Shigella and Eubacterium 

coprostanoligenes being elevated in CD and Lachnospiraceae ( 3 ASVs), Subdoligranulum (2 

ASVs) Eubacterium eligens, Dialister, Alistipes, Oscillospiraceae UCG-002, Ruminococcaceae, 

Bacteroides and Prevotella being elevated in non-CD (Figure 31B). 498 ASVs were identified 
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when looking at the region. It was found that Prevotella was elevated in Indian samples, 

Oscillospiraceae UCG-002 in Mexican, and Ruminococcaceae, Alistipes and Bacteroides in 

American (Figure 31C).  

 

 

Random Forest 

Random forest had an OOB of 0.111 with class errors of 0.741 for CD, 0.0197 for 

healthy, and 0.143 for NIBD. For CD, versus non-CD the model had an OOB of 0.0789 with 

class errors of 0.815 for CD and 0 for non-CD. Random forest had an OOB of 0.208 for control 
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normalized with class errors of 1 for CD, 0 for controls, and 0.939 NIBD. Random forest 

analysis of non-CD had an OOB error of 0.0968 with class error rates of 1 for CD and 0 for non-

CD. When examining the region, the model had an OOB of 0.0251 with class errors of 0.0519 

for Indian, 0.125 for Mexican, and 0 for American samples.  

Pooled Normalized Feces 

Normalization of the pooled feces samples yielded 799 ASVs compared to non-

normalised data which yielded 6684 ASVs. .  

Community structure analysis 

Both control normalized and non-CD normalized fecal samples had lowered alpha 

diversity for NIBD and CD for both Shannon and Simpson diversity indices (Shannon control 

normalized p = 0.0031876, Simpson control normalized p = 1.2784*10-6, Simpson non-CD 

normalized, Shannon non-CD normalize p =  0.020527, ANOVA  Figure 32A,32B). The 

Simpson index of non-CD normalized data showed lowered fecal alpha diversity for both CD 

and NIBD; however these results were not significant (p = 0.12809 ANOVA).  

No clustering was achieved for weighted unifrac for either normalization group. 

Unweighted unifrac analysis plotted all samples directly on top of each other, and was similarly 

unable to accurately cluster. To determine whether these were indicative of biologically relevant 

clusters, non-phylogenetic methods were utilized, with both Bray-Curtis and Jaccard indices 
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failing to produce clusters for either normalization group (Figure 32C,32D).  

 

Stacked area percent abundance bar plots showed no difference in community structure 

as both a function of disease and geographic region (control normalized, Figure 33A). This was 

similar for the non-CD normalized data (Figure 33B).  
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LEFSe 

LEFSe failed to identify any differentially abundant taxa between the study groups for 

both control normalized and non-CD normalized.  

Random forest 

Random forest analysis of control normalized data had an OOB 0.168 with class errors of 

1 for CD, 0.0197 for healthy and 0.327 for NIBD. Random forest analysis of non-CD normalized 

data had an OOB 0.0968 with class errors of 1 for CD and 0 for non-CD.  

Pooled Pathways Feces Analysis 

Clustering  

Analysis of stool sample pathway data showed that controls tended to cluster (Bray-

Curtis) distinctly from NIBD and CD with the two diseased states forming a much lower mixed 

cluster. Clustering based on CD status (Bray-Curtis) created a looser non-CD cluster and CD 

cluster with CD and non-CD found in each respectively. Clustering (Bray-Curtis) based upon the 

region created a tight American cluster  and a single mixed Indian/Mexican cluster. Clustering  

on regions had significant overlap with clustering based upon disease state, however, many 

healthy Indian samples clustered within the American cluster, which represented only healthy 

stool samples. 

Differentially abundant pathways 

There were 198 different pathways shared between LEFSe, RNA seq (DeSeq2), and 

metagenomeSeq with the top 10 largest effect size producing features being aerobic respiration I 

(cytochrome c) (PWY 3781), acetylene degradation (anaerobic)  (P161 PWY), incomplete 

reductive TCA cycle (P42 PWY), sucrose degradation III (sucrose invertase) (PWY 621), 
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peptidoglycan maturation (meso-diaminopimelate containing) (PWY0 1586), pyruvate 

fermentation to propionate I (P108 PWY), TCA cycle V (2-oxoglutarate synthase) (PWY 6969), 

bifidobacterium (P124 PWY), fatty acid elongation (FASYN_ELONG_PWY), and 

superpathway of L-alanine biosynthesis (PWY0 1061). With PWY 3781, P42 PWY, PWY 6969, 

and FASYN_ELONG_PWY being lowered in CD and NIBD compared to controls, and lowest 

in NIBD compared to CD. Pathways P161 PWY, PWY 621 PWY0 1586, P124 PWY and PWY0 

1061 are elevated in CD and NIBD compared to controls. PWY0 1061  was elevated in CD 

compared to NIBD and P161 PWY, PWY0 1586, and P124 PWY were elevated in NIBD 

compared to CD. All pathways had LDA scores with an absolute value of 2.5 or greater.  

269 pathways were shared between RNA seq, metagenomeSeq and LEFSe when 

examining CD vs. non-CD, with all pathways having LDA scores with an absolute value greater 

than or equal to 4.1 and were found to be reduced in the stool of CD patients. These pathways 

were incomplete reductive TCA cycle (P42 PWY), superpathway of pyrimidine ribonucleosides 

salvage (PWY 7196),  superpathway of L-alanine biosynthesis (PWY0 1061), sucrose 

degradation III (sucrose invertase) (PWY 621), 6-hydroxymethyl-dihydropterin diphosphate 

biosynthesis I (PWY 6147), 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III 

(Chlamydia) (PWY 7539), phosphopantothenate biosynthesis I (PANTO PWY), dTDP-B-L-

rhamnose biosynthesis (DTDPRHAMSYN PWY), L-isoleucine biosynthesis IV (PWY 5104), 

gondoate biosynthesis (anaerobic) (PWY 7663).  
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Random Forest 

Random forest analysis of MetaCyc pathways from fecal samples had an OOB error of 

0.193 with class errors for CD being 0.963, NIBD 0.654 and control 0.0415. When looking at 

CD vs non-CD, the model had an OOB error 0.1 with class errors for CD being 1.0 and 0 for 

non-CD. When examining the geographic region, the model had an OOB error of 0.0259 with 

class errors of 0.0441 for Indian samples, 0.167 for Mexican samples, and 0 for American 

samples.  
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DISCUSSION 

GDF’s impact on healthy individuals: original analysis versus reanalysis of Bonder et al.  

