
La Salle University La Salle University

La Salle University Digital Commons La Salle University Digital Commons

Business Systems and Analytics Faculty Work Department of Business Systems and Analytics

1-1-2022

A parameter tuned hybrid algorithm for solving flow shop A parameter tuned hybrid algorithm for solving flow shop

scheduling problems with parallel assembly stages scheduling problems with parallel assembly stages

Mona Jabbari

Madjid Tavana
La Salle University, tavana@lasalle.edu

Parviz Fattahi

Fatemeh Daneshamooz

Follow this and additional works at: https://digitalcommons.lasalle.edu/bsa_faculty

 Part of the Business Commons

Recommended Citation Recommended Citation
Jabbari, Mona; Tavana, Madjid; Fattahi, Parviz; and Daneshamooz, Fatemeh, "A parameter tuned hybrid
algorithm for solving flow shop scheduling problems with parallel assembly stages" (2022). Business
Systems and Analytics Faculty Work. 31.
https://digitalcommons.lasalle.edu/bsa_faculty/31

This Article is brought to you for free and open access by the Department of Business Systems and Analytics at La
Salle University Digital Commons. It has been accepted for inclusion in Business Systems and Analytics Faculty
Work by an authorized administrator of La Salle University Digital Commons. For more information, please contact
duinkerken@lasalle.edu.

https://digitalcommons.lasalle.edu/
https://digitalcommons.lasalle.edu/bsa_faculty
https://digitalcommons.lasalle.edu/bsa
https://digitalcommons.lasalle.edu/bsa_faculty?utm_source=digitalcommons.lasalle.edu%2Fbsa_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.lasalle.edu%2Fbsa_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lasalle.edu/bsa_faculty/31?utm_source=digitalcommons.lasalle.edu%2Fbsa_faculty%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:duinkerken@lasalle.edu

Sustainable Operations and Computers 3 (2022) 22–32

Contents lists available at ScienceDirect

Sustainable Operations and Computers

journal homepage:

http://www.k eaipublishing.com/en/journals/sustainable-operations-and-computer s/

A parameter tuned hybrid algorithm for solving flow shop scheduling

problems with parallel assembly stages

Mona Jabbari a , Madjid Tavana

b , c , ∗ , Parviz Fattahi d , Fatemeh Daneshamooz e

a Department of Finance, Providence College, Providence, Rhode Island
b Business Systems and Analytics Department, Distinguished Chair of Business Analytics, La Salle University, Philadelphia, PA 19141
c Business Information Systems Department, Faculty of Business Administration and Economics, University of Paderborn, Paderborn, Germany
d Department of Industrial Engineering, Alzahra University, Tehran, Iran
e Department of Industrial Engineering, Bu-Ali Sina University, Hamedan, Iran

a r t i c l e i n f o

Keywords:

Flow shop
Parallel assembly stages
Scheduling
Metaheuristic
Taguchi

a b s t r a c t

In this paper, we study the scheduling problem for a customized production system consisting of a flow shop
production line with a parallel assembly stage that produces various products in two stages. In the first stage of
the production line, parts are produced using a flow shop production line, and in the second stage, products are
assembled on one of the parallel assembly lines. The objective is to minimize the time required to complete all
goods (makespan) using efficient scheduling. A mathematical model is developed; however, the model is NP-hard
and cannot be solved in a reasonable amount of time. To solve this NP-hard problem, we propose two well-known
metaheuristics and a hybrid algorithm. To calibrate and improve the performance of our algorithms, we employ
the Taguchi method. We evaluate the performance of our hybrid algorithm with the two well-known methods
of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) and demonstrate that our hybrid algorithm

outperforms both the GA and PSO approaches in terms of efficiency.

1. Introduction

Machine scheduling is a significant challenge in the planning and
control of manufacturing operations. The optimization of machine
scheduling requires an effective and efficient assignment of production
activities to a limited number of available machines. These problems
are computationally challenging, and therefore subject of many research
articles [24,29,37] . Flow shop scheduling with assembly operation is a
widely applied machine scheduling problem in manufacturing. A large
number of these problems are traditional two-stage assembly flow shop
scheduling problems [[19] , [27]]. Lee et al. [19] conducted the first
study on flow shop scheduling with assembly operations. They demon-
strated that the problem is NP-hard and proposed a branch and bound
and three heuristics to solve it.

Cheng and Wang [5] solved a makespan minimization problem in a
two-machine flow shop system considering a special structure. In their
study, there are two types of components known as unique components
and common components. Unique components are processed individu-
ally, and common components are processed in batches, which require
different times for each type of product. The first machine produces both
unique and common components in the production system, and the sec-

∗ Corresponding author at: Business Systems and Analytics Department, Distinguished Chair of Business Analytics, La Salle University, Philadelphia, PA 19141,
United States.

E-mail addresses: Mona.jabbari@providence.edu (M. Jabbari), tavana@lasalle.edu (M. Tavana).

ond machine assembles components into products. Yokoyama [36] stud-
ied the scheduling problem of a hybrid production system that includes
machining and assembly operations. He proposed a branch and bound to
solve the problem. Sun et al. [38] studied a flow shop scheduling prob-
lem with an assembly operation. They presented a series of heuristic
algorithms based on Johnson’s and Gupta’s algorithms. Yokoyama and
Santos [39] studied a modified flow shop scheduling in which processed
parts are assembled to form the products in a subsequent assembly stage.
Each part was produced on a flow shop line with two machines, and then
products were completed on a single assembly stage. They proposed an
efficient branch and bound method to minimize the weighted sum of
the product completion time. Allahverdi and Al-Anzi [1] studied an as-
sembly scheduling problem with two stages. In this problem, parts are
produced using m machines in the first stage and assembled with an as-
sembly machine in the second stage. They considered setup times and
process times separately. They employed a hybrid tabu search, a self-
adaptive differential evolution (SDE), and a new self-adaptive differen-
tial evolution (NSDE) to solve the problem. Hatami et al. [13] solved a
distributed assembly permutation flow shop scheduling problem with a
makespan minimization objective. They proposed a mixed-integer lin-
ear programming model, three constructive algorithms, and a variable
neighborhood descend algorithm to solve the problem. Mahdavi et al.

https://doi.org/10.1016/j.susoc.2021.09.002
Received 18 May 2021; Received in revised form 7 July 2021; Accepted 8 September 2021
Available online 15 September 2021
2666-4127/© 2021 The Author(s). Published by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.susoc.2021.09.002
http://www.ScienceDirect.com
http://www.keaipublishing.com/en/journals/sustainable-operations-and-computers/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.susoc.2021.09.002&domain=pdf
mailto:Mona.jabbari@providence.edu
mailto:tavana@lasalle.edu
https://doi.org/10.1016/j.susoc.2021.09.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Fig. 1. Flow shop with a parallel assembly stage.

[21] studied a production system that consists of a hybrid flow shop
production line followed by an assembly stage to minimize makespan.
They modeled the production setup as an integer programming prob-
lem and offered two metaheuristics to solve the problem. Fattahi et al.
[8] considered a compound production system with a hybrid flow shop
line at the first stage and an assembly line at the second stage. They
presented a mathematical model for the problem and a series of heuris-
tic algorithms based on Johnson’s algorithm. They evaluated the final
solution with two improved lower bounds. Tajbakhsh et al. [32] studied
a multi-objective assembly permutation flow shop scheduling problem,
which includes three parts: machining, assembly, and batch processing.
They proposed a mathematical model of the problem, and a metaheuris-
tic algorithm was applied to solve the problem. Fattahi et al. [9] studied
a hybrid flow shop scheduling problem with setup time and assembly
operations. They extended a hierarchical branch and bound algorithm

to solve the problem and reported three upper and lower bound. Komaki
and Keyvanfar [16] suggested a metaheuristic algorithm based on a gray
wolf optimizer algorithm for solving the two-stage assembly flow shop
scheduling problem with predetermined release times. Maria Gonzalez-
Neira et al. [12] studied the scheduling problem processed through two
stages in a company and solved the problem with a hybrid algorithm.
The problem is a distributed assembly permutation flow shop problem in
which the production line consists of a set of distributed flow shop lines
in the first stage and an assembly line in the second stage. Framinan and
Perez-Gonzalez [10] addressed the two-stage assembly scheduling prob-
lem and used some constructive heuristic and metaheuristic algorithms
to solve the problem. Allahverdi et al. [2 , 3] proposed an algorithm for
solving the two-stage assembly-scheduling problem to minimize total
tardiness with setup times. Their proposed algorithm reduces the error
of the best previous algorithms by about 50%. Komaki et al. [17] pre-
sented some dispatching rules, a lower bound, and a metaheuristic algo-
rithm based on the cuckoo optimization algorithm for solving the three-
stage assembly flow shop scheduling problem. Lee [20] proposed six
lower bounds and four heuristic algorithms for solving a two-stage as-
sembly problem to minimize the total completion time.

