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a b s t r a c t 

In this paper, we study the scheduling problem for a customized production system consisting of a flow shop 
production line with a parallel assembly stage that produces various products in two stages. In the first stage of 
the production line, parts are produced using a flow shop production line, and in the second stage, products are 
assembled on one of the parallel assembly lines. The objective is to minimize the time required to complete all 
goods (makespan) using efficient scheduling. A mathematical model is developed; however, the model is NP-hard 
and cannot be solved in a reasonable amount of time. To solve this NP-hard problem, we propose two well-known 
metaheuristics and a hybrid algorithm. To calibrate and improve the performance of our algorithms, we employ 
the Taguchi method. We evaluate the performance of our hybrid algorithm with the two well-known methods 
of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) and demonstrate that our hybrid algorithm 

outperforms both the GA and PSO approaches in terms of efficiency. 

1. Introduction 

Machine scheduling is a significant challenge in the planning and 
control of manufacturing operations. The optimization of machine 
scheduling requires an effective and efficient assignment of production 
activities to a limited number of available machines. These problems 
are computationally challenging, and therefore subject of many research 
articles [24,29,37] . Flow shop scheduling with assembly operation is a 
widely applied machine scheduling problem in manufacturing. A large 
number of these problems are traditional two-stage assembly flow shop 
scheduling problems [ [19] , [27] ]. Lee et al. [19] conducted the first 
study on flow shop scheduling with assembly operations. They demon- 
strated that the problem is NP-hard and proposed a branch and bound 
and three heuristics to solve it. 

Cheng and Wang [5] solved a makespan minimization problem in a 
two-machine flow shop system considering a special structure. In their 
study, there are two types of components known as unique components 
and common components. Unique components are processed individu- 
ally, and common components are processed in batches, which require 
different times for each type of product. The first machine produces both 
unique and common components in the production system, and the sec- 
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ond machine assembles components into products. Yokoyama [36] stud- 
ied the scheduling problem of a hybrid production system that includes 
machining and assembly operations. He proposed a branch and bound to 
solve the problem. Sun et al. [38] studied a flow shop scheduling prob- 
lem with an assembly operation. They presented a series of heuristic 
algorithms based on Johnson’s and Gupta’s algorithms. Yokoyama and 
Santos [39] studied a modified flow shop scheduling in which processed 
parts are assembled to form the products in a subsequent assembly stage. 
Each part was produced on a flow shop line with two machines, and then 
products were completed on a single assembly stage. They proposed an 
efficient branch and bound method to minimize the weighted sum of 
the product completion time. Allahverdi and Al-Anzi [1] studied an as- 
sembly scheduling problem with two stages. In this problem, parts are 
produced using m machines in the first stage and assembled with an as- 
sembly machine in the second stage. They considered setup times and 
process times separately. They employed a hybrid tabu search, a self- 
adaptive differential evolution (SDE), and a new self-adaptive differen- 
tial evolution (NSDE) to solve the problem. Hatami et al. [13] solved a 
distributed assembly permutation flow shop scheduling problem with a 
makespan minimization objective. They proposed a mixed-integer lin- 
ear programming model, three constructive algorithms, and a variable 
neighborhood descend algorithm to solve the problem. Mahdavi et al. 
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Fig. 1. Flow shop with a parallel assembly stage. 

[21] studied a production system that consists of a hybrid flow shop 
production line followed by an assembly stage to minimize makespan. 
They modeled the production setup as an integer programming prob- 
lem and offered two metaheuristics to solve the problem. Fattahi et al. 
[8] considered a compound production system with a hybrid flow shop 
line at the first stage and an assembly line at the second stage. They 
presented a mathematical model for the problem and a series of heuris- 
tic algorithms based on Johnson’s algorithm. They evaluated the final 
solution with two improved lower bounds. Tajbakhsh et al. [32] studied 
a multi-objective assembly permutation flow shop scheduling problem, 
which includes three parts: machining, assembly, and batch processing. 
They proposed a mathematical model of the problem, and a metaheuris- 
tic algorithm was applied to solve the problem. Fattahi et al. [9] studied 
a hybrid flow shop scheduling problem with setup time and assembly 
operations. They extended a hierarchical branch and bound algorithm 

to solve the problem and reported three upper and lower bound. Komaki 
and Keyvanfar [16] suggested a metaheuristic algorithm based on a gray 
wolf optimizer algorithm for solving the two-stage assembly flow shop 
scheduling problem with predetermined release times. Maria Gonzalez- 
Neira et al. [12] studied the scheduling problem processed through two 
stages in a company and solved the problem with a hybrid algorithm. 
The problem is a distributed assembly permutation flow shop problem in 
which the production line consists of a set of distributed flow shop lines 
in the first stage and an assembly line in the second stage. Framinan and 
Perez-Gonzalez [10] addressed the two-stage assembly scheduling prob- 
lem and used some constructive heuristic and metaheuristic algorithms 
to solve the problem. Allahverdi et al. [2 , 3] proposed an algorithm for 
solving the two-stage assembly-scheduling problem to minimize total 
tardiness with setup times. Their proposed algorithm reduces the error 
of the best previous algorithms by about 50%. Komaki et al. [17] pre- 
sented some dispatching rules, a lower bound, and a metaheuristic algo- 
rithm based on the cuckoo optimization algorithm for solving the three- 
stage assembly flow shop scheduling problem. Lee [20] proposed six 
lower bounds and four heuristic algorithms for solving a two-stage as- 
sembly problem to minimize the total completion time. 

Sabouni and Logendran [30] proposed a new mathematical model, 
lower bounds, and an efficient algorithm for solving a real case flow shop 
problem in the electronic industry. Sheikh et al. [31] proposed some op- 
timal polynomial solutions and some multi-objective-based metaheuris- 
tic algorithms for solving a multi-objective assembly flow shop with re- 
lease time. 