Alpha and beta diversity 

Since celiac patients are only offered one treatment–a GFD–it is important to separate 

pathologic microbiome changes that might be causative for celiac disease from benign 

microbiome changes that happen when someone switches to a GFD. To control for these GFD-

associated microbiome changes, this work took data from a previous study that tracked 

microbiome changes in healthy patients eating a GFD (Bonder et al.).  That study used QIIME, 

PICRUSt, and the Greengenes database and found that the transition from GCD to GFD had little 

to no impact on beta-diversity of samples, concluding that the transition did not alter bacterial 

diversity. In contrast, our analysis detected a small but significant difference in the alpha 

diversity between diets, with GFD samples having a higher average alpha diversity than GCD 

(Chao1, Shannon, Simpson, Figure 1A).  

Differentially abundant taxa and functions  

Originally a small but significant change in beta diversity during the transition from GCD 

to GFD was reported  (Wilcoxon p-value = 0.024, using weighted and unweighted unifrac 

values, Bonder et al., 2016). PCoA analysis also showed samples tended to cluster on the basis 

of individual of isolation regardless of diet, than diet. In contrast, our analysis detected no 

differences in beta-diversity or unifrac (weighted or unweighted, Figure 1B). Furthermore, no 

clustering as a factor of diet was apparent. 
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The original report noted that the species Ruminococcus bromii  and Roseburia faecis, 

and the Veillonellaceae family had lowered abundance in GFD, while the families 

Victivallaceae, Clostridiaceae, and Coriobacteriaceae, the order ML615J-28, and the genus 

Slackia all increased in abundance in GFD (Bonder et al., 2016). Our analysis found the only one 

ASV that was differentially abundant corresponded to the genus Faecalibacterium, LEFSe LDA 

>= 2.0, with a higher abundance in GFD samples (Figure 2). The previous analysis noted no 

significantly differentially abundant pathways in the transition period. Likewise, we noted no 

differentially abundant MetaCyc pathways during the transition. 

It has been noted that members of Faecalibacterium, specifically F. prausnitzii, are less 

abundant in both the treated and untreated celiac microbiome, than to both the healthy and 

untreated celiac microbiome (Herrán et al., 2017, De Palma et al., 2010). F. prausnitzii are 

known for producing butyrate, a short-chain fatty acid known to exert an anti-inflammatory 

effect by driving the differentiation of T-cells into anti-inflammatory T-regulatory cells (Zhou et 

al., 2018). Our work suggests the reduction in F. prausnitzii is unlikely from a GDF, because this 

result is replicated in healthy controls. Furthermore, other perturbations to the microbiome seen 

in treated celiac disease (such as lowered alpha and beta diversity) were not noted in healthy 

patients on a GFD, once again demonstrating that these changes are likely due to the disease 

rather than treatment. Overall, our findings found little impact on microbial community 

composition and metabolic pathways when healthy patients are placed on a GFD. 
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The Mexican CD microbiome: original analysis versus reanalysis of Garcia-Mazcorro et al.  

Duodenal microbiome alpha and beta diversity  

Another celiac microbiome study, by Garcia-Mazcorro et al., was also re-examined. That 

study used QIIME, PICRUSt, and the GreenGenes database and included patients with NCGS, a 

condition where gluten triggers symptoms similar to celiac disease, however there is identifiable 

inflammatory reaction of villous degradation unlike in celiac disease. Although duodenal 

biopsies of celiac patients had a lowered alpha-diversity (Shannon diversity index), they showed 

no differences in clustering for weighted or unweighted unifrac. Our analysis mirrored this 

result, with lowered alpha-diversity in celiac samples across metrics, with the only significant 

change being in the Shannon diversity index (ANOVA test, p = 0.046243, Figure 3A). Similar to 

the original study, there were no differences in beta diversity or clustering for weighted and 

unweighted unifrac values (Figure 3B).  

Differentially abundant duodenal microbiota  

The original study used LEFSe to identify differentially abundant taxa, and found the 

duodenum of celiac patients was characterized by a lowered abundance of OTUs corresponding 

to Bacteroidetes and Fusobacteria and an elevated abundance of OTUs belonging to 

Novisprillium. The microbiome of NCGS patients was characterized by elevated OTUs 

belonging to Actinobacillus and Ruminococcaceae. Controls had an elevated abundance of OTUs 

belonging to Sphingobacterium compared to both CD and NCGS. Our analysis found that the 

biopsies of celiac patients had elevated ASVs belonging to Azospira, Phyllobacterium and 

Stenotrophomonas. Also, both Streptococcus and Neisseria were elevated in NCGS, with both 
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taxa having similar average group aduncance in CD and controls. Fusobacterium was found to 

be lowered in CD, with similar average group abundances in NCGS and controls (Figure 4).  

Both Azospira and Phyllobacterium are nitrogen-fixing bacteria commonly found in the 

roots of plants (Jha et al., 2020, Jiao et al., 2015). Finding these species is likely a 

misidentification, as these samples are unlikely to be found in the human gut. Stenotrophomonas, 

on the other hand, has already been linked to inflammatory bowel disease, found in elevated 

abundance in both Crohn’s disease and ulcerative colitis (Knösel et al., 2009, Walujkar et al., 

2018). Furthermore, this bacteria dominates the microenvironment near the small intestinal gut 

epithelium in dysbiotic mice (Bertolini et al., 2019). It is possible this bacteria is also found in 

close association with the gut-epithelium of the duodenum in humans, perhaps producing similar 

effects as those found in mice with ulcerative colitis. Previous studies noted elevated 

Fusobacterium in CD (Di Biase et al., 2021); however, our analysis and the original analysis 

both showed that this genus is lowered in CD but not NCGS, illustrating a distinction between 

the two conditions. Fusobacterium is considered to be a “bad” bacteria, as it has been found to 

be overly abundant in colorectal cancer, where, among other signaling mechanisms, it can act on 

T-cells to inhibit the immune response, thus worsening the cancer (Kelly et al., 2018). As CD is 

ultimately mediated by CD8+ and CD4+ T-cells (Han et al., 2013), it is counterintuitive to 

expect elevated abundance of Fusobacterium to worsen the disease. More likely, the lowered 

prevalence of Fusobacterium upregulates T-cell mediated immune responses, as in both the 

previous analysis and our analysis. Another explanation for this discrepancy is that it is possible 

that  the Fusobacterium detected as overabundant in CD and colorectal cancer are actually two 

different strains, each leading to its own disease state. An alternative possibility is that the 
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observed changes reflect regional differences in the celiac microbiome of Mexican CD patients 

as diet and other factors corresponding to region can greatly affect microbial composition.  