Sabouni and Logendran [30] proposed a new mathematical model,
lower bounds, and an efficient algorithm for solving a real case flow shop
problem in the electronic industry. Sheikh et al. [31] proposed some op-
timal polynomial solutions and some multi-objective-based metaheuris-
tic algorithms for solving a multi-objective assembly flow shop with re-
lease time.

In this paper, we will discuss a modified type of production system

that is used in modern industries. In many production lines, many proce-
dures are performed on each part repeatedly. The majority of the time,
pieces go through the same series of processes in the same order. In this
case, machines are placed in a series setup known as a flow shop [26] .
In our problem, the first stage consists of 𝑘 (𝑘 = { 1 , 2 , ..., 𝐾 }) machines
that are arranged as a flow shop, and in the second stage, produced parts
are assembled on two parallel assembly lines. This production line has
the flexibility of producing several products with different parts. The
required parts are manufactured in the first stage to produce each prod-
uct. The parts are then assembled to form the final product. It should
be noted that the two parallel assembly lines in the second stage are
identical. Therefore, the assembly time of each product is the same on
both assembly lines. It is assumed that all parts and machines are avail-
able at the beginning of the production time horizon, and each part can

be processed by only one machine at a time; machines cannot operate
more than one product simultaneously. Setup time and required time
for the transmission of parts between flow shop and assembly stages
are negligible. Also, preemption is not authorized. The number of parts
and required machine timing are deterministic, and there is no space
limitation between stages.

The remainder of the paper is organized as follows. The problem

formulation and the mathematical model are presented in Section 2 .
Section 3 presents the algorithms proposed in this study. In Section 4 , the
parameters of the algorithms are designed, and some example problems
are solved using the proposed solution procedures. The results are also
compared based on different criteria. Finally, the summary of the results
and directions for future researches are discussed in Section 5 .

2. Problem description

This paper studies a modified flow shop scheduling production line
with assembly operations. Assume a set of 𝑇 products 𝑡 = { 1 , .., 𝑇 } has to
be produced. Each product consists of different parts (𝑖) which should
be processed through a flow shop line. Different machines are arranged
as a flow shop at the first stage. Each part is processed at the first stage,
and then parts are assembled at either assembly line one or two to pro-
duce the final product. Fig. 1 shows a simplified view of the explained
problem. As depicted in Fig. 1 , the first stage involves the processing
of raw materials or pieces. When the process is complete, the produced
parts are assembled to form the final products in the second stage. In
this paper, the following conditions are considered:

a Assembly operation cannot start unless all its related component
parts are ready to assemble.

b The processing time of part 𝑖 , 𝑖 = { 1 , .., 𝑛 } , are given as constants on
each machine at a flow shop.

c Assembly times of the product 𝑡 , 𝑡 = { 1 , .., 𝑇 } , are available, and they
are the same on both assembly stages.

d Machines cannot process more than one operation at the same time.
e All machines are available and ready to use at the beginning of the

scheduling horizon and never break down during the scheduling pe-
riod.

f Setup times are independent of each other and are included in the to-
tal processing time for each operation. Therefore, the order in which
the parts are manufactured has no effect on the setup durations.

g The objective function is the minimization of the makespan (maxi-
mum completion time).

h At the first stage, the sequence of production is the same for all ma-
chines. In other words, the production line is a permutation flow

shop.
i Different products are ordered, and only one of each product is re-

quired.

The notations of the mathematical model of the problem are as fol-
lows:
𝑇 Total number of products
𝑡 Product index, 𝑡 = { 1 , .., 𝑇 }
𝑛 Total number of parts
𝑖 Part index, 𝑖 = { 1 , .., 𝑛 }
𝑛 𝑡 Number of parts in product t
𝑘 Machine index at the first stage (flow shop) 𝑘 = { 1 , 2 , ..., 𝐾 }

23

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

𝑝 𝑖𝑘 Process time of part 𝑖 on the machine 𝑘 at the first stage
𝑚 Index of stages in the assembly line, 𝑚 = { 1 , 2 }
𝐴 𝑇 𝑡 Assembly time of product t
𝑎 𝑖𝑡 1 if the part 𝑖 is a component of the product 𝑡 ; 0 otherwise
𝑗 Index of sequence on flow shop machines, 𝑗 = { 1 , .., 𝑛 }
𝑝 Index of sequence in assembly lines
𝑀 A large positive number, The mathematical modeling of the

problem has the following variables:
𝑥 𝑖𝑗 1, if the part 𝑖 is processed at sequence 𝑗 on flow shop; 0

otherwise
′
𝑗𝑡

1, if the part in the sequence 𝑗 is a component of the product
𝑡 ; 0 otherwise

𝑅 𝑡 Ready time of the product 𝑡 to be assembled, i.e., all compo-
nent parts of the product 𝑡 have passed through stage 1

𝑝 ′
𝑗𝑘

Processing time of part in sequence 𝑗on the machine 𝑘 at the
first stage

𝑐 𝑗𝑘 Completion time of the job in sequence 𝑗on the machine 𝑘 at
the first stage

𝑧 𝑚𝑝𝑡 1, if the product 𝑡 is assembled in priority 𝑝 on the assembly
line 𝑚

𝑓 𝑗 Completion time of processing part in sequence 𝑗at the first
stage (complete flow shop)

𝑠 𝑚𝑝 The start time of machine 𝑚 to assemble the product in prior-
ity 𝑝

𝑐 max Makespan

Based on the aforementioned problem and notations, the mathemat-
ical model is presented as follows:

𝑀𝑖𝑛 𝑧 = 𝑐 max (1)

Subject to:

𝑛 ∑
𝑖 =1

𝑥 𝑖𝑗 = 1∀𝑗 (2)

𝑛 ∑
𝑗=1

𝑥 𝑖𝑗 = 1∀𝑖 (3)

𝑛 ∑
𝑖 =1

𝑥 𝑖𝑗 × 𝑝 𝑖𝑘 = 𝑝 ′
𝑗𝑘
∀𝑗, 𝑘 (4)

𝑐 𝑗𝑘 = 𝑝 ′
𝑗𝑘
𝑗 = 1 , 𝑘 = 1 (5)

𝑐 𝑗𝑘 = 𝑝 ′
𝑗𝑘

+ 𝑐 (𝑗−1) 𝑘 𝑗 ≥ 2 , 𝑘 = 1 (6)

𝑐 𝑗𝑘 = 𝑝 ′
𝑗𝑘

+ 𝑐 𝑗(𝑘 −1) 𝑗 = 1 , 𝑘 ≥ 2 (7)

𝑐 𝑗𝑘 = max
{
𝑐 (𝑗−1) 𝑘 , 𝑐 𝑗(𝑘 −1)

}
+ 𝑝 ′

𝑗𝑘
𝑘 ≥ 2 , 𝑗 ≥ 2 (8)

𝑐 𝑗𝑘 ≤ 𝑓 𝑗 ∀𝑗, 𝑘 (9)