In this paper, we will discuss a modified type of production system 

that is used in modern industries. In many production lines, many proce- 
dures are performed on each part repeatedly. The majority of the time, 
pieces go through the same series of processes in the same order. In this 
case, machines are placed in a series setup known as a flow shop [26] . 
In our problem, the first stage consists of 𝑘 ( 𝑘 = { 1 , 2 , ..., 𝐾 } ) machines 
that are arranged as a flow shop, and in the second stage, produced parts 
are assembled on two parallel assembly lines. This production line has 
the flexibility of producing several products with different parts. The 
required parts are manufactured in the first stage to produce each prod- 
uct. The parts are then assembled to form the final product. It should 
be noted that the two parallel assembly lines in the second stage are 
identical. Therefore, the assembly time of each product is the same on 
both assembly lines. It is assumed that all parts and machines are avail- 
able at the beginning of the production time horizon, and each part can 

be processed by only one machine at a time; machines cannot operate 
more than one product simultaneously. Setup time and required time 
for the transmission of parts between flow shop and assembly stages 
are negligible. Also, preemption is not authorized. The number of parts 
and required machine timing are deterministic, and there is no space 
limitation between stages. 

The remainder of the paper is organized as follows. The problem 

formulation and the mathematical model are presented in Section 2 . 
Section 3 presents the algorithms proposed in this study. In Section 4 , the 
parameters of the algorithms are designed, and some example problems 
are solved using the proposed solution procedures. The results are also 
compared based on different criteria. Finally, the summary of the results 
and directions for future researches are discussed in Section 5 . 

2. Problem description 

This paper studies a modified flow shop scheduling production line 
with assembly operations. Assume a set of 𝑇 products 𝑡 = { 1 , .., 𝑇 } has to 
be produced. Each product consists of different parts ( 𝑖 ) which should 
be processed through a flow shop line. Different machines are arranged 
as a flow shop at the first stage. Each part is processed at the first stage, 
and then parts are assembled at either assembly line one or two to pro- 
duce the final product. Fig. 1 shows a simplified view of the explained 
problem. As depicted in Fig. 1 , the first stage involves the processing 
of raw materials or pieces. When the process is complete, the produced 
parts are assembled to form the final products in the second stage. In 
this paper, the following conditions are considered: 

a Assembly operation cannot start unless all its related component 
parts are ready to assemble. 

b The processing time of part 𝑖 , 𝑖 = { 1 , .., 𝑛 } , are given as constants on 
each machine at a flow shop. 

c Assembly times of the product 𝑡 , 𝑡 = { 1 , .., 𝑇 } , are available, and they 
are the same on both assembly stages. 

d Machines cannot process more than one operation at the same time. 
e All machines are available and ready to use at the beginning of the 

scheduling horizon and never break down during the scheduling pe- 
riod. 

f Setup times are independent of each other and are included in the to- 
tal processing time for each operation. Therefore, the order in which 
the parts are manufactured has no effect on the setup durations. 

g The objective function is the minimization of the makespan (maxi- 
mum completion time). 

h At the first stage, the sequence of production is the same for all ma- 
chines. In other words, the production line is a permutation flow 

shop. 
i Different products are ordered, and only one of each product is re- 

quired. 

The notations of the mathematical model of the problem are as fol- 
lows: 
𝑇 Total number of products 
𝑡 Product index, 𝑡 = { 1 , .., 𝑇 } 
𝑛 Total number of parts 
𝑖 Part index, 𝑖 = { 1 , .., 𝑛 } 
𝑛 𝑡 Number of parts in product t 
𝑘 Machine index at the first stage (flow shop) 𝑘 = { 1 , 2 , ..., 𝐾 } 
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𝑝 𝑖𝑘 Process time of part 𝑖 on the machine 𝑘 at the first stage 
𝑚 Index of stages in the assembly line, 𝑚 = { 1 , 2 } 
𝐴 𝑇 𝑡 Assembly time of product t 
𝑎 𝑖𝑡 1 if the part 𝑖 is a component of the product 𝑡 ; 0 otherwise 
𝑗 Index of sequence on flow shop machines, 𝑗 = { 1 , .., 𝑛 } 
𝑝 Index of sequence in assembly lines 
𝑀 A large positive number, The mathematical modeling of the 

problem has the following variables: 
𝑥 𝑖𝑗 1, if the part 𝑖 is processed at sequence 𝑗 on flow shop; 0 

otherwise 
′
𝑗𝑡 

1, if the part in the sequence 𝑗 is a component of the product 
𝑡 ; 0 otherwise 

𝑅 𝑡 Ready time of the product 𝑡 to be assembled, i.e., all compo- 
nent parts of the product 𝑡 have passed through stage 1 

𝑝 ′
𝑗𝑘 

Processing time of part in sequence 𝑗on the machine 𝑘 at the 
first stage 

𝑐 𝑗𝑘 Completion time of the job in sequence 𝑗on the machine 𝑘 at 
the first stage 

𝑧 𝑚𝑝𝑡 1, if the product 𝑡 is assembled in priority 𝑝 on the assembly 
line 𝑚 

𝑓 𝑗 Completion time of processing part in sequence 𝑗at the first 
stage (complete flow shop) 

𝑠 𝑚𝑝 The start time of machine 𝑚 to assemble the product in prior- 
ity 𝑝 

𝑐 max Makespan 

Based on the aforementioned problem and notations, the mathemat- 
ical model is presented as follows: 

𝑀𝑖𝑛 𝑧 = 𝑐 max (1) 

Subject to: 

𝑛 ∑
𝑖 =1 

𝑥 𝑖𝑗 = 1∀𝑗 (2) 

𝑛 ∑
𝑗=1 

𝑥 𝑖𝑗 = 1∀𝑖 (3) 

𝑛 ∑
𝑖 =1 

𝑥 𝑖𝑗 × 𝑝 𝑖𝑘 = 𝑝 ′
𝑗𝑘 
∀𝑗, 𝑘 (4) 

𝑐 𝑗𝑘 = 𝑝 ′
𝑗𝑘 
𝑗 = 1 , 𝑘 = 1 (5) 

𝑐 𝑗𝑘 = 𝑝 ′
𝑗𝑘 

+ 𝑐 ( 𝑗−1) 𝑘 𝑗 ≥ 2 , 𝑘 = 1 (6) 

𝑐 𝑗𝑘 = 𝑝 ′
𝑗𝑘 

+ 𝑐 𝑗( 𝑘 −1) 𝑗 = 1 , 𝑘 ≥ 2 (7) 

𝑐 𝑗𝑘 = max 
{
𝑐 ( 𝑗−1) 𝑘 , 𝑐 𝑗( 𝑘 −1) 