Both Streptococcus and Neisseria were elevated in controls, with CD and celiac having 

similar group averages, highlighting a possible distinction between the NGCS microbiome and 

celiac microbiome. Streptococcus was previously noted as elevated in patients with NCGS 

(Garcia-Mazcorro et al., 2018) as well as patients with functional dyspepsia (Bodkhe et al., 

2019). However, in the past it was noted that Neisseria was elevated in the duodenum of Italian 

CD patients (D’Argenio et al., 2016). Here we demonstrated that Neisseria is found in similar 

levels in CD and control participants. This may indicate that the microbiome of Italian and 

Mexican patients differ, or previous work may have identified a different species of Neisseria. 

Together these results highlight the differences of microbiome structure between CD and NCGS.  

Differential metabolic functions: Does the celiac microbiome cause vitamin K deficiency? 

Previous work detected no differentially abundant pathways in the duodenum of CD, 

NCGS and controls. Our re-analysis of the PICRUSt2 pathways output, however, detected three 

pathways that were differentially abundant (Figure 5). These three pathways were identified as 

significant using both LESFe and EdgeR; and all three pathways, PWY 7371, 7373, and 6263, 

are involved in the synthesis of menaquinones. These results were validated by random forest 

analysis, with PWY 7371 and 6263 being ranked among the top-10 predictors of disease state. 

Menaquinones include nutrients such as vitamin K2, which are produced almost exclusively by 

gut microbes in mammals (Conly et al., 1992). Several case studies have noted that CD patients 

have vitamin K deficiencies (Gonzalez et al., 2019, Hussaini et al 1999), however previously no 

explanation had been established. It is possible that these deficiencies may be due to a lowered 
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abundance of vitamin K-producing bacteria, as indicated by the reduced abundance of pathways 

7371, 7373, and 6263. This result may also explain some of the lower alpha-diversity in the 

celiac microbiome, as menaquinones commonly serve as microbial growth factors. Furthermore, 

menaquinones have been shown to be growth factors of Faecalibacterium, perhaps explaining 

the previously noted deficiency of the genus (Fenn et al., 2017). A reductionion in menaquinone 

producing taxa would result in a microbiome which is either lower in population and or diversity, 

either of which would result in a sample with reduced diversity.  

 Together these results indicate that the celiac and NCGS microbiomes are distinct in 

composition, with the duodenum of celiac patients being characterized by an abundance of 

Stenotrophomonas and deficiency of Fusobacterium, while the duodenum of NCGS patients is 

characterized by an abundance of Neisseria and Streptococcus. Furthermore, the celiac 

microbiome is functionally distinct from that of controls or the NGCS microbiomes, as is evident 

by the reduced presence of 3-menaquinone-producing pathways. Deficiencies in these three 

pathways may explain the known deficiencies in vitamin K among CD patients, as well as the 

reduced alpha-diversity seen in the duodenum of celiac patients. Furthermore, menaquinones are 

known growth factors for several “good” bacteria; and loss of menaquinone producing taxa is 

known to promote dysbiosis and the loss of beneficial genera of bacteria observed in CD patients 

(Conly, Stein, 1992).  

Stool microbiota alpha / beta diversity and differentially abundant taxa   

Garcia-Mazcorro et al. also obtained stool samples from patients before and after GFD 

treatment. However, that original study was unable to get full participation from their sample 

with only 5 of 12 NCGS, 6 of 12 controls and 3 of 6 CD submitting stool samples for both a 
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GFD and a GCD. Because of this, the original authors did not focus on analyzing stool samples. 

Nevertheless, they did unexpectedly detect a shift in the proportion of Bacteroidetes and 

Firmicutes for all samples, regardless of disease state, with the abundance of Bacteroidetes being 

lowered across samples. No pathways were identified as being differentially abundant.  

Our analysis noted no differences in alpha diversity between study groups, as well as no 

differences in beta diversity nor clustering using both weighted and unweighted unifrac values 

(Figure 6 A/B). LEFSe identified Pseudomonas and Novispirillum as being elevated in celiac 

stool samples, Ruminococcus and Bifidobacterium being elevated in controls, and Haemophilus, 

Oscillospiraceae, Collinsella, Clostridia, and Oscillospiraceae as being elevated in NCGS 

(Figure 7). Novisprillum were previously noted as associated with celiac disease; Pseudomonas 

is known to be elevated in CD patients (Vittasalo et al., 2014), and to elicit an inflammatory 

response in the gut (Lin, Kazmierczk, 2017). Novisiprilum was noted as being more abundant in 

the duodenum in the previous analysis (Garcia-Mazcorro et al., 2018). Ruminococcus and 

Bifidobacterium were previously shown to be less abundant in fecal samples of CD (Bibbò et al., 

2020). Collinsella was previously noted as being a pro-inflammatory bacteria (Astbury et al., 

2020); however this genus was reduced in CD but elevated in NCGS. This is interesting as 

NCGS is a condition in which an inflammatory response is unlikely the cause of symptoms, with 

NCGS patients having normal biomarkers for inflammation (Dale et al., 2021), unlike untreated 

CD patients. Haemophilus was noted as being reduced in CD patients only. Haemophilus is 

known to be underrepresented in the microbiome of patients with  rheumatoid arthritis (RA). 

Both conditions are considered autoimmune diseases, illustrating a similarity between celiac and 

other autoimmune diseases (Di Sante et al., 2021).  
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GFD and Mexican patients  

We next examined samples based upon dietary status. The study included initial data 

taken from untreated NCGS and CD (GCD) and data taken 6 months post-treatment (GFD). All 

patients, regardless of disease status were sampled after adhering to a strict GFD for 6 months. It 

was noted that some symptoms of CD persist in many patients after the transition to GFD despite 

strict adherence to a GFD, in a condition dubbed refractory celiac disease (RCD). To determine 

whether microbes are contributing to RCD, dietary status was considered in the  search for taxa 

and metabolic features that remain the same pre- and post-treatment. LEFSe analysis of 

duodenum biopsies showed several ASVs of Pseudomonas that were elevated either pre-

treatment (ASVs 4 and 22), post-treatment (ASVs 52 and 29), or regardless of treatment (ASV 

11). Stentotrophomonas and Pseudomonas were identified as being elevated in CD regardless of 

treatment status. Both taxa are commonly found in association with the mucosa in IBD (Knösel 

et al., 2009, Walujkar et al., 2018, Vittasalo et al., 2014), with Pseudomonas specifically known 

for producing an inflammatory response in the bowel (Lin, Kazmierczk, 2017). It may be that the 

persistent association of these bacteria with the mucosa, despite dietary intervention, causes a 

persistent inflammatory response in RCD, despite the removal of gluten from the diet. It was also 

found that Anaerostipes was elevated in the pre-treatment celiac biopsies. Anaerostipes is known 

to produce butyrate (Rivière et al., 2016) and is also known to be elevated in FDRs of CD 

patients (Bodhke et al., 2019). This may indicate that butyrate-producing bacteria are more 

abundant in the pre-treatment state. Notably, however, this finding is at odds with claims by 

Bonder et al., which found an increase in the butyrate-producing genus, Faecalibacterium, due 
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to the GFD. This likely indicates that these differences are due to the disease itself rather than 

diet.  