𝑛 ∑
𝑖 =1

𝑥 𝑖𝑗 × 𝑎 𝑖𝑡 = 𝑎 ′
𝑗𝑡
∀𝑗, 𝑡 (10)

𝑓 𝑗 ≤ 𝑅 𝑡 + 𝑀(1 − 𝑎 ′
𝑗𝑡
)∀𝑗, 𝑡 (11)

𝑅 𝑡 ≤ 𝑠 𝑚𝑝 + 𝑀(1 − 𝑧 𝑚𝑝𝑡)∀𝑡, 𝑚, 𝑝 (12)

𝑆 𝑚𝑝 ≤ 𝑅 𝑡 + 𝑀(1 − 𝑧 𝑚𝑝𝑡)∀𝑡, ∀𝑚, 𝑝 = 1 (13)

𝑆 𝑚 (𝑝 −1) + 𝐴 𝑇 𝑡 × 𝑧 𝑚 (𝑝 −1) 𝑡 ≤ 𝑆 𝑚𝑝 ∀𝑡, ∀𝑚, 𝑝 ≥ 2 (14)

2 ∑
𝑚 =1

𝑃 ∑
𝑝 =1

𝑧 𝑚𝑝𝑡 = 1∀𝑡 (15)

𝑛 ∑
𝑡 =1

𝑧 𝑚𝑝𝑡 ≥

𝑛 ∑
𝑡 =1

𝑧 𝑚 (𝑝 +1) 𝑡 ∀𝑚, 𝑝 (16)

𝑐 max ≥ 𝑠 𝑚𝑝 +

𝑇 ∑
𝑡 =1

𝐴 𝑇 𝑡 × 𝑧 𝑚 (𝑝 −1) 𝑡 ∀𝑚, 𝑝 (17)

𝑥 𝑖𝑗 , 𝑎
′
𝑗𝑡
𝑎𝑛𝑑 𝑧 𝑚𝑝𝑡 ∈ { 0 , 1 } (18)

Eq. (1) shows the objective function that is makespan minimization.
Constraints (2) , (3) imply that each part should be processed in one pri-
ority. In particular, Constraint (2) ensures that there should be only one
part in each priority, and Constraint (3) ensures that each part should
be allocated to one priority. Eq. (4) calculates the processing time of
the job for the 𝑗 𝑡ℎ priority. The required process time of each job on
each machine is indicated by Constraints (5) –(7) , and [7] . More pre-
cisely, Constraint (5) shows the completion time of the first job on the
first flow shop machine. Constraint (6) shows the completion time of
other jobs on the first flow shop machine. Eq. (7) calculates the comple-
tion time of the first priority job on the other machines, and Constraint
(8) shows the completion time of other jobs on the other machines. Con-
straint (9) guarantees that the completion time of each job in stage one
(flow shop) is greater than its completion time on each machine.

Eq. (10) shows the position of product 𝑇 ′𝑠 parts in the flow shop
sequence. Eq. (11) guarantees that the product 𝑇 will be ready to as-
semble only when all parts are processed at stage one. Eqs. (12) and
(13) take care of the assembly start time of the products at stage two.
Eq. (12) ensures that the assembly operation can only start when all
parts of the product are ready to be assembled. Eq. (13) shows that
the assembly process of the products on the first priority of each as-
sembly line should start after all the parts are ready. At the same time,
Constraint (14) calculates the assembly start time of products in other
priorities. Eq. (15) guarantees that each product should be allocated
to just one assembly line and only on one priority. Constraint (16) ar-
ranges the sequences in the assembly lines. Constraint (17) ensures that
the makespan is greater or equal to the completion time of each prod-
uct. Finally, Constraint (18) specifies the specifications of the decision
variables.

3. Proposed algorithms

In this problem, parts machining and assembly operation planning
should be treated simultaneously. As mentioned previously, Lee et al.
[39] , [40] proved that a two-stage manufacturing system with two ma-
chines at the first stage and a single assembly line at the second stage
is strongly NP-Hard. Therefore, the more complicated problem consid-
ered in this paper is also NP-hard. In this case, the mathematical model
can only find the optimum solutions for a small-scale scheduling prob-
lem in reasonable computation time. As the problem gets larger and
more complicated, the computation time increases. Therefore, in most
cases, the mathematical model cannot find the optimum answer to real-
world problems in a reasonable amount of time. Many scholars have suc-
cessfully employed metaheuristic algorithms (i.e ., the genetic algorithm,
Particle swarm optimization, etc.) have been successfully employed by
many scholars in solving complex scheduling problems [[4] , [33] , [15]].
We propose three algorithms to find near-optimal solutions to this prob-
lem. These developed algorithms are described in the following section.

3.1. Genetic algorithm

Holland first introduced the Genetic Algorithm (GA) (1970). Genetic
algorithms are a type of evolutionary algorithm, which is a larger class
of metaheuristics. GAs employ techniques inspired by natural evolution,
such as inheritance, mutation, selection, and crossover, to generate so-
lutions for optimization problems [11] . Genetic algorithms have been
widely used to solve different optimization problems [[22] , [35] , [23]].

24

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Fig. 2. A possible chromosome of GA.

Fig. 3. Decoding section two of the example chromosome.

A GA starts with a set of chromosomes called a population that defines
an initial solution. A new population is generated from the former pop-
ulation. We hope to improve the initial solution by producing new pop-
ulations. Each solution is evaluated based on the fitness criteria, and the
most fitted solutions are chosen to form new solutions. New offspring
solutions are created by a crossover operator. This operator combines
the information of two parents by exchanging selected parts of the solu-
tions of the parents. The other operator called mutation is employed in
the algorithm to maintain population diversity by slight changes in the
selected solutions (Gen and Cheng, 2000). At the beginning of the pro-
cess, the properties of the operators (fitness criteria, crossover and etc.)
should be specified, and then the GA algorithm is applied to initialize
the first population of solutions; then mutation, crossover, inversion,
and selection operators help to improve the initial solution through a
repetitive process. This repetitive cycle is applied to the population un-
til some termination condition is satisfied (e.g., no improvement in the
population, a specific number of generations, and a certain pre-defined
value for objective function). In the following, each GA part adapted to
the scheduling problem is described.

3.1.1. Encoding

The chromosome of the proposed GA is constructed of two sections.
Section 1 is a string of 𝑛 integers, representing the parts of the product.
In each chromosome, value 𝑖 at the position 𝑗 in Section 1 indicates the
part 𝑖 belongs to sequence 𝑗 on the flow shop machines.

Section 2 illustrates the product assembly sequence on each assembly
line using n integers. The value i denotes the product and values greater
than the number of products are utilized to shift the sequence between
assembly line 1 and assembly line 2. The assembly schedule begins with
assembly line 1. We use an example to demonstrate the GA chromo-
some encoding technique. Fig. 2 illustrates a hypothetical chromosome
structure for a problem with 10 parts and 4 products.

In this example, Section 1 represents the production sequence on
the flow shop machines. Parts are manufactured in the following or-
der on each flow shop machine: { 5 − 1 − 9 − 4 − 10 − 7 − 8 − 2 − 6 − 3 } .
Section 2 details the assembly sequence for each product on each as-
sembly line, as seen in Fig. 3 . Before discussing Section 2 of the chromo-
some, note that we have four products and must determine the assem-
bly priority of these four products on two assembly lines (T = {1,2,3,4}).
Section 2 begins with the number 3 in the first position; 3 is a member
of Set T. Product 3 is allocated to assembly line 1 at its first priority be-
cause it is a member of Set T . The following number is 8, which is not a
member of set T; as such, it does not represent an item; instead, it shifts
the sequence between assembly lines 1 and 2; in other words, when the
priority is scheduling on assembly line 1, a number that is not a member
of set T , such as 8, will shift the scheduling to the second assembly line,
and vice versa. Because assembly line 1 was scheduled before observing
8, the assembly scheduling will now be changed to assembly 2. Because
the following number is 1, product 1 is given the first priority on assem-
bly line 2. Following that, the next number is 5, which does not belong
to the set T ; as a result, the scheduling is shifted from assembly line 2
to assembly line 1. The following number is 10, which is not a part of

set T, so scheduling is transferred from assembly line 1 to assembly line
2-similarly, number 7 redirects scheduling to assembly line 1. Because
the next number, 2, is a member of set T, product 2 will be placed on
assembly line 1 ′ s second priority, after product 3. The next number is
9, which shifts scheduling to assembly line 2. Finally, assembly line 2 ′ s
second priority is assigned to product 4. The chromosome is encoded
using this proposed approach, as illustrated in Fig. 3 . We can capture
every possible state of the problem using this encoding strategy.