}
+ 𝑝 ′

𝑗𝑘 
𝑘 ≥ 2 , 𝑗 ≥ 2 (8) 

𝑐 𝑗𝑘 ≤ 𝑓 𝑗 ∀𝑗, 𝑘 (9) 

𝑛 ∑
𝑖 =1 

𝑥 𝑖𝑗 × 𝑎 𝑖𝑡 = 𝑎 ′
𝑗𝑡 
∀𝑗, 𝑡 (10) 

𝑓 𝑗 ≤ 𝑅 𝑡 + 𝑀(1 − 𝑎 ′
𝑗𝑡 
)∀𝑗, 𝑡 (11) 

𝑅 𝑡 ≤ 𝑠 𝑚𝑝 + 𝑀(1 − 𝑧 𝑚𝑝𝑡 )∀𝑡, 𝑚, 𝑝 (12) 

𝑆 𝑚𝑝 ≤ 𝑅 𝑡 + 𝑀(1 − 𝑧 𝑚𝑝𝑡 )∀𝑡, ∀𝑚, 𝑝 = 1 (13) 

𝑆 𝑚 ( 𝑝 −1) + 𝐴 𝑇 𝑡 × 𝑧 𝑚 ( 𝑝 −1) 𝑡 ≤ 𝑆 𝑚𝑝 ∀𝑡, ∀𝑚, 𝑝 ≥ 2 (14) 

2 ∑
𝑚 =1 

𝑃 ∑
𝑝 =1 

𝑧 𝑚𝑝𝑡 = 1∀𝑡 (15) 

𝑛 ∑
𝑡 =1 

𝑧 𝑚𝑝𝑡 ≥ 

𝑛 ∑
𝑡 =1 

𝑧 𝑚 ( 𝑝 +1) 𝑡 ∀𝑚, 𝑝 (16) 

𝑐 max ≥ 𝑠 𝑚𝑝 + 

𝑇 ∑
𝑡 =1 

𝐴 𝑇 𝑡 × 𝑧 𝑚 ( 𝑝 −1) 𝑡 ∀𝑚, 𝑝 (17) 

𝑥 𝑖𝑗 , 𝑎 
′
𝑗𝑡 
𝑎𝑛𝑑 𝑧 𝑚𝑝𝑡 ∈ { 0 , 1 } (18) 

Eq. (1) shows the objective function that is makespan minimization. 
Constraints (2) , (3) imply that each part should be processed in one pri- 
ority. In particular, Constraint (2) ensures that there should be only one 
part in each priority, and Constraint (3) ensures that each part should 
be allocated to one priority. Eq. (4) calculates the processing time of 
the job for the 𝑗 𝑡ℎ priority. The required process time of each job on 
each machine is indicated by Constraints (5) –(7) , and [7] . More pre- 
cisely, Constraint (5) shows the completion time of the first job on the 
first flow shop machine. Constraint (6) shows the completion time of 
other jobs on the first flow shop machine. Eq. (7) calculates the comple- 
tion time of the first priority job on the other machines, and Constraint 
(8) shows the completion time of other jobs on the other machines. Con- 
straint (9) guarantees that the completion time of each job in stage one 
(flow shop) is greater than its completion time on each machine. 

Eq. (10) shows the position of product 𝑇 ′𝑠 parts in the flow shop 
sequence. Eq. (11) guarantees that the product 𝑇 will be ready to as- 
semble only when all parts are processed at stage one. Eqs. (12) and 
(13) take care of the assembly start time of the products at stage two. 
Eq. (12) ensures that the assembly operation can only start when all 
parts of the product are ready to be assembled. Eq. (13) shows that 
the assembly process of the products on the first priority of each as- 
sembly line should start after all the parts are ready. At the same time, 
Constraint (14) calculates the assembly start time of products in other 
priorities. Eq. (15) guarantees that each product should be allocated 
to just one assembly line and only on one priority. Constraint (16) ar- 
ranges the sequences in the assembly lines. Constraint (17) ensures that 
the makespan is greater or equal to the completion time of each prod- 
uct. Finally, Constraint (18) specifies the specifications of the decision 
variables. 

3. Proposed algorithms 

In this problem, parts machining and assembly operation planning 
should be treated simultaneously. As mentioned previously, Lee et al. 
[39] , [40] proved that a two-stage manufacturing system with two ma- 
chines at the first stage and a single assembly line at the second stage 
is strongly NP-Hard. Therefore, the more complicated problem consid- 
ered in this paper is also NP-hard. In this case, the mathematical model 
can only find the optimum solutions for a small-scale scheduling prob- 
lem in reasonable computation time. As the problem gets larger and 
more complicated, the computation time increases. Therefore, in most 
cases, the mathematical model cannot find the optimum answer to real- 
world problems in a reasonable amount of time. Many scholars have suc- 
cessfully employed metaheuristic algorithms ( i.e ., the genetic algorithm, 
Particle swarm optimization, etc.) have been successfully employed by 
many scholars in solving complex scheduling problems [ [4] , [33] , [15] ]. 
We propose three algorithms to find near-optimal solutions to this prob- 
lem. These developed algorithms are described in the following section. 

3.1. Genetic algorithm 

Holland first introduced the Genetic Algorithm (GA) (1970). Genetic 
algorithms are a type of evolutionary algorithm, which is a larger class 
of metaheuristics. GAs employ techniques inspired by natural evolution, 
such as inheritance, mutation, selection, and crossover, to generate so- 
lutions for optimization problems [11] . Genetic algorithms have been 
widely used to solve different optimization problems [ [22] , [35] , [23] ]. 
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Fig. 2. A possible chromosome of GA. 

Fig. 3. Decoding section two of the example chromosome. 