Our analysis of fecal samples, pre-treatment vs. post-treatment, again detected elevated 

Pseudomonas in CD, regardless of treatment status. Haemophilus, Methanobrevibacter, and 

Collinsella were all elevated in NCGS, regardless of disease state. Previously, 

Methanobrevibacter was noted as increased in IBS (Takakura, Pimetel, 2020), once again 

illustrating differences between the microbial communities of CD and NCGS, and potential 

similarities between NCGS and IBS. Interestingly, Neisseria was elevated in CD pre-treatment, 

perhaps indicating that Neisseria associates with CD only at pre-treatment; however the low 

sample size due to a lack of patient participation greatly reduces the power of these findings.  

Greengenes versus SILVA taxonomy 

There was a difference in the identity of the significant taxa detected in the previous 

study and our analysis. To understand whether this difference is due to pipeline (QIIME vs. 

dada2) or database (GreenGenes v12 vs. SILVA nr 99 v138), we assigned taxonomy to our ASV 

table, using both GreenGenes and SILVA databases. If our findings replicated the original study 

using GreenGenes rather than SILVA, it would indicate that OTU-generating pipelines produce 

similar results as ASV pipelines, meaning the old analysis is still valid. If the taxonomy with 

SILVA and GreenGenes are similar however, then this would indicate the need to reanalyze 

older data with new tools to obtain more accurate results. We found that the most abundant taxa 

between greengenes and SILVA remained 80% similar for the duodenum and 90% similar for 

feces (Table 1). However the resulting taxonomy table from Greengenes and SILVA only had an 

overall similarity of 6.3%. This indicates that the most abundant taxa share identity between 
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GreenGenes and SILVA, thus illustrating that this database is most likely the cause of the 

discrepancies between the results of our study and the original.  

This difference in results illustrates the need of current researchers to reanalyze old 

datasets. Although scientists conduct analyses using best practices in their time, computational 

biology and bioinformatics are rapidly evolving fields, with new tools and analysis techniques 

being produced constantly. Databases like SRA and ENA make data freely available and easily 

accessible, so it is simple to perform analyses like ours on older data and extract new and 

relevant results. 

The Indian CD microbiome: original analysis vs. reanalysis of Bodhke et al.  

Fecal alpha/beta diversity and contaminating DNA  

Bodkhe et al. originally included paired biopsies and stool samples taken from 23 

untreated CD patients, 24 First-degree relatives (FDRs), and 23 patients with functional 

dyspepsia or hepatitis B (HEPB). Their study treated FDRs as CD patients in the pre-diseased 

state, and patients with functional dyspepsia/ HEPB as controls. Our analysis aimed to compare 

the microbiome of Indian patients compared to healthy controls, for that reason both the FDRs 

and HEPB patients were left out of the analysis of the individual study, but included in the 

pooled analysis with the disease state: Non-inflammatory bowel disease.  New controls were 

pulled from Chaudhari et al. and Dubey et al. Dubey et al. was conducted in the same region of 

India (Delhi) and thus serves as the best control since the diets on the Indian subcontinent are 

regionally specific giving different parts of the country wildly different microbial compositions 

in their intestinal flora (e.g. data from Chaudhari et al. was collected from a rural region of 

India.) Together, 19 negative stool controls were pulled from Chaudhari et al. and 17 from 
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Dubey et al. No publicly available datasets containing healthy Indian duodenum biopsies were 

found, however the biopsies were included in the pooled analysis.  

The original report found no significant differences in alpha diversity and no clustering 

using Bray-Curtis. Our analysis found higher alpha diversity (Shannon index) in CD at the 

feature level, with alpha diversity being lower compared to controls at all taxonomic levels 

(Figure 8).  

Beta-diversity using Bray-Crustis produced 3 clusters, 2 control clusters and a diseased 

CD cluster. The two control clusters likely reflected microbiome differences due to regional diet, 

as both control sets were taken  from different regions of India. Interestingly, CD clustered 

separately from both, rather than with the healthy samples from the same region, perhaps 

indicating differences in community structure (Figure 8B). Unweighted Unifrac showed 

clustering for controls and CD for all taxonomic levels, once again with the 3 sample groups 

clustering distinctly from each other. Weighted unifrac showed clustering of controls and celiacs 

distinctly for feature level, however this pattern disappeared for genus- phylum levels (Figure 

8C). The results with Shannon diversity and Weighted unifrac were puzzling as the communities 

should be closer in diversity for higher taxonomic levels, as opposed to the feature level. 

Indicating that the differences in both diversity and community structure are derived from 

unassigned bacterial ASVs. These ASVs are indeed bacterial in nature, as they were classified as 

such, indicating that better classification of non-Western microbiomes is desperately needed to 

better understand the contribution of the gut-microbiome in these understudied regions.  

Examination of the composition of communities uncovered a high proportion of 

unassigned reads in the diseased state: Of the original 38,005 ASVs, 4710 had no taxonomic 
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assignment, and 11,527 bacteria were not classified below the kingdom level, making 43% of the 

reads from this set uniformative (Figure 8D). These sequences were removed, and 10% clustered 

by 95% similarity in mega. 95% similarity was chosen as it represents the sequence similarity of 

the v4 variable region and thus one cluster should encapsulate most of the potential 16S v4 

sequences. Clustering created 32 clusters, with 1 cluster representing 96% of the sequences. One 

sequence from each cluster was removed and passed to BLAST for assignment. BLAST analysis 

showed that 96% of the unclassified DNA had greatest sequence similarity to uncultured 16S 

rRNA records, with the remaining 3 percent split between contaminianting human, viral, fungal, 

and bacterial gDNA. The uncultured bacterial DNA may represent DNA chimeras; however they 

were not identified as chimeric using dada2’s remove-chimera denovo method nor vsearch’s 

reference-based removal method. Thus, it is likely these taxa represent organisms that have not 

yet been classified but are common to the Indian microbiome. Nevertheless, as these taxa exerted 

more of an effect on unweighted unifrac (which does not take taxon abundance into account, 

compared to weighted unifrac), they are likely to only be present in small numbers within the 

Indian microbiome. Removing these taxa generated more robust results, with the alpha and beta 

diversity plots remaining more or less static, through the taxonomic levels, and with CD having 

lowered alpha diversity at the feature, genus, and family levels (Figure 8C, 8D).  