3.1.2. Selection strategy

A fraction of the existing population is chosen to reproduce the new

generation. Different methods are proposed to select parents (Reeves
and Rowe, 2003). In this paper, selecting parents is based on the fitness
of the chromosomes. Half of the parents are randomly selected from

40% of the best chromosomes in the population, and the remaining is
randomly selected from the entire population.

3.1.3. Crossover operator

There are many crossover techniques for different data structures.
In this paper, a one-point crossover is selected. In this method, a single
crossover point is selected on the chromosomes of both parents, and the
data after this crossover point is swapped between the parents. The new

chromosomes are called the children.
When the crossover operator is used, several of the children’s chro-

mosomes become infeasible due to repeated sequences of the same in-
tegers. Accordingly, the following strategy is planned to cope with this
problem:

a Find out repetitive numbers in each child’s chromosome.
b Replace the first repetitive number of Child 1 with the first repetitive

number of Child 2.
c Repeat this procedure for all chromosomes until children are feasi-

ble.

Once this method is implemented, all of the children’s encoding
becomes feasible. Fig. 4 illustrates a sample crossover operator us-
ing the suggested technique applied to the same example covered in
Section 3.1.1 .

In the Fig. 4 example, we apply the crossover operator and employ
the suggested strategy until all the children are feasible. After applying
the crossover operator, the initial step is to detect the repeating number
in each offspring, i.e ., 1–4, 7–10). The first repeated offspring of Child 1
is then replaced with the first repetitive offspring of Child 2. If we look at
this example again, the first repeated number in child one is 1, while the
first repeated number in child two is 8. Following the proposed strategy,
we substitute 1 for 8. It should be noted that the second 1 and the second
8 in each child have remained unchanged. The second repeated number
in child 1 is a 9, while the second repeated number in child 2 is a 2.
As a result, the first 9 and 2 observed in the offspring are replaced with
each other, but the second 9 and 2 observed in the offspring remain
unchanged. In child 1, the third repeated number is an 8, and in child
2, the third repeated number is a 9. As a result, the first “8 ″ and “9 ″ in
the offspring are replaced by each other, but the second 8 and 9 in the
offspring stay untouched. This procedure is repeated for the fourth set
of repeated numbers (i.e ., 3, 4), the fifth set of repeated numbers (i.e .,
5, 6), and the sixth set of repeated numbers (i.e ., 10, 7).

3.1.4. Mutation operator

Mutation helps to keep genetic diversity from one generation to the
next generation in genetic algorithm chromosomes. Mutation happens
by a defined mutation probability during the evolution process. The mu-
tation operator in GA preserves and introduces diversity in a generation.
In this problem, the mutation operator is employed in two steps, one in
the sequence of the flow shop and the other in the priority of assembly.
In both steps, two numbers are randomly selected and replaced with
each other.

25

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Fig. 4. Example of crossover operator.

Fig. 5. Discrete PSO strategy.

Once children are generated and mutation is applied to them, their
fitness is calculated, and if their fitness function is better, they are re-
placed with their parents.

3.1.5. Termination criterion

There are different termination criteria. In this paper, three termina-
tion criteria are proposed:

a The number of iterations exceeds the pre-defined number assigned
by the user.

b The computational time of the program exceeds the time limit as-
signed by the user.

c The convergence of the chromosomes in two following iterations
becomes less than the limit assigned by the user. The convergence
criterion is calculated by Eq. (19)

𝛼1 ×
||||
𝑚𝑒𝑎 𝑛 𝑡 −1 − 𝑚𝑒𝑎 𝑛 𝑡

𝑚𝑒𝑎 𝑛 𝑡 −1

|||| + 𝛼2 ×
||||
min 𝑡 −1 − min 𝑡

min 𝑡 −1

|||| ≤ 𝜀 (19)

where 𝛼1 , 𝛼2 are random numbers and 𝜀 is the convergence limit. 𝑚𝑒𝑎 𝑛 𝑡
is the average value of solutions in 𝑡 iteration and min 𝑡 is the minimum

value obtained in the iteration 𝑡 .

3.2. Proposed particle swarm optimization

Particle Swarm Optimization (PSO) is a stochastic optimization tech-
nique introduced by Eberhart and Kennedy [6] . PSO is based on the
social behavior metaphor and has many similarities with evolutionary
computation techniques such as Genetic Algorithms [25] . Many scholars
have successfully used PSO for solving complicated optimization prob-
lems [[18] , [14] , [34]]. Since the PSO algorithm is a population-based
algorithm, it starts with a population of random solutions, and a set of
potential solutions evolves to a suitable solution (or set of solutions) for
a problem. Each solution is called a “particle, ” and the set of the pop-
ulation is called the “swarm. ” The position of each particle stands for
the potential solution. Each particle changes its position to follow these
three principles:

a To maintain its inertia.
b To change based on its best position so far.
c To change based on the swarm’s best position.

The particle’s best position is named 𝑃 𝑏𝑒𝑠𝑡 , and the swarm’s best so-
lution is named 𝐺 𝑏𝑒𝑠𝑡 . The position of a particle is updated by each it-
eration, and the new particle is calculated using the formula, 𝑋

𝑡 +1
𝑖

=

𝑋

𝑡
𝑖
+ 𝑉 𝑡 +1

𝑖
where 𝑋

𝑡
𝑖

represents the particle position and 𝑉 𝑡
𝑖

is the ve-
locity of the particle 𝑖 at the iteration 𝑡 . The velocity is calculated

according to this formula, 𝑉 𝑡 +1
𝑖

= 𝜔 0 ∗ 𝑉 𝑡 𝑖 + 𝐶 1 ∗ 𝑟𝑎𝑛 𝑑 1 ∗ (𝑃 𝑏𝑒𝑠 𝑡 𝑖 − 𝑋

𝑡
𝑖
) +

𝐶 2 ∗ 𝑟𝑎𝑛 𝑑 2 ∗ (𝐺 𝑏𝑒𝑠𝑡 − 𝑋

𝑡
𝑖
) , where 𝜔 0 is the inertia weight controlling the

movement of the particle. 𝐶 1 , 𝐶 2 are called cognitive and social parame-
ters, which determine the balance between convergence to 𝑃 𝑏𝑒𝑠 𝑡 𝑖 or 𝐺 𝑏𝑒𝑠𝑡

[25] . It is obvious that standard PSO equations use real-valued positions
and velocities, and they cannot be used to generate a discrete job per-
mutation.

3.2.1. Discrete PSO

Standard PSO is usually used for problems with real values. Since
the solution space of this problem is discrete, at this stage, a strategy is
introduced to adapt the problem with the standard PSO. When design-
ing the PSO algorithm, one of the key issues is to establish a suitable
way of encoding a schedule (or solution) in a way that particles have
the necessary information. In this problem, each particle is divided into
two sections. Section one represents the sequence of parts on flow shop
machines, and section two shows the priority of product assembly on
each assembly line. Section one is made of n (number of parts) random

numbers between (0,1). The smallest number in this code is representa-
tive of part 1, and the largest number represents part n. So the numerical
order shows parts number, and the value 𝑖 in position 𝑗 represents the
sequence of parts machining. An example of this encoding process is
shown in Fig. 5 .