A GA starts with a set of chromosomes called a population that defines 
an initial solution. A new population is generated from the former pop- 
ulation. We hope to improve the initial solution by producing new pop- 
ulations. Each solution is evaluated based on the fitness criteria, and the 
most fitted solutions are chosen to form new solutions. New offspring 
solutions are created by a crossover operator. This operator combines 
the information of two parents by exchanging selected parts of the solu- 
tions of the parents. The other operator called mutation is employed in 
the algorithm to maintain population diversity by slight changes in the 
selected solutions (Gen and Cheng, 2000). At the beginning of the pro- 
cess, the properties of the operators (fitness criteria, crossover and etc.) 
should be specified, and then the GA algorithm is applied to initialize 
the first population of solutions; then mutation, crossover, inversion, 
and selection operators help to improve the initial solution through a 
repetitive process. This repetitive cycle is applied to the population un- 
til some termination condition is satisfied (e.g., no improvement in the 
population, a specific number of generations, and a certain pre-defined 
value for objective function). In the following, each GA part adapted to 
the scheduling problem is described. 

3.1.1. Encoding 

The chromosome of the proposed GA is constructed of two sections. 
Section 1 is a string of 𝑛 integers, representing the parts of the product. 
In each chromosome, value 𝑖 at the position 𝑗 in Section 1 indicates the 
part 𝑖 belongs to sequence 𝑗 on the flow shop machines. 

Section 2 illustrates the product assembly sequence on each assembly 
line using n integers. The value i denotes the product and values greater 
than the number of products are utilized to shift the sequence between 
assembly line 1 and assembly line 2. The assembly schedule begins with 
assembly line 1. We use an example to demonstrate the GA chromo- 
some encoding technique. Fig. 2 illustrates a hypothetical chromosome 
structure for a problem with 10 parts and 4 products. 

In this example, Section 1 represents the production sequence on 
the flow shop machines. Parts are manufactured in the following or- 
der on each flow shop machine: { 5 − 1 − 9 − 4 − 10 − 7 − 8 − 2 − 6 − 3 } . 
Section 2 details the assembly sequence for each product on each as- 
sembly line, as seen in Fig. 3 . Before discussing Section 2 of the chromo- 
some, note that we have four products and must determine the assem- 
bly priority of these four products on two assembly lines ( T = {1,2,3,4}). 
Section 2 begins with the number 3 in the first position; 3 is a member 
of Set T. Product 3 is allocated to assembly line 1 at its first priority be- 
cause it is a member of Set T . The following number is 8, which is not a 
member of set T; as such, it does not represent an item; instead, it shifts 
the sequence between assembly lines 1 and 2; in other words, when the 
priority is scheduling on assembly line 1, a number that is not a member 
of set T , such as 8, will shift the scheduling to the second assembly line, 
and vice versa. Because assembly line 1 was scheduled before observing 
8, the assembly scheduling will now be changed to assembly 2. Because 
the following number is 1, product 1 is given the first priority on assem- 
bly line 2. Following that, the next number is 5, which does not belong 
to the set T ; as a result, the scheduling is shifted from assembly line 2 
to assembly line 1. The following number is 10, which is not a part of 

set T, so scheduling is transferred from assembly line 1 to assembly line 
2-similarly, number 7 redirects scheduling to assembly line 1. Because 
the next number, 2, is a member of set T, product 2 will be placed on 
assembly line 1 ′ s second priority, after product 3. The next number is 
9, which shifts scheduling to assembly line 2. Finally, assembly line 2 ′ s 
second priority is assigned to product 4. The chromosome is encoded 
using this proposed approach, as illustrated in Fig. 3 . We can capture 
every possible state of the problem using this encoding strategy. 

3.1.2. Selection strategy 

A fraction of the existing population is chosen to reproduce the new 

generation. Different methods are proposed to select parents (Reeves 
and Rowe, 2003). In this paper, selecting parents is based on the fitness 
of the chromosomes. Half of the parents are randomly selected from 

40% of the best chromosomes in the population, and the remaining is 
randomly selected from the entire population. 

3.1.3. Crossover operator 

There are many crossover techniques for different data structures. 
In this paper, a one-point crossover is selected. In this method, a single 
crossover point is selected on the chromosomes of both parents, and the 
data after this crossover point is swapped between the parents. The new 

chromosomes are called the children. 
When the crossover operator is used, several of the children’s chro- 

mosomes become infeasible due to repeated sequences of the same in- 
tegers. Accordingly, the following strategy is planned to cope with this 
problem: 

a Find out repetitive numbers in each child’s chromosome. 
b Replace the first repetitive number of Child 1 with the first repetitive 

number of Child 2. 
c Repeat this procedure for all chromosomes until children are feasi- 

ble. 

Once this method is implemented, all of the children’s encoding 
becomes feasible. Fig. 4 illustrates a sample crossover operator us- 
ing the suggested technique applied to the same example covered in 
Section 3.1.1 . 

In the Fig. 4 example, we apply the crossover operator and employ 
the suggested strategy until all the children are feasible. After applying 
the crossover operator, the initial step is to detect the repeating number 
in each offspring, i.e ., 1–4, 7–10). The first repeated offspring of Child 1 
is then replaced with the first repetitive offspring of Child 2. If we look at 
this example again, the first repeated number in child one is 1, while the 
first repeated number in child two is 8. Following the proposed strategy, 
we substitute 1 for 8. It should be noted that the second 1 and the second 
8 in each child have remained unchanged. The second repeated number 
in child 1 is a 9, while the second repeated number in child 2 is a 2. 
As a result, the first 9 and 2 observed in the offspring are replaced with 
each other, but the second 9 and 2 observed in the offspring remain 
unchanged. In child 1, the third repeated number is an 8, and in child 
2, the third repeated number is a 9. As a result, the first “8 ″ and “9 ″ in 
the offspring are replaced by each other, but the second 8 and 9 in the 
offspring stay untouched. This procedure is repeated for the fourth set 
of repeated numbers ( i.e ., 3, 4), the fifth set of repeated numbers ( i.e ., 
5, 6), and the sixth set of repeated numbers ( i.e ., 10, 7). 

3.1.4. Mutation operator 

Mutation helps to keep genetic diversity from one generation to the 
next generation in genetic algorithm chromosomes. Mutation happens 
by a defined mutation probability during the evolution process. The mu- 
tation operator in GA preserves and introduces diversity in a generation. 
In this problem, the mutation operator is employed in two steps, one in 
the sequence of the flow shop and the other in the priority of assembly. 
In both steps, two numbers are randomly selected and replaced with 
each other. 
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Fig. 4. Example of crossover operator. 

Fig. 5. Discrete PSO strategy. 

Once children are generated and mutation is applied to them, their 
fitness is calculated, and if their fitness function is better, they are re- 
placed with their parents. 