Differentially abundant taxa  

The original report found both FDRs and CD had fewer ASVs belonging to Dorea and 

Akermansia. It was noted that CD had a lowered abundance of Prevotella. FDRs and CD had an 

increase in ASVs corresponding to Pediococcus, Intestinibacter, Blautia and Dorea (Bodhke et 

al., 2019). Our analysis showed an elevation of Prevotella-9 in controls with ASVs 4, 5, 6, 8, and 
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10. Interestingly, one ASV 206 of Prevotella-9 was elevated in CD. Healthy stool samples also 

had elevated ASVs of Pseudobutyrivibrio, Acinetobacter, and Bacteroides. Bifidobacterium was 

elevated in both CD and controls with ASV 38 being elevated in CD and ASV 50 elevated in 

controls. An ASV belonging to Bacteroidales was also noted as being elevated in CD (Figure 9).  

Prevotella has been identified as a potentially inflammatory bacteria (Scher et al., 2013), 

however it has also been noted as being elevated in non-western populations, with the highest 

enrichment being those from the Indian subcontinent (Prasoodanan et al., 2021). It was found 

that strains of Prevotella taken from Western and non-Western populations tend to cluster 

separately from one and other, with the Western populations tending to have pro-inflammatory 

Prevotella  and non-Western populations having strains of carbohydrate-degrading Prevotella 

(Prasoodanan et al., 2021, Wu et al., 2013). Non-Western populations tend to have a diet that is 

more rich in plant matter compared to Western populations, likely indicating that these enriched 

genera utilize carbohydrates from the diet (Wu et al., 2013), and that diet may explain the 

differences in bacterial function.  Furthermore, it was found that Prevotella is indeed enriched in 

the gut of Western IBD patients, however these bacteria tend to be closely related to pro-

inflammatory oral strains of Prevotella (Prasoodanan et al 2021, Olbjørn et al., 2019). Previous 

studies looking at the Italian pediatric CD microbiome found that stool of CD children had 

deficiencies in Prevotella compared to non-CD children, once again suggesting that Prevotella 

may play a beneficial role in the gut (Di Biase et al,. 2021). Together these results likely show 

that the healthy Indian fecal microbiome is enriched in species/strains of Prevotella that degrade 

dietary carbohydrates, while the diseased Indian CD microbiome is enriched in potentially pro-

inflammatory strains of Prevotella.   
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Pseudobutyrivibrio is a butyrate producing bacteria that encoded for many genes for 

plant-derived polysaccharide utilization, with butyrate being one of the end products (Kopečný et 

al., 2003). Acinetobacter was previously noted as being lower in stool samples of Indian patients, 

via the original results of Bodkhe et al. Elevated abundance of Bacteroides was previously noted 

in stool of CD patients and children at risk for the development of celiac disease (Di Biase et al., 

2021). Previous studies noted a reduction of Bifidobacterium in the stool of CD patients 

(Olivares et al., 2015), but we detected just one ASV of Bifidobacterium, perhaps reflecting 

species or strain differences in the Bifidobacterium associated with CD and controls. 

Bacteroidales were also found to be significantly reduced in patients with IBD, specifically 

Crohn’s disease (Gevers et al., 2014).  

Together these results show significant overlap between the fecal microbiomes of Indian 

CD patients and CD patients from around the world.  

Differential metabolic functions  

Several pathways for the salvage/production of adenosylcobalamin were identified as 

being reduced in the stool of Indian CD patients compared to healthy controls (COBALSYN 

PWY, PWY 5509, Figure 10). Adenosylcobalamin, or vitamin B12, is another critical growth 

factor found in microbial communities. Previous work has demonstrated that B vitamins, 

including vitamin B12 are widely shared in the gut-microbiome with many species lacking genes 

critical for the production of B vitamins (Magnúsdóttir et al., 2015). Oral vitamin B2 

supplements were shown to increase the diversity of species and ameliorate signatures of 

dysbiosis in fecal samples of patients with Crohn’s disease (Pham et al., 2021). Another study 

found deficiencies in vitamin B led to a proinflammatory state, illustrating another connection 
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between vitamin B and its potential contributions to IBD. Furthermore, symptoms of IBD were 

alemorated when paired with vitamin B supplementation (Gominak, 2016). It appears that these 

vitamins promote a diverse gut microbiome and the absence of B vitamin producing bacteria and 

B vitamins seems to positively correlate with worsening of IBD symptoms. 

Pooled analysis  

Indian CD FDRs as NIBD 

FDRs of CD patients are noted to have microbiomes that are atypical: distinct from the 

healthy microbiome and similar to the CD microbiome (for this reason both duodenal biopsies 

and fecal samples from Bodkhe et al. were included as NIBD rather than healthy, as such 

perturbations may confuse the analysis). In any case, it was noted that dysbiotic samples (NIBD 

and CD) from both India and Mexico more closely resembled each other rather than healthy 

samples. This may be indicative of dysbiosis as a result of disease, rather than disease as a result 

of dysbiosis.  

Duodenal and fecal alpha and beta diversity analysis  

Both duodenum and stool samples from the pool analysis clustered based upon 

geographic region rather than disease or CD status, indicating that factors such as diet and 

geographic region are more influential than disease in terms of microbial community structure. 

This comes as no surprise, as both factors heavily influence microbiome composition. 

Surprisingly, little differences in alpha-diversity were found between disease states (Figure 11, 

14, 17, 23, 26, 29) 

Previously, it was noted that CD patients have stool and duodenum microbiome with 

lowered alpha diversity compared to healthy controls; however our analysis across 376 samples 
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did not replicate this finding. This, together with the findings from our beta-diversity/clustering 

analysis, may show that the CD and healthy microbiomes do not differ as much as previously 

thought in terms of community structure.  

Duodenal Community Structure Analysis 

When looking at the stacked abundance bar plots, it is obvious that CD and NIBD 

samples, while distinct from controls, were more like controls from the same region than samples 

taken from other parts of the world with the same condition (Figure 12, 15, 18, 24, 27, 30).  