The same strategy is used to encode the second section. This section
is interpreted exactly the same as Section 3.1.1 . Applying this strategy,
PSO can be used for the flow shop with assembly operation. Each par-
ticle is updated by the given formula and in each iteration 𝑃 𝑏𝑒𝑠𝑡 and
𝐺 𝑏𝑒𝑠𝑡 are calculated. The main loop of the algorithm is repeated until
the termination criterion is met.

3.3. Proposed hybrid algorithm

As mentioned before, the PSO algorithm is one of the most efficient
evolutionary algorithms known until now. However, this algorithm is
used for problems with a continuous solution space. The proposed hy-
brid algorithm is assigned to take advantage of the PSO algorithm and
become compatible with the discrete solution space of the problem. The
hybrid algorithm is a combination of PSO and GA, with the main PSO

structure. However, GA operators are applied to particles in each itera-
tion. In other words, the hybrid algorithm upgrades a swarm of particles
using GA operators such as crossover and mutation in each iteration.
Therefore, the algorithm can search for the solution area more practi-
cally and find better solutions. Moreover, following the 𝑃 𝑏𝑒𝑠𝑡 and 𝐺 𝑏𝑒𝑠𝑡 ,

26

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Fig. 6. Flowchart of the proposed hybrid algorithm.

in each iteration, the algorithm reaches a better solution. The flowchart
of the proposed hybrid algorithm is shown in Fig. 6 .

As illustrated in Fig. 6 , the algorithm begins with generating a new

population to serve as the initial population. The population’s perfor-
mance is next analyzed, and similar to what we proposed in PSO, the
𝑃 𝑏𝑒𝑠𝑡 and 𝐺 𝑏𝑒𝑠𝑡 values are calculated. The initial population will then be
modified based on a given probability, either via a crossover operator,
a mutation operator, or a random change in particle placements. When
the crossover operator is applied to the initial population, the procedure
is identical to what is described in part 3.1.3 of the GA algorithm. How-
ever, in this scenario, one of the crossover operator’s parents should be
the 𝐺 𝑏𝑒𝑠𝑡 or 𝑃 𝑏𝑒𝑠𝑡 . In this step, a random process is used to select either
𝑃 𝑏𝑒𝑠𝑡 or 𝐺 𝑏𝑒𝑠𝑡 as the parent, after which a new generation is created using
that parent. When the mutation operator updates the initial solution, the
mutation process is identical to the one used by the PSO algorithm. If
neither the Crossover nor Mutation operators are used, the initial popu-
lation is updated randomly, with particle positions changing arbitrarily.
After each update of the initial chromosome, the termination criterion
is evaluated, and the procedure is repeated as long as the termination
criteria are met. All the encoding strategy and termination criterion is
the same as the proposed strategy introduced for GA.

4. Computational results

There is no benchmark for the flow shop with parallel assembly
stages. Therefore, random instances are made using MATLAB soft-
ware. The problems are classified into three categories: small problems,
medium problems, and large ones. The classificatiIn this paper, GA, PSO,
and hybrid metaheuristic parameters have been tuned to optimize their
performance. One of the best-known ways to tune the parameters is the
Taguchi method. Therefore this method has been used in this study. We
used the Minitab software to design the experiments and assign the best

level for each size of the problems. Calibrated GA parameters are popu-
lation size, maximum iteration, convergence factors (𝛼1 , 𝛼2 |𝛼1 + 𝛼2 = 1) ,
convergence limit (𝜀) , number of crossovers, crossover boundaries, and
the probability of mutation (𝑝 𝑚) . The Taguchi’s preferred design for GA

is the 𝐿 27 (3 7) orthogonal array. This array is designed to handle seven
parameters in three levels. Each experiment is performed, and the re-
sults are shown in Table 1 . The PSO parameters consist of swarm

size, maximum iteration, convergence factors (𝛼1 , 𝛼2) , convergence limit
(𝜀) , inertia weight (𝜔) , cognitive and social parameters (𝐶 1 , 𝐶 2) , and max-
imum and minimum velocity (𝑉 max , 𝑉 min) . The Taguchi’s preferred de-
sign for PSO is the 𝐿 27 (3 7) orthogonal array. Table 2 shows the de-
tailed information of the Taguchi method for the PSO procedure and the
proper rates. Parameters of the hybrid algorithm are swarm size, maxi-
mum iteration, convergence factors (𝛼1 , 𝛼2) , convergence limit (𝜀) , prob-
ability of crossover (𝑃 𝑐) , probability of crossover with Gbest (𝑃 𝑐− 𝐺𝑏𝑒𝑠𝑡) ,
probability of crossover with Pbest (𝑃 𝑐− 𝑃𝑏𝑒𝑠𝑡) , crossover boundaries,
and mutation chance (𝑃 𝑚) . The Taguchi design for the hybrid algo-
rithm is 𝐿 27 (3 9) , which handles nine parameters in three levels. Pa-
rameter levels of the proposed hybrid algorithm and the results of the
Taguchi method are shown in Table 3. on strategy is based on the re-
quired time to solve the MIP model using GAMS software. If the re-
quired time is less than 600 s, the problem is defined as a small prob-
lem; if the required time is between 600 s and 5400 s, the problem

is medium size, and finally, if it takes more than 5400 s, the problem

is classified as a large problem. Details of each instance are shown in
Table 4 .

Several experiments are performed to evaluate the performance of
the proposed solution methods. The MIP model is solved by the model-
ing language GAMS-IDE. The proposed algorithms are coded in MATLAB

(R2013a) software. A personal computer with a 2.4 GHz Intel Core i5
processor and 16 GB of RAM memory is used to run the programs.

27

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Table 1

GA parameters levels and result of the Taguchi method.

Parameter Lower limit Upper limit

Appropriate quantity according to Taguchi method

Small Medium Large

Population size 40 100 100 100 100
Maximum iteration 75 125 75 125 125
(𝛼1 , 𝛼2) 0.1 0.9 [0.5,0.5] [0.3,0.7] [0.3,0.7]
𝜀 10 −5 10 −4 4 × 10 −5 2 × 10 −5 10 −5

Number of crossovers 10 30 30 30 30

Crossover boundaries 0.1 0.9 [0 . 5 0 . 9
0 . 5 0 . 9

] [0 . 2 0 . 8
0 . 5 0 . 9

] [0 . 5 0 . 9
0 . 5 0 . 9

]

𝑃 𝑚 0.01 0.03 0.01 0.01 0.03

Table 2

PSO parameters levels and result of the Taguchi method.

Parameter Lower limit Upper limit

Appropriate quantity according to Taguchi method

Small Medium Large

Swarm size 60 100 80 100 100
Maximum iteration 75 125 75 125 125
(𝛼1 , 𝛼2) 0.1 0.9 [0.5,0.5] [0.3,0.7] [0.3,0.7]
𝜀 10 −5 10 −4 2 × 10 −5 2 × 10 −5 10 −5

𝜔 0.4 0.9 30 30 30
(𝐶 1 , 𝐶 2) 1.5 2 (2,2) (2,2) (2,2)
(𝑉 min , 𝑉 max) 0 . 1 × (max variation − min variation) max variation − min variation 0 . 1 × (max variation − min variation) max variation − min variation 0 . 1 × (max variation − min variation)
𝑉 max 0 . 1 × (max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛) max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛 0 . 1 × (max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛) max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛 0 . 1 × (max var 𝑖𝑎𝑡𝑖𝑜𝑛 − min var 𝑖𝑎𝑡𝑖𝑜𝑛)
𝑉 min -maximum velocity -maximum velocity -maximum velocity

Table 3

Hybrid parameters levels and result of the Taguchi method.