3.1.5. Termination criterion 

There are different termination criteria. In this paper, three termina- 
tion criteria are proposed: 

a The number of iterations exceeds the pre-defined number assigned 
by the user. 

b The computational time of the program exceeds the time limit as- 
signed by the user. 

c The convergence of the chromosomes in two following iterations 
becomes less than the limit assigned by the user. The convergence 
criterion is calculated by Eq. (19) 

𝛼1 ×
||||
𝑚𝑒𝑎 𝑛 𝑡 −1 − 𝑚𝑒𝑎 𝑛 𝑡 

𝑚𝑒𝑎 𝑛 𝑡 −1 

|||| + 𝛼2 ×
||||
min 𝑡 −1 − min 𝑡 

min 𝑡 −1 

|||| ≤ 𝜀 (19) 

where 𝛼1 , 𝛼2 are random numbers and 𝜀 is the convergence limit. 𝑚𝑒𝑎 𝑛 𝑡 
is the average value of solutions in 𝑡 iteration and min 𝑡 is the minimum 

value obtained in the iteration 𝑡 . 

3.2. Proposed particle swarm optimization 

Particle Swarm Optimization (PSO) is a stochastic optimization tech- 
nique introduced by Eberhart and Kennedy [6] . PSO is based on the 
social behavior metaphor and has many similarities with evolutionary 
computation techniques such as Genetic Algorithms [25] . Many scholars 
have successfully used PSO for solving complicated optimization prob- 
lems [ [18] , [14] , [34] ]. Since the PSO algorithm is a population-based 
algorithm, it starts with a population of random solutions, and a set of 
potential solutions evolves to a suitable solution (or set of solutions) for 
a problem. Each solution is called a “particle, ” and the set of the pop- 
ulation is called the “swarm. ” The position of each particle stands for 
the potential solution. Each particle changes its position to follow these 
three principles: 

a To maintain its inertia. 
b To change based on its best position so far. 
c To change based on the swarm’s best position. 

The particle’s best position is named 𝑃 𝑏𝑒𝑠𝑡 , and the swarm’s best so- 
lution is named 𝐺 𝑏𝑒𝑠𝑡 . The position of a particle is updated by each it- 
eration, and the new particle is calculated using the formula, 𝑋 

𝑡 +1 
𝑖 

= 

𝑋 

𝑡 
𝑖 
+ 𝑉 𝑡 +1 

𝑖 
where 𝑋 

𝑡 
𝑖 

represents the particle position and 𝑉 𝑡 
𝑖 

is the ve- 
locity of the particle 𝑖 at the iteration 𝑡 . The velocity is calculated 

according to this formula, 𝑉 𝑡 +1 
𝑖 

= 𝜔 0 ∗ 𝑉 𝑡 𝑖 + 𝐶 1 ∗ 𝑟𝑎𝑛 𝑑 1 ∗ ( 𝑃 𝑏𝑒𝑠 𝑡 𝑖 − 𝑋 

𝑡 
𝑖 
) + 

𝐶 2 ∗ 𝑟𝑎𝑛 𝑑 2 ∗ ( 𝐺 𝑏𝑒𝑠𝑡 − 𝑋 

𝑡 
𝑖 
) , where 𝜔 0 is the inertia weight controlling the 

movement of the particle. 𝐶 1 , 𝐶 2 are called cognitive and social parame- 
ters, which determine the balance between convergence to 𝑃 𝑏𝑒𝑠 𝑡 𝑖 or 𝐺 𝑏𝑒𝑠𝑡 

[25] . It is obvious that standard PSO equations use real-valued positions 
and velocities, and they cannot be used to generate a discrete job per- 
mutation. 

3.2.1. Discrete PSO 

Standard PSO is usually used for problems with real values. Since 
the solution space of this problem is discrete, at this stage, a strategy is 
introduced to adapt the problem with the standard PSO. When design- 
ing the PSO algorithm, one of the key issues is to establish a suitable 
way of encoding a schedule (or solution) in a way that particles have 
the necessary information. In this problem, each particle is divided into 
two sections. Section one represents the sequence of parts on flow shop 
machines, and section two shows the priority of product assembly on 
each assembly line. Section one is made of n (number of parts) random 

numbers between (0,1). The smallest number in this code is representa- 
tive of part 1, and the largest number represents part n. So the numerical 
order shows parts number, and the value 𝑖 in position 𝑗 represents the 
sequence of parts machining. An example of this encoding process is 
shown in Fig. 5 . 

The same strategy is used to encode the second section. This section 
is interpreted exactly the same as Section 3.1.1 . Applying this strategy, 
PSO can be used for the flow shop with assembly operation. Each par- 
ticle is updated by the given formula and in each iteration 𝑃 𝑏𝑒𝑠𝑡 and 
𝐺 𝑏𝑒𝑠𝑡 are calculated. The main loop of the algorithm is repeated until 
the termination criterion is met. 

3.3. Proposed hybrid algorithm 

As mentioned before, the PSO algorithm is one of the most efficient 
evolutionary algorithms known until now. However, this algorithm is 
used for problems with a continuous solution space. The proposed hy- 
brid algorithm is assigned to take advantage of the PSO algorithm and 
become compatible with the discrete solution space of the problem. The 
hybrid algorithm is a combination of PSO and GA, with the main PSO 

structure. However, GA operators are applied to particles in each itera- 
tion. In other words, the hybrid algorithm upgrades a swarm of particles 
using GA operators such as crossover and mutation in each iteration. 
Therefore, the algorithm can search for the solution area more practi- 
cally and find better solutions. Moreover, following the 𝑃 𝑏𝑒𝑠𝑡 and 𝐺 𝑏𝑒𝑠𝑡 , 
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Fig. 6. Flowchart of the proposed hybrid algorithm. 

in each iteration, the algorithm reaches a better solution. The flowchart 
of the proposed hybrid algorithm is shown in Fig. 6 . 