Differentially abundant duodenal microbiota 

Fusobacterium was consistently found to be reduced in CD patients from raw and scaled 

data (Figure 13, 16, 19) but not from normalized data. This genus of bacteria was also reduced in 

CD patients in our reanalysis of the Mexican data alone. In some regards, it makes sense for the 

genus to be reduced in CD patients, as it has been demonstrated to inhibit the response of T-cells, 

with CD being a T-cell mediated disease. Both Indian and Mexican samples appeared to have 

somewhat similar levels of Fusobacteria, the phylum this genus belongs to. However this 

phylum was absent from non-CD samples from India. This perhaps indicates that the trend 

observed in Indian and Mexican CD samples is once again a function of disease-induced 

dysbiosis rather than dysbiosis inducing the disease. If Fusobacterium deficiencies indeed play a 

role in the progression of CD, then one would expect similar levels of Fusobacterium to be 

present in both Indian and Mexican non-CD patients.  

Haemophilus was also found as abundant in healthy samples compared to CD samples, a 

confirmation of our finding in the re-analysis of the Mexican samples (Figure 13, 16, 19). As 

stated previously, this bacteria was found to be enriched in the microbiomes of patients with RA, 
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which is notable because RA and CD are similar in regards to biomarkers, as well as a positive 

response to the removal of gluten from the diet (Lerner, Matthias, 2015). The depletion of this 

bacteria in both conditions perhaps represents another connection between the two diseases. It 

should be noted that this bacteria was also found to be enriched in the Mexican samples, 

meaning that this genus correlated with geographic region and was thus lower in Indian samples. 

This result, while robust across raw, filtered, and scaled data, may simply be noise due to batch 

effects. In a previous profiling of the Indian microbiome, Haemophilus was not found to 

constitute the Indian gut microbiome in significant numbers, further supporting that this result is 

simply from batch effects (Chaudhari et al., 2020).   

Similarly, Akkermansia was found to associate both with CD and region of origin, with 

this taxa being elevated in both CD biopsies and Indian biopsies (Figure 13,16, 19). This genus 

of bacteria was previously identified as less abundant in Italian pediatric CD patients, and was 

noted as beneficial and found in association with the gut lining (Xu et al., 2020, Dao et al., 

2016). This likely indicates that this genre is beneficial and not contributing to the disease. With 

these points considered this is likely a false-positive as a result of a lack of healthy Indian 

duodenal biopsies  

Acinetobacter gave the strongest signal from CD-associated microbiota (Figure 13B, 

16B, 19B). This genus, as previously noted, was elevated in Brazilian CD patients and was also 

linked to Crohn’s disease in non-Western populations (El Mouzan et al., 2018). This result 

perhaps found an association between CD and the microbiome that is not detected by studies 

conducted in the United States and Europe. Previous research on the microbiome of post-

menopausal women found that the species Acinetobacter radioresistens was positively 
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correlated, but weakly associated with high levels of C-reactive protein. C-reactive protein is an 

inflammatory blood marker which has been observed as elevated in IBD patients and is used to 

determine whether a patient is suffering from IBD or non-inflammatory IBS, with IBD patients 

having elevated levels (Menees et al., 2015). C-reactive protein has also been found to be 

elevated in CD patients (Tetzlaff et al., 2017), perhaps illustrating a connection between 

Acinetobacter and the systemic inflammation observed in CD.  More research is needed to 

understand whether this association has anything to do with the progression of the disease, or if it 

is simply due to regional effects such as diet.  

No definitive microbial signature was identified in the duodenum of CD patients from 

India and Mexico, but that does not mean one does not exist. The duodenum is just one of 

several chambers of the small intestine that are impacted by the disease. The duodenum also has 

the lowest concentration of bacteria in the small intestine (Brown, Esterházy, 2021). 

Concentrations of bacteria increase over the length of the large intestine, meaning that the 

concentration of bacteria within the duodenum may be too small to exert an effect on the host 

(Brown, Esterházy, 2021). Other chambers of the small intestine should also be evaluated to see 

whether their communities mirror the dysbiosis of the duodenum.  

Differentially abundant duodenal microbiota function: connections to dysbiosis  

One pathway (P163 PWY, Figure 22) which generates both acetate and butyrate, was 

found to be reduced in CD patients compared to controls and NIB. A decrease in acetate 

production may in turn lower levels of acetate in CD patients. Acetate is used by 95% of 

butyergenenic taxa; and acetate concentrations directly correlate with butyrate 

concentrations(Barcenilla et al., 2000). Thus, this imbalance in pathways for the production and 
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consumption of acetate may reduce butyrate production, potentially worsening inflammation and 

dysbiosis. While no butyergenenic taxa were identified in the pooled analysis, several were 

identified in each individual re-analysis, with this result perhaps explaining why. This is due to 

the fact that this pathway was found to be universally lowered in CD, despite geographic region 

of isolation, perhaps indicating that it is the metabolome of CD which should be the focus of our 

study rather than the microbiome.  

Differences in amino acid synthesis and degradation were observed with CD (Figure 22). 

Affected patients had elevated pathways for the production of ornithine, histidine and 

tryptophan, while non-CD upregulated other pathways, including ones that degrade glutamate or 

used glutamate as a substrate. Tryptophan, glutamate, and ornithine were previously linked to 

CD in previous studies; however, these results were generated using peripheral sera (Naluai et 

al., 2018). There is little in the literature regarding whether metabolic data taken from blood sera 

reflects activity by the gut metabolome; however, previous work demonstrated that tryptophan 

and histidine are elevated in stool of CD patients (Di Cagno et al., 2011). Furthermore, DSS-

induced colitis in murine models also showed an increase in several amino acids, including 

glutamate and tryptophan, further supporting the PICRUSt2 results (Xie et al., 2021). Data 

generated using PICRUSt2 serve as a proxy as to what is occurring in the microbiome and as to 

what metabolites are present. This is because PICRUSt2 aligns ASVs to reference genomes, 

annotates the genomes, and makes predictions on the abundance of a given pathway based on 

enzyme count. This gives information as to differences in the potential to perform a given 

pathway, but does not actually provide information as to whether those genes are being 

expressed and the metabolite being produced or substrate consumed. That being said, other in 
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silico studies also detected elevated amino acid synthesis in IBD-mediated dysbiosis (Heinken et 

al., 2021) and the results of our study are in line with those findings.  

As noted previously, stool samples from Indian CD patients were characterized by a 

deficiency in pathways for the production of vitamin B12. In the pooled duodenum analysis, CD 

patients were deficient in a pathway generating the precursor to all of the B12 vitamins (Figure 

22). This pathway (PWY 5188) begins with glutamate and ends with tetrapyrrole. Tetrapyrroles 

serve as the precursors of many metal-binding compounds, such as B-vitamins (colbamine) and 

hemes. As previously noted, the presence of B vitamins in a microbial community is able to 

induce a more diverse environment (Lovley et al., 1996). Cobalamins and hemes are both used 

as electron acceptors in environments poor in oxygen. Cooperative electron transport among 

microbes has been identified across several environments (Lovley et al., 1996, Hederstedt et al., 

2020) and exists within the gut (Light et al., 2018). Lowered abundance of pathways producing 

vitamin B and K, vitamin B precursors, and flavodoxin may indicate a breakdown in the shared 

electron transport chain in the CD microbiome. Whether the breakdown is a symptom or cause of 

dysbiosis is impossible to know without metabolic data, so investigation into the CD 

metabolome should be done to verify these results.  