Parameter Lower limit Upper limit

Appropriate quantity according to Taguchi method

Small Medium Large

swarm size 60 100 100 100 100
Maximum iteration 75 125 125 125 125
(𝛼1 , 𝛼2) 0.1 0.9 [0.5,0.5] [0.5,0.5] [0.7,0.3]
𝜀 10 −5 10 −4 10 −5 10 −5 10 −5

𝑃 𝑐 0.2 0.8 0.5 0.5 0.75
𝑃 𝑐− 𝐺𝑏𝑒𝑠𝑡 0.2 0.8 0.5 0.75 0.75
𝑃 𝑐− 𝑃𝑏𝑒𝑠𝑡 0.2 0.8 0.25 0.25 0.25

crossover

boundaries

0.1 0.9 [0 . 2 0 . 8
0 . 3 0 . 7

] [0 . 5 0 . 9
0 . 5 0 . 9

] [0 . 5 0 . 9
0 . 2 0 . 8

]

𝑃 𝑚 0.2 0.7 0.5 0.7 0.7

In order to evaluate the proposed algorithms, two performance cri-
teria are calculated. The first criterion is named relative percentage de-
viation (𝑅𝑃 𝐷) . It is calculated using Eq. (20) . The second one is an im-
provement factor surveying the algorithm performance and is calculated
by Eq. (21) .

𝑅𝑃 𝐷 =

||||
𝐴 lg 𝐵𝑒𝑠𝑡 − 𝐵𝑒𝑠 𝑡 𝑠𝑜𝑙

𝐵𝑒𝑠 𝑡 𝑠𝑜𝑙

|||| (20)

Im 𝑝 =

||||
𝐴 lg 𝐼𝑛𝑖𝑡𝑖𝑎𝑙− 𝑠𝑜𝑙 − 𝐴 lg 𝐹 𝑖𝑛𝑎𝑙− 𝑠𝑜𝑙

𝐴 lg 𝐼𝑛𝑖𝑡𝑖𝑎𝑙− 𝑠𝑜𝑙

|||| (21)

When multiple measurements are made across different samples, the
relative percentage deviation is advantageous since it allows the output
to be more generalized.

𝐴 lg 𝐵𝑒𝑠𝑡 in Eq. (20) denotes the best solution found by each algorithm

while 𝐵𝑒𝑠 𝑡 𝑠𝑜𝑙 indicates the best solutions obtained by all of these algo-
rithms. In other words, it is the best of the bests. The performance metric
specified in Eq. (21) quantifies an algorithm’s capacity to improve its ini-
tial solution. This performance metric is critical for this problem since it
allows us to assess the new algorithm’s capability to explore the solution
space and locate the optimal solution. When the objective function is not
zero, RPD is quite beneficial. RPD is a frequently used performance met-
ric for scheduling problems, particularly when makespan is considered
as the objective function [28] .

Fig. 7. Mean and interval plot of GA, PSO, and hybrid RPDs.

Due to minimize the errors, each problem is solved ten times by each
procedure, and the mean of the results are shown in Table 5 . Since the
required time to solve large problems by the exact method is indefi-

28

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Table 4

Detailed information on instances.

Problem Number Number of parts Number of Number of machines in flow shop

products

Small P1 10 3 4
P2 6 3 5
P3 10 3 3
P4 8 3 5
P5 10 5 5
P6 9 4 6
P7 8 4 5
P8 11 5 5
P9 8 4 7
P10 12 4 4

Medium P11 16 5 6
p12 14 5 5
p13 15 6 4
p14 15 7 5
p15 12 6 7
p16 14 7 3
p17 14 6 5
p18 15 6 5
p19 16 5 7
p20 18 6 6

Large p21 30 10 8
p22 25 5 8
p23 24 6 5
p24 23 5 6
p25 22 7 5
p26 30 6 5
p27 25 10 6
p28 30 15 10
p29 35 10 10
p30 40 10 15

Table 5

Computational results.

Problem C max CPU Time RPD Imp

GAM S G A PS O Hybri d GAM S GA PSO Hybri d GA PSO Hybri d GA PSO Hybri d

Small P1 136 13 6 136 136 4.038 3.4 12.0 1 31.2 0.000 0.000 0.000 10.52 6 3.546 11.688
P2 120 12 0 121 120 2.236 1.33 8.5 28.23 0.000 0.833 0.000 4.762 2.419 2.439
P3 152 15 2 152 152 3.207 2.6 8.6 30.2 0.000 0.000 0.000 5.000 3.797 5.590
P4 155 15 5 155 155 3.357 2.4 8.7 31 0.000 0.000 0.000 4.321 5.488 7.186
P5 177 18 1 177 177 40.61 2 3.5 9.05 33.5 2.260 0.000 0.000 12.13 6 13.65 9 12.808
P6 164 16 5 165 164 6.2 4.1 14.3 16.2 0.610 0.610 0.000 11.29 0 9.836 7.865
P7 159 16 159 159 9.179 2.5 8.7 31.3 0.629 0.000 0.000 6.433 8.092 6.471

0
P8 i70 i7 5 i70 i70 39.0i 3.8 2.4 35.6 2.94i 0.000 0.000 i4.2i 6 i5.42 3 i4.i4i
P9 i79 i7 9 i80 i79 4i.3i 3.0i 3.6 34.8 0.000 0.559 0.000 3.243 4.255 6.77i
P1 0 i64 i6 4 i64 i64 59.8 2.8 7.8 23.6 0.000 0.000 0.000 9.392 ii.82 8 i3.684

Mediu m Pi 1 20i 22 5 224 2i8 3236 i0.6 32 23 i 0.94 ii.44 8.458 i7.27 9 i8.84 i i8.959
Pi 2 2i4 22 2 232 223 465 4 3 2.7 3.738 8.4ii 4.206 i2.25 3 7.570 i3.900
Pi 3 230 23 8 243 236 i0i6 3.4 2.2 3.7 3.478 5.652 2.609 8.8i2 8.302 9.23i
Pi 4 248 25 6 256 254 4895 6 24 2i 3.226 3.226 2.4i9 7.58i 4.833 i.550
Pi 5 i93 2i 6 220 203 i007 i3.8 26.6 23 ii.9i i3.99 5.i8i i 0.83 7 8.333 i5.768
Pi 6 i 56 i6 4 i64 i65 348i 5 8 7 5.i28 9.6i5 5.769 9.890 9.043 9.836
Pi 7 208 2i 7 2i5 2i4 676 9 i5.7 2i 4.327 8.i73 2.885 i2.i4 6 8.i63 i2.295
Pi 8 224 23 3 234 234 i339 7.4 i4.8 25.5 4.0i8 5.804 4.464 i0.03 9 8.846 i0.687
Pi 9 279 29 6 304 285 769 i3 28.5 22.2 6.093 8.96i 2.i5i 8.923 9.792 i2.308
P2 0 246 27 6 28i 274 3605. 2 ii.6 32 i9 i2.i9 5 i4.22 8 ii.382 i 0.25 4 8.i70 ii.327

Large P2 i – 50 2 503 504 – 24.6 73 65 0.000 0.i99 0.398 i2.39 i i0.97 3 i0.480
P2 2 – 40 9 4i9 398 – 2i 40 48 2.764 5.276 0.000 8.50i 4.773 i0.962
P2 3 – 33 6 339 334 – i3.3 40 30 0.599 i.497 0.000 8.i97 6.6i2 i0.695
P2 4 – 33 5 342 332 – i2.3 29.6 24.5 0.904 3.0i2 0.000 9.459 7.568 i0.027
P2 5 – 30 0 3ii 286 – i0.5 34 30 4.895 8.74i 0.000 8.8i5 3.ii5 i2.805
P2 6 – 40 0 398 39i – i2.3 40 40.4 2.302 i.790 0.000 6.542 7.870 9.908
P2 7 – 39 6 409 393 – i7.i 8 35.7 38.26 0.763 4.07i 0.000 i0.20 4 7.256 ii.685
P2 8 – 49 8 5i3 490 – 32 54.7 5i i 0.633 4.694 0.000 i2.i6 9 i0.78 3 i5.5i7
P2 9 – 56 8 573 559 – 32 74.5 63.3 i.6i0 2.504 0.000 i 0.93 8 9.335 ii.4i0
P3 0 – 70 6 7i8 703 – 79.5 i2i. 8 99.3 0.427 2.i34 0.000 9.834 6.02i 8.225

29

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Fig. 8. A comparison of completion time with different algo-
rithms.

nite, only small and medium problems are solved using mixed-integer
programming.