As illustrated in Fig. 6 , the algorithm begins with generating a new 

population to serve as the initial population. The population’s perfor- 
mance is next analyzed, and similar to what we proposed in PSO, the 
𝑃 𝑏𝑒𝑠𝑡 and 𝐺 𝑏𝑒𝑠𝑡 values are calculated. The initial population will then be 
modified based on a given probability, either via a crossover operator, 
a mutation operator, or a random change in particle placements. When 
the crossover operator is applied to the initial population, the procedure 
is identical to what is described in part 3.1.3 of the GA algorithm. How- 
ever, in this scenario, one of the crossover operator’s parents should be 
the 𝐺 𝑏𝑒𝑠𝑡 or 𝑃 𝑏𝑒𝑠𝑡 . In this step, a random process is used to select either 
𝑃 𝑏𝑒𝑠𝑡 or 𝐺 𝑏𝑒𝑠𝑡 as the parent, after which a new generation is created using 
that parent. When the mutation operator updates the initial solution, the 
mutation process is identical to the one used by the PSO algorithm. If 
neither the Crossover nor Mutation operators are used, the initial popu- 
lation is updated randomly, with particle positions changing arbitrarily. 
After each update of the initial chromosome, the termination criterion 
is evaluated, and the procedure is repeated as long as the termination 
criteria are met. All the encoding strategy and termination criterion is 
the same as the proposed strategy introduced for GA. 

4. Computational results 

There is no benchmark for the flow shop with parallel assembly 
stages. Therefore, random instances are made using MATLAB soft- 
ware. The problems are classified into three categories: small problems, 
medium problems, and large ones. The classificatiIn this paper, GA, PSO, 
and hybrid metaheuristic parameters have been tuned to optimize their 
performance. One of the best-known ways to tune the parameters is the 
Taguchi method. Therefore this method has been used in this study. We 
used the Minitab software to design the experiments and assign the best 

level for each size of the problems. Calibrated GA parameters are popu- 
lation size, maximum iteration, convergence factors ( 𝛼1 , 𝛼2 |𝛼1 + 𝛼2 = 1) , 
convergence limit ( 𝜀 ) , number of crossovers, crossover boundaries, and 
the probability of mutation ( 𝑝 𝑚 ) . The Taguchi’s preferred design for GA 

is the 𝐿 27 ( 3 7 ) orthogonal array. This array is designed to handle seven 
parameters in three levels. Each experiment is performed, and the re- 
sults are shown in Table 1 . The PSO parameters consist of swarm 

size, maximum iteration, convergence factors ( 𝛼1 , 𝛼2 ) , convergence limit 
( 𝜀 ) , inertia weight ( 𝜔 ) , cognitive and social parameters ( 𝐶 1 , 𝐶 2 ) , and max- 
imum and minimum velocity ( 𝑉 max , 𝑉 min ) . The Taguchi’s preferred de- 
sign for PSO is the 𝐿 27 ( 3 7 ) orthogonal array. Table 2 shows the de- 
tailed information of the Taguchi method for the PSO procedure and the 
proper rates. Parameters of the hybrid algorithm are swarm size, maxi- 
mum iteration, convergence factors ( 𝛼1 , 𝛼2 ) , convergence limit ( 𝜀 ) , prob- 
ability of crossover ( 𝑃 𝑐 ) , probability of crossover with Gbest ( 𝑃 𝑐− 𝐺𝑏𝑒𝑠𝑡 ) , 
probability of crossover with Pbest ( 𝑃 𝑐− 𝑃𝑏𝑒𝑠𝑡 ) , crossover boundaries, 
and mutation chance ( 𝑃 𝑚 ) . The Taguchi design for the hybrid algo- 
rithm is 𝐿 27 ( 3 9 ) , which handles nine parameters in three levels. Pa- 
rameter levels of the proposed hybrid algorithm and the results of the 
Taguchi method are shown in Table 3. on strategy is based on the re- 
quired time to solve the MIP model using GAMS software. If the re- 
quired time is less than 600 s, the problem is defined as a small prob- 
lem; if the required time is between 600 s and 5400 s, the problem 

is medium size, and finally, if it takes more than 5400 s, the problem 

is classified as a large problem. Details of each instance are shown in 
Table 4 . 

Several experiments are performed to evaluate the performance of 
the proposed solution methods. The MIP model is solved by the model- 
ing language GAMS-IDE. The proposed algorithms are coded in MATLAB 

(R2013a) software. A personal computer with a 2.4 GHz Intel Core i5 
processor and 16 GB of RAM memory is used to run the programs. 
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Table 1 

GA parameters levels and result of the Taguchi method. 

Parameter Lower limit Upper limit 

Appropriate quantity according to Taguchi method 

Small Medium Large 

Population size 40 100 100 100 100 
Maximum iteration 75 125 75 125 125 
( 𝛼1 , 𝛼2 ) 0.1 0.9 [0.5,0.5] [0.3,0.7] [0.3,0.7] 
𝜀 10 −5 10 −4 4 × 10 −5 2 × 10 −5 10 −5 

Number of crossovers 10 30 30 30 30 

Crossover boundaries 0.1 0.9 [ 0 . 5 0 . 9 
0 . 5 0 . 9 

] [ 0 . 2 0 . 8 
0 . 5 0 . 9 

] [ 0 . 5 0 . 9 
0 . 5 0 . 9 

] 

𝑃 𝑚 0.01 0.03 0.01 0.01 0.03 

Table 2 

PSO parameters levels and result of the Taguchi method. 

Parameter Lower limit Upper limit 

Appropriate quantity according to Taguchi method 

Small Medium Large 

Swarm size 60 100 80 100 100 
Maximum iteration 75 125 75 125 125 
( 𝛼1 , 𝛼2 ) 0.1 0.9 [0.5,0.5] [0.3,0.7] [0.3,0.7] 
𝜀 10 −5 10 −4 2 × 10 −5 2 × 10 −5 10 −5 

𝜔 0.4 0.9 30 30 30 
( 𝐶 1 , 𝐶 2 ) 1.5 2 (2,2) (2,2) (2,2) 
( 𝑉 min , 𝑉 max ) 0 . 1 × ( max variation − min variation ) max variation − min variation 0 . 1 × ( max variation − min variation ) max variation − min variation 0 . 1 × ( max variation − min variation ) 
𝑉 max 0 . 1 × ( max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛 ) max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛 0 . 1 × ( max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛 ) max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛 0 . 1 × ( max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛 ) 
𝑉 min -maximum velocity -maximum velocity -maximum velocity 

Table 3 

Hybrid parameters levels and result of the Taguchi method. 