PICRUSt2: An improved tool 

Overall, the results generated using PICRUSt2 corroborated the limited information 

found in the literature, showing that new computational tools are able to generate valid results 

from older data. More results regarding the CD metagenome and metabolome were generated 

using PICRUSt2 compared to PICRUSt1, which was used by many of the previous studies. This 

result is of no surprise given that PICRUSt2 is able to incorporate more user generated data due 
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to its use of ASVs rather than just reference GreenGenes OTUs as is the case in PICRUSt1. 

Furthermore, PICRUSt2 has a reference database that is 20x larger than that of PICRUSt1, with 

functional information being reported as both pathways and individual KEGG modules. The 

pathway data generated by PICRUSt2 is regarded as the highest level output, with its predictions 

being made using enzyme counts (ECs). This is much more useful compared to just KEGG 

modules, which are the only output of PICRUSt1, as many enzymes can belong to more than just 

a single pathway and be implicated in the generation of several metabolites. By looking at the 

aggregate enzyme counts, PICRUSt2 is able to better predict which pathways have the potential 

to be elevated in a given microbial community. Similar to re-analysing old data with ASV 

producing pipelines can gleen better more clear results of community differences, PICRUSt2 can 

be used to reanalyze older data to get more accurate metabolic and metagenomic information 

regarding old data and can be used to search for functional trends in a given disease using 

publically available data.  

Differentially abundant stool microbiota  

Many taxa identified as less abundant in CD were also identified in American studies of 

CD stool samples (Figure 25, 28, 31). Alistipes and Ruminococcaceae were both repeatedly 

identified as less abundant in CD and NIBD stool and associated with healthy samples. Another 

bacteria, Escherichia-Shigella, was identified in CD stool samples across all analysis methods. 

This bacteria was previously isolated from stool of American CD patients and shown to induce 

immune responses (De Palma et al., 2012). Our results mirror that analysis, with this bacteria 

elevated in CD stool samples. 
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Lachnospiraceae was also found enriched in CD stool (Figure 25, 28,31). This bacteria 

was previously found overabundant in stool samples of children at-risk for CD (Leonard et al., 

2021). Our results suggest this increase in abundance persists once the disease is active in adults. 

This is somewhat confusing, as this family of bacteria is commonly identified as a “good” 

bacteria. One study, seeking to profile members of this family found that while, by and large, 

most members are beneficial to the host, some members are associated with IBD (Vacca et al., 

2020). This reflects a limitation of 16S-based analysis: it cannot identify some ASVs with high 

specificity. It is possible that there are species and strains of Lachnospiraceae that are associated 

with CD that are impossible to identify with our chosen analysis methods.  

Stool, however, should not be the focus of studies examining celiac disease, since it does 

not necessarily reflect the small intestinal microbiome’s composition.  As previously mentioned, 

CD is active in the upper chambers of the small intestine, namely the duodenum and jejunum. 

Biopsies from these tissues are more difficult to obtain compared to stool samples, but should 

likely be the gold-standard when studying CD microbiome, as these samples represent the 

chambers of the gut where the disease is active. 

A previous meta-analysis (Sze, Schloss, 2018) of sequencing data from colorectal cancer 

stool and tissue samples also found that features associated with disease were not uniform across 

samples, but rather had a patchy distribution, with some studies having a strong signal indicating 

that a taxa was highly associated with the disease, while in other studies the signal was reduced 

or absent. To these researchers, this indicated that these taxa may be associated with the disease, 

and while some may worsen patient outcomes, are not a required component of the mechanism 

of pathogenesis in colorectal cancer. While this study was conducted on an entirely separate 
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disease, the same may be true of CD, with some “bad” taxa associating with the disease and 

worsening symptoms and recovery but not actually playing a casual role in the prognosis of a 

patient from inactive to active CD.  

Random forest  

Random forest is a supervised method of machine learning for the classification of 

disease state based upon microbial abundance data. Machine learning algorithms such as random 

forest have been of interest; they represent a non-invasive method of diagnosis in CD. If these 

algorithms can accurately identify disease state from stool abundance data, with a high 

sensitivity, then stool sampling may represent a better diagnostic than duodenal biopsies which 

require patients to undergo a surgical procedure and are the gold standard for CD diagnosis. 

Random forest has been demonstrated to accurately predict the origin of fecal samples. For 

instance, in Roguet et al., a random forest algorithm predicted whether a given stool sample 

came from a cat, dog, pig, deer, or human using microbial abundance data (Roguet et al., 2018) . 

It should be noted that these communities should be expected to deviate significantly from each 

other as they are from entirely different host taxa. Microbiomes are highly adapted to their host, 

and it should be of no surprise that these communities are easy to tell apart. Our implementation 

of random forest analysis was able to accurately predict the country of origin of both the 

duodenal and fecal pooled analysis, however across the studies and pooled analysis, it was 

unable to accurately predict disease status. It is known that geographic region can have drastic 

impacts on the composition of microbial communities within the host due to a variety of factors 

including diet (Human Microbiome Consortium, 2012, Mancabelli et al., 2017). This may 

illustrate that despite having different disease states, CD and NIBD patients have a similar 
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microbiome to healthy individuals of the same population as opposed to CD or NIBD patients 

from other continents. This is further supported by unifrac analysis of the individual studies and 

Bray-Curtis analysis of the pooled studies which illustrated that samples tended to cluster 

together on the basis of country of origin rather than disease. This does not however mean that 

random forest classification is not applicable to IBD and CD, with Chehoud et al. being able to 

accurately predict IBD status using both bacterial and fungal data, perhaps demonstrating the 

importance of fungi within the gut microbiome. If anything this result, reinforces the idea that 

the differences observed in CD community structure are not uniform and likely do not play a 

contributing role in the progression of the disease.  