As shown in Table 5 , the hybrid algorithm usually achieves the best
solution. It is obvious that the hybrid algorithm is capable of finding
better solutions in large problems; furthermore, when the GAMS soft-
ware is not able to find the optimal solution after 5400 s of computation
time, the hybrid algorithm gets to a satisfactory solution in a fraction of
minute. Fig. 7 shows the mean and interval plot of GA, PSO, and hybrid
solutions RPD. In this figure, the hybrid solution has the least RPD.

Fig. 8 presents a comparison of different solution procedures for
small-, medium-, and large-sized problems. (As shown in Fig. 8 (a), all
procedures have approximately the same performance, and they reach
the optimal solution using the exact solution method. For medium-sized
problems in Fig. 8 (b), the GAMS algorithm performs best, and for large-

sized problems. Fig. 8 (c) shows the performance of three algorithms
for large-sized problems. As mentioned before, these problems are not
solvable by GAMS in a reasonable time. A comparison of the three algo-
rithms shows the hybrid algorithm has the best performance.

In Fig. 9 , the required CPU times are shown. This graph shows that
GA is the fastest algorithm. The hybrid algorithm and the PSO algorithm

reach to the solution gradually. Although the hybrid algorithm has the
best performance in finding solutions, it performs much slower than the
GA algorithm. As the problem gets larger, this difference gets bigger. In
most cases, PSO has the worst performance with regards to CPU time
required for solving the problems.

The improvement factor shows the ability of the algorithm to search
the solution space and improve the initial solution. Fig. 10 compares
the algorithms in terms of the solution space survey. As is obvious from

30

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

Fig. 9. Comparison of solution procedures
based on CPU time.

Fig. 10. Comparison of solution algorithms
based on improvement factor.

Fig. 10 , the hybrid solution searches the solution space in a more prac-
tical manner and improves the initial solution better than the other al-
gorithms.

5. Conclusion

In this paper, the scheduling of a flow shop with parallel assembly
stages was studied. In this production system, various products are pro-
duced. The required parts of each product are manufactured in a flow

shop stage, and when the parts are ready, products are assembled in
one of two assembly lines. The objective function is to minimize the
makespan. A mixed-integer linear programming model of the problem

is formulated and coded in GAMS optimization software to solve the
problem. Exact solution methods can only solve small (and medium)
size problems due to the complexity of the problem. Therefore, GA

swarm optimization was used to solve medium and large-size problems.
Moreover, a hybrid algorithm was proposed to solve the proposed prob-
lem. The hybrid solution algorithm is approximately similar to particle
swarm optimization that utilizes GA operators for better performance.
Since the appropriate design of parameters has a great effect on meta-
heuristics algorithm accuracy, the parameters of each algorithm are cali-
brated using the Taguchi method. All of the proposed metaheuristics can
find appropriate solutions. The numerical experiment shows that, for ev-
ery scale of the problem, the proposed hybrid algorithm effectively finds
better solutions compared to other algorithms. However, GA usually has
better performance regarding computational time. It was shown that the

hybrid algorithm searches the solution space more effectively and can
improve the initial solution better than the other algorithms.

Solving this problem considering other objective functions can be
suggested for further researches. In this research, it is supposed that
the demand for each product is stable and known in advance, which
is not always realistic. Moreover, maintenance time has an important
role in scheduling; therefore, solving the problem without the current
assumptions is also recommended for further research.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

Dr. Madjid Tavana is grateful for the partial support he received from

the Czech Science Foundation (GA ̌CR19–13946S) for this research.

References

[1] A. Allahverdi , F.S. Al-Anzi , Evolutionary heuristics and an algorithm for the
two-stage assembly scheduling problem to minimize makespan with setup times,
Int. J. Prod. Res. 44 (22) (2006) 4713–4735 .

[2] A. Allahverdi , H. Aydilek , A. Aydilek , Two-stage assembly scheduling problem for
minimizing total tardiness with setup times, Appl. Math. Model. 40 (17–18) (2016)
7796–7815 .

31

http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0001
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0001
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0001
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0002
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0002
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0002
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0002

M. Jabbari, M. Tavana, P. Fattahi et al. Sustainable Operations and Computers 3 (2022) 22–32

[3] M.R. Bonyadi , Z. Michalewicz , Analysis of stability, local convergence, and transfor-
mation sensitivity of a variant of the particle swarm optimization algorithm, IEEE
Trans. Evolut. Comput. 20 (3) (2016) 370–385 .

[4] A. Branda , D. Castellano , G. Guizzi , V. Popolo , Metaheuristics for the flow shop
scheduling problem with maintenance activities integrated, Comput. Ind. Eng. 151
(2021) 106989 .

[5] T.C.E. Cheng , G. Wang , Batching and scheduling to minimize the makespan in the
two-machine flowshop, IIE Trans. 30 (5) (1998) 447–453 .

[6] R. Eberhart , J. Kennedy , A new optimizer using particle swarm theory, in: Proceed-
ings of the MHS’95 Sixth International Symposium on Micro Machine and Human
Science, IEEE, 1995, pp. 39–43 .

[7] W. Fang , J. Sun , H. Chen , X. Wu , A decentralized quantum-inspired particle swarm

optimization algorithm with cellular structured population, Inf. Sci. 330 (2016)
19–48 .

[8] P. Fattahi , S.M.H. Hosseini , F. Jolai , A mathematical model and extension algorithm

for assembly flexible flow shop scheduling problem, Int. J. Adv. Manuf. Technol. 65
(5–8) (2013) 787–802 .

[9] P. Fattahi , S.M.H. Hosseini , F. Jolai , R. Tavakkoli-Moghaddam , A branch and bound
algorithm for hybrid flow shop scheduling problem with setup time and assembly
operations, Appl. Math. Model. 38 (1) (2014) 119–134 .

[10] J.M. Framinan , P. Perez-Gonzalez , The 2-stage assembly flowshop scheduling prob-
lem with total completion time: efficient constructive heuristic and metaheuristic,
Comput. Oper. Res. 88 (2017) 237–246 .

[11] M. Gen , R. Cheng , Genetic algorithms and engineering optimization, John Wiley &
Sons, 2000 (Vol. 7) .

[12] E.M. Gonzalez-Neira , D. Ferone , S. Hatami , A.A. Juan , A biased-randomized
simheuristic for the distributed assembly permutation flowshop problem with
stochastic processing times, Simul. Model. Pract. Theory 79 (2017) 23–36 .

[13] S. Hatami , S. Ebrahimnejad , R. Tavakkoli-Moghaddam , Y. Maboudian , Two
meta-heuristics for three-stage assembly flowshop scheduling with sequence-depen-
dent setup times, Int. J. Adv. Manuf. Technol. 50 (9–12) (2010) 1153–1164 .

[14] M.A. Islam, Y. Gajpal, T.Y. Elmekkawy, Hybrid particle swarm optimization algo-
rithm for solving the clustered vehicle routing problem, Appl. Soft. Comput. (2021)
107655, doi: 10.1016/j.asoc.2021.107655 .

[15] A. Khare, S. Agrawal, Effective heuristics and metaheuristics to minimise total tardi-
ness for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res.
(2020) 1–17, doi: 10.1080/00207543.2020.1837982 .

[16] G.M. Komaki , V. Kayvanfar , Grey Wolf Optimizer algorithm for the two-stage as-
sembly flow shop scheduling problem with release time, J. Comput. Sci. 8 (2015)
109–120 .