Parameter Lower limit Upper limit 

Appropriate quantity according to Taguchi method 

Small Medium Large 

swarm size 60 100 100 100 100 
Maximum iteration 75 125 125 125 125 
( 𝛼1 , 𝛼2 ) 0.1 0.9 [0.5,0.5] [0.5,0.5] [0.7,0.3] 
𝜀 10 −5 10 −4 10 −5 10 −5 10 −5 

𝑃 𝑐 0.2 0.8 0.5 0.5 0.75 
𝑃 𝑐− 𝐺𝑏𝑒𝑠𝑡 0.2 0.8 0.5 0.75 0.75 
𝑃 𝑐− 𝑃𝑏𝑒𝑠𝑡 0.2 0.8 0.25 0.25 0.25 

crossover 

boundaries 

0.1 0.9 [ 0 . 2 0 . 8 
0 . 3 0 . 7 

] [ 0 . 5 0 . 9 
0 . 5 0 . 9 

] [ 0 . 5 0 . 9 
0 . 2 0 . 8 

] 

𝑃 𝑚 0.2 0.7 0.5 0.7 0.7 

In order to evaluate the proposed algorithms, two performance cri- 
teria are calculated. The first criterion is named relative percentage de- 
viation ( 𝑅𝑃 𝐷) . It is calculated using Eq. (20) . The second one is an im- 
provement factor surveying the algorithm performance and is calculated 
by Eq. (21) . 

𝑅𝑃 𝐷 = 

||||
𝐴 lg 𝐵𝑒𝑠𝑡 − 𝐵𝑒𝑠 𝑡 𝑠𝑜𝑙 

𝐵𝑒𝑠 𝑡 𝑠𝑜𝑙 

|||| (20) 

Im 𝑝 = 

||||
𝐴 lg 𝐼𝑛𝑖𝑡𝑖𝑎𝑙− 𝑠𝑜𝑙 − 𝐴 lg 𝐹 𝑖𝑛𝑎𝑙− 𝑠𝑜𝑙 

𝐴 lg 𝐼𝑛𝑖𝑡𝑖𝑎𝑙− 𝑠𝑜𝑙 

|||| (21) 

When multiple measurements are made across different samples, the 
relative percentage deviation is advantageous since it allows the output 
to be more generalized. 

𝐴 lg 𝐵𝑒𝑠𝑡 in Eq. (20) denotes the best solution found by each algorithm 

while 𝐵𝑒𝑠 𝑡 𝑠𝑜𝑙 indicates the best solutions obtained by all of these algo- 
rithms. In other words, it is the best of the bests. The performance metric 
specified in Eq. (21) quantifies an algorithm’s capacity to improve its ini- 
tial solution. This performance metric is critical for this problem since it 
allows us to assess the new algorithm’s capability to explore the solution 
space and locate the optimal solution. When the objective function is not 
zero, RPD is quite beneficial. RPD is a frequently used performance met- 
ric for scheduling problems, particularly when makespan is considered 
as the objective function [28] . 

Fig. 7. Mean and interval plot of GA, PSO, and hybrid RPDs. 

Due to minimize the errors, each problem is solved ten times by each 
procedure, and the mean of the results are shown in Table 5 . Since the 
required time to solve large problems by the exact method is indefi- 
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Table 4 

Detailed information on instances. 

Problem Number Number of parts Number of Number of machines in flow shop 

products 

Small P1 10 3 4 
P2 6 3 5 
P3 10 3 3 
P4 8 3 5 
P5 10 5 5 
P6 9 4 6 
P7 8 4 5 
P8 11 5 5 
P9 8 4 7 
P10 12 4 4 

Medium P11 16 5 6 
p12 14 5 5 
p13 15 6 4 
p14 15 7 5 
p15 12 6 7 
p16 14 7 3 
p17 14 6 5 
p18 15 6 5 
p19 16 5 7 
p20 18 6 6 

Large p21 30 10 8 
p22 25 5 8 
p23 24 6 5 
p24 23 5 6 
p25 22 7 5 
p26 30 6 5 
p27 25 10 6 
p28 30 15 10 
p29 35 10 10 
p30 40 10 15 

Table 5 

Computational results. 

Problem C max CPU Time RPD Imp 

GAM S G A PS O Hybri d GAM S GA PSO Hybri d GA PSO Hybri d GA PSO Hybri d 

Small P1 136 13 6 136 136 4.038 3.4 12.0 1 31.2 0.000 0.000 0.000 10.52 6 3.546 11.688 
P2 120 12 0 121 120 2.236 1.33 8.5 28.23 0.000 0.833 0.000 4.762 2.419 2.439 
P3 152 15 2 152 152 3.207 2.6 8.6 30.2 0.000 0.000 0.000 5.000 3.797 5.590 
P4 155 15 5 155 155 3.357 2.4 8.7 31 0.000 0.000 0.000 4.321 5.488 7.186 
P5 177 18 1 177 177 40.61 2 3.5 9.05 33.5 2.260 0.000 0.000 12.13 6 13.65 9 12.808 
P6 164 16 5 165 164 6.2 4.1 14.3 16.2 0.610 0.610 0.000 11.29 0 9.836 7.865 
P7 159 16 159 159 9.179 2.5 8.7 31.3 0.629 0.000 0.000 6.433 8.092 6.471 

0 
P8 i70 i7 5 i70 i70 39.0i 3.8 2.4 35.6 2.94i 0.000 0.000 i4.2i 6 i5.42 3 i4.i4i 
P9 i79 i7 9 i80 i79 4i.3i 3.0i 3.6 34.8 0.000 0.559 0.000 3.243 4.255 6.77i 
P1 0 i64 i6 4 i64 i64 59.8 2.8 7.8 23.6 0.000 0.000 0.000 9.392 ii.82 8 i3.684 