Previous attempts unify CD knowledge  

There are several sources of information describing gut-dysbiosis associated with celiac 

disease, however these resources are limited either in quantity of information, or to a single 

region of the world. One such study (Leonard et al., 2015) examined 500 infants at risk for the 

development of celiac disease over the course of five years to identify changes in the gut-

microbiota and metabolome associated with the development of celiac disease. While this study 

did include a large sample size, it focused on developed Western countries, and is mainly 

representative of populations following a Western diet. This does not give an accurate 

representation of all the potential bacteria which could be associated with celiac disease as diet, 

antibiotic use and other factors associated with Western countries can have a large impact on 

microbiome composition. Furthermore, this study utilized mostly stool and blood samples, which 

serve as proxies for studying celiac disease, which is mainly active in the duodenum. There are 

also existing databases which serve to unify data from other studies under one archive, 



83 

 

gutMDisorder is one such resource. GutMDisorder is a good start, but is lacking in information 

on CD with only eleven entries (under categories “celiac disease”- 7 entries, “coeliac disease”- 1 

entry and “gluten-free diet”-3 entries) as relating to the CD microbiome, of which only three had 

information regarding the species level (Cheng et al., 2020). This is problematic as associations 

above the genus level are rather uninformative as the function of bacteria can vary wildly even at 

levels as low as strain; thus information about genus and higher classification, while useful in 

exploration of ecosystem structure, inform little regarding mechanisms of disease development 

or targets of intervention. Thus more work is needed to unify information taken from previous 

studies under a single resource to better understand the relationships between CD and the 

microbiome.  

Dealing with noise and batch effects 

One of the challenges of working with microbiome data is its sheer size. With ASV tables 

often consisting of thousands of taxa, this produces considerable noise for analysis and makes 

drawing conclusions from such data difficult. Thus normalization techniques have been 

introduced to correct for such errors. There is debate in the field as to whether such techniques 

are biologically relevant with some scientists going as far to say that results generated using any 

sort of transformation are not meaningful (McMurdie, Holmes, 2014). In our analysis, total sum-

scaling, filtering and raw analysis produced robust results, with significantly differentially 

abundant taxa, diversity metrics and community structure all remaining similar despite 

transformations being applied to the data. The normalization technique taken from Gibbons et al. 

produced distinct results, showing a decrease in alpha-diversity amongst CD patients and no 

significantly differentially abundant taxa.  
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Pooled analysis and dysbiosis 

Each study individually produced different results than the pooled analysis. This could be 

due to either noise or batch effects, both of which were corrected for and did not produce results 

showing that any specific disease causing taxa was enriched across studies, but instead showed 

that bacteria associated with dysbiosis, or an unbalanced community structure were associated 

with CD. This was further amplified by the results of the PICRUSt2 analysis, which again 

demonstrated connections to dysbiosis as a whole, but no real evidence that the CD microbiome 

plays a causative role in the progression of the disease. It would instead appear that the microbial 

community found in CD patients is a result of the disease. The procedure described in Gibbons et 

al. produced results which were distinct from these. As the results of this method are not robust, 

i.e. they are not mirrored by the other techniques, this procedure may be too stringent in its 

attempts to correct for batch effects. On the other hand, the results of the other studies do not 

seem to indicate that there is a CD microbial signature. Perhaps indicating that while the results 

of the normalization described in Gibbons et al. are distinct from the others, they are ultimately 

showing the same thing, that the CD microbiome is not causative of the disease and its 

differences are regionalized.  Investigation and consensus is desperately needed to deduce what 

normalization techniques produce the most biologically relevant data.  
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CONCLUSION 

Reanalysis of old datasets using new tools 

Older OTU generating pipelines such as QIIME and Mothur have been used to conduct 

metagenomic studies of the gut for years. Such tools rely on a binning approach based on a user 

defined similarity threshold to denoise samples, with taxonomy assigned using a single sequence 

from each bin. Newer pipelines such as dada2 instead opt to use machine learning and quality 

scores associated with bases to denoise sequencing files and can differentiate ASVs with as little 

as a single base-pair of difference, thus giving a far more granular picture of the microbiome.  

Regional differences in CD  

Our analysis confirmed results of these older OTU based tools, as well as generating new 

data of CD-associated taxa in samples from both India and Mexic,. with deficiencies in 

Fusobacterium being found in both the original analysis and our reanalysis. Our reanalysis also 

found that Stenotrophomonas, a bacteria associated with IBD, was enriched in Mexican CD 

datasets, which was not found previously. Reanalysis of Bodhke et al. derived results that were 

more dissimilar to the original report, with CD samples characterized by a reduction in butyrate-

producing taxa and an increase in Prevotella-9.  

The datasets were then pooled to determine whether a global CD pattern exists regarding 

the CD microbiome using a variety of filtering and normalization techniques. Our results show 

that, while the CD microbiome is indeed distinct from that of the healthy microbiome, diseased 
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samples are more similar to those taken from the same region rather than those of the same 

disease, likely indicating that dysbiosis seen in CD patients is a result of the disease rather than a 

contributing factor to the disease. Thus, one difficulty in interpreting our data was that people 

from different parts of the globe had location-specific microbial profiles making comparing CD 

cohorts difficult.   

Metabolic differences in CD  

Many of these studies also used PICRUSt1. In our analysis PICRUSt2 was used instead, 

with PICRUSt2 having a 20-fold larger database, theoretically giving it the power to derive more 

accurate results regarding community function. Our analysis found deficiencies in pathways for 

the production of electron accepting products in diseased and CD samples throughout both 

individual studies and pooled analysis. This trend was detected  previously in dysbiotic 

microbiomes. We also found perturbations in amino-acid synthesis in CD patients, which was 

also confirmed by other studies investigating the CD microbiome. These results confirm that 

PICRUSt2 is indeed a valid predictor of microbial function using 16S data.  

Small intestinal biopsies versus stool samples 

Our studies focused on biopsies taken from the duodenum and stool samples. CD is 

active in the small intestine, meaning that stool samples are likely not reflective of the chambers 

of the gut where the disease is actually active. The duodenum represents a more logical choice of 

study for the CD microbiome, however it is not the only chamber of the small intestine affected 

by the disease. While we found no microbial signature associated with CD duodenal samples in 

our pooled analysis, that does not mean that the small intestinal microbiome is not involved. 

Investigation into the jejunal and ileal microbiome should also be pursued, where there is a 
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higher concentration of bacteria and thus a greater possibility of these taxa exerting an effect on 

the host.  

Summary 

Overall, our findings indicate that the dysbiosis observed in CD is likely a result of the 

disease rather than a contributing factor. Analysis of data from any geographic region 

individually produces results showing potentially relevant differentially abundant taxa, however 

these results do not hold up across pooled analysis indicating that they likely are not contributing 

to the disease, or perhaps, contributing to the disease within this specific cohort in a manner that 

is not generalizable to the global population. This is further supported by the PICRUSt2 

functional data, with connections to other traits observed in dysbiotic communities. Our results 

also show that reanalysis of old data is both needed and relevant as newer, more accurate results 

can be generated using previously analyzed sequencing data.  
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