[17] G.M. Komaki , E. Teymourian , V. Kayvanfar , Z. Booyavi , Improved discrete cuckoo
optimization algorithm for the three-stage assembly flowshop scheduling problem,
Comput. Ind. Eng. 105 (2017) 158–173 .

[18] N. Kumar , A.K. Manna , A.A. Shaikh , A.K. Bhunia , Application of hybrid binary tour-
nament-based quantum-behaved particle swarm optimization on an imperfect pro-
duction inventory problem, Soft. comput. (2021) 1–23 .

[19] C.Y. Lee , T.C.E. Cheng , B.M.T. Lin , Minimizing the makespan in the 3-machine as-
sembly-type flowshop scheduling problem, Manag. Sci. 39 (5) (1993) 616–625 .

[20] I.S. Lee , Minimizing total completion time in the assembly scheduling problem, Com-
put. Ind. Eng. (2018) .

[21] I. Mahdavi , G.M. Komaki , V. Kayvanfar , Aggregate hybrid flowshop scheduling with
assembly operations, in: Proceedings of the 18th IEEE, Conference on Industrial En-
gineering & Engineering Management (IE&EM), 2011, September, pp. 663–667 .

[22] M.J. Mayer , A. Szilágyi , G. Gróf , Environmental and economic multi-objective opti-
mization of a household level hybrid renewable energy system by genetic algorithm,
Appl. Energy 269 (2020) 115058 .

[23] M. NoParast , M. Hematian , A. Ashrafian , M.J.T. Amiri , H. AzariJafari , Development
of a non-dominated sorting genetic algorithm for implementing circular economy
strategies in the concrete industry, Sustain. Prod. Consum. 27 (2021) 933–946 .

[24] H. Öztop, M.F. Tasgetiren, D.T. Eliiyi, Q. Pan, L. Kandiller, An energy- efficient
permutation flowshop scheduling problem, Expert Syst. Appl. 150 (2020) 113279,
doi: 10.1016/j.eswa.2020.113279 .

[25] K.E. Parsopoulos (Ed.), Particle Swarm Optimization and Intelligence: Advances and
Applications: Advances and Applications, IGI global, 2010 .

[26] M.L Pinedo, Scheduling: Theory, algorithms and systems, 4, 4th ed., Springer Science
& Business Media, New York, 2012 Springer, doi: 10.1007/978-1-4614-2361-4 .

[27] C.N. Potts , S.V. Sevast’Janov , V.A. Strusevich , L.N. Van Wassenhove , C.M. Zwan-
eveld , The two-stage assembly scheduling problem: complexity and approximation,
Oper. Res. 43 (2) (1995) 346–355 .

[28] M. Rabiee , R.S. Rad , M. Mazinani , R. Shafaei , An intelligent hybrid meta-heuristic
for solving a case of no-wait two-stage flexible flow shop scheduling problem with
unrelated parallel machines, Int. J. Adv. Manuf. Technol. 71 (5) (2014) 1229–1245 .

[29] R. Ruiz , Q.K. Pan , B. Naderi , Iterated Greedy methods for the distributed permuta-
tion flowshop scheduling problem, Omega 83 (2019) 213–222 (Westport) .

[30] M.Y. Sabouni , R. Logendran , Lower bound development in a flow shop electronic
assembly problem with carryover sequence-dependent setup time, Comput. Ind. Eng.
(2018) .

[31] S. Sheikh , G.M. Komaki , V. Kayvanfar , Multi objective two-stage assembly flow shop
with release time, Comput. Ind. Eng. 124 (2018) 276–292 .

[32] Z. Tajbakhsh, P. Fattahi, J. Behnamian, Multi-objective assembly permutation flow

shop scheduling problem: a mathematical model and a meta-heuristic algorithm, J
Oper Res Soc 65 (10) (2014) 1580–1592, doi: 10.1057/jors.2013.105 .

[33] E. Vallada , F. Villa , L. Fanjul-Peyro , Enriched metaheuristics for the resource con-
strained unrelated parallel machine scheduling problem, Comput. Oper. Res. 111
(2019) 415–424 .

[34] G. Wang , Integrated supply chain scheduling of procurement, production, and dis-
tribution under spillover effects, Comput. Oper. Res. 126 (2021) 105105 .

[35] Y.B. Woo , B.S. Kim , A genetic algorithm-based matheuristic for hydrogen supply
chain network problem with two transportation modes and replenishment cycles,
Comput. Ind. Eng. 127 (2019) 981–997 .

[36] M. Yokoyama , Hybrid flow-shop scheduling with assembly operations, Int. J. Prod.
Econ. 73 (2) (2001) 103–116 .

[37] F. Zhao , L. Zhang , J. Cao , J. Tang , A cooperative water wave optimization algorithm

with reinforcement learning for the distributed assembly no-idle flowshop schedul-
ing problem, Comput. Ind. Eng. 153 (2021) 107082 .

[38] Xi Sun, Kazuko Morizawa, Hiroyuki Nagasawa, Powerful heuristics to mini-
mize makespan in fixed, 3-machine, assembly-type flowshop scheduling, Eu-
ropean Journal of Operational Research Volume 146 (3) (2003) 498–516,
doi: 10.1016/S0377-2217(02)00245-X .

[39] M. Yokoyama, D.L. Santos, Three-stage flow-shop scheduling with assembly opera-
tions to minimize the weighted sum of product completion times European, Journal
of Operational Research 161 (3) (2005) 754–770, doi: 10.1016/j.ejor.2003.09.016 .

[40] S. Lee , Li Lin , Ni Jun , Markov-based maintenance planning considering repair time
and periodic inspection, Journal of Manufacturing Science and Engineering 135 (3)
(2013) 031013 .

32

http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0003
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0003
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0003
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0004
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0004
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0004
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0004
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0004
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0005
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0005
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0005
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0007
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0007
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0007
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0008
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0008
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0008
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0008
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0008
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0009
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0009
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0009
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0009
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0010
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0010
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0010
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0010
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0010
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0011
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0011
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0011
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0012
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0012
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0012
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0013
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0013
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0013
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0013
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0013
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0014
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0014
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0014
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0014
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0014
https://doi.org/10.1016/j.asoc.2021.107655
https://doi.org/10.1080/00207543.2020.1837982
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0018
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0018
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0018
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0019
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0019
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0019
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0019
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0019
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0020
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0020
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0020
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0020
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0020
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0021
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0021
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0021
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0021
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0022
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0022
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0023
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0023
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0023
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0023
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0024
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0024
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0024
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0024
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0025
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0025
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0025
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0025
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0025
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0025
https://doi.org/10.1016/j.eswa.2020.113279
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0028
https://doi.org/10.1007/978-1-4614-2361-4
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0030
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0030
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0030
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0030
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0030
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0030
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0031
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0031
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0031
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0031
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0031
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0032
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0032
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0032
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0032
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0033
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0033
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0033
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0034
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0034
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0034
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0034
https://doi.org/10.1057/jors.2013.105
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0037
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0037
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0037
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0037
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0038
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0038
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0039
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0039
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0039
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0040
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0040
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0041
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0041
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0041
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0041
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0041
https://doi.org/10.1016/S0377-2217(02)00245-X
https://doi.org/10.1016/j.ejor.2003.09.016
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0044
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0044
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0044
http://refhub.elsevier.com/S2666-4127(21)00036-2/sbref0044

	A parameter tuned hybrid algorithm for solving flow shop scheduling problems with parallel assembly stages
	Recommended Citation

	A parameter tuned hybrid algorithm for solving flow shop scheduling problems with parallel assembly stages
	1 Introduction
	2 Problem description
	3 Proposed algorithms
	3.1 Genetic algorithm
	3.1.1 Encoding
	3.1.2 Selection strategy
	3.1.3 Crossover operator
	3.1.4 Mutation operator
	3.1.5 Termination criterion

	3.2 Proposed particle swarm optimization
	3.2.1 Discrete PSO

	3.3 Proposed hybrid algorithm

	4 Computational results
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