Mediu m Pi 1 20i 22 5 224 2i8 3236 i0.6 32 23 i 0.94 ii.44 8.458 i7.27 9 i8.84 i i8.959 
Pi 2 2i4 22 2 232 223 465 4 3 2.7 3.738 8.4ii 4.206 i2.25 3 7.570 i3.900 
Pi 3 230 23 8 243 236 i0i6 3.4 2.2 3.7 3.478 5.652 2.609 8.8i2 8.302 9.23i 
Pi 4 248 25 6 256 254 4895 6 24 2i 3.226 3.226 2.4i9 7.58i 4.833 i.550 
Pi 5 i93 2i 6 220 203 i007 i3.8 26.6 23 ii.9i i3.99 5.i8i i 0.83 7 8.333 i5.768 
Pi 6 i 56 i6 4 i64 i65 348i 5 8 7 5.i28 9.6i5 5.769 9.890 9.043 9.836 
Pi 7 208 2i 7 2i5 2i4 676 9 i5.7 2i 4.327 8.i73 2.885 i2.i4 6 8.i63 i2.295 
Pi 8 224 23 3 234 234 i339 7.4 i4.8 25.5 4.0i8 5.804 4.464 i0.03 9 8.846 i0.687 
Pi 9 279 29 6 304 285 769 i3 28.5 22.2 6.093 8.96i 2.i5i 8.923 9.792 i2.308 
P2 0 246 27 6 28i 274 3605. 2 ii.6 32 i9 i2.i9 5 i4.22 8 ii.382 i 0.25 4 8.i70 ii.327 

Large P2 i – 50 2 503 504 – 24.6 73 65 0.000 0.i99 0.398 i2.39 i i0.97 3 i0.480 
P2 2 – 40 9 4i9 398 – 2i 40 48 2.764 5.276 0.000 8.50i 4.773 i0.962 
P2 3 – 33 6 339 334 – i3.3 40 30 0.599 i.497 0.000 8.i97 6.6i2 i0.695 
P2 4 – 33 5 342 332 – i2.3 29.6 24.5 0.904 3.0i2 0.000 9.459 7.568 i0.027 
P2 5 – 30 0 3ii 286 – i0.5 34 30 4.895 8.74i 0.000 8.8i5 3.ii5 i2.805 
P2 6 – 40 0 398 39i – i2.3 40 40.4 2.302 i.790 0.000 6.542 7.870 9.908 
P2 7 – 39 6 409 393 – i7.i 8 35.7 38.26 0.763 4.07i 0.000 i0.20 4 7.256 ii.685 
P2 8 – 49 8 5i3 490 – 32 54.7 5i i 0.633 4.694 0.000 i2.i6 9 i0.78 3 i5.5i7 
P2 9 – 56 8 573 559 – 32 74.5 63.3 i.6i0 2.504 0.000 i 0.93 8 9.335 ii.4i0 
P3 0 – 70 6 7i8 703 – 79.5 i2i. 8 99.3 0.427 2.i34 0.000 9.834 6.02i 8.225 
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Fig. 8. A comparison of completion time with different algo- 
rithms. 

nite, only small and medium problems are solved using mixed-integer 
programming. 

As shown in Table 5 , the hybrid algorithm usually achieves the best 
solution. It is obvious that the hybrid algorithm is capable of finding 
better solutions in large problems; furthermore, when the GAMS soft- 
ware is not able to find the optimal solution after 5400 s of computation 
time, the hybrid algorithm gets to a satisfactory solution in a fraction of 
minute. Fig. 7 shows the mean and interval plot of GA, PSO, and hybrid 
solutions RPD. In this figure, the hybrid solution has the least RPD. 

Fig. 8 presents a comparison of different solution procedures for 
small-, medium-, and large-sized problems. (As shown in Fig. 8 (a), all 
procedures have approximately the same performance, and they reach 
the optimal solution using the exact solution method. For medium-sized 
problems in Fig. 8 (b), the GAMS algorithm performs best, and for large- 

sized problems. Fig. 8 (c) shows the performance of three algorithms 
for large-sized problems. As mentioned before, these problems are not 
solvable by GAMS in a reasonable time. A comparison of the three algo- 
rithms shows the hybrid algorithm has the best performance. 

In Fig. 9 , the required CPU times are shown. This graph shows that 
GA is the fastest algorithm. The hybrid algorithm and the PSO algorithm 

reach to the solution gradually. Although the hybrid algorithm has the 
best performance in finding solutions, it performs much slower than the 
GA algorithm. As the problem gets larger, this difference gets bigger. In 
most cases, PSO has the worst performance with regards to CPU time 
required for solving the problems. 

The improvement factor shows the ability of the algorithm to search 
the solution space and improve the initial solution. Fig. 10 compares 
the algorithms in terms of the solution space survey. As is obvious from 
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Fig. 9. Comparison of solution procedures 
based on CPU time. 

Fig. 10. Comparison of solution algorithms 
based on improvement factor. 

Fig. 10 , the hybrid solution searches the solution space in a more prac- 
tical manner and improves the initial solution better than the other al- 
gorithms. 

5. Conclusion 

In this paper, the scheduling of a flow shop with parallel assembly 
stages was studied. In this production system, various products are pro- 
duced. The required parts of each product are manufactured in a flow 

shop stage, and when the parts are ready, products are assembled in 
one of two assembly lines. The objective function is to minimize the 
makespan. A mixed-integer linear programming model of the problem 

is formulated and coded in GAMS optimization software to solve the 
problem. Exact solution methods can only solve small (and medium) 
size problems due to the complexity of the problem. Therefore, GA 

swarm optimization was used to solve medium and large-size problems. 
Moreover, a hybrid algorithm was proposed to solve the proposed prob- 
lem. The hybrid solution algorithm is approximately similar to particle 
swarm optimization that utilizes GA operators for better performance. 
Since the appropriate design of parameters has a great effect on meta- 
heuristics algorithm accuracy, the parameters of each algorithm are cali- 
brated using the Taguchi method. All of the proposed metaheuristics can 
find appropriate solutions. The numerical experiment shows that, for ev- 
ery scale of the problem, the proposed hybrid algorithm effectively finds 
better solutions compared to other algorithms. However, GA usually has 
better performance regarding computational time. It was shown that the 

hybrid algorithm searches the solution space more effectively and can 
improve the initial solution better than the other algorithms. 

Solving this problem considering other objective functions can be 
suggested for further researches. In this research, it is supposed that 
the demand for each product is stable and known in advance, which 
is not always realistic. Moreover, maintenance time has an important 
role in scheduling; therefore, solving the problem without the current 
assumptions is also recommended for further research. 
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